
Chapter 16
Scala Constructs

16.1 Introduction

This chapter presents more of the Scala language. It considers the representation
and use of numbers, strings and characters. It also discusses assignments, literals
and variables. Finally, it considers messages, message types and their precedence.

16.2 Numbers and Numeric Operators

16.2.1 Numeric Values

Just as in most programming languages, a numeric value in Scala is a series of
numbers which may or may not have a preceding sign and may contain a decimal
point:

25; −10; 1996; 12.45; 0.13451345; −3.14

Unusually for a programming language, Scala explicitly specifies the number of
bytes that must be used for data types such as Short, Int, Long, Float and Double:

The Scala language designers’ purpose in specifying the number of bytes to use
for each data type was to enhance the portability of Scala implementations. In C,
the number of bytes used for int and long is at the discretion of the compiler
writers. The only constraint placed upon them is that int cannot be bigger than
long. This means that a program that compiles successfully on one machine may
prove unreliable and have errors when recompiled on another machine. This can
make porting a program from one system to another extremely frustrating (ask
anyone who has ever had to port a sizeable C system!) (Tables 16.1).

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_16

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_16&domain=pdf

16.2.2 Arithmetic Operators

In general, the arithmetic operators available in Scala are the same as in any other
language. There are also comparison functions and truncation functions (see
Table 16.2). Numbers can also be represented by objects which are instances of
classes such as Integer, Float. These classes are all subclasses of the class
Number and provide different facilities. However, some of the methods are fairly
common (Table 16.3).

A number of the numeric classes also provide class variables, such as
MAX_VALUE and MIN_VALUE (i.e. in Integer, Long, Double, Float), and
numbers such as NEGATIVE_INFINITY and POSITIVE_INFINITY (i.e. in
Double and Float).

In addition, Scala provides a class called Math. This class, which is a subclass
of Object, provides the usual range of mathematical operations (see Table 16.4).
All these methods are class (or static) methods available from the class Math. You
do not have to create an instance of the class to use them.

It is also interesting to notice that, to enhance the portability of Scala, the
language designers have stated that the definitions of many of the numeric methods
must produce the same results as a set of published algorithms.

Table 16.1 Standard
numbers of bytes for numeric
data types

Type Bytes Stores

Byte 1 Integers

Short 2 Integers

Int 4 Integers

Long 8 Integers

Float 4 32-bit IEEE 754 single-precision float

Double 8 64-bit IEEE 754 double-precision float

Table 16.2 Basic numeric
operators

+ Addition

− Subtraction

* Multiplication

/ Division

% Remainder

== Equality

< Less than

> Greater than

!= Inequality

<= Less than or equal to

>= Greater than or equal to

160 16 Scala Constructs

16.3 Characters and Strings

16.3.1 Characters

Characters in Scala are of type Char and are represented by 16-bit unsigned inte-
gers. In Scala, a single character is defined by surrounding it with single quotes:

'J' 'a' '@' '1' '$'

16.3.2 Strings

Strings in Scala are represented by the (Java) class String and examples of a
string are instances of this class. As such, they are made up of individual elements,
similar to strings in C. However, this is the only similarity between strings in C and
Scala. A Scala string is not terminated by a null character and should not be treated
as an array of characters. It should be treated as an object which responds to an
appropriate range of messages (e.g. for manipulating or extracting substrings)
(Table 16.5).

A string is defined by one or more characters placed between double quotes
(rather than the single quotes used for characters):

Table 16.3 Methods
provided by numeric classes

equals() Equality

doubleValue() Conversion

toHexString() Conversion

valueOf(aString) Conversion (class-side)

toBinaryString() Conversion

toOctalString() Conversion

Table 16.4 Mathematical
functions provided by Math

max Maximum

ceil Round up

round Round to nearest

abs Absolute value

pow Raises one number to the power of the other

min Minimum

floor Round down

sqrt Square root

exp Exponential

random Random number generator

16.3 Characters and Strings 161

"John Hunt" "Tuesday" "dog"

Youcannot create a stringbygeneratinganarray of characters. This canbe the source
of much confusion and frustration when an apparently correct piece of code does not
work. A string containing a single character is not equivalent to that single character:

'a' ! = "a"

The string "a" and the character 'a' are, at best, instances of different classes
and, at worst, one may be an instance and one a basic type. The fact that the string
contains only one character is just a coincidence.

To denote that a variable should take an instance of String, define it as being of
type String:

val aVariable: String = "John"

Of course due to type inference in most situations Scala can infer that the type of
the variable should be String.

16.4 Assignments

A variable name can refer to different objects at different times. You can make
assignments to a variable name, using the = operator. It is often read as “becomes
equal to” (even though it is not preceded by a colon as in languages such as Ada).

Some examples of assignment statements follow:

currentEmployeeIndex = 1;

newIndex = oldIndex;

myName = "John Hunt";

Table 16.5 Methods provided by the class String

charAt(index: Int) Returns the character at position index

compareTo (anOtherString) Compares two strings lexicographically

equals(String aString) Compares two strings

equalsIgnoreCase (String
aString)

Compares two strings, ignoring the case of the characters

indexOf
(char aCharacter)

Returns the first index of the character in the receiving
string

substring
(int start, int stop)

Creates substring from start to stop (in the receiving string)

toLowerCase() Returns the receiver in lower case letters

toUpperCase() Returns the receiver in upper case letters

162 16 Scala Constructs

Like all Scala operators, the assignment operator returns a value. The result of an
assignment is the value of that assignment (thus the value of the expression
x = 2 + 2; is 4). This means that several assignments can be made in the same
statement:

nextObject = newObject = oldObject;

The above example also illustrates a feature of Scala style—variable names that
indicate their contents. This technique is often used where a more meaningful name
(such as currentEmployeeIndex) is not available (temp might be used in
other languages).

Although variables in Scala are strongly typed, this typing is perhaps not as
strong as in languages such as Pascal and Ada. You can state that a variable is of
type Any. As Any is a class, such a variable can possess instances of the class Any
or one of its subclasses! This means that a variable that holds a String may then be
assigned a Person or a List (a type of data structure) instance. This is quite
legitimate:

var temp: Any = new Person()

temp = "John"

temp = List(..)

An important point to note is that assignment is by reference when dealing with
objects. This means that, in the following example, nextObject, newObject
and oldObject all refer to the same object (as illustrated in Fig. 16.1)

newObject = oldObject = new Person(..)

nextObject = newObject;

As all three variables point to an instance of a class (in this case Person), if an
update is made to the contents of any one of the properties maintained by the person
(such as the age property), it is made for all three!

Fig. 16.1 Result of a
multiple assignment

16.4 Assignments 163

16.5 Variables

16.5.1 Temporary Variables

These variables exist only for the duration of some activity (e.g. the execution of a
method). They can be defined anywhere within a method (as long as they are
defined before they are used). The definition takes the form of the type (or class) of
the variable and the variable name followed by any initialisation required:

var aChar: Char;

var anotherChar = 'a';

var anInstance: AnyRef;

var myName = "John Hunt";

Note all of these are written as vars but they could equally have been vals. The
scope of a temporary variable depends on the context in which it is defined. For
example, variables declared at the top level of a method are in scope from the point
at which they are declared. However, block variables only have scope for the block
within which they are defined (including nested blocks). Loop variables only have
scope for the loop within which they are defined. Thus the scope of each of the
following variables is different:

def add (a: Int, b: Int): Int = {

val result = 0 r

for (i < - 0 to 5) { ir

if (a < i) { ir

var total = b tir

total = total + c * i tir

} ir

} r

return result r

}

In the right-hand column, r indicates that result is in scope, i indicates the
scope of the loop variable and t indicates the scope of the inner block variable,
total.

164 16 Scala Constructs

16.5.2 Pseudo-Variables

A pseudo-variable is a special variable, whose value is changed by the system, but
which cannot be changed by the programmer. The value of a pseudo-variable is
determined by the current context and can be referenced within a method.

this is a pseudo-variable that refers to the receiver of a message itself. The
search for the corresponding method starts in the class of the receiver. To ensure
that your source code does not become cluttered, Scala assumes you mean this
object if you just issue a reference to a method. The following statements have the
same effect:

this.myName()
myName()

You can use this to pass a reference to the current object to another object:

otherObject.addLink(this)

16.5.3 Variable Scope

Temporary variables are only available within the method in which they are
defined. However, both class variables and instance variables are in scope (or are
visible) at a number of levels. An instance variable can be defined to be visible
(available) outside the class or the package, only within the package, within sub-
classes or only within the current class. The scope is specified by modifiers which
precede the variable definition:

Public val myName = "John Hunt";

16.5.4 Option, Some and None

Sometimes what we need to represent is that a variable currently does not hold
anything. The approach taken in Java was to represent such values as null. The idea
was that the null value is an object that represents nothing or no object. It is not of
any type nor it is an instance of any class (including Object). It really does means
nothing or no value. However, this has lead to the now much discussed
NullPointerException in Java which is generally considered now to be a weakness
of the language.

The approach adopted within Scala is to use a type called an Option. An Option
can hold any type or can be set to None. None indicates the absence of an actual
value but is not the same as Null in Java.

16.5 Variables 165

For example, using Option you can indicate that a variable date should hold a
Date type but currently a data has not been specified, for example:

This declares that the val date is holding an Option wrapper, around an instance
of Data but that currently this is initialised to None.

Such values can then be used within a match statement to perform one action if a
value is present or another action if there is no value (or None), for example:

Although a more idiomatic Scala approach would be to use the getOrElse
method on Option which indicates that you should return the value held by an
option or return some default value, for example:

As a more concrete example of using an option consider the following class
Event. This class represents some interesting event that has occurred within some
system at some point in time.

When the data associated with the Event is printed via the printDate method
where we either print the date or a string “No date”. Note that the companion object
Event defines a utility conversion method that will take a date and convert it into an
Option so that users of the class Event do not have to do this themselves. As the
apply is marked as implicit, if the method is in scope, then when Scala is looking
for a way to convert a Date into an option it can use this method automatically
without the programmer explicitly specifying it.

A simple example of using this class is shown below:

166 16 Scala Constructs

Note that the second Event created uses the implicit apply conversion method to
convert the new instantiated Date into an option. The output from this application is

No Date

Tue Dec 19 17:19:37 GMT 2017

Tue Dec 19 17:19:37 GMT 2017

16.5.5 Boolean Values

In Scala there is a specific type used to represent truth or falsehood. This is the
Boolean type. It has two values true and false which can be written as literals and
can be assigned to variables and values and used in logical operations.

16.5.6 Literals

All of the preceding types can be written in literal form. That is 23 is a literal Int,
23.0 a literal Double, ‘A’ a Char and “John” a String literal. Scala also supports
literals written using:

– Hexadecimal preceding the literal with Ox
– Octal preceding the literal with O5=
– Integer ending with L or l is a Long
– Character literals in ‘‘ e.g. ‘A’
– Character literal preceded by \u is a Unicode character, e.g. ‘\u0041’
– Symbol literal is ‘aSymbol

16.5 Variables 167

16.6 Messages and Message Selectors

16.6.1 Invoking Methods

Invoking a method is often referred to as sending a message to the object that owns
the method. The expression which invokes a method is composed of a receiving
object (the receiver), the method name and Zero or more parameters. The combi-
nation of method name and parameters is often called the message and it indicates,
to the class of the receiving object, which method to execute. Figure 16.2 illustrates
the main components of a message expression.

The value of an expression is determined by the definition of the method it
invokes. Some methods are defined as returning no value (e.g. Unit) while others
may return a Value Type (such as Int) or instance. In the following code, the result
returned by the method marries is saved into the variable newStatus:

newStatus = thisPerson.marries(thatPerson)

16.6.2 Precedence

The rules governing precedence in Scala are similar to those in other languages.
Precedence refers to the order in which operators are evaluated in an expression.
Many languages, such as C, explicitly specify the order of evaluation of expressions
such as the following:

2 + 5 * 3 − 4 / 2;

Scala is no exception. The rules regarding precedence are summarised in
Table 16.6. The above expression would be evaluated as:

(2 + (5 * 3)) − (4 / 2);

Notice that if operators with the same precedence are encountered they are
evaluated strictly from left to right.

Fig. 16.2 Components of a
message expression

168 16 Scala Constructs

16.7 Summary

In this chapter and the previous, you have learnt about classes in Scala, how they
are defined, how instance variables are specified and how methods are constructed.
You have also encountered many of the basic Scala language structures.

Table 16.6 Operator precedence

Operation Meaning Precedence

x++ −−x Prefix increment/decrement 16

x++ x−− Postfix increment/decrement 15

– ! * Arithmetic negation/logical not/flip 14

(typename) Cast (type conversion) 13

* / % Multiplication/division/remainder 12

+ − Addition/subtraction 11

� � >>> Left and right bitwise operators 10

< > <= >= Relational operators 9

== != Equality operators 8

& Bitwise and 7

^ Bitwise exclusive or 6

| Bitwise or 5

&& Conditional and 4

|| Conditional or 3

? : Conditional operators 2

¼ Assignment operator 1

16.7 Summary 169

	16 Scala Constructs
	16.1 Introduction
	16.2 Numbers and Numeric Operators
	16.2.1 Numeric Values
	16.2.2 Arithmetic Operators

	16.3 Characters and Strings
	16.3.1 Characters
	16.3.2 Strings

	16.4 Assignments
	16.5 Variables
	16.5.1 Temporary Variables
	16.5.2 Pseudo-Variables
	16.5.3 Variable Scope
	16.5.4 Option, Some and None
	16.5.5 Boolean Values
	16.5.6 Literals

	16.6 Messages and Message Selectors
	16.6.1 Invoking Methods
	16.6.2 Precedence

	16.7 Summary

