
Chapter 17
Control and Iteration

17.1 Introduction

This chapter introduces control and iteration in Scala. In Scala, as in many other
languages, the mainstay of the control and iteration processes is the if and
switch statements and the for and while loops.

17.2 Control Structures

17.2.1 The if Statement

The basic format of an if statement in Scala is the same as that in languages such
as C, Pascal and Java. A test is performed and, depending on the result of the test, a
statement is performed. A set of statements to be executed can be grouped together
in curly brackets { }. For example,

if (a == 5)

println("true")

else

println("false")

if (a == 5) {

print("a = 5")

println("The answer is therefore true")

} else {

print("a != 5")

println("The answer is therefore false")

}

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_17

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_17&domain=pdf

Of course, the if statement need not include the optional else construct:

if (a == 5) {

print("a = 5")

println("The answer is therefore true")

}

You must have a Boolean in a condition expression, so you cannot make the
same equality mistake as in C. The following code always generates a compile time
error:

if (a = 1) {

…

}

Unfortunately, assigning a Boolean to a variable results in a boolean (all
expressions return a result) and thus the following code is legal, but does not result
in the intended behaviour (the string “Hello” is always printed on the console):

var a = false

if (a = true)

println("Hello")

You can construct nested if statements, as in any other language:

if (count < 100)

if (index < 10)

{…}

else

{…}

else

{…}

However, it is easy to get confused. Scala does not provide an explicit
if-then-elseif-else type of structure. In some languages, you can write:

if (n < 10)

print ("less than 10");

else if (n < 100)

print ("greater than 10 but less than 100");

else if (n < 1000)

172 17 Control and Iteration

print ("greater than 100 but less then 1000");

else

print ("greater than 1000");

This code is intended to be read as laid out above. However if we write it in
Scala, it should be laid out as below:

if (n < 10)

print ("less than 10")

else if (n < 100)

print ("greater than 10 but less than 100")

else if (n < 1000)

print ("> than 100 but < 1000")

else

print ("> than 1000")

This code clearly has a very different meaning (although it may have the same
effect). This can lead to the infamous “dangling else” problem. Another solution is
the switch statement. However, as you will see the switch statement has sig-
nificant limitations.

17.2.2 If Returns a Value

Almost all statements in Scala return a result, and the if statement is no different.
This means that you can use an if statement to determine the value to assign to a
value (or pass to a method, etc.). For example, the following code assigns either the
string “Dad” or the string “No Data” to the value role defining the current string
referenced by the variable name:

val role =
if (name == "John")

"Dad"
else

"No Data"

println(role)
This is a very useful feature of the if statement which can be used effectively in

many situations.

17.2 Control Structures 173

17.3 Iteration

Iteration in Scala is accomplished using the for, while and do-while state-
ments. Just like their counterparts in other languages, these statements repeat a
sequence of instructions a given number of times.

17.3.1 For Loops

A for loop in Scala is very similar to a for loop in other languages. It is used to
step a variable through a series of values until a given test is met. Many languages
have a very simple for loop, for example,

for i = 0 to 10 do

…

endfor;

In this case a variable I would take the values 0, 1, 2, 3, etc., up to 10. The
longhand form of this in Scala is:

for (i <- (0).to(10)) {
print(i)

}

Note that in the above to is a method calls on the Int (integer) type. In practice,
this is a lower level implementation issue, and it would be far more common to
write:

for (i <- 0 to 10) print(i)
This can be done as Scala can infer the brackets and the dot which has the benefit

that it will look far more familiar as a language construct to those used to pro-
gramming languages such as C and Pascal.

One thing to note is that the operator here includes the value 10, whereas in
languages such as C and Java it would mean up to but not including 10.

Multiple indexes can be used with a for loop. For example, we could increment I
from 1 to 3 and j from 5 to 7:

object MultipleForLoopTest extends App {
for (i <- 1 to 3; j <- 5 to 7) {

print("Value of i: " + i);
println(" / Value of j: " + j);

}
}

This may not have the effect you expect. This equates to loop the value of I
through 1 to 3 for each of the values of j; thus, the output is:

174 17 Control and Iteration

Value of i: 1 / Value of j: 5

Value of i: 1 / Value of j: 6

Value of i: 1 / Value of j: 7

Value of i: 2 / Value of j: 5

Value of i: 2 / Value of j: 6

Value of i: 2 / Value of j: 7

Value of i: 3 / Value of j: 5

Value of i: 3 / Value of j: 6

Value of i: 3 / Value of j: 7

As you can see from this, the value of I remains constant for all values of j and is
then incremented for a repeated for the values of j.

17.3.2 For Until

An alternative to the to operator is the until operator which indicates that a variable i
should loop unto but not including the higher bound, thus:

for (i <- 1 until 4) println(i)
Producers the output:

1
2
3

But does not include the value 4.

17.3.3 For Loop with a Filter

Another option with the for loop is to include a filter into the looping process. This
can be used to filter out those elements within a loop that you do not want to
process. A filter is an additional logical test added to the for loop following the
iteration values already presented. For example, assuming that the variable files
contain some form of list of files, we can add an extra test to check so that we only
print out files where the filename ends with “.txt”:

for (f <- files if f.getName.endsWith(".txt"))
println(f)

With this loop each file in the list of files is tested such that the name is first
obtained (getName) and then the string method endsWith tests to see if the filename
ends with “.txt”; if it does, then the file is processed by the loop—which in this case
involving printing out the file. If the filename does not end with “.txt,” then the loop
immediately moves onto the name file in the list.

17.3 Iteration 175

The complete program for this example is shown below:

import java.io.File

object FileLoopTest extends App {

val files = (new File(".")).listFiles

for (f <- files if f.getName.endsWith(".txt"))
println(f)

}

Note that any number of if conditions can be added to provide multiple filters on
a for loop. Each if condition is separated by a ‘;’, for example,

for (f <- files if f.getName.startsWith("Help"); if
f.getName.endsWith(".txt"))

println(f)

17.3.4 Longhand for Loop

Although we have looked at a number of different for loops in the preceding
sections, they are all subsets of the full for loop which is made up of a generator, an
optional definition and a filter. Thus you could write:

for (
p <- persons ; // a generator
n = p.name ; // a definition
if (n startsWith "To") // a filter

) println(n)

With the definition being reset each time round a loop.

17.3.5 For-Yield Loop

A special for loop is a for-yield loop. It is particularly useful for collecting together
a set of results from a for loop that can be processed by other code rather than
performing the processing directly within the for loop.

That is, the value of the all the previous for loops (from the point of view of the
expression being evaluated when the for loop executes) is Unit or nothing.
However, using a yield then each time around the loop a yield expression can be
evaluated and the results of the expression are collected together and made available
to subsequent lines of code once the for loop has completed.

176 17 Control and Iteration

The general syntax for a for-yield loop is:

for (sequence) yield expression

Examples of the use of the for-yield loop are shown below:

val data = for (i <- 1 to 5) yield 10 * i

produces a sequence of values (10, 20, 30, 40, 50) held in the val data

val info = for (n <- List("one", "two", "three")) yield n.substring(0, 2)

produces a list of values List(on, tw, th) held in info.

In both cases subsequent code could process either the data variable or the info
variable. This is a very powerful construct for creating a collection of data items to
be further processed from some loop-based operations.

17.3.6 While Loops

The while loop exists in almost all programming languages. In most cases, it has a
basic form such as:

while (test expression)

statement

This is also true for Scala. The while expression controls the execution of one
or more statements. If more than one statement is to be executed, then the state-
ments must be enclosed in curly brackets { }:

var i=0;
while (i < 10) {

println(i)
i += 1

}

The above loop tests to see if the value of i is less than or equal to 10, and then
prints the current value of i before incrementing it by one. This is repeated until the
test expression returns false (i.e. i = 11).

You must assign i an initial value before the condition expression. If you do not
provide an initial value for i, it defaults to none value, and the comparison with a
numeric value raises an exception.

The behaviour of the while loop is illustrated in Fig. 17.1.

17.3 Iteration 177

17.3.7 Do Loops

In some cases, we want to execute the body of statements at least once; you can
accomplish this with the do loop construct:

do

statement

while (test expression);

This loop is guaranteed to execute at least once, as the test is only performed
after the statement has been evaluated. As with the while loop, the do loop
repeats until the condition is false. You can repeat more than one statement by
bracketing a series of statements into a block using curly brackets { }:

var n = 10

do {

println(n)

n= n – 1

} while (n > 0)

The above do loop prints the numbers from 10 down to 1 and terminates when n
= 0. The logic of the while loop is illustrated in Fig. 17.2.

Fig. 17.1 Behaviour of a
while loop

178 17 Control and Iteration

17.3.8 An Example of Loops

As a concrete example of the for and while loops, consider the following class.
It possesses a method that prints numbers from 0 to the MaxValue variable:

class Counter {
var MaxValue = 10
def count() = {

var i = 0
println("----- For -------------");
for (i <- 0 to MaxValue) {

print(" " + i)
}
println(" ")
println("----- While -----------")
i = 0
while (i <= MaxValue) {

print(" " + i)
i = i + 1

}
println(" ")
println("-----------------------")

}
}

object Counter extends App {
val c = new Counter()

c.count
}

Fig. 17.2 Behaviour of a do
loop

17.3 Iteration 179

The result of running this application will be:

----------For--------------

0 1 2 3 4 5 6 7 8 9 10

----------While------------

0 1 2 3 4 5 6 7 8 9 10

17.4 Equality

Two instances may be considered equivalent if their contents are the same. This
equivalence is defined by the equals method on a class and is used by the ‘==’ and
‘!=” operators, where:

• == tests for equality
• ! = tests for not equals

The equality operators are actually invoked on the left-hand operand with the
right-hand operand being passed to the operator as a parameter.

You can compare two instances using == and ! = , for example,

• 1 == 2 // false
• 1 ! = 2 // true
• 1 == 1.0 // true
• List(1, 2, 3) == List(1, 2, 3) // true
• List(1, 2, 3) == ”John” // false

Note that there is also a referential equality operator in Scala. This is provided
by ‘eq’ method. This method tests that the two instances being compared are
literally the same instance rather than just equivalent in value.

17.5 Recursion

Recursion is a very powerful programming idiom found in many languages. Scala
is no exception. The following class illustrates how to use recursion to generate the
factorial of a number:

180 17 Control and Iteration

class Factorial {
def factorial(number: Int): Int = {

println(number)
if (number == 1)

return 1
else

return { number + factorial(number - 1) }
}

}

object FactorialTest extends App {
val f = new Factorial()
println("= " + f.factorial(5))

}

The result of running this application is illustrated here.

One problem for recursion is that although it is elegant to program, it may not be
the most efficient runtime solution. However, Scala can optimise tail-recursive
methods such that it can be expressed via recursion in terms of the program but
optimised into an iterative loop at runtime. Since Scala 2.8, you can now mark a
method that you expect to use tail recursion with the annotation @tailrec. An
annotation is a piece of metadata that the runtime can use to perform additional
processing, etc. This allows you to indicate that the method should be optimisable
for tail recursion by the compiler. It thus allows the compiler to provide a warning if
the method does not succeed in being tail recursive. For example,

object Util {
def factorial(n: Int): Int = {

@tailrec
def factorialAcc(acc: Int, n: Int): Int = {

if (n <= 1) acc
else factorialAcc(n * acc, n - 1)

}
factorialAcc(1, n)

}
}

package com.jjh.scala.tail

import scala.annotation.tailrec

17.5 Recursion 181

To understand why this makes a difference consider the following method:

The method bang intentionally throws an Exception (causes an error to occur)
when x is Zero. This allows you to see what the compiler has done with the runtime
version of the code. With the +1 element of the else part of the if statement
commented out this is a tail-recursive method. When we run this program, the
output is as shown below:

If we now uncomment the +1 at the end of the ‘if’ statement and rerun this
program, we now get:

182 17 Control and Iteration

What you can see is that the first version has been converted into an iterative
loop which does not need to keep calling itself (which is inefficient at runtime).

However, with the second example we have called the same bang method
multiple times which has resulted in the need to handle each call separated (set-up
the call stack for each method invocation) which is far less efficient.

Thus knowing whether the recursive method is tail recursive or not is an
important consideration.

17.5.1 The Match Expression

Scala’s match expression allows for a selection to be made between a number of
alternative tests and as such is similar in nature to the case statement in Pascal and C
or the switch statement in Java. However, compared to the switch statement in Java
allows much wider pattern matching capability in the case clause of the expression
this provides for a far more powerful and flexible construct. Also note that the
match expression is an expression (and not just a statement), thus it returns a value
and can be used as part of an assignment clause.

The pattern element of the match expression is much more flexible than in
languages such as C and Java and can be any one of the following:

• a literal,
• a wild card (to match anything),
• a type,
• a variable which will be populated,
• of different types,
• tuple patterns, etc.

As an example, consider the following simple literal match test:

object MatchTest extends App {
val arg = "John"
val relationship =

arg match {
case "John" => "Dad"
case "Denise" => "Mum"
case "Phoebe" => "Daughter"
case "Adam" => "Son"
// Default / wildcard
case _ => "WhoAreYou?"

}
println(relationship)

}

17.5 Recursion 183

This example compares the arg varl with the String literals “John”, “Denise”,
“Phoebe” and “Adam”. If it is one of these values, it returns the string associated
with that literal. Thus if arg holds the string “John”, then the match expression will
return the String “Dad”. The result of the match expression is then saved into the
relationship val and printed out. If the value held in arg is not one of the strings
explicitly mentioned then it will use the default (wild card) case test. Thus any other
string in arg will result in “WhoAreYou?” being returned by the match expression.
Note in match expression “_” is being used as a wild card that will match any string
not mentioned above in the case tests.

However, unlike many other languages the literals used in the individual case
tests do not need to be of the same type. For example, the following uses four
different types of literal from an Int, to a Boolean, to a string and an empty list (Nil):

object MatchTest2 {

def main(args: Array[String]): Unit = {
println(describe(5))
println(describe(true))
println(describe("hello"))
println(describe(Nil))
println(describe(List(1, 2, 3)))

}

def describe(x: Any) = x match {
case 5 => "five"
case true => "truth"
case "hello" => "welcome message"
case Nil => "The empty list"
case _ => "something else"
}

}

The type of the parameter x is Any which is the root of everything in Scala, and
thus x can indeed hold any type of value. We can now use the method describe to
produce a printed string for any type of value in Scala—although unless it is the
value 5, true, “hello” or Nil, it will print the description as “something else”.

A variable on the last example allows us to use a variable in the case test of the
wild card to obtain the actual value passed in and to use that in the expression being
evaluated:

184 17 Control and Iteration

object MatchTest3 {

def main(args: Array[String]): Unit = {
println(describe(5))
println(describe(true))
println(describe("hello"))
println(describe(Nil))
println(describe(List(1, 2, 3)))

}

def describe(x: Any) = x match {
case 5 => "five"
case true => "truth"
case "hello" => "welcome message"
case Nil => "The empty list"
case somethingElseVariable => "something else: " +

somethingElseVariable
}

}

Now when something other than the value 5, true, “hello” or Nil is passed in,
then the result will be that the string “something else: “concatenated with that thing
in string format will be returned by the described method.

We can also match by type rather than by specific value. For example, in the
following example if the type of data passed in is a String, then the first case test
will pass and the string will be bound to the variables and thus available for
processing in the resultant operation associated with that test. In turn if the instance
passed into getSize is a List, then it will pass the second test and be bound to the
variable l and be available to the operation following this test. If the instance passed
to getSize is actually a Map, then it will meet the criteria specified by the third case
test. The result in each case is that an appropriate method is called to determine the
size of the instance passed to getSize. If the instance is not a String, a List or a Map,
then −1 is returned by default:

17.5 Recursion 185

def main(args: Array[String]): Unit = {
val name = "John"
println(getSize(name))
val xxx = List(1, 2, 3)
println(getSize(xxx))
val myMap = Map("London" -> "01", "Cardiff" -> "020")
println(getSize(myMap))
val otherMap = Map(1 -> "a", 2 -> "b", 3->"c")
println(getSize(otherMap))
val lectureMap =
Map("John" -> "Scala", "Fed" -> "PHP")

println(getSize(lectureMap))
val info = (1, 2, 3)
println(getSize(info))

}

def getSize(x: Any) = x match {
case s: String => s.length()
case l: List[_] => l.size
case m: Map[_,_] => m.size
case _ => -1

}
}

object MatchTest4 {

186 17 Control and Iteration

	17 Control and Iteration
	17.1 Introduction
	17.2 Control Structures
	17.2.1 The if Statement
	17.2.2 If Returns a Value

	17.3 Iteration
	17.3.1 For Loops
	17.3.2 For Until
	17.3.3 For Loop with a Filter
	17.3.4 Longhand for Loop
	17.3.5 For-Yield Loop
	17.3.6 While Loops
	17.3.7 Do Loops
	17.3.8 An Example of Loops

	17.4 Equality
	17.5 Recursion
	17.5.1 The Match Expression

