
Chapter 11
Packages and Encapsulation

11.1 Introduction

This chapter discusses the encapsulation and packaging features of Scala. The
concept of packages is discussed, along with some concrete examples. It then
illustrates how the encapsulation facilities can allow quite fine-grained control over
the visibility of the elements of your programs.

11.2 Packages

You can bring a set of related classes together in a single compilation unit by
defining them all within one file. By default, this creates an implicit (unnamed)
package; classes can access variables and methods that are only visible in the
current package. However, only one of the classes can be publicly visible (the class
with the same name as the file). A much better approach is to group the classes
together into an explicit, named package.

Packages are encapsulated units that can possess classes, interfaces and sub-
packages. Packages are extremely useful:

• They allow you to associate related classes and interfaces.
• They resolve naming problems that would otherwise cause confusion.
• They allow some privacy for classes, methods and variables that should not be

visible outside the package. You can provide a level of encapsulation such that
only those elements that are intended to be public can be accessed from outside
the package.

The Scala libraries provide a number of packages, some of which are inherited
from the underlying Java runtime. In general, you use these packages as the basis of
your programs.

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_11

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_11&domain=pdf

11.2.1 Declaring a Package

An explicit package is defined by the package keyword at the start of the file in
which one or more classes (or interfaces) are defined:

package benchmarks
package com.jjh.transport

Package names should be unique to ensure that there are no name conflicts.
Scala does not require, although it is common to find that a naming convention is
adopted across projects. This naming convention is derived from the Java world in
which a package name is made up of a number of components separated by a full
stop. The start of such a name is often your organisations domain in reverse; this
ensures uniqueness across all software systems.

The package name components actually correspond to the location of the files.
Thus if the files in a particular package are in a directory called benchmarks, within
a directory called tests, then the package name is given as:

package tests.benchmarks

Notice that this assumes that all files associated with a single package are in the
same directory. It also assumes that files in a separate package will be in a different
directory. Any number of files can become part of a package; however, any one file
can only specify a single package. Also note that any number of directories can
make up the package (particularly if they are arranged in different jar files).

All components in the package name are relative to the contents of the
CLASSPATH variable. This environment variable tells the Scala compiler where to
start looking for class definitions. Thus, if the CLASSPATH variable is set to C:
\jjh\Scala, then the following path is searched for the elements of the package:

c:\jjh\Scala\tests\benchmarks

All the files associated with the tests.benchmarks package should be in
the benchmarks directory.

11.2.2 Additional Package Definitions Options

11.2.2.1 Package Per File

The simplest way to define a package is to use a single package statement at the
start of a file. It must be the first line of Scala (other than any comments in the file).
It defines the whole contents of the file as being part of that package:

package com.jjh.transport

104 11 Packages and Encapsulation

11.2.2.2 Chain Package Definitions

A further package definition approach in Scala is what is called chaining package
definitions together. This allows multiple package declarations to be specified with
subsequent package declarations being chained to the earlier declaration. For
example, the following defines a package com.jjh.transport containing the class
Ship:

package com
package jjh
package transport

class Ship {

}

The style presented here indicates how packaging chaining can be used with the
package declaration at the start of a file. In terms of package chaining, it is a style
that you should be familiar with as you may encounter it in examples presented on
the Web. However, it is not a style that is generally used. The style of nested
packages which leads to package name chaining is more common, although the
most common form of package is a single one-line declaration at the start of the file.

11.2.2.3 Nested Package Definitions

Scala packages can also be nested one inside another. In this case the scope of one
packaged needs to be indicated via the presence of curly braces ‘{…}’. For
example,

package test {
…
}

Actually the curly braces can always be used with a package definition; it is just
that if they are omitted it is assumed that the whole of the file represents the
contents of the same package.

Curley braces are normally used to when defining one or more nested packages
so that the scope of one package can be represented. For example,

11.2 Packages 105

The above dots imply that there are members defined in the package test and
members defined in the package test.demo. It is also clear from this that in Scala
you can therefore have more than one package in a single file. In fact you have
multiple packages, for example,

The above example would have three packages in a single file; these packages
would be:

• Package test
• Package test.demo
• Package test.util

Note that we could further nest packages so that package demo could have a
further nested package print:

106 11 Packages and Encapsulation

As a concrete example of this consider the following listing:

This example defines the package com.jjh.transport as the top-level package (note
that it is perfectly legal to name a package with multiple elements and then to provide
nested packages that build on that namespace). The top-level package contains two
nested packages: personal and group. The full name of these packages is:

• com.jjh.transport.personal
• com.jjh.transport.group

If you were importing these packages to use in your own code, then these are the
names that you would have to use.

An interesting set of questions to ask is what is the scope or visibility of the
classes:

• Car defined in com.jjh.transport
• Bike defined in com.jjh.transport.personal
• TaxiFleet defined in com.jjh.transport.group

11.2 Packages 107

The answers are that:

• The Car class is directly visible in com.jjh.transport and in the nested packages:
personal and group. This is why it can be directly referenced within the class
TaxiFleet.

• The Bike is only visible directly within the package personal.
• The TaxiFleet is only directly visible within the nested package group.

From this we can see one of the key aspects of packages—helping to organise
our code elements (and to restrict the default namespaces of such elements).

However, this approach is not without its problems and it can actually lead to
namespace issues of its own. For example, consider the following listing:

package engine {

class Petrol1

}

package family {
package economy {
package engine {

class Petrol2

}

class Control {
val b1 = new engine.Petrol2
val b2 = new economy.engine.Petrol2
val b3 = new family.engine.Petrol3
// val b4 = new engine.Petrol1
val b5 = new _root_.engine.Petrol1

}

}

package engine {

class Petrol3

}

}

108 11 Packages and Encapsulation

This example has the following packages with the following contents:

• Package engine with the class Petrol1
• Package family with two nested packages: economy and engine
• Package family.economy with the class Control and a nested package engine
• Package family.economy.engine with the class Petrol2
• Package family.engine.Petrol3

All this looks fine except when you realise that currently there is no way for the
commented out line

val b4 = new engine.Petrol1

to compile? Why is this? It is because in Scala when you reference a class or a
package Scala always attempts to find the most local version of that class or
package. For the class Control the package engine which is nearest to it in terms
of namespace is the package engine defined within the package family, and as it is a
nested package within family as is the package economy, there is no need for code
within either package to have to mention the root package family in order to access
each other (it is implied by their nested status). However, as there is an external
package called engine also present this means that there is a name conflict between
the two packages engine.

To get around this problem, Scala provides a special root package reference
which can be used to indicate that you do not want to use the locally scoped
package but to start at the root location of all package names and find a package
from there. This root package reference is referred to by pre-fixing a package name
with ‘_root_’, for example,

val b5 = new _root_.engine.Petrol1

This ensures that the search for the package engine starts at the root of all
packages rather than looking locally. This approach works as root is essentially a
special package that pre-fixes all packages.

11.2.3 An Example Package

As an example, the files for the com.jjh.lights package are stored within a
directory called lights, within a directory called jjh, within the com directory.
The lights directory contains three classes that make up the contents of the
lights package: Light, WhiteLight and ColoredLight. The header for
the Light.Scala file contains the following code:

package com.jjh.lights

abstract class Light

11.2 Packages 109

The WhiteLight.Scala and ColoredLight.Scala files are similar, for
example,

package com.jjh.lights

class ColouredLight extends Light
And
package com.jjh.lights

class WhiteLight extends Light

Note in the above example we have placed each class in a separate file; however,
we could have defined all three classes in the same source file and this would have
produced the same set of.class files as are described below.

The directory containing the compiled (byte code) version of the lights
package is shown below:

The CLASSPATH variable (set up by the IDE) includes the path bin directory
of the current project, so the package specification, com.jjh.lights, com-
pletely specifies the location of the byte code files.

11.2.4 Accessing Package Elements

There are two ways to access an element of a package. One is to name the element
in the package fully; this is referred to as the fully qualified class name. For
example, we can specify the Light abstract class by giving its full designation:

This tells the Scala compiler exactly where to look for the definition of the class
Light. However, this is laborious if we refer to the Light class a number of
times.

The alternative is to import the Light class, which makes it available to the
package within which we are currently working:

110 11 Packages and Encapsulation

However, in some situations, we wish to import a large number of elements from
another package. Rather than generating a long list of import statements, we can
import all the elements of a package at once using the ‘_’ wild card. For example,

This imports all the elements of the com.jjh.lights package into the
current package. Notice that this can slow down the compilation time (although it
has no effect on the runtime performance). Also note that this only imports the
contents of the com.jjh.lights package—it has no effect on any subpackages
of lights. Also note that if you are a Java programmer that the wild card here is ‘_’
and not ‘*’ as it is in Java. Also note that we do not include the (optional) ‘;’
statement terminator in Scala—you can use the ‘;’ to terminate both the package
declaration and the import statements; it is just that it is considered superfluous and
thus not good style.

It is also possible to import all the methods or functions defined on a type using
the name of the type followed by the ‘_’ wild card, for example,

To summarise then it is possible to

• import the whole contents of a package,
• import a single type from a package,
• use an alias with a type and
• import the functionality for a given type.

11.2.5 An Example of Using a Package

The lights package described above has been used within a code outside the
package. This application defined in the com.jjh.test packages uses the
ColoredLight class. It therefore imports it into the current package. For example,

11.2 Packages 111

Notice that we have chosen to import the ColoredLight class explicitly rather
than the whole package. Also note that we can import any number of classes,
objects, traits, types, etc., as required into a single file but that these imports are
only in scope for the current file.

11.3 Import Options

Scala actually has a wider set of import options than Java. In Java an import can
only be specified at the top of a file after any (optional package declaration) and
before any other Java declarations (such as a class or interface). In Scala an import
can appear anywhere and affects the scope within which it was specified. Thus
imports can appear in a:

• Package
• Class
• Method or function
• Package object.

For example, the following example illustrates importing a set of functions
defined on the object util.PrintAccount into a method so that they can be accessed
directly within that method (but only that method):

package banking

case class Account(name: String, number: String)

class Bank {
def print(acc: Account) {
import util.PrintAccount._
printAccount(acc)

}
}
PrintAccount is a singleton object defined in the package util, for example,
package util

import banking.Account

object PrintAccount {
def printAccount(acc: Account) {

println(acc.name + ": " + acc.number)
}

}

Scala also allows you to import more than just classes, objects or traits. You can
import the methods on instances of a given class. For example, in the following
example the method printCar imports the methods defined on the parameter car so

112 11 Packages and Encapsulation

that it does not need to prefix model and spec with car (e.g. car.model and car.spec),
thus making the code simpler:

}
}

class Car(val model: String, val spec: String)

object CarTestApp extends App {

// Main behaviour
val c = new Car("BMW 320", "SE")
printCar(c)

// Support method
def printCar(car: Car) {
import car._
println(model + ": " + spec)

11.4 Additional Import Features

It is also possible to provide an alias as part of an import, for example,

This indicates that the type transport.Car will be alias to (and accessible via)
Audi in the current context (e.g. the current file).

It is also possible to indicate what should not be imported, for example,

import transport.{Car=>_, _}

This import indicates that everything should be imported from the package
transport with the exception of Car. This is because the first part of the contents of
the curly brackets ‘{…}’ indicates what not to import, e.g. Car=>_ and the second
part is the wild card that indicates what should be imported (i.e. the second ‘_’).

A further way in which the types to import can be specified is via the curly
bracket ‘{..}’ notation. This can be used to reduce the number of import statements
when several (but not all) of the types in a particular package should be imported.
This is written in the following way:

Note that this statement imports the Connection, DriverManager and ResultSet
types from the java.sql package.

11.3 Import Options 113

11.5 Package Objects

A package can also (optionally) have a package object associated with it. A package
object is an object that is part of the package (and has the same name as the
package) that can be used to hold utility functions or methods. Any members
defined in the package object are considered to be top-level members of the package
and can be accessed by other members of the package directly.

As an example of a package object consider the following listing:

package com.jjh

package object banking {
def printAccount(acc: Account) {
import acc._
println(name + ": " + number)

}
}

This defines a package object for the package com.jjh.banking. Note that it is
defined by a keyword for the package level above banking (com.jjh) with a package
object definitions for the banking element of the package. This banking package
object defines a single utility method printAccount that can be used by any other
members of the com.jjh.banking package to print out bank account information. For
example,

package com.jjh.banking

case class Account(val name: String, val number: Int)

object TestAccount extends App {
val acc = Account("John", 1234)
printAccount(acc)

}

You can also use the printAccount method in other packages by importing it. For
example, the following code is in a separate package com.jjh.test. It imports both
the Account case class and the printAccount method from the com.jjh.banking
package. Notice that from this you cannot see that com.jjh.banking is both a
package and a package object. We can then use the Account class to create an
account instance and print its details via printAccount (the utility methods defined
on the package object).

114 11 Packages and Encapsulation

package com.jjh.test

import com.jjh.banking.printAccount
import com.jjh.banking.Account

object AccountTestApp extends App {
val acc = Account("John", "AC123")
printAccount(acc)

}

11.6 Key Scala Packages

There are very many packages in Scala, but the core or central ones are:

• Scala—the core types
• scala.collection provide basis of the Scala collections (data structures)

frameworks.
• scala.collection.immutable provides the definitions for the immutable versions

of the collection classes in Scala.
• scala.collection.mutable provides definitions for the mutable versions of the

collection classes in Scala.
• scala.actors provides the actor based concurrency types.
• scala.io provides for input and output type definitions.
• scala.math provides basic mathematical functions and additional numeric types.
• scala.sys provides types for interacting with other processes and the operating

system.
• scala.util.matching provides pattern matching in text using regular expressions.
• scala.xml containing types is used when parsing, manipulating and serialising

XML structures.

11.7 Default Imports

There are also a set of default imports that are imported into every Scala file; these
are:

• The java.lang package
• The Scala package
• The Predef object.

The core java.lang package is imported as it provides some of the basic concepts
that underpin the Scala (and Java) runtime such as the definition of a String.

The Scala package contains definitions for the core Scala types, and as such, it is
always available in any Scala code without the need for an explicit import.

11.5 Package Objects 115

The Predef object in Scala provides type aliases for commonly used Scala types
(such as the immutable collection classes), some simple functions for Console I/O
(such as println), basic assertions (such as require) and some implicit conversion
routines. The inclusion of the Predef object reduces the amount of explicit code that
needs to be written in Scala.

11.8 Encapsulation

In Scala, you have a great deal of control over how much encapsulation is imposed
on a class, a trait and an object. You achieve it by applying modifiers to classes,
objects and trait properties, methods and functions. Some of these modifiers refer to
the concept of a package, and others to the type itself.

11.8.1 Scala Visibility Modifiers

By default all the members of a package, a class, an object or a trait are public. Thus
the following holds true:

package com.jjh.sample

object PublicObject {
val publicVal: Int = 32
var publicVar: Int = 0
def publicMethod = println("Hello")

}

That is everything above is publically available, you only need to import the
contents of the package com.jjh.sample._ or the object itself com.jjh.sample.
PublicObject to be able to access everything. You do not need to use a special
keyword public to make it so.

However, not all members of a type should be public; indeed in many cases you
specifically do not want them to be publically available. In these cases, there are
two additional keywords that can be used to control visibility; these are private and
protected.

This means that you can choose whether these elements of your program are
publically visible everywhere (the default), only visible to inherited types (pro-
tected) or only visible within the context they are defined (private). Thus these
visibility modifiers can be used to restrict the access to (or visibility of) these
members to other regions of code. In general, to use an access modifier you need to
include the appropriate keyword (private or protected) in the definition of the
member of a package, class or object.

116 11 Packages and Encapsulation

However, a word of caution is advisable here. Protected and private in Scala are
not the same as in Java. For example, protected in Scala means that the member is
only available in the current class and subclasses—it is not available in the current
package. However, this is a default; both protected and private can be modified to
indicate the scope; they should be applied to. In the case of private it means that in
Scala we can distinguish between private to an instance and private to a class.

11.8.2 Private Modified

A private member is (by default) only visible to the class or object that it is defined
in. Thus in the following example, the method print is only available to methods
defined within the class Account:

package com.jjh.banking

case class Account(name: String, number: String) {
private def print = println(name)

}

However, an issue is that it is available to all instances of the class Account.
Thus John’s account can access the private method of the Denise’s account. This is
the approach taken by Java, and it is the default approach taken by Scala and
represents class-based privacy. If we want instance-based privacy, that is the
method print can only be called from within the same instance of the class Account,
then we need to qualify its scope. This can be done with a scope associated with the
keyword in square brackets, for example private[this], for example,

package com.jjh.banking

case class Account(name: String, number: String) {
private[this] def print = println(name)

}

In this case private means private to this instance and not the whole class.
Interestingly you can also provide a package name within the square brackets so

that you can indicate that a method is private to the package, for example,

package com.jjh.banking

case class Account(name: String, number: String) {
private[banking] def print = println(name)

}

In this revised version, the method print is private to the package (i.e. it is
available anywhere in the current package). This equates to package visibility in
Java.

11.8 Encapsulation 117

In fact the qualifier can be any form of scope; thus, the form private[x] can be
used where x is one of an enclosing package, class or singleton object.

Also note that the keyword private can be applied to properties, methods and
functions within a class, trait or object.

11.8.3 Protected Modifier

The protected modifier indicates that a member of a class, trait or object is visible
within subtypes in any package (by default). For example, given the following
definition:

package com.jjh.test

class Super {
protected def print = println("Super")

}

class Sub extends Super {
print

}

class Other {
val s = new Super()
// s.print - error is not visible

}

The class Super defines a protected method print. This method is only accessible
(visible) in subclass of Super. The class Sub extends Super and therefore can
reference the method print directly. It happens that this class is defined in the same
package as Super but it could have been defined anywhere. However, even though
the class Other is defined in the same package as Super and can create an instance
of Super, it cannot reference the method print on an instance of Super as it is only
visible/accessible to subclasses of Super.

As with the private access modifier, the protected access modified can be
qualified with a scope. For example, we can indicate that the protected member is
protected up to a particular scope. Thus the previous example could be redefined
such that the qualified test is added to the protected method print:

118 11 Packages and Encapsulation

package com.jjh.test

class Super {
protected[test] def print = println("Super")

}

class Sub extends Super {
print

}

class Other {
val s = new Super()
s.print // No longer an error as it is now visible

}

In this way, we can indicate that a member should be visible up to a certainly
level and after that is only accessible to subclasses. Thus the example above in
which we specify protected[test] is the equivalent of Java’s version of protected as it
indicates that the method print is visible in the current package and in any subclass
in any package.

As with the private access modifier the protected modifier can be qualified with a
range of scopes. In fact the qualifier can be any form of appropriate scope; thus, the
form protected[x] can be used where x is one of an enclosing package, class or
singleton object.

Also note that the keyword protected can be applied to properties, methods and
functions within a class, trait or object.

11.8 Encapsulation 119

	11 Packages and Encapsulation
	11.1 Introduction
	11.2 Packages
	11.2.1 Declaring a Package
	11.2.2 Additional Package Definitions Options
	11.2.2.1 Package Per File
	11.2.2.2 Chain Package Definitions
	11.2.2.3 Nested Package Definitions

	11.2.3 An Example Package
	11.2.4 Accessing Package Elements
	11.2.5 An Example of Using a Package

	11.3 Import Options
	11.4 Additional Import Features
	11.5 Package Objects
	11.6 Key Scala Packages
	11.7 Default Imports
	11.8 Encapsulation
	11.8.1 Scala Visibility Modifiers
	11.8.2 Private Modified
	11.8.3 Protected Modifier

