
Chapter 10
Scala Methods

10.1 Introduction

This chapter presents how methods and associated behaviour is defined in Scala.

10.2 Method Definitions

Methods provide a way of defining the behaviour of an object, i.e. what the object
does. For example, a method may change the state of the object or it may retrieve
some information. A method is the equivalent of a procedure in most other lan-
guages. A method can only be defined within the scope of an object. It has a
specific structure:

access-control-modifier
def methodName(args: argTypes): returnType = {
 /* comments */
 local variable definitions
 statements
}

The access control modifier is one of the keywords that indicate the visibility of
the method. The returnType is the type of the object returned; for example,
String, or Int. methodName represents the name of the method and args rep-
resents the types and names of the arguments. These arguments are accessible
within the method:

© Springer International Publishing AG 2018
J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional
Programming, https://doi.org/10.1007/978-3-319-75771-1_10

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75771-1_10&domain=pdf

The above definition defines a method ‘max’ as part of an object MathUtil. The
method takes two parameters both of type Int, one accessible via the parameter x
and the other via the parameter y. The return type of the method is explicitly
specified to be Int. Both of the methods contain an ‘if’ conditional statement which
will return x if x is greater than y, otherwise it will return y.

Scala is quiet flexible in the way that methods are defined. The above could also
be rewritten as:

Both max and max2 do exactly the same thing and seen by Scala as exactly the
same (as Scala infers much of what has been omitted).

In the following example class the different variations on defining the method
greet are all valid.

The methods are discussed below:

88 10 Scala Methods

• The greet() method. This is a longhand definition of a method. It has a set of
parentheses indicating that no parameters are required. It explicitly states that
Unit (nothing) is the return type. And the body of the method follows the ‘=’
symbol surrounded by curly brackets.

• The greet2() method. This version defaults the return type to be Unit; this is
the default if nothing is stated as the return type of println is also Unit.

• The greet3() method. This method defaults the return type and does not
include {} as it is a single line definition.

• The greet4() method. This includes brackets around the statements, but
defaults the return type and does not include the ‘=’—this is known as proce-
dural style.

• The greet5 method does not even include the () as they are not needed.

Invoking methods greet to greet4 can be invoked with or without ‘()’.
However, it should be noted that greet5 can only be involved without parame-
ters, for example,

10.2.1 Method Parameters

Methods can take parameters. Parameters are values or instances that are passed
into a functional unit such as a method. If the parameters are reference types (i.e.
instances) then a copy of the reference is passed in. However, as the reference is
essentially the address of the underlying object in memory, this means that a
parameter refers to the same instance as any values that hold that reference exter-
nally to the method.

In Scala a method can take Zero or more parameters. The main method that you
have seen several times in the last chapter takes a single parameter of type Array
[String]. That is, it holds a reference to an array of strings. This is shown in the
following example.

10.2 Method Definitions 89

In this example, as well as the main method, a second method has also been
defined within the MethodTest object. This method is called max and takes two
parameters. That is, there are two parameters in the parameter list for the method, in
this case x and y. The anatomy of the method is explored in more detail in
Fig. 10.1.

The keyword def started the declaration. Here the method name is max, it has
two parameters in its parameter list (of type Int) called x and y, and it returns an Int.
Within the {..} is the method body which in this case considers x relative to y and
returns (by default) either x or y.

Within the method all parameters are vals; that is it is not possible to assign a
new value to a parameter to the method. That is, you cannot reassign a value to x or
y in the above example. Thus it is not possible to write:

Fig. 10.1 Elements of a method

90 10 Scala Methods

10.2.2 Comments

The /* comments */ section describes the operation performed by the method and
any other useful information. Comments cannot be nested in Scala, which can be
awkward if you wish to comment out some code for later. For example, consider
the following piece of code:

/*
val x = 12 * 4
/* Now calculate y */
val y = x * 23
*/

The Scala compiler reads this as a comment, followed by the code y = x * 23;
followed by the end of another comment. This causes an error. However, Scala has
two other types of comment. You can instruct the Scala compiler to ignore
everything until the end of the line, using the // indicator:

val x = 12 * 4
// Now calculate y
val y = x * 23

The final type of comment, the documentation comment, starts with /** and ends
with */. Note the two asterisks at the beginning of this statement. They are picked
up and processed by the documentation utility (scaladoc), which generates HTML
pages that can be viewed in a Web browser. They can contain wiki markup and
other control directives. These directives are defined as @<directive>, for example,

@constructor—used to provide documentation for the constructor
@param—used to provide documentation for a parameter
@return—used to provide documentation on a return type.

An example of such Scaladoc comments is shown below:

In IntelliJ it is possible to run the Scaladoc command from within the tool. On
the main menu bar, see the ‘Tools->Generate Scaladoc’ option:

10.2 Method Definitions 91

This will present you with a dialog allowing you to control what you want to
apply the scaladoc command to.

Fig. 10.2 Scaladoc-generated reference material for the Person class

92 10 Scala Methods

The result of running the scaladoc tool against this class is shown in Fig. 10.2.
In fact the whole of the reference material available for Scala has been produced

using Scaladoc. A more complex example of which is shown below. This presents
the scaladoc for the Scala class AnyRef.

This Scaladoc is available online at

• http://www.scala-lang.org/api/current

10.2.3 The Local Variables Section

In the local variable definition section, you define variables which are local to the
method. These variables are typed and can appear anywhere in the method

10.2 Method Definitions 93

http://www.scala-lang.org/api/current

definition. They are only available within the method definition itself and have no
meaning elsewhere and are not visible elsewhere.

birthday()

val newAge = 0;

…

The variables may be vals or vars depending on whether you want to allow
reassignment to them or not. However, it is worth noting that by convention in
Scala, vals are preferred and may IDEs will mark vars in red as a warning that they
should not be used.

10.2.4 The Statements Section

The statements section represents any legal set of Scala statements that implement
the behaviour of the method.

10.2.5 The Return Operator

Once a method has executed, an answer can be returned to the sender of the
message. The value returned (whether an object, a basic type or an instance of a
subclass) must match the return type specified (or inferred by Scala) in the method
definition. The return expression in Scala is the last expression executed in a
method, although it need not be the last expression in the method.

The Scala keyword to return a value is return (just as in Java); however, it is
optional as the result of the last expression will automatically be returned if the
method returns something other than Unit; thus, the following are equivalent:

if (x == y)

return x;

else

return y;

Or

if (x == y)

x;

else

y;

94 10 Scala Methods

In both these cases, the value of x or y is returned, depending upon whether x
and y are equal or not.

10.2.6 An Example Method

Let us examine a simple method definition in Scala. We wish to define a procedure
to take in a number, add 10 to it and return the result.

Although the format may be slightly different from code that you have been used
to, it is relatively straightforward. If you have C or C++ experience you might think
that it is exactly the same as what you have seen before. Be careful with that idea—
things are not always what they seem!

Let us look at some of the constituent parts of the method definition. The method
name is addTen. In this case, the method has one parameter, called aNumber, of
the basic type Int. Just, and as in any other language, the parameter variable is
limited to the scope of this method (and is a val). The method also defines a
temporary variable, result, also of the basic type Int and limited to the scope of
this method (and this is a var).

Variable names are identifiers that contain only letters and numbers and must
start with a letter (the underscore, _, and the dollar sign, $, count as letters). Some
examples are:

anObject MyCar totalNumber $total

A capitalisation convention is used consistently throughout Java and most Scala
programmers adhere to this standard:

• Private variables and methods (i.e. instance or temporary variables and almost
all methods) start with a lower case letter.

• Shared constants are all in upper case.
• Class always start with an upper case letter.

Another convention is that if a variable or method name combines two or more
words, then you should capitalise the first letter of each word, from the second word

10.2 Method Definitions 95

onwards, e.g. displayTotalPay, returnStudentName. This is referred to
as modified Camel Case.

10.2.7 Overriding toString

One of the facilities that is available for all types is the ability to convert itself to a
string. This is particularly useful when printing an instance out (i.e. to help with
debugging scenarios). The println functionality we have been using is written in
such a way that if it is given an instance to print, it will ask that instance to convert
itself to a string and then print that string. It does this by calling a method called
toString on the instance. Given the following class, we can therefore print the string
representation of instances to the console:

This can be shown by the following test harness application:

The result of running this program is shown in the console of the Eclipse IDE.
However, the output might not be what you expect. The following diagram presents
an example of the default output generated by toString.

As you can see from this example, the default behaviour for an object is to
convert itself into a string version based on the fully qualified class name (i.e. com.
jjh.scala.person.Person), followed by an ‘@’ sign, followed by the hashcode for the
object (the hexadecimal number following the ‘@’). The hashcode should be
unique and allows us to distinguish between one instance of a class and another, for
example,

96 10 Scala Methods

The result of executing this application is shown in the next figure.

As you can see, the hexadecimal numbers following the ‘@’ are different.
However, this is not very useful when need to distinguish between the instance
representing John and the instance representing Denise.

The problem is that the default toString behaviour is defined at a more abstract
level than the class Person. That is, the default behaviour does not know about the
name and age properties. We can overcome this problem by redefining the way in
which instances of the class Person convert themselves to a String. We do this by
redefining the toString method mentioned earlier.

For example, in the following listing, we have redefined the toString to return a
string constructed from the string “Person”, followed by the instances current
values for name and age:

Be very careful how you define this method. It must be called toString (with a
capital ‘S’). Scala is very case sensitive, and the method tostring and the method
toString are two completely different methods. As we are redefining the default
behaviour for toString, we must make sure the spelling and capitalisation are the
same. Also note that we must use the keyword override before the def keyword to
indicate we are expecting to be redefining the default method (it is called override
as it is actually via inheritance that we obtain the default implementation of
toString, but we will return to this in the chapter that focuses on inheritance). Also,
note that the toString method must return a String!

Now when we rerun our simple application the output is modified such that we
now obtain a far more meaningful result:

10.2 Method Definitions 97

10.2.8 Defining Property Methods

In the previous section we described name and age as properties of the instance
p1, but what does this mean? A Property is an item of data, held within an instance
of a class, that can be accessed externally to that instance either as a read-only
property or as a read/write property.

Essentially Scala creates a reader (also known as a getter) method and a writer
(also known as a setter) method associated with each property. If the properties
were marked as vals, then it would only create the reader methods.

Depending upon the context in which you reference the property, Scala knows
whether to invoke the reader or writer. For example if you are attempting to access
the value of the property then it knows to invoke the writer, whereas if you are
attempting to set the value of the property it knows to use the writer method.

Scala also allows a programmer to override the default readers and writers if
required; it is just that the default behaviour provided by Scala generally meets the
requirements of most developers.

If you wish to define your own readers and writers (or to help understand what is
being created for you) then there are a few additional things to understand. The first
is that the properties you have defined are by default public—that is visible outside
of your instances to anything within the Scala world. An alternative would have
been to mark them as private (note you do not need to say anything for them to be
made public, but you need to make a conscientious decision to make them private).

The second thing you need to be aware of is that Scala does not actually
distinguish between a property, a method or a function to any great extent, and it is
the way that it is defined and invoked which actually allows Scala to work out what
you want. Therefore if you are defining your own readers and writers then you will
need to ensure that the name of the field that will hold the data is different to the
name of the methods used to access that field. Although any name could be used, by
convention the field name is prefixed by an underbar (‘_’).

98 10 Scala Methods

Thirdly to distinguish between a method that should be used on the left-hand
side of an assignment and one that should be used to retrieve a value, a writer
method is post fixed by an underbar (‘_’).

Given the above, Person2 is a class that defines the same behaviour as
Person1 but we have done it longhand ourselves rather than rely on Scala to
create the getters and setter methods for us:

In the above code we have created two private properties _name and _age. These
are accessed by two methods each; one to return the value (the getter) and one to set
the value (the setter).

For example, the def age method returns the value of _age. Note it could have
been written longhand as:

def age(): Int = {
 return _age
}

However we are using Scala’s ability to infer much of the template from above
and thus merely need to write:

def age = _age

The setter methods are a little more complex. We have had to call the methods
age_ and name_. They are defined to take a value (of an appropriate type which
we are explicitly specifying here). And we are indicating that they do not them-
selves return anything (hence the Unit return type). Within the body of the
methods we then indicate that the value passed in is assigned to the appropriate
property. Even so this is still a shorthand for the longhand from which would be
(for the age setter method):

10.2 Method Definitions 99

We can now use the same test program with this class as we have previously
used for the Person1 class:

And it produces the output shown below.

This approach may be useful if you wish to add some non-default behaviour to
either the setter or getter methods.

10.3 Named Parameters

In most situations, when you invoke a constructor, a method or a function each
argument is matched, in sequence with the parameters of the constructor, method or
function. Thus given the method mult in the object Processor:

Then we can invoke this method as follows:

In this case the value 2 is bound to the parameter ‘x’ and the value 3 is bound to
the parameter y and thus we multiply 2 by 3 to obtain 6.

100 10 Scala Methods

However, an alternative approach is to use the names of the parameters. Named
parameters allow you to pass in argument to a constructor, method or function as
name–value pairs. These pairs can be in any order, and Scalawill work out how to bind
them. The syntax for this is based on name=value, with each parameter separated
by a comma (‘,’). For example, the above invocation of mult could be rewritten as:

Now we are explicitly binding the value 2 to x and the value 3 to y. The end
result is that the value 6 is again printed out. However, as the order is no longer
significant we could also write:

This again binds the value 2 to x and the value 3 to y and once again results in
the value 6 being printed out.

Thus the order of the parameters is no longer significant. Note that you can also
mix positional arguments with named arguments (in which case the positional
arguments come first), for example,

Named parameters are most often used with default parameters. This allows the
optional values to be used for all omitted parameters, but the named parameters to
be used for those to be specified. For example,

10.3 Named Parameters 101

The class Activity defines a primary constructor that takes four parameters.
Each of these parameters has a default value. However, if we used position-based
parameters then we could not just provide the second, third or fourth parameter
when we create an Activity. However, using named parameters allows us to do
exactly this. For example, to create a new Activity with the owner set to “John”
but with the defaults used or the other three parameters we can write:

The result of running this code is shown below:

Activity[Wed Dec 13 14:29:50 GMT 2017, activity, John,
true]

As you can see the default values for date, title and live have been used with the
owner set to “John”.

It is also common to find that the use of named parameters is used with the
alternative curly bracket ‘{}’ syntax used for parentheses. This form results in a
construct that looks more as if it is part of the language than a user-defined type. For
example, using the alternative syntax we can create a new Activity specifying
the type of activity and the owner (as “Presentation” and “Denise”, respectively).

The result of running this is shown below:

Activity[Wed Dec 13 14:31:20 GMT 2017, Presentation,
Denise, true]

Note that the order of owner and title is not significant and that date and live are
still defaulted. Also note that Activity now appears to be a language construct.

102 10 Scala Methods

	10 Scala Methods
	10.1 Introduction
	10.2 Method Definitions
	10.2.1 Method Parameters
	10.2.2 Comments
	10.2.3 The Local Variables Section
	10.2.4 The Statements Section
	10.2.5 The Return Operator
	10.2.6 An Example Method
	10.2.7 Overriding toString
	10.2.8 Defining Property Methods

	10.3 Named Parameters

