
Chapter 15
Value Classes

15.1 Introduction

This chapter introduces another type of class in Scala, Value Classes. A Value Class
is a type where the actual value being represented by the type class is hold directly
by a variable, rather than needing to access that value via a reference (an address in
memory). Examples of Value Types include Booelan, Int and Double which can
have the values true, false, 32, 45.7, etc. Such values can be held directly by a
variable, rather than accessed via a reference. This can be more efficient for simple
types like Int.

Value Classes inherit from AnyVal, rather than AnyRef. However, prior to Scala
2.10 AnyVal was actually a type of Trait not a Class. This meant that it was not
possible to create user-defined Value Types. However in Scala 2.10 AnyVal was
redefined as an abstract class. As it is normal to subclass abstract classes it is now
possible to create user-defined Value Classes. Thus subclasses of AnyVal are
user-defined Value Classes.

15.2 Value Classes

Value Classes are treated as special by the Scala compiler. That is, the compiler will
determine if it can inline the value to be used directly. This avoids the need to
allocate runtime objects and is thus more efficient and faster (as no allocation must
be made and no reference must be followed).

To ensure that the compiler can treat a value in this way it is necessary for the
programmer to ensure that no object allocation is performed within the type. Thus a
Value Type cannot hold within itself a reference to a non-Value Type (such as an
instance of the class Person). It must also ensure that the type being defined:

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_15

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_15&domain=pdf

• must extend AnyVal,
• must be immutable by nature (i.e. it should not change itself but return a new

instance whenever a change in value is required),
• must have a single public val parameter for the underlying type (i.e. the built-in

Value Type being wrapped),
• does not declare any additional fields within itself,
• cannot have any auxiliary constructors,
• cannot define any nested types such as classes, objects or traits,
• are not used in tests used to determine their type or in type-based pattern

matching,
• must not override the equals or hashcode methods,
• cannot have any initialisation statements.

However, they can have

• any methods or functions as required.

15.3 Simple Value Type Example

The following Value Type class meets the criteria defined in the last section. That
is, the Value Class Meter has a single val property value of type Double
(which is a built-in Value Type); it extends AnyVal directly and provides a method
‘+’. In addition it exhibits immutability. That is, when the ‘+’ method is invoked, it
does not change value instead it returns a new instance of the Meter class rep-
resenting the new value:

class Meter(val value: Double) extends AnyVal {
def +(m: Meter) : Meter = new Meter(value + m.value)

}

The following simple application illustrates how this class may be used:

object Main extends App {
val x = new Meter(3.4)
val y = new Meter(4.3)
val z = x + y
Console.println("Result: " + z.value)

}

In this example, we create two instances of the Meter Value Class and store
them in the variables x and y. We then add them together and store the result in z.
Note that this line looks very much as it would if x and y held Int or Doubles and
we added them together. The result is then printed out. The effect of running this
application is shown below.

156 15 Value Classes

Interestingly the compiler actually replaces the references to Meter with the
primitives held within the Value Class at runtime. Thus there is virtually no
overhead in using Meter than in using Double directly. This raises the question
“Why bother?” The answer is twofold:

• Meter is more semantically meaningful than Double. That is Double is a
generic way of representing 54 bit real numbers. The Value Class Meter rep-
resents the concept of a length, i.e. a meter.

• Meter also allows methods to be defined that allow semantically meaningful
operations to be defined that can also indicate what is being done at a higher
level of abstraction than the basic type Double would allow.

15.4 Additional Value Class Concepts

Value Classes are implicitly treated as final classes, thus ensuring that they cannot
be extended by other classes. This is important as it restricts the need for poly-
morphism and thus allows the compiler to inline the values being represented.

Value Classes are implicitly assumed to have structural equality and hashcode.
That is, their equals and hashcode methods are taken to be defined as follows (and
this is why you must not redefine them):

def equals(other: Any) = other match {
case that: C => this.u == that.u
case _ => false

}
def hashCode = u.hashCode

Where u equates to the underlying (Value Type) property (such as Double, or
Int). In other words if the underliers have the same value, then the Value Types are
equal; otherwise, they are not equal. In addition the hashcode of a Value Type is the
hashcode of its underling type.

Value Classes can only mix in Universal Traits. If you try to mix in a trait which
is not a Universal Trait, then the class you are defining is not a Value Class but a
reference class. A Universal Trait is a special trait which extends the Any type
rather than the default AnyRef type.

15.3 Simple Value Type Example 157

You can make the Value Class a case class that simplifies the syntax and means
that you do not need to use the keyword new. This often makes for much more
readable and semantically clear Value classes. For example, taking the Meter class
defined earlier and changing it into a case class:

case class Meter(val value: Double) extends AnyVal {
def +(m: Meter) : Meter = new Meter(value + m.value)

}

This now means that we do not need to use the keyword new, and thus the test
application looks less as if we have created instance of a class and more as if Meter
was a built-in type:

object Main extends App {
val x = Meter(3.4)
val y = Meter(4.3)
val z = x + y
Console.println("Result: " + z.value)

}

15.5 Negating Value Classes

It should be noted that the compiler will not treat a class as a Value Class in some
situations. These are presented below:

The compiler will not treat an instance of a Value Class as a value when:

• It is used in an array—it will not inline values into an Array.
• It is used in pattern matching situations such as case statements.
• When used within any polymorphic situation. For example, where the type of

the variable relates to a more generic type (such as a trait).

158 15 Value Classes

	15 Value Classes
	15.1 Introduction
	15.2 Value Classes
	15.3 Simple Value Type Example
	15.4 Additional Value Class Concepts
	15.5 Negating Value Classes

