
Chapter 14
Designing Distributed Real-Time Systems
to Process Complex Control Workload
in the Energy Industry

Eduardo Valentin, Rosiane de Freitas and Raimundo Barreto

Abstract The energy industry demands computing system technologies with
advanced state-of-the-art techniques to achieve reliability and safety for monitoring
and properly dealing with several complex constraints. These computing systems
also require delivering correct data at the right time imposing hard real-time con-
straints, because there are lots of situations where missing critical data may be
catastrophic. The challenges faced by computer engineers in the energy industry
also include designing distributed real-time systems to process such complex
control workload. Besides, the computing system may also demand high energy
consumption on its own. In this chapter, we demonstrate how to construct a
mathematical formulation applicable for these computing systems and how to solve
it to distribute the hard real-time workload of the process control systems consid-
ering technological constraints and optimizing for low power consumption of such
computing systems. We present two computational techniques of resolution: an
exact algorithm based on Branch-and-Cut and a meta-heuristic based on Genetic
Algorithm. While the exact algorithm combines a branch-and-cut strategy with
response time based schedulability analysis, the genetic algorithm still considers the
response time schedulability analysis but follows an evolutionary solving strategy.
Both computational techniques deliver solutions for heterogeneous computing
systems with a control application, considering precedence, preemption, mutual
exclusion, timing, temperature, and capacity constraints. In computational experi-
ments, we present the usage of such techniques in a case study based on a control
system for a power plant monitoring application.

E. Valentin (&) � R. de Freitas � R. Barreto
Instituto de Computação - Ufam, Federal University of Amazonas, Manaus, AM, Brazil
e-mail: eduardo.valentin@icomp.ufam.edu.br

R. de Freitas
e-mail: rosiane@icomp.ufam.edu.br

R. Barreto
e-mail: rbarreto@icomp.ufam.edu.br

© Springer International Publishing AG, part of Springer Nature 2018
C. Kahraman and G. Kayakutlu (eds.), Energy Management—Collective and
Computational Intelligence wıth Theory and Applications, Studies in Systems,
Decision and Control 149, https://doi.org/10.1007/978-3-319-75690-5_14

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_14&domain=pdf

14.1 Introduction

Engineers working in the energy field have an increasing need for state-of-the-art
computer system technology. Challenges involve reliability and safety in refinery
and power distribution operations. Delivering correct data at the right time imposes
hard real-time constraints in these systems, because in many situations missing
critical data may be catastrophic. Nevertheless, the computing systems applied in
the energy sector may also demand high energy consumption on its own due to the
necessity to continuously deliver reliable and trustworthy results.

In large data centers, for example, power consumption is a major concern due to
the increasing expense in room cooling systems and mainly due to the expensive
power bills. For instance, according to Eric Schmidt, CEO of Google, “What
matters most to the computer designers at Google is not speed but, power, low
power, because data centers can consume as much electricity as a city” (Markoff
and Lohr 2002). Also, according to the Department of Energy (DoE) of the United
States, power is one of the major challenges to overcome to achieve the needed
computing excellence required to advance in many applications of the energy
industry (Department of Energy (DoE) 2014).

In this chapter, we demonstrate how to construct a mathematical formulation
applicable for these computing systems and how to solve it to distribute the hard
real-time workload of the process control systems considering technological con-
straints and optimizing for low power consumption of such computing systems.

The organization of this chapter is as follows. We present how a typical com-
puting system architecture and how a hard real-time task model for a energy sector
monitoring application look like in Sects. 14.2 and 14.3, respectively. We show
how a mathematical formulation can be written associating combinatorial opti-
mization with schedulability analysis in Sect. 14.4. We also explain two strategies
to solve such formulation, evolutionary based and branch-and-cut based, in
Sects. 14.5 and 14.6. We also exemplify how such advanced techniques can be
applied in a case study for a monitoring control application of the energy sector in
Sect. 14.7. We close this chapter with final comments in Sect. 14.8.

14.2 Typical Multi-processor Architecture

Practitioners execute applications with hard deadline restrictions on multiple
heterogeneous processors due to the expected energy consumption reduction.
Nevertheless, developing software with timing constraints for multiple heteroge-
neous processors is a complex task. Scheduling becomes especially hard to deal
with, particularly under low power constraints.

Adopting multiple processing elements to enhance the computing capability and
to reduce the power consumption is a common design strategy, especially for
embedded systems. Therefore, the heterogeneous multicore platforms have become

318 E. Valentin et al.

the de facto solution to cope with the rapid increase of system complexity, relia-
bility, and energy consumption (He and Mueller 2012).

For this reason, a simple way to create a processing model for the energy
industry applications is to use as reference a Multi-Processor System-On-Chip
(MPSoC) architecture. We can state then that the system is composed by a set, H, of
m processors, H ¼ H1;H2; . . .;Hm

� �
. Each core may operate on l different per-

formance states, 1 � k � l. The frequency of performance state k on the pro-
cessor i is Fik and the power consumption is Pik. The set of frequencies of one core
is not necessarily the same of other cores. Also, a task may have different code size
and execution time for different processors, due to instruction set and performance
state differences. The idle power of processor i is Pidle;i.

14.3 Hard Real-Time Workload Model

A typical hard real-time workload can be represented by a task model of periodic
tasks. A task model M is a set composed by n task sj. A task sj 2M, with 1 �
j � n, has the properties: worst-case execution cycle WCECj; worst-case execu-

tion time Cj fð Þ, which is a function of frequency f, thus Cj fð Þ ¼ WCECj

f ; period of

execution Tj; deadline Dj. A task sj also has the following properties, specific to
fixed priority policies: fixed priority pj; set of high priority tasks hpj representing the
tasks sj with a priority higher than the priority of sj. The response time Rj is
dependent not only on task set characteristics, but also on the target platform, and
on the task allocation and frequency distribution that have been selected for the
workload. A task model can be locally processed in a single processor using a fixed
priority based on-line scheduler, such as Deadline Monotonic.

DeadlineMonotonic (DM) is a fixed priority based on-line scheduler in which task
priorities decrease with larger deadlines. Audsley et al. (1993) extend the schedula-
bility test proposed by Lehoczky et al. (1989) for DM, considering the release jitter Jj
and the local blocking delay Bj due to semaphore usage. The delay Bj caused by low
priority tasks accessing shared resources in the same processors using Priority Ceiling

Protocol can be estimated as Bj ¼ maxjk Djkj pj\pi
� �

^ C Skð Þ� pið Þ
n o

, where C

(Sk) is the ceiling priority of the shared resource Sk. The schedulability test proposed
by Audsley is Rj �Dj; 81� j� n, where Rj ¼ Ij þ Jj.

The task influence Ij in multiple processors may be calculated as

Inþ 1
j ¼ Cj þBr

j þBj þ
P

p2 hp jð Þ
Inj þ Jp þB

r
p

Tp
� Cp. Precedence constraints can be

represented by including the maximum response time of the predecessors tasks in
the Jj component of the task sj. Also, when precedence constraints occur across
different processors, this imposes an additional messaging cost that may be
incorporated in the emitting task to perform inter-processor communication. When
the Multiprocessor Priority Ceiling Protocol is in place to avoid priority inversion

14 Designing Distributed Real-Time Systems … 319

issues, the remote blocking delay Br
j is an upper bound for the blocking time

suffered by task sj from other tasks in a different processor. Response time tests are
computationally expensive but provide exact conditions, i.e., sufficient and neces-
sary. The test uses task’s WCEC, periods, and the concept of critical instant phasing
(Lehoczky et al. 1989).

14.4 Mathematical Formulation

A classical mathematical model that resembles modern heterogeneous multicore
platforms is the Multilevel Generalized Assignment Problem—MGAP (Glover
et al. 1979), though it was originally conceived in the manufacturing context.
The MGAP consists of minimizing the assignment cost of a set of jobs to machines,
each having associated therewith a capacity constraint. Each machine can perform a
job with different performance states that entail different costs and amount of
resources required. The MGAP is originally in the context of large manufacturing
systems as a more general variant of the well-known Generalized Assignment
Problem (GAP). In this paper, we correlate MGAP model with the problem of
assigning frequencies and distributing hard real-time tasks on heterogeneous pro-
cessors, minimizing energy consumption.

Considering the schedulability test proposed by Audsley, we propose the MGAP
formulation using tasks response times as seen in Eqs. 14.1a–14.1f, based on the
formulation of Valentin et al. (2016b).

MinimizeW xð Þ ð14:1aÞ

s:t: :
Xm
i¼1

X1
k¼1

xijk ¼ 1; j 2 1; . . .; nf g ð14:1bÞ

Xn
j¼1

X1
k¼1

WCECij

FikTj
xijk

� �
� 1; i 2 1; . . .;mf g ð14:1cÞ

Wi � jmax
i � jamb

q
; i 2 1; . . .;mf g ð14:1dÞ

Rj �Dj; j2 1; . . .; nf g ð14:1eÞ

xijk 2 0; 1f g; 1� i�m; 1� j� n; 1� k� l ð14:1fÞ

where the tri-indexed decision variable xijk represents the distribution and assign-
ment, i.e. when xijk = 1 the task sj executes in the processor i at performance state
k, or frequency Fik, when xijk = 0, the task sj is distributed somewhere else.

320 E. Valentin et al.

A distribution is a partitioned approach in which each processor i executes a local
scheduler responsible for a partition of the real-time task workload and migration is
not allowed (see the set of constraints 14.1b). The set of constraints 14.1c represent
the maximum system utilization capacity of each processor i. The set of constraints
14.1d represent the temperature limits by creating a linear relation, where jamb is
the ambient temperature, jmax

i is the maximum junction temperature of each pro-
cessor i, q thermal resistance constant, and wi is power consumption of each
processor i. This formulation applies each task deadline as a constraint against their
response time in the linear programming (see the set of constraints 14.1e). The
matrix Rj is the response time of tasks sj for a given allocation configuration.
The response time of each task varies depending on the workload distribution and
the frequency assignment of the configuration because a change in the value of xijk
may result in a different computation time (Ci). Equation 14.1 is applicable for DM
scheduling policy (Dj � Tj).

We are using an objective function W xð Þ that minimizes energy consumption,
accounting dynamic and idle energy, over the time window represented by the
hyperperiod of the real-time tasks, i.e., the Least Common Multiple (LCM) of tasks
periods. We extend the objective functions presented by Valentin et al. (2016b) by
improving the idle energy estimation. Equations 14.2a–14.2c has the objective
function.

Minimize W xð Þ ¼
Xm
i¼1

Edyn;i xð ÞþEidle;i xð Þ� 	 ð14:2aÞ

Edyn;i xð Þ ¼
Xn
j¼1

X1
k¼1

LCM
Tj

� �
ClWCECijV2

dd;ikxijk

� �
ð14:2bÞ

Eidle;i xð Þ ¼ Pidle;i LCM 1�
Xn
j¼1

X1
k¼1

WCECi;j

FikTj
xijk

� � !
ð14:2cÞ

where Edyn;i is the energy consumption when processor i is active, Eidle;i is the

energy consumption when processor i is idle, WCECij

FikTj
represents the task sj uti-

lization, uijk, while executing in processor i at frequency Fik of performance state k,
is the circuit capacitance constant, and Vdd;ik is the voltage level to achieve fre-
quency Fik.

The term LCM
Tj

� �
ClWCECijV2

dd;ikxijk represents the dynamic energy associated

with the instances of execution of task j within the LCM. Each processor idle
energy, within the LCM time window, is computed for its estimated idle time in the

term Pidle;iLCM 1�Pn
j¼1

P1
k¼1

WCECi;j

FikTj
xijk

� �� �
.

The objective function represented in Eqs. 14.2a–14.2c may still be seen as a
MGAP formulation. Note that, without loss of generality, when we take the term

14 Designing Distributed Real-Time Systems … 321

Pidle;iLCM out of the sum, leaving the term mPidle;iLCM to be added to the final
objective function value, we have

cijk ¼ LCM
Tj

� �
ClWCECijV2

dd;ik � Pidle;iLCM
WCECi;j

FikTj

� �h i
.

14.5 Computational Techniques of Resolution

In this section, we explain the algorithmic strategy developed for the mathematical
formulation of Sect. 14.4. In Sect. 14.5.1, we explain an evolutionary algorithm
which produces an initial solution that can be used by the exact algorithm for
finding optimal solutions, described in Sect. 14.5.2.

14.5.1 Approximation by Means of Evolutionary Algorithm
(EA)

We wrote an evolutionary algorithm (EA), based on genetic algorithm, for each
mathematical model (Valentin 2009). We follow a similar approach as existing in
the literature for other formulations on this problem (Goossens et al. 2008). The
algorithm’s input is the processing model H and the desired task model M (see
Sect. 14.3). In our EA implementation, a solution is a chromosome that is a
sequence of 0’s and 1’s and each gene represents one of the elements of the
tri-indexed decision variable of the mathematical model. The algorithm can be
simplified into two steps: (i) Initialization with random-generated individuals and
(ii) Generations composed by individuals selected in tournaments and by the
evolutionary operators of elitism and crossover. Algorithm 1 illustrates the overall
process of our EA strategy and we describe the pieces of the EA as follows.

In the Initialization, we random-generate individuals. Random-generating indi-
viduals do not guarantee their feasibility, i.e. the generated individual may be
infeasible. The process of validating or transforming individuals into feasible
solution is onerous. Even then, we maintain all generations composed by feasible
individuals only. We random-generate a large number of individuals, 5000, to start
with a high diversity. If none of them is a feasible solution, we return the empty
set £. If we find less than 50 feasible individuals, then we return the one with
highest fitness. But when we find 50 feasible individuals, we repeat the following
steps for a maximum of 100 generations, or 10 generations with same best fitness,
and return the individual with best fitness. We perform the Elitism operator by
always including the individual with best fitness in the next generation. We execute
Selection by means of a tournament in the current population. Only 5 individuals,
randomly selected, participate in the tournament. The winner of the tournament is
the individual with best fitness among those participating of it. We also insert in the
next generation the result of a Crossover between winners of two tournaments. The

322 E. Valentin et al.

crossover operation between individuals I1 and I2 is done by means of selecting a
pivot gene p. The genes lower than p are copied from I1, the remaining genes are
copied from I2. When resulting individual is not feasible, we return I1, if
fitness I1ð Þ[fitness I2ð Þ, or I2 otherwise. We define the Fitness function to be:
1=E individualð Þ, where the function E individualð Þ is the estimated energy con-
sumption for the individual in consideration. The function E is computed using the
same energy estimation as in the objective functions of the integer programming
mathematical formulations.

14.5.2 Finding Optimal Solutions

We use a general branch-and-cut method combined with schedulability tests to
conduct the process of finding optimal solutions. A branch-and-cut is a
branch-and-bound with cut generation strategies. The algorithm’s input is the
processing model H, The desired task model M, and a possible upper bound ub,

14 Designing Distributed Real-Time Systems … 323

with objective function value and the solution structure found by the EA. The
algorithm outputs the optimal distribution of hard real-time tasks among the pro-
cessors that consumes less power among the possible assignments, informing as
well in which frequency each tasks may be executed, and the total system estimated
energy. The general solving strategy is listed in Algorithm 2.

The algorithm starts by denoting the set L of active problem nodes to contain
only the initial Integer Linear Problem. When the EA returns a feasible solution, the
upper bound v* and the optimal solution x* are set to match the output of the EA,
otherwise they are set to þ1 and to NULL, respectively. The algorithm iteratively
evaluates each element of the set L. Each problem node is initially tested against the
schedulability test that fits for the problem scheduling policy. In the case the
schedulability test accepts the node, then a regular branch-and-cut is followed. The
linear relaxation of the node is then computed and solved. When the linear relax-
ation is feasible, a procedure of generation of cutting planes is performed and
followed by a fathoming and pruning process. The problem node is then partitioned
and new restricted problem nodes are derived and incorporated into L. The iterative
process repeats until the set L is empty.

14.6 Analysis on EA Parameters

We have tuned the EA algorithm based on an analysis of five of its parameters:
number of generations, size of population, number of individuals in the tournament,
the use of elitism, and percentage of mutation. We considered the CPU time needed
to solve an instance with 30 tasks and 50% of estimated target CPU utilization. In
Fig. 14.1 we present some graphics in which the left column shows the average
CPU time and in the right column we present the average solution energy con-
sumption, for each analysed EA parameter. We plot only observations that could be
collected within an execution of less than one minute of CPU time.

As we can observe in Fig. 14.1, as expected, the execution time of the EA
increases with the number of generations used, but we have noticed almost no
change in the energy consumption. Similar pattern is seen for the number of
individuals participating in the tournaments. We see an improvement in the energy
consumption when the size of the population is higher than 20, but increasing the
size of the population also increases the EA execution time. We have decided to set
the parameters population and generation to 50 and the parameter tournament to 5,
to avoid increasing the EA execution time, but still finding solutions with lower
energy consumption. We have noticed that when we enable mutation, specially
with a rate higher than 7% the execution time of the EA increases considerably,
reaching more than 1 min in this analysis, and therefore, we decided to disable
mutation. We have not noticed any major difference in the convergence time when
enabling or disabling elitism for this particular analysis, but we decided to keep it
enabled to avoid loosing promising solutions found across generations.

324 E. Valentin et al.

Fig. 14.1 Analysis of the influence of EA parameters on the EA execution time and on the quality
of the objective function (energy). Parameters: number of generations (generation), size of
population (population), number of individuals in the tournament (tournament), the use of elitism
(elitism), and percentage of mutation (mutation)

14 Designing Distributed Real-Time Systems … 325

14.7 Case Study: Power Plant Monitoring Control

In this section, we exemplify how to optimally distribute the hard real-time
workload of a power plant monitoring control in a target platform with multiple
heterogeneous cores. Power plants depend typically on rotating machines such as
steam turbines or generators and should be operated with maximum reliability,
capacity, efficiency and minimum operating and maintenance costs. A shutdown of
such machinery may be very costly and ideally avoided. Therefore, investing on
identifying and potentially eliminating reliability issues through effective condition
monitoring and predictive maintenance is key to modern power plant monitoring
systems.

Table 14.1 summarizes the task model of the power plant monitoring example.
We are considering precedence, preemption, mutual exclusion, temperature,
capacity, and timing constraint while distributing the computing workload. We
illustrate the precedence constraints (thin arrows) and mutual exclusion constraints
(dark thick edges) of this task model in the precedence graph of Fig. 14.2.

Table 14.1 An example of monitoring control hard real-time task model

si pi Ti (ms) Di (ms) WCECi (�103)

1 2 3 4

1 1 200 100 3000 3000 3000 3000

13 2 200 100 15,000 15,000 15,000 15,000

14 3 200 100 10,000 10,000 10,000 10,000

15 4 200 100 1000 1000 1000 1000

7 5 200 100 2000 2000 2000 2000

3 6 200 40 3000 3000 3000 3000

16 7 200 200 5000 5000 5000 5000

17 8 200 100 7000 7000 7000 7000

2 9 200 200 3000 3000 3000 3000

11 10 200 200 2000 2000 2000 2000

18 11 200 40 6000 6000 6000 6000

10 12 200 40 2000 2000 2000 2000

4 13 200 100 3000 3000 3000 3000

5 14 200 100 3000 3000 3000 3000

20 15 200 100 2000 2000 2000 2000

22 16 200 100 7000 7000 7000 7000

21 17 200 100 1000 1000 1000 1000

9 18 200 100 2000 2000 2000 2000

8 19 200 100 2000 2000 2000 2000

6 20 200 200 3000 3000 3000 3000

19 21 200 200 10,000 10,000 10,000 10,000

12 22 200 200 2000 2000 2000 2000

326 E. Valentin et al.

The application example we consider, the Power Plant Monitoring Control, is
composed of four logical activities that communicate among themselves: the Main
Control activity, the Sensor Hub activity, the Actuator Center activity, and the
Signal activity. The Main Control activity is responsible for managing the overall
control system and communicating with the other activities. The Sensor Hub
activity monitors environment, the Actuator Center activity is in charge of per-
forming actions on the event of detection of failure or reliability issues, and the
Signal activity reports and records any significant event detected in the system.

Fig. 14.2 Precedence graph
of power plant monitoring
control. Arrows represent a
precedence constraint, for
example, s1 precedes s13.
Dark thick edges represent
mutual exclusion constraint,
for example, s16 shares a
resource with s18

14 Designing Distributed Real-Time Systems … 327

The Main Control activity always starts by requesting ðs1Þ data from the Sensor
Hub. Current environment condition data is then sent back to the Main Control
ðs17Þ. The Main Control computes trend based on current and past environment
data extrapolating and forecasting any equipment failure or reliability issues and
communicates with Actuator Center ðs13Þ to implement any failure mitigation ðs20Þ
or equipment adjustment ðs22Þ needed. Main Control also sends ðs14Þ regular
reports of the events that happen in the control system to the Signal activity, which
is responsible for activating alarms and warnings.

As an example platform, we are considering four processors: two ARM A57’s
and two ARM A53’s. The ARM A57’s may operate on seven different frequencies
from 500 MHz to 1.9 GHz, and the A53’s may operate on seven different fre-
quencies from 400 MHz to 1.2 GHz. The idle power consumption is 50 mW. The

circuit capacitance constant C1 is 1e� 9W V2

Hz. The thermal resistance q is 0:11 C
W.

In this platform, we are considering the DVFS switching latency as an operation
executed within the context switch of tasks with a cost of 30 ms, included in the
release jitter Jj of each task. More robust response time analysis considering the
switching overhead in clusters and architecture influence (Valentin et al. 2015) may
be also combined with the branch-and-cut algorithm when necessary. We list the
platform characteristics in Table 14.2.

Table 14.2 Architecture characteristics of a typical multi-core heterogeneous platform

CPU Cl WV2=Hz
� 	

jmax
i Cð Þ q C=Wð Þ Voltages (V) Frequencies (GHz)

0 1e-09 125 0.11 0.94 1.9

0.86 1.8

0.86 1.7

0.78 1.6

0.77 1.5

0.77 1.0

0.77 0.5

1 1e-09 125 0.11 0.94 1.9

0.86 1.8

0.86 1.7

0.78 1.6

0.77 1.5

0.77 1.0

0.77 0.5

2 1e-09 125 0.11 0.82 1.2

0.82 1.1

0.7825 1.0

0.7575 0.9

0.7075 0.8

0.6825 0.7

0.6575 0.4
(continued)

328 E. Valentin et al.

Even though temperature is a constraint left for mechanical engineering, it can
play a role while distributing the system workload. The ambient temperature in such
machineries will typically be higher than the regular room temperature (25 °C)
because the system is exposed to heat flowing from the mechanical engines,
reaching as high as 85 °C. The common silicon junction temperature is 125 °C.

After executing the branch-and-cut optimization algorithm considering the task
model of Table 14.1 and the target computing model of Table 14.2, we obtain the
optimal distribution listed in Table 14.3. The precedence graph with the allocation
is also illustrated in Fig. 14.3. For this case study, the optimal energy consumption
is 0.1049 J for the duration of the LCM (200 ms) of tasks periods. We initialized
the algorithm with the solution structure and an upper bound for the objective
function extracted from the configuration found by the evolutionary algorithm.
Utilizing this initial upper bound, the full optimization process took less than 1.5 h
to finish and the final optimal solution differs from the logical initial distribution.
Even though this case study has a set of 22 tasks, this algorithm has a reasonable
performance on task models with up to 50 tasks, finishing in less than 30 min with a
feasible solution for independent tasks (Valentin et al. 2016a, 2017).

As seen in Table 14.3, the schedulability analysis shows that the computed
response time of each task is less than their respective deadline, meeting all timing,
precedence, and mutual exclusion constraints. It is worth noting that Table 14.3
includes the inter-processor communication cost of tasks s4; s5; s6; s13; s14; s17; s18;
and s19. The optimization process converged to an optimal solution in which tasks
sharing resources are allocated in the same processor, avoiding remote blocking
delays. The optimal configuration for this case study uses only three of the four
available processors. The total utilization of the active processors (6.05, 16.98, and
25.00%) is well within their respective theoretical values (100%), safely respecting
the capacity constraint. This configuration with low utilization is selected by the
algorithm because it consumes the least energy, although it is common practice to
design real-time systems with high utilization. Also, the estimated temperature of
each ARM processors is less than 87 °C, in the thermal stabilization, giving enough
room in the temperature constraint.

We highlight, for example, that the logical distribution setting each application
activity to one processor is also feasible. This configuration uses all four processors

Table 14.2 (continued)

CPU Cl WV2=Hz
� 	

jmax
i Cð Þ q C=Wð Þ Voltages (V) Frequencies (GHz)

3 1e-09 125 0.11 0.82 1.2

0.82 1.1

0.7825 1.0

0.7575 0.9

0.7075 0.8

0.6825 0.7

0.6575 0.4

14 Designing Distributed Real-Time Systems … 329

Table 14.3 Optimal workload distribution result of the optimization process

Processor:
0

Utilization:
6.05%

Temperature:
86.85 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

15 1000 1.9 0.526 200 100 97.331

20 2000 1.9 1.053 200 100 48.684

22 7000 1.9 3.684 200 100 13.219

21 1000 1.9 0.526 200 100 49.797

7 2000 1.9 1.053 200 100 98.443

8 2000 1.9 1.053 200 100 52.458

9 2000 1.9 1.053 200 100 18.512

10 2000 1.9 1.053 200 40 28.513

11 2000 1.9 1.053 200 200 38.019

12 2000 1.9 1.053 200 200 108.909

Processor:
1

Utilization:
16.98%

Temperature:
86.73 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

1 3000 1.9 1.579 200 100 1.609

2 3000 1.9 1.579 200 200 3.188

3 3000 1.9 1.579 200 40 4.767

4 3001 1.9 1.579 200 100 6.346

5 3001 1.9 1.579 200 100 7.926

6 3001 1.9 1.579 200 200 9.505

16 5000 1.9 2.632 200 200 12.198

18 6001 1.9 3.158 200 40 18.483

17 7001 1.9 3.685 200 100 26.936

13 15,002 1.0 15.002 200 100 46.707

Processor:
2

Utilization:
25%

Temperature:
85.04 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

14 10,001 0.4 25.003 200 100 71.739

19 10,002 0.4 25.005 200 200 96.774

Processor:
3

Utilization:
0.0%

Temperature:
85.005 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

330 E. Valentin et al.

at their respective maximum frequency. The timing, preemption, precedence, and
mutual exclusion constraints are met, given that each task response time is less than
their respective deadline. The capacity and temperature constraints are also met.
However, this configuration’s estimated total system energy is 0.1127 J for the
LCM (200 ms) of tasks periods, being at least 7.4% higher than the optimal.

An intuitive approach would be to target a low power configuration, having all
tasks allocated to a single ARM A53 CPU, executing at the lowest frequency of
400 MHz. That, however, is not a feasible configuration, given that the capacity
constraint is not met because the total CPU utilization would be 117.5% and several
tasks would not meet their deadlines in this situation.

Another intuitive approach would be to use again the logical distribution of one
activity to one processor, but locking the lowest available frequency, as the uti-
lization of each processor is not high. In this configuration, each processor uti-
lization is less than 32%, but the system is not schedulable because the response
time analysis indicates that tasks s7; s8; s10; s14; s15; s18; and s21 miss their respec-
tive deadlines basically due to the accumulated precedence.

Fig. 14.3 Precedence graph and task distribution of power plant monitoring control. White nodes
are allocated in one ARM A53. Light gray nodes are allocated in one ARM A57. Dark gray nodes
are allocated in the other ARM A57. The frequency that each task executes is represented close to
each respective node in the graph, for example, s19 executes at 400 MHz

14 Designing Distributed Real-Time Systems … 331

14.8 Final Remarks

In this paper, we exemplified how to optimally distribute the hard real-time
workload of a power plant monitoring control system. We applied robust methods
to avoid infeasible system configurations. Even though they can be computationally
expensive, their usage in design time is still justified, given that they help prevent
catastrophic scenarios.

We associated combinatorial optimization mathematical formulations and
response time based schedulability analysis to optimally distribute the hard
real-time workload of power plant monitoring system. We solved the combinatorial
problem by using a branch-and-cut algorithm that applies response time analysis
while walking through the problem nodes. We showed that all the considered
constraints of precedence, preemption, mutual exclusion, timing, temperature, and
capacity were met properly in our case study by using the response time analysis
with branch-and-cut combined method.

We are evaluating combining response time analysis in a Branch-Cut-Price
algorithm as future work. We also envision considering migration by performing
sensibility analysis to determine other feasible and optimal configurations to allow
for dynamic configuration switching.

References

Audsley, N., Burns, A., Richardson, M., Tindell, K., & Wellings, A. J. (1993). Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal, 8
(5), 284–292.

Department of Energy (DoE). (2014). Top ten exascale research challenges. Visited in Jan 2016.
URL: https://science.energy.gov/*/media/ascr/ascac/pdf/meetings/20140210/Top10report
FEB14.pdf.

Glover, F., Hultz, T. J., & Klingnian, D. (1979). Improved computer-based planning techniques,
part ii. Interfaces 9/4.

Goossens, J., Milojevic, D., & N ́elis, V. (2008). Power-aware real-time scheduling upon dual cpu
type multi-processor platforms. In Proceedings of the 12th International Conference on
Principles of Distributed Systems, OPODIS’08, pp. 388–407. Berlin, Heidelberg: Springer.

He, D., & Mueller, W. (2012). Enhanced schedulability analysis of hard real-time systems on
power manageable multi-core platforms. In Proceedings of the 14th IEEE International
Conference on HPCC—9th IEEE ICESS, pp. 1748–1753, Liverpool.

Lehoczky, J., Sha, L., & Ding, Y. (1989). The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In Proceedings of the IEEE Real Time Systems
Symposium. pp. 166–171.

Markoff, J., & Lohr, S. (2002). Intel’s huge bet turns iffy.
Valentin, E. (2009). Github—Hydra. Visited in Feb 2016. URL: https://github.com/toolshydra/

Hydra.
Valentin, E., de Freitas, R., & Barreto, R. (2016a). Reaching optimum solutions for the low power

hard real-time task allocation on multiple heterogeneous processors problem. In 2016 VI
SBESC, pp. 128–135.

332 E. Valentin et al.

https://science.energy.gov/%7e/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://science.energy.gov/%7e/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://github.com/toolshydra/Hydra
https://github.com/toolshydra/Hydra

Valentin, E. B., de Freitas, R., & Barreto, R. (2016b). Applying MGAP modeling to the hard
real-time task allocation on multiple heterogeneous processors problem. Procedia Computer
Science, 80, 1135–1146. In International Conference on Computational Science 2016, ICCS
2016, 6–8 June 2016, San Diego, California, USA.

Valentin, E., de Freitas, R., & Barreto, R. (2017). Towards optimal solutions for the low power
hard real-time task allocation on multiple heterogeneous processors. Science of Computer
Programming.

Valentin, E., Salvatierra, M., de Freitas, R., & Barreto, R. (2015). Response time schedulability
analysis for hard real-time systems accounting dvfs latency on heterogeneous cluster-based
platform (pp. 1–8). Optimization and Simulation (PATMOS): Power and Timing Modeling.

14 Designing Distributed Real-Time Systems … 333

	14 Designing Distributed Real-Time Systems to Process Complex Control Workload in the Energy Industry
	Abstract
	14.1 Introduction
	14.2 Typical Multi-processor Architecture
	14.3 Hard Real-Time Workload Model
	14.4 Mathematical Formulation
	14.5 Computational Techniques of Resolution
	14.5.1 Approximation by Means of Evolutionary Algorithm (EA)
	14.5.2 Finding Optimal Solutions

	14.6 Analysis on EA Parameters
	14.7 Case Study: Power Plant Monitoring Control
	14.8 Final Remarks
	References

