
Chapter 13
Classes, Inheritance and Abstraction

13.1 Introduction

Inheritance is one of the most powerful features of Object Orientation. It is the
difference between an encapsulated language that provides an object-based model
and an Object-Oriented language. Inheritance is also one of the main tools sup-
porting reuse in an Object-Oriented language (although in Scala’s case Traits are
also a major tool for reuse). You will use inheritance all the time without even
realising it, indeed you have already been doing so every time you have benefited
from the default implementation of toString.

Scala has single class inheritance although it does have a form of multiple
inheritance via Traits.

13.1.1 What Are Classes for?

In some Object-Oriented languages, classes are merely templates used to construct
objects (or instances). In these languages, the class definition specifies the structure
of the object and a separate mechanism is often used to create the object using this
template.

In some other languages (e.g. Java, C#, Smalltalk), classes are objects in their
own right; this means that they can not only create objects, they can also hold data,
receive messages and execute methods just like any other object. However, many
programmers find this distinction confusing and Scala has adopted the Companion
object approach instead (see later in this book) which means that a class is sup-
ported by a singleton object that can hold data and provide a placeholder for
additional supporting behaviours.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_13

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_13&domain=pdf

Thus, in Scala, classes are unique within a program and can:

• defined using the keyword class,
• be used to create instances (via the keyword new),
• be inherited by subclasses (and can inherit from existing classes),
• mix in traits,
• define properties,
• define methods,
• define functions,
• define instance variables and values,
• be sent messages.

Objects, on the other hand, are:

• defined using the keyword object,
• singleton entities within the systems,
• cannot be instantiated (and do not support the new operation),
• cannot be used to create new instances,
• are accessed directly via their name rather than via any val or var.

Confusingly many Object-Oriented languages use the term object to refer to an
instance of a class. In Scala an instance of a class is exactly that, an instance of a
class, an object is a different concept. Instances can be

• created from a class (using the keyword new),
• hold their own copy of their state (in terms of properties or instance variables),
• be sent messages,
• execute instance methods,
• execute functions,
• have many copies in the system (all with their own data).

13.2 Inheritance Between Types

To recap on the concept of inheritance, inheritance is supported between types
within Scala. For example, a class and extend (subclass) another class. A trait
(another type) can extend other traits, etc., and objects can extend traits or classes.
All of these types support and enable inheritance.

In terms of the inheritance we say:

• A subtype inherits from a super type
• A subtype obtains all code and data from the super type
• A Subtype can add new code and data
• A subtype can override inherited code and data
• A subtype can invoke inherited behaviour or access inherited data.

132 13 Classes, Inheritance and Abstraction

13.3 Inheritance Between Classes

Inheritance is achieved in Scala using the extends keyword (as was discussed in
Chap. 6). Scala is a single class inheritance system, so a Scala class can only inherit
from a single class (although it can mix in multiple traits, to be discussed later).

The following class definition builds on the class Person presented earlier:

class Person(val name: String, var age: Int)

class Student(var subject: String,
 n: String,
 a: Int)

extends Person(n, a) {

}

This class extends the class Person by adding a new variable property,
subject. As this is a var the class Student also provides reader and writer
functionality for the subject property. We say that Student is a subclass of
Person and that Person is the super class of Student.

Note that as the class Person defined two properties in its primary constructor,
the class Student must invoke the constructor explicitly. It does this by indicating
the data to pass to this constructor after the parent class name following the extends
expression. For the student class we take these values in as part of its own con-
structor. However the parameters ‘n’ and ‘a’ are not properties; they are local fields
which can be used within the definition of the class Student. We are only using
them to pass the data up to the definition of the constructor in the class Person. As a
result you can only instantiate the class Student by providing the subject to be
studied, the student’s name and their age. For example,

object StudentTest extends App {
val s = new Student("Computer Science", "John", 18)
println(s.name + " is studying " + s.subject)

}

The end result is that a new instance of the class Student is created that has a
subject property and also a name property and an age property inherited from
the class Person. In fact the instance referred to by the variables is a Student
and is also a Person (in the same way that any human is also a Mammal, etc.).

Note that it is necessary to invoke a parent class’s constructor explicitly. The
only exceptions to this are if the parent class only defines a Zero parameter con-
structor, or if the primary constructor provides default values for all of its
parameters.

13.3 Inheritance Between Classes 133

13.3.1 The Role of a Subclass

There are only a small number of things that a subclass should do relative to its
parent or super class. If a proposed subclass does not do any of these, then your
selected parent class is not the most appropriate super class to use.

A subclass should modify the behaviour of its parent class or extend the data
held by its parent class. This modification should refine the class in one or more of
these ways:

• Changes to the external protocol, the set of messages to which instances of the
class respond.

• Changes in the implementation of the methods, i.e. the way in which the
messages are handled.

• Additional behaviour that references inherited behaviour.

If a subclass does not provide one or more of the above, then it is incorrectly
placed. For example, if a subclass implements a set of new methods, but does not
refer to the instance variables or methods of the parent class, then the class is not
really a subclass of the parent (it does not extend it).

As an example, consider the class hierarchy illustrated in Fig. 13.1. A generic
root class has been defined. This class defines a Conveyance which has doors,
fuel (both with default values) and a method, startUp, that starts the engine of the
conveyance. Three subclasses of Conveyance have also been defined: Dinghy,
Car and Tank. Two of these subclasses are appropriate, but one should probably
not inherit from Conveyance. We shall consider each in turn to determine their
suitability.

Fig. 13.1 A class and its subclasses

134 13 Classes, Inheritance and Abstraction

The class Tank overrides the number of doors inherited, uses the startUp
method within the method fire and provides a new instance variable. It therefore
matches all three of our criteria.

Similarly, the class Car overrides the number of doors and uses the method
startUp. It also uses the instance variable fuel within a new method ac-
celerate. It also, therefore, matches our criteria.

The class Dinghy defines a new instance variable sails and a new method
setSail. As such, it does not use any of the features inherited from
Conveyance. However, we might say that it has extended Conveyance by
providing this instance variable and method. We must then consider the features
provided by Conveyance. We can ask ourselves whether they make sense within
the context of Dinghy. If we assume that a dinghy is a small sail-powered boat,
with no cabin and no engine, then nothing inherited from Conveyance is useful.
In this case, it is likely that Conveyance is misnamed, as it defines some sort of a
motor vehicle, and the Dinghy class should not have extended it.

The exceptions to this rule are subclasses of Any and AnyRef. This is because
these classes are the root types in the Scala type hierarchy. AnyRef is the root of all
reference types—that is classes in Scala. As you must create a new class by sub-
classing it from an existing class, you can subclass from AnyRef when there is no
other appropriate class.

13.3.2 Capabilities of Classes

A subclass or class should accomplish one specific purpose; it should capture only
one idea. If more than one idea is encapsulated in a class, you may reduce the
chances for reuse, as well as contravene the laws of encapsulation in
Object-Oriented systems. For example, you may have merged two concepts toge-
ther so that one can directly access the data of another. This is rarely desirable.

Breaking a class down costs little but may produce major gains in reusability and
flexibility. If you find that when you try and separate one class into two or more
classes, some of the code needs to be duplicated for each class, then the use of
abstract classes can be very helpful. That is, you can place the common code into an
abstract superclass to avoid unnecessary duplication.

The following guidelines may help you to decide whether to split the class with
which you are working. Look at the comment describing the class (if there is no
class comment, this is a bad sign in itself). Consider the following points:

• Is the comment short and clear. If not, is this a reflection on the class? Consider
how the comment can be broken down into a series of short clear comments.
Base the new classes around those comments.

13.3 Inheritance Between Classes 135

• If the comment is short and clear, do the class and instance variables make sense
within the context of the comment? If they do not, then the class needs to be
re-evaluated. It may be that the comment is inappropriate, or the class and
instance variables inappropriate.

Look at the instance variable references (i.e. look at where the instance variable
access methods are used). Is their use in line with the class comment? If not, then
you should take appropriate action.

13.3.3 Overriding Behaviour

As was mentioned at the start of this chapter, a subtype (e.g. a subclass) can
override the behaviour defined in a parent class. In fact it is possible to override
both methods and fields. It should be noted that in Scala; it is also possible to
override a parameterless method by a new field or property (this is actually to do
with the way in which Scala internally represents data and methods) but can be
useful and also confusing.

To override either a field or a method in a parent class you must use the keyword
override. You have seen this already with the toString method where we had to
include the keyword override in order to redefine toString to do something more
useful then display the fully qualified class name and a hexadecimal number. Of
course the default behaviour of toString was being inherited into our classes via
the class AnyRef (which we implicitly extended).

In the following example, the class Base overrides toString so that the name
and age properties of the Base class are used to create the string representation of
instances of the class. It also defines a method max and a property working.

class Base(val name: String, var age: Int) {
def max(x: Int, y: Int): Int = if (x > y) x else y
val working = false
override def toString() = s"$name is $age"

}

We can then subclass Base with the class Derived and override both max and
working if we wish, for example,

class Derived(n: String, a: Int) extends Base(n, a) {
override def max(x: Int, y: Int): Int =

 if (x > y) y else x
override val working = true

}

In Derived we have redefined max to actually return the minimum value for
some reason and overridden working to be true.

136 13 Classes, Inheritance and Abstraction

As another option consider the classes Cat and Tiger below

• Cat has vals dangerous and name.
• Tiger overrides dangerous and name. However, the value for name is now

set when the instance is created. Thus the property that is defined as part of the
constructor overrides a property used with the Cat class, which was not orig-
inally part of any construction process.

class Cat {
val dangerous = false
val name: String = "Tiddles"
override def toString =

 s"$name is ${(if (dangerous) "dangerous" else " timid")}"
}

class Tiger(override val name: String) extends Cat {
override val dangerous = true

}

object CatTest extends App {
var c = new Cat()
println(c)
c = new Tiger("Tigger")
println(c)

}

The effect of running the CatTest program is shown below.

13.3.4 Protected Members

By default, within Scala all behaviour (methods and functions) as well as data
(properties) is public, that is they are visible (can be accessed) anywhere within an
application. We have seen that it is possible to mark both behaviour and data as
private so that they are only accessible within a single object or class. However,
there is another option which has not been mentioned yet. That is, it is possible to
make either behaviour or data protected.

13.3 Inheritance Between Classes 137

Protected members of a class are members (methods, functions, properties) that
can only be accessed in the current class and in subclasses and only in subclasses.
They are not visible to other elements of an application.

For example, in the following abstract class Base the property age is public, the
method max is public and the overridden method toString is public. However,
the property working is only visible within Base and any subclasses of Base.

class Base(val name: String, var age: Int) {
def max(x: Int, y: Int): Int = if (x > y) x else y
val working = false
override def toString() = s"$name is $age"

}

The use of protected properties or behaviour helps to explicitly specify the
interface between a subtype and its super type.

13.4 Restricting a Subclass

You can restrict the ability of a subclass to change what it inherits from its
superclass. Indeed, you can also stop subclasses being created from a class. This is
done using the keyword final. This keyword has different meanings depending on
where it is used. For example in the following example, the keyword final has been
applied to the whole class:

final class Employee(n: String,
 a: Int,
 company: String)

extends Person(n, a)

This means that no element of this class can be extended, so no subclass of
Employee can be created.

The keyword final can also be applied to a public property. For example,

final var maximumMemory = 256

This indicates that the property maximumMemory cannot be overridden in a
subclass. This means that the value of maximumMemory is set for this class and
for all subclasses wherever they are defined by this class. Using a val instead of a
var means that the value cannot merely be overridden by a subclass, it is also only
set once and is thus a constant for the hierarchy below the current class:

138 13 Classes, Inheritance and Abstraction

class Employee(n: String,
 a: Int,
 company: String)

extends Person(n, a) {

final val max = 10
}

The keyword final can also be applied to methods. This means that a method
cannot be overridden in a subclass, for example,

class Volunteer (n: String ,
 a: Int,
 company: String)

extends Person(n, a) {

final def prettyPrint(): Unit = {
println("Volunteer")
println("\tName: " + name)
println("\tAge: " + age)
println("\tCompany: " + company)
}

}

This states that the method prettyPrint cannot be overridden in a subclass.
That is, a subclass cannot redefine prettyPrint(); it must use the one that it
inherits.

Restricting the ability to overwrite part of, or all of, a class is a very useful
feature. It is particularly important where the correct behaviour of the class and its
subclasses relies on the correct functioning of particular methods, or the appropriate
value of a variable, etc. A class is normally only specified as final when it does not
make sense to create a subclass of it. These situations need to be analysed carefully
to ensure that no unexpected scenarios are likely to occur.

13.5 Abstract Classes

An abstract class is a class from which you cannot create an object. It is missing
one or more elements required to create a fully functioning instance. In contrast a
non-abstract (or concrete) class leaves nothing undefined and can be used to create a
working instance. You may wonder what use an abstract class is. The answer is that
you can group together elements that are to be shared amongst a number of classes,
without providing a complete implementation. In addition, you can force subclasses
to provide specific methods ensuring that implementers of a subclass at least supply
appropriately named methods. You should therefore use abstract classes when:

13.4 Restricting a Subclass 139

• you wish to specify data or behaviour common to a set of classes, but insuffi-
cient for a single instance,

• you wish to force subclasses to provide specific behaviour.

In many cases, the two situations go together. Typically, the aspects of the class
to be defined as abstract are specific to each class, while what has been imple-
mented is common to all classes.

For example, consider the following class.

abstract class Person(val name: String, var age: Int) {
// Override inherited toString

override def toString = s"$name, $age";

//Define an abstract method
def prettyPrint
def birthday = age = age + 1

}

This is a revised version of the Person class we have seen several times before.
However we are now making Person an abstract concept. This means that you do
not create instances o the Person class itself, but rather you create instances of
subclasses of Person such as Employee, Student, Graduate, etc. Person brings
together the common features of these subclasses, but on its own it is not sufficient
to warrant an instance being created. It is only the concrete classes (non-abstract
classes) which actually make sense as instances:

This abstract class definition means that you cannot create an instance of
Person. Within the definition of Person, we can see that the toString and
birthday methods are concrete or defined methods, whereas the method
prettyPrint is not defined (it has no method body). The prettyPrint
method is what is known as an abstract method. Any class, which has one or more
abstract methods, is necessarily abstract (and must therefore have the keywords
abstract class). However, a class can be abstracted without specifying any
abstract methods.

An abstract class can also define any number of concrete methods. The method
birthday is a concrete method that adds one to the current age of the person.

Any subclass of Person must implement the prettyPrint method if
instances are to be created from it. Each subclass can define how to pretty print
itself in a different manner. The following Graduate class provides a concrete
class that builds on Person:

140 13 Classes, Inheritance and Abstraction

class Graduate(n: String, a: Int,
 degree: String,
 uni: String) extends Person(n, a) {

val institution: String = uni

def this(n: String, a: Int, degree: String) =
 this(n, a, degree, "Oxford")

override def toString =
 s"Graduate ${super.toString} $degree]";

def prettyPrint = {
 println("Graduate")
 println("\tName: " + name)
 println("\tAge: " + age)
 println("\tDegree: " + degree)
 println("\tUniversity: " + uni)
}
}

This class extends the class Person and also provides:

• The four-parameter constructor is used to passing the name and age for the
Person class’s primary constructor and to provide a degree and University for
the Graduate class.

• A three-parameter auxiliary constructor invokes the four-parameter primary
constructor.

• A concrete version of the prettyPrint method.

We can also return to the Employee class from earlier and see that it also
provides a concrete prettyPrint method and invokes the Person class’s
primary constructor:

class Employee(n: String, a: Int, company: String)
 extends Person(n, a) {

final def prettyPrint(): Unit = {
 println("Employee")
 println("\tName: " + name)
 println("\tAge: " + age)
 println("\tCompany: " + company)
}

}

13.5 Abstract Classes 141

13.6 The Super Keyword

We have already seen that it is possible to override behaviour defined in a parent
class so that the version in the current class meets that needs of that class. The
method toString is a typical example of this. In numerous examples we have
redefined toString to create a string based on the data held by a class rather than
to use the generic version. To do this we used the keyword override and ensured
that the method signature (its name, parameters and return matched those defined in
the parent class).

However, rather than completely override the version of the method defined in
the parent class we can chose to extend its behaviour. This is done by defining a
new version of a method in a subclass and then using the keyword super to invoke
the version defined higher up the inheritance hierarchy.

For example, in the following example, the abstract class Base defines a method
print that prints out a message “Base print”. The subclass Derived extends Base and
overrides the method print. However within the body of the method it called
super.print that causes it to invoke the parent class’s version of print. Note this
call could be made anywhere within the body of the method print in Derived, it
does not need to be the first line of the method.

abstract class Base {
def print = println("Base print")

}

class Derived extends Base {
override def print {

 super.print
 println("Derived print")
}

}

The effect of the overridden print method in Derived is that it calls the parent
class’s version of print. This means that in effect it extends, rather than replaces, the
behaviour of the original version of print. Note that super tells Scala to start
searching up the class hierarchy for a version of print defined above the current
class in the hierarchy. In this case it is defined in the parent class, but it could have
been defined in a parent of Base—that is it starts searching Base and will continue
search up the class hierarchy until it finds another definition of print to execute.

To illustrate this idea we could create a simple application:

object Test extends App {
var d = new Derived()
d.print

}

142 13 Classes, Inheritance and Abstraction

If we now run the above application, the output would be as shown below:

Here you can see that both the original version and the derived version of print
have been executed.

13.7 Scala Type Hierarchy

The type hierarchy in Scala is complicated by the presence of traits, but the core
types are divided between two types, AnyVal and AnyRef, with the class Any at the
root (see Fig. 13.2).

Thus the root of everything in Scala is the abstract class Any. Any has two
subclasses, the abstract AnyVal and the concrete AnyRef:

• AnyVal this is used to represent Value like types, such as Boolean, Char, Byte,
Short, Int, Long, Float, Double. Strictly speaking Scala has no primitive types—
these are objects. However, they are a special type of objects that are managed
by the Scala runtime efficiently.

• AnyRef this is used for all reference types such as classes and traits. Examples
of AnyRef subtypes include the data structure (or collection) classes such as
Array, List, Seq and String. It is also used as the root for all user-defined classes
that do not explicitly extend any other class.

Fig. 13.2 Simplified extract form Scala type hierarchy

13.6 The Super Keyword 143

13.8 Polymorphism

Polymorphism was a concept discussed earlier in the book relating to one of the
four key concepts in Object Orientation. In terms of Scala programming
Polymorphism means that a val or var local variable or property can actually
reference an instance of a particular type or any subtype of that type. Thus a var of
type Person can actually hold a reference to a Person (assuming it is not an abstract
type) or any subclass of Person (including Student, Employee and graduate, etc.).

For example, we can write:

object TestPolymorphism extends App {
var p: Person = new Graduate("Bill", 21, "English")
println(p)
println("----------------------------")
p.prettyPrint
println("----------------------------")
p = new Employee("Adam", 32, "MyCo")
println(p)
println("----------------------------")
p.prettyPrint
println("----------------------------")

}

In this test application the variable p is of type Person. It can thus reference a
Person, a Graduate or an Employee. Initially we are storing a reference to a
Graduate in p. We then call println on p (which causes the toString
method to be invoked on the instance reference by p and then call prettyPrint
on p. Both toString and prettyPrint can be guaranteed to be available in
whatever instance p refers to because the functionality in the class Person guar-
antees it. Any methods defined only in the Graduate are not visible via p
(although they are still present in the instance being referenced, they just cannot be
accessed at this point).

After this we create a new instance of the Employee class and store a reference
to that instance in p and then use toString to print the object out and
prettyPrint again. However, the behaviour that now executes is whatever
behaviour is either defined in Employee or inherited into Employee.

144 13 Classes, Inheritance and Abstraction

The output produced by this application is shown here.

The key here is that with polymorphism:

1. The type of the variable p acts as a filter—ensuring that only common behaviour
is accessible

2. But at runtime the actual definition of, for example, prettyPrint is
dynamically bound. That is, the version defined the class that the instance is
actually an example of what is executed.

The illustrate sees the following diagram, and scenario A indicates the situation
when p references a graduate. Thus when the prettyPrint method is called on p
at that point, it is the Graduate version of prettyPrint that is run. Scenario B
indicates the situation when p references an employee. Thus when prettyPrint
is called on this instance, it is the version in Employee that is run.

To summarise then, polymorphism in Scala is similar to that in languages such
as Java and C#, in that:

• A variable of type X can refer to instance of X or any subclass of X
• At runtime method invocations are dynamically bound based on the type of the

receiving object (not the type of the variable)

13.8 Polymorphism 145

	13 Classes, Inheritance and Abstraction
	13.1 Introduction
	13.1.1 What Are Classes for?

	13.2 Inheritance Between Types
	13.3 Inheritance Between Classes
	13.3.1 The Role of a Subclass
	13.3.2 Capabilities of Classes
	13.3.3 Overriding Behaviour
	13.3.4 Protected Members

	13.4 Restricting a Subclass
	13.5 Abstract Classes
	13.6 The Super Keyword
	13.7 Scala Type Hierarchy
	13.8 Polymorphism

