
Chapter 12
Building a Class

12.1 Introduction

In this chapter, we will work through the creation of a simple class to represent a
Company. As we are using IntelliJ, we will step through using this IDE to create
our class.

12.2 Create a New Module

Assuming you already have a Project to work in you should add a new module to
that Project. If not create a new Project using the File-> New-> Project… option
from the menu bar.

Next you can create a suitable module within the IntelliJ IDE to create your
application. A new module can be created from the File menu under File->
New -> Module… (Fig. 12.1).

This will cause the ‘New Module’ wizard to be displayed as shown below.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_12

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_12&domain=pdf

Make sure that you have selected the Scala option in the left-hand window. Then
click ‘Next’.

You can name the module anything. In this case, we will call the Project sample.
Enter the Project name into the ‘Module name’ field as shown here (Fig. 12.2).

Fig. 12.1 Selecting the create a new ‘Scala Project’ option

Fig. 12.2 Naming the project

122 12 Building a Class

I would also create a package to place your code in. A package is an organi-
sational construct that helps you manage your code. It also relates to name spacing
(what can be seen where) and is a good programming technique to get into.

12.3 Create a New Package

To create a new package, select your src directory under your module and from the
right mouse menu select New -> Package, for example (Fig. 12.3):

This will display the new Package Wizard (note it says Java but is being reused
for Scala packages in the Scala IDE). This dialog is shown here.

You can use whatever name you wish although you should note that a Scala
package is a series of names separated by ‘.’ which are typically prefixed by the
domain of the organisation creating the code. I am using com.jjh.info.

Fig. 12.3 Selecting the new package option

12.2 Create a New Module 123

Once you have provided a package name click ‘OK’.
You will now see a new package provided for you in the Project View of the

IDE. An example of the structure created under the Project heading is shown below.

12.4 Create a New Class

We will now add a new class to the package we just created. This can be done using
the New Scala Class Wizard. Select the package we just created in the Project View
and from the right mouse menu select New -> Scala Class.

You will now be shown the ‘Create New Scala Class’ wizard:

Specify the name of the class you want to create using the Name field. In our
case, we will create a new Scala class called Company as shown below.

Now click ‘OK’.
You should now find that you have a new class Company, in a file called

Company.scala under the com.jjh.info package. While in the middle of
the IDE in the code presentation area, you should see the outline skeleton code for
the class Company.

124 12 Building a Class

12.5 Defining the Class

The simple class you just created now needs to be expanded to represent a com-
pany. The class must have the following information:

• The name of the company
• The address of the head office of the company
• The phone number of the company
• The company registration number
• The company VAT number

The address of the company could be a separate type including county, postcode/
zipcode. However, we will keep things simple for the moment.

The fields of the company will all be of type String and will have some form
of default value, for example the empty or null string represented by “ ”. String is
referred to as a type as it represents a concept with the programming language. As
such a string is Zero or more characters which respond to certain operations such as
substring, length.

Update your definition of the Company class so that it resembles the following
listing:

package com.jjh.info

class Company {
var name = ""
var address = ""
var telephone = "0000"
var registrationNumber = "000"
var vatNumber = "xxxx"
var postcode = "xxx xxx"

}

12.4 Create a New Class 125

12.6 Adding Behaviour

We can also add some behaviour to this class by providing a print method that
will print out the Company details in an appropriate format.

The printer method will be done first. This method will not return a value as it
will be used to print information on the Company out to the Console.

package com.jjh.info

class Company {
var name = ""
var address = ""
var telephone = "0000"
var registrationNumber = "000"
var vatNumber = "xxxx"
var postcode = "xxx xxx"

def print() = println(s"Company name $name at $address")

}
Note that we have used the single line form of defining a method—this is not the

only option and you could experiment with other formats one you have this version
working.

12.7 Test Application

You should then create a simple test application (use the App trait with a Scala
object type) to create new instances of the Company class.

You can use the New Scala Class dialog to create an object as well as a class. For
example, select the package again and for the right mouse menu select ‘New Scala
Class’. However, when the dialog is displayed, select the drop-down box below the
Class Name field.

126 12 Building a Class

You will then see that there are actually three options available at this point;
Class, Object and Trait. Select the Object option and provide a name for the Object
(I am using CompanyTestApp):

You should now see a new tab on in the central code editor area of the IDE as
shown below.

This contains the skeleton of the CompanyTestApp object. It is not yet an
application. Modify the declaration of the object so that it extends the App trait. So
that you now have:

package com.jjh.info

object CompanyTestApp extends App {

}

Remember as you are using the App trait, you do not need to define a main
method declaration—you only need to add what the application needs to do.

In our case, we will create a new instance of the Company class and print out its
details:

package com.jjh.info
object CompanyTestApp extends App {

println("Starting CompanyTestApp")
val company = new Company()
company.print
println("Done CompanyTestApp")

}

Recall that we do not need to define the type of the val we will hold our
company reference in (this will be inferred by Scala), but that new instances are
created using the keyword new.

We can now run this application either using the right mouse menu from the file
CompanyTestApp in the Project View (Run).

In the Run output console, you should see output similar to that shown here.

12.7 Test Application 127

This is because the Company object does not yet have any data defined by you.
We will now add that data:

package com.jjh.info

object CompanyTestApp extends App {
println("Starting CompanyTestApp")
val company = new Company()

// Set up the company information
company.name = "John Sys"
company.address = "Coldharbour Street, London"
company.telephone = "123456"
company.registrationNumber = "99999999"
company.vatNumber = "BB112233AA"
company.postcode = "BS16 1QY"

company.print
println("Done CompanyTestApp")

}
In the above example, we have populated the fields that are defined within the

Company instance with suitable data. If you now rerun this application, you should
see more comprehensible output in the Run console.

12.8 Override Tostring

In general, we would not define a custom method such as print to print out the
Company instances. Typically, we would use the println method directly with
the company instance. To do this, we must override the toString method as we
did in the last chapter. In this case, our toString method must include

128 12 Building a Class

information for all of the fields. We can thus add a toString method to the
Company class with the result that we can print out a Company instance directly.
The Company class would now look like:

package com.jjh.info

class Company {
var name = ""
var address = ""
var telephone = "0000"
var registrationNumber = "000"
var vatNumber = "xxxx"
var postcode = "xxx xxx"

def print() = println(s"Company name $name at $address")

override def toString = s"Company[$name, $address, " +
s"$telephone, $registrationNumber, $vatNumber" +
s"$postcode]"

}

The test program could be updated to include a println for the company
instance (e.g. println(company)):

package com.jjh.info

object CompanyTestApp extends App {
println("Starting CompanyTestApp")
val company = new Company()

// Set up the company information
company.name = "John Sys"
company.address = "Coldharbour Street, London"
company.telephone = "123456"
company.registrationNumber = "99999999"
company.vatNumber = "BB112233AA"
company.postcode = "BS16 1QY"

company.print
println(company)
println("Done CompanyTestApp")

}
The output of this program is now:

Starting CompanyTestApp
Company name John Sys at Coldharbour Street, London
Company[John Sys, Coldharbour Street, London, 123456,
99999999, BB112233AABS16 1QY]
123456, 99999999, BB112233AABS16 1QY]
Done CompanyTestApp

12.8 Override Tostring 129

12.9 Extras

You could try out different syntax options, for example:
println(company name)
company print()
company print

130 12 Building a Class

	12 Building a Class
	12.1 Introduction
	12.2 Create a New Module
	12.3 Create a New Package
	12.4 Create a New Class
	12.5 Defining the Class
	12.6 Adding Behaviour
	12.7 Test Application
	12.8 Override Tostring
	12.9 Extras

