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Preface

It was a chilly spring day when a total blackout is experienced by a population of
seventy million in Turkey. Some big cities were without power for 8 hours and
more. No production could be made in twelve industrial zones for a whole day just
because of some technical problems in transmission. Complexity of managing the
national grid showed up. The distribution has to be improved, micro-grids are to be
constructed, energy security has to be reviewed, more renewable energy invest-
ments are to be allowed, energy load has to be rearranged, energy trading is to be
regulated based on better predictions and more. Hence, every single citizen
understood that there are too many angles of taking decisions in the energy
investment, management, and operations.

This book is focused on different levels of complexity in energy applications
responded by a variety of computational methods. The book is organized to prepare
for decisions by forecasting, giving decisions on different levels, and measuring the
success of those decisions as well as getting ready for the fore coming changes
represented in eight parts. Economic, strategic, and operational analyses are three
different angles of managerial approach to the energy applications. Forecasting
supports the managerial decisions by feeding in all the possible alternatives and
scenarios. Performance analysis validates if the managerial decisions are taken
alongside the market realities. A special chapter is reserved for the collective
intelligence applications with two chapters. Future trends give some light for the
unknowns to arrive.

The first part, Introduction, is constructed by defining the complexity in energy
systems and fuzzy approaches to complexity. In Chap. 1 of this part, Kayakutlu
gives the general concepts and classifications of complexity before describing why
the energy systems are complex. She classifies the impacts of energy complexity.
The second article of Kahraman et al. gives a detailed literature review on fuzzy sets
to demonstrate the necessity and support of fuzzy logic in responding the complex
system problems. The fuzzy applications are studied for a large variety of energy
sources.
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Forecasting, the second part, includes three chapters showing that any fore-
casting exercises on technology, planning, or scheduling can be of great help in
economic decision as well as energy efficiency efforts. In Chap. 3, Lavoie et al.
work on super-efficient dryers, important technology where there is a room for
energy savings. The likelihood of using the technology is combined with the Bass
diffusion model for 15 years to show the efficiency improvements and the need for
incentives. Oztaysi et al. give a review of basic fuzzy forecasting techniques where
statistical analysis like time series analysis and regression are included as well as a
machine learning technique, ANFIS. An example for the energy expenditure
forecasting using Fuzzy Time Series is given. Yunusov et al. work on smart
schedule of storage on low voltage feeders. They use the autoregressive forecasting
with linear approach and with trends removed approach considering the seasonality.
They compare the results with random forest regression and support vector machine
approach.

The third part, Economic Analysis, starts with the photovoltaic metering
investments that Cristofaridis and Ioannis have studied. Electricity generation with
photovoltaics (PV) can show different patterns, and k-means clustering is used to
cluster those patterns. Then, PV generation for each pattern is analyzed for the
prosumers using both internal rate of return and net present value analysis. Both the
costs and the revenues are based on total energy billing. Öztürk et al. study the
lifelong economic analysis of a micro-grid installation with hybrid renewable
energies. The model is constructed by using mixed integer nonlinear programming
before the net present value is performed. Case study for this chapter is realized for
an industrial zone in Turkey. Kahraman et al. define a variety of fuzzy net present
worth calculation to analyze the investments. An application on wind turbine life
cycle analysis is performed using the intuitionistic fuzzy approach. Carbon tax is an
important issue for any kind of energy generation in Europe. Gouveia and Climaco
have structured two models for carbon emission taxes and worked on the models
applying data envelopment analysis for each country. Solutions for the models are
given using piecewise linear functions. The robustness for carbon taxes in European
countries is compared.

Strategic analysis for the energy systems will be the long-term decisions that are
critical for an investor in the energy field or crucial for the energy economy of a
country. Hence, it will be the subject of the fourth part. We have four chapters in
this part. In the first one, Coban and Onar analyze the solar energy prices in
scenarios created as a result of hesitant fuzzy cognitive maps. Büyüközkan et al.
analyze the investment strategies for wind, solar, biomass, hydro-, and geothermal
energies using a multi-criteria decision-making approach. This study is a decision
support for the energy investor for all the possible renewable energy resources
using hesitant fuzzy algorithm. In Chap. 13, the third strategic analysis is realized
by Fragkogios and Sahadiris on the crude oil refineries. The chain of scheduling for
refineries is critical for the crude oil business; therefore, the review of mathematical,
heuristic, and hybrid approaches will support strategic decisions on the subject. The
last paper of the part is another multi-criteria decision-making approach using
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VIKOR and TODIM to evaluate investment plans in wind, solar, hydro-, and
landfilled gas alternative resources.

Energy system processes are critical in the daily decisions. Energy load plans
and schedules, energy demand smoothing to avoid the expense of the peak hours
and/or electrical charging or storage planning are daily practices and will be cov-
ered in the fifth part. Valentin et al. give a real-time planning model for the process
control systems. They compared an exact optimization approach modeled using
branch and cut and the genetic algorithm approaches. Application is shown with the
case studies. Oztaysi et al. give an overview of all intuitionistic fuzzy techniques
used for performance analysis in energy management. As a case study, six wind
energy alternatives are evaluated based on eight attributes using axiomatic design.
The third article of the performance analysis part is the study of Nguyen et al.,
where electrical car charging at residential side is analyzed. A predictive framework
is presented for the charge plans, and the case studies for the real-time application
are given. The last article of Bektaş et al. is an example of demand site manage-
ment. A two-step approach of mixed integer model and a Bayesian game are
designed in order to realize peak shaving for a homogeneous management of the
multi-site users.

Performance analysis part starts with Chap. 18 written by Asan et al. on Energy
Service Companies (ESCO) Market of Turkey. The effectiveness of the market is
shown by using a new systematic approach of analyzing the key barriers and drivers
by examining the direct and indirect causal relations. The second article of the part
is the study of Oztaysi et al., where multi-attribute axiomatic design is given on
wind energy alternatives and the performance of different techniques according to
those design parameters is measured by using triangular intuitionistic fuzzy sets. In
the last study of this part, Karabulut and Büyüközkan apply a group decision
making using fuzzy set theory and VIKOR techniques to measure the sustainability
performance of different energy resources.

The seventh part of the book includes two articles on collective intelligence
applications in the energy field. There are two articles presented. The first one gives
a general overview of all the collective intelligence techniques and applications
through different dimensions of energy applications, whereas the second gives the
fuzzy implementation of the same algorithms for forecasting, economic analysis,
strategic and operational analysis, and performance approaches in the energy field.

The eighth and last part of the book is reserved for the future trends where two
chapters are included. In the study of Yanık and Kılıç, the impact of block chains is
presented and the possibilities for a power and utility block chains are discussed.
The interrelationships of different factors in a distributed generation are evaluated.
Chapter 24 is designed to value the innovation-based energy future. In this study,
Mercier-Laurent and Kayakutlu propose an intelligence-based computational model
for considering the time, synergy, and systematic impacts of innovation factors on
the energy systems.
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This book gives a broad review of computational techniques used in energy
management. We strongly believe that approaches presented in this book will open
a new dimension for both the decision makers and the academicians.

Istanbul, Turkey Cengiz Kahraman
March 2015 Gülgün Kayakutlu
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Part I
Introduction



Chapter 1
Complexity in Energy Systems

Gülgün Kayakutlu

Abstract This chapter is designed to define the complexity concepts and reviews
the use of these concepts in the energy field. Our aim is to give a summary for the
motivation of this book and overview the issues and the approaches to analyze and
understand those issues. Energy applications have the wide arena for complexity
and therefore there is a huge variety of collaborative and computational approaches.
This chapter will only review the methods considered in this book, but there are a
lot more that would add value to the energy industry.

1.1 Introduction

In the beginning of this century Mark Buchanan said “Physics is not Physics any
more” (Buchanan and Aldana-Gonzalez 2003). He was trying to introduce the
concept of “Nexus” as an opponent for complexity. Lots of environmental or
energy economists have taken it as Buchanan defined it and created Nexus in
different segments of energy applications despite the fact that complexity and
solution approaches were not yet sufficiently studied.

Majority of the business systems are recently considered to include complex
systems. As technology improved, there has been a computational analysis on the
complexity and therefore, intelligent algorithms are developed to find solutions.
Global economy and the growing information network have complicated the
analysis. Energy systems, energy efficiency, energy planning and management,
decision making in the energy field are all found complex. Following the use of
multiple resources (fossil and clean energy together) and provision of distributed
solutions with self-energy production (cogeneration, tri-generation, local energy
and micro-grids), energy applications have become the most challenging applica-
tions of the network economy.

G. Kayakutlu (&)
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© Springer International Publishing AG, part of Springer Nature 2018
C. Kahraman and G. Kayakutlu (eds.), Energy Management—Collective and
Computational Intelligence with Theory and Applications, Studies in Systems,
Decision and Control 149, https://doi.org/10.1007/978-3-319-75690-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_1&amp;domain=pdf


This chapter aims to clarify the concepts and solutions for complexity with a
focus on energy applications. It is so organized that the concepts will be defined in
the next chapter and the application of these concepts in the energy field will
follow. The third chapter will be overviewing the search for analyzing and
understanding complexity. The last chapter will give a future view for the trends on
the subject.

1.2 Complexity Concepts

The word complexity makes researchers think of neural and/or intelligent systems
immediately. Whereas, one of the earliest definitions made by O’Sullivan relates the
complexity to the original systems theory definition of Bertalanffy in 1960 and
extends it for the structural and dynamic properties of a system (O’Sullivan 2009).
Several researchers gave the interaction of brain, society and the business world
interactions as a good example of complexity. Since 2010 the complex system
represents the network of things where nodes are the components and the branches
are the interactions. Mainly researchers are focused on emergence, resilience,
transitions, predictability and control.

Overview of the literature shows that the following features of complex events
are generally accepted.

Collective Behavior: Networks of individual components with no central con-
trol, hard to predict, changing patterns. Natural resource management is a good
example that has never been static. Though they are disrupted by the humanity in
the past, they show a transition in a dynamic network evolution. This system shows
integrated focus on the various linkages between the dynamic system and static
structural configurations. Berkes emphasizes the natural resources before empha-
sizing the need for including the geographical states, cultures and ecosystems in
ecological management (Berkes and Berkes 2009). In any network there are sub-
systems or even agents used but they work with mutual interactions which cause a
collaborative action and hence cause adaptive optimization processes improving the
collective performance (Rammel et al. 2007).

Signaling and Information Processing: Systems produce and use information
and signals from both internal and external environments. Simultaneous non-linear
interactions are observed among the sub systems which are too heavy for the simple
information systems (Kwapień and Drożdż 2012). Using the similarities of bio-
logical complexity and the grids cause new methods to handle heterogeneous
sources of distributed information (Strizh et al. 2007). Thus, even the classical
signalling methods are to be improved to cope with the parametric state based
approaches of the dynamic systems (Frank Pai and Palazotto 2008).

Adaptiveness: Systems change their behaviour to improve the chances of sur-
vival or success through learning or evolutionary processes composed of many
interacting parts, giving rise to emergent patterns. The behaviour is said to be
emergent because some complex properties do not show up at local level of each
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component (Rammel et al. 2007). Social dynamics like constructing group opinion
have been studied in adaptive networks; in social games many empirical or theo-
retical models are proposed (Sayama et al. 2013). There is no single rule for any
component of the system but rather dynamically changing actions for each event at
different state. The immune system is a good example of a complex adaptive system
(Holland 2010). The anticipation of sudden blackouts is expected to rise the power
prices, yet, it does in USA but not in China. Continuous learning through the
defects is a need where direct differential solutions are no more sufficient. Transient
states need to be analysed to find solutions for complex adaptive systems where
both supervised and unsupervised learnings are beneficial (Marchiori et al. 2011).

Uncertainty: Deterministic systems are easy to predict. Dynamism however
causes unexpected event states not even known by the agent or component of the
system. It is known that the uncertainty is not only caused by lack of information or
knowledge but unexpected happenings. Changes in the stock market indices based
on a horrible joke made a Global leader is the best example of uncertainty. It is well
seen that the social and natural systems can not be taken as Newtonian machines.
“they are self-organizing systems whose properties emerge from the non-linear
interactions among the agents” (Driebe and McDaniel 2005). Any problem in the
network economy needs political, technical, economical social interactions and
conflicts to be solved (Rapaport and Ireland 2012). As the volume of unknowns
increases, the prediction for the next status becomes more difficult (Koutsourelakis
2008).

Randomness: Randomness is included for each individual component, since
each one works with its current power at the state of evaluation with arrangements
of co-operation (Kramarz and Kramarz 2011). Multi-level, multi agent systems
aggregate the results in such a way that the gaps occur more frequently. Bayesian
approach to cover the gaps with probabilities might not always be possible but can
be created by using random number generations (Chawla et al. 2015). It is also
observed that large scale co-operations are built by involving “simulation like”
interactions at the local levels (Hadzibeganovic et al. 2015). Usually, randomness is
observed in agent based approaches either as input data, agent-to-agent transitions
and or random variations in the results achieved.

Collaboration: Any business or economic system is in need for interactions and
feedbacks among the social, ecological and knowledge networks (Sayama et al.
2013). Andersson et al’s research on societal complexity defines the concept
graphically (Andersson et al. 2014) as in Fig. 1.1. We do not let the systems to go
wicked since we have systematic approaches to achieve the results. However,
human related systems are approached by the majority of researchers with a sys-
temic approach where there is a mess and rules cannot be defined easily. Since the
success of collaborative actions are more difficult to prove new methods like net-
work based game theory are being developed (Pacheco et al. 2014).

Globalism was handled only by trading and sales worldwide. A new era
approaches with consideration of collaboration to construct ecological systems
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representing the interactive behaviour of the human life and the nature. As Lezotre
points for the pharmaceutical industry, geographical-political-economical integra-
tion is not anymore sufficient (Lezotre 2014).

1.3 Complexity in the Energy Markets

Energy systems are no more run with a single objective of minimizing the costs
while balancing the supply and demand. Although the original energy models were
linear, new updates are made to include adaptability to the ever-changing dynamic
markets. The fact that energy systems are physically integrated through
multi-energy technologies, that energy markets force the connectivity of different
role players, the balances can be provided with a combined view of demand and
supply makes those systems highly complex. Good suggests to incorporate the
energy systems with the trading systems to avoid misleading insights (Good et al.
2017). Socio-technical networks with new transition arenas have to consider sus-
tainability, low-carbon life, green and wise economy (Kayakutlu and
Mercier-Laurent 2017). New energy types, hybrid use of energy resources, dis-
tributed energy deliveries, socio-ecological approaches increase the difficulties to
respond to uncertainties in capacities, demand and prices. We can analyse the
complexities in energy systems through three levels Resources, Distribution and
Interactions.

Fig. 1.1 System definition in
reference to more
complication (Andersson
et al. 2014)
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1.3.1 Energy Resources

In 2013 USA has declared to be focused on internal resources not only for the
immense shale gas reserves but also hydraulic fracking and related technologies. In
their foreign policies they declared to approach Brasil for immense bio-energy
resources and Africa which is to discover the natural resources yet (Zakheim 2014).
As the variety of energy sources increases, the obligation for hybrid use of
renewable and fossil energies grow. Renewable energies are given more importance
with global warming abatement concerns but the uncertainties cause the need for
the use of natural gas, fuel or coal sites to back the unexpected losses. Though
innovative techniques are found to control and manage hybrid use of energy
resources, the difficulty of improving skill, cultural reactions, research and devel-
opment investments and technology integration cause complexities (Cainelli et al.
2015). After 2015 COP21 agreement in Paris, it has been extremely difficult to use
distributed energy resources to achieve the goals of keeping warming under 2 °C, in
parallel with providing sustainable environment, having competitive advantages in
economy and guarantee the energy security. Power storage technologies have been
facilitator to respond to these difficulties. Even using the vehicles as an alternative
for energy sustainability have become the support for the management (Haddadian
et al. 2016).

1.3.2 Energy Distribution

Uncertainty in demand and efficiency concerns caused the efforts and research for
the demand side management and smart grids. The use of demand site management
to provide flexibility in pricing by changing the peak loads has also given the
countries the advantage in carbon emissions. It is shown by the researchers that the
rebound effect can be avoided by smoothing the energy load based on demand site
management, which causes reductions in power consumption prices (Bergaentzlé
et al. 2014).

In natural gas operations, it is shown that the use of hubs reduces the prices and
causes the energy saving (Kazakos et al. 2016).

District energies with multiple resource use and emission considerations com-
bined allow the support for both energy efficiency and emission mitigation efforts
(Fazlollahi et al. 2015). Starting with the first district heating in Denmark, the
smaller grid instead of huge national grids. Development of the renewable energy
technologies allowed micro grid design for islands or isolated districts.
Interrelations among the national and private grids, moreover, regulations to allow
block purchase in intra-day market would also have positive impacts in energy
saving. However, demand site management and dynamic pricing need smart
measuring, intelligent control systems, advanced load management and smart
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performance monitoring (Siano 2014). Distributed energy use with micro-grids or
self-energy generation forced to integrate the supply and the demand of power, heat
and cooling to minimize the load and costs (Bahl et al. 2017).

1.3.3 Socio-ecological approaches

The current energy market models are redefined to maximize the total surplus of
wealth considering the climate policies and change of the nature, energy securities
in the region as well as global economic balance. The new optimization models are
focused on handling the time and space problem (dynamism), balancing the use of
resources to avoid uncertainty increased by hybrid use of fossil and renewable
sources and integrated social risks (Pfenninger et al. 2014). As a matter of fact,
ecological dynamics- observed as a totality of human interactions, human-nature
interactions and the feedback from all interactions- adds variability to the energy
systems (Parrott 2011). Each stakeholder in the energy world is expected to have a
vision of sustainability that will guarantee the development potential of ecology,
culture and economy in the long run. The complexity increases exponentially when
integrative decision subsystems based on integration of nature, economy and cul-
ture (Zhao and Wen 2012). Currently the conflicts of socio-ecological approaches
and the energy economics are causing complexities growing exponentially (Weber
and Cabras 2018).

1.4 Response to Complexity: Computational
and Collective Intelligence

Lyapunov defined the mathematics of stability using partial differentials of a
function in the early years of twentieth century (Gass and Harris 2001). Since then,
the scientists tried to find the balance for the growing complexity. Energy system
models have been upgraded to be one of the following (Pfenninger et al. 2014):

1. Models providing alternatives for evolving the system using combinatorial
optimization;

2. Models providing forecasts by handling uncertainties with probabilities used in
simulations;

3. Scenarios based on econometric or statistical methods;
4. Normative or narrative scenarios using intelligent approaches.

Bale et al. (2015) suggests that a more generally accepted approach is to create a
computational model of the system. Computational model can use data mining or
knowledge based approaches, uses fuzzy and neural or hybridized neuro-fuzzy
methods, evolutionary algorithms. Furthermore, it can be both theoretical and
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application driven. Uncertainty and nonlinearity in complex problems are handled
generally in multi-input single output model, but fuzzy logic and neural networks
allow the improvement to multi input multi output designs. Optimizing the solution
of these models is called computational optimization. Computational optimization
is defined to use single or multiple mathematical techniques to choose the best
available alternative given in a domain based on certain criteria and a set of con-
straints (Gamarra and Guerrero 2015). Either discrete or continuous NP-Hard
models are solved using learning and adaptation, which makes those methods
computational intelligence. A recent study of intelligence techniques used on
renewable energies shows that the problems analysed are scheduling, environ-
mental management, operations control and management, flow control, allocation
or size optimization, strategic, tactical or operational decision making (Jha et al.
2017). In other words, every single application in the energy field is enclosed with
NP-hard problems.

Computational intelligence has an issue of taking long computational time;
adoptive and reinforced learning algorithm are creating solutions for that issue
(Ruano et al. 2014). Ruano also emphasizes the collaborative use of knowledge
would allow the computational techniques to be more effective. Majority of the
computational intelligence work include:

(a) Probabilistic Reasoning
(b) Neural Networks
(c) Machine Learning Techniques
(d) Fuzzy Logic
(e) Bayesian Networks
(f) Evolutionary Algorithms
(g) Particle Swarm Optimization
(h) Intelligent Agents
(i) Case Based Reasoning
(j) Hybridized techniques of the above.

Das and Gosh (2017) gives the comparison of most of the above on the time
series analysis. Though it is very difficult to distinguish the computational and
collective intelligence algorithms, the given methods can be extended to collective
intelligence with a variety of colony and swarm studies like Ant Colony, Honey
Bees, Fish Swarm, Sheep Swarm, Insect Colonies and so on.

As it is observed in Fig. 1.2, the research on both computational and collective
intelligence continue to increase based on data from SCOPUS database. Though
artificial intelligence research has started in 1950s, we see the application of
computational and collective methods only after 1976. Data shows the biggest
number of research in 2016 that is only because 2017 is not completed. According
to this graph the peak has yet to be reached since, the interest continues to grow.

A review on hybrid renewable energy use planning and configuration shows that
both for operation planning and operation control shows that computational is
heavily used in local grids (Siddaiah and Saini 2016). When it comes to distribution
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multi agent approaches are used to control multiple carrier lines. In management of
smart grids, demand site management in the network can be applied by imple-
mentation of the an intelligent agents to provide advantages (Nunna et al. 2016).
Kazakos et al. has shown that balancing the operational costs, to reduce the
scheduling errors, to reduce the emissions intelligent agent system can be fruitful
(Kazakos et al. 2016).

Social concerns in energy management have started with residential use and the
smart buildings. Behavioral analysis refines the efficient energy load in residences
(Popoola 2018). But when energy production, distribution and use are considered
decision support has to support the socio-ecological systems. Parrott claims that
when socio-ecological models are concerned, either human agents should be
included in the model to pause an action at any moment he likes or environmental
change should be realized based on the predicted trends or result of human activities
(Parrott 2011). Public perception surveys also provide good data to be analyzed by
using the computational intelligence. Predicting the future of socio-ecological
systems cannot be realized in precision without the adaptive systems. Forecasts of
those systems can be realized in scenarios considering the future states instead of
well-defined environment used for statistical analysis. Besides, the models designed
for complex systems can only be sustainable if the adaptive capacity of the system
can be protected (Gaziulusoy and Brezet 2015).

1.5 Conclusion

Complex systems cause NP problems and energy applications are sustained in a
complex environment. Computational Intelligence models aim to respond specific
research questions in a complex environment. Some previously defined method like

Fig. 1.2 Research on computational and collective intelligence. Source SCOPUS database
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particle swarm optimization is used to analyze the collected evidences and select
some alternatives. As a new approach, adaptiveness and learning is included so that
some previously unknown results can be achieved.

Energy innovations with the renewable techniques and distributed energy
resources, smart use of energy and environmental concerns are all analyzed in a
complex environment. Thus, the computational intelligence brings a lot to deci-
sions, planning, policy designing and operation of the energy systems.

This chapter has been an introduction to the book where computational intelli-
gence applications in the energy field are gathered. The concepts are defined as to
construct a frame for all the analysis made. Furthermore, the summary of energy
needs for computational intelligence is given to clarify the motivations for bringing
this book together. Further studies will also be recommended in the conclusive
chapter, the Future of Energy.
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Chapter 2
Fuzzy Sets Applications in Complex
Energy Systems: A Literature Review

Cengiz Kahraman, Başar Oztaysi, Sezi Çevik Onar
and Sultan Ceren Öner

Abstract With the emergence of new energy-related technologies and new energy
sources, energy planning has become even more vital and complex. Decision
making and optimization are very important for complex energy systems. Efficient
decision making requires the involvement of various stakeholders which makes the
decision problem even more difficult. Fuzzy sets provide tools for mathematically
representing vagueness and imprecision in the data or the linguistic stakeholder
evaluations. In this chapter an extended literature on fuzzy sets application of
complex energy systems. The main issues emphasized in the literature review can
be summarized as prediction and modelling the energy configuration conditions,
interactions among the various critical design parameters, and solving power sys-
tems challenges under uncertainty. The fuzzy application on complex energy sys-
tems is presented for different energy types, such as bioenergy, wave energy,
photovoltaic systems, hydrogen energy, nuclear energy, wind and thermal energy.

2.1 Introduction

Complex systems are composed of many components, which interact with each
other. Thus, modelling the behavior of such systems are intrinsically difficult to
model due to the dependencies, relationships, or interactions between their com-
ponents. Energy systems are complex in nature since it involves a continuous and
integrated process, which aims transfer of the energy from the source to final
customer’s location (Ligtvoet and Chappin 2012). Mostashari (2011) emphasize
that for effective decision making in complex energy systems (CESs), stakeholder
involvement is very critical since CESs are embedded within a complex social
setting with uncertain and often emergent long-term social, economic, and envi-
ronmental impacts.
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For effective decision making, especially in complex systems, considering
stakeholders points of view and evaluating the alternative solutions based on these
viewpoints is very important. However, the points of view may conflict with each
other, and in some cases, the criterion may contain subjective and linguistic eval-
uations. In traditional formulation, human judgements are formulated in mathe-
matical models using crisp numbers. However, in practice, decision-makers may
have difficulties in assigning numerical values to the evaluations, or there may be
imprecision or vagueness in the data used for the solution of the model. Fuzzy sets
theory was specifically designed to handle such cases by mathematically repre-
senting uncertainty and vagueness. Besides, fuzzy sets provide formalized tools to
generate decision models with imprecise data. Kahraman et al. (2003) state that in
decision models when imprecise parameters are treated as imprecise values instead
of prices ones, the decision process tend to provide more powerful and credible
results. On the other hand, knowledge can be expressed more naturally by using
fuzzy sets so that decision problems may be simplified (Kahraman and Kaya 2010).

The objective of this chapter is to provide an extended literature review of fuzzy
sets applications on complex energy systems. To this end, a literature survey with
three main focus is conducted. The first focus is predicting and modelling the energy
configuration conditions, the second focus is the interactions among the various
critical design parameters, and the final focus is solving power systems challenges
with large penetrations of technologies under uncertain parameters. The literature
survey is presented for different energy types, namely, bioenergy, wave energy,
photovoltaic systems, hydrogen energy, nuclear energy, wind and thermal energy.

The organization of the chapter is as follows: In Sect. 2.2, fuzzy set theory is
briefly introduced, Sect. 2.3 summarizes complex energy systems. Literature
review on fuzzy application of complex energy systems is given in Sect. 2.4, and
finally, the conclusion is given in the last section.

2.2 Fuzzy Sets Theory

2.2.1 Ordinary Fuzzy Sets and Their Extensions

Zadeh (1965) introduced fuzzy sets in 1965 and since then more than eight
extensions of fuzzy sets have been developed. An ordinary fuzzy set ~A in X where
X is a collection of objects denoted generically by x can be defined as follows:

~A ¼ x; l~A xð Þjx 2 X
� �� � ð2:1Þ

where l~A xð Þ is the membership function which maps X to the membership space.
Its range is the subset of nonnegative real numbers whose supremum is finite.
Zadeh (1965) introduced fuzzy sets as a class of objects with a continuum of grades
of membership.
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Ordinary fuzzy sets are extensively used in production research areas whereas the
extensions of fuzzy sets are recently started to be used in production problems.
Therefore, the number of the works on production research using these new exten-
sions is relatively low. Figure 2.1 shows the extensions of the fuzzy sets and their
history.

2.2.2 Interval-Valued Fuzzy Sets

An interval-valued fuzzy set (IVFS) is a special case of type 2 fuzzy set. An IVFS is
defined by a mapping F from the universe U to the set of closed intervals in [0, 1].
Let F uð Þ ¼ F� uð Þ; F� uð Þ½ �. The union, intersection, and complementation of IVFSs
are obtained by canonically extending fuzzy set-theoretic operations to intervals.

2.2.3 Type-n Fuzzy Sets

Zadeh (1975) introduced type-2 fuzzy sets in 1978. A type-2 fuzzy set lets us
incorporate uncertainty about the membership function into the fuzzy set theory.

A type-2 fuzzy set A
�
in the universe of discourse X can be represented by a type-2

membership function l
A
� shown as follows:

A
� ¼ x; uð Þ; l

A
� x; uð Þ

� �
j8x 2 X;

n

8u 2 Jx� 0; 1½ �; 0� l
A
� x; uð Þ� 1

o ð2:2Þ

where Jx denotes an interval [0, 1]. The type-2 fuzzy set A
�
also, can be represented

as follows:

Fig. 2.1 The history of fuzzy sets
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A
�

¼
Z

x2X

Z

u2Jx

l
A
� x; uð Þ= x; uð Þ ð2:3Þ

where Jx � 0; 1½ � and the
R R

denote union over all admissible x and u.

2.2.4 Intuitionistic Fuzzy Sets

Atanassov’s (1986) intuitionistic fuzzy sets (IFSs) include the membership value as
well as the non-membership value for describing any x in X such that the sum of
membership and non-membership is at most equal to 1.

Let X 6¼ ∅ be a given set. An intuitionistic fuzzy set in X is an object A given
by

~A ¼ x; l~A xð Þ; v~A xð Þ� 	
; x 2 X

� �
; ð2:4Þ

where l~A : X ! 0; 1½ � and v~A : X ! 0; 1½ � satisfy the condition

0� l~A xð Þþ v~A xð Þ� 1 ð2:5Þ

for every x 2 X.

2.2.5 Fuzzy Multisets

Let X be a nonempty set. A fuzzy multiset ~A drawn from X is characterized by a
function, “count membership” of ~A denoted by CMA such that CMA : X ! Q
where Q is the set of all crisp multisets drawn from the unit interval [0, 1]. Then for
any x 2 X, the value CMA xð Þ is a crisp multiset drawn from [0, 1]. For each x 2 X,
the membership sequence is defined as the decreasingly ordered sequence of ele-

ments in CMA xð Þ. It is denoted by l1~A xð Þ; l2~A xð Þ; . . .; ln~A xð Þ
� �

, where

l1~A xð Þ� l2~A xð Þ� � � � � ln~A xð Þ.

2.2.6 Nonstationary Fuzzy Sets

Let ~A denote a fuzzy set of a universe of discourse X characterized by a mem-
bership function l~A. Let T be a set of time points ti (possibly infinite) and f: T ! <
denote a perturbation function. A non-stationary fuzzy set ~A of the universe of
discourse X is characterized by a non-stationary membership function l~A: T	
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X ! 0; 1½ � which associates each element (t, x) of T	 X with a time-specific
variation of l~A xð Þ. The non-stationary fuzzy set ~A is denoted by:

~A ¼
Z

t2T

Z

x2X
l~A t; xð Þ=x=t ð2:6Þ

2.2.7 Hesitant Fuzzy Sets

Hesitant fuzzy sets (HFSs), initially developed by Torra (2010), are the extensions
of normal fuzzy sets which handle the situations where a set of values are possible
for the membership of a single element.

Torra (2010) defines hesitant fuzzy sets (HFSs) as follow: Let X be a solid set, an
HFS on X is in terms of a function that when applied to X returns a subset of [0, 1].
The mathematical expression for HFS is as follows:

E ¼ x; hE xð Þh ijx 2 Xf g ð2:7Þ

where hE xð Þ is a set of some values in [0, 1], denoting the possible membership
degrees of the element x 2 X to the set E.

2.2.8 Neutrosophic Theory

Smarandache (1999) introduced the level of indeterminacy/neutrality (i) as an
independent component and defined the neutrosophic set on three elements

t; i; fð Þ ¼ truth; indeterminacy; falsehoodð Þ ð2:8Þ

The words “neutrosophy” and “neutrosophic” were coined/invented by
F. Smarandache in his 1999 book. Etymologically, “neutro-sophy” (noun) [French
neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] means knowledge
of neutral thought while “neutrosophic” (adjective), means having the nature of, or
having the characteristic of Neutrosophy.

2.2.9 Pythagorean Fuzzy Sets-Type 2 Intuitionistic Fuzzy
Sets

Type-2 Intuitionistic Fuzzy Sets originally introduced by Atanassov (1989) are
renamed and re-introduced by Yager (2013) as the Pythagorean fuzzy sets. These
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sets similar to the intuitionistic fuzzy sets consider both membership and
non-membership values. Yager (2013) claims that under some conditions the sum
of membership and non-membership values can exceed one. Unlike Neutrosophic
fuzzy sets, the relation between membership and non-membership values should
satisfy the following condition:

l2þ m2� 1 ð2:9Þ

2.3 Complex Energy Systems

There are various definitions of complex systems in the literature. In general, a
system is complex if it has a group of interrelated component and subsystems, for
which the degree and nature of the relationships is imperfectly known, with varying
directionality, magnitude and time-scales of interactions. Three types of complexity
in systems are defined in the literature: behavioral complexity, internal complexity
and evaluative complexity.

Behavioral complexity arises when the emergent behavior of a system is difficult
to predict and may be difficult to understand even after the fact. Internal or struc-
tural complexity is a measure for the interconnectedness in the structure of a
complex system, where small changes made to part of the system can result in
major changes in the system output and even result in system-wide failure.
Evaluative complexity is due to the existence of stakeholders in a complex system,
and is an indication of the different normative beliefs that influence views on the
system. Thus, even in the absence of the two former types of complexity, and even
if one were able to model the outputs and the performance of the system, it would
still be difficult to reach an agreement on what “good” system performance signi-
fies. This type of complexity is one of the primary motivators for engaging
stakeholders in systems modeling and policy design, and is an essential part of this
book (Sussman 2003).

These complexities all exist in the energy systems. The problems arising from
behavioral complexity are often faced because it is very difficult to guarantee the
continuity of sources such as wind and water. Evaluative complexity of energy
systems is another problem decision-makers often face. For the evaluation of an
energy investment, linguistic terms can be used in the decision matrix, rather than
exact numerical values. This requires a fuzzy approach to be employed in the
evaluation process.
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2.4 Literature Review: Complex Energy Systems
and Fuzzy Sets Applications

Complex energy systems are continuous and integrated process that initiated with
attaining the required energy supply and ends up with the transfer of the energy to
final customer’s location regarding one or more energy component such as solar,
thermal, waste, biomass and wind power (Ligtvoet and Chappin 2012). Hence,
complex energy systems include not only energy supply, energy production and
energy distribution but also the relations and contentions between these elements
and also analyzing storage and usage of the energy to evaluate energy supply and
demand (Oluwamayowa et al. 2017).

In recent years, due to the insufficient energy supply, production, distribution,
storage, and use of energy has become a critical point for sustainability and affected
significant changes. Demand and production balance are being amended ineradi-
cably by the developments in “smart grids,” renewable energy generation pro-
cesses, hybrid vehicles and energy storage technologies. Explaining the relations
between such systems causes numerous challenges, especially configuring mathe-
matical expressions considering energy parameters and nature of the energy supply
structure ranging from multiple spatial and temporal variables to future operating
conditions. To address these challenges, various mathematical models including
stochastic models and dynamic system behavior modelling are adapted to develop,
analyze, and integrate predictive models of system behavior. On the other hand,
some of these system parameters can be indefinite or contradictory that can com-
plicate system modelling. Additionally, due to the emerging and dynamic relations
between energy system elements, models should be flexible to sudden changes and
cope with uncertainties and provide continuous monitoring. From the point of this
view, fuzzy based models that formulize energy systems could deal with the dif-
ficulties of instant variations and continuous monitoring of the entire system
(Toffolo and Lazzaretto 2008). In addition to the static structure, interactions and
variations could not be shown in the mathematical modelling. To cope with
imprecise information appeared in complex energy implementation processes,
authors and practitioners mainly emphasized on defining indefinite variables which
provide identification of the problem for continuous monitoring. With this respect,
fuzzy based models obtain membership functions between 0 and 1 enable the
formalization of complex energy implementation processes reflecting the instant
variations of complex system behavior.

As mentioned before, various renewable energy resources such as wind, biomass
and solar power are becoming increasingly substantial sources of energy on the
electricity based power systems. The consistent growth of renewable energy sys-
tems and complex energy systems necessitate a change in attitude for implementing
energy systems technologies. This section addresses three important research
questions in the area of modelling complex energy systems: (i) how do we predict
and model the energy configuration conditions, and evaluate the uncertainty in the
diversified resource and energy production at a specific site? (ii) how do we focus
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on the complex interactions among the various critical design parameters and
natural elements in planning high performing complex energy systems? (iii) how do
we efficiently solve power systems challenges with large penetrations of complex
energy efficiency technologies considering uncertain parameters?

2.4.1 Bioenergy and Fuzzy Sets

Biomass is one of the renewable energy sources that can involve oil, starch, sugar
and cellulosic biomass feedstocks and microalgae, macroalgae and cyanobacteria
which has an appropriate way for storage, utilization and substitution quickly
without natural resources depletion (Khishtandar et al. 2017). The main necessity
for biomass usage is heating and transportation fuel consumption. For instance,
biomass for the transportation sector necessitates the usage and storage of ethanol,
biodiesel and advanced hydrocarbon biofuels (Yue et al. 2014).

A whole of the developing countries is dealing with the increasing amount of
fuel consumption for the satisfaction of energy needs and import fuel from other
countries with ultrahigh prices which can obstruct their economic growth and
reduces the gathering of the opportunities for new energy implementation projects.
Thus, developing countries can provide energy procurement by biofuel production
for sustainable energy planning (Demirbas and Demirbas 2007).

As seen from the previous studies in literature, bioenergy production tech-
nologies evaluation, sustainability of bioenergy systems, bioenergy supply chain
design, biomass location selection, biomass source planning and optimizing bio-
fuels production are mainly modelled by a fuzzy set theory based approaches such
as fuzzy multi-objective linear programming models, fuzzy information axiom and
fuzzy MCDM methods. For example, Cebi et al. (2016) proposed fuzzy information
axiom based method for location selection of biomass power plant. Ubando et al.
(2016) suggested fuzzy mixed integer non-linear programming model select
prospective support tenants for planning bioenergy based industrial symbiosis.
Diversified from these studies, Ziolkowska (2014) used PROMETHEE approach
combined with fuzzy LP model to represent available resources for optimizing
biofuels production. Other applications are represented in Table 2.1.

2.4.2 Wave Energy and Fuzzy Sets

Wave energy is captured directly from surface waves or from pressure fluctuations
below the surface that contains tremendous energy potential. For extracting nec-
essary power, wave technologies have been designed to be installed in the near-
shore, offshore, and far offshore locations. While wave energy technologies are
intended to be installed at or near the water’s surface, there can be major differences
in their technical concept and design. Thus, for predicting the behavior of wave
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Table 2.1 Fuzzy set applications in bioenergy

Main subject Author(s) Application
area

Type of fuzzy
sets/numbers

Contribution

Bioenergy
production
technologies
evaluation

Khishtandar
et al. (2017)

Multi-criteria
decision
making

Hesitant fuzzy
sets

Hesitant fuzzy sets
based outranking
method by considering
multi-actor and
multi-criteria

Assessment of
the sustainability
of bioenergy
systems

Buchholz
et al. (2009)

Multi-criteria
analysis

Triangular fuzzy
numbers

Fuzzy set theory based
NAIADE and
comparison of this
method by other group
decision making
approaches
(SuperDecisions,
DecideIT, Decision
Lab)

Bioenergy
supply chain
design

Yılmaz
Balaman
and Selim
(2014)

Optimization
MILP

Triangular fuzzy
numbers based
fuzzy goal
programming

Fuzzy multiobjective
linear programming
model

Planning
bioenergy-based
industrial
symbiosis

Ng et al.
(2014)

Optimization Triangular fuzzy
numbers based
disjunctive fuzzy
optimization
approach

Fuzzy optimization
approach for economic
assessment of
bioenergy based
systems

Bioenergy
project viability
decisions

Wright et al.
(2013)

Energy
economics

Triangular fuzzy
numbers

Fuzzy levelised energy
cost (F-LEC)
methodology to
incorporate the cost of
financing a project
from debt and equity
sources

Biomass location
selection

Cebi et al.
(2016)

Multiple
criteria
decision
making

Trapezoidal
fuzzy numbers

Fuzzy information
axiom based method
for location selection
of biomass power
plant

Suitability of
bioenergy to
mitigate
greenhouse
gases

Muench
(2015)

Qualitative
comparative
analysis
(QCA)

Trapezoidal
fuzzy numbers

Life cycle assessments
(LCAs) of biomass
systems for electricity
Generation with fuzzy
conditions

Potential
biomass source
planning

Kuhmaier
et al. (2014)

Spatial
multicriteria
decision
analysis
(SMCDA)

Linear
membership
functions

Combination of spatial
analysis, fuzzy system,
and AHP to define the
best localization of
wood terminal in
Austria

(continued)
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energy converter, the design of wave energy converter and the prediction of ocean
wave energy parameters, fuzzy set theory based models can be experimented. In
this context, especially soft computing approaches such as Adaptive Network-based
Fuzzy Inference System (ANFIS) models and Takagi–Sugeno (TS) Fuzzy Inference
System for rule extraction and prediction of system performance. For instance,
Özger and Şen (2007) adapted Takagi–Sugeno (TS) fuzzy modelling principles to
predict the changes in wave characteristics. Abed-Elmdoust and Kerachian (2012)
implemented rough set theory based ANFIS model for Wave height prediction.
Different from these studies, Stefanakos (2016) practiced fuzzy time series fore-
casting combined with ANFIS model for predicting wind and wave parameters.
Other applications are shown in Table 2.2.

2.4.3 Photovoltaic Systems and Fuzzy Sets

Renewable energy adaptation in daily life has caused a fast improvement of the
usage in natural sources. One of these sources is solar energy and power generation
from solar energy using Photo Voltaic (PV) systems noticed a fast development in
PV systems which is used for high power generation consists of several combi-
nations of series and parallel PV modules. It consists of three basic parts: PV panel,
power converter and tracking controller (Rajesh and Mabel 2015). The PV system

Table 2.1 (continued)

Main subject Author(s) Application
area

Type of fuzzy
sets/numbers

Contribution

Planning
bioenergy-based
industrial
symbiosis

Ubando
et al. (2016)

Optimization Fuzzy
trapezoidal
membership
function

Fuzzy mixed integer
non-linear
programming model to
select prospective
support tenants

Assessment of
biomass energy
sources and
technologies

Cutz et al.
(2016)

MCDM Triangular fuzzy
numbers

Fuzzy transforming
matrix based on fuzzy
linear 0–1
programming

Optimizing
biofuels
production

Ziolkowska
(2014)

MCDM Triangular fuzzy
numbers

PROMETHEE
approach combined
with fuzzy LP model
to represent available
resources

Biogas plant
location
selection

Franco et al.
(2015)

MCDM Interval-valued
fuzzy numbers

Fuzzy weighted
overlap dominance
(FWOD) and AHP
combined procedure
for aggregating
GIS-based data
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Table 2.2 Fuzzy sets applications in wave energy

Main subject Author(s) Application
area

Type of fuzzy
sets/numbers

Contribution

Predict the
behavior of
wave energy
converter

Amarkarthik
and Sivakumar
(2016)

Soft
computing

Triangular
fuzzy numbers

Adaptive network-based
fuzzy inference system
(ANFIS) model for
predicting device behavior

Design of
wave energy
converter

Ahn et al.
(2012)

Soft
computing

Triangular
membership
functions

FIS model to adjust the
pump displacement

Truong and Ahn
(2014)

Soft
computing

Triangular
membership
functions

Adaptive fuzzy PID
controller (AFPID) based
on grey FIS method

Prediction of
ocean wave
energy and
parameters

Özger and Şen
(2007)

Soft
computing

Triangular
membership
functions

Takagi–Sugeno
(TS) fuzzy modelling
principles to predict the
changes in wave
characteristics

Kazeminezhad
et al. (2005)

Soft
computing

Triangular
membership
functions

Adaptive network-based
fuzzy inference system
(ANFIS) model for
predicting wave
parameters

Özger (2010) Soft
computing

Generalized
bell function

Wavelet fuzzy logic
algorithm for wave height
forecasting

Özger (2011) Soft
computing

Triangular
membership
functions

Takagi–Sugeno (TS) type
fuzzy inference system
was employed to predict
wave energy amount from
meteorological variables

Sylaios et al.
(2009)

Soft
computing

Generalized
bell function

Takagi–
Sugeno-rule-based fuzzy
inference system
(FIS) was developed
aiming at forecasting wave
parameters

Abed-Elmdoust
and Kerachian
(2012)

Soft
computing

Triangular
membership
functions

Rough set theory based
ANFIS model for wave
height prediction

Akpınar et al.
(2014)

Soft
computing

Triangular
membership
functions

ANFIS model for
forecasting wave
parameters and
comparison of other
parametric methods

Stefanakos
(2016)

Soft
computing

Interval-valued
fuzzy numbers

Fuzzy time series
forecasting combined with
ANFIS model for
predicting wind and wave
parameters
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characteristics depend on the environmental condition, insolation, temperature,
capacity of the system, etc. The variation of these external factors highly affects the
output power characteristics of PV generators. Thus, fuzzy logic based approaches
are successfully adapted to the following areas: (1) Fault detection, (2) Solar
Parameter identification (3) Maximum power point tracking (4) Efficiency maxi-
mization. To solve the drawbacks of conventional modelling methods, Artificial
Intelligence (AI) techniques and evolutionary algorithms are employed with fuzzy
based approaches such as Mamdani, ANFIS and Takagi-Sugeno fuzzy inference
systems. For instance, Singh and Agrawal (2015) conducted Genetic Algorithm–

Fuzzy System (GA–FS) approach to identify the optimized parameters of the glazed
photovoltaic thermal (PVT) system. As an example of system modelling, Rahrah
et al. (2015) developed fuzzy Logic Controller (FLC) with the neuro-Fuzzy algo-
rithm (NF) for the comparison of gathering maximum output power operating point
of the photovoltaic generator. Other examples are given in Table 2.3.

2.4.4 Hydrogen Energy and Fuzzy Sets

Hydrogen energy represents the future of renewable energy and can be used in a
fuel cell to produce electricity, as an emissions-free alternative. Natural hydrogen is
always associated with other elements in compound form such as water, coal and
petroleum. There are significant challenges to be overcome in order to make
hydrogen viable, in production, storage and power generation. These circumstances
prompt researchers to deal with design and control of hydrogen-based systems,
sustainability of hydrogen fuel cell implementation and risk and safety assessment
of hydrogen extraction systems (Chang 2017). As a result of reflecting uncertain
parameters in system design and measuring control performance by minimizing
human errors, fuzzy set theory based studies have been adopted widely. To illus-
trate hydrogen economy assessment, Lee et al. (2011) conducted integrated fuzzy
AHP/DEA approach for long-term strategic energy technology roadmap of
hydrogen energy implementation. Another example can be given from sustain-
ability assessment of hydrogen energy application as seen in Afgan and Carvalho
(2004)’s fuzzy sustainability index rating compared with other complex energy
systems study. Additionally, econometric analysis of the R&D performance, bud-
get allocation problems and evaluation and control of hydrogen storage systems are
also evaluated as fuzzy MCDM problem. Other applications can be realized from
Table 2.4.

2.4.5 Nuclear Energy and Fuzzy Sets

Due in large part to the high manufacturing industry growth rates and increased
number of energy consumption, developing countries need growing energy markets
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Table 2.4 Fuzzy sets applications in hydrogen energy

Main subject Author(s) Application
area

Type of
fuzzy sets/
numbers

Contribution

Control
performance
and design

Chang
(2017)

Optimization Trapezoidal
membership
function

Fuzzy gain scheduling
adaptation to digital signal
processing algorithm for
Rapid-convergent sliding
mode proportional-integral
(PI) technology applications

Coteli
et al.
(2017)

Optimization Type 2 fuzzy
numbers

Type-2 fuzzy neural system
controller for PWM rectifiers

Hydrogen
economy
assessment

Lee et al.
(2011)

Multi-criteria
decision
making

Interval
valued
membership
function

Integrated fuzzy AHP/DEA
approach for long-term
strategic energy technology
roadmap

Lee et al.
(2011)

Multi-criteria
decision
making

Triangular
membership
functions

Fuzzy analytic hierarchy
process (AHP) for R&D
budget allocation

Econometric
analysis of the
R&D
performance

Lee et al.
(2010)

Multi-criteria
decision
making

Triangular
membership
functions

Fuzzy AHP/DEA integrated
model approach for relative
efficiency of the R&D
performance

Sustainability
assessment of
hydrogen
energy

Afgan
and
Carvalho
(2004)

Multi-criteria
decision
making

Linear
membership
functions

Sustainability index rating
compared by other complex
energy systems

Afgan
et al.
(2007)

Multi-criteria
decision
making

Linear
membership
functions

Scenario analysis of
sustainability assessment

Analysis of
operator human
errors

Castiglia
and
Giardina
(2013)

Risk analysis Trapezoidal
fuzzy
numbers

Fuzzy HEART (human error
assessment and reduction
technique) to evaluate the
probability of erroneous
actions

Assessment of
hydrogen fuel
cell applications

Chang
et al.
(2012)

Multi-criteria
decision
making

Triangular
membership
functions

Fuzzy ranking method for the
selection of criteria and
preferred hydrogen fuel cell
product

Evaluation and
control of
hydrogen
storage systems

Gim and
Kim
(2014)

Multi-criteria
decision
making

Triangular
membership
functions

Hydrogen storage systems for
automobiles are evaluated
using the fuzzy analytic
hierarchy process (AHP)

Safari
et al.
(2013)

Optimization Triangular
membership
functions

Particle swarm optimization
based fuzzy logic controller for
autonomous green power
energy system

(continued)
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in the world. To this end, nuclear energy projects may be considered particularly
due to the following advantages of nuclear energy. (1) It does not lead to carbon
emissions, (2) its fuel can be obtained easily, economically, and be stored, (3) as
long as appropriate security measures are taken and implemented, the risks to
humans or nature are low.

The key issues that must be addressed as the main part of nuclear energy
applications are (1) safety and reliability analysis of nuclear energy systems
(2) nuclear energy reactor and critical parameter estimation (3) nuclear power plant
selection (4) load and demand regulation. These problems cause critical effects to
the environment, public and also stakeholders of nuclear energy investments. For
the analysis of these problems, fuzzy set theory based models can reflect uncer-
tainties appeared in the system operations or decision-making process. For instance,
nuclear power plant selection can be assessed by fuzzy MCDM methods when
considering uncertain geological and seismological issues, cost and risk factors
(Erol et al. 2014). Other applications are given in Table 2.5.

2.4.6 Wind-Thermal Energy and Fuzzy Sets

In recent years, wind energy is becoming a significant component of the power
generation throughout the world. Its probabilistic nature impacts the system oper-
ation due to its uncertain system parameters. For instance, wind generation is
mainly dependent on wind speed. Thus fluctuations of wind generation should be
considered in advance (Reddy and Abhyankar 2013). To overcome this problem,
power systems need some resources to compensate the wind power generation
forecasting uncertainty. One of these resources is thermal energy when the system
faces a shortage of production caused by lack of wind. Thus, studies related to
thermal wind energy have been increased especially in demand response, wind
energy generation prediction, market clearing and emission management (Falsafi
et al. 2014). These subjects are modelled using stochastic programming,

Table 2.4 (continued)

Main subject Author(s) Application
area

Type of
fuzzy sets/
numbers

Contribution

Sustainability of
hydrogen
supply chain

Ren et al.
(2013)

Multi-criteria
decision
making/
optimization

Triangular
membership
functions

Extension theory and AHP are
combined to prioritize and
classify the sustainability of
hydrogen supply chains

Hybrid energy
management

Tabanjat
et al.
(2017)

Soft
computing

Triangular
membership
functions

Neural networks (NN) based
fuzzy logic control (FLC) is
applied to the hydrogen power
systems for minimizing the
energy production cost
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probabilistic multi objective optimization techniques and evolutionary algorithms.
To cope with uncertain parameters and stochastic variables, fuzzy set theory based
methodologies have been utilized in recent years as seen from Table 2.6.

From Table 2.6, fuzzy set theory based methods are mainly implemented in
solution selection procedure which is appeared after one of the optimization tech-
niques adapted to the problem. These studies are limited as an application of fuzzy
set theory based applications for wind thermal energy modelling. For instance,
Azizipanah-Abarghooee et al. (2012) conducted fuzzy clustering for grouping
similar solutions after multi objective stochastic search algorithm is applied for
probabilistic wind-thermal economic emission dispatch problem. Reddy and
Abhyankar (2013) used fuzzy min-max approach for best compromise solution
selection when multi-objective strength Pareto evolutionary algorithm is performed
for market clearing model. The main motivation of these studies is uncertainty
modelling using an optimization method and after that, selection of the best
alternative considering uncertain parameters by utilizing fuzzy set theory based
applications.

2.5 Conclusion

A complex system is typically adaptive or evolutionary and influenced by social
and political, as well as physical, processes. Energy production systems involve
high level of complexity with their physical, social, and political dimensions.
Energy systems are complex systems since they have interrelated, heterogeneous
elements. They exhibit complex social and technological dynamics. Hence, their
behaviors cannot be predicted by understanding each of the components separately.

It is hard to model the complex energy systems by using classical logic-based
approaches. Fuzzy logic based-approaches have been employed for the evaluations
of complex energy systems such as nuclear energy, hydrogen energy, bioenergy,
wave energy, wind-thermal energy systems. Fuzzy control, fuzzy inference sys-
tems, and multi-criteria decision making are the most used applications of fuzzy sets
in complex energy systems.

For further research, we suggest classification of complex energy systems with
respect to the extension types of fuzzy sets. For instance, the energy studies related
to intuitionistic fuzzy sets, hesitant fuzzy sets, etc.
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Chapter 3
Forecasting Super-Efficient Dryers
Adoption in the Pacific Northwest

Joao Lavoie, Husam Barham, Apeksha Gupta, Tania Lilja,
Tin Nguyen, Jisun Kim and Tugrul U. Daim

Abstract Energy efficiency (EE) is an important source of electricity in the USA,
by ways of saving electricity and curbing demand growth through the use of more
efficient products, and the Pacific NW is a leading region in the EE efforts in
America. Some of these efforts include studies and policies aiming to introduce
energy efficient home appliances into the market and boosting its adoption, and
organizations such as the Northwest Energy Efficiency Alliance (NEEA) are
focused on the development of those studies and policies. As a way to assist and
inform NEEA, the present chapter uses the Bass Model as a methodology to predict
the adoption of Super-Efficient Clothes Dryers (SED) in the Pacific NW. A liter-
ature review is conducted to better understand the role of NEEA and clothes dryers
in the EE realm, the model inputs and assumptions are explained and its results are
discussed. Conclusions, for both NEEA and for the general EE community are
drawn, and future work opportunities are identified.
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3.1 Introduction

Energy efficiency is now estimated to be the third source of electricity in the USA
(in the form of virtual power capacity equal to the savings resulted from efficiency)
(Alliance to Save Energy 2013).

The Pacific Northwest is among the leading regions in the US when it comes to
energy efficiency (Alliance to Save Energy 2013; Walton 2015), in fact, it is esti-
mated that energy efficiency will meet all the new demands in the Pacific Northwest
region through 2035 (Walton 2015).

The Northwest Energy Efficiency Alliance (NEEA), is an institution that rep-
resents a joint effort from hundreds of public utilities and related entities in the
Pacific Northwest of USA, and aims to boost energy efficiency initiatives, ulti-
mately to bring more energy efficient options to the market—in the form of
appliances and related products and advanced processes (NEEA 2016a).

One product NEEA has been evaluating recently is super-efficient dryers, a
product that promises energy efficiency as much as 40% of the current energy being
consumed by a typical dryer in the region (Lee et al. 2015). Before NEEA can
promote and support this product, they need to understand its market potentials, so
two separated studies were conducted to forecast this product future, however; the
studies indicated different results (Lee et al. 2015).

In this project, the objectives are to forecast the adoption and market share of
super-efficient dryers (SED’s) and to provide additional information that could help
organizations like NEEA to promote and disseminate SED’s, creating market
transformations towards the adoption of energy efficient products. More specifi-
cally, our goal is to help NEEA by providing them with yet another counter-factual
model of the super efficient dryers adoption (focusing on a specific market seg-
ment), and also to enable NEEA to use this model as a tool to convince manu-
facturers to increase their marketing efforts towards a larger adoption. The next
section brings a literature review on technology forecasting, energy efficiency and
other important topics for this study, followed by methodology, analysis and
results, conclusions, limitations and future research.

3.2 Literature Review

3.2.1 Technology Forecasting

As it happens with most of the major technological changes and advancements, war
was the event that propelled people to start thinking about technology forecasting.
First came the acknowledgement that technology was powerful enough to change
not only our quality of life but also to fundamentally change the whole relationship
between humans, then the necessity of having assessment methods in place to deal
with those technologies. Right after that, the necessity of forecasting technological
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development was recognized. The first efforts towards technology forecasting
began back in the 1950s and 1960s (starting at the end of the second World War
and intensifying during the Cold War), but the works started to be more structured
and powerful after 1972, with the launch of the Office of Technology Assessment
(OTA)—a U.S. Congress organization created to deal with all aspects related to
technology.

According to Bettis and Hitt (1995), technology development has created a new
competitive landscape, in which organizations have to act in a much more
fast-paced fashion, and also have to commit astronomic amount of capital without
being sure if the markets will develop properly. Nevertheless, in order to understand
the technological advancements and try to predict them, it is essential to understand
and regard past, as pointed out in Barley (1998).

Although several benefits derive from technology forecasting works, those are
not simple tasks, and achieving a highly accurate result is not easy as well.
According to Bowonder et al. (1999), major issues related to forecasting in general
are the way people usually discount the future, the natural biases and traps humans
can be led to and the different ways or perspectives that experts can regard a
situation through.

The methods used in technological forecasting works are plentiful. Linstone
(1999), mentions the most recurrent technology forecasting methods at that time,
citing trend extrapolation, growth curves, extrapolation, leading indicators, causal
models, technological substitution, technology measurement, scenarios and Delphi.
Porter (1999), points out the most prominent methods at the end of the 20th cen-
tury: creativity methods, monitoring, trend analysis, modeling, expert opinion and
scenarios. In 2005, Coccia (2005) has presented an in-depth study of
Technometrics, a set of techniques used in and derives from a variety of disciplines
to measure and understand technological changes overtime.

Several examples of research pieces on technology forecasting can be found in
the literature, including a well-known and recognized journal that is dedicated to the
subject—Technology Forecasting and Social Change. In Guice (1999), for instance,
the author tries to understand the trends of emerging technologies, through the eyes
of a particular organization—DARPA, within the U.S. Department of Defense
(DoD). In a completely different arena, Harold Linstone brilliantly uses its three
perspectives—Technical, Organizational and Personal—to analyze the terrorist
threats of the 21st century, in the light of technological advancements (Linstone
2003). Devezas et al. (2005) analyze and try to forecast the growth of the internet
through the lens of K-Waves. In a thorough research piece, Martino (2003) goes
over several different techniques that can be applied to technology forecasting,
including Delphi, scenarios, probabilistic forecasts, growth curves and others
(Martino 2003). Coates et al. (2001) also provide a very interesting overview of the
history of technology forecasting and its emerging trends and methods (Coates et al.
2001). The technology Futures Analysis Methods Group, led by Professor Alan
Porter, has published a comprehensive analysis of technology forecasting methods
along with a framework describing a process on how to apply the methods and have
better results on a forecasting endeavor (Porter et al. 2004). Table 3.1 lists some of
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the areas technology forecasting has been applied to, along with the techniques/
methodologies used.

3.2.2 Energy Efficiency

The last forty years in America have seen significant gains in efforts towards energy
conservation. The US’s energy efficiency (and vulnerability) were brought to the
nation’s attention after the 1973 and 1979 oil shocks, prompting local, state,
regional and national policies to develop. Nonprofits, for-profit companies, and
government regulators have begun to work towards a greener future that will lower
energy spending and increase energy availability. Thankfully, even though eco-
nomic output in the US has tripled since the 70s, energy consumption has only
increased 50% (Alliance to Save Energy 2013). The reason for this is estimated by
economists to be predominantly a result of the adoption of energy efficient products
and services. The American Council for an Energy Efficient Economy (ACEEE)
reports that 60–75% of the increased energy consumption has been absorbed and
neutralized thanks to clean energy efforts (Walton 2015).

Even more progress has been made more recently, since 2010. Over 20 federal
programs have been enacted towards increased energy efficiency (NEEA 2016a).
The Pacific NW is a leader in American energy efficiency power resources (Lee
et al. 2015). Only hydroelectricity ranks higher in the region (Alliance to Save
Energy 2016). The NW Power and Conservation Council has enacted policies and
regulations to bring the region to a staggering 90% carbon free electricity by 2030
(Northwest Power and Conservation Council 2016).

3.2.3 Super Efficient Dryers

Super efficient dryers, or heat pump dryers, are described as being more environ-
mentally friendly and cheaper to run, as it uses less than 50% of the energy used by
conventional dryers. Not only that but also, super efficient dryers use less peak
power consumption than conventional dryers. According to government’s energy
star, heat pump dryers from Europe are around five times more energy-efficient than
conventional dryers from America—in terms of peak electricity consumption.
Furthermore, heat pump dryers have low air temperature inside the drum compared
to conventional dryers and don’t produce any noise (BEKO 2016; Rice et al. 2015).

According to Beko Company, a European SED manufacturer:

[H]eat pump tumble dryers use hot air to absorb moisture from your clothes in order to get
them dry after a wash. After this, air passes through the drum, it goes through the evap-
orator which removes the moisture, which is collected as condensation and stored in into a
tank. The remaining air is re-heated and sent back to the drum to start the cycle again and
continue drying your clothes. (BEKO 2016)
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Also, while typical dryers are vented (the dryer evaporates water from the wet
clothing and then vents the moist air to the outside); the heat pump dryers use a
different technology and are called unvented (a reservoir is used to collect water
removed from the clothes) (Denkenberger et al. 2013). SED dryers have been
available and popular in Europe for years, however, they just became available in
the US market recently, largely due to the efforts of the Super Efficient Dryer
Initiative (Rice et al. 2015; SEDI 2016b).

3.2.3.1 Super Efficient Dryer Initiative (SEDI)

SEDI was introduced in 2010 by the New Jersey Clean Energy Program (SEDI
2016b), with the goal of improving dryer energy efficiency by developing new
technologies capable of generating high-energy savings for consumers in North
America. An ultimate goal of SEDI was introduced advanced clothes dryers to
North American market through the key stakeholder’s engagement that SED was
better choice for North America to adopt it. In order to bring Super Efficient Dryers
to North American market, SEDI needs to address these three questions below
(Badger et al. 2012):

• Are there market and technical drivers strong enough to justify forming such an
initiative?

• Are there stakeholders open to the idea and ready to back it up by actively
participating—not only in America but also across other countries?

• Would the initiative be granted with enough resources in order to accomplish its
objectives and change the market into accepting this new type of dryer?

A market research conducted by SEDI indicated that 85% of U.S households
have clothes dryers, furthermore; the research revealed that dryers make up 6% of
residential electricity consumption, adding a total cost of $9 billion on consumers
every year (SEDI 2016b). Another study by SEDI indicates clothes dryers energy
consumption in U.S market and also it project the sale growth rate between 2010
and 2030 to be 1.8% (SEDI 2016a).

SEDI formed partnerships with the industry and got sponsorship from envi-
ronment and energy efficiency organizations, to find and promote alternative effi-
cient dryers to the North American markets. In 2013, SEDI has an operating budget
of $266,000 for energy efficient program across United States and Canada (Granda
2013). SEDI have six sponsors by leading efficiency programs such as SEDI
(2016b), Super Efficient Dryer Initiative (2013)

• Northeast: New Jersey Clean Energy Program; National Grid; Efficient Vermont
Mid-Atlantic; Long Island Power Authority

• Pacific Northwest and Canada: BC Hydro; Northwest Energy Efficiency
Alliance.
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The above-mentioned sponsors have a budget of $3.2 billion in Energy Efficient
programs, serve around 64 million people and have approximately $600 million in
budget for residential programs.

Under SEDI, a team studied current heat pump technologies, and found that they
are 50–60% more efficient than traditional dryers currently available in North
America (Coates et al. 2001). According to their market research analysis, there are
over 25 different models of heat pump dryers that are being used in the European
markets (Badger et al. 2012). On the other hand, market penetration for
Super-Efficient Dryer Initiative in North America is very low due to several reasons,
among them; the price of SED dryers; a SED dryer normally costs around $1600
while conventional dryer price range is from $200 to $800, in addition, Pricing is
one of the big consumer preference when it’s to choose dryers. There are top three
purchase criteria when consumers decide to purchase super efficient dryers such
reliability, function and price. Pricing plays a major role in consumers’ preference.
According to Consumers Report Buying Guide, top twenty-five recommend such as

• Electric Dryers: average cost approximately $1089 (It’s can be ranging from
$600 to $1600) (Evergreen Economics 2016)

• Gas Dryers: average slightly more at $1185 (It’s can be ranging from $600 to
$1700) (Evergreen Economics 2016)

– Gas models costs around $100 more than electric counterparts (Evergreen
Economics 2016)

– Some gas utilities offers consumer rebate ($50–100) installing gas dryers
(Energystar.gov. 2011)

– $50 more than electric dryers (Energystar.gov. 2011)
– Typical unit cost around $950–$2050 for small to medium capacities

(Energystar.gov 2011).

• High-end hybrid and heat pump(super-efficient) dryers (LGEcoHybridTM and
Whirlpool HybridCareTM) costs around $1600 unless discount or rebate come
along with incentives (Evergreen Economics 2016).

Furthermore, heat pump tumble dryers that have been used in Europe have small
external dimension and drum compared to conventional dryers that are being used
in North America.

In order to persuade consumers in North America to purchase Super-Efficient
Dryers, the SEDI team conducted a cost effectiveness analysis to see the benefit of
energy saving in dryers. Table 3.2 illustrates the cost effectiveness analysis:

Based on Table 3.2, consumers can save at least $54 annually from energy
efficiency of the SED dryers more than traditional dryers annual saving cost around
$76, making it a good incentive for consumers, but not enough to justify the price
difference from traditional dryers. So, there is still a need for strong government
support, funding, and regulations to achieve high market penetration.
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SEDI suggested several approaches to achieve market transformation (Foster
et al. 2014):

• Energy savings potential identification
• Make good use of information in order to enhance the decision-making process
• Have sound enough testing processes
• Identify criteria that translates what the market expects
• Engaging with stakeholders in the industry looking for support
• Favoring consumers’ interests and decrease risk for industry players at the same

time
• Create and keep resilient and agile programs
• Being dynamic so as to bring programs to fruition.

Anytime new technology emerges, there will be market barriers. According to
SEDI, there are five market barriers that Super efficient dryers have to overcome
(Badger et al. 2012):

• No product available
• Unproven product performance
• Unknown Energy Savings
• Likely Higher Product Pricing
• Low Consumer Awareness.

So, to achieve market transformation, SEDI conducted several activities between
2012 and 2013 (Badger et al. 2012):

• Leverage on the Success Europe has achieved
• Build relationships with industry players in America
• Support Energy Star and Emerging Tech Award
• Help industry players in getting approvals from regulators
• Perform tests—both in labs and in the field
• Enhance testing processes of Dept. of Energy

Table 3.2 Cost-effectiveness of advanced clothes dryer (Badger et al. 2012)

Electric clothes dryer Conventional dryer Efficient dryer

Savings per year (kWh/year) 462 332

Savings per year ($/year) 76 54

Savings on lifetime (kWh) 5541 3987

Savings on lifetime ($) 909 654

Price premium ($) 405 253

Payback on price premium (year) 5.3 4.6

Present value of net benefits ($) 297 235

Benefit-to-cost ratio 1.86 2.09
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• Identify and delineate incremental costs
• Assist programs into creating incentives
• Help Efficiency Programs Market New Dryers
• Support Efficiency Programs in addressing multifamily and retail markets.

3.2.4 Other Emerging Types of Dryers

The literature review revealed other types of emerging dryer technologies, among
those, it seems that microwave dryers and solar clothes dryers are the most
promising. Following is a brief about each of them:

3.2.4.1 Microwave Dryers

Most dryers use the concept of passing warm air on clothes to dry them, however,
microwave dryers use microwave energy to evaporate moisture directly, saving up
to 25% of the energy consumed by traditional dryers (Okey et al. 1994), and
although the concept is not new (Yoon 1988), the technology still have short-
comings, especially, the impact on metal objects within the clothes, and hence
didn’t materialize into commercial use yet (Levy 1991).

3.2.4.2 Solar Clothes Dryer

This type of dryers turns solar energy into hot water, and then uses that hot water to
run the dryer and dry clothes (Kitzmiller 1985; Off-grid.net 2011). The idea behind
this technology is also not new (Kitzmiller 1985), but it started to see commercial
use recently, and it is still very expensive (Sullivan et al. 2013).

3.2.5 NEEA

As aforementioned, NEEA is a joint effort representing hundreds of utility com-
panies in the Pacific Northwest, and its initiatives benefit around 13 million utility
customers. They aim to increase the adoption of energy efficient products, services
and practices for gas and electric energy efficiency. Since 1996, NEEA has
cost-effectively delivered over 1275 aMW of energy efficiency through market
transformation, which can power around 900,000 houses (NEEA 2016b).

Northwest has around 6 million dryers which is among the highest sources of
energy consumption among appliances. Super efficient dryers can lead to average
180 MW savings per region. NEEA’s role is to engage with industry players in
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order to push product development towards energy-efficient solutions, while
reducing the risk that manufacturers would face by doing so. Also, NEEA supports
those players after the products are developed, by helping them in introducing the
products into the market. Another role of NEEA is to work on the legal and
standards side, aiming to push policies and testing towards the promotion of
energy-efficient solutions (NEEA 2016c).

Representatives of SEDI Super Efficient Dryers Initiative) are working with
appliance industry and other energy efficient advocates like NEEA to explore and
promote the more energy efficient dryers. To explore the market, NEEA has ini-
tiated the following study which focuses on the below issues (Evergreen Economics
2016):

1. Should we focus specifically on promoting only super-efficient dryers or rather
on ENERGY STAR-labeled dryers?

2. Are consumers willing to pay for more efficient dryers?
3. Which non-energy benefits and features of super-efficient dryers are the end

users interested in?
4. The target market for super efficient dryers should be entire market or a niche

market, like multifamily buildings with venting constraints?
5. Do we need to focus on just clothes dryers, or is there a need to address clothes

washer as well?
6. What is the value proposition for supply chain actors in regional initiative?

NEEA did a characterization study about super efficient dryers and found out
that cost is coming out to be a major barrier. They estimate that the production of
heat pump dryers costs around $500–$550 more than conventional dryers with
comparable features. While the, ENERGY STAR dryers are costing $25–$50 more.
However, the estimate is that if heat pump models were produced at higher vol-
umes, the total production costs would drop from $500 to $200 to $300 at the
retailer level which would be similar to the increment cost of heat pump dryers in
Europe which is about $300 more than conventional dryers (Evergreen Economics
2016). This resulted in a need to introduce an incentive plan to increase the pro-
duction volume and reduce the manufacturing cost.

NEEA has collaborated with many organizations across the country for various
rebates/incentive plans in order to promote energy efficiency. The incentive plans
are divided in 2 categories as per the receiver of benefits

3.2.5.1 Midstream and Upstream Incentives

NEEA focuses on Midstream incentives to corporate retail partners or manufac-
turers rather than end users. This is more effective when consumers do not have a
lot of information about products and they tend to ask more questions from the sales
people. So, this approach can be more valuable for products that have a huge
variety of features/options to choose from (such as TVs or larger appliances
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(Dunsky Energy Consulting 2016; NEEA 2015). They focused on upstream
incentives for Low Wattage Replacement Lamps that shifts the stocking and
marketing practices (NEEA 2015).

3.2.5.2 Downstream Incentives

This type of incentive is focused on end users. NEEA collaborates with many
organizations for rebate and other incentives at the user level as well. For example,
they collaborated with Office of Energy Efficiency & Renewable Energy for
incentive plans for IDAHO to promote energy efficient products. Idaho budgeted
$30 million to promote energy efficiency and load management programs through
various utilities and regional programs (Energy.gov 2016). Avista Energy company
offers rebates on a wide array of equipment efficiency including equipment, com-
mercial lighting and variable frequency drive retrofits, such as site-specific incen-
tives and power management for PC networks (Energy.gov 2016). Also, Idaho
power sponsors the Energy Efficiency for Businesses, which offers various types of
rebates, for companies implementing energy-efficiency enhancements in their
lighting, HVAC and other equipment (Energy.gov 2016).

3.3 Methodology

As stated earlier, the objectives of this paper are to forecast the adoption and market
share of super-efficient dryers (SED’s) and to provide additional information that
could help organizations such as NEEA to promote and disseminate SED’s, cre-
ating market transformations towards the adoption of energy efficient products. The
technology forecasting method chosen to tackle this issue was the Bass model,
further explained in this section.

The Bass Model (Bass 1969) is an attempt to understand and forecast the
adoption and diffusion of technologies and products in the market, translating this
phenomenon into a mathematical formula that generates a distribution similar to
that of an S-shaped curve. As noted in Wright et al. (1997), This method became
popular to model diffusion of products and technologies, and has been deployed—
with good results—in several different cases.

As defined by its own creator, Frank Bass, the model would be an empirical
generalization, which is a repeating pattern able to be represented by mathematical
models (Bass et al. 1995). To put it in simple words, the adoption and diffusion of
technologies usually follow a similar pattern (that of an S-shaped curve), and
therefore it is possible to generalize and forecast the adoption and diffusion of
technologies by ways of creating such a model. In another research work of Frank
Bass, the author provides a comprehensive list of examples of other empirical
generalization methods used in marketing and business, for several different topics
such as R&D, customer satisfaction, brand awareness, etc. (Bass and Wind 1995).
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The Bass model assumes two distinct types of consumers (or adopters): the
innovators and the imitators. Innovators are those who adopt the new technology
without any influence from others whatsoever. These consumers are usually in
smaller numbers (especially for high-tech markets) and do not compose the
mainstream market. They are technology enthusiasts, more prone to take risks and
want to check and experiment new products and technologies by themselves—
sooner rather than later. Conversely, imitators are more conservative and skeptical.
These consumers are less prone to take risks and would rather wait until they are
more certain about the performance and reliability of the new technology or
product. Imitators usually compose the mainstream market and are strongly influ-
enced by innovators—innovators opinions and “reviews” would, to a great extent,
dictate how imitators will behave towards the new technology or product. Also,
imitators will also be affected by other imitators who have already adopted the
technology.

The model has essentially five components, among which, three are the model’s
parameters (p, q and m):

• p = coefficient of innovation
• q = coefficient of imitation
• m = total market
• N(t) = cumulative amount of consumers who adopted the technology up to

period t
• N(t − 1) = cumulative amount of consumers who adopted the technology up to

period t − 1
• S(t) = amount of new consumers that adopted the technology during period t; S

(t) is also written as N(t) − N(t − 1).

The parameter ‘m’ is the total market penetration of the new technology over
time. It sets the maximum ‘height’ of the adoption curve—the total amount of
customers not to be exceeded during the adoption process. This parameter must be
cautiously set, once it could lead to mistaken decisions to take into account a too
large or too narrow amount of people who are willing to adopt the technology. The
parameter ‘p’ and ‘q’ set the shape of the curve—how fast or slow it would take to
ramp up, reach the inflexion point and reach the maximum point (‘m’). As sum-
marized in (Ofek 2009), ‘m’ sets the adoption scale, while ‘p’ and ‘q’ set the
adoption pace. The coefficient of innovation is the rate at which innovators will
adopt the technology. It does not change and depicts the willingness of technology
enthusiasts to purchase the product. The coefficient of imitation is the rate at which
imitators will adopt the technology. The more time goes by, the more imitators
adopt the technology (for more social interactions and influences will occur
between innovators and imitators and between imitators that have already adopted
the technology and imitators that have not yet adopted it).

The following Eq. (3.1) depicts how likely a new customer is to adopt the new
technology or product in period t:

52 J. Lavoie et al.



Likelihood of technology adoption

pþ q
m

� �
N t � 1ð Þ ð3:1Þ

The Bass model is represented when one multiplies the likelihood of a new
consumer to adopt the technology (Eq. 3.1) by the total number of consumers that
still have not adopted that technology. The total number of consumers still to adopt
the technology on period t is found by subtracting the consumers who have so far
adopted the technology (N(t − 1)) from the total consumers (m)—as shown in the
following equation (Eq. 3.2):

Consumers still to adopt the technology on period t

m� N t � 1ð Þ ð3:2Þ

Therefore, the Bass model is given by the following equation:
The Bass Model

S tð Þ ¼ pþ q
m

� �
N t � 1ð Þ

h i
m� N t � 1ð Þ½ � ð3:3Þ

Super Efficient Dryers are relatively new appliances, its penetration in the US
market is very timid and there is virtually no historical sales data on which a
researcher would base its forecast on. Given these characteristics, it is reasonable to
believe that the Bass model is a proper method to be used as a forecasting tool for
SED’s. According to (Ofek 2009), one assumption of the model is that consumers
will only adopt the technology or product once—therefore the model is more
successfully applied to products that are durable, and not to technologies or
products that are purchased often.

3.4 Analysis

As stated in the methodology section, we have chosen the Bass Model because it is
recognized as a good fit to forecast the adoption of a new product, for which there
are no historical data available. Notwithstanding the methodology being mean-
ingful, it can be tricky to create a meaningful model—in order to do that, the
parameters have to make sense and the reasoning behind the determination of the
parameters also has to make sense. As the conventional Bass Model was chosen to
be used, the parameters to be estimated were ‘p’, ‘q’ and ‘m’ (please refer to the
methodology section). In the following paragraphs we proceed to discuss the
determination of the model’s parameters and to present and discuss the results.

Super Efficient Dryers are a very new product in the U.S., with virtually no
penetration in the American market. Therefore, there are few research works con-
ducted on this product and no coefficients of innovation and imitation available to
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be used, leaving the researchers with the task of estimating these parameters to the
best of their abilities. One very common and effective strategy of estimating these
coefficients is by choosing analogous products (for which there are ‘p’ and ‘q’
available) and creating a system to weight those coefficients, ultimately arriving at
the estimation of the coefficients for the desired product. As a requisite of this
strategy, the analogous products have to be somehow similar to the reference
product—for instance, in terms of market; function; technical specifications; price;
regulation; competition; supply-chain; etc. Having chosen the analogous products
and gathered data about them, the researcher then proceeds to consult with experts,
who will rate the similarity of the analogous products with the reference product.
After the rating, data is computed and the final ‘p’ and ‘q’ are determined.

For this paper, five analogous products were chosen, as following:

• Conventional clothes dryers (Bass et al. 1994)

– p = 0.0134
– q = 0.3317

• Clothes washers (Van den Bulte 2000)

– p = 0.016
– q = 0.49

• Solar panels (Agarwal et al. 2015)

– p = 0.00005
– q = 0.0807

• Major appliances (Kohli et al. 1999)

– p = 0.0059
– q = 0.245

• Solar water heaters (Yamaguchi et al. 2013)

– p = 0.029
– q = 0.265

The conventional clothes dryers were chosen because both market and function
dimensions are identical to those of super efficient dryers. The clothes washers were
chosen for those are complement products to dryers, sharing the same market base.
Although solar panels do not share any commonality when it comes to market,
function or technical attributes, it was chosen because these products have the same
‘energy efficiency’ component. Solar panels are similar to super efficient dryers
because it is an attempt of substituting an incumbent solution (electricity provided
by the power grid) by a much more energy efficient solution, and it also faces the
same entry barriers as solar panels (higher price, strong incumbent and entrenched
solutions). Major appliances are chosen for similar market and technical
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characteristics. Finally, solar water heaters are also chosen due to its energy effi-
ciency component.

Having the parameters for the analogous products, a panel of five experts was
assembled in order to weight the analogous products and come up with the final
parameters for super efficient dryers. Each expert was asked to rate each analogous
products, assigning to them values between 1 and 10; 1 being not related at all and
10 being extremely related. The rating was done following the dimensions
explained earlier in this section, with special focus to function characteristics and
energy efficiency characteristics. Table 3.3 shows the rating for each expert and the
average for each analogous product.

The above averages, in turn, were multiplied by the respective ‘p’ and ‘q’,
generating the weighted parameters for each analogous products, as follows:

• Conventional clothes dryers

– Weighted p = 0.11524
– Weighted q = 2.85262

• Clothes washers

– Weighted p = 0.1152
– Weighted q = 0.3528

• Solar panels

– Weighted p = 0.00045
– Weighted q = 0.7263

• Major appliances

– Weighted p = 0.0354
– Weighted q = 1.47

• Solar water heaters

– Weighted p = 0.145
– Weighted q = 1.325.

Table 3.3 Experts’ ratings for analogous products

Clothes dryer Clothes washer Solar panels Major appliances Solar water heater

Expert 1 8 7 9 7 3

Expert 2 7 7 10 6 8

Expert 3 10 8 8 5 5

Expert 4 8 G 9 6 4

Expert 5 10 8 9 6 5

Avg 8.6 7.2 9 6 5
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The above values, then, were summed up and divided by the summation of the
averages of the analogous products, generating the final ‘p’ and ‘q’ for the super
efficient dryers:

• Super Efficient Dryer

– p = 0.011
– q = 0.188.

The next parameter to be estimated is ‘m’ (total population). According to
President and BCG (2012), the annual shipment of clothes dryers in the US is
around 5.6 million units. For the purpose of this research, this number is considered
to be the total market for clothes dryers in the US, although some other metrics and
reasoning could be considered. Having in mind that one of the purposes of this
research is to provide arguments to convince manufacturers to attack the market
more fiercely with super efficient dryers, it does not make much sense to consider
the total market as the ‘m’ parameter. That is because the price difference between a
conventional dryer and a super efficient one is still very large. Moreover, the energy
savings (on an individual basis) and the technical specifications do not seem to
justify that price difference at this point. That leads us to conclude that, as of now,
super efficient dryers do not compete with low-priced conventional dryers, rather
they should be competing in a different market segment within the total market. Of
course, once manufacturers invest more in the development of these products and
also once the sales numbers grow, efficiencies in production and economies of scale
will kick in, dragging the prices down and eventually enabling super efficient dryers
to compete for the total market.

The market segment that would be a good fit for super efficient dryers, at this
point, would be the clothes dryers ‘upper market’. That would be the market
segment where more expensive dryers are sold. Notwithstanding the fact that, in
this segment, SED’s would compete with high end and more sophisticated prod-
ucts, the idea is that customers that compose this segment would not be spooked by
SED’s prices and would be more open to make the purchase—customers com-
posing this segment have a higher income and therefore are willing to spend more
money on a clothes dryer. According to U.S. household income distribution (2016),
26.4% of American households have an income equal or higher than $100,000.
Again, for the purposes of this research, this section of American households is
considered to compose the ‘upper market’. Multiplying this percentage by the total
market for clothes dryers, the total market for SED’s is determined:

• Super Efficient Dryers market in the US

– m = 1.48 million units per year.

Having determined the parameters, it is possible to create the adoption curve.
The first curve to be presented uses a time span of 25 years (Fig. 3.1), along with its
associated data (Table 3.4).
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Fig. 3.1 Bass model for 25 years

Table 3.4 Bass model data

m = 1.48 Million P = 0.011
q = 0.188

t N(t − 1) N(t) S(t) N(t)/m (%)

2015 – 0 – 0.00

2016 0.00 0.02 0.02 1.15

2017 0.02 0.04 0.02 2.50

2018 0.04 0.06 0.02 4.08

2019 0.06 0.09 0.03 5.91

2020 0.09 0.12 0.03 8.04

2021 0.12 0.16 0.04 10.48

2022 0.16 0.20 0.04 13.28

2023 0.20 0.24 0.05 16.44

2024 0.24 0.30 0.05 19.98

2025 0.30 0.35 0.06 23.90

2026 0.35 0.42 0.06 28.19

2027 0.42 0.49 0.07 32.82

2028 0.49 0.56 0.07 37.73

2029 0.56 0.63 0.08 42.86

2030 0.63 0.71 0.08 48.12

2031 0.71 0.79 o.o8 53.41

2032 0.79 0.87 0.08 58.62

2033 0.87 0.94 0.07 63.65
(continued)
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The curve above starts in 2015—the year NEEA launched SEDI—and ends in
2045. The curve reaches its inflexion point between 2032 and 2033, when the
adoption is around 63%. At the end of this forecasting curve (in 2045), the adoption
reaches 1.42 million units sold per year (95.96% of the market).

A forecasting curve such as the first one is very valuable in order to understand
how the market will behave on its own—without any influence from external
parties. Institutions that try to create market changes (such as NEEA) use curves
like this one—this curve could inform NEEA on what would happen had they not
tried to influence the market. Moreover, taking this curve together with other
studies, NEEA can develop policy strategies. Nevertheless, a very important point
should be made regarding this first curve. Although it is possible to believe that
SED’s will still be still actively and strongly sold in 2045, it is likely that, by then,
new technologies under development now (some of those technologies are already
under development as explained in the literature review part of this report) will be
available in the market, competing and gaining market-share from incumbent
technologies (such as SED’s) For that reason, in order to engage in conversations
with market players, it is more appropriate to consider a shorter period of time for
this adoption forecast.

When the same data is plotted considering a time span of 15 years, this is the
curve (Fig. 3.2).

The second curve also starts in 2015, but ends in 2030. The inflection point, as
already mentioned, is around the year of 2033, and the adoption peak for a single
period is between 2029 and 2032. At the end of the curve, the adoption percentage
is 48.12%, representing 710,000 units sold in the year of 2030.

Table 3.4 (continued)

m = 1.48 Million P = 0.011
q = 0.188

t N(t − 1) N(t) S(t) N(t)/m (%)

2034 0.94 1.01 0.07 68.42

2035 1.01 1.08 0.07 72.84

2036 1.08 1.14 0.06 76.87

2037 1.14 1.19 0.05 80.48

2038 1.19 1.24 0.05 83.65

2039 1.24 1.28 0.04 86.41

2040 1.28 1.31 0.03 88.77

2041 1.31 1.34 0.03 90.77

2042 1.34 1.37 0.02 92.45

2043 1.37 1.39 0.02 93.85

2044 1.39 1.41 0.02 95.01

2045 1.41 1.42 0.01 95.96
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3.5 Conclusions and Recommendations

3.5.1 For NEEA

Following are our conclusions/recommendations towards NEEA:

– The adoption curves presented in this study can serve as another source of
information for NEEA to try to understand the potential market for super effi-
cient dryers. Although they have already conducted their own research to arrive
to the counterfactual adoption, this piece of research can complement that work
and help NEEA in the formulation of policy strategies and characteristics,
towards the advancement of energy efficiency in the Pacific Northwest (in this
case, through the broader adoption of more energy efficient products).

– Specifically with regards to the second curve (15 years), it could serve as a tool
to engage clothes dryer’s manufacturers in conversation, show them the market
potential and convince them to invest in those products, to offer them and to
attack the market more fiercely. By segmenting the market, the argument in
favor of offering SED’s is much more compelling, since manufacturers will see
the opportunity of focusing their marketing efforts, ultimately gaining almost
50% of that market segment. Conversely, if manufacturers focus on the entire
market, other considerations and forces come into play (most importantly the
price gap between conventional dryers and SED’s), and market players will
likely feel like it is going to demand too much marketing and R&D effort,
especially if, in the end, the market-share will be around 5%.

Fig. 3.2 Bass model for 15 years
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3.5.2 General

Following are our conclusions/recommendations based on the work we conducted
in this project:

– Bass diffusion model is ideal to conduct new products forecasting. However,
getting the right p and q to get robust results is challenging and need a lot of
research and justifications.

– Energy efficiency is an important source of energy; as it results in energy
savings, and hence, reduce or eliminate the need to add more capacity in
response to the growing need for energy, since; Adding more capacity means
more cost in term of infrastructure, ongoing operations, and the environmental
impact.

– Incentives can play a crucial role in adopting a new product/technology if
utilized correctly.

3.6 Future Work

Following are suggested areas for future work based on the findings of this project:

– Influencing the market: Our project’s findings indicates that there is a market
potential of SED in the PNW region. NEEA should go ahead and conduct a
follow-up study on what type of incentive packages should be offered to
accelerate the market adoption. Such study could utilize tools like sensitivity
analysis (Saltelli et al. 2000) or conjoint analysis (Green and Srinivasan 1978) to
decide on the proper incentives and what outcome they could achieve. With the
help of consumer analysis to find out more about the process of buying a dryer
and how consumers making this decision and how being part of the
‘upper-income’ category affect the customer’ preferences.

– In this project, and in other similar projects, the degree to which the analogous
products are relevant, affect the accuracy of Bass diffusion model results; as the
p and q parameters have direct impact on the quality of the forecast, hence; we
suggest building an HDM model based on an experts panel to make more
accurate decisions when choosing analogous products for the Bass diffusion
model.

– There are different versions of Bass diffusion model, like the generalized model,
which consider other factors including prices and advertisement (Bass et al.
1994), and a future study could try to run this modified version and compare the
results for more accurate forecast.
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Chapter 4
Fuzzy Forecasting Methods for Energy
Planning

Basar Oztaysi, Sezi Çevik Onar, Eda Bolturk and Cengiz Kahraman

Abstract For energy planning, forecasting the energy demand for a specific time
interval and supply of a specific source is very crucial. In the energy sector, fore-
casting may be long term, midterm or short term. While traditional forecasting
techniques provide results for crisp data, for data with imprecision or vagueness
fuzzy based approaches can be used. In this chapter, fuzzy forecasting methods
such as, fuzzy time series (FTS), fuzzy regression, adaptive network-based fuzzy
inference system (ANFIS) and fuzzy inference systems (FIS) as explained. Later, an
extended literature review of fuzzy forecasting in energy planning is provided.
Finally, a numerical application is given to give a better understanding of fuzzy
forecasting approaches.

4.1 Introduction

Energy is one of the scarcest sources in the world. Energy planning helps you get
better control over your energy resources. Thus, facing with an energy scarcity or
excessive energy consumption costs in the future can be prevented. Forecasting the
energy consumption costs or the required energy levels for a firm is very helpful for
the planning of future.

Forecasting methods can be divided into two main categories. Qualitative
forecasting methods and quantitative forecasting methods. Qualitative forecasting
methods are based on judgments, intuition, or personal experiences and subjective
in nature. They are not based on hard mathematical computations. Qualitative
forecasting methods are based on mathematical models, and objective in nature.
Classical forecasting methods use crisp data and generally do not care the possible
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changes in the data, which the future forecasts are based on. In case of incomplete
data or uncertain data, we need some extensions in the classical approaches.

Incomplete and/or vague forecasting data require fuzzy forecasting methods to
be used. The advantage of the use of fuzzy logic is in processing imprecision,
uncertainty, vagueness, semi-truth, or approximated and nonlinear
data. Forecasting data generally involve these kinds of characteristics. Ordinary
fuzzy forecasting, intuitionistic fuzzy forecasting, hesitant fuzzy forecasting, and
type-2 fuzzy forecasting techniques have been developed and applied to some
forecasting problems.

Carvalho and Costa (2017) propose a fuzzy forecasting methodology of time
series for electrical energy prices. They use triangular fuzzy membership functions
and apply the extended autocorrelation function. Kumar and Gangwar (2015) use
fuzzy sets induced by intuitionistic fuzzy sets to develop a fuzzy time series
forecasting model to incorporate degree of hesitation (nondeterminacy).

Bisht and Kumar (2016) propose a fuzzy time series forecasting method based
on hesitant fuzzy sets. The proposed method addresses the problem of establishing
a common membership grade for the situation when multiple fuzzification methods
are available to fuzzify time series data. Hassan et al. (2016) present a novel design
of interval type-2 fuzzy logic systems by using the theory of extreme learning
machine for electricity load demand forecasting.

The rest of the chapter is organized as follows. Section 4.2 summarizes the
literature on fuzzy forecasting. Section 4.3 presents the fuzzy forecasting methods.
Section 4.4 gives a numerical application on fuzzy forecasting. Finally, Sect. 4.5
concludes this chapter.

4.2 Literature Review

Forecasting is one of the most precious activities in planning because of define
company’s strategies. Planning activities in the energy sector are very important
because the cost of investment is very critical. There are different techniques in
energy planning in electricity (Piras et al. 1995), wind power (Lou et al. 2008),
power system planning (Holmukhe et al. 2010), forecasting energy and diesel
consumption (Neto et al. 2011), electricity consumption (Bolturk et al. 2012) short
term load forecasting (Liu et al. 2010; Jain and Jain 2013), electricity demand
estimation (Zahedi et al. 2013), long term load forecasting (Akdemir and Cetinkaya
2012). While traditional methods use crisp data to make predictions, Zadeh (1965)
introduced fuzzy sets in order to integrate expert evaluations into the problem and
to deal with imprecision or vagueness intrinsic to the decision problem (Kahraman
et al. 2016). In this section, a literature review on fuzzy forecasting methods is
provided.

Piras et al. (1995) examined heterogeneous neural network architecture in order
to forecast electrical load forecasting in energy planning and use artificial neural
networks (ANN) to get results. Mori and Kobayashi (1996) recommended an
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optimal fuzzy inference method for short-term load forecasting (STLF) which
mentions a structure of the simplified fuzzy inference. The structure is modeled to
clasp nonlinear manner in short-term loads and its aim is to minimize errors.

Electric power system load forecasting has a significant function in the en-
ergy management that has a big effect in operation, controlling and planning of
electric power system. The load estimation used in electrical systems planning has
to think future loads and their geographical positions in order to allowing the creator
for situating the electrical equipment. The load forecasting affects different features
aspects like peak load demand period, transformer sizing, conductor sizing, capac-
itor placement, and etc. Cartina et al. (2000) used nonlinear fuzzy regression
approach in distribution networks for forecast peak load for STLF is an important
subject in the operative planning activities of companies devoted to the allocation
and trade of energy. Tranchita and Torres (2004) proposed an original method
which consists of LAMDA-fuzzy-clustering techniques, regression trees, classifi-
cation and regression trees algorithm and fuzzy inference for the peak power,
daily energy and load curve forecast. Another STLF paper is studied by Hayati and
Karami (2005). They explore the use of computational intelligence methods and use
the three important architectures of the neural network and a hybrid
neuro-fuzzy network named Evolving Fuzzy Neural Network to model STLF sys-
tems. Zhao et al. (2006) use the ANN and fuzzy theory for STLF. An algorithm—a
pace search for optimum to renew the weight value of fuzzy neurons applied STLF
method to some area’s power system. Lou et al. (2008) use similarity theory and
fuzzy clustering method in order classifying various periods and select a result to
substitute to the output of wind power. Holmukhe et al. (2010) use fuzzy logic
systems for power system planning for STLF and aimed to define improved
method for load forecasting.

Liu et al. (2010) use time-varying slide FTS method that reduces the
load forecasting error in STFL. The proposed technique fits a study framework
of FTS to exercise trend estimator and uses estimator to obtain forecasting values
at forecasting step.

Neto et al. (2011) develop a determination support system for forecasting the
cost of electricity production using non-stationary data by integrating the
methodology of FTS in order to see uncertainness intrinsic in study of diesel fuel
consumption. Li and Choudhury (2011) present a technique to embody a fuzzy and
probabilistic load model in transmission energy loss evaluation to overcome
uncertainness of load forecast.

Long-term forecasting is a leading issue in energy planning especially in the size
of energy plant and location. Akdemir and Cetinkaya (2012) use adaptive neural
fuzzy inference system using real energy data in long-term load forecasting. Bolturk
et al. (2012) examine electricity consumption to predict possible electricity con-
sumption in energy planning for a company and they use FTS and compare total
values of three periods.

Zahedi et al. (2013) estimate electricity demand with ANFIS to get more reliable
and accurate planning. Electricity demand is studied with ANFIS and the study
includes some parameters such as occupation, gross domestic product, people,
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dwelling count and two meteorological parameters. Jain and Jain (2013) develop a
fuzzy model and similarity-based STLF using swarm intelligence because of
uncertainties in planning and operation of the electric power system is the complex,
nonlinear, and non-stationary system. Another paper is presented by Chen et al.
(2013) to show a solar radiation estimate model established on fuzzy and neural
networks to get well results.

Bain and Baracli (2014) investigate the practice of the ANFIS to predict the
energy demand planning. The results showed that hybrid ANFIS technique based
upon fuzzy logic and ANNs perform efficiently in forecast accuracy. Li et al. (2015)
use STLF with the grid method and FTS estimating technique to better forecast
truth in energy planning.

Atsalakis et al. (2015) forecast energy export to plan potential energy demand to
the importance of accuracy. The forecasting system is established on two ANFIS
use to forecast the optimum energy export forecast parameters. In order to obtain
the upper and lower bounds of wind power, Zhang et al. (2016) use an ANFIS to
get wind power interval forecasts and based on the system and singular spectrum
analysis and the paper develops a hybrid uncertainty forecasting model, Interval
Forecast- ANFIS -Singular Spectrum Analysis-Firefly Algorithm. Another wind
prediction study present by Okumus and Dinler (2016) with ANFIS and ANN for
one h ahead to predict wind speed. Matthew and Satyanarayana (2016) use
fuzzy logic along with the results for checking the accuracy of the proposed work in
load forecasting. Because there is a requirement of power planning for the proper
utilization of electrical energy in electrical power system.

Monthly forecast of electricity demand in the housing industry is studied by Son
and Kim (2017) on a precise model and the proposed method is consists of support
vector regression (SVR) and fuzzy-rough feature selection with particle swarm
optimization (PSO) algorithms. Zhang et al. (2017) present a new variable-interval
reference signal optimization approach and a fuzzy control-based charging/
discharging scheme to wind power system. Arcos-Aviles et al. (2017) propose a
strategy based on a low complexity Fuzzy Logic Control for grid power profile
smoothing of a residential grid-connected microgrid in the design of an en-
ergy management in order to show the presented work minimizing fluctuations and
power peaks while keeping energy stored in battery between secure limits results, a
simulation comparison highlighted. Chahkoutahi and Khashei (2017) propose a
direct optimum parallel hybrid model is consists of multilayer perceptrons neural
network, ANFIS and Seasonal ARIMA to electricity load forecasting in electricity
load forecasting and aim of this study is put into practice upper hands of ANFIS and
Seasonal ARIMA in modelling composite and equivocal systems in energy
planning.

Fuzzy forecasting methods in energy planning have been extensively used and
the analysis of them in Figs. 4.1, 4.2, 4.3 and 4.4; Table 4.1.
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Fig. 4.1 Distribution of fuzzy forecasting methods in energy planning by subject area

Fig. 4.2 Number of fuzzy forecasting methods in energy planning papers by years
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4.3 Fuzzy Forecasting Methods

4.3.1 Fuzzy Time Series

A sequence of data is called time series if they are listed in time order. A time series
refers to a sequence taken at successive equally spaced points in time. In statistics,
time series models assume which forecast for the next time interval can be made

Fig. 4.3 Document type of fuzzy forecasting methods in energy planning

Fig. 4.4 Percentage of fuzzy forecasting methods in energy planning papers based on countries
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using the past set of values observed at the same time interval (Kahraman et al.
2010). Traditional time series model has been extended to fuzzy sets. Song and
Chissom (1993) provide one of the initial FTS and propose a technique for lin-
guistic data using fuzzy relation equations.

Let Y uð Þ u ¼ ::0; 1; 2; 3::ð Þ be a subset of R1, the universe of discourse. Fuzzy
sets fi tuð Þ i ¼ 1; 2; 3; . . .ð Þ are identified on universe of discourse. A FTS, F (u), on
Y (u) is defined as a collecting of fi uð Þ; f2 uð Þ; . . .fn uð Þ. If F (u) is affected only by F
(u − 1), it is represented by F u� 1ð Þ ! F uð Þ: In this case we can say that there is a
fuzzy relationship between F uð Þ and F u� 1ð Þ, and it can be shown as in Eq. 4.1.
The relation R shown in Eq. 4.1, is called the fuzzy relation between F uð Þ and
F u� 1ð Þ.

F uð Þ ¼ F u� 1ð Þ � R u; u� 1ð Þ ð4:1Þ

Song and Chissom (1993) define two types of FTSs. If relation R (u, u − 1) is
individual of u, so F (u) is called a time-changing FTS, in other cases, the relation is
a time-variant FTS. Assume a FTS, F(u), is stired up by F(u − 1), F(u − 2),…, and
F(u − n). Equation 4.2 epitomise this fuzzy relationship (FLR) is defined the nth
order FTS forecasting mockup.

F u� nð Þ; . . .;F u� 2ð Þ;F u� 1ð Þ !¼ F uð Þ: ð4:2Þ

Chen (1996) outlines the steps of FTS forecasting chniques. Process starts with
partitioning the universe of discourse into exact intervals. Then historical data is
fuzzified. The third step is to build the fuzzy relationship between historical fuzzy
data. Finally, the forecasts are calculated using this relation.

4.3.2 Fuzzy Regression

Regression analysis is a statistical technique which is studied on widely. The
technique focuses on exploring and modeling the relationship between an output
factor and input factors. Traditional statistical linear fixation model is as given in 3.

y xð Þ ¼ b0 þ b1xi1 þ . . .bkxik þ ei; i ¼ 1; 2; . . .;m ð4:3Þ

In this Eq. 4.3, y(x) is the output variable, xij are the input variables. In the
equation, b j represents the coefficients of the formula and ei shows the random
error term. In the original technique, all of the parameters, coefficients and variables
are crisp numbers.

The classical technique is widely adopted both by the academia and the pro-
fessionals. However, Shapiro (2004) reports some shortcomings of the classical
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model for example an insufficient couple of observing, or missing data. Fuzzy
regression models are proposed to overcome these issues. The literature provides
various fuzzy regression models (Georg 1994; Sakawa and Hitoshi 1992; Tanaka
et al. 1989; Wang and Tsaur 2000). In this chapter, we briefly explain Buckley’s
fuzzy regression model (Buckley 2004) study. In this model, the forecast is done
based on confidence intervals. Buckley defines the fuzzy regression model is as in
the following:

y xð Þ ¼ aþ b xi � xð Þþ ei ð4:4Þ

In this equation x shows the mean value of xi. Confidence intervals of a, b and r
are obtained using crisp numbers according to the technique 1� bð Þ 100%. For this

purpose the crisp estimators of the coefficients ba; bb� �
should be found. ba ¼ y and

bb ¼ B1
B2 are the values of the estimators where

B1 ¼
Xn
i¼1

yi xi � xð Þ ð4:5Þ

B2 ¼
Xn
i¼1

xi � xð Þ2 ð4:6Þ

r2 ¼ 1
n

� �Xn
i¼1

yi � ba � bb xi � xð Þ
h i2

ð4:7Þ

Using the above mentioned Equations, 1� bð Þ100% confidence interval for a
and b are obtained using 4.8 and 4.9:

ba � tb
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibr2

n� 2ð Þ

s
; baþ tb

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibr2

n� 2ð Þ

s
ð4:8Þ

bb � tb
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbr2

n� 2ð ÞPn
i¼1 xi � bxð Þ2

s
; bbþ tb

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbr2

n� 2ð ÞPn
i¼1 xi � bxð Þ2

s
ð4:9Þ

The fuzzy regression equation is can be written as;

ey xð Þ ¼ eaþ eb xi � xð Þ ð4:10Þ
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ey xð Þ, ea and eb; are fuzzy, and x and x are crisp in (4.10). For prediction, new
fuzzy values for dependent variable can be calculated by new x values. Using the
interval arithmetic and (a)-cut operationthe predictions can be obtain using 4.11.

eY x½ � að Þ ¼
yðxÞ1ðaÞ ¼ a1ðaÞþ ðx� exÞb1ðaÞ if ðx� xÞ[ 0
yðxÞ2ðaÞ ¼ a2ðaÞþ ðx� exÞb2ðaÞ
yðxÞ1ðaÞ ¼ a1ðaÞþ ðx� exÞb1ðaÞ if ðx� xÞ[ 0
yðxÞ2ðaÞ ¼ a2ðaÞþ ðx� exÞb2ðaÞ

8>><
>>: ð4:11Þ

4.3.3 Fuzzy Inference Systems

Fuzzy inference systems (FIS) utilize expert evaluations expressed by rules and a
reasoning mechanism for forecasting. Another usage of this label are ‘‘Fuzzy
rule-based systems’’ or ‘‘fuzzy expert systems’’ (Jang et al. 1997). A set of rules, a
database and an argumentative machine are three main components in FIS. The
if-then rules used for reasoning is stored in the rule base. The membership functions
used in these rules are stored in the database. The output of the system is obtained
by the reasoning mechanism which uses rules and the given input values.

The expert evaluations about different conditions are transferred to the system by
using fuzzy rules. The rules are defined by using if and then clauses. For example,
“If the service is good then the tip is high” is an if-then rule representing the number
of tips in a restaurant. Here, “service” and “tip” are linguistic variables, good and
high are linguistic values.

Fuzzification, fuzzy rules, fuzzy inference and defuzzification are four steps of a
typical FIS (Oztaysi et al. 2013). The first step involves fuzzification in which all
crisp input data is transformed to fuzzy values. In the second step, the rules are
obtained from the experts using linguistic terms and fuzzy operator. As the number
linguistic variables and associated linguistic variable raise the amount of the rules
rise exponentially. The third step is inference procedure which provides a con-
clusion based on rules above. The literature provides a various model for inference
including Mamdani’s model (Mamdani and Assilian 1975), Sugeno’s model
(Sugeno and Kang 1988) and Tsukamoto Fuzzy Model (Tsukamoto 1979). As the
inference procedure obtains the results, the next step is defuzzification which
transforms the fuzzy output to crisp values.

4.3.4 ANFIS

ANFIS uses expert evaluations, a dataset, and a learning mechanism to provide a
relationship between inputs and outputs (Jang 1993). The system utilizes Sugeno
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inference model and artificial neural networks (Yun et al. 2008). ANFIS learns the
membership function parameters of linguistic variables utilizing input/output data
set.

Jang (1993) defines the system with five layer feed forward neural network as
follows:

1. 1st layer is composed of adaptive nodes which have a node function such as,
O1;i ¼ lAi

xð Þ (for i = 1, 2). x shows input to node I, and lingual term is Ai. O1;i

refers to the membership degree of a fuzzy set A.
2. 2nd layer is composed of fixed nodes which produce an output showing the

firing strength of a rule.

O2;i ¼ wi ¼ lAi
xð ÞlBi

yð Þ; i = 1, 2: ð4:12Þ

3. 3th layer is composed of linked nodes labelled N. The ratio of the ith rule’s
firing strength is calculated in order to sum of all rules’ firing strengths as shown
in Eq S. This layer produces normalized firing strengths as an output.

O3;i ¼ wi ¼ wi

w1 þw2
; i = 1, 2: ð4:13Þ

4. 4th layer is composed of adaptive nodes with node functions given in 4.14. In
this equation wi shows a regularized firing strength from 3th layer and pi, qi, and
ri show the parameter set for this node

O4;i ¼ wifi ¼ wi pixþ qiyþ rið Þ ð4:14Þ

5. Sum of all arriving signals is calculated by a single node as an overall output
value in 5th layer.

overall output ¼ O4;i ¼
X
i

wifi ¼
P

i wifiP
i wi

ð4:15Þ
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4.3.5 Hwang, Chen, Lee’s Fuzzy Time Series Method

A FTS technique proposed by Hwang et al. (1998) is for handling forecasting prob-
lems. To find the future demands via Hwang, Chen, Lee’s FTS technique (Hwang
et al. 1998) and the demand is known by yearly, the following steps are applied:

1. The variations are found in two consecutive years. For example the demand of
year q is d and the demand of year p is e, then the variation is e–d.

2. Minimum increase Dmin and maximum increase Dmax are found.
3. Define the universe of discourse U, U = [Dmin − D1, Dmax + D2], (D1 and D2

are appropriate positive numbers.)
4. Partition the universe of discourse U into several even length intervals.
5. Deciding linguistic terms delineated by fuzzy sets. The linguistic terms for the

intervals can be described as follows: Big decrease, decrease and, etc.
6. Fuzzifying values of historical data.
7. Determining an appropriate window basis w, and output is calculated from the

operation matrix Ow(T). Criterion matrix C(T), that T is year for which we want
to forecast the data.

8. Fuzzy forecasted variations are defuzzified.
9. Final forecasted data is calculating by forecasted data plus the number of last

year’s actual data.

4.4 A Numerical Application

In this section we apply FTS Using Hwang, Chen, Lee’s Method (Hwang et al.
1998) to energy forecasting problem. The actual spending values, variations and
linguistic terms are given in Table 4.2.

Maximum variation = 6.504.394, and minimum variation is −3.268.290.
Universe of discourse [−3.500.000, 7.000.000] The linguistic terms for the inter-
vals: {Big decrease, decrease, no change, increase, big increase, very big increase,
too big increase}.

When we try to forecast Month 22 with a window size 5, the calculations are as
follows:

O5 22ð Þ ¼

0 0 0 0:5 1 0:5 0
0 0 0 0:5 1 0:5 0
0 0:5 1 0:5 0 0 0
1 0:5 0 0 0 0 0
0 0 0 0:5 1 0:5 0

2
66664

3
77775 ð4:16Þ

C 22ð Þ ¼ 0 0; 5 1 0:5 0 0 0½ � ð4:17Þ
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By applying the steps

F 22ð Þ ¼ 0 0:25 1 0:25 0 0 0 ð4:18Þ

Since the maximum membership belongs to A3 (No change) the forecast for the
next period is A3.

When we apply the method to the remaining three periods, we get the values as
in Table 4.3.

Table 4.2 Actual spending and variations of historical data

Months Actual spending Variation Linguistic terms

Month 1 16.247.156

Month 2 14.253.194 −1.993.962 A2

Month 3 20.757.588 6.504.394 A7

Month 4 20.192.911 −564.677 A2

Month 5 19.218.643 −974.268 A2

Month 6 18.242.756 −975.887 A2

Month 7 21.051.875 2.809.119 A5

Month 8 18.017.455 −3.034.420 A5

Month 9 19.851.723 1.834.268 A4

Month 10 18.690.696 −1.161.027 A2

Month 11 18.259.420 −431.276 A2

Month 12 21.060.161 2.800.741 A5

Month 13 20.228.593 −831.568 A2

Month 14 22.324.932 2.096.339 A4

Month 15 28.007.488 5.682.556 A7

Month 16 30.911.740 2.904.252 A5

Month 17 34.024.478 3.112.738 A5

Month 18 34.038.857 14.379 A3

Month 19 30.770.567 −3.268.290 A1

Month 20 33.148.083 2.377.516 A5

Month 21 32.873.582 −274.501 A3

Month 22 33.862.352 988.770 A3

Month 23 30.933.481 −2.928.871 A1

Month 24 34.080.836 3.147.355 A5

Table 4.3 Membership of months

Months Actual Forecast

Month 22 A3 A3

Month 23 A1 A3

Month 24 A5 A5
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4.5 Conclusion

Fuzzy forecasting methods present excellent tools for forecasting the future when
incomplete, vague, and imprecise data exist in the considered problem. Fuzzy time
series, fuzzy regression, fuzzy inference systems, and ANFIS are the most used
fuzzy forecasting techniques in the literature. Forecasts for energy costs and energy
production levels of the future are excessively important for both the energy pro-
ducers and the energy consumers. Fuzzy forecasting provides the limits of possi-
bilities in case of incomplete and vague data and a wider and deeper perspective of
the uncertain future.

For further research, the recent extensions of fuzzy sets can be employed in the
forecasting methods. Intuitionistic fuzzy forecasting techniques, hesitant fuzzy
forecasting techniques, type-2 fuzzy forecasting techniques, and Pythagorean fuzzy
forecasting techniques are possible research areas for future work directions.
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Chapter 5
Smart Storage Scheduling
and Forecasting for Peak
Reduction on Low-Voltage Feeders

Timur Yunusov, Georgios Giasemidis and Stephen Haben

Abstract The transition to a low carbon economy will likely bring new challenges
to the distribution networks, which could face increased demands due to
low-carbon technologies and new behavioural trends. A traditional solution to
increased demand is network reinforcement through asset replacement, but this
could be costly and disruptive. Smart algorithms combined with modern tech-
nologies can lead to inexpensive alternatives. In particular, battery storage devices
with smart control algorithms can assist in load peak reduction. The control algo-
rithms aim to schedule the battery to charge at times of low demand and discharge,
feeding the network, at times of high load. This study analyses two scheduling
algorithms, model predictive control (MPC) and fixed day-ahead scheduler (FDS),
comparing against a set-point control (SPC) benchmark. The forecasts presented
here cover a wide range of techniques, from traditional linear regression forecasts to
machine learning methods. The results demonstrate that the forecasting and control
methods need to be selected for each feeder taking into account the demand
characteristics, whilst MPC tends to outperform the FDS on feeders with higher
daily demand. This chapter contributes in two main directions: (i) several fore-
casting methods are considered and compared and (ii) new energy storage control
algorithm, MPC with half-hourly updated (rolling) forecasts designed for low
voltage network application, is introduced, analysed and compared.
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5.1 Introduction

In a low carbon economy, storage devices are going to be an essential component of
any future energy network. With the electrification of heating and transport and the
move from fossil fuels to more renewable, distributed sources of generation, there
are increasing requirements for new and novel network solutions (Evans 2016).

Battery energy storage systems (BESS) are one potential solution, and can be
deployed to control the networks, ameliorate the disruption caused by low carbon
technologies and increase flexibilities. Although BESS have traditionally been an
expensive solution, the rapid reduction in cost in recent years is beginning to make
them competitive with traditional reinforcement such as replacing existing assets
(Schmidt et al. 2014). BESS can be deployed for a wide variety of network solu-
tions including, demand smoothening, voltage control, and phase balancing (Nair
and Garimella 2010). In this chapter, the primary focus will be on the application of
peak demand reduction for the purposes of increasing the network headroom and
maintaining the thermal capacity of the network (Joshi and Pindoriya 2015).

To be optimally utilised, the storage devices must accurately anticipate the future
state of the system and be ready to respond to the stochastic nature of the power
flows. In particular, this means that the optimal control of the BESS must incor-
porate accurate forecasts of the network in addition to the battery constraints (Megel
et al. 2015; Rowe et al. 2014). At the low voltage (LV) level, this is much more
challenging than at the higher voltage levels because of the increased volatility and
irregularity of demand (Yunusov et al. 2017).

In this chapter, the focus is on utilising forecast techniques within battery control
methodologies with the aim to reduce the peak demand on low voltage substation
feeders. First, a number of forecasting methods are developed and analysed and
then incorporated into the control algorithms which are then applied to a simulated
BESS and applied to monitoring data from real LV feeders. Several control
methodologies are considered, namely set-point control, a fixed day-ahead sched-
uler and two variants on the model predictive control.

5.2 Forecasting Methods

5.2.1 Data

This chapter uses the demand data from the low voltage feeders, monitored as part
of the New Thames Valley Vision (Scottish and Southern Energy Power
Distribution: New Thames Valley Vision 2014) project, in the Bracknell area, UK.
The feeders typically supply electricity for about 10 to over 150 generally resi-
dential customers with a half hourly demand of no more than around 40 kWh.
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For the methods we demonstrate in this chapter a number of feeders of varying
mean demand and volatility (through the standard deviation of the load) are
selected. Some of the attributes of the chosen feeders are presented in Table 5.1.
The chosen feeders are roughly labelled according to their size with S1, S2, S3
representing the smaller feeders, M1, M2, M3 the medium sized feeders and L1,
L2, L3 the larger feeders. Examples of the demands for each of these feeders is
shown in Figs. 5.1, 5.2 and 5.3. Notice that feeder L2 is dominated by commercial
customers and hence there is a very low demand on the Sunday (1st November
2015).

The monitored data for the selected feeders consists of half hourly energy
demand (kWh) for the period from 10th March 2014 to 15th November 2015.
A two-week period, from 1st to 14th of November 2015, is used as a test period for
assessing the storage control algorithms with the remaining data used for parameter
selection (via cross-validation) and training of the forecast models.

Table 5.1 Summary features
for the feeders considered for
the analysis in this chapter

Feeder Mean demand STD Max demand

S1 7.57 3.32 36.20

S2 5.42 2.89 30.00

S3 11.15 5.86 42.14

M1 11.11 6.05 64.65

M2 16.43 11.14 63.60

M3 21.58 9.40 111.50

L1 30.97 14.43 204.00

L2 37.13 18.04 205.15

L3 24.26 9.74 110.00

This includes average half hourly demand, standard deviation of
demand, the maximum recorded half-hourly demand (measured
over a year). All values are in kWh

Fig. 5.1 Example of demand for feeders in group S (Sunday and Monday)
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5.2.2 Methods

Several forecast methods for the scheduling algorithms are considered, which we
describe in following sections. First, useful notation and terminology is introduced.

Let d tð Þ be the monitored demand at time-step t and df tð Þ is the predicted value
at the same time-step (in our case half hourly). Given a time-series of demand
observations, D ¼ fdð1Þ; . . .; dðNÞg, the forecast value at horizon h from the last
available observation at time step t ¼ N is given by df N þ hð Þ.

Some forecasts are referred to as fixed or daily forecasts, because they are
updated at the beginning of each day in the test period, i.e. using all observations
until the last half-hour of the previous day, for horizons h ¼ 1; . . .; 96, i.e. up to two
days ahead. In contrast, a rolling forecast is updated half-hourly, i.e. using all
observations up to the most recent half-hour, and provides a forecast for horizons
h ¼ 1; . . .; 96.

Fig. 5.2 Example of demand for feeders in group M (Sunday and Monday)

Fig. 5.3 Example of demand for feeders in group L (Sunday and Monday)
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5.2.2.1 A Simple Seasonal Method

The method is based on an update of the simple seasonal model presented in
(Haben and Giasemidis 2016). Suppose a given time series d tð Þ, for the feeder load
at time-step t ¼ 1; . . .;N ¼ D � H, where D is the number of days in the training set
and H is resolution of the data, i.e. the number of time-steps in the day. In the case
considered here the data is half-hourly and so H ¼ 48. First a mean model, l tð Þ, is
constructed of the form

lðtÞ ¼
XH
k¼1

Dk tð Þ ak þ bkg tð Þþ
XP
p¼1

cpk sin
2ppgðtÞ
365

� �
þ

 

dpk cos
2ppgðtÞ
365

� ��
þ
X7H
l¼1

flW l tð Þ:
ð5:1Þ

Here gðkÞ ¼ t
H

� �þ 1, is the day of the trial and there are two dummy variables
identifying the period of the day, Dk tð Þ; and the period of the week, W l tð Þ, defined
by

Dj tð Þ ¼ 1; t mod H ¼ j;
0; otherwise;

�
and

W j tð Þ ¼ 1; t mod 7H ¼ j;
0; otherwise;

�
respectively. Thus, essentially there are 336 models representing each period of the
week. The ak terms represent the average demand for that half hourly period (which
is augmented based on the day of the week by fl), a linear trend term bk, and annual
seasonality terms defined by ck and dk. The coefficients are found by a least squares
minimisation on the historical information. The model is labelled ST. A variation of
this model is also considered by removing the trend term (i.e. bk ¼ 0; 8k). We label
this method SnT to indicate no linear trend is utilized.

These fixed forecasting methods are quite effective but are limited for intra-day
forecasting since they are only updated daily (Yunusov et al. 2017). A standard
method for improving these forecasts and also creating rolling forecasts is to update
the forecast with autoregressive terms. Once the mean equations are found we
create a residual timeseries defined by

r tð Þ ¼
XMmax

m¼1

/mr t � kð Þþ e tð Þ; ð5:2Þ
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where r tð Þ ¼ d tð Þ � l tð Þ and e tð Þ is the error term. The auto-regressive forecasts are
easily found via the Yule-Walker equations. The optimal order Mmax is found by
minimising the Akaike information criterion (AIC) for a maximum order of m ¼
15H (i.e. we consider an optimal order of up to 15 days.). A rolling forecast of the
residual time series is produced by applying the regression to a translating window
of the historical data. The autoregressive terms define two further models which are
labelled as STAR and SnTAR depending on if trend is included, or not respectively
in the mean Eq. (5.1).

5.2.2.2 Random Forest Regression

Random Forest is a popular machine learning method for classification and
regression, based on an ensemble of decision trees (Breiman 2001; Breiman et al.
1984). The ensemble consists of a number of estimators, the number of decision trees
in the forest, each of which uses a bootstrap sample of the observations with a subset
of features. Each decision tree is considered a weak predictor, but the collection of
the trees gives rise to an accurate value (regression) or class (classification). The
number of trees in the ensemble is an important parameter and must be tuned to its
optimal value via cross-validation. Random Forest Regression (RFR) has been
considered for time-series prediction and particularly for short-term load forecasting
in (Dudek 2014; Gajowniczek and Zbkowski 2017; Lahouar and Slama 2015).

Most of the machine learning algorithms can be expressed in terms of the
real-valued observations Y ¼ Y1; . . .; YNf g and their features X ¼ X1; . . .;XNf g,
where Xi ¼ x1; . . .; xmð Þ 2 R

m is the feature vector for the observation i. For the
case study presented here, Y ¼ d 1ð Þ; . . .; d Nð Þf g. The features of each observation
are split into three main categories. To forecast time t at horizon h, i.e. last mon-
itored value is at time t � h, the features of the model are:

• Lag. The H ¼ 48 (a day) past values are considered giving the lag features

X 1ð Þ
t hð Þ ¼ d t � hð Þ; d t � h� 1ð Þ; . . .; d t � h� 47ð Þ.

• Past weeks. The load at the same time of the week for the past four weeks. The

features are X 2ð Þ
t ¼ dðt � nwð Þ; d t � 2nwð Þ; d t � 3nwð Þ; d t � 4nwð ÞÞ, where nw is

the number of observations in a week-period. For load data at half-hourly res-
olution, nw ¼ 336.

• The time of the day. This is a scalar feature, 1�X 3ð Þ
t �H.

The final feature vector for an observation at time t at horizon h is

Xt hð Þ ¼ X 1ð Þ
t hð Þ; X 2ð Þ

t ; X 3ð Þ
t

� �
:

To select the optimal number of trees in the random forest, a validation period of
one week prior to the test period is used. Ensembles with varying number of trees
from 5 to 100 in increments of 5 are considered. Figure 5.4 shows the error
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(MAPE) as a function of the number of trees for feeder L2. Similar results hold for
the other feeders too. Clearly the MAPE error steeply decreases as the number of
trees increases beyond a few tens of trees and then fluctuates around a constant
value for a large number of trees. In conclusion, considering all feeders, a value of
30 trees in the ensemble of a Random Forest is optimal between forecasting
accuracy and performance, as larger numbers of trees make the algorithm com-
putationally expensive.

Using the optimal number of trees, the final Random Forest forecast is trained
using one year prior to the test period, 1st November 2014 to 31st October 2015.
A total of 96 Random Forest Regression models are trained, one for each horizon in
the test period.

5.2.2.3 Support Vector Regression

Support Vector Regression (SVR) is a popular machine learning method used for
time-series prediction (Hong 2009; Hu et al. 2013; Sapankevych and Sankar 2009;
TIAN et al. 2004; Trkay and Demren 2011). As defined in the previous section,
given a set of observations and features Yi;Xið Þf g; i ¼ 1; . . .;N, the SVR algorithm
aims to fit a linear (5.3), or non-linear (5.4) regression function f (Drucker et al.
1997; Vapnik 1995),

bY ¼ f Xð Þ ¼ w � Xþ b; ð5:3Þ

bY ¼ f Xð Þ ¼ w � / Xð Þþ b; ð5:4Þ

Fig. 5.4 MAPE error score as a function of the number of trees in the ensemble for one-half-hour
ahead forecast of feeder L2
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with bY ¼ bY1; . . .; bYN

n o
. If the input data is non-linear in the feature space, the use

of a kernel function, / �ð Þ, maps the non-linear features X to a higher dimensional
feature space and linear regression is performed in the transformed feature space.
The coefficients w and b are estimated by minimising the regularised risk function

R Cð Þ ¼ C
N

XN
i¼1

Le Yi; bYi

� �
þ wk k2

2
; ð5:5Þ

where Le Yi; bYi

� �
is the e-insensitive loss function defined by

Le Yi; bYi

� �
¼

0; Yi � bYi

			 			� e;

Yi � bYi

			 			� e; otherwise:

8<: ð5:6Þ

Support Vector Regression has two free parameters, C and e, that require tuning.
C is called as the regularisation constant and controls the flatness (or complexity) of
the model, a trade-off between empirical error and model flatness, and e determines
the amount of error allowed by the model. In addition, the choice of kernel / �ð Þ is
also important for the final model. The parameter selection is a challenging task and
several advanced methods, based on evolutionary algorithms, have been developed
to try and solve this problem, see Hong (2009), Hu et al. (2013). These methods go
beyond the scope of this study and hence the parameters are instead found via a grid
search. To simplify the task the error allowance term is set to e ¼ 0:1, and only
three kernels are considered for the regression, a linear, a radial basis function
(RBF) and a polynomial. The regularisation constant C is restricted to vary from 0.1
to 100. The RBF kernel has an extra free parameter, c, which controls the width of
the kernel, and varies from 0.01 to 100. Finally, the degree of the polynomial kernel
requires tuning too, changing from 2 to 5.

A validation of the results is performed using the week prior to the test-period.
We find that the linear kernel outperforms the RBF and polynomial kernels for all
values of the C parameter. With the linear kernel, large values of C[ 20 seem to
reduce the model accuracy as shown in Fig. 5.5 for feeder L1. Similar conclusions
hold for all feeders. As a result, the regularisation constant is fixed at C ¼ 1 for all
feeders.

Since the Support Vector Regression forecast is computationally more intensive
than the Random Forest Regression, a shorter training period is used corresponding
to eight weeks prior to the test period, i.e. 5th November 2015 to 31st October
2015. Similar to the Random Forest Regression forecast, 96 SVR models are
trained, one for each horizon in the test period. This method will be denoted as the
SVR method.
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5.2.2.4 Benchmark Methods

To understand the accuracy and main drivers of the forecast methods, informative
benchmarks are required. In this section, standard but accurate forecast methods are
described which will be used to compare to the more complicated methods
described in the previous sections.

The first simple model is defined as

d tð Þ ¼ 1
p

Xp
k¼1

dðt � knwÞ; ð5:7Þ

where nw ¼ 336 is the number of time steps in a weekly period. In other words, a
weekly average estimate is made for each week. Testing for p = 1, ..., 8 shows that
using p = 5 weeks of data to construct the average produces the most accurate. The
model is denoted 7SAV. This model is mainly motivated by the fact that only recent
past is important for the actual behaviour.

The other benchmark we consider is the persistence model, which is a special
case of the average model above but only using the last week as the current week

d tð Þ ¼ d t � nwð Þ: ð5:8Þ

This special case is denoted LW.

5.2.3 Analysis of Forecasts

In this section the accuracy of the forecasts is analysed. A standard error measure,
the mean absolute percentage error (MAPE), is used given by

Fig. 5.5 MAPE error score
against the regularisation
constant C for one-half-hour
ahead forecast of feeder L1
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MAPE a; fð Þ ¼ 1
n

Xn
k¼1

ak � fkj j
akj j ; ð5:9Þ

where a ¼ a1; . . .; anð ÞT2 R
n is the actual/observation and f ¼ f1; . . .; fnð ÞT2 R

n is
the estimate/forecast. Although there are some drawbacks to this method, the
MAPE gives a simple way of comparing and combining the errors of feeders of
different sizes, since the differences are normalised by the size of the demand. The
results presented here are for the entire two-week test period.

Table 5.2 shows the MAPE scores for day ahead forecasts for each method and
each feeder considered in this trial. The best methods tend to be STAR and SnTAR
methods with large improvements over the simple average versions ST and SnT
respectively. However, the SVR method also performs well, being the best forecast
for feeder S2. For feeder S3, which is the basic linear seasonal model without trend
(SnT), adding the autoregressive effects (SnTAR) reduces the accuracy of the
forecast. This suggests there is not a strong correlation with recent time periods for
this. Another surprising result is the reasonably good performance of the simple
average forecast, 7SAV. In addition, it is clear that some feeders are relatively easy
to forecast compare to others. For example, feeders L1 and L2 all have very good
forecasts, often with less than 12% errors. There does not seem to be a clear
relationship between size of feeder and the accuracy of the forecast, although it has
been shown that often larger feeders are on average easier to forecast (Yunusov
et al. 2017). We expect the performance of the day ahead storage plan to perform
best with the methods with the best forecast accuracy. On average over all the
feeders the SnTAR method has the best day ahead forecast accuracy with a MAPE
of 16.31%, just ahead of STAR with 16.40%. The average errors across all feeders
are shown in Table 5.3.

Table 5.2 MAPE for day ahead forecasts

Feeder Methods

LW 7SAV ST STAR SnT SnTAR RFR SVR

S1 20.20 15.54 15.29 14.98 16.10 15.24 17.41 16.53

S2 34.72 26.81 29.15 28.28 28.75 27.97 38.86 26.75
S3 24.49 18.97 17.49 17.57 17.44 17.86 25.20 21.06

M1 21.11 14.78 15.94 13.69 16.39 13.90 16.73 14.98

M2 27.92 25.69 29.02 24.33 29.19 23.92 33.03 38.43

M3 17.77 13.58 13.98 12.76 13.45 12.43 16.32 13.87

L1 15.04 11.30 10.71 10.13 11.38 10.44 14.81 12.18

L2 30.86 10.76 13.75 11.22 14.02 11.27 12.83 11.33

L3 18.63 15.37 17.48 14.62 15.96 13.71 22.79 19.33

The best score for each feeder is highlighted in bold
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Examples of two accurate day-ahead forecasts are shown in Fig. 5.6 for the first
two days of the test set for feeder L1. Most methods scored MAPEs of less than 15%
on average for this feeder. Even the naive LW forecasts performs satisfactorily. In
contrast M2 is less accurately estimated, with errors greater than 20% MAPE for all
methods. An example of the day ahead forecasts for M2 are shown in Fig. 5.7.

Fig. 5.6 Example of 2 day ahead forecasts for selected methods including benchmark LW for
feeder L1. Actual demand is shaded
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Fig. 5.7 Example of 2 day ahead forecasts for selected methods including benchmark 7SAV for
feeder M2. Actual demand is shaded

Table 5.3 The average day-ahead MAPE for all 9 feeders

Feeder Methods

LW 7SAV ST STAR SnT SnTAR RFR SVR

MAPE (%) 23.42 16.98 18.09 16.40 18.08 16.31 21.01 19.38
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The forecast errors for each rolling forecast method are shown in Table 5.4 over
all horizons (up to 96 half hours ahead) and starting from all time periods in the
14-day period. Similarly, to the day ahead forecasts the STAR and SnTAR methods
are the best performing. This suggests that these methods should give the best peak
reduction when implemented with the rolling MPC control.

The accuracy of the STAR method with forecast horizon is shown in more detail
in Fig. 5.8 for three feeders. Similar results are given for the other feeders. The
typical features are the reduced accuracy as the horizon increases before typically
stabilising around a fixed value. As the figure shows the most rapid drop off in
accuracy is within the first 10 half hour time periods. This means that within the
rolling control, considering horizons beyond 5 h, we can be less certain about the
demand then within the first few half hours.

Table 5.4 MAPE over all
horizons (rolling forecasts
only)

Feeder Methods

STAR SnTAR RFR SVR

S1 15.10 15.45 20.52 21.09

S2 28.23 27.81 37.25 37.20

S3 17.29 17.44 27.22 29.07

M1 14.08 14.22 18.78 18.63

M2 25.04 24.85 36.34 34.87

M3 13.27 12.85 18.28 17.12

L1 10.03 10.39 15.77 16.06

L2 11.49 11.84 13.07 11.83

L3 15.59 14.64 21.88 19.16

Best forecasts for each feeder are in bold

Fig. 5.8 MAPE with Horizon for the STAR forecast method for 3 feeders
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5.2.4 Discussion

From the analysis and comparison performed in the previous section, we observe
that the seasonal method with auto-regressive terms often outperforms the machine
learning methods, the SVR and RFR. The latter methods can be further improved in
many ways.

First, both machine learning methods considered in this chapter have a few more
parameters that require tuning. The RFR has several parameters that control the
growth of the trees in the forest, such as the maximum depth of the trees, splitting
criteria at the nodes, etc. The SVR requires tuning of the e parameter that controls
the amount of error. A value too small and the model overfits the training obser-
vations, a value too large and the model misses essential patterns and correlations.
Parameter selection for such methods is a non-trivial task and advanced evolu-
tionary algorithms are often applied to the problem. However, this is beyond the
scope of this chapter.

Second, the addition of further features, such as past mean daily demand, the day
of the week, might also improve these models.

Finally, these models are quite accurate for one time-step ahead prediction.
Instead of having one model per horizon, a single model can be trained on one
time-step ahead observations and the forecast values can be used for the rolling
forecast and horizons greater than one.

5.3 Application of Forecasts in Energy Storage Control

The control methodology for an energy storage system is governed by the energy
storage technology, rating and capacity, location within the network levels and
objective of the energy storage device. In this section, three control methods are
applied to a simulated Battery Energy Storage System (BESS) sized to deal with the
peak demand using demand data for a set of Low Voltage (LV) feeders. The peak
reduction functionality for LV networks gives a relief to the thermal constraints in
the LV feeder and the secondary transformer. Furthermore, choosing an appropriate
location of the BESS on the LV feeder could also improve the voltage profile and
reduce losses (Yunusov et al. 2016).

Three energy storage control algorithms are considered: Fixed Day-ahead
Scheduler (FDS), Model Predictive Control (MPC) with persistent error model and
MPC with rolling forecast model. As a benchmark method, Set-Point Control
(SPC) is also considered. Each control methods is assessed on each individual day
separately. The output of each control method is a charge-discharge schedule
matching the temporal resolution of the forecasts (i.e. 30 min).

To ensure fair comparison of the control methods, the BESS is sized to deal with
20% of the actual peak demand on each day of the study period for each of the
feeders (i.e. assuming perfect foresight for the purpose of determining the required
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BESS configuration). The range of BESS configuration values across all days for
each feeder is given in Table 5.5. Each day in the study period is treated individ-
ually to assess the ability of the algorithms to deal with the peak of a day. BESS is
assumed to be at 50% state-of-charge at the midnight.

5.3.1 Set-Point Control

SPC is a control method that dictates the energy storage when to charge and
discharge in reaction to the measured signal crossing a particular threshold—the
setpoint. In the case presented in this section, the controller is monitoring the power
flow at the head of the feeder and maintains the power flow at a level specified by
the set-point. If the power flow is above the set-point the controller instructs the
BESS to inject power into the network to maintain the power flow as close to the
set-point as possible. Same applies if the power flow is below the set-point con-
sequently charging the BESS to its full capacity.

Operation of the SPC in subject to:

Cmin � c tð Þ�Cmax; ð5:10Þ

Pmin � p tð Þ�Pmax; ð5:11Þ

c tþ 1ð Þ ¼ c tð Þþ p tð Þl� kð Þs; ð5:12Þ

l ¼ l; if p tð Þ� 0;
1
l ; if p tð Þ\0;

�
ð5:13Þ

where Cmin and Cmax are the minimum and maximum capacity, respectively, in
kWh, Pmin and Pmax are minimum and maximum power rating in kW for charge and
discharge, respectively, l is the efficiency (96% in each direction), k is the con-
tinuous losses within BESS (assumed to be 100 W), s is the control period duration
in hours (in this study 0.5), p tð Þ is the BESS power scheduled for time step t and

Table 5.5 Power rating and
energy storage capacity of
BESS allocated to each
feeder, given as a range for
maximum and minimum
values across the 14 days of
the test period

Feeder kW kWh

S1 3.98–5.9 2.55–16.17

S2 5.78–8.32 3.2–27.9

S3 10.2–12.84 11.08–39.27

M1 8.26–11.64 11.64–85.32

M2 11.04–15.54 7.25–71.61

M3 16.04–19.56 9.56–82.3

L1 21.7–32.26 76.02–108.72

L2 9.34–37.36 74.72–362.12

L3 16.66–22.58 25.26–80.64
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c tð Þ is the energy stored in the BESS at the end of the time period t, during which
p tð Þ was applied.

Effectively, SPC for network support applications has a limited performance as it
cannot anticipate the future states (Hida et al. 2010). Furthermore, the performance
is driven by carefully chosen set-point corresponding to the rating and capacity of
the BESS. As the result, there is a danger of imposing additional peaks from
charging for multiple BESS and not having sufficient capacity to deal with the peak
at the given threshold (Fig. 5.9). The simplicity of the SPC also means that it is not
possible to impose limits on the depth of discharge and the number of
charge-discharge cycles. Unnecessary cycling of BESS could lead to shorter life
span and, hence, lower cost efficiency.

For this section the set-point value for SPC is chosen per day using actual
demand values per feeder. Using actual demand means that the SPC has a perfect
foresight and will provide 20% peak reduction as long as there is a sufficient energy
storage and peaks are not in close proximity.

5.3.2 Fixed Day-Ahead Schedule

Fixed day-head scheduling offers the combination of simplicity and day ahead
planning the operation of the BESS for the future states. Assuming 100% accuracy
of the forecasts, fixed-day ahead schedule is a good measure of forecast accuracy on
the timing of the peaks.

The aim of the schedule optimisation is to find a schedule, p, for the forecasted
demand, df , over a period of N half-hours (in this case 48), such that the cost
function in (5.14) is minimised:
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Fig. 5.9 Example of SPC
failing to meet the
requirements for peak
reduction at the given
set-point threshold
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F p; df

 � ¼ np p; df


 �þ ancd pð Þ
w

þ bnsc cð Þ
w

þ cnts cð Þ
w

; ð5:14Þ

subject to constraints given in (5.10)–(5.13). np p; df

 �

is the Peak-to-Average cost
component for peak reduction, self-normalised to the initial conditions, defined as:

np p; df

 � ¼

maxNt¼1 d tð Þþ p tð Þð ÞPN

t¼1
d tð Þþ p tð Þ

� �
N

0BB@
1CCA

2

np pi; df

 � : ð5:15Þ

Cost component, ncd , represents the cost of charge dynamics, aimed at
smoothing the charging of energy storage and is defined as:

ncd ¼
max dI 0;pmax½ � pð Þ

dt

			 			� �
pmax

: ð5:16Þ

The storage cycling cost component, nsc, aims to allow at most only one full
charge and discharge cycle per day and is defined as:

nsc ¼
1
2

XN
t¼1

dI 0;pmaxð � cð Þ
dt

				 				þ XN
t¼1

dI �pmax;0½ Þ cð Þ
dt

				 				
 !

: ð5:17Þ

At the end of the schedule, the energy should reach 50% State-of-Charge (SoC),
which is achieved with the target SoC cost component, nts, defined as:

nts cð Þ ¼ c Nð Þ � 0:5Cmaxð Þ2
nts cið Þ : ð5:18Þ

Scaling factor, w, ensures that sum of cost components ncd , nsc and nts is at the
same scale as np:

w ¼ aþ bþ c; where a; b; c 2 0; 1½ �: ð5:19Þ

It is unavoidable to have errors in the forecast and it is possible that the
day-ahead fixed schedule could increase the actual peak by instructing the BESS to
charge during the peak. To reduce the risk of increasing the peaks, it would be
beneficial to update the forecast using the latest observations and calculate the new
schedule with every update.
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5.3.3 Model Predictive Control

MPC, also known as receding horizon control, computes an optimal schedule for
the duration of the horizon by updating the demand model with recent observations
and deploying only the first control value from the current horizon (García et al.
1989). Once the control for the first time step is deployed and observation for the
current time step is received, the controller moves to the next horizon to compute a
new optimal schedule on the updated demand model. Updates on the demand
model could improve the accuracy of the forecast and hence increase the likelihood
of successful peak reduction. Receding horizon control also has an advantage of
reducing peaks in each horizon, allowing peak reductions both at the beginning of
the 24-period and at the end.

Typically, MPC includes a model to predict the state of the system for the
duration of the horizon. In the case of energy storage control, it is not always
possible since the demand forecasts could be provided by an external system and
the forecasts cannot be updated using the original model. In this section we consider
two methods for updating the demand model: (i) persistent error update on a fixed
day-ahead forecast and (ii) rolling demand forecast using demand modelling. The
first method assumes strong correlation in errors between the forecast and updates
the forecast within the control horizon based on the forecast error in the previous
time step (Fig. 5.11) (Yunusov et al. 2017). System diagram for the MPC with
persistent error model (MPC-PE) is depicted in Fig. 5.10.

Fig. 5.11 Demand forecast update using persistent error model

Fig. 5.10 Schematic of the MPC system with persistent error model
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The second method uses access to the forecast models to update the forecast
profile based on the latest observations. At each time step, the new forecast is
generated and used for scheduling the operation of the BESS for the duration of
control horizon. System diagram for the MPC with rolling forecasts is depicted in
Fig. 5.12.

For both MPC methods, MPC with persistent error model (MPC-PE) and MPC
with rolling model, BESS scheduling is achieved through minimisation of the cost
function defined in Eq. (5.14) subject to constraints given in (5.10)–(5.13).
Schedule is optimised only for the duration of the control window of 27 half-hours.
Such length of the control window captures the evening peak from early morning
hours, allowing the BESS to be charged during the periods on low demand.

As a result, the storage cycling component given in (5.17) has to be scaled down
to a proportion of the control window to the half-hours in the day. To ensure that
the cost associated with the target state-of-charge is reflected appropriately, the cost
component defined in (5.18) is only contributing to the total cost function when the
end of the day is included in the control window.

The cost function weighting, a, b and c are fixed for both variants of MPC and
have values of 0.5, 1 and 1, respectively.

5.3.4 Results

Figure 5.13 demonstrates the operation of the control methods assuming perfect
foresight of the demand the on feeder S1.

SPC immediately starts to charge the BESS as the demand is below the set-point
of 18.4 kW. As the BESS is fully charged, SPC performs no action until the first
peak at 5:30 when it reduced the main peak of the day from 23 kW down to
18.4 kW—the set-point value for this day and this feeder. In contrast to SPC, both
FDS and MPC are gradually charging overnight, ensuring not to create sudden
increase in demand (imposed by the cost component in (5.16)). The first peak of the
day is also reduced by 4.6 kW (20% peak reduction).

Immediately after the peak, SPC instructs the BESS to charge and brings the
state-of-charge to 100%. FDS and MPC, again slowly recovering the energy used

Fig. 5.12 Schematic of the MPC system with rolling forecast model
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for the first peak. At 11:00, MPC shows its first difference to FDS. FDS is only
capable of reducing the highest peak of the day, whereas MPC has reduced the peak
at 11 AM by an additional 2 kW due to the receding horizon operating outside the
area of the main peak. FDS and SPC have reduced the evening peak at 17:30 from
21.4 kW down to 18.4 kW (14%). For the FDS, the evening peak cannot be
reduced below the morning peak as the cost function is concerned with the highest
peak of the day. SPC will only reduce the peak to the level of the set-point. MPC,
however, achieved a 4.6 kW reduction (limited by the rating of the BESS) on the
peak (21.5%) since this peak is considered separately from the morning peak. MPC
also continued to smooth out the demand profile by reducing peaks at 20:30 and
22:00 by 3.1 and 2 kW respectively, whereas the SPC and FDS took no action.
Finally, both FDS and MPC reached near 50% state of charge at the end of the day
and with SPC BESS remained at 100%.

Figure 5.14 gives an example of several control methods applied to SnTAR
forecast compared against the SPC and best possible of FDS and MPC. The per-
formance of the both fixed day-ahead (SnTAR-f) and rolling (SnTAR-r) forecast is
evident since the general shape of the profile is captured and the timing of the peak
is off by a half-hour. The shape of resultant profiles from FDS, MPC-PE and MPC
is consistent with the shape of the forecasts, meaning their performance on peak
reduction is similar, 12.8, 15.43 and 16.4% respectively.

Average peak reduction performance for each feeder for FDS on all day-ahead
forecasts is given in Table 5.6. Under the chosen perfect conditions, SPC provides
the highest peak reduction for all feeders. Such performance is expected since the

Fig. 5.13 Top: actual demand profile on feeder S1 compared to SPC, best possible peak reduction
based on FDS and MPC. Bottom: corresponding state-of-charge profile
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SPC and BESS are configured to achieve 20% reductions on the highest peaks.
Peak reduction below 20% is caused by close proximity of smaller peaks (albeit still
above the set-point values) to the main peak. Limitation in capacity does not allow
the SPC to reduce the main peak to the expected values. Best possible FDS on
average for each feeder is below the expected peak-reduction values (see Sect. 5.3.5
for discussion on this discrepancy).

Overall, feeders with lower demand (S1 to M2) have achieved relatively poor
peak reduction for under the FDS method. It is likely due to the low number of
customers on those feeders and, hence, the higher variability in demand, which is
more difficult to forecast accurately. In practice, though, those feeders typically
would not be experiencing stress with such level of demand and unlikely to be
considered for deployment of BESS as reinforcement. Feeder L2 also demonstrates
very poor performance in peak reduction for all control methods. Predominantly
supplying commercial loads, feeder L2 has a distinctive demand profile which
includes high variability during the day and individual short-term spikes of high
demand.

On average FDS have performed the best with the fixed day-ahead variant of
SnTAR, closely followed by fixed day-ahead variant of STAR. This is consistent
with the accuracy of the forecasts utilised as shown in Table 5.3 with STAR and
SnTAR, on average, giving the best estimates.

Fig. 5.14 Top: actual demand profile on feeder M3 compared to the fixed and rolling variants of
SnTAR, resultant profile from SPC, best possible peak reduction based on FDS, MPC-PE on
day-ahead variant of SnTAR and MPC on rolling variant of SnTAR. Bottom: corresponding
state-of-charge profiles
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The corresponding average peak reduction values for each feeder using MPC
method (both persistent error mode on fixed day-ahead forecasts and standard MPC
with rolling forecasts) are given in Table 5.7.

Similarly to FDS, feeders S1 to M2 and L2 achieved lower peak reduction
compared to other feeders. Overall, on average MPC have performed better than
FDS, except for L2. Comparing the best peak reductions for each feeder typically
utilising the MPC reduces the peak by an extra 18%, and for M1 and M2 there is in
fact an extra 42% reduction in the peak size. Interestingly, MPC using the persistent
error model out performs, on average, the MPC with rolling forecasts in reducing
the peaks on feeder L1. Further also note that despite some forecasts being fixed,
e.g. SnT and ST, the MPC-PE (with persistent error) still improves the peak
reduction. Hence for this method the improvement is mainly due to the extra
information becoming available to the controller and potentially also the increased
emphasis on the peak due to the error correction.

We would perhaps expect the rolling forecast to perform even better than the day
ahead fixed control but as shown in Fig. 5.8 the forecast accuracy for the rolling
forecast drops off rapidly beyond 10 half hours and hence is less effective for the 27
half hour horizon we deploy here.

On average across all feeders, the MPC with the rolling SnTAR performs the
best, closely followed by MPC-PE with the day-ahead variant of STAR.

5.3.5 Discussion

This study has applied a number of assumptions that would not be possible in the
real-world deployment of the BESS. The BESS configuration and set-point values
selection was based on the perfect foresight of demand. In practice, of course, the

Table 5.6 The overall peak reduction (%) with FDS per feeder for each day-ahead forecast
(including day-ahead variant of the rolling forecasts)

Feeder SPC Best LW 7SAV ST SnT STAR SnTAR RFR SVR

S1 19.85 19.36 0.75 0.83 2 1.65 2 1.82 1.86 1.56

S2 19.9 18.83 0.44 2.41 5.09 5 4.84 4.63 2.63 3.34

S3 20 19.91 3.03 5.39 7.86 8.2 7.92 7.9 4.65 7.34

M1 20 18.75 2.42 2.03 4.28 3.78 3.76 3.71 4.15 2.36

M2 19.97 19.41 2.35 4.56 1.8 1.65 3.95 4.21 1.37 4.24

M3 20 19.76 7.57 10.14 10.56 10.59 10.43 10.58 6.8 10.5

L1 20 19.12 7.91 7.74 12.23 12.42 11.16 11.83 11.37 9.7

L2 20 13.68 1.94 1.12 1.12 1.73 2.75 2.09 3.22 0.25

L3 20 19.49 6.02 7.89 8.36 9.12 9.1 9.81 6.04 8.97

Ave. 19.97 18.7 3.52 4.65 5.92 6.02 6.21 6.29 4.68 5.36

Best results for each feeder are highlighted in bold
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perfect foresight of demand would not be available. Instead, suitable forecasts of
future demand would guide the selection of the necessary BESS configuration for
each feeder in consideration, taking into account the network safety margins and the
assessment of low probability high risk events. Similarly, to achieve the presented
performance of SPC it would be necessary to select a significantly oversized BESS,
ensuring that all possible peaks on the feeder are equipped for. Such arrangement is
likely to be economically inefficient. However, SPC does have an appropriate
application for feeders with low demand and high variability that require rein-
forcement. It could be more cost effective to deploy a larger BESS with SPC to
ensure that there is enough capacity to deal with a wide range of peaks.

Looking at Table 5.6, the reader would expect the best possible performance of
FDS (assuming perfect foresight) to be on par with the SPC. However, unlike FDS
and MPC, SPC does not take care of the BESS health and does not consider the
context of the network—two essential aspects of application and deployment of
BESS on real networks. SPC performs better than FDS under a number of con-
ditions because of the complexity of the cost function given in Eq. (5.14) and the
schedule optimisation method. The cost function components are normalised to the
initial conditions and constructed from two types: peak-reduction (given in
Eq. (5.15)) and non-peak reduction. The non-peak reduction components of the
cost functions (charge dynamics in Eq. (5.16), reaching 50% target state-of-charge
as defined in Eq. (5.18) and aiming for no more than one full charge-discharge
cycle a day, Eq. (5.17)) are weighted to have the same range as the peak reduction
component. This could result in a situation where the non-peak reduction compo-
nents have greater cost than the peak reduction and the peak reduction performance
is then sacrificed in order to satisfy sum of the non-peak reduction costs.

Another important aspect concerning the application and deployment (which
applies to both MPC and SPC) is that with FDS it is not necessary to have LV
substation monitoring infrastructure (which could be costly for the network oper-
ator) in order to provide the signal (for SPC) or the feedback (for MCP). Instead of
feeder level demand, FDS could be based on the aggregated demand up-scaled from
smart meter data (Giasemidis et al. 2017). To provide wider network support, FDS
could also be based on a demand forecast at a higher level of the network and
coordinate multiple BESS on multiple LV feeders to achieve peak reduction at, for
instance, 11 kV feeder or substation.

Finally, due to the natural variability of demand the peak demand occurring on
the network would be significantly higher and shorter in duration than the
half-hourly average demand used in this chapter. In practice, the schedules pre-
sented and discussed in this chapter would be used as half-hourly set-points for a
highspeed control system located on the physical BESS, which will be issuing
instruction to BESS in near-real-time. Furthermore, the half-hourly demand profiles
used in this chapter are aggregates of demand across the three phases of low voltage
feeders. Inequality in the number of customers per phase and asynchronous cus-
tomer behaviour provides an opportunity for further peak reduction by the means of
phase-balancing function of the BESS power electronics.
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Part III
Economic Analysis



Chapter 6
Modeling and Economic Evaluation of PV
Net-Metering and Self-consumption
Schemes

Georgios C. Christoforidis and Ioannis P. Panapakidis

Abstract Due to the high rate of Photovoltaics (PV) installations in many coun-
tries, the need for data processing and exploitation is a crucial factor that determines
the success of the economic profitability of the installation. Machine learning is a
family of tools for information retrieval and knowledge extraction. In the present
study, clustering is applied to a set of PV power generation curves that correspond
to locational distributed PV installations with the aim of formulating the PV gen-
eration profiles and PV clusters. Next, a techno-economic assessment of different
policy schemes is applied to selected cluster. The scope is to reduce the need for
conducting economic analyses per PV site; grouping PV installations in homoge-
nous clusters can lead to reduced effort in the phase of techno-economic evaluation
of the overall operation of the PV technology.

6.1 Introduction

The rapid advancement of Smart Grids and Microgrids technologies is evident by
numerous researchers, surveys, pilots programs and practical applications (Zhang
et al. 2017; Ali et al. 2017). These technologies include small-scaled generation
units, storage and flexible loads. Renewable Energy Resources (RES) are consid-
ered as an important asset in materializing the distributed generation systems that
compose the core of the Smart Grids and Microgrids (Eltigani and Masri 2015).
During the last years, the utilization of RES and especially Photovoltaics (PV) have
witnessed a vast growth in many countries, making RES power an important
contributor in electricity generation across the globe (PVPS 2016). This was due to
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several factors such as government incentives and economic motives, public’s
environmental awareness, wide variety of size installations, high solar resource
availability in many locations, potential of hybridization with other sources and
others (Mauleón 2017). Solar technologies are considered as an efficient option to
cope with various problems that the global energy sector faces, such as environ-
mental impact, capacity shortage, covering of isolated loads and others.
Nevertheless, distributed RES, such as PV systems, have a negative impact on the
operation of low and medium voltage grids (Enslin 2014). Furthermore, RES units
influence the operational margins of the other generation units and provide obsta-
cles in the secure and reliable energy management of Smart Grids (Martinez-Anido
et al. 2016).

In order to motivate consumers and other interested parties to invest in PV
installations, several support mechanisms have been successfully implemented in
various countries, such as Feed-in-Tariffs (FiTs) (Mabee et al. 2012; Pyrgou et al.
2016; Ye et al. 2017). However, FiTs have exhausted their role in most cases, due
to the fact that they indirectly cross-subsidy PV owners at the expense of regular
electricity consumers. Thus, they have been disappearing (or considerably reduced)
over the past years in most countries. This fact has led to the decline in new
installations in Europe since 2013 (EurObserver 2014). Therefore, regulation
authorities and market players have been seeking ways to revitalize the PV market.
Net-Metering (NEM) is a support mechanism for PV systems specializing mostly in
the residential sector, which have been utilized in considerably less countries than
the FiT scheme. The consumer is transformed into “prosumer”. This policy enables
the consumer to hold an active role in competitive energy markets (Ottesen et al.
2016). Under NEM, the electrical grid acts as a virtual storage unit. An offset takes
place between the PV generated electricity and the consumption. The difference
between the amounts of consumption and generation is called “netting”. If netting is
positive, i.e. the PV generates an amount that covers the consumption and excess
electricity appears, the excess electricity is fed to the grid. Depending of the NEM
scheme, this amount can be compensated or not. In the simplest NEM formulation
(termed “full NEM”), if the netting is negative, the prosumer is charged only with
the extra amount that imports from the grid. Although NEM has the potential to
utilize efficiently the PV system in terms of lowering the cost of the electricity
payments from the prosumer perspective, the current landscape in EU does not
display large adoption. Many questions arise for NEM implementation (Yamamoto
2012; Poullikkas 2013; Satchwell et al. 2015; Bertsch et al. 2017). For instance,
will the excess electricity fed to the grid be compensated or transferred to the next
billing period and used as credit, what is the compensation price, should the pro-
sumer be charged for the imported electricity to provide a motive for higher
self-consumption (a type of partial NEM or net-billing), and others. Another type of
support mechanism is self-consumption (Martín-Chivelet and Montero-Gómez
2017). In this case, all the PV electricity is firstly used to cover the consumption,
while excess energy is either compensated based on the electricity market prices or
not compensated at all. This mechanism is the most favorable for the rest consumers
as it does not heavily subsidy PV owners, apart from providing non-monetary
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incentives (e.g. priority to grid exporting or offering a small premium above real
time electricity prices).

This study presents a methodology for the techno-economic evaluation of NEM
and self-consumption schemes. The methodology is composed of two stages. The
1st stage refers to the application of clustering in order to form residential PV
clusters. The 2nd stages presents a comprehensive economic model for examining
the potential of PV support mechanism on a specific time horizon. The scope is to
form clusters that include similar PV systems in terms of generation patterns.
Instead of applying an economic feasibility analysis for each installation, the
analysis can be applied for 1 representative installation per cluster. This approach
can be applied to cases with a large number of installations that are geographically
distributed. In the present study, the data correspond to actual installation of resi-
dential PVs. However, the methodology is applicable in cases where only solar
irradiation and consumption data are available. This concept allows the interested
party to assess the potential of a PV installation in various regions. Note that apart
from the climatic conditions, the various regions may differ in terms of distribution
grid characteristics such as topology, number of connection points and others.
Hence, if it is foreseen by the legislation of the energy market, region specific
network access tariffs can be applied.

6.2 Machine Learning Application

6.2.1 PV Data Modeling

In the present study, the data set under study is composed by 11 residential PV
installations located in Northern Greece (i.e. the 10 installations) and in Aegean Sea
(i.e. 1 installation). The PVs of Northern Greece are installed in the following areas:
Agios Petros, Ierissos, Imathia, Panorama, Peraia, Polygiros, Profitis, Serres,
Vrasna and Nea Mesimvria. Figure 6.1 shows a map of the locations. Figure 6.2
displays the installation of Ios island, located in the Aegean sea. The average
installed capacity of the 11 systems is 9.90 kWp. The available set includes power
generation data that cover the period of a complete year. The time interval for data
collection is 15 min. The generation data modeling refers to the following steps:
Data pre-processing, data representation and information retrieval. Data
pre-processing is not obligatory. This step refers to erroneous data removal, such as
extremely low values and outliers, data missing data filling and others. In the
present set, no pre-processing took place since no erroneous or other problematic
data entries were detected.

Data representation refers to the type of mathematical format that is used for data
expression. The most common approach is to simulate the data without any further
transformation. In the present study we deal with daily power generation curves.
The term “pattern” is used to refer to D-dimensional vectors that represent the daily
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Fig. 6.1 Locations of the PV installations in Northern Greece

Fig. 6.2 Location of the PV installation in Aegean island
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power curves. Let p ¼ 1; . . .;P with P ¼ 11 denote the number of PV installations
and m ¼ 1; . . .;M with M ¼ 365 the number of available daily power curves. For
each installation, a set of daily power curves is formed denoted as Xp ¼ fxpm;m ¼
1; . . .;M; p ¼ 1; . . .;Pg; with:

xpm ¼ ½xpm1; . . .; xpmi�T ð6:1Þ

where i ¼ 1; . . .;D is the dimension, i.e. the number of elements. In the present
study, it is D ¼ 96:

The information retrieval step refers to the extraction of exploitable information
from the data set for further applications. Here, the application is the
techno-economic assessment. Other applications may refer to PV power forecast-
ing, harmonic distortion due to PVs, power flow studies and others. For this step,
we utilize an unsupervised machine learning tool and namely, a partitional clus-
tering algorithm. The scope is to formulate a descriptive model of the data by
extracting the PV power profiles.

Clustering is a data-driven method. It is suitable in problems where limited or
complete absence of prior information about the data structure is available (Xu and
Wunsch2008).A clustering algorithmaims to track the similarities between the patterns
and group together patterns of high similarity. The similarity estimation is held into the
D-dimensional feature space. While clustering operates based on similarities, the
patterns magnitude is not relevant. In fact it may cause obstacles in the robustness of
the operation. Thus, prior to the clustering, all data should be normalized. For each
installation, we use the rated power PpPV;rated as the basis for the normalization.

By dividing each element of the vector xpm with PpPV;rated we obtain a new set of
daily load power curves with normalized values within the [0,1] range, denoted as
Yp ¼ fypm;m ¼ 1; ::;M; p ¼ 1; ::;Pg; with:

ypm ¼ ½ypm1; . . .; ypmi�T ð6:2Þ

Equation (6.2) refers to the term of “final yield” (de Lima et al. 2017). It refers to
yield how many hours within a day the PV system have to operate at its rated power
in order to produce the same amount of energy as was recorded.

6.2.2 PV Generation Profiles Per Installation

For the purpose of our analysis, the K-means clustering is employed. The operation
of the algorithm is illustrated in Fig. 6.3.

The operation of the algorithm is based on a cost function minimization pro-
cedure. The algorithm starts by selecting random patterns from the data set and
assigns them as the initial centroids. The centroid refers to the average of all
patterns that belong to the same cluster. Next, the algorithm distributes the rest
patterns into the clusters based on the minimum Euclidean distance between each
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patterns and the set of centroids. A series of repetitions of the aforementioned
procedure takes place until the cost function is minimized or the pre-defined
number of repetitions is met. For a full mathematical description the reader is
referred to (Steinley 2006; Khan and Ahmad 2004).

The K-means is applied separately to each PV installation. Since the number of
clusters is unknown, the algorithm is executed for variable number of clusters.
Clustering provides a mapping of M ! K; where K is the number of clusters and
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Fig. 6.3 Fow-chart of the
operation of the K-means
algorithm
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1�K �M: Each cluster is represented by the centroid, which is also expressed by a
D-dimensional vector:

cpk ¼
1
MK

XM
m ¼ 1

xpm 2 Cp
k

xpm ð6:3Þ

where MK is the number of vectors that belong to the cluster Cp
k : The set of the

clusters is denoted as Cp
k ¼ fcpk ; k ¼ 1; . . .;K; p ¼ 1; . . .;Pg: The K-means algo-

rithm produces the centroids and the patterns’ membership in the clusters. For the
purpose of evaluating the algorithm’s performance and determine the optimal
number of clusters, the ratio of Within Cluster Sum of Squares to Between Cluster
Variation (WCBCR) indicator is employed:

WCBCR =

PK
k¼1

PM
m¼1 d

2ðcpk ; xpmÞPM
1� s\t d

2ðcps ; cpt Þ
ð6:4Þ

K-means is executed for different number of clusters and for each number the
value of WCBCR is checked. WCBCR is a measure of both separation and com-
pactness of the produced clusters. The outputs of PV generation clustering per site
are the PV power generation profiles per installation.

6.2.3 PV Generation Profiles Per Cluster

After the completion of the clustering per installation, the k profiles are extracted.
The profiles provide a general view of the PV generation patterns per installation.
Next, a selection of a specific profile is done and second clustering takes place. This
leads to the formation of the PV power generation profiles per cluster. In this stage,
the population of the patterns for clustering is M ¼ 11: For the second clustering,
the profile of the most populated cluster of the first stage clustering is selected.
Again, the number of clusters of the PV installations is unknown; the K-means is
executed for variable number of clusters.

6.3 Techno-Economic Assessment

6.3.1 Overview

A certain PV support mechanism usually requires the determination of various
parameters related to the consumption and generation of electrical energy within a
time step. Depending on the mechanism’s content, a PV installation may require
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one or two metering devices. The configurations with one meter use a bi-directional
meter and are the most common one for full-netting schemes. In partial netting
schemes two-meter configurations may be considered. For example, one meter is
used to measure the PV generation and the other to measure the incoming elec-
tricity. In the present study, the type and cost of the metering system is not con-
sidered in the techno-economic analysis. In the following Sections, the
self-consumption and the NEM schemes as well as the Scenarios examined in
this study are described.

6.3.2 Self-consumption and Utilization Rates

The volatility of PV systems necessitates the interaction with the grid, unless a
combination of storage, demand-side management and energy conservation mea-
sures is employed. Generally, the grid is resilient enough to absorb exported energy
from PV systems and provide the needed power when PV energy is not sufficient to
cover the energy demand of an installation. However, with high PV penetration
several problems may emerge, such as reverse power flow, overvoltages, flexibility
needs, etc. (Martín-Chivelet and Montero-Gómez 2017). The self-consumption and
the utilization (or self-sufficiency) rates are two indicators that describe how PV
energy is used on-site and to what extent the grid is utilized. They can be defined
for any given time period, although usually they are calculated for a period of 24 h
(i.e. daily Self-Consumption Rate). These are defined with the aid of Fig. 6.4,
corresponding to a daily Self-Consumption Rate, as follows:

• The Self-Consumption Rate (SCR) is the ratio between the PV energy
directly consumed on-site over the total PV energy production, that is:

SCR ¼ C
CþB

� �
� 100

Fig. 6.4 Sample PV
production and consumption
profiles of a certain
installation
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• The Utilization Rate (UR) is a measure of the percentage of PV energy used
on-site compared with the total energy demand. This means:

UR ¼ C
AþC

� �
� 100

where A; B and C are areas of the PV generation and prosumer’s consumption
curves.

A high SCR means that PV energy is mostly utilized on-site and excess generated
PV energy export to the grid is limited. This, though, may imply that demand-side
management is utilized or that the installed PV system is small compared to demand.
From a grid technical perspective a high SCR may be beneficial, since high PV
injection may lead to overvoltages, while the prosumer may have financial benefits as
well, depending on the incentive scheme or general policy.

6.3.3 Energy Modelling of Net-Metering
and Self-consumption Schemes

Using the above Fig. 6.4 we define the following elements applicable for each time
step s:

• Energy generation EGs (kWh): the generated PV energy during time step s. This
can be measured using a dedicated meter or estimated.

• Energy demand EDs (kWh): the energy imported from the grid during time step s.
This can be measured by a dedicated meter.

• Energy feed EFs (kWh): the excess PV energy injected to the grid during time
step s. Energy demand and feed can be measured with a bi-directional meter or
estimated.

• Netted energy ENs (kWh): the net energy consumed during time step s, calcu-
lated by subtracting the exported energy from the imported energy i.e.
(EDs − EFs).

• Energy consumption ECs (kWh): the real energy consumed during time step s.
This can be calculated with the formula (EDs + EGs) − EFs.

6.3.4 Economic Parameters: Purchased Electricity Cost
and Prosumer’s Revenue

Within the NEM concept, the prosumer profits is directly related to the cost of
purchased electricity from the grid, in a cost-avoidance context. An electricity tariff
is composed by many cost elements that, in general, can be divided to the following
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categories: Electricity production charge, network charge, standing fees, taxes and
VAT. From a NEM policy perspective, the significant issue is how a prosumer is
charged at each billing period. Therefore, to provide a detailed analysis on the
effects of the purchased electricity, a further cost breakdown is held as follows:

• Netted charge CN (€/kWh): The charge for the prosumer is calculated using the
net energy consumed in a billing period.

• Non-netted charge CNN (€/kWh): The charge is calculated using the total energy
consumed by the prosumer, i.e. the sum of the imported energy from the grid
and the self-consumed PV energy.

• Grid demand charge CD (€/kWh): The charge is calculated using the total
energy imported from the grid.

• Fixed charge CF (€ or €/kWp or €/kW): This charge may be due to various
charge mechanisms that exist, like the standing fees, the power component of
transmission and distribution charges, the possible special charge for a NEM
prosumer based on the installed power, etc.

Concerning taxes, grid charges or other duties imposed, they can be included in
the above categories as well. For example, a full netting scheme implies that all
taxes and duties are included in the “Netted charge”, which means that they are
calculated based on the net consumed energy within a netting period. On the other
hand, a partial netting scheme may imply that part or all of taxes and duties are
included in the “Non-netted charge” category, whereas the grid charges may be
included in the “Grid demand charge”. The latter is influenced by the level of
self-consumption, since the higher this rate is, the lower the energy imported from
the grid and hence the charge for the prosumer. In addition, a policy variation may
dictate the selling of the excess produced PV energy to the grid at a certain price.
This can be modelled using a revenue element as follows:

• Feed-in repayment RF (€/kWh): revenue provided to the prosumer for feeding
excess PV energy back to the grid in a billing period.

Obviously, when dealing with certain retail electricity tariffs and NEM schemes,
a pre-processing is required in order to be able to determine the above cost and
revenue elements.

6.3.5 Prosumer’s Profits

Within a certain incentive scheme (i.e. NEM or self-consumption), a prosumer may
profit by: (a) Directly selling excess PV produced energy to the grid, or (b) indi-
rectly through the avoided electricity cost that would have been charged otherwise.
For the purpose of calculating the total economic benefits, both types of profits must
be evaluated. It should be noted that the direct profit is straightforward to evaluate.
The indirect profit may be more complicated because it contains elements that can
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be specific to a certain scheme. Before advancing into the calculation procedure,
some important definitions related to such schemes are provided. The “Billing
Period (BP)” is defined as the period when all the relevant elements are calculated
and the prosumer is charged. In case the netted energy is positive (i.e. excess of PV
energy generated during the billing period), this energy can be either transferred to
the next billing period as “Renewable Energy Credits (RECs)” within a netting
period or reimbursed using the Feed-in repayment RF. The “Netting Period (NP)” is
a setting that determines for how long the RECs are still valid and taken into
account for the prosumer charging. The estimation of the prosumer profits is a
multi-step procedure that involves the following 6 steps. It has to be noted that
although these steps correspond to the evaluation of NEM schemes, they can be
applied to self-consumption schemes as well with minor adjustments. In the latter
case, the elements related to netted energy are absent.

Step 1: For each billing period the following energy-related elements are
calculated:

• Total PV generated energy, EG,bp (kWh): EG;bp ¼
Pbp

s¼1 EGs

• Total energy absorbed from the grid, ED,bp (kWh): ED;bp ¼
Pbp

s¼1 EDs

• Total energy injected to the grid, EF,bp (kWh): EF;bp ¼
Pbp

s¼1 EFs

• Total netted energy, EN,bp (kWh), adding any RECs from the previous billing
period (if applicable): EN;bp ¼

Pbp
s¼1 ENs þRECbp�1

• Total energy consumption, EC,bp (kWh): EC;bp ¼
Pbp

s¼1 ECs

Step 2: For each billing period the relative costs and revenues are calculated:

• The total cost for the prosumer has a component related to the netted
charge (CN), a component related to the non-netted charge (CNN), one related
to the grid demand charge (CD) and one to the fixed costs (CF):
CNEM;bp ¼ CN � EN;bp þCNN � EC;bp þCD � ED;bp þCF

• The total direct revenues for the prosumer (if applicable) for injecting excess PV
energy to the grid: RD;bp ¼ RF � EF;bp

Step 3: For each billing period the indirect profit due to avoided electricity cost is
calculated:

• Determine the electricity cost for the prosumer without the PV system based on
the existing electricity tariff and the total actual consumption (business as usual
scenario). This is denoted as CA,bp and generally can be evaluated as:
CA;bp ¼ ðCN þCNN þCDÞ � EC;bp þC

0
F , where C

0
F denotes the fixed cost as

before but without any possible charges related to the examined scheme.
• Evaluate the indirect profit in a billing period by subtracting CNEM,bp from CA,bp:

RI;bp ¼ CA;bp � CNET ;bp

Step 4: For each billing period the total profits, Rbp, for the prosumer are
evaluated:
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• Adding the direct and indirect profits in the billing period: Rbp ¼ RI;bp þRD;bp

Step 5: Repeat Steps 1 to 4 for all billing periods within a netting period:

• Calculate the total profits in the netting period: Rnp ¼
Pnp

i¼bp;2bp... Ri

Step 6: Repeat Step 5 for all netting periods within a year:

• Calculation of the annual profits: Rannual ¼
Pyear

i¼np;2np... Ri

6.3.6 Financial Analysis

The indicators used for the economic assessment are the Internal Rate of Return
(IRR), the Simple and Discounted Payback Period (SPP, DPP), and the Net Present
Value (NPV) (Comello and Reichelstein 2017). These indicators are commonly
used in PV projects’ evaluation. Generally, a low NPV or IRR value of a PV
investment under a specific NEM scheme will indicate that the investment is
financially risky. The calculated annual profits from the aforementioned multi-step
procedure are used in the financial analysis utilizing annual cash flows. The main
financial parameters required for the investment’s economic feasibility are the
installation/capital costs (€/kWp), the operation & maintenance (O&M) costs (% of
capital cost), the DR (%), the investment lifetime (years) and the inflation (%) of
both the electricity prices and the O&M costs. Note that other financial parameters
may be also used utilized, e.g. the inverter replacement costs at a certain year during
the investment’s lifetime, the evolution of the feed-in repayment (RF) for the
exported energy to the grid, etc. Moreover, parameters related to the reduction of
PV generation rate at a certain percentage per-year and the change in the con-
sumption profile or the prosumer may be utilized as well.

6.3.7 Scenarios Formulation

For the scope of this study, we assume that the prosumer is charged with the current
basic residential tariff (i.e. namely “G1”) of the Public Power Corporation
(PPC) SA of Greece (Residential “G1” Electricity Tariff 2017). In this Section, the
Scenarios considered in this study are described:

• Scenario #1 corresponds to a full NEM scheme with annual netting period. It is
the most favorable scenario for the prosumer, since the excess produced PV
energy is compensated at retail price (minus standing fees-fixed costs) within a
calendar year. This is done by transferring the excess PV energy in the form of
RECs to the next billing period, within the annual netting period. These RECs
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have equal value to the retail price. On the other hand, this is a scheme that
utilities favor least, as they lose revenues from the netted network charges.

• Scenario #2 simulates a partial NEM scheme with annual netting period. Now,
the network charge and taxes for the prosumer are calculated based on the actual
imported energy from the grid, while production and supply charges are fully
netted. This means that even in case the produced PV energy and the consumed
energy are equal within the netting period, the prosumer has to pay the network
charges and the taxes based on his usage of the grid. The transferred RECs
within the netting period have a value equal to the generation/production charge
of the retail electricity tariff. This scenario rewards those prosumers that manage
to keep a high self-consumption ratio and penalizes those with a low SCR,
through the partial netted network charges and taxes. The utilities are less
affected in this way.

• Scenario #3 is a pure self-consumption scheme, in which any excess produced
PV energy is not compensated or netted in any way. In such a scheme, the
prosumer aims to increase his SCR and limit as much as possible the exporting
of PV energy to the grid, since he receives no compensation for that whatsoever.
In order to achieve that, a prosumer under a pure self-consumption scheme may
consider additionally installing an energy storage system, or applying
demand-side management techniques.

• Scenario #4 is a self-consumption scheme where the excess produced PV energy
is compensated based on a certain tariff. In this example, this tariff is equal to the
average System Marginal Price (SMP) of the Greek interconnected system of
2013 (i.e. 0.04 €/kWh approximately). This scheme is more profitable for the
prosumer compared to Scenario #3, but less profitable than Scenarios #1 and #2.
It may be considered fairer, as the prosumer is compensated for providing
energy to the grid and at the average generation cost of the overall system.
Another formulation of this scheme includes the compensation of the prosumer
with the actual SMP for each hour of the day, or the addition on top of the SMP
of a premium (e.g. 10%) to cover the supply costs.

• Scenario #5 corresponds to a full NEM scheme, but now with an hourly netting
period and without any compensation for excess generated PV energy. This is a
NEM scheme that results in financial benefits similar to that of a pure
self-consumption scheme, as shown in Fig. 6.4. However, in case the SCR of
the prosumer changes considerably within an hour, then this scheme may in
reality result in higher profits compared to the pure self-consumption scheme.

Recall that the aim of the analysis is to evaluate the economic attractiveness of
investing in a PV system under different NEM and self-consumption schemes.
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6.4 Results

6.4.1 Clustering Per PV Installation—1st Stage Clustering

The K-means algorithm is executed for 2–30 clusters with an increasing step equal
to 1. Due to space limitations, only the results of 1 system will be presented.
Figure 6.5 shows the WCBCR indicator for the PV system installed in Ios island.
While the number of clusters is increasing, the WCBCR receives in general terms
lower values, i.e. clustering is more robust. By utilizing the “knee” point detection
method on the WCBCR curve, the optimal number of clusters is drawn
(Panapakidis et al. 2015).

For the PV system in Ios, the optimal number is c = 8. The optimal number of
clusters for the remaining system varies between 5 and 9. The PV generation
profiles of the PV system are presented in Fig. 6.6. It is noticeable that there is
diversity in the profiles, indicated as c#i, i = 1, …, 8.

Fig. 6.5 WCBCR indicator
curve for the PV system
located in Ios island

Fig. 6.6 PV generation
profiles
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6.4.2 PV Systems Clusters—2nd Stage Clustering

After the profile of the most populated cluster is selected, the K-means is applied
again and the PV system clusters are drawn. The algorithm is executed for 2–11
clusters. The optimal number of clusters is 4. The 1st cluster includes the following
PV systems: Nea Mesimvria, Imathia, Peraia and Agios Petros, The 2nd cluster
includes the following PV systems: Panorama, Ierissos and Profitis. The 3rd cluster
includes the following PV systems: Serres and Vrasna. The 4th cluster includes the
following PV systems: Ios and Poligyros.

6.4.3 Scenarios Comparison

The 2nd stage clustering leads to PV system clusters. Instead of applying a
techno-economic analysis per park, the analysis can be limited to 1 park per cluster.
Recall that the scope is to reduce the computational effort for applying system
specific economic analyses. Since the analysis takes into account the consumption,
the clustering can be applied also to the load data. While, residential consumers in
Greece present in general similar patterns, in the present study the categorization of
the PV systems is held only by using the PV generation profiles since they cor-
respond to different climatic conditions (i.e, different solar irradiation patterns).

The analysis will be restricted to 1 system and namely the one in Ios island. In
addition, the analysis will only regard average weekday and weekend daily load
curves. Figure 6.7 shows the average daily load curve of the prosumer in Ios island
for specific months. For the examination of the above Scenarios we consider the
following inputs:

• Average annual PV produced energy: 1470 kWh/kWp of installed PV capacity
• System losses: 10%
• Annual degradation of PV panels: 1%
• Allowed PV system capacity: 1–10 kWp
• Production and supply charges: 0.1025 €/kWh
• Network charges: 0.0266 €/kWh
• Taxes: 0.0727 €/kWh
• The VAT is not included in any of the calculations
• PV system costs: Installation costs—1400 €/kWp, Connection costs—300€,

Operation & Maintenance (including insurance) costs—1.5%/year of the
installation costs

• Other financial parameters: Discount rate—5%, Inflation (applies to both the
electricity tariff and O & M costs): 2%

The 5 Scenarios are compared in Figs. 6.8, 6.9 and 6.10 for different installed
capacities. It should be noted that the comparison can take place in terms of
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variations in the installation cost, discount rate values and others. According to
Fig. 6.8, the IRR presents a similar trend in all Scenarios, i.e. it receives lower
values while the installed capacity increases. This is less evident in Scenario #1
where it reaches its maximum in 4.50 kWp. Scenario #3 and Scenario #5 present
almost similar IRR values.

The less favorable scenario for the prosumer is Scenario #3. No considerable
economic benefits can be reached if there is no compensated PV generation.
However, an important factor is the PV generated electricity selling value to the
grid. If the electricity is sold at a constant value, the prosumer is immune to
fluctuations of real time electricity prices, but will also not profit when this price
increases.

Similar conclusions are drawn by examining the NPV indicator. The optimal
installed capacities range for the examined prosumer lie between 4 and
5.50 kWp. If the support mechanism is self-consumption, the prosumer should

Fig. 6.9 Variation of the
NPV for different PV installed
capacities

Fig. 6.8 Variation of the IRR
for different PV installed
capacities
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select a lower installed capacity in order to maximize his economic benefits.
According to Fig. 6.9, the taxes and other costs not directly associated with the
amount of purchased electricity (i.e. as represented by Scenario #2) have a visible
impact on the profits. The results presented in Fig. 6.10 show that no scheme can
lead to payback less than 4 years period. As the installed capacity increases, the
payback period also increases. The DPP curves of Scenario #2 and Scenario #4
cross at 8 kWp. This means that if the installation capacity of the system is 8 kWp,
the two scenarios will result in the same payback period. Finally, Fig. 6.11 presents
the variations of the self-consumption and utilization rates. It can been noticed that
the most favorable capacity in the case of self-consumption is 4.50 kWp. After this
value, further increase of the capacity do not considerably influence the utilization
rate.

Fig. 6.11 Variations of the
self-consumption and
utilization rates for different
PV installed capacities

Fig. 6.10 Variation of DPP
for different PV installed
capacities
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6.5 Concluding Remarks

While FiTs lead to installation increments across the globe, many experts believe
that they have reached their full potential. Alternate support schemes such as NEM
and self-production may aid to the revitalization of the PV markets in countries
where storage is still not competitive. It should be noted that compared to FiTs,
self-consumption and NEM are more complicated since they have to deal with more
issues, such as excess electricity compensation policy, selling price to the grid,
network access costs and others. Therefore, they are more country specific.

The present study provides a methodology of techno-economic assessment of
various NEM and self-consumption schemes. The methodology is not restricted by
the location or the installation capacity, a fact that makes it suitable for PV feasi-
bility studies prior to their implementation. The clustering tool is employed to
derive the profiles per PV system and PV clusters. The profiles per PV system can
aid in the examination of the generation patterns. For instance, outliers may be
detected and isolated, seasonalities may be analyzed, etc. Also, in cases of large
data sets, clustering can provide a data reduction approach; the necessity of con-
tinuous gathering of data would be the case, since the PV system generation trend
can be represented by a reduced set of curves, i.e. the profiles. Furthermore,
clustering provides the potential to group together PV systems with similar
behavior and thus, lowering the need for techno-economic studies per system. It
should be clarified that important factors that influence the economic attractiveness
of any NEM and self-consumption scheme are the consumption of the prosumer
and the compensation price.
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Chapter 7
Life Long Economic Analysis
for Industrial Microgrids:
A Case Study in Turkey

Cagri Ozturk, Irem Duzdar Argun and M. Özgür Kayalica

Abstract Microgrids are used prevalently in isolated sites as a solution for multiple
resource usage and distributed energy generation. Industrial Zones are constructed
as isolated sites, where expectations include reducing the energy costs, providing
local energy supply with fewer fluctuations and reducing greenhouse gas emissions.
To encourage the microgrids in a developing country of Small and Medium-sized
Enterprises (SMEs) placed in industrial zones, pre-investment studies are to be run.
This article aims at minimizing the total energy costs of an organized industrial
zone in parallel with mitigation of emission for climate change. The costs depend
on the number and power of the Wind Turbines (WT) and the capacity of
Photovoltaic (PV) panels when renewable energy sources and power storage con-
struct the resources. A Mixed Integer Nonlinear Programming (MINLP) model is
proposed to optimize the number of installations to satisfy the current demand.
Lifelong carbon emission and cost analysis are performed to minimize the total cost
of ownership. In this initial study, uncertainties caused by the renewable energy
supply are smoothed by limited use of one gas tribune and grid connection. A case
study of the model is implemented for Gebze Industrial Zone. This project will
contribute to the researches on microgrids for a long term optimization model.

7.1 Introduction

Global warming, rising energy demand due to industrial and technological devel-
opments, and depleted fossil fuels force countries to use new energy systems based
on renewable energy sources. Air pollution mitigation efforts point to the specific
renewable energy sources as wind turbines and solar panels. Microgrids are smart
systems providing power with Distributed Energy Resources (DER) and they are

C. Ozturk (&) � M. Ö. Kayalica
Istanbul Technical University, Macka, Istanbul, Turkey
e-mail: ozturkcagr@itu.edu.tr

I. D. Argun
Duzce University, Duzce, Turkey

© Springer International Publishing AG, part of Springer Nature 2018
C. Kahraman and G. Kayakutlu (eds.), Energy Management—Collective and
Computational Intelligence wıth Theory and Applications, Studies in Systems,
Decision and Control 149, https://doi.org/10.1007/978-3-319-75690-5_7

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75690-5_7&amp;domain=pdf


controlled independently. They can operate in two different modes; in
grid-connected mode, they allow import power from external grid, but in island
mode they are isolated from the external grid depending on reliability of responding
the demand. Microgrids have efficient distribution systems due to DER located
close to the consumers. They form a safe and reliable power supply system based
on consumer preferences and power quality requirements. Thus, they have a grid
structure with sufficient power generation and balancing resources to operate
autonomously and independently from the external grid during interruptions.

This study aims to realize two tandem objectives: first one is minimizing the
long term total energy cost of an industrial zone, and the second one is mitigation of
emissions. The costs depend on the number and power of the Wind Turbines
(WT) and the capacity of Photovoltaic (PV) panels, while renewable energy sources
and power storage construct the resources. This article will propose an optimization
model that depends on the existing demand and availabilities using Mixed Integer
Nonlinear Programming (MINLP) method. This model considers the capacities and
the constraints of the zone to optimize size and number of WT and PV and capacity
of limited gas turbines, as well as external grid usage in line with the local con-
straints. Energy supply is observed hourly because of the industrial demand and
renewable resource fluctuations. In order to stabilize the energy supply, connecting
to the gas turbine and/or external grid is used to lower the demand peaks.

The case study is applied in Gebze Industrial Zone (GIZ) Power consumption
data and constraints of the region are considered and demand is responded through
a microgrid system.

This paper is organized that the following section gives a review of previous
researches related to microgrid systems. Section 7.3 represents using methodology
in this study. Section 7.4 presents the proposed model constructed using the
designed constraints and net present value calculation. The case study and results
are presented in Sect. 7.5 and finally, conclusion and recommendations are given.

This project will contribute to the research on microgrids with a pre investment
analysis of a long-term optimization model.

7.2 Literature Review

Microgrids are widely considered as a solution for both climate change and peak
shaving in recent years. Energy management solutions for microgrids have some
advantages and disadvantages in combining the environmentalist and ecologic
views as examined by Li et al. (2016). The economic assessment of the microgrids
is still stimulating. Dicorato et al. (2009) realized that economic factors influencing
the application of microgrids have been accrued. They studied a model to reduce
the costs of microgrid application under various limitations. Xie et al. (2015)
studied the economic evaluation of microgrids on the basis of discount rates, unit
costs of power, and the government subsidy. In this study Xie et al. (2015)
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proposed an approach by integrating the economic analysis with optimizing allo-
cation of microgrids.

The optimization effort is observed by an objective to reduce the annual costs,
considering the capacity and power constraints. The main intent of Costa and Matos
(2006) is to build a model defining all of the cost factors (investment, maintenance,
operation, etc.) and the benefits. This model is regards the legal conditions nec-
essary to define the benefits, where, there is a way to evaluate the risks caused by
data variations and system parameters. A methodology is proposed by Asanol and
Bandol (2007) in order to optimize the operation and economic design for appli-
cation of microgrids to the renewable energy sources. Asona and Bando (2008)
presented a similar evaluation using a methodology based on the economic scale of
a gasoline engine’s partial load efficiency with the optimal capacity and number of
equipments used. The annual work program is derived as the result of optimal
planning technique to minimize the annual expenses. This study estimates the
required reserves as well.

Microgrid energy management systems and cost analyses are evaluated for many
different countries and a large span of scenarios. Various types of algorithms and
models are used for finding the optimum model for energy management especially
in local scale for decreasing dependency of the external grid and decreasing carbon
emission rate are planned with using various algorithms and optimization models.
A study run by Yu et al. (2016) proposes economical and green solutions at the
design phase of the microgrid system with various energy resources. The solution is
achieved by the considering multiple operation inconstancies and different expec-
tations of stakeholders. Hence, a multi objective optimization model to plan the
microgrid operation, based on an economic robustness is proposed. This model
implies the balance between the investment expenditures and the environmental
benefits as well.

Baghaee et al. (2016) investigated minimization of power loss, load loss and
annual cost for hydrogen based storage microgrid systems for 20-year period.
Multi-objective Particle Swarm Optimization (MOPSO) algorithm is tested for fuel
cell, hydrogen storage, PV, WT and direct current. Specific target was to show the
benefits and drawbacks of hydrogen storage systems in the long term. Two-Stage
Stochastic-Programming is proposed by Hu et al. (2016) to find the optimum
working conditions of renewable energy sources in microgrids. In this research
minimization of power trading among the microgrids is analyzed as a function of
battery usage and capacity. In this paper, energy demand and supply uncertainties
are balanced in parallel with providing depreciation of greenhouse gas emissions.

A model is proposed by Mao et al. (2013) to examine and judge economically
and to allocate the industrial PV microgrids optimally. Particle Swarm Optimization
method is employed to minimize the annual energy expenses, besides reducing the
emission for the benefits of industrial users. The verification is done by simulation
of three months data gathered from 500 kWh industrial microgrid established in
Dongguan City of China. Another model has been proposed by Chen et al. (2011)
to define the optimal size and to make economic survey for the energy accumulation
system in terms of present net values. Genetic algorithm is employed to allocate and
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operate the energy storage systems for low voltage microgrid applications. The
purpose of the paper prepared by Biczel and Koniak (2011) is to develop a model
simulating the power production and designing the storage system capacity. This
model computes the required data to optimize the microgrid technically and eco-
nomically. Another survey is done at Savona Campus of Genoa University
describing the basic parts of the Smart Polygeneration Microgrid (SPM). The main
idea of this study is to design a model to optimally direct the SPM to minimize the
daily operating costs. The reported results exhibit the optimality, and the reduced
CO2 emission. The results also show that the energy is saved by optimal operation
of SPM after having investigated the traditional conditions by Bracco et al. (2014).
Objective of the model is to minimize the expected expenses of correcting opera-
tions. Similar to that, a stochastic optimization problem, converted to a nonlinear
programming problem is analyzed by Parisioa et al. (2016).

7.3 Methodology

7.3.1 Assumptions

Power purchasing/selling prices of external grid, wind speed and solar radiation
parameters generate uncertainties. Wind speed and solar radiation are changing with
ambient and weather condition thus 1-year data is used.

Energy losses due to cable use and electrical conduction have been neglected.
Economic lives of wind turbine and solar PV chosen are taken as 25 years.

7.3.2 Power Generation Functions

Another assumption is that, according to weather reports below equations are used
to find wind turbine and solar panel power generation amounts. Wind speed is the
major factor in producing power according to (7.1) where, A represents the area of
wind turbine, q represents to density of air, and represents wind speed (Breeze
2016).

fWT mð Þ ¼ 1
2
qAm3 ð7:1Þ

According to Moradi et al. (2013) photo voltaic generators use maximum solar
radiation as main variable as in (7.2). In this equation, other variables are maximum
power, temperature coefficient, cell temperature, and reference temperature are
Pmax, I, Imax, k, Tc, and Tr.
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fPV Ið Þ ¼ Pmax
I

Imax
ð1þ kðTc � TrÞÞ ð7:2Þ

7.3.3 Net Present Value (NPV)

NPV is used to calculate the current investment value. Whole investment period
income and expenses are considered according to risk level of the investment. It is a
method frequently used for life cycle assessments. According to Shaffie and Jaaman
(2016), the NPV value uses the function in (7.3), where C0, CFi, r consecutively
represent capital cost, cash flows, and discount rate.

NPV ¼ �C0 þ
Xn

i¼1

CFi

ð1þ rÞi ð7:3Þ

7.3.4 Levelized Cost of Electricity

Energy generation cost per kWh is calculated according to the Levelized Cost of
Electricity (LCOE) generation as in (7.4). LCOE values vary by technology,
country, capital and operating cost and efficiencies. The financial account of such
renewable energy technologies is based on discounting financial flows. In this
equation, It represents investment expenditures, Mt is the operations and mainte-
nance expenditures, Ft shows resource expenditures, Et is the power amount gen-
erated generation, and r is discount rate, whereas n is the economic life of the
system.

LCOE ¼
PN

t¼1
It þMt þFt

ð1þ r)t
PN

t¼1
Et

ð1þ r)t
ð7:4Þ

Proposed renewable energy sources’ economic life are accepted as 25 years and
discount rate is accepted as 7%. Renewable energy sources resource expenditures
were given as zero. Table 7.1 shows levelized cost values of various energy
sources.

Table 7.1 Levelized cost of
energy sources

Energy source Unit production cost ($/kWh)

Wind turbine 0.0394

Solar PV panel 0.0450

Gas turbine 0.0486
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In this study, three tariff grid is used and purchase prices of three tariff external
grid can be observed in Table 7.2.

7.3.5 Mixed Integer Nonlinear Programming

Mixed Integer Modeling can be both linear and Non-Linear. According to Bussieck
and Pruessner (2003) these are models with a minimizing objective function and/or
several constraints using both discrete (integer) and continuous decision variables.

7.4 Proposed Model

This Section begins with formulating a MINLP model for energy management in
microgrids. In this model wind, solar, natural gas and demand data are used for
specified period in a certain location.

In the first stage, the decision of investments for wind turbine, photovoltaic
panel, and gas turbine are determined for minimizing total cost. After that capital
costs, replacement costs, operation and maintaining costs per power plant are cal-
culated through these data, thus a lifecycle analysis can be provided with multiple
objectives.

t denotes time period hourly; XWT, XPV and XNG are decision variables repre-
senting the number of gas turbines, wind turbines, and photo voltaic panels; CG,t

represents hourly purchasing electricity cost of external grid per kWh these values
are assumed as real hourly purchasing electricity prices of grid, and CNG, CWT, CPV

represents natural gas turbine, wind turbine, and photovoltaic panel electricity
generation cost per kWh. EG,t is the decision variable that represents purchasing
power at time t from external grid, ENG,t, EWT,t and EPV,t are decision variables for
amount of power generated at time t as kWh per wind turbine, photo voltaic panels
and gas turbine. Main objective in this model is that minimizing total cost of power
plants and external grid purchasing energy are calculated in (7.5).

Min Z ¼
X8760

t¼1

CG;t EG;t þCNG ENG;t XNG

þCWT EWT;t XWT þCPV EPV;t XPV

ð7:5Þ

Table 7.2 Purchasing
electricity prices of external
grid

Energy source Unit production cost ($/kWh)

Day rate 0.0554

Peak 0.0981

Off peak 0.0240

136 C. Ozturk et al.



XWT, XPV, and XNG are the number of wind power, photo voltaic and natural gas
generators, respectively; EG,t, ENG,tXNG, EWT,tXWT, EPV,tXPV are used to represent
the amounts of purchasing electricity from external grid and generated electricity
using wind, photo voltaic, and natural gas generators. Hourly demand of an
industrial zone is Dt and hourly demand constraint is as follows:

EG;t þENG;tXNG þEWT;tXWT þEPV;tXPV ¼ Dt 8 t ð7:6Þ

The probability density function of wind speed fWT (m) is used for determination
of wind turbine capacity will be multiplied with efficiency coefficient of wind
turbine ηWT. In this function m is wind speed and as a result of uncertainty of wind
speed, it has empirical distribution. For determination of PV panels electricity
production amounts according to solar irradiance values, fPV (I) is used and in this
function I denotes solar irradiance. Using efficiency of gas turbine coefficient
identifies capacity of gas turbine and production capacity in hour as ηNG and KNG.
All of the capacity constraints are identified in (7.7)–(7.9).

EWT;t 8 t� fWTðmÞgWT 8 t ð7:7Þ

EPV;t � f ðIÞ 8 t ð7:8Þ

ENG;t �gNGKNG 8 t ð7:9Þ

Any Industrial Zone has limited area for construction of wind turbines, photo
voltaic panels, and gas turbine. For installation of PV panels, roofs, building sides,
and specified area in GIZ are used. Total installed capacities of wind turbine
generators, photo voltaic generators, and gas turbine generators are XWT * IWT,
XPV * IPV, and XNG * ING, where I represents footprint of power generator. The
available area limits are shown by AWT, APV, ANG. Finally, the capacity constraints
for the wind turbine generators, photo voltaic generators, and gas turbine generators
can be shown as in functions (7.10)–(7.12).

XWT IWT �AWT ð7:10Þ

XPV IPV �APV ð7:11Þ

XNG ING �ANG ð7:12Þ

Last constraint of the model is limited carbon mitigation according to European
Carbon Emission Standards, which is 80% of current CO2 emission. The emission
constraint is defined in (7.13), where, j represents carbon limit, which is produced
by power plants. Total carbon emission rates are calculated for wind turbine gen-
erator, photovoltaic generator, and gas turbine generator. PWT, PPV, and PNG rep-
resents carbon emission coefficient of electricity producing for gas turbine, wind
turbine, and photovoltaic panel.
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X8760

t¼1

PNG ENG;tXNG þ PWT EWT;tXWT þ PPV EPV;t XPV � j ð7:13Þ

Table 7.3 shows carbon emission amount as kg per kWh of different type of
energy sources. Carbon emission value of the grid is assumed as 0.4 kg in Turkey,
since 80% of power generation is still using fuel, coal, and natural gas.

According to designed microgrid’s optimization model integer variable con-
straints and non-negativity constraints are listed in (7.14) and (7.15).

XWT;XPV; andXNG are integer variables ð7:14Þ

CWT; CPV, CNG, CG,t, Dt� 0 8 t

EWT;t;EPV;t;ENG;t;EG;t � 0 8 t

fWTðmÞ; fPVðIÞ;KNG � 0

AWT; IWT;APV; IPV;ANG; ING � 0

PWT; PPV; PNG � 0

ð7:15Þ

In the second stage previously mentioned, the NPV function in (7.3) uses the
results of this optimization problem.

7.5 Case Results and Discussions

Gebze Industrial Zone has 5,160,000 m2 area. There are 224 companies in GIZ,
which includes many industries such as metal, plastic, paint, food and chemical
industry. GIZ consumes averagely 546,685 MW of electricity in a year. Its elec-
tricity expense is 29,814,324.57 $ for a year.

Mixed Integer Nonlinear Programming Model and then the NPV are run to
optimize the energy use of GIZ.

The optimum number of power plants are assumed as 14 wind turbines with
3.45 MW capacity each, which are totally 48.3 MW; moreover, 6 MW capacity PV
panels, and one gas turbine with 40 MW capacity energy sources usage are pro-
posed in designed microgrid. In the proposed microgrid, the storage is not con-
sidered since there is still no used batteries which would make battery storage
cheaper for GIZ. When the external grid is used it is much cheaper than the storage.

Table 7.3 Carbon emission
amount of energy sources

Energy source Carbon emission amount (kg/kWh)

Wind turbine 0.02

Solar PV panel 0.19

Gas turbine 0.454

External grid 0.4
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Implementing the mixed integer programming, total carbon emission is
decreased from 248,195,371 to 197,460,075 kg which is approximately 20.5%.
Total cost is decreased from 29,814,324.57 to 22,388,815.38 $ which is approxi-
mately 25%.

Not only cost but also carbon emission amounts were decreased significantly
even carbon tax is not applied in Turkey. If carbon tax is applied, cost reduction is
expected to be much higher. The main issue is that investment cost of the wind
turbines is very high but total cost of ownership is reduced significantly in the long
term.

7.6 Conclusion and Future Work

This paper considers the global importance of microgrids and presents a brief
literature review to demonstrate the role of microgrids for industrial zones. Our aim
is to suggest an economical model for using microgrids in high energy consuming
industrial zone, which combines Small and Medium-sized Enterprises (SMEs) and
the large companies. That is why, the study is based on reducing both costs and
carbon emissions.

The proposed model uses both Net Present Value to calculate the lifelong
investment value and mixed integer nonlinear model for minimizing operational
costs. The analysis aims to find the most economic structure of a micro grid
operation using demand, available space, available wind and illuminations.

The case is run for Gebze Industrial Zone, where chemical and metal production
sites exist with the small manufacturing companies side by side. The annual power
demand of the zone is one of the highest among hundreds of industrial zones in
Turkey.

Results achieved by the case implementation, gives the most economic number
of wind, solar and natural gas investments without considering the uncertainties of
renewables.

In the extension of this study, uncertainties will also be handled by considering
the different sizes of turbines and different conditions. Further studies are recom-
mended to compare the same model for different regional conditions and applying a
robust optimization with stochastic variables.
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Chapter 8
Wind Energy Investment Analyses Based
on Fuzzy Sets

Cengiz Kahraman, Sezi Çevik Onar, Başar Öztayşi, İrem Uçal Sarı
and Esra İlbahar

Abstract Engineering economics deals with the investment decisions, where the
investment parameters are very hard to estimate exactly. In the cases where we do
not have the required data for parameter estimation, possibilistic approaches may be
used. In this chapter, a brief literature review on wind energy investments is first
presented. Later, the chapter gives present worth analysis (PWA) methods extended
to fuzzy sets. The chapter introduces ordinary fuzzy PWA, type-2 fuzzy PWA,
intuitionistic fuzzy PWA, and hesitant fuzzy PWA. A numerical application for
each extension is presented.

8.1 Introduction

There is an increasing energy need in the world and carbon-based fuels are the main
sources for fulfilling this need. Yet, these carbon-based energy sources damage the
ecological environment and they are limited sources. Renewable energy sources are
the best alternatives for carbon-based fuels since they are eco-friendly and can
provide energy unlimitedly.

Wind energy can become an efficient energy source for many regions. The
uncertainty in electricity prices and energy production levels of wind turbines limits
the wind energy investments. Especially, the costs and benefits of the long-term
wind energy investments are hard to calculate with the traditional engineering
economic analysis since they need precise values of investment parameters (Cevik
Onar and Kilavuz 2015).

Ordinary fuzzy sets and their extensions such as type-2 fuzzy sets, intuitionistic
fuzzy sets, and hesitant fuzzy sets are exceptional tools for dealing with uncertainty
in human thoughts and perceptions (Kahraman et al. 2016b). Ordinary fuzzy sets
(Zadeh 1965) use membership degrees for representing vagueness and imprecise-
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ness. Type-2 fuzzy sets introduced by Zadeh (1975) employ three dimensional
membership functions. Type-2 fuzzy sets have grades of membership that are
themselves fuzzy. Intuitionistic fuzzy sets introduced by Atanassov (1986) employ
both membership and non-membership degrees for defining uncertainty. Hesitant
fuzzy sets developed by Torra (2010) represent the hesitancies in decision makers
mind. Fuzzy net present worth analysis enables evaluating investment alternatives
under vague and incomplete information. The extensions of fuzzy sets enable better
defining the uncertainties inherent in investment parameters through their mem-
bership functions.

The wind energy investments involve uncertain, vague and incomplete param-
eters. Therefore, applying classical present worth analyses may create unrealistic
results. Calculating present worth with vague and incomplete data may produce
incorrect and misleading decisions. Therefore, this chapter shows the calculation of
the fuzzy PW of a wind energy investment based on fuzzy parameters. Ordinary
fuzzy PW, intuitionistic fuzzy PW and hesitant fuzzy PW are employed in wind
energy investment problems.

The rest of the chapter is organized as follows: Sect. 8.2 summarizes the liter-
ature on wind energy investments. Section 8.3 presents the fuzzy present worth
analyses based on extensions of fuzzy sets. In Sect. 8.4, a wind energy investment
problem is analyzed with ordinary fuzzy PW, Intuitionistic fuzzy PW and hesitant
fuzzy PW. Section 8.5 concludes the chapter.

8.2 Wind Energy Investments: A Literature Review

Much research on wind energy investments exists in the literature. The recent
studies in this field will be further examined under two categories as classical
techniques and fuzzy techniques.

8.2.1 Classical Techniques

Caralis et al. (2014) investigated the profitability of wind energy investments by
employing a Monte Carlo approach to deal with the uncertainties. In their study,
Monte Carlo simulation and a typical financial model were integrated to examine
different cases of wind energy development. Uncertain parameters considered in the
study of Caralis et al. (2014) are wind capacity factor, investment cost, interest rate,
feed-in-tariff, absorption rate, grid accessibility. Kucukali (2016) utilized a scoring
technique for the assessment of an onshore wind energy project. The proposed
method enables decision makers to determine the most appropriate wind energy
project by examining the risks of the alternatives. Site geology, land use and
permits, environmental impact, grid connection, social acceptance, macroeconomic,
natural hazards, change of laws, access road, and revenue are the risks considered in
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the study of Kucukali (2016). Liu and Zeng (2017) used system dynamics approach
to evaluate renewable energy investment risk, particularly wind power projects.
After risks in renewable energy investment were analyzed in three categories as
technical risk, policy risk and market risk, causal loop diagram for investment risk
assessment was formed. The simulation results which are obtained using VENSIM
software indicated that policy risk is more crucial in early stage of an investment
whereas market risks become more significant with technological advancements
and incentive policies improvement (Liu and Zeng 2017). Fazelpour et al. (2017)
examined the wind resource and economic feasibility to assess investment risks.
The Weibull distribution function was utilized to estimate the wind power and
energy density. Windographer software was used to examine the wind direction.
For the economic assessment, four types of wind turbines were taken into con-
sideration. These wind turbines are different with respect to rotor diameter, variable
rotor speed, nominal power output, cut-in wind speed, rated wind speed, cut-out
wind speed, survival wind speed. Monthly capacity factor, energy output and cost
of energy of the alternatives with these wind turbines were evaluated. Al-Sharafi
et al. (2017) investigated the feasibility of solar and wind energy systems for power
generation and hydrogen production and performed an economic analysis by using
simulation software, Hybrid Optimization of Multiple Energy Resources
(HOMER). Aquila et al. (2017) investigated wind power feasibility under uncer-
tainty by employing Monte Carlo simulation and Value at Risk technique. The
proposed framework is quite useful for potential investors because it is able to show
the influence of the uncertainty on wind power and electricity prices. Kitzing et al.
(2017) proposed a real options model to assess wind energy investments. The
proposed model involves an upper capacity limit by considering investment timing
and continuous sizing. Moreover, several uncertainty factors such as power price
and wind speed are taken into consideration in a stochastic process in the study of
Kitzing et al. (2017).

8.2.2 Fuzzy Techniques

Shamshirband et al. (2014) employed adaptive neuro-fuzzy optimization to maxi-
mize the net profit of a wind farm. While applying an intelligent optimization
method based on the adaptive neuro-fuzzy inference system, net present value and
interest rate of return were considered as the measures of net profit. Interest rate per
year and unit sale price of electricity were utilized as inputs of optimization scheme
whereas output was the optimal number of turbines which is an indicator of
maximal net profit. In this study, while determining the optimal number of wind
turbines, aerodynamic interactions between the turbines, as well as cost factors, are
taken into consideration. In this way, both optimal solution with respect to the
maximum net profit and the optimal layout for wind turbines were achieved
(Shamshirband et al. 2014). Wu et al. (2014) investigated evaluation criteria con-
sidered in the process of wind farm project plan selection and proposed a
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framework to select the best wind farm project. Criteria considered in this study are
construction, resource, wind turbine, financial analysis, social risk, policy risk,
technological risk, good influence, bad influence, the influence of project to the
local society and stabilization, the influence of project to the local economy and
employment, and the influence of project to resource utilization. Wu et al. (2014)
employed intuitionistic fuzzy numbers, intuitionistic fuzzy Choquet operator, and
generalized intuitionistic fuzzy ordered geometric averaging operator to reduce the
probability of information loss and to stay away the independent assumption of
multi-criteria decision making methods (Wu et al. 2014). Onar et al. (2015) utilized
interval-valued intuitionistic fuzzy sets for the assessment of wind energy invest-
ments. Interval-valued intuitionistic fuzzy sets are employed because of its ability to
cope with vagueness and impreciseness in a more comprehensive manner. The
proposed approach provides an overall performance measurement for wind energy
technology alternatives by considering the following criteria: reliability, coopera-
tion, domesticity, performance, cost factors, availability, maintenance, and technical
characteristics (Onar et al. 2015). Shafiee (2015) utilized fuzzy analytic network
process to determine the most appropriate risk mitigation strategy for offshore wind
farms by employing safety, added value, cost and feasibility criteria. Variation of
offshore site layout, improvement of maintenance services, upgrading the moni-
toring systems, and modification in design of wind turbines are the alternatives
considered in the study of Shafiee (2015). Petković et al. (2016) investigated the
most influential factors on the net present value of a wind farm using adaptive
neuro-fuzzy inference system. In their study, seven inputs, number of turbines,
power production, cost per power unit, cost, efficiency, interest rate per year, unit
sale price of electricity, are selected to analyze the wind farm net present value
(Petković et al. 2016). Wu et al. (2016) proposed an inexact fixed-mix
fuzzy-stochastic programming method for heat supply management in wind
power heating system under uncertainty. In their study, uncertainties are presented
as interval values, random variables and fuzzy sets. The proposed approach is a
combination of interval-parameter programming, fixed-mix stochastic program-
ming and fuzzy mathematical programming. The proposed approach enables
decision makers to observe interval solutions and plausibility degrees of constraint
violation in order to determine the best heat supply management strategies (Wu
et al. 2016). Gumus et al. (2016) introduced a multi-criteria decision making
method consisting of an intuitionistic fuzzy entropy method, an intuitionistic fuzzy
weighted geometric averaging operator and intuitionistic fuzzy weighted arithmetic
averaging operator for sustainable energy problems. The selection of V80 and V90
onshore and offshore wind turbines was investigated using the proposed method
(Gumus et al. 2016). Cunico et al. (2017) proposed a mathematical model taking
several uncertain parameters into consideration to analyze investments in the energy
sector. It is aimed at covering both pessimistic and optimistic scenarios by inte-
grating uncertain parameters in their decision making model. Therefore, a fuzzy
approach and a set of possibilistic techniques were employed to handle the problem.
The uncertain parameters considered in their study are uncertainty in the price of
fossil resources, the trend in the growing demand and the variation in the
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availability of fossil reserves (Cunico et al. 2017). Chang (2017) introduced a fuzzy
score technique to optimally locate wind turbines. In this study, the proposed
technique was utilized to measure the Euclidean distance between the achievement
function and their aspirations (Chang 2017). Morshedizadeh et al. (2017) investi-
gated the utilization of imputation techniques and adaptive neuro-fuzzy inference
system to predict wind turbine power production. It was revealed that appropriate
combinations of decision tree and mean value for imputation might enhance the
prediction performance (Morshedizadeh et al. 2017).

There are various studies in the literature on wind energy investments. These
studies have different objectives such as analyzing wind energy technology
investments, maximizing investment profit, identifying optimal investment deci-
sions, investigating suitability of a region, predicting energy output of a wind farm,
and selecting a suitable site for investment. These studies utilize different methods
such as Benefit/Cost analysis, real option analysis, adaptive neuro-fuzzy inference
system, optimization, and AHP to achieve these objectives. Moreover, evaluation
criteria or employed parameters may change with respect to the objective of the
study. Table 8.1 shows some representative studies on wind energy investments in
the literature.

8.3 Fuzzy Present Worth Analysis

Fuzzy logic is used to determine uncertainty occurred from linguistic assumptions.
It is possible to represent linguistic definitions in a mathematical form using fuzzy
sets. Fuzzy numbers have different types which determine the linguistic terms in
different ways. In this section, present worth analysis is constructed using different
types of fuzzy numbers such as ordinary fuzzy numbers, intuitionistic fuzzy
numbers, type-2 fuzzy numbers and hesitant fuzzy numbers.

Especially in public sector projects such as highways, infrastructure, power
generation facilities, project alternatives have very long expected useful lives. In
such kind of projects, planning horizon could be taken as infinite to be effective. In
this section, the present worth analysis for infinite time horizon is proposed using
different types of fuzzy numbers.

8.3.1 Ordinary Fuzzy Present Worth Analysis

There are different types of ordinary fuzzy numbers such as triangular fuzzy
numbers, trapezoidal fuzzy numbers, L-R type fuzzy numbers etc. The most used
ordinary fuzzy numbers are triangular fuzzy numbers due to their easy calculations.

Chiu and Park (1994) defined triangular fuzzy net present value gNPV� �
formula as
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given in Eq. 8.1, where eFi ¼ ðftl ; ftm ; ftrÞ, denotes net cash flows occurred in time
period t and ~it ¼ itl ; itm ; itrð Þ denotes the fuzzy interest rate.

gNPV ¼
Xn
t¼0

max ftl ; 0ð ÞQt
t0¼0

1þ it0r
� � þ min ftl ; 0ð ÞQt

t0¼0
1þ it0l

� �
0BB@

1CCA
0BB@ ;

Xn
t¼0

ftmQt
t0¼0

1þ it0m
� � ;

Xn
t¼0

max ftr ; 0ð ÞQt
t0¼0

1þ it0l

� � þ min ftr ; 0ð ÞQt
t0¼0

1þ it0r
� �

0BB@
1CCA
1CCA

: ð8:1Þ

When the time horizon is infinite the fuzzy net present worth is calculated by
Eq. 8.2:

gNPV ¼
Xn
t¼0

max ftl ; 0ð Þ
it0r

þmin ftl ; 0ð Þ
it0l

� � 
;
Xn
t¼0

ftm
it0m

;
Xn
t¼0

max ftr ; 0ð Þ
it0l

þmin ftr ; 0ð Þ
it0r

� ��
ð8:2Þ

In this chapter Eq. 8.3 is used for the defuzzifiction of ordinary fuzzy sets:

Def eF� � ¼ fl þ 2fm þ fu
4

ð8:3Þ

8.3.2 Type-2 Fuzzy Present Worth Analysis

The concept of a type-2 fuzzy set was introduced by Zadeh as an extension of the
concept of an ordinary fuzzy set called an ordinary fuzzy set (Zadeh 1974).

A type-2 fuzzy set eeA in the universe of discourse X can be represented by a type-2
membership function l~~A

, shown as follows (Zadeh 1975):

eeA ¼ ðx; uÞ; l~~A
ðx; uÞj 8 x 2 X; 8 u 2 Jx� 0; 1½ �; 0� l~~A

ðx; uÞ� 1
n o

ð8:4Þ

where Jx denotes an interval [0,1]. In the literature review, it is seen that triangular
interval type-2 fuzzy sets are the most preferred interval type-2 fuzzy sets.

A triangular interval type-2 fuzzy set is represented as eeAi ¼
ðaUil ; aUim; aUir ;HðeAU

i Þ
� �

; aLil; a
L
im; a

L
ir;HðeAL

i Þ
� �

where eAL
i and eAU

i are ordinary fuzzy

sets, aUil ; a
U
im; a

U
ir ; a

L
il; a

L
im and aLir are the references points of the interval type-2 fuzzy
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set eeAi,HðeAU
i Þ denotes the membership value of the element aUi in the upper tri-

angular membership function eAU
i , HðeAL

i Þ denotes the membership value of the

element aLi in the lower triangular membership function eAL
i , HðeAU

i Þ 2
0; 1½ �;HðeAL

i Þ 2 0; 1½ � and 1� i� 2. Kuo- Ping (2011) gives detailed information on
the basic algebraic operations of type-2 fuzzy sets.

Ucal Sari and Kahraman (2015) introduced type-2 fuzzy net present worth

method. Triangular interval type-2 fuzzy net present value ðN eePVÞ is formulized in

Eq. 8.5 where eeF t ¼ f Utl ; f
U
tm; f

U
tr ;Hð~f Ut Þ� �

; f Ltl ; f
L
tm; f

L
tr ;Hð~f Lt Þ

� �
denotes the cash flow

occurred at time t and ~~it ¼ ðiUtl ; iUtm; iUtr ;Hð~iUt ÞÞ;ðiLtl; iLtm; iLtr;Hð~iLt ÞÞ; 8~i[ 0 denotes the
discount rate at time t:

N eePV ¼
Xn
t¼0

f UtlQt
t0¼0 ð1þ iUt0rÞ

;
Xn
t¼0

f UtmQt
t0¼0 ð1þ iUt0mÞ

;
Xn
t¼0

f UtrQt
t0¼0 ð1þ iUt0lÞ

;min Hð~f Ut Þ;Hð~iUt Þ
� � ! 

;
Xn
t¼0

f LtlQt
t0¼0 ð1þ iLt0rÞ

;
Xn
t¼0

f LtmQt
t0¼0 ð1þ iLt0mÞ

;
Xn
t¼0

f LtrQt
t0¼0 ð1þ iLt0lÞ

;min Hð~f Lt Þ;Hð~iLt Þ
� � !!

ð8:5Þ

When the time horizon is infinite triangular interval type-2 fuzzy net present
worth is calculated by Eq. 8.6:

N eePV ¼
Xn
t¼0

f Utl
iUt0r

;
Xn
t¼0

f Utm
iUt0m

;
Xn
t¼0

f Utr
iUt0l
;min Hð~f Ut Þ;Hð~iUt Þ

� � !
;

 
Xn
t¼0

f Ltl
iLt0r

;
Xn
t¼0

f Ltm
iLt0m

;
Xn
t¼0

f Ltr
iLt0l
;min Hð~f Lt Þ;Hð~iLt Þ

� � !! ð8:6Þ

In this chapter, realistic type reduction indices are used for the defuzzification of
type 2 fuzzy sets. Realistic type reduction indices is calculated by Eq. 8.7 which

transforms eeA into an ordinary fuzzy set where l~A
ðxÞ and l~AðxÞ are lower and upper

membership functions of the eeA (Niewiadomski et al. 2006).

TRreðeeAÞ ¼ l~A
ðxÞþ l~AðxÞ

2
; x 2 X ð8:7Þ

Equation 8.3 can be used to rank the ordinary fuzzy set which is obtained by
type reduction indices method.
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8.3.3 Intuitionistic Fuzzy Present Worth

Atanassov (1986) introduced triangular intuitionistic fuzzy numbers (TIFN) eA.
TIFN utilizes both membership value and non-membership value of a fuzzy
number. Formulas of membership function l~A xð Þ� �

and non-membership function
v~A xð Þ� �

are as follows:

l~A xð Þ ¼
x�l
m�l ; for l� x�m
u�x
u�m ; for m� x� u

0; otherwise

8><>: ð8:8Þ

and

v~A xð Þ ¼
m�x
m��l ; for �l� x� �m

x��m
�u��m ; for �m� x� �u

1; otherwise

8>><>>: ð8:9Þ

where l�m� u, �l� �m� �u, 0� l~A xð Þþ v~A xð Þ� 1 and it is denoted by

eATIFN ¼ l;m; uð Þ; �l; �m; �u
� �� �

: ð8:10Þ

The sum of membership and non-membership values should be less than or
equal to 1. The basic algebraic operations are determined by Mapatra and Roy
(2009), Atasannov (2012) and Kumar and Hussein (2014).

In this chapter, TIFNs are ranked using the deffuzzification method which is
proposed by Kahraman et al. (2015).

The rank of a TIFN eA ¼ l;m; uð Þ; �l; �m; �u
� �� �

is determined as follows:

R eA� �
¼ 1

2
lþ 2mþ u

4
þ
�lþ 2�mþ �u

4

 !
¼ lþ�lþ 2mþ 2�mþ uþ �u

8
ð8:11Þ

Triangular fuzzy number intuitionistic fuzzy weighted geometric TFNIFWGwð Þ
operator is used to aggregate triangular intuitionistic fuzzy sets (Chen et al. 2010):
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TFNIFWGw eA1; eA2; . . .; eAn

� �
¼

1�
Yn
j¼1

ð1� ljÞwj ; 1�
Yn
j¼1

1� mj
� �wj ; 1�

Yn
j¼1

ð1� ujÞwj

 !
;

 

1�
Yn
j¼1

ð1� ljÞwj ; 1�
Yn
j¼1

ð1� �mjÞwj ; 1�
Yn
j¼1

ð1� ujÞwj

 !! :

ð8:12Þ

Kahraman et al. (2015) introduced intuitionistic fuzzy net present worth and
intuitionistic fuzzy annual worth methods. The parameters used in the calculations
are expressed by TFIN in Eqs. 8.13–8.18 where m evaluations are made for each of
the parameter.

fFCT ;I ¼
fc1; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

;

fc2; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

; . . .;
fck; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

8>><>>:
9>>=>>; ð8:13Þ

gUACT ;I ¼
uac1; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
;

uac2; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

; . . .;
uack; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
8>><>>:

9>>=>>; ð8:14Þ

gUABT ;I ¼
uab1; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
;

uab2; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

; . . .;
uabk; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
8>><>>:

9>>=>>; ð8:15Þ

fSVT ;I ¼
sv1; TFN1;T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
;

sv2; TFN1;T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

;
; . . .;

svk; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

8>><>>:
9>>=>>; ð8:16Þ

~iT ;I ¼
i1; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

;

i2; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

; . . .;
. . .; ik; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
8>><>>:

9>>=>>; ð8:17Þ
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~nT ;I ¼
n1; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

;

n2; TFN1; T �FN1
� �

; . . .; TFNm; T �FNm
� �� 	

; . . .;
; nk; TFN1; T �FN1

� �
; . . .; TFNm; T �FNm

� �� 	
8>><>>:

9>>=>>; ð8:18Þ

where FC represents the first cost of the alternative, UAC represents uniform annual
cost of the alternative, UAB represents uniform annual benefit, n represents project
life, i represents interest rate, and SV represents salvage value.

The intuitionistic fuzzy present worth gPWT ;I

� �
of an investment alternative can

be calculated by Eq. 8.19 or Eq. 8.20:

gPWT ;I ¼ �fFCT ;I � gUACT ;I
P
A
;~iT ;I ; ~nT ;I

� �
þ gUABh

P
A
;~iT ;I ; ~nT ;I

� �
þ fSVh

P
F
;~iT ;I ; ~nT ;I

� � ð8:19Þ

or

gPWT ;I ¼ �fFCT;I � gUACT ;I
1þ~iT;I
� �~nT ;I�1

~iT ;I 1þ~iT ;I
� �~nT ;I

" #

þ gUABT;I
1þ~iT;I
� �~nT;I�1

~iT;I 1þ~iT;I
� �~nT;I

" #
þ fSVT ;I 1þ~iT ;I

� ��~nT ;I

ð8:20Þ

where

fFCT ;I ¼
[k
j¼1

TFNIFWGw
fcj; TFN1; T �FN1
� �

;

. . .; TFNm; T �FNm
� �* + !

gUACT ;I ¼
[k
j¼1

TFNIFWGw
uacj; TFN1; T �FN1

� �
;

. . .; TFNm; T �FNm
� �* + !

;

gUABT ;I ¼
[k
j¼1

TFNIFWGw
uabj; TFN1; T �FN1

� �
;

. . .; TFNm; T �FNm
� �* + !

;

fSVT ;I ¼
[k
j¼1

TFNIFWGw
svj; TFN1; T �FN1
� �

;

. . .; TFNm; T �FNm
� �* + !

;

~iT ;I ¼
[k
j¼1

TFNIFWGw
ij; TFN1; T �FN1
� �

;

. . .; TFNm; T �FNm
� �* + !

;

~nT ;I ¼
[k
j¼1

TFNIFWGw
nj; TFN1; T �FN1
� �

;

. . .; TFNm; T �FNm
� �* + !

:
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When the time horizon is infinite, triangular intuitionistic fuzzy present worth is
calculated by Eq. 8.21:

gPWT ;I ¼ �fFCT ;I �
gUACT ;I

~iT ;I

 !
þ

gUABT ;I

~iT ;I

 !
ð8:21Þ

The defuzzified values of these parameters are needed for further calculations.
For instance, the defuzzified value of fFCT ;I is obtained by the following process:

TFNIFWGw
fcj; TFN1;T �FN1
� �

;

...; TFNm;T �FNm
� �* + !

¼~lfcj

¼ lfcjl ;lfcjm ;lfcju

� �
; �lfcjl ;�lfcjm ;�lfcju

� �� �
;

j¼1;...;k ð8:22Þ

Defuzzified value of lfcjl ; lfcjm ; lfcju

� �
; �lfcjl ; �lfcjm ; �lfcju

� �� �
is Def ~lfcj

� �
which is

obtained by Eq. 8.11. The defuzzified value of fFCT ;I is obtained by Eq. 8.23:

Def fFCT ;I ¼
Pk

j¼1 fcj Def ~lfcj

� �� �2
Pk

j¼1 Def ~lfcj

� �� �2 ð8:23Þ

Other parameters could be deffuzzified in a similar way.

8.3.4 Hesitant Fuzzy Environmental Economics Methods

Kahraman et al. (2015) introduced hesitant fuzzy net present worth and hesitant
fuzzy annual worth methods. A hesitant fuzzy set (HFS) is another extension of
fuzzy sets that aims to model the uncertainty originated by the hesitation that might
arise in the assignment of membership degrees of the elements to a fuzzy set
(Kahraman et al. 2017).

Triangular Fuzzy Hesitant Fuzzy Sets (TFHFS) are proposed in 2013 by Yu.
In TFHFS several triangular fuzzy numbers are used to express the membership
degree of an element.

A TFHFS eE on a fixed set X is defined in terms of a function ~f~E xð Þ that returns
several triangular fuzzy values,
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~E ¼ hx;~f~E xð Þi

x�X� � ð8:24Þ

where ~f~E xð Þ is a set of several triangular fuzzy numbers which express the possible
membership degrees of an element x 2X to a set eE .

For a Triangular Fuzzy Hesitant Fuzzy Set (TFHFS), ~f , s ~f
� � ¼

1
l~f

P
~TFN2~f �X gTFN� �

is called the score function of ~f with l~f being the number of

TFNs in ~f (Yu 2013). h ~f
� � ¼ 1

l~f

P
~TFN2~f r gTFN� �

is called the deviation function of

~f . For ~f1 and ~f2,

If s ~f1
� �

[ s ~f2
� �

; then ~f1 �~f2

If s ~f1
� � ¼ s ~f2

� �
; h ~f1
� � ¼ h ~f2

� �
; then ~f1 ¼ ~f2

If s ~f1
� � ¼ s ~f2

� �
; h ~f1
� �

[ h ~f2
� �

; then ~f1\~f2

Ifs ~f1
� � ¼ s ~f2

� �
; h ~f1
� �

[ h ~f2
� �

; then ~f1 [~f2

Let ~f1 and ~f2 be two THHFEs, then

~f1 � ~f2 ¼ l1 þ l2 � l1:l2;m1 þm2 � m1:m2; u1 þ u2 � u1:u2ð ÞjgTFN1 2 ~f1; gTFN2 2 ~f2
n o

ð8:25Þ

~f1 	 ~f2 ¼ l1:l2;m1:m2; u1:u2jgTFN1 2 ~f1; gTFN2 2 ~f2
n o

ð8:26Þ

~f k ¼ lð Þk; mð Þk; uð Þk



 gTFN 2 ~f

n o
; k[ 0 ð8:27Þ

k~f ¼ 1� 1� lð Þk; 1� 1� mð Þk; 1� 1� uð Þk



 gTFN 2 ~f

n o
; k[ 0 ð8:28Þ

where gTFN1 ¼ l1;m1; u1ð Þ and gTFN2 ¼ l2;m2; u2ð Þ.
For aggregating triangular fuzzy hesitant fuzzy sets, Triangular Fuzzy Hesitant

Fuzzy Weighted Averaging (TFHFWA) operator is used. Let ~fj j ¼ 1; 2; . . .; nð Þ be a
collection of TFHFEs. w ¼ w1;w2; . . .;wnð ÞT is the weight vector of
~fj j ¼ 1; 2; . . .; nð Þ with wj� 0; 1½ � and Pn

j¼1 wj ¼ 1, then a TFHFWA operator is a
mapping TFHFWA: Fn ! �F such that
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TFHFWA ~f1;~f2; . . .;~fn
� � ¼ �n

j¼1 wi
~fj

� �
1�

Yn

j¼1
1� Lj
� �wj ; 1�

Yn
j¼1

1�Mj
� �wj ;

(

1�
Yn
j¼1

1� Uj
� �wj jgTFN1 2 ~f1; gTFN1 2 ~f1; . . .; gTFNn 2 ~fn

)
ð8:29Þ

For the defuzzification of triangular hesitant fuzzy sets, the defuzzified value of a
hesitant gTFN ¼ l;m; uð Þ can be defined as follows:

Def gTFN� �
¼ lþ 2mþ u

4
ð8:30Þ

In the hesitant fuzzy present worth analysis, investment parameters are expressed
using triangular fuzzy hesitant fuzzy sets. The parameters used in the calculations
are expressed by TFHFS in Eqs. 8.31–8.36 where m evaluations are made for each
of the parameter.

fFCT ;h ¼ fc1; TFN1; . . .; TFNmh i; fc2; TFN1; . . .; TFNmh i;
. . .; fck; TFN1; . . .; TFNmh i

 �
ð8:31Þ

gUACT ;h ¼
uac1; TFN1; . . .; TFNmh i;
uac2; TFN1; . . .; TFNmh i;

. . .; uack;TFN1; . . .; TFNmh i

8<:
9=; ð8:32Þ

gUABT ;h ¼
uab1; TFN1; . . .; TFNmh i;
uab2; TFN1; . . .; TFNmh i;

. . .; uabk;TFN1; . . .; TFNmh i

8<:
9=; ð8:33Þ

fSVT ;h ¼ sv1; TFN1; . . .; TFNmh i; sv2; TFN1; . . .; TFNmh i;
. . .; svk; TFN1; . . .; TFNmh i

 �
ð8:34Þ

~iT ;h ¼ i1; TFN1; . . .; TFNmh i; i2; TFN1; . . .; TFNmh i;
. . .; ik; TFN1; . . .; TFNmh i

 �
ð8:35Þ

~nT ;h ¼ n1; TFN1; . . .; TFNm; n2; TFN1; . . .; TFNmh i;
. . .; nk; TFN1; . . .; TFNmh i

 �
ð8:36Þ

where FC represents the first cost of the alternative, UAC represents uniform annual
cost of the alternative, UAB represents uniform annual benefit, n represents project
life, i represents interest rate, and SV represents salvage value.
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The hesitant fuzzy present worth gPWT ;h

� �
of an investment alternative can be

calculated by Eq. 8.37 or Eq. 8.38:

gPWT ;h ¼ �fFCT ;h � gUACT ;h
P
A
;~iT ;h; ~nT ;h

� �
þ gUABh

P
A
;~iT ;h; ~nT ;h

� �
þ fSVh

P
F
;~iT ;h; ~nT ;h

� � ð8:37Þ

or

gPWT ;h ¼ �fFCT ;h � gUACT ;h
1þ~iT ;h
� �~nT ;h�1

~iT ;h 1þ~iT ;h
� �~nT ;h

" #

þ gUABT ;h
1þ~iT ;h
� �~nT ;h�1

~iT ;h 1þ~iT ;h
� �~nT ;h

" #
þ fSVT ;h 1þ~iT ;h

� ��~nT;h

ð8:38Þ

where

fFCT ;h ¼
[k
j¼1

TFHFWA fcj; TFN1; . . .; TFNm
� 	� �

gUACT ;h ¼
[k
j¼1

TFHFWA uacj; TFN1; . . .; TFNm
� 	� �

;

gUABT ;h ¼
[k
j¼1

TFHFWA uabj; TFN1; . . .; TFNm
� 	� �

;

fSVT ;h ¼
[k
j¼1

TFHFWA svj; TFN1; . . .; TFNm
� 	� �

;

~iT ;h ¼
[k
j¼1

TFHFWA ij; TFN1; . . .; TFNm
� 	� �

;

~nT ;h ¼
[k
j¼1

TFHFWA nj; TFN1; . . .; TFNm
� 	� �

:

When the time horizon is infinite, triangular intuitionistic fuzzy present worth is
calculated by Eq. 8.39:
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gPWT ;h ¼ �fFCT ;h �
gUACT ;h

~iT ;h

 !
þ

gUABT ;h

~iT ;h

 !
ð8:39Þ

For the defuzzification of triangular hesitant fuzzy sets, the defuzzified value offFCT ;h is obtained as follows:

TFHFWA fcj; TFN1; . . .; TFNm
� 	� � ¼ ~lfcj ¼ lfcjl ; lfcjm ; lfcju

� �
; j ¼ 1; . . .; k

ð8:40Þ

Defuzzified value of lfcjl ; lfcjm ; lfcju

� �
is Def ~lfcj

� �
which is obtained by

Eq. 8.30. Other parameters could be deffuzzified in a similar way.

8.4 An Application

Wind turbines have two major types based on their axis; the horizontal axis wind
turbine (HAWT) and the vertical axis wind turbine (VAWT). In general HAWTs
have greater capacities than VAWTs. Therefore, HAWTs are preferred for the
industrial energy production. Mostly the useful life of HAWT is considered as
20 years. However the useful life of a wind turbine could increase by regular
maintenances. In this chapter, a HAWT type wind turbine is analyzed for two
scenarios that are (1) using the turbine without additional maintenances and reinvest
at the end of its useful life, (2) using turbine with routine maintenances and take its
useful life as infinite.

The economic parameter values of two alternatives are represented by different
types of fuzzy numbers in Tables 8.2, 8.3, 8.4, 8.5 and 8.6.

Table 8.2 Parameters defined by ordinary fuzzy sets

Parameter Scenerio I possible cash
flows (1000€)

Scenerio II possible
cash flows (1000€)fFC (630,650,670) (630,650,670)gUAC (40,45,50) (40,45,50)gUAB (300,350,400) (300,350,400)gMC (once in each five years) – (50,80,110)fSV (100,130,150)

~i% (7,8,9) (7,8,9)

nn 20 infinite
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Table 8.4 Experts’ compromised membership degrees based on IVIFS

Parameter Possible
values

Experts’ weights

E1 E2 E3

0.3 0.4 0.3

FC $630,000 ([0.3,0.6][0.2,0.4]) ([0.4,0.6][0.2,0.4]) ([0.3,0.5][0.2,0.45])

$650,000 ([0.4,0.5][0.1,0.4]) ([0.3,0.5][0.3,0.5]) ([0.4,0.6][0.1,0.3])

$670,000 ([0.3,0.7][0.2,0.25]) ([0.2,0.6][0.2,0.4]) ([0.4,0.5][0.3,0.5])

UAC $40.000 ([0.2,0.5][0.3,0.5]) ([0.4,0.7][0.1,0.3]) ([0.7,0.8][0.05,0.1])

$45,000 ([0.4,0.7][0.1,0.3]) ([0.5,0.7][0.1,0.3]) ([0.3,0.6][0.1,0.3])

$50,000 ([0.5,0.7][0.1,0.3]) ([0.5,0.7][0.1,0.2]) ([0.3,0.5][0.3,0.4])

UAB $300,000 ([0.4,0.5][0.3,0.4]) ([0.6,0.8][0.1,0.2]) ([0.5,0.8][0.1,0.2])

$350,000 ([0.4,0.7][0.1,0.1]) ([0.5,0.7][0.1,0.3]) ([0.4,0.7][0.1,0.3])

$400,000 ([0.6,0.8][0.05,0.1]) ([0.4,0.6][0.2,0.4]) ([0.3,0.6][0.2,0.4])

MC $50,000 ([0.1,0.3][0.5,0.6]) ([0.4,0.7][0.1,0.2]) ([0.5,0.6][0.2,0.4])

$80,000 ([0.4,0.6][0.1,0.2]) ([0.4,0.8][0,0.1]) ([0.4,0.6][0.1,0.3])

$110,000 ([0.6,0.8][0,0.1]) ([0.5,0.6][0.1,0.3]) ([0.3,0.4][0.2,0.5])

SV $100,000 ([0.3,0.5][0.2,0.4]) ([0.5,0.7][0.1,0.3]) ([0.4,0.5][0.2,0.5])

$130,000 ([0.5,0.7][0.1,0.2]) ([0.4,0.6][0.2,0.4]) ([0.3,0.5][0.3,0.5])

$150,000 ([0.6,0.7][0.05,0.1]) ([0.3,0.4][0.3,0.5]) ([0.1,0.2][0.5,0.7])

i 7% ([0.4,0.7][0.1,0.2]) ([0.6,0.7][0.1,0.3]) ([0.3,0.5][0.4,0.5])

8% ([0.2,0.5][0.3,0.4]) ([0.5,0.7][0.1,0.3]) ([0.6,0.8][0,0.1])

9% ([0.6,0.8][0,0.1]) ([0.4,0.5][0.2,0.4]) ([0.2,0.4][0.4,0.5])

Table 8.3 Parameters defined by type 2 fuzzy sets

Parameter Scenerio I possible
cash flows (1000€)

Scenerio II possible
cash flows (1000€)gfFC (630,650,670;1) (640,650,660;0.9) (630,650,670;1)
(640,650,660;0.9)ggUAC (40,45,50;1)(42,45,48;0.9) (40,45,50;1)(42,45,48;0.9)

ggUAB (300,350,400;1)(310,350,390,0.9) (300,350,400;1)
(310,350,390,0.9)ggMC

(once in each five
years)

– (50,80,110;1)(60,80,100;0.9)

ffSV (100,130,150;1) (110,130,140;0.9)

~~i% (7,8,9;1)(7.5,8,8.5;0.9) (7,8,9;1)(7.5,8,8.5;0.9)

n 20 Infinite
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Table 8.6 Experts’ compromised membership degrees based on triangular HFS

Parameter Possible values Experts’ weights

E1 E2 E3

0.3 0.4 0.3

FC $630,000 (0.3,0.4,0.6) (0.4,0.5,0.6) (0.3,0.4,0.5)

$650,000 (0.4,0.5,0.6) (0.3,0.4,0.5) (0.4,0.5,0.6)

$670,000 (0.3,0.5,0.7) (0.2,0.5,0.6) (0.4,0.4,0.5)

UAC $40.000 (0.2,0.3,0.5) (0.4,0.5,0.7) (0.7,0.8,0.9)

$45,000 (0.4,0.6,0.7) (0.5,0.6,0.7) (0.4,0.6,0.7)

$50,000 (0.5,0.6,0.7) (0.6,0.7,0.8) (0.3,0.4,0.5)

UAB $300,000 (0.4,0.5,0.6) (0.6,0.7,0.8) (0.5,0.7,0.8)

$350,000 (0.5,0.6,0.8) (0.5,0.6,0.7) (0.4,0.5,0.7)

$400,000 (0.6,0.7,0.9) (0.4,0.5,0.6) (0.3,0.5,0.6)

MC $50,000 (0.1,0.2,0.3) (0.4,0.5,0.7) (0.5,0.5,0.6)

$80,000 (0.5,0.7,0.8) (0.7,0.8,0.9) (0.6,0.7,0.8)

$110,000 (0.6,0.8,0.9) (0.5,0.6,0.7) (0.3,0.4,0.5)

SV $100,000 (0.4,0.5,0.6) (0.5,0.6,0.7) (0.4,0.5,0.5)

$130,000 (0.6,0.7,0.8) (0.4,0.5,0.6) (0.3,0.4,0.5)

$150,000 (0.5,0.7,0.8) (0.3,0.4,0.5) (0.1,0.1,0.2)

i 7% (0.4,0.5,0.7) (0.6,0.7,0.7) (0.3,0.4,0.5)

8% (0.2,0.4,0.5) (0.5,0.6,0.7) (0.6,0.8,0.9)

9% (0.6,0.7,0.9) (0.4,0.4,0.5) (0.2,0.3,0.4)

Table 8.5 Aggregated and defuzzified matrix for IVIFS

Parameter Possible
values

Aggregated value Defuzzified Value
of membership

Defuzzified value
of parameter

FC $630,000 ([0.341,0.572][0.2,0.415]) 0.803 649,867

$650,000 ([0.361,0.532][0.186,0.446]) 0.788

$670,000 ([0.294,0.607][0.231,0.392]) 0.795

UAC $40.000 ([0.468,0.69][0.151,0.31]) 0.962 45,074

$45,000 ([0.415,0.672][0.1,0.3]) 0.944

$50,000 ([0.494,0.702][0.165,0.294]) 0.962

UAB $300,000 ([0.471,0.69][0.165,0.266]) 0.973 348,840

$350,000 ([0.442,0. 7][0.1,0.245]) 0.984

$400,000 ([0.443,0.675][0.157,0.322]) 0.939

MC $50,000 [0.358,0.578][0.271,0.403] 0.799 83,199

$80,000 ([0.4,0.696][0.06,0.194] 0.984

$110,000 ([0.482,0.633][0.103,0.317]) 0.952

SV $100,000 ([0.415,0.592][0.161,0.395) 0.864 123,716

$130,000 ([0.405,0.607][0.203,0.380]) 0.860

$150,000 ([0.361,0.468][0.306,0.532]) 0.705

i 7% ([0.465,0.65][0.203,0.341]) 0.921 796

8% ([0.461,0.69][0.138,0.279]) 0.971

9% ([0.42,0.598][0.215,0.358]) 0.866
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8.4.1 Evaluation Using Ordinary Fuzzy Present Worth

Table 8.2 shows the values of parameters using ordinary triangular fuzzy sets.
In the present worth analysis, period is defined as least common multiples of the

useful alternative lives. Therefore, in our analysis, the analysis period is taken as
infinite. In scenario 1, there will be cash inflow series from the salvage values and
cash outflow series from the reinvestment costs which occur once in each 20 years
period. To calculate the fuzzy present worth for scenario 1, first effective interest
rate for 20 years should be calculated as follows:

~i20 ¼ 1þ~i1
� �20�1 ¼ 1þ ilð Þ20�1; 1þ imð Þ20�1; 1þ irð Þ20�1

� �
¼ 1þ 0:07ð Þ20�1; 1þ 0:08ð Þ20�1; 1þ 0:09ð Þ20�1
� �

¼ 2:8697; 3:6609; 4:6044ð Þ

Fuzzy net present worth of scenario 1 is calculated using Eq. 8.2 as follows:

gNPV ¼ �fFC �
gUAC
~i

þ
gUAB
~i

þ
fSV
~i20

�
fFC
~i20

NPVl ¼ �FCr � UACr

ir
þ UABl

ir
þ SVl

~i20r
� FCr

~i20r

NPVm ¼ �FCm � UACm

im
þ UABm

im
þ SVm

~i20m
� FCm

~i20m

NPVr ¼ �FCl � UACl

il
þ UABr

il
þ SVr

~i20l
� FCl

~i20l

Using the formulas given above gNPV is calculated as
2702:8; 3020:46; 4345:59ð Þ for scenario 1.
To calculate the fuzzy present worth for scenario 2, the effective interest rate for

5 years should be calculated as follows:

~i5 ¼ 1þ~i1
� �5�1 ¼ 1þ ilð Þ5�1; 1þ imð Þ5�1; 1þ irð Þ5�1

� �
¼ 1þ 0:07ð Þ5�1; 1þ 0:08ð Þ5�1; 1þ 0:09ð Þ5�1
� �

¼ 0:4025; 0:4693; 0:5386ð Þ

Fuzzy net present worth of scenario 2 is calculated using the following equation:

gNPV ¼ �fFC �
gUAC
~i

þ
gUAB
~i

þ
gMC
~i5
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gNPV is calculated as 1903:545; 2992:033; 4388:634ð Þ for scenario 2.
Defuzzified values of gNPV for scenario 1 and 2 are calculated using Eq. 8.3 as

3272.328 and 3069.061, respectively.

8.4.2 Evaluation Using Type 2 Fuzzy Present Work

Table 8.3 shows the values of parameters using triangular interval type 2 fuzzy sets.
Effective interest rates for 5 and 20 years are calculated as follows:

~~i5 ¼ 1þ~~i1
� �5

�1 ¼ 1þ iUl
� �5�1; 1þ iUm

� �5�1; 1þ iUr
� �5�1

� �
; 1

1þ iLl
� �5�1; 1þ iLm

� �5�1; 1þ iLr
� �5�1

� �
; 0:9

¼ 1þ 0:07ð Þ5�1; 1þ 0:08ð Þ5�1; 1þ 0:09ð Þ5�1
� �

; 1

1þ 0:075ð Þ5�1; 1þ 0:08ð Þ5�1; 1þ 0:085ð Þ5�1
� �

; 0:9

¼ 0:4025; 0:4693; 0:5386; 1ð Þ 0:4356; 0:4693; 0:5036; 0:9ð Þ

~~i20 ¼ 1þ~~i1
� �20

�1

¼ 1þ iUl
� �20�1; 1þ iUm

� �20�1; 1þ iUr
� �20�1

� �
; 1

1þ iLl
� �20�1; 1þ iLm

� �20�1; 1þ iLr
� �20�1

� �
; 0:9

¼ 1þ 0:07ð Þ20�1; 1þ 0:08ð Þ20�1; 1þ 0:09ð Þ20�1
� �

; 1

1þ 0:075ð Þ20�1; 1þ 0:08ð Þ20�1; 1þ 0:085ð Þ20�1
� �

; 0:9

¼ 2:8697; 3:6609; 4:6044; 1ð Þ 3:2478; 3:6609; 4:1120; 0:9ð Þ

ggNPV s are calculated using Eq. 8.6, as 1983:983; 3020:458; 4345:592; 1ð Þ

2288:598; 3020:458; 3846:05; 0:9ð Þ and 1903:544; 2992:033; 4388:634; 1ð Þ

2223:783; 2992:033; 3862:259; 0:9ð Þ for scenario 1 and 2, respectively.
Defuzzified values are calculated using Eqs. 8.7 and 8.3 as 3,068.257 and

3043.294 respectively.
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8.4.3 Evaluation Using Intuitionistic Fuzzy Present Worth

Table 8.4 shows the values of parameters using interval valued intuitionistic fuzzy
sets.

Table 8.5 shows the aggregated and defuzzified values for IVIFS based on
Eqs. (8.11) and (8.12).

Using the data shown in Table 8.4 NPVs for Scenario 1 and 2 are calculated as
$3,020.785 and $2.987,552, respectively.

8.4.4 Evaluation Hesitant Fuzzy Annual Worth

Possible values of the parameters and their corresponding compromised member-
ship degrees are given in Table 8.6 using triangular HFS.

Table 8.7 shows the aggregated and defuzzified values for Triangular HFS based
on Eqs. (8.29) and (8.30).

Using the data shown in Table 8.6 NPVs for Scenarios 1 and 2 are calculated as
$2,996.775 and $2,959.74, respectively.

Table 8.7 Aggregated and defuzzified values of triangular HFS

Parameter Possible values Aggregated value Defuzzified Value
of membership

Defuzzified value
of parameter

FC $630,000 (0.341,0.442,0.572) 0.449 650,347

$650,000 (0.361,0.462,0.562) 0.462

$670,000 (0.294,0.471,0.607) 0.461

UAC $40.000 (0.468,0.579,0.748) 0.594 45,020

$45,000 (0.442,0.6,0.7) 0.585

$50,000 (0.494,0.597,0.702) 0.597

UAB $300,000 (0.516,0.650,0.753) 0.642 346,515

$350,000 (0.471,0.572,0.734) 0.587

$400,000 (0.443,0.571,0.736) 0.580

MC $50,000 (0.358,0.424,0.578) 0.446 85,035

$80,000 (0.618,0.744,0.848) 0.739

$110,000 (0.482,0.633,0.748) 0.624

SV $100,000 (0.442,0.542,0.618) 0.536 124,043

$130,000 (0.443,0.546,0.652) 0.547

$150,000 (0.317,0.449,0.562) 0.444

i 7% (0.465,0.569,0.650) 0.563 794

8% (0.461,0.633,0.748) 0.619

9% (0.420,0.489,0.674) 0.518

8 Wind Energy Investment Analyses … 163



8.5 Conclusions

Wind energy investments involve several uncertain parameters; each can be rep-
resented by linguistic terms or fuzzy numbers. The cost and benefit parameters of
wind energy investments can be better represented by fuzzy sets. Thus, an
investment decision report can be presented to the investor with a list of possible
results and their membership degrees.

PW analysis is the most used investment analysis technique. However, applying
classical PW analysis under vagueness may produce unrealistic suggestions. Taking
all possibilities into consideration before an investment decision is given is extre-
mely important. Fuzzy PW analysis exhibits all possibilities regarding the invest-
ment outcomes together with their membership degrees.

For further research, other extensions of fuzzy sets such as Pythagorean fuzzy
sets can be used for analyzing the wind energy investments. Other renewable
energy alternatives can be also examined such as biomass energy, solar energy,
geothermal energy, hydroelectric energy, ocean energy, or hydrogen energy under
fuzziness. Types of fuzzy numbers can be changed alternatively such as trapezoidal
fuzzy numbers or LR-type fuzzy numbers.
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Chapter 9
Assessment of Fuel Tax Policies
to Tackle Carbon Emissions from Road
Transport—An Application
of the Value-Based DEA Method
Including Robustness Analysis

Maria do Castelo Gouveia and Isabel Clímaco

Abstract The transport sector has increased GHG emissions making it the second
largest emitter in the EU after the energy generation sector. Given its share in total
GHG emissions, the transport sector plays a critical role in the mitigation efforts
required by the Paris Agreement on Climate Change. Fuel taxation can be used to
internalize externalities, including those linked to fuel use as GHG emissions and
local air pollution. Road transport policies have relied on fuel efficiency standards.
A major outcome of this option was the prevailing preferential tax treatment for
diesel fuel. This paper aims to assess the potential of fuel tax reforms to deal with
carbon emissions from road transport in some EU countries. For this purpose, the
Value-Based Data Envelopment Analysis method is used to obtain robust conclu-
sions in face of sources of uncertainty. The adjustment of diesel excise tax levels
towards gasoline taxation levels as well as the potential effects of introducing a
carbon content-based tax on both diesel and gasoline are studied. The performance
evaluation identifies the countries exhibiting the best practices. This approach offers
decision makers the possibility to incorporate their priorities in appraising fuel tax
policies considering uncertain factors to obtain robust conclusions.
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9.1 Introduction

9.1.1 Motivation and Interest of the Study

Preventing climate change is a strategic priority for the EU. Policies to reduce
energy consumption in the personal transport sector are likewise an essential
component of European energy policies with impact on hazardous emissions.
According to its climate and energy targets, the EU aims to curb its greenhouse gas
(GHG) emissions by 40% from 1990 levels by 2030, and continue this trend to
achieve 80–95% reduction by 2050. Responsible for about a quarter of EU’s GHG
emissions, the transport sector is the only sector where emissions have grown over
the past 25 years, due to a strong dependency on oil. Given its share in total GHG
emissions, the transport sector should make a large contribution towards the miti-
gation efforts established by the Paris Agreement on Climate Change signed in
December 2015. In order to achieve the 2 °C target, the European Commission
estimates that GHG emissions from EU’s transport sector need to be reduced by
70% below 2008 levels by 2050 (European Commission 2011).

Fuel taxation can be used to internalize a wide range of externalities, including
those directly linked to fuel use, such as GHG emissions and local air pollution. In
Europe, fuel taxes were not originally designed as an economic instrument, but
rather as a fiscal instrument to raise revenues and finance government expenditure.
Since CO2 emissions are closely related to fuel consumption, fuel taxation stands as
a relevant tool to internalize the associated external costs (Newbery 1992, 2001;
Parry and Small 2005; Parry 2007; Sterner 2007). In fact, many governments
defend their fuel duties on environmental grounds (Newbery 2005).

The profile of passenger car fleets has been deeply transformed in Europe during
the last decades. The percentage of diesel cars increased from 11% in 1991 to
almost 38% in 2011, a process referred to as dieselization. The advantage in fuel
efficiency of diesel motor cars and the practice of a diesel incentive fuel tax policy
in most European countries may help to explain this dieselization process.
Nevertheless, the success of dieselization as a measure to control CO2 emissions
has been recently called into question by many authors in the transport literature
(Schipper and Fulton 2013; González and Marrero 2012). As has been pointed out
in a previous study, the higher carbon content per liter of diesel partially offsets the
fuel efficiency of diesel powered cars (United States Environmental Protection
Agency 2011). Moreover, a replacement of gasoline by diesel vehicles generates a
rebound impact on kilometers travelled, caused by the effect of using more efficient
motor cars (in terms of liters per km driven) and a lower diesel price (tax included)
(Rodríguez-López et al. 2015).

The Energy Tax Directive (European Commission 2003) establishes the values
of EUR 0.359 per liter of unleaded gasoline and 0.330 for diesel as the minimum
taxation rates. With the exception of the UK, where the taxes on gasoline and diesel
are equal, all EU countries have considerably lower taxes for diesel than for
gasoline. However, the lower tax rates applied to diesel are not consistent with
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environmental and other social externalities associated with diesel usage. Tax
advantages for diesel are not justified from air pollution and impact of climate
change perspectives. In fact, as taxation is imposed per liter, the fuel efficiency
advantage of diesel cars per km driven is a benefit that is internalized by the vehicle
user, contrarily to the cost of CO2 emissions (Harding 2014; Zimmer and Koch
2016). The promotion of more fuel-efficient cars through fiscal measures is one of
the pillars of the EU’s strategy to incentivize reductions of GHG emissions of
light-duty vehicles (European Commission 2007). In 2005, the European
Commission presented a proposal for a directive aimed at restructuring motor
vehicle taxes taking CO2 emissions into account. Neither this proposal nor its
reiteration proposed in 2012 were approved.

The necessary transition to a low-carbon economy requires the commitment of
all EU member states to the reduction of GHG. The Energy Tax Directive from
2003 is the only common framework that constraints the fuel tax policies of
member states. Each country has different economic and political agendas, which
constrain their individual contribution to tackle carbon emissions from road
transport.

This paper aims at assessing the potential of fuel tax reforms to deal with carbon
emissions from road transport in some EU countries using the Value-Based Data
Envelopment Analysis (DEA) method. The need to obtain robust conclusions in
face of several sources of uncertainty is taken into account. The Value-based DEA
method combines DEA and multi-criteria decision analysis, encompassing man-
agerial preference information. This study considers fuel pricing policy scenarios to
reduce GHG emissions in a sample of EU countries. The adjustment of diesel
excise tax levels towards gasoline taxation levels, as well as the potential effects of
introducing a carbon content-based tax of 50 € per ton of CO2 on both diesel and
gasoline, are studied.

Data Envelopment Analysis (DEA) is a non-parametric method for evaluating
the relative efficiency of decision making units (DMUs), with some degree of
autonomy operating in a relatively homogeneous environment that use multiple
inputs to produce multiple outputs (Charnes et al. 1978). DEA models compare the
performances of DMUs and determine the ones exhibiting the best practices, which
form the (Pareto-Koopmans) efficient frontier, also enabling to measure the gaps to
best practices and to identify benchmarks against which such inefficient DMUs
should be compared. DEA models have been widely used for performance evalu-
ation in different domains.

The Value-Based DEA method (Gouveia et al. 2008) exploits the links between
DEA and Multi-criteria Decision Analysis (MCDA), in which DMUs are compared
being the input (criteria being minimized) and output factors (criteria being max-
imized) converted into value functions constructed using managerial/policy pref-
erences. Additive value functions (which may be non-linear or piecewise linear) are
used to aggregate the values associated with each DMU, based on Multi-Attribute
Utility Theory (MAUT) (von Winterfeldt and Edwards 1986). Preferences (which
may derive from managerial focus or policy perspectives) are used to restrict the
weights associated with those functions so that the evaluation can make more useful
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insights to emerge. The Value-Based DEA method produces an efficiency measure
assigned to each DMU that has a “min-max regret” (loss of value) interpretation.
This method has been modified to include the concept of super-efficiency to assess
the robustness of DMUs in face of uncertain information (Gouveia et al. 2013).
Uncertainty is incorporated by considering the DMU performances in each factor as
intervals (i.e. uncertain but bounded). The robustness analysis assesses whether
each DMU is surely efficient, potentially efficient, or surely inefficient.

This paper is aimed at assessing the potential of fuel tax reforms to deal with
carbon emissions from road transport in some EU countries. For this purpose, the
Value-Based DEA method is used, taking into account the need to obtain robust
conclusions in face of several sources of uncertainty. The study considers fuel
pricing policy scenarios to reduce GHG emissions in a set of EU countries. The
adjustment of diesel excise tax levels towards gasoline taxation levels as well as the
potential effects of introducing a carbon content-based tax of 50 € per ton of CO2

on both diesel and gasoline are studied. The performance evaluation by means of
the Value-Based DEA method enables to identify the countries that exhibit the best
practices defining an efficiency frontier. The gaps to best practices of non-frontier
countries are measured and benchmarks against which those inefficient countries
should be compared with are identified. This approach offers decision makers the
possibility to incorporate their priorities in appraising fuel tax policies considering
the uncertain factors at stake in order to obtain robust conclusions, i.e. recom-
mendations that are somehow immune to plausible ranges of variation of some
input information.

The chapter is structured as follows: in the next section, a brief review of the
literature is presented. Section 9.2 synopsizes the Value-Based DEA method. In
Sect. 9.3, a discussion of how to perform the robustness analysis in the context of
the approach presented in the previous section is presented. Section 9.4 is devoted
to the quantitative data (indicators and data sources) regarding fuel excises taxes for
European countries according to the assessment criteria and the elicitation protocols
used to obtain the value functions. Section 9.5 analyzes of the results obtained with
the Value-Based DEA method for assessing fuel tax reforms’ potential to curb
carbon emissions from road transport in terms of economic and environmental
criteria. In Sect. 9.6, the ranges of efficiency are computed and the robustness of
each country is analyzed. Concluding remarks are presented in Sect. 9.7.

9.1.2 Brief Literature Review

Diesel cars have been gaining a growing market share over gasoline cars, namely
due the policy focus on fuel savings as well as the expected reduction of emissions
due to higher fuel efficiency of diesel engines, so that diesel cars had over 55% of
the new vehicle market in the EU in 2009 (Schipper and Fulton 2013). However, a
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greater travel rebound effect has been witnessed and an energy consumption
increase is expected due to lower prices (Ajanovic and Haas 2012).

Fuel taxes have been recognized as relevant instruments to influence total
consumption by changing individual driving behavior, create incentives for com-
panies to develop advanced fuel saving technologies, contribute to tackling climate
change and other environmental problems (Sterner 2007; Bonilla 2009; Ryan et al.
2009; Kloess and Müller 2011; Carreno et al. 2014; Sterner and Köhlin 2015; Coria
2012).

The economic and environmental consequences resulting from energy taxation
have been addressed in several studies (Gago et al. 2014), both by means of ex-ante
simulations based on tax policy proposals and ex-post empirical analysis on actual
energy tax implementations. Arbolino and Romano (2014) evaluate Environmental
Tax Reforms at the European level using Hierarchical Cluster Analysis and
Quantitative SWOT analysis. Filipović and Golušin (2015) propose a method-
ological approach based on an Environmental Taxation Efficiency (ETE) indicator,
which encompasses environmental taxation effects per capita. Zimmer and Koch
(2016) assess the potential of fuel tax reforms to curb harmful air pollutants and
carbon emissions from road transport in Europe to evaluate the potential of two fuel
pricing policy scenarios to reduce CO2, PM2.5 and NOx emissions. Schipper and
Fulton (2013) found that the shift to diesel cars played little role in the reductions in
aggregate new vehicle CO2 emissions intensity for the EU12. Santos (2017) con-
clude that road transport externalities in the 22 countries analyzed in her study are
not being internalized, thus leading to the recommendation that instruments should
be developed for this purpose in a first step by increasing fuel taxes.

A review of DEA approaches in energy efficiency, including the eco-efficiency
of transportation modes, is made in Mardani et al. (2017).

9.2 The Value-Based DEA Method

Data Envelopment Analysis is a quantitative, empirical and non-parametric
(data-driven) method, which measures the relative performance of similar (com-
parable) organizational units (Decision Making Units, DMUs), generating a relative
efficiency score for each DMU under evaluation. Each DMU is free to choose the
weighted ratio between outputs and inputs in order to maximize its relative effi-
ciency. Those DMUs with maximum performance will form the empirical efficient
frontier, or “envelopment surface”. This allows identifying reference units whose
performance ratings serve as a benchmark for other units, enveloped by the effi-
ciency frontier.

The Value-Based DEA method developed by Gouveia et al. (2008) is a variant
of the additive DEA model (Charnes et al. 1985) with oriented projections (Ali et al.
1995), incorporating managerial/policy preferences using concepts from MAUT
under imprecise information. The Value-Based DEA method considers that “the
inputs are usually the “less-the-better” type of performance measures and the
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outputs are usually the “more-the-better” type of performance measures” (Cook
et al. 2014), where the identification of a production process is not relevant.

The Value-based DEA method deals with the DMUs as alternatives of a
multi-criteria evaluation model, where the criteria (the ones to be minimized and the
ones to be maximized) are converted into value functions according to preference
information provided by managers/policy makers (henceforth designated as deci-
sion maker, DM). This overcomes the scale-dependence problem of the additive
DEA model, since all the input and output measures are translated into value units.

The set of n DMUs to be evaluated is: DMUj: j ¼ 1; . . .; n
� �

. Each DMUj is
evaluated on m factors to be minimized xij i ¼ 1; . . .;mð Þ and p factors to be
maximized yrj r ¼ 1; . . .; pð Þ.

The measure of performance on criterion c is: vcðDMUjÞ; c ¼
�

1; . . .; q; with q ¼ mþ p; j ¼ 1; . . .; ng based on a value function (or utility func-
tion) vc :ð Þ. This measure is established using the preferences expressed by the DM.
Considering that pcj is the performance of DMU j in factor c, the value functions
must be defined such that for each factor c the worst pcj, j ¼ 1; . . .; n; has the value
0 and the best pcj, j ¼ 1; . . .; n; has the value 1, resulting in maximization of all
factors.

A preliminary phase of Value-Based DEA method comprises the assessment of
marginal (partial) value functions (scored between 0 and 1) on each criterion to
establish a global value function. According to the additive MAUT model, the
value obtained is V DMUj

� � ¼ Pq
c¼1 wcvc DMUj

� �
, where wc � 0, 8c = 1,…, q andPq

c¼1 wc ¼ 1 (by convention). The weights w1; . . .;wq considered in the aggrega-
tion are the scale coefficients of the value functions and reflect the value trade-offs
of the DM. Furthermore, the efficiency measure of each DMU gains the meaning of
the “min-max regret” (value loss) measure.

After the preliminary phase in which the factors (to be minimized and to be
maximized) are converted into value scales, the Value-Based DEA method can be
described in two phases:

Phase 1: Compute the efficiency measure, d�k , for each DMU, k = 1, …,n, and
the corresponding weighting vector w�

k by solving the linear problem (9.1).
Phase 2: If d�k � 0 then solve the “weighted additive” problem (9.2), using the

optimal weighting vector resulting from Phase 1, w�
k , and determine the corre-

sponding projected point of the DMU under evaluation.
Formulation (9.1) considers the super-efficiency concept (Andersen and Petersen

1993), which allows the discrimination of the efficient units, when assessing the k-
th DMU (Gouveia et al. 2013):
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min
dk ;w

dk

s:t:
Xq

c¼1

wcvc DMUj
� �

�
Xq

c¼1

wcvc DMUkð Þ� dk; j ¼ 1; . . .; n; j 6¼ k

Xq

c¼1

wc ¼ 1

wc � 0; 8 c ¼ 1; . . .; q

ð9:1Þ

The efficiency measure, d�k , for each DMU k (k = 1,…, n) and the corresponding
weighting vector are computed via formulation (9.1). The score d�k is the distance
defined by the value difference to the best of all DMUs (note that the best DMU will
also depend on w), excluding itself from the reference set. If the optimal value d�k of
the objective function in (9.1) is not positive, then the DMUk under evaluation is
efficient, otherwise it is inefficient.

In case the DMU is inefficient, Phase 2 finds an efficient target by solving the
linear problem (9.2):

min
k;s

zk ¼ �
Xq

c¼1

w�
csc

s.t.
Xn

j¼1;j6¼k

kjvc DMUj
� �� sc

¼ vc DMUkð Þ; c ¼ 1; . . .; q
Xn

j¼1;j6¼k

kj ¼ 1

kj; sc � 0; j ¼ 1; . . .; k � 1; kþ 1; . . .; n; c ¼ 1; . . .; q

ð9:2Þ

The variables kj, j = 1, …, k − 1, k + 1, …, n define a convex combination of
the value score vectors associated with the n − 1 DMUs. The set of efficient DMUs
(possibly a single one) defining the convex combination with kj > 0 are called the
“peers” of DMUk under evaluation. The convex combination corresponds to a point
on the efficient frontier that is better than DMUk by a difference of value of sc
(slack) in each criterion c.

The case study (Sect. 9.4) requires the expression of managerial/policy prefer-
ences, which are made operations through weights restrictions. So, the setW denote
the set of weight vectors necessary to be added to problem (9.1), which leads to a
new formulation with w1; . . .;wq

� � 2 W :
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9.3 A Robustness Assessment Based on the Computation
of Stability Intervals

Several researchers have paid attention to the sensitivity of the results to pertur-
bations in data and the robustness of the efficiency scores resulting from these
perturbations, based on super-efficiency DEA approaches (Seiford and Zhu 1998a,
b; Zhu 1996; 2001; 2003). In our approach to deal with uncertainty, we consider
that the perturbations in the coefficients in each factor (input or output) are captured
through interval coefficients and then converted into utility scales. According to
Gouveia et al. (2013), an optimistic efficiency measure and a pessimistic efficiency
measure are computed. Using these two efficiency measures we can classify each
DMU as surely efficient, potentially efficient, or surely inefficient for a given tol-
erance value. Unlike the standard super-efficiency approach for oriented models, no
infeasibility concerns arise in our approach.

Let us consider that the value pcj (performance of DMU j in factor c) is uncertain
but bounded within the range pLcj � pcj � pUcj. For this work, we consider that all

performances are applied a common tolerance d, such that pLcj ¼ pcj 1� dð Þ�
pcj � pcj 1þ dð Þ ¼ pUcj. Assuming vc is monotonic, the previous inequalities imply

vLc DMUj
� �� vc DMUj

� �� vUc DMUj
� �

, if factor c is to be maximized, or
vLc DMUj
� �� vc DMUj

� �� vUc DMUj
� �

, if factor c is to be minimized.
To compute the optimistic efficiency measure we consider the best value of the

intervals for the DMU being evaluated and the worst value of the intervals for all
other DMUs. The reverse is considered to compute the pessimistic efficiency
measure. We compute the optimistic efficiency measure dopt�k for DMU k solving
the following linear problem:

min
dk ;w

doptk

s.t.
Xq

c¼1

wcv
L
c DMUj
� �

�
Xq

c¼1

wcv
U
c DMUkð Þ� doptk ; j ¼ 1; . . .; n; j 6¼ k

Xq

c¼1

wc ¼ 1

wc � 0; 8c ¼ 1; . . .; q

w1; . . .;wq
� � 2 W

ð9:3Þ

We compute the pessimistic efficiency measure dpes�k for DMU k by formulation
(9.4).
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min
dk ;w

dpesk

s.t.
Xq

c¼1

wcv
U
c DMUj
� �

�
Xq

c¼1

wcv
L
c DMUkð Þ� dpesk ; j ¼ 1; . . .; n; j 6¼ k

Xq

cc¼1

wc ¼ 1

wc � 0; 8c ¼ 1; . . .; q

w1; . . .;wq
� � 2 W

ð9:4Þ

A DMU is classified as robust to changes in its factors if it remains efficient (or
inefficient). In such case, the DMU can be declared robustly efficient (or robustly
inefficient) for the tolerance considered.

9.4 Case Study

We consider two distinct scenarios as in Zimmer and Koch (2016): an abolition of
the favored tax treatment for diesel and an establishment of a carbon content-based
tax. In turn, this led to the development of two models. These models determine the
relative changes in CO2 emissions in 2020 in relation to the status quo (2013) for
two tax reform scenarios: (i) the adaptation of diesel excise tax levels to the levels
of gasoline taxation in 2013 and (ii) the introduction of carbon content-based tax of
50 €/tCO2 on both diesel and gasoline in 2013.1

9.4.1 Problem and Proposed Model

Data have been collected from a variety of publicly available sources. The excise
duties for gasoline2 and diesel3 were taken from OECD studies. The consumption
of gasoline and diesel originate from the EU data4 (Table 9.1).

1The Fifth Assessment Report of the IPCC documents estimates around 241 USD per ton of
carbon for studies published after 2007, corresponding to around 65 USD/tCO2 or 50€/tCO2

(Zimmer and Koch 2016).
2https://www.oecd.org/ctp/consumption/Table-4.A4.5-Taxation-of-premium-unleaded-(94-96%
20RON)-gasoline-(per%20L)-2013-Dec-2014.xls.
3https://www.oecd.org/ctp/consumption/Table-4.A4.6-Taxation-of-automotive-diesel-(per%20L)-
2013-Dec-2014.xls.
4https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin.
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In order to evaluate the gasoline and diesel taxation in light of these principles,
the following perspectives are considered:

(i) Potential of fiscal revenue—the potential gain of fiscal revenue in 2020 as a
percentage of total fiscal revenue in 2013 is considered as proxy.

(ii) Contribution to correct external costs (relative changes in CO2 emissions).
(iii) Distributional effects or fiscal equity.

The model includes two distinct policy scenarios (Model 1 and Model 2) of fuel
tax reforms regarding 2020:

Model 1—Adjustment of diesel excise taxes to gasoline taxation levels.
Model 2—Introduction of a CO2 content-based tax of 50 €/tCO2.

The aforementioned proposals were also analyzed by Zimmer and Koch (2016)
in order to assess how tax reforms contribute to climate change goals, including the
inference of a carbon content-based tax per liter of diesel and gasoline of
50 €/tCO2, in addition to the pre-existing tax level. These authors make the
assumption that this CO2 tax falls within the range of social costs of carbon esti-
mates (for which there is not a consensus).

Table 9.2 displays a summary of the factors (criteria) used in each model with
the respective description and metrics.

Data concerning the potential fiscal revenue and the contribution to correct the
external costs for the two distinct fuel policy scenarios considered (Tables 9.3 and
9.4) were gathered from Zimmer and Koch (2016).

Table 9.2 Description of factors in models 1 and 2

Factors Description Direction of optimization

xCO2Red M1 Relative changes in CO2 emissions
compared to the status quo (2013) for
diesel excise tax adjustment (Model
1)

Minimize the performances in
column 2 of Table 9.4

yPGR_M1 Potential gain of revenue in 2020 as a
percentage of total fiscal revenue in
2013 (Model 1)

Maximize the performances resulting
from column 2 of Table 9.3 divided
by the sum of column 5 and column 9
of Table 9.1

yATFT Average transport fuel taxes as a
percentage of pre-tax expenditure
(Model 1 and Model 2)

Maximize the performances in
column 6 of Table 9.5

xCO2Red M2 Relative changes in CO2 emissions
compared to the status quo (2013)
with the introduction of a carbon
content-based tax of 50 €/tCO2

(Model 2)

Minimize the performances in
column 3 of Table 9.4

yPGR_M2 Potential gain of revenue in 2020 as a
percentage of total fiscal revenue in
2013, with 50 €/tCO2 (Model 2)

Maximize the performances resulting
from column 3 of Table 9.3 divided
by the sum of column 5 and column 9
of Table 9.1
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Table 9.4 shows the predicted reductions in CO2 emissions for Model 1 (diesel
excise tax adjustment) and Model 2 (introducing a 50 €/tCO2 carbon tax) in relation
to the CO2 emission levels from use of diesel and gasoline in 2013. Accordingly,

Table 9.3 Fiscal revenue with the adoption of the distinct fuel policies

Increase in fiscal revenue in 2020
with the adjustment of excise
taxes (M€)

Increase in fiscal revenue in 2020 with
the adoption of a carbon content-based
tax (M€)

Austria 409 799

Belgium 918 857

Czech
Republic

212 573

Finland 314 421

France 4046 4089

Germany 4131 5470

Hungary 58 373

Italy 1735 3143

Netherlands 1218 1133

Poland 383 1424

Spain 1510 2760

United
Kingdom

0 3800

Source Data from Zimmer and Koch (2016)

Table 9.4 Relative changes in CO2 emissions compared to the status quo (2013) for both policy
scenarios

DCO2 in 2020 (w.r.t. to 2013)

Model 1 (%) Model 2 (%)

Austria −5.8 −9.6

Belgium −11.8 −9.3

Czech Republic −4.1 −9.0

Finland −8.7 −8.0

France −11.9 −10.0

Germany −9.0 −8.1

Hungary −1.7 −8.9

Italy −5.4 −7.6

Netherlands −14.7 −8.0

Poland −3.2 −9.9

Spain −6.1 −9.9

United Kingdom 0.0 −7.3

Source Data from Zimmer and Koch (2016)
Note Emissions refer to calculated emissions from diesel and gasoline consumption for road
transportation based on elasticity estimates and emission factors per litre. Reported changes
assume that GDP per capita and vehicle stocks per driver remain unchanged
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the more negative the better, since the countries with more negative performances
in this criterion will experience the highest reduction in carbon emissions in 2020. It
should be noted that the changes in emissions displayed pertain to annual emis-
sions, i.e. in 2020, and not to accumulated emission reductions up to 2020 (Zimmer
and Koch 2016).

To better evaluate the distributional (equity) effects of fuel taxes, we considered
the average transport fuel taxes as a percentage of pre-tax expenditure by expen-
diture decile taken from an OECD study (Flues and Thomas 2015). The major
advantage of the use of expenditure as the basis for the measurement of tax burdens
when assessing consumption taxes’ distributional effects is that expenditure is a
better measure of current and lifetime well-being than current income. Expenditure
will vary to a lesser extent than income over a lifetime, since households generally
present a given level of consumption smoothing due to varying consumption
needing a longer time to occur.

Taking these data into account, it was necessary to unveil three different patterns
across countries. The first one pertains to the progressive effect throughout the
whole expenditure distribution, the second considers the approximately propor-
tional impact of transport fuel taxes on households across deciles in the expenditure
distribution, and the third refers to acknowledging that households in the middle of
the expenditure distribution face the highest transport fuel tax burden (Flues and
Thomas 2015). For this end, we considered the four extreme deciles (1 + 2 and
9 + 10) (see Table 9.5) and calculated the ratio (9 + 10)/(1 + 2).

Table 9.5 Average transport fuel taxes as percentage of pre-tax expenditure by expenditure decile

Deciles 1 (Poorest) (%) 2 (%) 9 (%) 10 (Richest) (%) (9 + 10)/(1 + 2) (%)

Austria 1.40 1.80 1.70 1.40 96.88

Belgium 1.10 1.50 1.30 1.10 92.31

Czech Republic 1.30 1.70 2.00 2.10 136.67

Finland 1.50 1.90 1.80 1.40 94.12

France 1.00 1.30 1.90 1.40 84.38

Germany 1.50 1.80 1.60 1.50 143.48

Hungary 0.60 1.10 2.20 2.30 93.94

Italy 2.30 2.40 2.00 1.60 113.95

Netherlands 1.70 1.70 1.90 1.70 264.71

Poland 1.30 1.50 2.10 1.80 76.60

Spain 1.60 1.60 1.50 1.20 105.88

United Kingdom 1.60 2.70 2.80 2.10 139.29

Source Data from Flues and Thomas (2015)
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Thus, the highest the value achieved, the better.5

The performances of each country being evaluated for the different criteria in
each model are shown in the left-hand side of Tables 9.6 and 9.7 (see Sect. 9.4.2).

9.4.2 Elicitation of Value Functions

In Value-Based DEA method, the construction of value functions is made to reveal
the preferences of the DM (in this setting an expert in fiscal policy). The elicitation
protocol used to construct the value functions for most factors (criteria) consists of
comparing the merit of increasing a factor to be maximized (or decreasing a factor
to be minimized) from a to b versus increasing the same factor to be maximized (or
decreasing the same factor to be minimized) from a′ to b′, all other performance
levels being equal. The DM is asked to set one of these four values (knowing the
other three values) such that the increase in merit would be approximately equal.
Therefore, we elicit the difference in the DMU’s merit that corresponds to decreases
in factors to be minimized or increases in factors to be maximized, rather than the
value of having these factors to be minimized available or factors to be maximized
produced. This elicitation protocol has already been used by Almeida and Dias
(2012) and Gouveia et al. (2015, 2016) in other application contexts. Note that this
conversion is performed assuming the continuity of functions.

The answers about the differences of merit between the performance levels in
each factor enable a piecewise linear approximation to represent the value functions
for the factors to be minimized: xCO2Red M1 and xCO2Red M2 (see Table 9.6;
Fig. 9.1). For the factors to be maximized yPGR_M1 and yPGR_M2 in Table 9.5, it was
possible to adjust the DM’s answers to non-linear value functions (see Fig. 9.1).
The factor yATFT in Table 9.5 has a value function obtained by means of a linear
transformation. Since pATFTj is the performance of DMU j (Country j) in factor
yATFT, the factor performances (column 6 of Table 9.5) are converted into values in
a linear way using formulation (9.5) since this factor should be maximized. The two
limits, ML

ATFT and MU
ATFT , were defined such that ML

ATFT ¼
min pATFTj; j ¼ 1; . . .; 12

� �
and MU

ATFT ¼ max pATFTj; j ¼ 1; . . .; 12
� �

.

vATFT DMUj
� � ¼ pATFTj �ML

ATFT

MU
ATFT �ML

ATFT
; j ¼ 1; . . .; 12 ð9:5Þ

The piecewise linear value functions and the non-linear value functions are
displayed in Fig. 9.1.

5When examined across the expenditure distribution “progressive” means that households in lower
expenditure deciles spend a lower share of expenditure on fuel taxes, “regressive” means that the
share decreases as expenditure increases, and “proportional” indicates that the share does not
depend on expenditure.
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For example, for xCO2Red M1 : vCO2Red M1ð�16:2%Þ � vCO2Red M1ð�14%Þ ¼
vCO2Red M1ð�14%Þ � vCO2Red M1ð�11%Þ ¼ vCO2Red M1ð�11%Þ � vCO2Red M1

ð�6%Þ ¼ vCO2Red M1ð�6%Þ � vCO2Red M1ð0%Þ, all other performance levels being
equal. The value function for factor xCO2Red M2 is similar to the value function of
xCO2Red M1. For factors yPGR_M1 and yPGR_M2, the value functions were obtained by
making the corresponding adjustment of a known function to the preferences bared
by the DM.

The elicited ranges were chosen to include the observed performance ranges plus
or minus the highest tolerance value considered (in this case d = 10%).

Table 9.6 displays the data in the original scales and the data converted into the
value scale for all the factors in evaluation.
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Fig. 9.1 Value functions elicited for factors xCO2Red M1, xCO2Red M2, yPGR_M1 and yPGR_M2

associated with the two fiscal policies (Model 1 and Model 2)
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9.5 Results and Discussion

The evaluation of countries considering both policy scenarios (Model 1 and Model
2), regarding 2020, of fuel tax reforms only makes sense if the following weight
restrictions are imposed:

wCO2Red M1 ¼ wPGR M1 and wCO2Red M2 ¼ wPGR M2 ð9:6Þ

The weight restrictions (9.6) avoid a country assigning the maximum weight to
the potential gain of revenue in 2020 criterion and to disregard the relative changes
in CO2 emissions criterion in the same policy scenario.

Phase 1 in Table 9.7 displays the results for the evaluation using formulation
(9.1) with the countries ranked in terms of optimal loss value d�.

Poland is at the efficiency frontier by choosing two of the criteria associated to
the policy scenario of fuel tax reforms with the introduction of a CO2 content-based
tax of 50€/tCO2, regarding 2020 (w�

CO2Red M1 ¼ w�
PGR M1 ¼ 0, in Table 9.7). In

fact, Poland does perform well in reducing CO2 emissions (xCO2Red M2 ¼ 9:90%)
and it stands out a lot from the other countries in terms of potential gain of revenue
(yPGR_M2 = 72.47%) even though Poland has also a high performance on the cri-
terion related with the distributional effects (yATFT = 139.29%) (see Table 9.6).

The Netherlands, on the other hand, picks two of the criteria related with the
policy scenario that advocates the adjustment of diesel excise taxes to gasoline
taxation levels, in 2020 (w�

CO2Red M2 ¼ w�
PGR M2 ¼ 0, in Table 9.7) to stay in the

group of efficient countries. Due to its high tax differential in 2013, this country will
experience the highest diesel price increase compared with most of the East
European countries that exhibit much lower tax differ (see Table 9.6).

Hungary also lies at the efficient frontier, but making a completely different
choice. Disregarding the criteria related to the expected reductions of CO2 emis-
sions and the potential gain of revenue in 2020, Hungary considers only the criteria
that translates the distributional effects (w*ATFT = 1) to be positioned as best as
possible in relation to the other countries. The choice falls on this the factor since
Hungary is the country with the best performance in this criterion (see Table 9.6).

To position itself as best as possible vis-à-vis the other countries in the sample,
being part of the efficiency frontier, France chooses to consider the criteria related
to the reduction of CO2 emissions and the potential gain of revenue in 2020,
associated with both policy scenarios. There is no policy scenario that favours
France more, in detriment of the other; however, there is more weight on the
criteria that are allied with the adjustment of diesel excise taxes to gasoline taxation
levels, in 2020.

With the exception of Hungary, the other countries that form the efficiency
frontier ignore the criterion related to the distributional effects (w�

ATFT ¼ 0).
Although classified as inefficient, Italy chose the criteria associated with the

policy scenario of regarding the effects in 2020 of the adjustment of diesel excise
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taxes to gasoline taxation levels hypothetically implemented in 2013, in order to
position itself as best as possible 2020 (w�

CO2Red M2 ¼ w�
PGR M2 ¼ 0, in Table 9.7).

The United Kingdom occupies the last position despite of choosing the policy
scenario of regarding the introduction, in 2013, of a carbon content-based tax of 50
€ per ton of CO2 on both diesel and gasoline, with effects assessed in 2020, which
benefits it the most. This may be due to the fact that in 2013 this was the only
country already taxing equally diesel and gasoline; moreover, no CO2 emissions
reductions are expected in 2020 (xCO2Red M1 ¼ 0%, in Table 9.6).

The solution obtained from formulation (9.2) of the Value-Based DEA method is
a proposal of an efficiency target (projection) for each inefficient country. To attain
an efficiency status these inefficient countries must change their value in each factor
by the amount indicated by s*. Note that not all the proposed changes correspond to
improvements since some of the inefficient countries have negative slacks. So, for
an inefficient country to equalize its peers on the efficient frontier, if it has a
negative slack corresponding to a factor to be minimized that should be increased
and if it has a negative slack corresponding to a factor to be maximized that should
be reduced. For instance, Belgium and Finland in order to become efficient as their
peers (Poland and Hungary, respectively) should change its performances in each
factor by the amount indicated by s� variables (Phase 2 in Table 9.7). Both
countries need to reduce the potential gain of revenue ðs�PGR M1\0Þ, but they are
allowed to increase the CO2 expected emissions in 2020 w.r.t.
2013 ðs�CO2Red M1\0Þ on the policy scenario of adjusting diesel excise tax and
improve all the other factors related with the policy scenario of introducing a CO2–

content based tax as well as the distributional effects factor.
Italy needs to reduce the CO2 emissions and increase the potential gain of

revenue in 2020, associated with both policy scenarios, but it could worsen the
distributional effects factor ðs�ATFT\0Þ to emulate Netherlands.

The United Kingdom could be efficient in 2020 if the performances on all factors
are improved to be as the same as those in Poland (the benchmark at the efficiency
frontier).

9.6 Robustness Analysis and Stability Intervals

In this section, and according to Sect. 9.3, the robustness of the status (efficient or
not) was assessed, for each DMU (Gouveia et al. 2013). The lower limit comes
from the solution to the linear problem (9.3) and the upper limit is the solution to
linear problem (9.4). The results considering a tolerance d equal to 5% and 10% for
the factors xCO2Red M1; xCO2Red M2; yPGR M1 and yPGR_M2 are displayed in
Table 9.8. The DM considered more realistic not to apply any tolerance to the
factor related to the distributional effects.

It is also possible to apply different tolerance values to different criteria in the
same analysis to see which are the criteria (Model 1) to which the country under
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evaluation is most sensitive. So, a combination of the previous tolerances was also
considered, such as d = 5%, for factors xCO2Red M1 and yPGR_M1 (criteria of Model
1) and d = 10% for factors xCO2Red M2 and yPGR_M2 (criteria of Model 2). Then we
interchange the tolerances of factors, applying a tolerance d = 10% for factors
xCO2Red M1 and yPGR_M1, and d = 5%, for factors xCO2Red M2 and yPGR_M2 (see
Table 9.9).

Table 9.8 shows the results for each country considering the optimistic (for
lower limits of the ranges) and pessimistic (for upper limits of the ranges) per-
spectives, using formulations (9.3) and (9.4) with the tolerance values of 5% (left
side), 10% (right side) for the factors xCO2Red M1, xCO2Red M2, yPGR_M1 and
yPGR_M2. Poland, Hungary and Netherlands are efficient and remain in this state
when the tolerance of 5% is considered. Although France is classified as an efficient
country in the ranking obtained (see Table 9.7), it does not maintain efficiency for
this tolerance value (see Table 9.8). Poland, Hungary and Netherlands are surely
efficient and France, Italy and Belgium are potentially efficient; Finland, Spain,
Germany, Czech Republic, Austria and United Kingdom are surely inefficient for
d = 5%. If the uncertainty intervals are set to a tolerance of 10%, the surely efficient
units (Poland, Hungary and Netherlands) remain and Finland and Spain become
potentially efficient, instead of surely inefficient (for d = 10%).

In Table 9.9 we have the results for both perspectives (optimistic and pes-
simistic) with the combination of tolerance values d = 5%, for factors xCO2Red M1

and yPGR_M1 and d = 10%, for factors xCO2Red M2 and yPGR_M2 (left side) and vice
versa (right side). For the selected tolerance values applied to the criteria, Poland,

Table 9.9 Lower and upper limits for the value loss d�opt; d
�
pes

h i
, for each country, considering

d = 5% for factors xCO2Red M1 and yPGR_M1 and d = 10%, for factors xCO2Red M1 and yPGR_M2 and
vice versa

DMUs pcj 1� 5%ð Þ� pcj � pcj 1þ 5%ð Þ;
c ¼ CO2Red M1; PGR M1 and
pcj 1� 10%ð Þ� pcj � pcj 1þ 10%ð Þ;
c ¼ CO2Red M2; PGR M2

pcj 1� 10%ð Þ� pcj � pcj 1þ 10%ð Þ;
c ¼ CO2Red M1;PGR M1 and
pcj 1� 5%ð Þ� pcj � pcj 1þ 5%ð Þ;
c ¼ CO2Red M2;PGR M2n

Poland [−0.609; −0.055] [−0.466; −0.178]
Hungary [−0.294; −0.232] [−0.249; −0.232]
Netherlands [−0.186; −0.050] [−0.252; −0.007]
France [−0.148; 0.107] [−0.131; 0.096]
Italy [−0.011; 0.019] [−0.025; 0.033]
Belgium [−0.116; 0.113] [−0.095; 0.121]
Finland [−0.006; 0.102] [−0.007; 0.110]
Spain [−0.020; 0.206] [0.020; 0.193]

Germany [0.040; 0.184] [0.050; 0.189]

Czech Republic [0.059; 0.184] [0.076; 0.177]

Austria [0.014; 0.204] [0.053; 0.198]

United Kingdom [0.323; 0.515] [0.379; 0.493]

Bold denotes efficiency
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Hungary and Netherlands are still surely efficient, France, Italy, Belgium, Finland
are potentially efficient and Spain is only potentially efficient if the tolerance
d = 5% is considered for factors xCO2Red M1 and yPGR_M1 and d = 10%. Germany,
Czech Republic, Austria and United Kingdom are surely inefficient.

With this type of robustness analysis it is possible to conclude that in the group of
the surely efficient countries The Netherlands would be the most fragile when
viewed under a pessimistic light, in particular when the 10% tolerance is considered
for xCO2Red M1 and yPGR_M1, and d = 10% for xCO2Red M2 and yPGR_M2 (see column
2 of Tables 9.8 and 9.9). With the exchange of the tolerance values The Netherlands
is less sensitive to variations in factors. Comparing the second column of Table 9.8
with the fist column of Table 9.9 we may notice that the potentially efficient
countries are the same and limits of the ranges of Poland and Hungary do not vary.

9.7 Concluding Remarks

Given its share in total GHG emissions, the transport sector plays a critical role in
EU climate and energy policies that aim to curb greenhouse gas emissions. Fuel
taxation can be used to internalize a wide range of externalities, including those
directly linked to fuel use, such as GHG emissions and local air pollution. Although
tax road fuels had primarily aimed to raise fiscal revenue, recent events such as the
Paris Agreement on Climate Change have motivated a new interest in fuel pricing
policies as an important instrument in the mitigation efforts of transition to a
low-carbon economy.

Inspired on the economic principles underlying efficient and fair tax design, we
developed a multi-criteria evaluation framework based on the Value-Based DEA
method to assess the impact of two fuel pricing policy scenarios to reduce GHG
emissions: abandoning of the diesel tax advantage and introducing a CO2

content-based tax. The application of this approach was illustrated using data of 12
European countries.

This framework of analysis enabled taking into account multiple, conflicting and
incommensurate criteria to assess the performance of countries to develop insights
that may reveal useful to shape fuel taxation policies. A relevant result is the
identification of the efficient countries that can be used as reference (benchmark) for
inefficient countries to improve, thus unveiling best practices. Considering that each
country has different economic and political agendas, which constrain their indi-
vidual fiscal policies, the classical trade-off between equity and efficiency or the
political pressure of different priorities can be (partially) resolved in the framework
of the proposed approach. This is facilitated by offering the decision makers the
possibility to incorporate their priorities in the design and evaluation of fuel tax
policies.

The need to obtain robust conclusions in face of several sources of uncertainty is
taken into account. For this purpose, we consider that perturbations in the
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coefficients in each factor (to be minimized or to be maximized) are captured
through interval coefficients and then converted into value scales. Using two effi-
ciency measures (an optimistic efficiency measure and a pessimistic efficiency
measure) we can classify each DMU as surely efficient, potentially efficient, or
surely inefficient for a given tolerance (level of uncertainty) value.

The results obtained in this illustrative case study indicate that the two policy
options, the fiscal reform scenarios under analysis, will not be sufficient to place the
majority of the countries on the efficient frontier. Additionally, with this type of
robustness analysis, the results indicate that in the group of the surely efficient
countries some countries will be more sensitive than others when considering
different tolerance values. This kind of analysis is especially important when we
consider a period of economic disturbance, such as the one after the 2008 crisis.
The countries were differently vulnerable to economic changes and had different
degrees of freedom in conducting their fiscal policies in order to overcome public
finance constraints.
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Chapter 10
Strategic Analysis of Solar Energy
Pricing Process with Hesitant Fuzzy
Cognitive Map

Veysel Çoban and Sezi Çevik Onar

Abstract Sun is the leading renewable energy source for satisfying energy
demand. Solar energy systems, which have direct and indirect energy generation
technologies, require high initial costs and low operation costs. The right deter-
mination of solar energy price has an important role on efficient solar energy
investment decisions. In this study, the critical factors for the solar energy price are
defined and the causal relationships among them are represented with a Hesitant
Fuzzy Cognitive Map (HFCM) model. The causal relations among the factors and
the initial state values of the factors are defined with the linguistic evaluations of the
experts by using Hesitant Fuzzy Linguistic Term Sets (HFLTSs). The linguistic
expressions are converted into Trapezoid Fuzzy Membership Functions (TFMFs).
The obtained HFCM model is used for simulating various scenarios, and the
equilibrium state values of the factors are obtained. The results indicate that the
factors affecting solar energy systems have an important effect in determining
the solar energy price. The solar energy price adapts to the general energy price
market in the long term.

10.1 Introduction

Energy which allows people to live a more productive life is basically provided with
six power sources and they can be transformed from one form into another as
mechanical, chemical, thermal, radiant, nuclear, and electric. The primary energy
sources commonly used in the world (85.52% of total energy consumption) are fossil
based (coal, gasoline, natural gas) (BP 2017). The increase in fossil fuel con-
sumption leads to the increased atmospheric release of greenhouse gases, especially
CO2. Global warming and climate changes caused by greenhouse gases are an
essential part of the economic, social and environmental problems. Therefore,
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the use of fossil-based fuels in energy-intensive conditions is the most precise
indication of the human impact on climate change (Stern 2015). Greenhouse effect,
global warming, and climate change have led governments to turn to renewable
energy sources (sun, wind, hydroelectric, biomass) as an alternative to fossil energy
sources. The National Science Academies of the G8 countries reported that a joint
action against climate change should be undertaken and urged governments to
reduce CO2 emissions by 50% below 1990 levels by 2050 (Academies 2009).

In the long run, production of electricity from coal, oil and natural gas is
expected to be replaced by entirely renewable energy sources (Fig. 10.1). However,
the significant disadvantages of renewable energy production against traditional
energy sources are that they are more expensive and less reliable (Conkling 2011).
The difficulties in using renewable resources are also as follows: political uncer-
tainty, the tendency of countries to move away from FITs and green certificates,
changes in subsidies and the need to integrate renewable-based systems with
existing power plants.

In order to promote the use of solar energy, which is the most important
renewable energy source, it must be able to compete with other renewable and
traditional energy types. Regulatory policies, fiscal incentives, and public financing
bases shape the countries’ support for developing solar energy capacity. For
example, Turkey uses feed-in tariff/premium payment, biofuels obligation/mandate,
capital subsidy, grant, or rebate, and public investment, loans, or grants methods as
promotion policy (Crawley 2016).

Price, which is the most important competitive factor in energy and all other
markets, is an important measure for the adoption and diffusion of solar energy
technologies. Therefore, the fundamental factors that are effective in solar energy
pricing are defined and the relationship between them is modelled in this study. The
national and international factors that influence solar energy pricing in the energy
market include uncertainty and hesitancy. Hence, the HFCM model is utilized for
developing the causal relationships of solar energy pricing. The causal relationships
among the active factors in the solar energy HFCM pricing model are defined, and
their effects on the solar energy pricing are reflected in the equilibrium state.

The organization of the chapter is as follows: Sect. 10.2 explains the pricing in
solar energy, the effective factors in the solar energy system The HFCM model and
its preliminaries the FCM, the hesitant fuzzy set and the HFLTS subjects are
mentioned in the Sect. 10.3. The processing process and calculation methods of the

Fig. 10.1 Annual capacity additions and expectations until 2040 (Bloomberg New Energy
Finance 2015)

196 V. Çoban and S. Çevik Onar



HFCM model are mentioned in Chap. 4. Chapter 5 gives the results of simulation
evaluations of the solar energy price based HFCM model developed with two
different scenarios. The study is completed in the conclusion section with the
general results and future studies.

10.2 Solar Energy Pricing

Governments should access sustainable, quality and cheap energy sources to sup-
port and sustain their economic and social development. Increasing population
leads to further increase in demand, hence, new energy generation methods are
developed to meet this increasing demand. However, the use of fossil-based energy
sources to meet rising energy demand creates environmental and economic prob-
lems (Thomas et al. 2011). Therefore, the countries have turned to renewable
energy sources, especially solar with the support of national and international
decisions and agreements. India, for example, has set a goal of increasing solar
energy capacity from 5.2 GW in 2016 to 100 GW by 2022 (Council 2016).
Similarly, Turkey has set a target to increase the solar energy capacity of 2 GW at
the end of 2017 to 5 GW in 2023 (PV-Magazine 2017).

The price of energy is the most critical determining factor for the acceptance of
renewable energies by the society and investors. Correct pricing is advantageous for
energy providers to optimize capacity planning and for consumers to minimize
energy costs. Energy pricing and forecasting of energy needs allow appropriate
energy capacity planning, financing technologies and investments in energy
diversity, and enabling investors and governments to develop stable policies
(Mir-Artigues and Del Río 2016). In particular, the economic depression and
poverty caused by the rise in energy prices in the 1970s and 1980s led to the
development of new policies and models based on energy availability and cost
(Timilsina et al. 2012). Knowing the factors that affect energy prices and under-
standing their impact on the energy market is the starting point for solar energy
pricing.

The energy price (EP) is determined by the installed capacity, not by the actual
energy production (Zatzman 2012). The total energy price is calculated taking into
account factors that cause economic effects and components based on performance.
Factors defined in the price calculation include uncertainty, which may vary locally
and temporally.

Factors affecting solar energy pricing

In this section, factors affecting solar energy pricing are defined, and causal rela-
tionships among factors are explained in the model. Causal relationships are
evaluated and how the factors affect each other in the long run are observed under
the HFCM model. Thus, factors that determine solar energy prices and the causal
relationships between the factors shown and the decision making processes of the
government and investors in the long term accurately directed.
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The main factor driving a country to use renewable energy from fossil energy
consumption is the conscious governments know that fossil fuels are behind their
country’s environmental, economic and social problems (Environmental Effects,
EE and Eco-social Effects, ESE). The anticipation of the deterioration of agricul-
tural production and living conditions caused by the change of climate change and
vegetation cover is at the basis of environmental concerns. Governments develop
national and international directive laws and regulations (Global treaties, GT such
as Kyoto Protocol) to manage the use and widespread of renewable energies in the
community. Laws and regulations differ among countries according to their
renewable energy potentials (Çoban and Onar 2017). National regulations are
severely affected by international agreements and supportive policies.

The trend towards renewable energies revealed the technical and technological
infrastructure problems (IP). Having different characteristics of the environmental
conditions of the energy plants reveals the infrastructure requirements of the plants
and affects the initial costs and solar pricing. Therefore, the use of renewable energy
has a significant price disadvantage against the use of fossil based energy. In
contrast, governments’ policies to support renewable energies provide price com-
petition against fossil fuels.

The supportive laws and legislations (SLLs), which aim to generate electricity
from solar energy source, specify the procedures and principles for the realization
of electricity generation in the country. Incentives (Fig. 10.2), which are applied in
many countries around the world, are aimed at eliminating energy dependency by
supporting renewable energy sources. Supporting, encouraging and inhibiting the
solar energy investments can be covered by the cost of energy companies that do
not produce renewable energy (Ministry 2017). This situation, which causes fluc-
tuations in the general energy prices, causes solar energy prices to fluctuate in an
indefinite range.

The most common support scheme for the development of solar energy systems
is feed-in tariff (FIT). FIT for entire production (FITEP) guarantees that the elec-
tricity generated from a solar energy system and transmitted to the grid is purchased

Fig. 10.2 Historical market incentives and enablers (IEA 2016)
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at a predefined price for a specified period (Crawley 2016). For example, the
purchase of electricity generated by facilities that produce electricity using solar
energy sources is committed by the state at a fixed price (0.133 $/kWh) for ten
years in Turkey (Ministry 2017). The support provided by the FIT policy is
financed by tax revenues or by taxation on companies generating energy without
renewable energy.

The accurate determination of support price and duration values in FIT plans has
a critical precaution for solar energy and general energy pricing. High-priced and
long-term support leads to a decline in energy prices and a deterioration of the
market balance (Spain 2008, Czech Republic 2010, Italy 2011) (Mir-Artigues and
Del Río 2016). In addition, if domestic producers supply mechanical and/or elec-
tromechanical components used in grid-connected solar energy generation facilities,
these facilities benefit from price supports. For example, if the solar energy plant
established in Turkey supplies its equipment and materials from domestic manu-
facturers, it wins an additional domestic contribution to FIT for five years (Ministry
2017). If the PV modules in the installation of the PV solar energy plant are
produced in Turkey, 1.3 US cents/kWh domestic production contribution is given
for five years.

FIT with tender (FITT) is an alternative method of providing FIT support to
reduce the cost of PV electricity. Competition with the tender procedure enables to
draw the solar energy price to the lowest possible level and to reduce margins. This
support method reflects how low the bids can be under competitive bidding con-
ditions. Low bids can only be realized if the market has low capital costs, low
component costs, and a low risk (IEA 2016).

The direct capital subsidy (DS) is the most straightforward way for governments
to promote solar energy installations. The system investment cost is made attractive
with this single-process subsidy method (CEDE 2014). Direct capital subsidies are
the financial support through taxation (tax breaks, TB) for upfront investments in
solar energy systems according to their off-grid and on-grid connections (Crawley
2016).

The Renewable Portfolio Standard (RPS) is a market mechanism based on a plan
to gradually increase electricity generated from renewable energy sources (wind,
biomass, geothermal and solar). Competition between renewable energies is
achieved through this market-based approach. Thus, the use of renewable energy
sources is continuously promoted and the cleanest energy is achieved at the lowest
price (Scientists 2015). RPS and related approaches determine a share of electricity
that must be generated from a particular renewable energy source. This incentive
plan allows renewable electricity producers to charge a market-based fee for the
electricity they give to the grid (Crawley 2016).

Self-consumption is the independent supply of individual energy needs from the
small scale solar energy systems established on the residential roof. Although
self-consumption systems have high costs compared to utility-scale systems, their
price advantages provided by individual investors (non-incentivized
self-consumption, SCNI), in the long run, can make their use even more wide-
spread. Sustainable building regulations have increased the interest in using solar
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tools (photovoltaic, solar water heater and passive solar energy) as a source of
heating and electricity. The use of solar energy technologies in construction can be
supported by environmental regulations and legislation to reduce the energy foot-
print of buildings (incentivized self-consumption, SCI). Net metering (NM) is a
system that helps to arrange energy billing by following the consumed electricity by
the structures and the generated electricity by the solar energy system. Electricity
generated by the net-metered solar power system of the residence meets the resi-
dential energy demand primarily, and the increasing electricity is supplied to the
grid. If the residential solar power system generates more electricity than needed
during the billing period, net metering customers receive bill credits. The invest-
ment of solar energy is depreciated in a shorter period, and solar energy prices are
affected positively with this system (IEA 2016).

Power Purchasing Agreements (PPAs) are a standard business model for
meeting near-energy demands with electricity generated from grid-connected
medium-sized solar power systems inbuilt. The system owner sells the generated
electricity through a direct connection to the nearby consumers. Thus, consumers’
demand for mains electricity is reduced, and a lower selling price for electricity
generated from solar energy arises. The system based on profitability is affected by
the electricity cost of the grid that is shaped by the electricity supply-demand
(Crawley 2016; IEA 2016).

Technical and political support increases the installation of solar energy facilities
and solar energy generation capacity. The increase in the generation capacity of
solar energy contributes to the stabilization of total energy demand and energy
supply (ES) and determines the price of solar energy in the energy market.
Improvements in the solar energy technology (SETI) increase solar energy pro-
duction potential by reducing the costs of solar energy installation and by devel-
oping the infrastructure requirements for installation. Economic components
(EC) for solar energy pricing can be shaped with capital cost, return on equity,
interest on loan, depreciation, operation and maintenance expense, insurance, taxes,
service charges, and cost escalation factor (Thomas et al. 2011). In addition to these
critical economic factors, installed capacity, capacity utilization and penalty factors
have an important influence on pricing.

The ever-increasing world population brings with it the increase in production
and consumption. The total amount demanded of energy, which is the basic element
of production and consumption, is called energy demand. In order to meet the rising
energy demand, it is necessary to use the sun and other energy resources together to
generate energy supply. Energy prices (as a combination of renewable and
non-renewable energy prices, REP/NREP) are an important factor in achieving a
balance between energy demand and supply. The installation of new solar power
plants and the increase in the total installed solar capacity contribute to energy
supply and indirectly affect energy prices.

The support and encouragement for the dissemination of solar energy reduce the
availability of existing and widespread fossil-based energy production systems and
equipment. In this case, the perceived damage of fossil-based investments, existing
industrial system, and production technologies lead to the emergence of anti-solar
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energy policies. However, the ease of transportation and storage of fossil-based
energies causes serious cost disadvantages to solar-based energy systems.

10.3 Fuzzy Cognitive Maps

FCMs, which are an extension of cognitive maps with fuzzy logic, enable recog-
nizing causal relationships among components in complex systems. Fuzzy
Cognitive Maps (FCM), fuzzy graphical structures representing causal reasoning,
are defined by Kosko (1986). An FCM is represented with signed and directed
graphs showing concepts and causal relationships among concepts. In graphical
notation, concepts are represented by nodes and denoted as Ci, and causal relations
among nodes are represented by weighted edges and denoted as wij. The weight
value of the edges expresses the fuzzy strength of causal relations and is represented
by fuzzy numbers. Graphical representation of complex systems with FCM allows
visual representation of concepts and directional relationships among them.

Figure 10.3 represents a simple FCM model with five members ðCiÞ and six
weighted edges ðwijÞ between these members. Weights expressed regarding the
causal relationship between concepts are expressed as the values between [−1, 1].
The positive and negative sign of relationship weight expresses the direction of the
relationship between concepts. The absence of a causal relationship between con-
cepts indicates that the weight value is zero. The change in any concept in the FCM
model, which has the fuzzy feedback loop feature, causes to change the current state
of the other concepts in the system. If all the factors in the model reach an equi-
librium state, the feedback loop process is terminated (Kosko 1997). Since the
factors in the FCM are not self-feedback (i.e., no self-causal relationship), the
diagonal value of the weighted relationship matrix is zero. Subjective information
based on expert knowledge and experience or objective information obtained
through methods such as literature review is used to identify the concepts and fuzzy
causal relationships between concepts in the FCM (Çoban and Onar 2017).

0 w12 0 0 w150 0 0 0 00 0 0 w34 0w41 0 w43 0 00 w52 0 0 0
Fig. 10.3 A sample FCM and relation matrix
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Some structural criteria reflect the model factors and general model character-
istics. Transmitter refers to the factor affecting other factors but not being affected
by other factors. Receiver refers to the factor affected by other factors but not
affecting other factors. Ordinary refers to the factor affecting other factors and
influenced by other factors. Centrality represents the sum of the influence values of
the factor (Papageorgiou 2013). The total value of the relationships that are directed
to a factor is defined as “in-degree.” The sum of relations from one factor to the
other is called “out-degree.”

The weight values of causal relations in the FCM can be determined using
triangular, trapezoidal, sigmoid, Gaussian functions or fuzzy linguistic terms.
The FCM model operates using fuzzy arithmetic operators, and defuzzification
methods (weight centers, center area, and weighted average method) are used to
transform the fuzzy values reached in the steady state to crisp values in the range
[−1, 1].

At
i denotes the state value of the concept Ci in time t, and the general state values

for all concepts in FCM can be shown in the form At ¼ At
1;A

t
2; . . .;A

t
n

� �
. The next

state value of concept i ðCiÞ reaches after each iteration is defined as:

Atþ 1
i ¼ f

Xn
j¼1

At
jwij þAt

i

 !
ð10:1Þ

where f(.) is the threshold function that is used to transform the sum of the previous
state value ðAt

iÞ and the total causal effects. The most commonly used transfor-
mation (threshold) functions are hyperbolic tangent and sigmoid functions that get
values in the range [0,1] and [−1,1] respectively.

f ðtÞ ¼ 1
1þ e�kt

ð10:2Þ

f tð Þ ¼ tanh ktð Þ ¼ ekt � e�kt

ekt þ e�kt ð10:3Þ

The optional lambda parameter (k > 0) in the functions is used to determine the
appropriate slope of the function. The value x represents the internal calculation
performed on the new state vector. If the difference between the two state values
ðAtþ 1

i � At
iÞ for each concept is 0.001 or less, the iterations are terminated, and the

final state is called as a steady state (Papageorgiou 2013).
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10.3.1 Preliminaries

10.3.1.1 Hesitant Fuzzy Sets

Fuzzy set theory was developed by Zadeh (1996) to model and calculate uncer-
tainty and vagueness using mathematical methods. The fuzzy set theory, which is
oriented towards solving complex everyday life problems, has been applied to a
wide range of scientific fields such as decision theory, energy management, and
artificial intelligence methods (Papageorgiou 2013; Michael 2010). New extensions
of fuzzy sets are developed to produce more accurate approaches and solutions to
the complex and ambiguous problems encountered in everyday life (Mizumoto and
Tanaka 1976; Atanassov 1986; Torra 2010). The Hesitant Fuzzy Sets (HFSs),
developed by Torra (2010), are aimed at dealing with the situations where more
than one value of a membership of the fuzzy clusters may be possible. In HFS, a
function is defined that returns a set of member values for each element in the
domain (Torra 2010).

HFS, defined on the reference set (X), is expressed as a function (h) that returns a
subset in the range [0,1]. The mathematical representation of the expression is as
follows:

h : X ! f½0; 1�g ð10:4Þ

The association of HFSs for a set of N membership functions is represented as
M ¼ l1; l2; . . .; lNf g and shown as:

hM : M ! 0; 1½ �f g and hM xð Þ ¼ [ l�M lxf g ð10:5Þ

The upper and lower bound of the hesitant fuzzy set h is given as Torra (2010):

h� xð Þ ¼ min h xð Þ and hþ xð Þ ¼ max h xð Þ ð10:6Þ

Some basic operations (complement, union, and intersection) of the HFSs can be
defined as follows (Torra 2010):

hc ¼ [ c2hðxÞf1� cg ð10:7Þ

ðh1 [ h2Þ xð Þ ¼ fh 2 h1 xð Þ [ h2 xð Þð Þjh�max h�1 ; h
�
2

� � ð10:8Þ

h1 \ h2ð Þ xð Þ ¼ fh 2 h1 xð Þ [ h2 xð Þð Þjh�min hþ
1 ; hþ

2

� � ð10:9Þ

where h represents the hesitant fuzzy set.
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10.3.1.2 Hesitant Fuzzy Linguistic Term Sets

Linguistic knowledge using words or phrases is applied to solve daily life problems
which cannot be expressed by numerical values. The linguistic expressions used to
identify and solve problems are a tool that best reflects people’s perceptions and
knowledge (Zadeh 1975). The fuzzy set theory is dependent on linguistic variables
which are fuzzy variables. The fuzzy linguistic approach, which uses a single
language term, is insufficient to express and evaluate language variants involving
hesitation. HFLTSs have been proposed as a solution to these common problems by
Rodriguez et al. (2012).

An ordered finite subset of consecutive linguistic terms of linguistic term set
S ¼ s0; s1; . . .; sg

� �
is represented with Hs (HFLTS). For example, a sample

HFLTS can be defined as Hs ¼ fs2; s3; s4g where linguistic term set S is determined
as S ¼ s0 : nothing; s1 : very low; s2 : low; s3 : medium;f
s4 : high; s5 : very high; s6 : perfectg . The upper/lower bounds ðHSþ ;HS�Þ, com-
plement Hc

s

� �
and basic operations of the HFLTSs Hs;H1

s ;H
2
s

� �
are shown as:

HSþ ¼ max sið Þ ¼ sj; si 2 Hs and si � sj8i and
HS� ¼ min sið Þ ¼ sj; si 2 Hs and si � sj 8i

ð10:10Þ

Hc
s ¼ S� Hs ¼ fsijsi 2 S and si not 2 Hsg and Hc

s

� �c¼ Hs ð10:11Þ

h1 \ h2ð ÞðxÞ ¼ fh 2 h1 xð Þ [ h2 xð Þð Þjh�min hþ
1 ; hþ

2

� � ð10:12Þ

Generated new values for these operations also will be an HFLTS.

10.3.1.3 OWA Operators

Collecting a set of information to obtain a new information is called aggregation
and the operators used for this purpose are called the aggregation operator (mean,
arithmetic mean, weighted arithmetic mean) (MDAI 2014). The ordered weighted
averaging (OWA) aggregation operator is applied to aggregate the HFLTSs and
obtain a universal HFLTS.

OWA x1; x2; . . .; xkð Þ ¼
Xk
i¼1

liwi ð10:13Þ

where li is the i. largest member of the aggregated elements x1; x2; . . .; xk. wi is a
weight of the ordered i. data in [0,1] interval and is defined the weighting vector W,
W ¼ w1;w2; . . .;wkð ÞT . The sum of the weights defined in W equals one asPk

i¼1 wi ¼ 1 (Yager 1988). The methods (maximum, minimum, average) applied to
determine the weighting values enable differentiation of OWA operators. The OWA

204 V. Çoban and S. Çevik Onar



collection operator, introduced by Yager, had the opportunity to practice in different
branches of science (Yager 1988). The ability of the OWA operator to collect and
model linguistic expressions allows it to be used extensively in computational
intelligence and fuzzy logic-based calculations as an aggregation operator.

The orness method can represent the degree of optimism and pessimism of the
OWA operator (Liu and Rodríguez 2014). Because of this feature, orness method
which is widely used in researches is also used in this study. The mathematical
representation of the orness method is as follows.

orness Wð Þ ¼ 1
k � 1

Xk
i¼1

wi k � ið Þ ð10:14Þ

where 0� orness Wð Þ� 1. orness� 0:5 condition points to optimistic OWA oper-
ators and orness\0:5 state points to pessimistic OWA operators (Yager 1993).

10.4 Hesitant Fuzzy Cognitive Maps

FCM is a dynamic modelling tool that reflects the concepts and causal relationships
between concepts in complex and uncertain systems. Hesitant fuzzy sets
(HFS) provide ease of assessment by allowing more than one value to identify
membership in a situation (Kahraman et al. 2016). HFCM is a fuzzy method that
models the causal relationships of linguistic evaluations defined by HFLTS.
Hesitant linguistic expressions that are natural translations of experts’ cognitive
assessments with words or phrases are used to define concepts and their initial
states. The process flow of HFCM is as follows:

Stage 1. Development of relationship model

Factors and the relationships between the factors of the HFCM model are deter-
mined by the common opinions of experts’ knowledge and experiences. In the
model, the system members are represented by nodes ðCiÞ, and the causal rela-
tionships between the members are indicated by directed linguistic edges. A simple
HFCM in Fig. 10.4 is represented with five concepts ðC1;C2;C3;C4;C5Þ and six

0 at least high 0 0 at most 
high 

0 0 0 0 0

0 0 0 low 0
greater 

than high 0 at least 
medium 0 0

0 btw very low/ 
medium 0 0 0

Fig. 10.4 A simple HFCMs and HFLTS matrix
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directed linguistic edges. Since the HFCM does not contain any self-loop concept,
their values in the weight matrix are defined as zero ðwii ¼ 0Þ.
Step 2. Collection of experts’ information using HFLTS

Uncertain and dynamic system conditions cause experts to ambiguously identify
the concepts and relationships between concepts in the cognitive map. Hence,
experts use hesitant linguistic terms to convey ideas more naturally. Natural hesitant
linguistic expressions of experts are defined by using context-free grammar, GH that
is generated with 4-tuple ðVN ;VT ; I;PÞ (Rodriguez et al. 2012; Bordogna and
Pasi 1993).

Hesitant linguistic expressions are defined by using a linguistic term set where
S ¼ s0 : nothing; s1 : very low; s2 : low; s3 : medium;f
s4 : high; s5 : very high; s6 : absoluteg and context-free grammar. The sample
hesitant linguistic statements are as follows: at most high, smaller than low, and
between medium and high. Hesitant linguistic expressions provide flexibility to
define and evaluate the hesitant concept and causal relationships among them.

The linguistic expressions obtained by expert evaluations must be converted to
HFLTS for use in HFCM model calculations (Rodriguez et al. 2012). The trans-
formation function, EGH developed by Rodriguez et al. (2012) is used in the con-
version process. The methods applied according to the linguistic term set, S in the
conversion process are as follows.

EGH sið Þ ¼ sijsi 2 Sf g
EGH at least sið Þ ¼ sjjsj 2 S and sj � si

� �
;EGH at most sið Þ ¼ sjjsj 2 S and sj � si

� �
EGH lower than sið Þ ¼ sjjsj 2 S and sj\si

� �
;EGH greater than sið Þ ¼ sjjsj 2 S and sj [ si

� �
EGH between si and sj

� � ¼ skjsk 2 S and si � sk � sj
� �

For example, medium; high; very highf g is a sample HFLTS that is trans-
formed form of the “betweenmedium and very high” linguistic expression;
EGH between low and highð Þ ¼ low;medium; highf g.
Step 3. Fuzzy envelope of HFLTS

The enveloping method is used to compare the HFLTS converted from the lin-
guistic expressions of the experts and to start the calculation processes in the HFCM
model. Envelopment of an HFLTS,env HSð Þ is indicated by upper ðHSþ Þ and lower
ðHS�Þ bounds as follows:

env HSð Þ ¼ HS� ;HSþ½ �; HS� �HSþ ð10:15Þ

For example, the HFLTS, Hs ¼ low;medium; highf g of “between low and high”
linguistic evaluation can be enveloped under S = {nothing, very low, low, medium,
high, very high, absolute} linguistic terms set as env HSð Þ ¼ low; high½ �.

The OWA operator is contacted to obtain the fuzzy membership function of
HFLTS and bring these membership functions together (Liu and Rodríguez 2014).
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To reflect the linguistic uncertainties expressed by HFLTS, it is appropriate to use the
trapezoidal membership function, ~A ¼ a; b; c; dð Þ in the OWA operator procedure
(Delgado et al. 1998). The process stages for calculating the coefficients expressing
the trapezoidal membership function are as follows (Liu and Rodríguez 2014):

Stage 1. Defining the aggregation elements

Linguistic terms are applied to calculate the parameters of the trapezoidal fuzzy mem-
bership function, ~A ¼ a; b; c; dð Þ, as Ak ¼ T akl ; a

k
m; a

k
m; a

k
r

� �
; k ¼ 0; 1; . . .; g. The set

of aggregation elements of the linguistic terms in the HFLTS Hs ¼ si; siþ 1; . . .; sj
� �

are shown as;T ¼ aiL; a
i
M ; a

iþ 1
L ; aiR; a

iþ 1
M ; aiþ 2

L ; aiþ 1
R ; . . .; a j

L; a
j�1
R ; a j

M ; a
j
R

n o
.

The set of aggregation elements can be simplified with fuzzy partition under
ak�1
R ¼ akM ¼ akþ 1

L ; k ¼ 1; 2; . . .; g� 1 acceptance and defined as Ruspini (1969)
T ¼ aiL; a

i
M ; a

iþ 1
M ; . . .; a j

M ; a
j
R

� �
.

Stage 2. Calculation of the TFMF’s parameters

Parameters of the TFMF, ~A ¼ a; b; c; dð Þ that defines the fuzzy envelope, envF HSð Þ
of the HFLTS, HS are determined using the set of aggregation elements,
T ¼ aiL; a

i
M ; a

iþ 1
M ; . . .; a j

M ; a
j
R

� �
. Limit values, a and d, are defined by the linguistic

limits as si ¼ minHs and sj ¼ maxHs.

a ¼ min aiL; a
i
M ; a

iþ 1
M ; . . .; a j

M ; a
j
R

� � ¼ aiL and

d ¼ max aiL; a
i
M ; a

iþ 1
M ; . . .; a j

M ; a
j
R

� � ¼ aiR
ð10:16Þ

The intermediate parameters, b and d, of the TFMF are calculated using OWA
aggregation operator.

b ¼ OWAWs aiM ; a
iþ 1
M ; . . .; a j

M

� �
and c ¼ OWAWt aiM ; a

iþ 1
M ; . . .; a j

M

� � ð10:17Þ

where s; t ¼ 1; 2; s 6¼ t or s = t. Filev and Yager’s methods is used calculate the
weighting vectors, Ws and Wt, in the OWA aggregation operations (Filev and
Yager 1998).

The first type of OWA weights W1 ¼ w1
1;w

1
2; . . .;w

1
n

� �T
, 0� a� 1.

env HSð Þ ¼ HS� ;HSþ½ �; HS� �HSþ ð10:18Þ

The second type of OWA weights W2 ¼ w2
1;w

2
2; . . .;w

2
n

� �T
, 0� a� 1.

ew2
1 ¼ an�1;w2

2 ¼ 1� að Þan�2;w2
3 ¼ 1� að Þan�3; . . .;w2

n�1 ¼ 1� að Þa;w2
n

¼ 1� að Þ
ð10:19Þ
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The orness measures, orness W1ð Þ and orness W2ð Þ, are calculated with the
weighting vectors as follow:

orness W1� � ¼Xn
i¼1

w1
i

n� i
n� 1

� 	
¼ n� 1

n� 1
aþ n� 2

n� 1
a 1� að Þ

þ n� 3
n� 1

a 1� að Þ2 þ � � � þ 1
n� 1

a 1� að Þn�2 þ 0
n� 1

1� að Þn�1

¼ n
n� 1

� 1� 1� að Þn
n� 1ð Þa

ð10:20Þ

orness W2� � ¼ a� an

n� 1ð Þ 1� að Þ ð10:21Þ

The orness value whose OWA operator is described in the [0,1] interval is used
to measure the importance of the HFLTS.

Stage 3. Sample fuzzy envelope

In this section, the transformation of a sample linguistic expression into a TFMF
form is illustrated to clarify the fuzzy envelope. The linguistic term set, S ¼
s0 ¼ nothing; s1 ¼ very low; s2 ¼ low; s3 ¼ medium;f

s4 ¼ high; s5 ¼ very high; s6 ¼ absoluteg is used in the sample application and its
graphical representations is as follows (Fig. 10.5):

The following process steps are as follows:

a. The comparative linguistic evaluation is defined by the context-free grammar
form: between low and high.

b. Linguistic evaluation is converted into HFLTS as
EGH between low and highð Þ ¼ s2; s3; s4f g.

c. The set of aggregation elements of the HFLTS is defined:
T ¼ a2L; a

1
R; a

2
M ; a

3
L; a

2
R; a

3
M ; a

4
L; a

3
R; a

4
M ; a

4
R

� �
.

where a1R ¼ a2M ¼ a3L, a
2
R ¼ a3M ¼ a4L, and a3R ¼ a4M , so set T can be simplified as

T ¼ a2L; a
2
M ; a

3
M ; a

4
M ; a

4
R

� �
.

Fig. 10.5 Graphical
representation of a sample
linguistic term set S
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d. The parameters of the TFMF, envF Hs4ð Þ ¼ T a4; b4; c4; d4ð Þ, are calculated as:

a4 ¼ min a2L; a
2
M ; a

3
M ; a

4
M ; a

4
R

� � ¼ a2L ¼ 0:17 and

d4 ¼ max a2L; a
2
M ; a

3
M ; a

4
M ; a

4
R

� � ¼ a4R ¼ 0:83

b4 ¼ OWAW2 a2M ; a
3
M

� �
and c4 ¼ OWAW1 a3M ; a

4
M

� �

while i = 2 and g = 6, a is calculated as a ¼ g� j� ið Þð Þ= g� 1ð Þ ¼ 0:8 and
OWA weights are defined as:

W2 ¼ w1
1;w

1
2

� �T¼ 0:8; 0:2ð ÞT andW1 ¼ w1
1;w

1
2

� �T¼ 0:2; 0:8ð ÞT
b4 ¼ a2M � 0:2þ a3M � 0:8 ¼ 0:466 and c4 ¼ a2M � 0:2þ a3M � 0:8 ¼ 0:636

e. TFMF of the fuzzy envelope of Hs4 , envF Hs4ð Þ is defined:
T ¼ 0:17; 0:466; 0:636; 0:83ð Þ.

Step 4. Operation of HFCM
Linguistic evaluations of experts define the causal relationship between concepts in
the HFCM model. The linguistic expressions are transformed into the crisp values
in [−1, 1] interval using defuzzification methods. Thus, the causal relationships
between the concepts in the dynamic HFCM can be calculated, and the stable states
of the concepts to be reached in the long term can be determined. The crisp values
obtained by the defuzzification method express the causal relationship strength
between the concepts ðCi;CjÞ and are called directed weight ðwijÞ. The sign of the
directed weight represents the directly related or inverse relationship among con-
cepts. The weights of all causal relationships in HFCM are defined in the weight
matrix (W) whose diagonal elements, wii are equal to zero because of absence of
self-loop in model. Experts’ linguistic expressions can define the initial state of the
concepts. New state value of the concept Ci at the time t time iteration is repre-
sented as At

i in the interval [−1, 1]. At ¼ At
1;A

t
2; . . .;A

t
n

� �
representation is also

shows general state values for all concepts. The new state vector of a concept, Ci in
the next iteration is measured as follows:

Atþ 1
i ¼ f

Xn
j¼1

wijA
t
j þAt

j

 !
ð10:22Þ

Threshold function operation is an essential step in the new state calculation
process. The hyperbolic tangent function is chosen for this study among the most
commonly used threshold functions (sign, trivalent, sigmoid, and hyperbolic tan-
gent function). The hyperbolic tangent function is chosen because the [−1,1] values
obtained after the threshold calculation are compatible with real-life problems.
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f xð Þ ¼ tanh kxð Þ ¼ ekx � e�kx

ekx þ e�kx
ð10:23Þ

The value of the lambda ðk[ 0Þ constant, which shapes the slope of the
hyperbolic tangent function, is predefined by researchers according to their research
characteristics (Bueno and Salmeron 2009). The calculation of the causal rela-
tionship in the HFCM model is terminated when the difference between the two
consecutive iteration values of all concept relationship values is less than 0.0001
(i.e., Atþ 1 � At � 0:0001), and the last state reached is defined as the “steady state”.

10.5 Application: Solar Energy Price Modelling
with Hesitant Fuzzy Cognitive Map

The increasing importance of energy in life affects and is influenced by economic,
social and environmental factors. The pricing of solar energy that is a developing
member of the energy sector is shaped under similar factorial circumstances. The
definition of causal relations among the main factors that determine solar energy
prices is defined by the opinions and evaluations of experts under uncertainty and
unpredictability conditions. Experts of this study is both the academic and
energy-business community. Experts selected from the academic community are
preferred because of their studies on economic analysis and decision making of
renewable energies. The experts selected from the energy sector consist of analysts
and specialists who make installation assessments of large-scale renewable and
solar energy systems. Since the renewable energy pricing mechanisms are similar
each other, the experts in renewable sector are consulted in assessing the factors that
determine the solar energy price. Under these conditions, the HFCM model is used
to describe the causal relationships among factors and the initial states of the factors
around the solar energy price. The initial states of the factors are randomly
developed, and different scenarios are defined. The scenarios are operated on the
HFCM model, and the solar energy price and other factors’ reactions are observed
during the model.

10.5.1 Determining of Weight Matrix
and Initial State Vector

Firstly, the causal relationship between the factors and the powers of the causal
relations among them must be defined for the operating the HFCM model. The
“solar energy price” -based model is defined by twenty different models and the
direction and sign of the causal relationship between the factors is determined by
the collective opinion of experts (Fig. 10.6). The orange causality represents the
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inverse proportion (that is, the value of a factor increases while the value of the
other factor that is related decreases) and the blue causality represents the direct
proportion (that is, the value of a factor increases while the value of the other factor
that is related increases).

The HFCM consists of twenty-four factors, three of which are transmitters (GT,
EE, ESE), eighteen of which are ordinary, and no receiver factor (Fig. 10.6). The
highest in-degree factor is the SEP (Solar Energy Price) that is also the center of the
model structure, and the highest out-degree factor is SLL (Supportive Law and
Legislations). The highest centrality factor is SLL with twelve value and followed
by SEP and EP (Energy Price).

The causal relationship between the factors of the model that is shaped around the
solar energy price factor is determined by the academic and sectoral specialists in the
field of solar energy and solar economics. Experts make evaluations based on hesitant
linguistic terms to express causal relationships among factors more realistically and
explicitly. Linguistic term set S ¼ s0 : nothing; s1 : very low; s2 : low; s3 : medium;f
s4 : high; s5 : very high; s6 : absoluteg is used to generate linguistic assessments
based on the context free grammar. The relationship matrix, which is defined lin-
guistically by the common view of experts, is shown in Table 10.1. Expressions of
linguistic evaluation are shown in abbreviation on Table 10.1. The “ + ” sign indi-
cates a positive relationship, and the “−” sign indicates a negative
relationship. Explanations of other abbreviations are as follows; btw: between, atl: at
least, gth: greater than, lth: lower than, atm: at most, n: neighter, vl: very low, low:l, m:
medium, h: high, vh: very high, and a:absolute. Linguistic expressions that describe
the causal relationship between the factors are transformed into HFLTS using con-
version functions (Table 10.2).

HFLTSs transformed from linguistic evaluations are converted into a trapezoidal
fuzzy membership function A� ¼ a; b; c; dð Þ (Table 10.3). The intermediate b and
c parameters of the trapezoidal fuzzy membership function are calculated using the
OWA aggregation operator at this stage. The linguistic expressions converted to
numerical values by the trapezoidal fuzzy membership function are transformed

0 2 4 6 8 10 12
SLL
SEP
EP

ESE
SEGC
SCNI
REP
RPS

IP
NREP

SETI
FITT

SCI/NM
ESE
ED

PPA
DS/TB
FITEP

ESE
EE
GT

Centrality In-degree Out-degree

Fig. 10.6 Solar energy price centered HFCM and the values of the model structure metrics
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into crisp values using the weighted average method to obtain computation values.
The causal relations between the factors in the HFCM model are expressed by a
single numerical value in the range [−1,1] by defuzzification of the trapezoidal
representations (Table 10.4). This obtained table is defined as the weight matrix of
HFCM and expresses the causal relationship between the factors.

Since the initial states of the factors cannot be expressed with definite values
within the dynamic energy system, the initial states of the factors are linguistically
defined by the experts. The combination of different initial states of the factors
reveals different solar energy price centered scenarios. The process steps followed
in obtaining the weight matrix are also followed when the initial state table is
obtained. Defuzzified trapezoidal fuzzy membership functions give crisp valued at
the initial state scenarios. Applications are made on two scenarios (Case1, Case2)
selected from ten cases developed by experts.

Equation (10.22) based on the initial states of the factors ðA0Þ and the weight
matrix of HFCM (W) is run to obtain the next state vector A1. The equation that
calculates the next state vector Atþ 1 from the previous state vector At is repeated
until the state vector reaches the steady state, Al. It is a common practice to ter-
minate the iteration if the difference is less than 0.001 for each factor in the two
consecutive state vectors ðAtþ 1 � At � 0:001Þ. In the application section, the
hyperbolic tangent function (Eq. 10.23), which derives values in the range [−1,1],
is used as a threshold function and the value of lambda is assumed to be 0.7
ðk ¼ 0:7Þ.

10.5.2 Case Studies Base on Solar Energy Price

The two initial state vectors selected from the scenarios identified by the experts’
joint evaluations are evaluated in this section. The values in the initial state are
defined in the range [−1,1], and the value of the corresponding factor reflects the
current state of the solar energy price in the HFCM model. The positive (negative)
value means that the factor has increased (decreased), while the zero value means
that the factor has not changed. The changes in the initial state values of the factors
over time and the convergence values of the factors are graphically displayed
throughout the iterations. The number of iterations and the steady-state values of the
factors change for each scenario. The order of the factors in the initial state vector
is: Renewable Portfolio Standard (RPS), Power Purchasing Agreements (PPA), FIT
with Tender (FITT), Self-consumption (non-incentivized) (SCNI), Direct Subsidies
or Tax Breaks (DS/TB), Economic Components (EC), FIT for Entire Production
(FITEP), Infrastructure Problems (IP), Self-consumption or Net-metering (incen-
tivized) (SCI/NM), Energy Price (EP), Renewable Energy Price (REP),
Non-renewable Energy Price (NREP), Supportive Law and Legislations (SLL),
Environmental Effects (EE), Eco-social Effects (ESE), Solar Energy Price (SEP),
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Energy supply (ES), Energy Demand (ED), Solar Energy Generation Capacity
(SEGC), Global Treaties (GT), Solar Energy Technological Improvement (SETI).

Case1:

In this scenario, different initial states of the factors that affect the solar energy price
are examined. The scenario analyzes the long-term effects of increasing and
decreasing states of factors on solar energy price and other factors. Initial state
vector is defined as A1

0 = [0.332 −0.972 0.332 0.168 −0.668 0.972 0.028 −0.5
0.028–0.168 0.832 0.972 0.972 0.668 0.168 0.028 −0.168 0.168 0.028 0.5 0.028].
According to the scenario, the EC, NREL, SLL and REP factors appear with the
highest increase of 0.972 in the initial state of the system. The increase in invest-
ment costs leads to an increase in renewable and non-renewable energy costs and
energy prices. Laws and regulations that increase solar energy production capacity
arise in order to balance high energy production prices. The scenario also includes
high environmental sensitivity and high international agreement impacts with the
other high positive values. The factors that decrease in the initial state are EP, ES,
IP, DS / TB, and PPA factors and the greatest reduction is seen in DS / TB and PPA
factors supporting solar energy production capacity. Other remaining factors have a
weak impact on the system with their low growth rates.

The simulated solar energy price-centered HFCM model simulated under the
defined initial state reaches equilibrium state after 45 iterations. In the equilibrium
model (Fig. 10.7), the final state vector of the factors is as follows: Al

1 ¼[0 0–0.003
0.001 0–0.001 0 0 0–0.862 −0.193 −0.337 0 0 0 0–0.050 0.813 0.429 0 0]. The
steady-state values obtained by simulating the HFCM model are interpreted as
follows:

• The system shows complex fluctuations in the first twelve iterations. After
twelfth iteration, the tendencies of the factors begin to appear more clearly.
Factors which direct to the converged values after forty-first iteration reaches to
the final state values after forty-fifth iteration.

• The factors of RPS, PPA, DS/TB, FITEP, IP, SCI/NM, SLL, EE, ESE, SEP,
GT, and SETI converge to zero in the balanced system. This state means that
there is no enhancing or reducing effects on these factors. The solar energy price
among these factors is also a constant value; there is no tendency to increase or
decrease. The state of the solar energy price causes the general system factors to
remain unchanged.

• In this scenario, ED, SEGC, and SCNI factors show an increasing tendency with
0.813, 0.429, and 0.001 values. The main reason for the high increase in energy
demand is the decrease in renewable energy, non-renewable energy, and general
energy prices. Increased energy demand is balanced by increasing solar energy
production capacity. The installation of individual solar energy systems without
incentive contributes to increasing solar energy capacity with a low increase.

• While the highest reductions are seen in EP, NREP, and REP factors (−0.862,
−0.337, −0.193 respectively); ES, FITT, and EC factors affect the system with
low reductions (−0.020, −0.003, −0.001 respectively). The inverse relationship
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between energy demand and energy prices is the leading cause of the decline in
energy prices. The decline in energy prices is also triggered by reductions in
renewable energy (excluding solar energy) and non-renewable energy prices.
Reductions in support and incentives for solar energy generation may have led
to a lower reduction in overall energy supply. The scale economy created by the
developing solar energy systems technology leads to a reduction in installation
costs, though there are no incentives for solar energy.

• Case2:

This scenario is designed to examine the effects of the supports and programs for
improving solar energy systems on solar energy price and general system factors.
Therefore, the system consists of supportive factors with increasing GT, FITT,
PPA, SLL, DS/TB and RPS (0.972, 0.972, 0.972, 0.832, 0.668, 0.500, 0.168) and
decreasing EC and IP (−0.028, −0.500). Nevertheless, there are some mitigating
factors to increase the solar energy capacity and reduce the solar energy price in the
system such as FITEP, ESE, SETI, SCNI, and SCI/NM (−0.168, −0.668, −0.668,
−0.832, −0.832). The solar energy price, solar energy generation capacity, demand
for energy, energy supply, and other supportive factors tend to increase in this
scenario. Initial state vector is defined as A0

2 ¼[−0.972 0.5 0.028 0.332 −0.668
0.168 −0.832 0.332 −0.332 −0.028 0.972 0.168 0.832 0.832 0.168 −0.028 −0.668
−0.168 −0.332 0.5 0.332]. The HFCM simulation model reaches to the equilibrium
state at the 37th iteration and obtained steady state vector is as follows: Al

2 ¼[ 0 0
0.004–0.001 0 0.001 0 0 0–0.724 0.007 0.012 0 0 0 0.001 0.047 0.766 0.451 0 0].
The general behavior of the factors according to the graphical representation
(Fig. 10.8) and the obtained values are summarized as follows.

• The highest tendency to increase is seen in the energy demand (0.766) that is
resulted from the high reduction in energy price (−0.724). The high decline in
energy prices in the initial state and the increase in solar energy production
support will lead to an increase in energy supply and cause energy prices to
continue at low levels over the long run. The second highest increase is seen in
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solar energy generation capacity (0.451) which is the result of the focus of this
scenario that includes the high increase in solar energy support. The increase in
solar energy capacity provides a low level of energy supply (0.047) and causes
the installation costs to increase (EC, 0.001). The increase in the installation
costs of solar energy systems can lead to an increase in the bid prices for the FIT
(0.004) and solar energy prices. The high increase in energy demand also leads
to renewable (including solar energy, 0.007) and non-renewable energy prices
(0.012).

• When the system reaches equilibrium, the factors of IP, GT, EE, ESE, SLL,
SETI, DS / TB and FITEP go into inertia position, and the steady-state values of
these factors are indicated by zero. The inertia of most of the policies that
support the development of solar energy systems proves that the system can
stand independently as unsupported and uncontrolled. The inertia results show
that the widespread of solar energy use has removed environmental, economic
and social problems, has stopped national and international concerns, and has
led to the more balanced distribution of incentives.

• The establishment of individual solar energy systems (−0.001) and energy price
(−0.724) factors show a decline in an equilibrium state. Solar energy capacity
reaches satisfying with high support and encouragement, so support for the
establishment of new systems is either eliminated or reduced. Increasing energy
demand with energy price can be balanced by increasing solar energy generation
capacity or raising the renewable or non-renewable energy prices.

The solar energy price HFCM model is evaluated through two different scenarios
that are developed according to the initial state values of the factors. Scenario
models reach equilibrium state with different iteration numbers, and model factors
take different equilibrium state values according to their initial state values. The
solar energy price reaches a constant equilibrium value at the end of calculations
made with different initial state vectors. The inertia state of the solar energy price
causes the factors supporting and disturbing the solar energy system to go into
inertia state. The continuation of the equilibrium energy model by energy supply,
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energy demand, and energy price factors shows that solar energy price is evaluated
within renewable and non-renewable energy prices. The solar energy generation
capacity increase occurs depending on energy demand in market conditions without
any incentive mechanism.

10.6 Conclusion

In this chapter, the causal relationships among the solar-energy price factors are
identified. The economic, environmental and social conditions and the uncertainties
are considered in the model. This HFCM model is used for identifying and
assessing relationships among factors accurately. The causal relationships among
the factors are determined by linguistic evaluation depending on the experts’
knowledge, skills, and experience. Since the initial states of the factors cannot be
measured, the initial state values of factors are determined by the knowledge of the
experts. The linguistic expressions used in determining the causal relationships
between the factors and the initial state value of the factors are transformed into the
HFLTS and the trapezoidal fuzzy membership function. The weight matrix and the
initial state vector are obtained by defuzzification of the TFMF and they are used to
simulate the HFCM model. The simulated HFCM models result in different equi-
librium state values for the factors. For example, the energy price reaches −0.862 in
the first scenario and solar energy generation capacity converges 0.451 in the
second scenario.

Similar results are obtained in the equilibrium states of the HFCM models that
are developed at the solar energy price cantered. Although the initial state vectors
are different, the solar energy price does not tend to increase or decrease at the end
of the simulations. The inertia state of the solar energy price causes the factors
directly affecting the solar energy system to go into an inertia state for each sce-
nario. The energy model, which continues its existence by energy supply, energy
demand, and energy price factors, accommodates solar energy price in renewable
and non-renewable energy prices. Also, equilibrium situations show that the
development of new solar power generation systems takes place in market condi-
tions without any incentive mechanism.

In the future studies, the applied HFCM model-based pricing studies can be
extended for other renewable energy sources since the renewable energy sector has
similar pricing structure to solar energy. Thus, renewable energy price prediction
models can be improved by considering the factors affecting renewable energy price
and their impact levels on pricing. As a result, more accurate energy price esti-
mation can be made with a more realistic price estimates of renewable energies,
which will have significant shares in meeting future energy demand.
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Chapter 11
Strategic Renewable Energy Source
Selection for Turkey with Hesitant
Fuzzy MCDM Method

Gülçin Büyüközkan, Yağmur Karabulut and Merve Güler

Abstract Renewable energy sources (RES) strengthen their hold on emerging
economies. Record numbers of newly installed RES capacity are being observed in
recent years. In 2016, the addition of renewable resources were more than 60% of
new capacity investments globally, surpassing fossil fuel-based investments. The
majority of these additions take place in developing countries, indicating the vital
importance of selecting the best RES technologies for Turkey, an emerging econ-
omy. RES is not only becoming less expensive, they also contribute to employment
and environmental protection. Selecting the most appropriate RES strategy among
alternatives involves many criteria. This chapter introduces a novel RES evaluation
model that can guide investors in identifying the most suitable RES strategy from a
sustainability perspective. Complex socio-economic decision problems often make
it more difficult for Decision Makers to consider different aspects, and to provide
exact numerical values. Considering many, usually conflicting sustainability factors
that affect this selection process, the chapter proposes a Multi-Criteria
Decision-Making (MCDM) model by implementing hesitant fuzzy linguistic term
sets (HFLTS) for an effective RES strategy evaluation problem. Group Decision
Making (GDM) is also integrated to the method, as it is capable to offset individual
DMs’ bias and partiality. HFLTS enables DMs to accurately provide their linguistic
expressions. An integrated HFL SAW method (Simple Additive Weighting) and
HFL TOPSIS method (Technique for Order Performance by Similarity to Ideal
Solution) are employed for this purpose. The criteria priorities are determined with
the HFL SAW method and the final RES strategy ranking results are determined
with HFL TOPSIS method. The plausibility of the proposed framework is tested in
a case study. This combination of MCDM techniques is applied for the first time in
the literature for dealing with this problem setting.
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11.1 Introduction

Today, around 1 billion people globally have no access to electricity. Providing
these people, and the other parts of the world, with clean, affordable and sustainable
electricity still remains a challenge today. Despite many challenges, Renewable
Energy Sources (RER) have become the strategic first choice of investors in recent
years. In 2016 alone, renewables accounted for more than 60% of new capacity
additions globally. Most of this addition came from solar PV for the first time,
which accounts for about 47% of new renewable power capacity additions in 2016,
while wind and hydropower contributed 34 and 15.5%, respectively (REN 21
2017). This sustained growth and geographical expansion can be mostly attributed
to the continued decline of installation costs, particularly for wind and solar PV, as
wells as continually increasing power demand in developing countries and gov-
ernmental support mechanisms. Innovations in solar PV manufacturing and
installation techniques, as well as cell and module efficiency and performance, are
major causes for this wide adoption. Similarly, recent improvements in wind tur-
bine materials, design, operation, and maintenance lead to lower operational costs
and higher energy generation for the same wind turbine capacity. New advances in
power grids are able to support more RES plants. Improvements in the production
of advanced biofuels are also observed.

Today, the world is adding renewable power capacity at unprecedented rates, it
even surpasses all fossil fuels combined (International Energy Agency 2015). Some
mature RES options, such as hydropower and geothermal energy, are already
competitive in terms of costs with thermal power plants run with fossil fuels.
Solar PV and wind power are converging to these well-known and established
power sources due to recent technological developments. Moreover, the flexibility
of capacity, ease of deployment in remote areas and low maintenance requirements
increasingly favor such newer RES technologies. Distributed, off-grid RES projects
in rural areas present strategic sustainable alternatives over conventional power
plants not only thanks to their competitive capital investment and low maintenance
costs but also their environmental benefits and new job creation opportunities
locally. The development of these community RES investments continued in 2016.
Moreover, these emerging RES alternatives bring about significant employment
opportunities, technology transfer, local economic activity, lower greenhouse gas
emissions, less environmental footprint and many other co-benefits.

This trend is especially true for developing countries. In 2016, most of new RES
capacity installations took place in developing countries. For the first time, devel-
oping economies overtook the level of RES investment of developed countries in
2015. Although developed countries took the lead back the next year, developing
countries are becoming a significant market for the RES industry due to natural
potential and willingness of investors. This is also true for Turkey, an emerging
economy. Turkey takes steps to minimize its dependency on unsustainable fossil
fuels and to reduce pollution caused by power generation (Büyüközkan and
Güleryüz 2017). Together with Indonesia, Turkey is leading the world in new
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geothermal power installations by adding 10 new geothermal plants in 2016 to its
existing cohort of 10 plants. For the wind industry, Turkey had a record year in
2016 as well. It added ca. 1.4 GW new wind power capacity and ranked among the
top 10 countries globally (REN 21 2017). This also reflected in employment
numbers in this industry. As of 2016, more than 1 million people around the world
are employed in businesses related to wind power. More than half a million of this
employment takes place in China, followed by Germany, the United States, India,
and Turkey. In the face of high energy prices, global warming, lack of decent
employment opportunities, ecologic deterioration and development priorities, the
selection of the most sustainable RES strategy is becoming a key decision problem
in Turkey that can ensure environmental protection, lower pollution, and new jobs.
These developments lead to higher interest by investors, who seek to strategically
balance profits, good governance, community dialogue, environmental integrity and
compliance with national policies at the same time.

Low-cost and environmentally friendly energy supply is a pre-requisite for a
sustainable power supply. There exist many RES strategies, each having their
advantages and disadvantages. Investors, as Decision Makers (DMs) of RES pro-
jects, are therefore faced with a multitude of factors that shall be considered to come
to a thorough decision. As the number of RES options expand, this decision process
also becomes more complex for DMs. The long-term value of this RES strategy
selection problem necessitates powerful decision support systems to aid DMs in
determining which RES is the best by considering qualitative and quantitative
sustainability aspects.

Decision-making activities aim to select the best from two or more of alterna-
tives. Deciding on a suitable RES strategy is a complex process, and can be
overwhelming for DMs in the presence of many decision factors, if not treated with
proper methods. Traditional single-criterion decision-making approaches are unable
to cope with such complex systems, as the problem involves the assessment of
many criteria which shall be assisted by DMs (Taha and Daim 2013; Ishizaka and
Nemery 2013; Kahraman et al. 2015). To address this need, the literature offers to
treat it as a Multi-Criteria Decision-Making (MCDM) problem (Iskin et al. 2012;
Kabak and Dağdeviren 2014; Pak et al. 2015; Şengül et al. 2015; Ishizaka et al.
2016). MCDM methods can solve various energy management and planning
problems, especially complex issues that feature low certainty, conflicting goals,
multiple interests and differing points of view. They provide researchers with many
effective tools that can be used individually or in combination for reaching the
intended results. In MCDM, criteria and alternatives should be determined at the
beginning and evaluated one by one by DMs in a particular way.

MCDM processes can be improved with Group Decision Making
(GDM) approaches by involving several DMs at once that possess different notions
and ideas. Each DM can approach the decision problem from different angles,
and their collective assessments can be integrated into the procedure. Furthermore,
there are many MCDM techniques offered in the literature. While DMs evaluate
the alternatives, they might be guided by their personal feelings, uncertainty,
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and hesitancy in their opinions. To add to these challenges, DMs can have difficulty
in expressing their assessment numerically, especially for qualitative criteria.

This chapter presents an integrated MCDM model that addresses these com-
plications. This approach consists of HFL SAW (Simple Additive Weighting)
method and HFL TOPSIS method (Technique for Order Performance by Similarity
to Ideal Solution). HFL SAW method is applied for determining the criteria
weights, while HFL TOPSIS is employed for obtaining the final RES strategy
rankings. The alternatives are ranked according to their proximity to the positive
ideal solution and negative ideal solution (Chen et al. 1992). This approach can sort
and select the best RES from a number of alternatives by comparing their sus-
tainability performance. This chapter discusses this new approach, which integrates
SAW and TOPSIS under a hesitant fuzzy environment with GDM. It differentiates
from the literature by using HFL SAW and HFL TOPSIS with GDM approach for
the RES strategy selection problem with technical, social, environmental and
economic aspects in a developing country setting.

The chapter continues with Sect. 11.2 to give a snapshot of the state of the art.
Then, Sect. 11.3 will follow, where the methods are described in detail.
Section 11.4 demonstrates the proposed method’s application on a case study from
Turkey, while Sect. 11.5 summarizes the results and concludes this chapter.

11.2 Literature Review

There is extensive research in the literature that deploy MCDM tools, e.g. AHP,
TOPSIS, DEMATEL, ELECTRE, PROMETHEE, and VIKOR, as well as fuzzy
logic and GDM applications, to deal with RES strategy selection problems. In this
field, Kumar et al. (2017) recently reviewed the literature on MCDM applications
for sustainable RES strategy selection and provided a good overview of the state of
the art. Suganthi et al. (2015) reviewed the literature on the fuzzy logic application
in RES problems and found that fuzzy-based MCDM methods are applied for RES
site assessment, strategy selection, and optimization of conflicting criteria, among
others. Considering the multitude of research, readers are kindly referred to these
articles.

Among the publications that use MCDM methods for selecting RES strategies
with a specific focus on Turkey, Önüt et al. (2008) applied ANP to assess RES
strategies for the Turkish manufacturing industry. Kahraman et al. (2009) deployed
a fuzzy AHP approach for selecting the most suitable renewable energy strategy for
Turkey and came to the conclusion that wind energy generates the best effects. In a
study by Kaya and Kahraman (2011), a new fuzzy TOPSIS technique is presented
for energy planning. Kabak and Dağdeviren (2014) employed a hybrid ANP model
to consider the benefits, opportunities, costs, and risks of RES strategies in Turkey.
Büyüközkan and Güleryüz (2014) constructed an evaluation method to rank
alternative strategies for RES. In another paper, Erdogan and Kaya (2015) first
deployed fuzzy AHP using interval type-2 fuzzy sets to calculate the priorities of
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the evaluation criteria. Then, they fuzzified the TOPSIS method by interval type-2
fuzzy sets to put strategic alternatives into order. Şengül et al. (2015) utilized fuzzy
TOPSIS technique to rank RES strategies for Turkey. A similar goal was pursued
by Büyüközkan and Güleryüz (2016), who combined DEMATEL with ANP for
identifying the best RES option in Turkey from an investor point of view. Recently,
Büyüközkan and Karabulut (2017) came up with an evaluation method fusing AHP
with VIKOR for selecting energy projects from a sustainability point of view, and
Büyüközkan and Güleryüz (2017) applied linguistic interval fuzzy preferences with
DEMATEL, ANP, and TOPSIS to pinpoint the most appropriate energy strategy for
Turkey. The same objective was explored by Çolak and Kaya (2017), who merged
AHP based on interval type-2 fuzzy sets with hesitant fuzzy TOPSIS methods, as
well as Balin and Baraçli (2017), who integrated fuzzy AHP-based type-2 fuzzy
sets with interval type-2 TOPSIS method.

Publications that use the techniques proposed in this chapter are also reviewed.
In literature, those papers that integrate HFLTS and MCDM are dispersed to a few
fields, such as finance, technology, and management. The integrated use of HFLTS
and MCDM tools began in 2013 with the studies of Zhang and Beg. Zhang and Wei
(2013) developed the HFL VIKOR technique, an effective MCDM method for
determining the best compromise solution by collecting linguistic expressions.
They also compared this method to HFL TOPSIS. In another article, Beg and
Rashid (2013) proposed Hesitant Fuzzy Linguistic TOPSIS for aggregating the
opinions of experts and DMs on various criteria by GDM. Senvar et al. (2016)
applied Hesitant Fuzzy TOPSIS to pinpoint to the best hospital site. Zhang et al.
(2015) applied Hesitant Fuzzy TOPSIS and linear programming for selecting the
best supplier. Onar et al. (2016) employed Hesitant Fuzzy Linguistic AHP, Hesitant
Fuzzy Linguistic TOPSIS, and QFD methods and explored the applicability and
effectiveness of their approach by a case study. Zhou et al. (2016) proposed
Hesitant TOPSIS and Hesitant TODIM and combined it with linguistic hesitant
fuzzy sets (LHFS) with the evidential reasoning (ER) approach. Since it is a very
new combined method, HFL TOPSIS’s applications are limited. One example is by
Cevik Onar et al. (2014), who developed a Hesitant Fuzzy TOPSIS model that
considers the complexity and imprecision of strategic decisions and presented a
case study for an electronics company. Büyüközkan and Güler (2017) integrated
HFLTS, OWA operator and TOPSIS method for evaluating smart glasses
alternatives.

Chou et al. (2008) used SAW method in fuzzy environment. However, the
integrated use of HFLTS and SAW method is a research gap in the literature.
Therefore, this is the first publication in the literature that integrates HFLTS, SAW
and TOPSIS methods in the field of energy in general, and for RES strategy
selection more specifically. Furthermore, HFLTS, SAW and TOPSIS methods are
not operated before with GDM in any publication, marking another scientific
contribution of this chapter.
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11.3 Proposed RES Strategy Selection Model

RES can be defined as energy sources that are continually replenished by nature,
such as the solar radiation, wind, water and geothermal heat. These resources do not
originate from fossil fuels, have lower emissions, are renewed in continuous cycles
and are available in nature to utilize (Şengül et al. 2015). The most important RES
strategies for Turkey are wind, solar PV, biogas, geothermal and hydro energy
(Büyüközkan and Güleryüz 2017).

The RES model introduced in this chapter is based on a set of evaluation criteria
and an integrated MCDM method for processing the criteria evaluations of the
DMs. MCDM allows DMs to have a systematic overview of the decision problem
so that the problem can be investigated and scaled according to specific needs
(Işıklar and Büyüközkan 2007). The proposed RES strategy selection model is
based on the criteria introduced in Sect. 11.3.1.1, and on a combination of MCDM
techniques. In this approach, MCDM methods will be deployed in a certain order
and pre-defined setting. This approach applies HFL SAW and HFL TOPSIS
techniques in a GDM environment. HFL SAW is put into use for finding the
weights of the evaluation criteria, and HFL TOPSIS is used for ranking the energy
strategy alternatives in an optimal manner. This algorithm can be described with the
following phases:

1. Problem definition: Initially, the goal of the decision problem is determined.
Then, the DMs, who will be involved in the process, are chosen. Next, available
RES strategies to be considered are defined. At the final stage of this first phase,
the evaluation criteria are established.

2. Criteria weights: In this second phase, HFL SAW will be applied. First, lin-
guistic opinions of DMs are gathered for each criterion about their perceived
impact on the group decision. Based on these data, the criteria decision matrix is
constructed. Then, linguistic data are transformed into HFLTS, which are then
converted to trapezoidal fuzzy numbers (TFNs). The aggregated fuzzy weights
are calculated, and criteria weights are eventually found by de-fuzzifying and
normalizing them.

3. Ranking of alternatives: In this third phase, HFL TOPSIS will be deployed.
First, linguistic opinions of DMs are gathered for each alternative, according to
each criterion about how well the alternatives fare. Once the evaluation alter-
native matrix is constructed, the linguistic judgment matrix is converted into the
HFLTS judgment matrix. The standardized decision matrix and weighted
standardized decision matrix are constructed. Then, the positive and negative
ideal solutions are determined and the distance between alternatives are com-
puted using a special distance measure named as Hamming distance. The
proximity coefficients of the alternatives are calculated, which are then ranked
according to their proximity coefficients.

The research methodology of the study is provided in Fig. 11.1.
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11.3.1 Problem Definition

In this first phase of the model, the goal is determined as selecting the most
appropriate RES strategy by taking various aspects, including sustainability-related
factors, into account from an investor point of view. This decision will be taken
with the support of industry experts. While RES strategies can be expanded
according to local circumstances and availability of natural resources, usually these
options include wind, solar PV, biogas, hydropower and geothermal alternatives.

11.3.1.1 Evaluation Criteria

Evaluation criteria are identified based on a detailed literature survey of existing
models and consultations with three experts from the energy industry.

Compared to conventional energy strategies, RES offers many economic, social and
environmental benefits. Each type of RES has its own attributes, as benefits or harms,
that make it uniquely suitable for the specific use (Kabak and Dağdeviren 2014).
Certainly, the identification of suitable criteria is one of themost important prerequisites
for DMs (Pak et al. 2015). For this model, evaluation criteria from the literature,
mostly from Ishizaka et al. (2016), Taha and Daim (2013), Kahraman et al. (2015),

Fig. 11.1 Research methodology of the proposed model
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and Wang et al. (2009) are compiled, and then adapted to RES strategies with DMs’
guidance and feedback. This chapter thus provides a novel criteria structure for
assessing RES strategies. Eventually, 10 selection criteria are determined, as described
as Table 11.1.

The model’s general overview is provided in Fig. 11.2.

11.3.2 Criteria Weights

The evaluation criteria can have different levels of impact on the ultimate decision.
Therefore, in this second phase of the proposed model, the selected DMs are asked
to provide their opinions about which criteria has what level of influence on the
decision outcomes. This process is accomplished with HFL SAW technique in a
GDM environment. The GDM, HFLTS, and HFL SAW techniques are explained
next.

11.3.2.1 Group Decision Making

RES strategies are inherently subject to different opinions and views. This sub-
jectivity embedded in human judgments can lead to biased perception in individual
decisions, even for experts, as an expert might not always have the necessary
knowledge about the problem. Different DMs can provide different points of view
(Pohekar and Ramachandran 2004). Depending on a single DM, therefore, poses
subjectivity risks due to limited experiences and personal preferences. These risks
can effectively be reduced by including more than one DM in the process. A GDM
process involves two or more industry specialists, who understand the common
problem and have a common interest in reaching a collective decision (Herrera et al.
1995). Therefore, GDM is often superior for evading the prejudice and subjectivity
of individual DMs.

11.3.2.2 Hesitant Fuzzy Linguistic Term Sets

In decision-making processes, experts are usually inclined to express their judg-
ments with words, which correspond to imprecise, and unquantifiable ratings, since
it might be difficult for DMs to precisely estimate their preference degrees
numerically. Values of linguistic information can include words, phrases or sen-
tences instead of numbers (Tapia Garcı´a et al. 2012). Linguistic assessment tend to
be more flexible, practical and suitable for the real world (Rodríguez et al. 2013).
These linguistic judgments can be taken into account with the fuzzy set the-
ory, developed by Zadeh (1965), to deal with the uncertainty and vagueness.
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Table 11.1 Evaluation criteria of the proposed model

Criterion Explanation

C1 Investment and
O&M Costs

Investment costs represent those expenditures that occur at the
beginning for establishing the energy strategy alternative.
Operation and maintenance (O&M) costs refer to production
costs that are associated with running a power plant

C2 Price tariff and
incentives

RES strategies are often supported with attractive legal and
financial mechanisms to stabilize cash inflows for investors and
reduce various costs and red tape. This criterion affects the return
on investment and the economic success of the strategy

C3 Maturity and
serviceability

Maturity is related to technological penetration, availability of
and maintenance knowhow and services, familiarity of investors
and suppliers and technical development for reliable operation.
Serviceability becomes especially important for remote RES
installations, where a breakdown may not be fixed locally

C4 Grid connectivity RES strategies are often halted due to unavailable capacity at
local power grids. Many RES strategies are not able to carry the
base load in a grid, therefore additional transformer capacity can
be needed to connect renewables. The lack of such capacity can
delay, or prevent, the realization of RES strategies

C5 Greenhouse gas
emissions

RES strategies reduce greenhouse gas emissions indirectly by
substituting electricity in the grid generated with fossil fuels.
However, the manufacturing of RES equipment (steel, silicon
wafers, concrete etc.) has a carbon footprint, as does the
operation (e.g. hydropower plants with shallow reservoirs, or
geothermal power plants). Therefore, the emission reductions
shall incorporate a Life Cycle Analysis (LCA) approach

C6 Land use and
ecologic footprint

Most RES strategies are bound to specific geographies and
locations, so that their impact on their immediate surroundings
can vary according to the regional ecologic sensitivity. This
impact is amplified, as the physical size of the RES facility
increases (such as solar PV covering large areas, or high wind
turbines in bird migration routes)

C7 Job creation Creation of decent, full-time, diverse, and permanent
employment opportunities for local communities is a central
priority for sustainable development

C8 Social acceptability Many energy facilities are subject to opposition by residents for a
new development because it is close to them, which can be due to
environmental pollution, poor air quality, increased traffic, visual
beauty, sharing of limited local resources etc. These challenges
shall be overcome by enhanced dialogue, voluntary actions and
social responsibility

C9 Supply security Energy supply in a grid is expected to be resilient to international
political developments, price volatility of fuels and market
shortages. The supply of natural resources is prone to such
shocks, but can be sensitive to ecologic and climatic variations

C10 Policy compatibility The RER strategy shall be in line with national energy policies,
compatible with regional priorities and relevant legislation. These
policies can aim to improve international competitiveness,
technology transfer, trade balance, job creation and
environmental protection, among others
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However, DMs also can find it difficult to identify the best fitting linguistic term for
voicing their opinions in. Hesitant Fuzzy Sets (HFS), which constitute the extension
of classical fuzzy sets, prove helpful in such settings.

Extending the classical fuzzy set theory to the HFS method is first developed by
Torra and Narukawa (2009). It defines the degree of adhesion of an element with a
set of possible values between 0 and 1. This method is useful when DMs hesitate in
expressing a certain evaluation. It is based on the following definitions:

Definition 1 Let X be a universal set. HFS over X is defined as ssa function that
will render a subset of [0, 1] when applied to X, which is defined as the following
(Torra 2010):

E ¼ fhx; hEðxÞix 2 X ð11:1Þ

In this definition, H is the set of all Hesitant Fuzzy Element (HFE), with HFEs
hE(x) between [0, 1]. Possible degrees of adhesion of the element x 2 X to the set
E are specified.

C1. Investment and 

C2. Price tariff and 

C3. Maturity and 

C4. Grid connectivity

C5. Greenhouse gas 

C6. Land use and 

C7. Job creation

C8. Social acceptability

A1. Wind

A2. Solar 

A3. Biogas

A4. Hydro

A5.Geother
-mal

Selection of 
the most 
appropriate 
RES 
strategy

Level 1. Goal Level 2. Criteria Level 3. 
Alternatives

C9. Supply security

C10. Policy compatibility

Fig. 11.2 The overall structure of the proposed model
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Definition 2 X is defined as a reference set. HFS over X is a function h which
assigns values between [0, 1]:

h: X ! f½0; 1�g ð11:2Þ

Then, an HFS is represented with the union of their membership functions.

Definition 3 M = {l1, l2, …, ln} is defined as a set of membership functions n.
HFS is linked to M. Here,, hM gives values between 0 and 1:

hM :M ! f½0; 1�g ð11:3Þ

hM xð Þ ¼ Ul2M l xð Þf g ð11:4Þ
Definition 4 The lower and upper boundaries of h, an HFS, are defined as (Torra
2010):

h� xð Þ ¼ min h xð Þ ð11:5Þ

hþ xð Þ ¼ max h xð Þ ð11:6Þ
Definition 5 When h is defined as an HFS, its envelope Aenv(h) is defined as:

AenvðhÞ ¼ fx; lA xð Þ; mA xð Þg ð11:7Þ

Where Aenv(h) is an intuitionistic fuzzy set of h. Accordingly, l and v are rep-
resented as:

lA xð Þ ¼ h� xð Þ ð11:8Þ

vA xð Þ ¼ 1� hþ xð Þ ð11:9Þ

Rodriguez et al. (2012) developed an MCDM method, where DMs voice their
evaluations with linguistic expressions as HFLTS.

Definition 6 S = {s0, …, sg} is defined as a set of linguistic expressions.
An HFLTS, Hs, is an ordered finite subset of the consecutive linguistic elements of
S, which can also be shown as a subscript-symmetric linguistic term set as S = {si|
i = −s, …, −1, 0, 1, …, s}.

Definition 7: HFLTS’s upper and lower bounds, Hs, Hs+ and Hs− respectively, are
formulated as:

Hsþ ¼ max sið Þ ¼ sj; si 2 HS et si � sj 8 i ð11:10Þ

Hs� ¼ min sið Þ ¼ sj; si 2 HS et si � sj 8 i ð11:11Þ
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Definition 8 EGH is defined as a function which transforms linguistic expressions
into HFLTS, HS. Then, GH is defined as an out-of-context grammar that utilizes the
linguistic term set in S. Sll is defined as the expression domain generated by GH.
This mapping can be represented as:

EGH: Sll ! Hs ð11:12Þ

Comparative linguistic expressions are converted into HFLTS with the following
formulae;

EGH sið Þ ¼ fsijsi 2 Sg ð11:13Þ

EGH at most sið Þ ¼ fsjjsj 2 S et sj � sig ð11:14Þ

EGH lower than sið Þ ¼ fsjjsj 2 S et sj\sig ð11:15Þ

EGH at least sið Þ ¼ fsjjsj 2 S et sj � sig ð11:16Þ

EGH greater than sið Þ ¼ fsjjsj 2 S et sj [ sig ð11:17Þ

EGH between si and sj
� � ¼ fskjsk 2 S et si � sk � sjg ð11:18Þ

Definition 9 When Hs is defined as an HFLTS, based on Hs+ and Hs− as introduced
in Definition 7, its envelope env(Hs) is shown as:

env HSð Þ ¼ Hs�; Hsþ½ �; Hs� �Hsþ ð11:19Þ

11.3.2.3 HFL SAW Method

Simple Additive Weighting (SAW) method is developed by Hwang and Yoon
(1981). Still, it is counted among the most popular MCDM techniques thanks to its
simplicity. It is based on a simple aggregation concept that is useful for positive
values only. This makes it mandatory to transform negative criteria into positive
values first with a normalization process. As an extension of SAW, Chou et al.
(2008) introduced the combined Fuzzy Simple Additive Weighting (FSAW)
technique as a way to approach decision problems with fuzzy aspects. Similarly, the
SAW method is combined with HFLTS in this chapter, the steps of which are
explained next in consecutive steps (Chou et al. 2008).

Step 1. DMs voice their opinions, in words, about the importance of the eval-
uation criteria. These opinions are expressed with a context-free grammar, as shown
in Definition 6 and Table 11.2.
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Step 2. Linguistic judgment matrix is transformed into HFLTS judgment matrix
on the basis of the scale provided in Table 11.2 by using the conversion function
EGH, as in Definition 8.

Step 3. The alternatives are formulated as Ai = {a1, a2,…, aI} with I members.
The evaluation criteria are represented as Cj = {c1, c2,…, cJ} with J members. The
decision committee is formulated as Dt = {d1, d2,…, dk} with k DMs. The DMs do
not necessary possess equal say on the decision, and It delineates the degree of
importance of each DM, with 0 � It � 1, t = 1, 2,…, k, and

Pk
t¼1 It ¼ 1, ext

being the fuzzy weight of the DMs. It is found as:

It ¼ dðewtÞPk
t¼1 dðewtÞ

; t ¼ 1; 2; . . .; k ð11:20Þ

Here, dðewtÞ stands for the de-fuzzified value of the fuzzy weight according to its
signed distance.

Step 4. Aggregated fuzzy weights of the evaluation criteria Cj,ewj ¼ ðaj; bj; cj; djÞ,
are computed:

fWj ¼ ðI1 �fWj1Þ � ðI2 �fWj2 � . . .� ðIk �fWk1Þ ð11:21Þ

Here, aj ¼
Pk

t¼1 Itajt, bj ¼
Pk

t¼1 Itbjt, cj ¼
Pk

t¼1 Itcjt, dj ¼
Pk

t¼1 Itdjt.

Step 5. Criteria’s fuzzy weights are de-fuzzified. The de-fuzzified fWj, shown as

d(gWjÞ, is calculated as:

d fWj

� �
¼ 1

4
aj þ bj þ cj þ dj
� �

; where j ¼ 1; 2; . . .; n ð11:22Þ

Step 6. Normalized weight of the criteria Cj, shown as Wj, is calculated as:

Wj ¼ dðewjÞPn
j¼1 dðewjÞ , j ¼ 1; 2; . . .; n ð11:23Þ

Table 11.2 Linguistic terms
for HFL SAW (Chou et al.
2008)

Linguistic term Si Abb. Fuzzy numbers

Very low s−2 VL (0, 0, 0, 3)

Low s−1 L (0, 3, 3, 5)

Medium s0 M (2, 5, 5, 8)

High s1 H (5, 7, 7, 10)

Very high s2 VH (7, 10, 10, 10)
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Here, the normalized weights add to 1, i.e.
Pn

j¼1 Wj ¼ 1. Eventually, the weight
vector W = (W1;W2; . . .;WnÞ is established.

11.3.3 Ranking of Alternatives

After criteria weights are known, DMs are asked to rate the RES strategy alter-
natives according to the evaluation criteria, one by one. This 3rd phase is guided by
HFL TOPSIS technique, again in a GDM environment with consensus process.
HFLTS and GDM approach are explained in Sect. 11.3.2. Therefore, the algo-
rithmic steps of HFL TOPSIS are described next.

11.3.3.1 HFL TOPSIS Method

Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
method is presented by Chen and Hwang (1992). It is based on the concept that the
chosen alternative should have the smallest geometric distance from the positive
ideal solution (PIS) and the largest geometric distance from the negative ideal
solution (NIS).

Cevik Onar et al. (2014) came up with a Hesitant Fuzzy TOPSIS model that
considers the complexity and imprecision of strategic decisions and presented a
case study for an electronics company.

The steps of HFL TOPSIS method are:
Step 1. DMs express their opinions by using linguistic expressions about cri-

teria. The linguistic expression is voiced by the DM based on a context-free
grammar, as shown in Definition 6.

Step 2. The linguistic judgment matrix is converted to the HFLTS judgment
matrix with the help of the transformation function EGH as given in Definition 8.
Table 11.3 shows the scale used in HFL TOPSIS method.

Table 11.3 Linguistic terms
for HFL TOPSIS (Beg and
Rashid 2013)

Linguistic term Si Abb. Fuzzy numbers

None s−3 N (0, 0, 0.17)

Very bad s−2 VB (0, 0.17, 0.33)

Bad s−1 B (0.17, 0.33, 0.5)

Medium s0 M (0.33,0.5,0.67)

Good s1 G (0.5, 0.67, 0.83)

Very good s2 VG (0.67, 0.83, 1)

Perfect s3 P (0.83, 1, 1)

242 G. Büyüközkan et al.



Step 3. The positive and negative ideal solutions are determined as:

A	 ¼ fh	1; h	2; . . .; h	ng ð11:24Þ

where h	j ¼ [ m
i¼1hij ¼ [ c1j2h1j;...;cmj2hmjmax fc1j; . . .; cmjg j ¼ 1; 2; . . .; n

A� ¼ fh�1 ,h�2 ; . . .; h�n g ð11:25Þ

where h	j ¼ \ m
i¼1hij ¼ \ c1j2h1j;...;cmj2hmj minfc1j; . . .; cmjg j ¼ 1; 2; . . .; n

Step 4. Separation measures of each alternative from the ideal solution are cal-
culated. As the separation measure, the weighted hesitant normalized Hamming dis-
tance is applied. The proximity of an alternative to the positive ideal is calculated as:

Dþ
i ¼

Xn
j¼1

wj hij � h	j
��� ��� ð11:26Þ

where wj is the weight of the jth criterion determined by hesitant AHP. The distance
from the negative ideal solution is given as:

D�
i ¼

Xn
j¼1

wj hij � h�j
��� ��� ð11:27Þ

The distance between two hesitant fuzzy numbers is found as:

h1 � h2k k ¼ 1
l

X1
j¼1

wj h1rðjÞ � h2rðjÞ
�� �� ð11:28Þ

Step 5. The relative proximity to the ideal solution is found as:

Ci =
D�

i

Dþ
i + D�

i
ð11:29Þ

Step 6. The alternatives are ranked in increasing order, based on their relative
closeness index. The alternative that has the highest value is determined to be the
best alternative.

With this step, the ranking of RES strategies is accomplished.

11.4 Case Study

The proposed model is applied on a case study, in which a number of RES
strategies from Turkey are assessed and then ranked. The most important alternative
strategies for Turkey, i.e. wind, solar PV, biogas, hydro, and geothermal, are chosen
for this comparison.
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Energy demand in Turkey, electricity consumption, in particular, grows at high
rates since decades, requiring continuous new capacity additions. The rapidly
increasing electricity need is covered by installing large fossil fuel-powered power
plants, mostly coal and natural gas. Due to their environmental impacts, such as
greenhouse gas emissions and pollution, as well as social impacts, such as local
acceptability, renewables remain top on the energy agenda of Turkey, which has
abundant natural resources and willingness of investors. While RES strategies, in
general, are considered to be a priority, investors find it difficult to select which
RES strategy to prioritize in their investment decisions.

The integrated MCDM model presented previously is applied for finding the
most suitable RES strategy by first forming a decision committee with 3 industry
experts. These experts support the process of defining the criteria set, weighing
these criteria, and rating the alternatives. All three DMs have sufficient knowledge
about energy strategies and are adequately qualified for this evaluation.

11.4.1 Application of the Proposed Model

The criteria are introduced next. C1 is Investment and O&M cost, C2 is Price tariff
and incentives, C3 is Maturity and serviceability, C4 is Grid connectivity, C5 is LCA
greenhouse gas emissions, C6 is Land use and ecologic footprint, C7 is Job creation,
C8 is Social acceptability, C9 is Supply security and C10 is Policy compatibility.

There are five possible alternatives: A1 is Wind, A2 is Solar, A3 is Biogas, A4 is
Hydro and A5 is Geothermal.

11.4.1.1 Criteria Weight Calculation with HFL SAW Method

In the first stage, DMs evaluated the criteria by using linguistic term sets given in
Table 11.2. Table 11.4 shows the assessments of DMs.

Table 11.4 DMs evaluation about criteria

Criteria DM1 DM2 DM3

C1 Between H and VH At least VH At least H

C2 Between H and VH Between L and H Between L and H

C3 At most VL At most VL Between L and H

C4 Between L and H Between L and H At most VL

C5 At most VL between VL and L between L and H

C6 At most VL Between VL and L Between L and H

C7 Between VL and L between VL and L between VL and L

C8 Between VL and L Between VL and L Between VL and L

C9 At most VL Between VL and L Between L and H

C10 Between VL and L Between VL and L Between VL and L
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Based on these assessments in Table 11.4, the linguistic expressions are con-
verted into HFLTS by using (11.13)–(11.18). The HFLTS are converted into fuzzy
numbers by using the scale given in Table 11.1. Based on these numbers, the fuzzy
weights of individual criteria are calculated by (11.21). The de-fuzzified values of
the aggregated fuzzy weights are computed using (11.22) and the normalized
weights of criteria are found using (11.23). Table 11.5 depicts the criteria weights.

The most important criterion is Investment, O&M cost (C1), and the second
important criterion is Price tariff and incentives (C2).

11.4.1.2 Ranking E-Health Technology Alternatives with HFL
TOPSIS Method

Initially, the DMs evaluated the alternatives with regard to criteria via comparative
linguistic expressions and the linguistic scale given in Table 11.3.

In the initial phase, the DMs reached consensus by using Delphi Method and a
series of questionnaires (Hsu and Sandford 2007; Marchais-Roubelat and Roubelat
2011). The consensus evaluation with linguistic expressions is listed in Table 11.6.

Linguistic expressions are converted into HFLTS by using Eqs. (11.13)–(11.18).
The positive ideal and the negative ideal solution are found with Eqs. (11.24) and
(11.25). The Hamming distances are calculated by using Eqs. (11.26) and (11.27).
The distance between two hesitant fuzzy numbers is found with Eq. (11.28).
Finally, the proximity to the ideal solution is found with Eq. (11.29). Table 11.7
shows the results of HFL TOPSIS methodology and ranking of alternatives.

The results about alternatives give an idea to find the best alternative. As a result,
Hydro (A4) is the most desirable energy alternative through these alternatives, with
the nearest competitor Geothermal (A5). Solar (A2) has become the third, and the
fourth one is Wind (A1), as depicted in Table 11.6.

Table 11.5 Criteria weights Criteria Defuzzified
value

Normalized
value

Ranking

C1 7.917 0.215 1

C2 5.750 0.156 2

C3 2.833 0.077 4

C4 3.583 0.097 3

C5 2.833 0.077 4

C6 2.833 0.077 4

C7 2.750 0.075 8

C8 2.750 0.075 8

C9 2.833 0.077 4

C10 2.750 0.075 8

Total 36.833
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The main ranking list of alternatives is:
A4 ≻ A5 ≻ A2 ≻ A1 ≻ A3

11.5 Conclusion

The main objective of this chapter is to identify the most applicable RES strategy
with a sustainability point of view and developing country perspective. This
decision-making process is governed by a set of evaluation factors that are assessed
by a decision committee. In such complex problems with conflicting criteria,
uncertainty, and vagueness MCDM methods can prove very useful. For this reason,
this decision-making problem is approached by proposing a new set of criteria and
integrating it with MCDM methods in a GDM setting. The proposed model is based

Table 11.6 DMs evaluation about alternatives

Ai C1 C2 C3 C4 C5

A1 Between VB and
M

Between VB and
M

Between B and G At most VB Between B and G

A2 Between VB and
M

Between M and
VG

Between VB and
M

Between VB and
M

Between B and G

A3 Between VB and
M

Between M and
VG

Between VB and
M

Between B and G At least VG

A4 At least VG At most VB Between M and
VG

Between M and
VG

Between B and G

A5 Between B and G At least VG Between B and G Between M and
VG

At most N

Ai C6 C7 C8 C9 C10

A1 Between B and G Between B and G At most VB Between VB and
M

Between VB and
M

A2 At most N At most VB At least VG At least VG Between VB and
M

A3 At least VG Between M and
VG

Between M and
VG

Between VB and
M

Between M and
VG

A4 At most VB Between B and G At most N Between VB and
M

Between B and G

A5 At least VG Between B and G At least VG Between B and G At least VG

Table 11.7 Ranking of
alternatives

Ai Di+ Di− Ci Ranking

A1 0.403 0.440 0.522 4

A2 0.354 0.489 0.580 3

A3 0.412 0.431 0.511 5

A4 0.312 0.540 0.634 1

A5 0.360 0.535 0.598 2
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on 10 criteria, the weights of which are determined with HFL SAW method.
The results are then fed into the HFL TOPSIS to find the ranking of selected RES
strategies. The combined method offers superior solutions, as it is able to suc-
cessfully capture DMs’ opinions.

The plausibility and practical usefulness of the proposed model are shown in a
case study from Turkey. The case study revealed Hydro to be the best RES strategy
for Turkey, followed by Geothermal and Solar. These findings can be associated
with legal difficulties for getting permits for wind farms in Turkey in recent years,
as well as the economic performance of hydro energy plants. Investors can benefit
from these results by applying similar practices in comparing different RES
strategies available to them.

Individually, HFL SAW and HFL TOPSIS techniques are recent and novel
methods. In the literature, publications applying these methods are very few. Using
these methods together with GDM, therefore, presents a scientific contribution.
Therefore, this model is unique in its application of HFL SAW and HFL TOPSIS in
combination in a GDM setting for the RES strategy selection problem. It not only
contributes to the RES strategy evaluation literature by developing a new evaluation
model, it also provides a case study to illustrate how the proposed method can be
utilized to solve real problems. The introduction of a new criteria set, adapted to
developing economies, adds to its research value. The proposed model can be
applied in other developing countries as well by re-weighing the criteria and
assessing different alternative RES strategies with other experts.

The proposed model also has some limitations. One of these limitations is its
focus on developing countries when it comes to selecting evaluation criteria, which
can show differences from a developed country perspective. Future research
therefore can consider the adaptation of these criteria to other circumstances and
geographies. Moreover, the criteria set consists of one level, with no hierarchical
structure. In the future, the criteria set can be extended. In terms of MCDM
methods, future research can also use other similar techniques, such as
HFL VIKOR, instead of HFL TOPSIS, and compare the findings.
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Chapter 12
Modeling and Solution Approaches
for Crude Oil Scheduling in a Refinery

Antonios Fragkogios and Georgios K. D. Saharidis

Abstract One of the most critical activities in a refinery is the scheduling of
loading and unloading of crude oil. Better analysis of this activity gives rise to
better use of a system’s resources, decrease losses, increase security as well as
control of the entire supply chain. It is important that the crude oil is loaded and
unloaded contiguously in storage tanks, primarily for security reasons (e.g. possi-
bility of system failures) but also to reduce the setup costs incurred when flow
between a dock/ports and a tank and/or between a tank and a crude distillation unit
is reinitialized. The aim of this book chapter is to present a review on modeling and
solution approaches in refinery industry. Mathematical programming modeling
approaches are presented as well as exact, heuristic and hybrid solution approaches,
widely applicable to most refineries where several modes of blending and several
recipe preparation alternatives are used.

12.1 Introduction

In the late 1800s and early 1900s, when the large oil deposits were discovered, the
second Industrial Revolution took place. Since then, oil has been being used, in
almost all human activities, from transportation (cars, airplanes, ships etc.) to
heating and from road building to goods production. However, does anyone wonder
what path does crude oil follow from the earth deposits to our car reservoir or to the
street we step on? After its mining, crude oil is transferred to a refinery mainly by
ship, train or pipeline. The refinery is the main “factory” that transforms crude oil to
its various products. The procedure is called distillation.
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The loading and unloading of crude oil in a refinery is a very complicated
problem with a lot of restrictions concerning the system safety and the final product
quality. The pipeline network needs to transfer crude oil from the docks to the
storage tanks and from the tanks to the crude distillation units (CDUs). The capacity
of the storage tanks, the delivery rate of crude oil by the ships in the docks, the rate
of distillation of crude oil in the CDUs, the capacity and complexity of the pipeline
network are some of the parameters that make the problem of loading and
unloading crude oil in a refinery very difficult to solve.

In this chapter, a review will be made as to present the various developed
methods for modelling and solving the problem of crude oil transferring inside a
refinery. The next sections are organized as follows: In Sect. 12.2, the problem of
crude oil scheduling is described and in Sect. 12.3, a literature review is made,
mentioning the most significant studies that have been published to deal with this
problem. Finally, Sect. 12.4 contains concluding remarks and future challenges.

12.2 Problem Description

The structure of a refinery may not be exactly the same in the various refineries built
all over the world. However, all refineries follow a general structure that consists of
the basic major parts. These parts are docks, pipelines, a series of tanks to store the
crude oil (and prepare the different blends), Crude Distillation Units (CDUs) and/or
Vacuum Distillation Units (VDUs), production units (such as reforming, cracking,
alkylating and hydrotreating), blenders and tanks to store the raw materials and the
final products. These major parts of a refinery are depicted in Fig. 12.1.

As presented by Shah et al. (2009), in general there are two decision levels in
refinery process operations-the planning and the scheduling level. The planning level
determines the volume of raw materials needed for the upcoming months (typically
12 months), and the type offinal products and the estimated quantities to be ordered,

Fig. 12.1 Graphic overview of the refinery production system (Shah et al. 2009)
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depending on demand forecasts. After determining the yearly plan in the second
level we have to determine the optimal production scheduling. The scheduling level
determines the detailed schedule of each CDU and other production unit for a shorter
period (typically 20 days) by taking into account the operational constraints of the
system under study. Once the plan is known (the quantities and the types of final
products ordered as well as the arrival of raw materials), managers must schedule the
production of each unit based on the objective which usually is minimization of the
overall makespan or maximization of the total profit. Each production unit is defined
as a continuous processing element that transforms the input streams into several
products according to the recipe.

The two decision levels exchange information and are strongly related with each
other. However, they can be dealt with as two separate problems. One could argue
that the first level of planning is the independent one, which basically takes
information from the predictions of demand, and the second level of scheduling is
the dependent one, which takes information from the first level of planning.

In most of the studies, the long term plan is assumed to be given and the
objective is to define the optimal production scheduling. In such a case the key
information available to the managers is the proportion of material produced or
consumed at each production unit. Most of the times, these recipes are assumed
fixed to maintain the model’s linearity. The managers also know the minimum and
maximum flow-rates for each production unit and the minimum and maximum
inventory capacities for each storage tank. The different types of material that can
be stored in each storage tank are known as well as the demand of final products at
the end of time horizon.

Moreover, even the scheduling is divided into two main parts of the refinery. The
first part is known as the front-end crude transfer, which contains the part of the
refinery from the berth until the Crude Distillation Units. The front-end crude
transfer part is depicted on Fig. 12.2. The second part of the refinery is the rest of
the infrastructure after Crude Distillation Units until the finished product tanks. In
the literature most of the studies deal with either with only the first or only the
second part of refinery scheduling. However, some studies approach the refinery
scheduling as a whole.

Focusing on the front-end crude transfer, once the quantities and the types of
crude oil required are known, schedulers must schedule the loading and unloading
of tanks (Fig. 12.2). The problem that arises then is how to schedule the transfer of
crude oil from the docks to the tanks and from the tanks to the CDUs/VDUs,
minimizing the setup cost of the system. More specifically, the scheduler should
decide for every time period which tanks will be loaded with what type and quantity
of crude oil from the dock(s) and which tanks will unload what type and quantity of
the crude oil they have to which CDU/VDU in order to meet the demand of each
CDU/VDU. There are several constraints that govern this procedure. Shah et al.
(2009) introduce seven major groups of constraints which guarantee the operational
conditions of the system. These are allocation constraints, production and storage
capacity constraints, material balance constraints for units and storage tanks,
demand constraints, and time sequence constraints.
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At this point, it should be noticed that there are different types of configurations
that are associated with several modes of blending combined with the type of recipe
preparation. As presented by Saharidis et al. (2009), in general, the different blends
could be produced using the pipelines just before the CDU/VDU in a place called
the manifold, where liquids circulate through a petroleum refinery and schedulers
control the pumping systems, or in the tanks. For the first mode, the blending of
different types of crude oil is made just before the distillation units through the use
of pipelines, which meet in the manifold. It is a continuous process and in this case,
only one type of crude oil can be stored in each tank at a time. The second mode is
to prepare the blends required by the CDU/VDU in the tanks themselves. In this
case, a quantity of a given type of crude oil is already loaded in a tank then stored
and kept on standby until a quantity of another type of crude oil is unloaded into the
same tank, in order to produce the required blend.

Moreover, there are two recipe preparation alternatives, the standard and the
flexible recipe preparation. For the first alternative, the required blend must satisfy
an exact composition of crude before being distilled in a CDU, regardless of
blending mode, whereas in the second alternative of recipe preparation, the required
blend must satisfy lower and upper bounds for each type of crude oil. The second
alternative is a relaxation of the first one and is more commonly used in practice.

The goal of the above procedure is to result in a feasible schedule, taking into
account all the constraints, which either minimizes the operational cost or maxi-
mizes the profit. The main cost of the process of loading and unloading the tanks is
the setup cost incurred when flow between a dock and a tank or between a tank and
a CDU/VDU is reconfigured. As presented by Saharidis and Ierapetritou (2009), the
setup of tanks requires a series of operations, which are expensive for the refinery.
The most critical and expensive operations associated with the tank’s setup at each
stage are as follows: before loading/unloading, (1) configuring the pipeline net-
works (e.g., opening of valves, configuration of pumps, etc.); (2) filling pipelines
with crude oil; (3) sampling of crude oil for chemical analyses; (4) measuring of the
crude oil stock in tank before loading/unloading; (5) starting the loading/unloading;

Fig. 12.2 Typical configuration of the first major part of a refinery, where loading and unloading
of crude oil storage and charging tanks takes place (Cortez and Pessoa 2016)
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and (6) stopping the loading/unloading; and after loading/unloading, (1) configur-
ing the pipeline networks (e.g., closing of valves, configuration and maintenance of
pumps, etc.); (2) emptying pipelines; and (3) measuring the crude oil loaded/
unloaded in the tanks.

Another important problem in many refineries is the storage capacity, which
appears increasingly more often, and multiple uses of tanks become necessary.
Consequently, reducing the number of tanks used in a scheduling period becomes
critical. The reason is that the minimum number of setups is associated with the
minimum number of tanks used for the scheduling, which is in turn associated with
an increase in the number of tanks available for other uses (e.g., storage of the
finished products or raw materials).

By minimizing the setups and the number of used tanks, the scheduler results in:
(a) the optimal schedule and the extra production cost incurred in a case where
fewer tanks are available to stock the crude oil and (b) the profit reduction or
increase with the use of tanks in other operations. This information provides the
flexibility to a system to change the use of tanks due to an unexpected event or
changes in the market or the company’s strategy.

Due to the above reasons, one could conclude that loading and unloading of
crude oil into the tanks is one of the most critical activities in a refinery. Saharidis
and Ierapetritou (2009) claim that better analysis of this activity gives rise to better
use of a system’s resources, as well as improved total visibility and control of
production units and the entire supply chain. This is the reason why many
researchers have focused their studies on this major part of a refinery. The need for
the development of a systematic methodology and optimization tool for these
activities is clearly justified. The potential financial and operational benefits asso-
ciated with the development of an optimization tool are enormous, as an advanced
optimization tool for scheduling could allow the refinery to minimize the flow
problems and the loss of crude oil and to obtain the optimal periodic schedules of
production.

The researchers have dealt with the problem with different ways of modelling
and solving. Moreover, they study various configurations of the system by adding
or removing several restrictions (blending inside the tanks or in a manifold tank) or
by targeting to a different goal (minimizing cost, maximize profit etc.). In the next
sections of the chapter, a literature review is made and various studies are presented
with different approaches on the problem of crude oil scheduling.

12.3 Literature Review

Whereas the oldest continuously operated refinery in the United States of America
has been in service for more than 130 years, it was not until the 1970s that the first
studies appear for managing the crude oil pipelines. In 1974, Chaumeau and
Vonner (1974) presented a heuristic arborescent procedure for the problems of
automatic batch scheduling in a crude oil line and associated storage capacity
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control implemented at the particular case of the “Pipe-line de l’Ile-de-France”. One
year later, Speur et al. (1975) introduced a computerized advisory system for
pipeline scheduling implemented on a crude-oil pipeline which stretches from the
Netherlands to cities in Germany, which was a reliable and versatile tool, quicker
than the manual scheduling and better than the latter in reducing pumping costs.
However, these studies deal with the manipulation of crude oil pipelines and do not
deal with crude oil scheduling in a refinery. It was not until the 1990s, when the first
papers considering the refinery problem are published. Floudas and Lin (2004)
present a very interesting and complete overview of the developments in the
scheduling of multiproduct/multipurpose batch and continuous processes, whose
subcategory is the crude oil scheduling. The authors discuss all continuous as well
as discrete time formulations existing in the literature before 2004 and examine
their strengths and limitations through computational studies. In the following
section a detailed and updated overview of scheduling of crude oil is presented.

The developed methods for the resolution of this problem are classified into four
general groups: the exact methods that use either discrete or continuous time rep-
resentation, the heuristic methods and the hybrid methods. Figure 12.3 depicts the
two different representations of time.

12.3.1 Methods Based on Discrete Time Representation

Chronologically, the first approach for the problem of scheduling in a refinery
introduces the use of Mathematical Programming for the modelling of the problem.
One of the first published approaches, presented by Shah (1996), uses a discrete
time formulation. The principle of discrete time representation is to split the
scheduling time horizon into intervals of equal size and use binary variables to
specify whether an action starts or finishes during an interval. The author presents a
model based on discrete time representation for the Scheduling of Crude Oil
(SCO) leading to the resolution of a mixed integer linear program (MILP). In this
formulation, due to nonlinearity issues the problem was broken up into two
sub-problems: the upstream, which considers the loading of crude oil from docks to

Fig. 12.3 Discrete and continuous representations of time (Floudas and Lin 2004)
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the storage tanks, and the downstream, which refers to the unloading from the tanks
to the CDUs. This approach guarantees a feasible, but not optimal, solution for the
system. Shah (1996) has considered a system where the available tanks can feed
only one CDU at a time and where a CDU can be fed by only one tank at a time.
Moreover, the author subdivides the scheduling time horizon into intervals of equal
duration and each activity must start and finish within the boundaries of these
intervals. The objective is to minimize the heel of crude oil left in a tank after its
content has been transformed to CDU.

The problem of inventory management of a refinery that imports several types of
crude oil which are delivered by different vessels is addressed by Lee et al. (1996).
A mixed-integer optimization model is developed which relies on time discretiza-
tion. The system studied is composed by two types of tanks (storage tanks and
charging tanks) which are used to blend different types of crude oil. The obtained
bi-linear term due to the mixing operations is replaced with individual component
flows maintaining the linearity of the developed model. The objective is the min-
imization of the operation cost which includes unloading cost, cost for vessels
waiting in the sea, inventory cost and change over cost.

Joly et al. (2002) and Pinto et al. (2000) dekveloped two models, the first for
planning and the second for scheduling in a refinery. Concerning the latter, a MILP
optimization model was developed for the loading and unloading of crude oil
between the tankers and CDUs (the application considered concerns a refinery in
Brazil), based on both continuous and discrete time representations. The pre-
sented model maximizes the operating profit by maximizing production while
minimizing the number of tanks used for the loading and unloading of the crude oil,
giving the optimal schedule for the following week. The schedule fulfills all the
general operational rules but takes into account only one blending mode and one
recipe preparation alternative. These modeling and solution strategies enable the
scheduler to explore market opportunities, mainly in the short term or in any
unexpected situation, but are susceptible to infeasible times to obtain global optimal
solutions.

An extension of this model is presented in Neiro and Pinto (2004). The authors
propose a complete model for the same refinery by taking into account all the
different operational options possible in this refinery. Before the presentation of the
case study, a (large scale) mixed integer nonlinear problem (MILNP) is proposed.
The authors give a detailed description of the planning problem in this refinery.
Several models were tested and presented before the development of the complete
model for the entire system. The first model corresponds to the production units, the
second corresponds to the operations taking place in tanks, and, finally, the third
relates to crude oil, raw materials, and the final products transferred between tanks
and production units. The complete model is presented after the illustration of these
three models. In conclusion, the authors propose the linearization of nonlinear
constraints by applying decomposition methods while at the same time testing
several scenarios in parallel.

Furthermore, Persson and Gothe-Lundgren (2005) present a study, where
shipment planning and production scheduling complement each other well. The
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shipment planning problem is the problem of simultaneously planning ship routes
and planning the quantities to ship in order to satisfy the demand at the depots, i.e.,
the aggregated forecasted demand at the asphalt producers. At the same time, the
shipment plan needs to be realizable in terms of production, and it is important to
make a crosschecking between the shipment plan and the corresponding process
schedules to make sure that the products can be produced in time. The time horizon
used is equal to 1 month decomposed into intervals of equal duration (time dis-
cretization). The demand of final products is given and the objective is to minimize
the total cost of production. The authors propose a solution strategy using Column
Generation, Constraint Branching and Valid Inequalities. Moreover, the authors
propose an extension to their model, in particular for the case where the arrival
dates of tankers are not fixed but based on a prediction. The stochastic aspect is
taken into account and the schedule is based on a time window in which the tankers
expect to arrive at the refinery.

In Wu et al. (2008, 2009), the authors have introduced a two-layer hierarchical
approach for short-term crude oil scheduling. At the upper level, a realizable
refining schedule to optimize some objectives is reached and at the lower level, a
detailed schedule is obtained to realize it. In these studies the lower level is solved
from a control perspective and schedulability conditions are derived. Based on the
schedulability conditions, given a realizable refining schedule, it is easy to find a
detailed schedule at the lower level. With the schedulability conditions, Wu et al.
(2012) solve the upper level problem of finding the optimal and realizable refining
schedule using a novel method based on the results obtained at the lower level.
Their method is a three-phase one. In phase 1, a linear problem is solved in order to
determine the production rate to maximize the production. The amount of crude oil
to be processed for each distiller during each bucket is, therefore, found. Then, in
phase 2, a transportation problem is solved so as to assign the crude oil types and
amount of crude oil to the distillers with a goal to minimize the crude oil type
assignment cost. In phase 3, the result obtained in phase 2 is adjusted, and the crude
oil parcels and their sequence are determined to minimize the changeover cost. By
this three-phase approach, the authors decompose a hybrid optimization problem
into sub-problems such that each sub-problem contains continuous or discrete event
variables only but not both. In addition, multiple objectives are effectively handled
in different phases. The computational results from the application of the approach
on an industrial case study show that it is quite efficient. Extending their previous
work, Wu et al. (2013) introduced a Hybrid Timed Petri Net Approach for mod-
eling and scheduling of Crude Oil Operations in a refinery. The problem is studied
in a control theory perspective and a two-level control architecture is presented. At
the lower level, the model solves the schedulability and detailed scheduling prob-
lem in a hybrid control theory perspective. At the upper level, it solves a refining
scheduling problem, a relative simple problem, with the schedulability conditions
as constraints. Consequently, it results in a breakthrough solution such that the large
practical application problem can be solved.

Another study applying discrete time formulation was proposed by Saharidis
et al. (2009). The authors present a generic model for the scheduling of loading and
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unloading of tanks which is applicable for several modes of blending and for
several alternatives of recipe preparation. A series of Valid Inequalities are intro-
duced for each one of the different blending modes, which help to reduce the
computational time needed for the solution of the model. The main contribution of
the paper is a novel time formulation, called event-based time representation where
the intervals are based on events instead of hours. Thus, instead of discretizing the
time horizon into time intervals of the same duration, the time intervals are defined
as a period when an event starts and finishes. The events which define the time
intervals can be either, (1) boat arrivals, and/or (2) the change in blend constitution,
as required by a CDU/VDU. With this discretization, the authors avoid the
increased complexity of a larger number of variables and constraints, which is the
case when the fixed time interval period is decreased, leading correspondingly to
larger number of intervals in model formulation.

The same year, Saharidis and Ierapetritou (2009) published another exact
solution approach based on a generic mixed integer model, which provides not only
the optimal schedule of loading and unloading of crude oil minimizing the setup
cost, but also the optimal type of mixture preparation. Comparison between an
empirical approach applied in a real refinery and the developed exact approach is
presented to justify the advantage of optimization tools. However, the high com-
putational time needed to solve the proposed exact approach led the authors to the
development of a series of valid inequalities based on data and operational rules in
order to speed up the convergence of the resolution approach of the model.
Concerning the mixture preparation, the two classical types are (a) the mixture
preparation in the manifold just before the CDUs through the use of pipelines and
use of mixers existing in the manifold and (b) the mixture preparation in the tanks
through the use of the tanks mixers. The authors investigate the combination of
these two types of mixture preparation as compared to each one separately. The
comparative results depict the superiority of the optimal mixture preparation
(combination of the two classical types of mixture) in terms of solution quality as
compared to the two other approaches separately. Although the CPU time is longer
for the combined case, because the model is nonlinear and has to be linearized
increasing the number of variables and constraints, as compared to the other
approaches, it does not exceed the time limits defined by the managers of the
refinery due to the use of valid inequalities. The potential advantage of applying the
combined approach is fewer setups of the refinery process, which justifies spending
more time applying the combined method because the potential gain is significant.

Moreover, Shah et al. (2009) propose a structural decomposition scheme that
generates smaller sub-systems that can be solved to global optimality. The original
problem of refinery scheduling is decomposed at intermediate storage tanks such
that inlet and outlet streams of the tank belong to the different sub-systems.
Following the decomposition, each decentralized problem is solved to optimality
and the solution to the original problem is obtained by integrating the optimal
schedule of each sub-system. The decentralized system model results in fewer
constraints and fewer continuous and binary variables compared to the centralized
system. The paper presents a problem where both optimization strategies result in
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the same optimal makespan but the computational time for decentralized system is
reduced significantly compared to that of centralized system.

Next year, Robertson et al. (2010) presented an integrated optimization approach
for both production and scheduling of crude oil in a refinery. The production plan is
modeled as a Non Linear Problem and includes manipulation of unit operating
conditions in order to optimize the energy integration of the fractionating section of
the refinery as well as minimize environmental cost such as the burning of high
sulfur fuels in furnaces. The schedule is modeled as a Mixed Integer Linear
Problem, based on the model introduced by Saharidis et al. (2009), and decides
which tanks to store the incoming crude oil and which tanks should feed the
refinery distillation units. The authors consider a time horizon of 15 days dis-
cretized into time intervals of 1 h. The nonlinear simulation model for the pro-
duction process is used to derive individual crude costs using multiple linear
regressions of the individual crude oil flow rates around the crude oil percentage
range allowed by a specific production facility. These individual crude costs are
then used to derive a linear cost function that is optimized in the MILP scheduling
model, along with logistics costs. By applying this approach, Robertson et al.
(2010) concluded, with just the minimization of setup costs, which happens when
only scheduling is considered, the operational cost could be minimized further.
Thus, their proposed method of minimizing the sum of both the refining (in pro-
duction) and setup costs (in scheduling) gave the minimal total cost. The authors
present their methodology more analytically in Robertson et al. (2011).

Saharidis et al. (2011) applied Benders decomposition on the SCO problem.
More specifically, introduced a series of generic valid inequalities for the initial-
ization of the Benders Master Problem for the fixed-charge network problem. As
such a network, a case study of refinery system is addressed. The problem of
loading and unloading the crude oil tanks is modeled as a Mixed Integer Linear
Program, based on Saharidis et al. (2009) and is decomposed into a Master and a
Slave model, based on Benders decomposition (Benders 1962). The methodology is
quite efficient in solving the scheduling problem, while the added valid inequalities
in the Master model result in significant reduce of computational time.

Zhang et al. (2012) proposed a general MINLP (mixed-integer nonlinear pro-
gramming) model in order to address the profit optimization of crude-oil blending
and purchase planning in refinery plants. The authors consider simultaneously both
the short-time crude-oil blending and the long-time crude-oil purchase planning.
Taking into account delivery delay uncertainties greatly increases the potential
profitability and production flexibility of refineries. For this purpose, an
inventory-related time flexibility index is created so as to characterize the ability of
a refinery for handling the uncertainty of crude-oil delivery delays. The profit
maximization and the production flexibility maximization are generally two con-
tradictory aspects that should be well balanced. To quantify their relationship under
crude-oil delivery uncertainty, a systematical study has been conducted.
Meanwhile, the in-depth relations between the production flexibility and the plant
profit are also disclosed. The applicability of the developed methodology is
demonstrated by industrial case studies.
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A study that was not directly applied on the SCO problem, but addresses the
general chemical production scheduling was published by Velez and Maravelias
(2013). The authors propose a discrete modeling of time by using a common
uniform grid in the formulation of mixed-integer programming (MIP) models for
scheduling, production planning, and operational supply chain planning problems.
First, it is described that multiple grids can actually be employed in discrete-time
models. Second, it is shown that not only unit-specific but also task-specific and
material-specific grids can be generated. Third, the paper presents methods to
systematically formulate discrete-time multi-grid models that allow different tasks,
units, or materials to have their own time grid. Two different algorithms to find the
grid are introduced. The first algorithm determines the largest grid spacing that will
not eliminate the optimal solution. The second algorithm allows the user to adjust
the level of approximation; more approximate grids may have worse solutions, but
many fewer binary variables. Due to the fact that the proposed models have exactly
the same types of constraints (unit-task assignment, material balance, batch capacity
and storage capacity constraints) as models relying on a single uniform grid, the
proposed models are proven to be tight and known solution methods can be
employed. The proposed methods lead to substantial reductions in the size of the
formulations and thus the computational requirements. The way to select the dif-
ferent time grids and state the formulation is described in the paper and compu-
tational results show that better solutions can be yield than formulations that use
approximations.

Zimberg et al. (2015) proposed a MILP model for the problem of planning daily
operations in a crude oil terminal, taking into the costs associated with deviations of
total volume and quality with respect to required quantities, unfilled tanks during
cargo unloading, quality adjustments, mixture of qualities and requirements to keep
tanks empty or full during certain periods for maintenance reasons. Thus, con-
straints are imposed to ensure material balance and operating rules, inventory levels
in the tanks are discretized and linear constraints with an adjustment term for
composition discrepancies are formulated to force the concentration in a tank to be
equal to the concentration of the outlet volume. The model consists of a
discrete-time formulation where each period corresponds to 1 day of operations at
the terminal. In order to achieve good results in an affordable time, the rolling
horizon strategy (RHS) is applied to determine the optimal schedule of crude oil
operations over a time horizon. For a real-world problem, a solution was reached by
the RHS in less than 5 min. An extension of this model was made by de Assis et al.
(2017). The authors propose an iterative two-step MILP-NLP algorithm based on
piecewise McCormick relaxation and a domain-reduction strategy for handling
bilinear terms. More specifically, the first step of the proposed algorithm is the
construction of a MILP relaxation by applying piecewise McCormick envelopes for
relaxing the bilinear terms, providing a lower bound on the MINLP. Following, the
solution of the MILP is used as an initial point and its logistics decisions (binary
variables) are fixed into the MINLP, resulting in a non-linear programming
(NLP) problem. Finally, after solving the NLP and obtaining an upper bound, the
domain of each variable involved in the bilinear terms is tightened for the next
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iteration. The algorithm stops when the difference between the upper and lower
bounds is within the tolerance or a maximum solution time is achieved. For small
instances for which an optimal solution is known, the proposed strategy consis-
tently finds optimal or near-optimal solutions. It also solves larger instances which
are, in some cases, intractable by a global optimization solver.

A more recent work integrating supply uncertainty in a refinery terminal was
made by Oliveira et al. (2016). The proposed framework comprises a stochastic
optimization model based on Mixed-Integer Linear Programming (MILP) for
scheduling a crude oil pipeline connecting a marine terminal to an oil refinery and a
method for representing oil supply uncertainty. Uncertainties are inherent in the
process of supplying crude oil from a marine terminal to a refinery, because of the
dependence between the oil supply and maritime conditions. Maritime transporta-
tion and docking activities are subject to weather and ocean stream conditions,
which directly impact the arrival time of the vessels and/or the start of unloading
activities. This uncertainty concerning when the oil supply will be available in the
terminal jeopardizes the possibility of anticipating decisions concerning pumping
activities from the terminal to the refinery, which is crucial to achieve efficiency in
this context. Other uncertainty sources, such as refinery demand or product prices,
are relatively stable in the short-time planning and thus can be considered deter-
ministic in the scheduling of pipeline pumping and vessel berthing activities. The
scenario generation method aims at generating a minimal number of scenarios while
preserving as much as possible of the uncertainty characteristics. More specifically,
the author’s methodology combines a two-stage stochastic MILP model with a
problem-driven scenario generation methodology. The objective is to obtain an
adherent representation of the uncertainty regarding vessel arrival so that the
scheduled activities can be implemented in practice. The proposed framework was
evaluated considering real-world data. The computational results showed the
importance of considering uncertainty within decision support tool systems. The
authors conclude that feasibility becomes the main issue when a manager focuses
on short-term planning such as scheduling so it is imperative to be able to represent
this uncertainty within the optimization model. It gives a wider reach to the
decision-making process in terms of foreseeing possible out- comes and making
resilient decisions.

Another recent work, made by Cortez and Pessoa (2016), focuses on the
non-linearities and concavities in mathematical programming models, which are
due to blending and splitting operations. The authors show that the existence of
splitting operations can lead to inconsistencies in the solutions obtained by the
previous MILP models from the literature, which use simplifying assumptions to
keep the formulation computationally tractable. More specifically, they doubt that
the nonlinear mixing equations can be reformulated into linear ones since the
scheduling system involves only mixing operations without splitting operations.
The authors claim that this statement leads to an imprecision in the mathematical
model and propose a more consistent way to handle with flow splitting issues
without using non-linear inequalities. It considers an aggregated inventory capacity
for the storage tanks combined to a disaggregation algorithm for the flows among
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stages. Furthermore, a mathematical reformulation that improves the solving effi-
ciency of the method is developed. Computational results show that the reformu-
lated MILP model presents significant gains concerning linear relaxation gaps and
runtimes, and the disaggregation algorithm leads to feasible solutions for all the
tested instances.

The same year, Castro (2016) introduced a source-based mixed-integer nonlinear
programming for discrete and continuous representations of time. The sources are
the crudes initially present in the system or due to arrival through marine vessels,
with the properties of a crude mixture being computed using the properties of the
individual crudes, assuming linear blending rules. This is a problem with important
logistic constraints that were modeled through Generalized Disjunctive
Programming, using logic propositions involving binary variables of conflicting
connections between units, while a specialized algorithm featuring relaxations from
multi-parametric disaggregation handles the bilinear terms. Results over a set of test
problems from the literature show that the discrete-time approach finds better
solutions when minimizing cost (avoids source of bilinear terms). In contrast,
solution quality is slightly better for the continuous-time formulation when maxi-
mizing gross margin. The results also show that the specialized global optimization
algorithm can lead to lower optimality gaps, but overall the performance of com-
mercial solvers is better.

Xu et al. (2017) deal with the simultaneous scheduling of front-end crude-oil
transfer and refinery operations, which results in a large scale and complex opti-
mization problem. The authors propose a systematic methodology, which provides
a large-scale continuous-time based scheduling model for crude unloading, trans-
ferring, and processing (CUTP) to simulate and optimize the front-end and refinery
crude-oil operations simultaneously. The CUTP model consists of a newly devel-
oped Refinery Processing Status Transition (RPST) sub-model, a crude processing
status transition sub-model, and a borrowed front-end crude transferring sub-model.
The objective is to maximize the total operational profit while satisfying various
constraints such as operation and production specifications, inventory limits, and
production demands. The authors’ methodology is depicted on Fig. 12.4. Apart
from the fact that the simultaneous scheduling of front-end crude transfer and
refinery processing has been achieved, another contribution of the paper is that
RPST has been considered in the CUTP model for seamlessly connecting both
front-end crude transfer and refinery processing models. The efficiency of the
proposed scheduling model has been demonstrated by an industrial-scale case
study.

12.3.2 Methods Based on Continuous Time Representation

Being considered as a generic model for the continuous time representation
approaches, Ierapetritou and Floudas (1998a, b) present a formulation for the
scheduling of operations in a refinery based on continuous time reformulation.
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A general refinery system divided into three sub-systems is addressed. The first
subsystem is related to crude oil operations, the second to the processes of refining
and intermediate tanks, and the third to the ends of operation processes and the
stock of final products. The article treats the first sub-problem using the material
balance constraints introduced by Lee et al. (1996). The setup cost of tanks is not
taken into account in this model. Also the proposed model does not allow certain
types of system configurations, such as the feeding of a CDU by several tanks or a
single tank feeding several CDUs, because the industrial application did not render
it necessary. Moreover, the two articles introduce a new idea for modeling. The
authors develop a decomposition approach for the refinery systems giving rise to
several sub-problems, the objective being to solve them in a reasonable time frame
and find a feasible solution for the entire system. Similar approaches are made in Jia
et al. (2003), Jia and Ierapetritou (2004), where again continuous time formulations
are used for short-term crude oil scheduling.

Another interesting model is presented by Furman et al. (2007) where a gen-
eralized model is proposed for the continuous time scheduling problem of fluid
transfer in tanks. This model generally and more robustly handles the synchro-
nization of time events with material balances than previously proposed models in

Fig. 12.4 General methodology framework proposed by Xu et al. (2017)
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the literature without approximations and addresses all the identified drawbacks.
A novel method for representing the flow to and from a tank is developed with the
potential for significant reduction in the number of necessary time events required
for continuous time scheduling formulations. The authors make the assumption of
no simultaneous input and output flow to a tank for fluid streams comprised of
multiple components. Thus, modeling the input and output within the same time
event can potentially reduce the number of binary variables by a factor of 2 for such
problems and can result in a significant reduction of combinatorial complexity. The
model is formulated as a nonconvex mixed integer nonlinear programming
(MINLP) problem, where the nonlinearity arises in the form of bilinear terms used
in the calculation of component fractions for blending and pooling. Their method
can be applied to general scheduling problems of transfer in tanks of a multi-
component fluid and the authors provide its implementation on four case studies of
refinery scheduling.

A year later, Karuppiah et al. (2008) introduced a non-convex mixed integer
nonlinear model (MINLP) for the scheduling of crude oil movement at the
front-end of a refinery, i.e. the supply stream, the tanks and the CDUs. The model
applies continuous time representation making use of transfer events. The novelty
of the proposed formulation is that the number of transfer events needed to char-
acterize the time horizon for each stream is not known as in other continuous time
models, and is chosen arbitrarily before the optimization, significantly decreasing
the size of the model. Moreover, as in Furman et al. (2007), the authors allow inputs
and outputs in the same transfer event, thus postulating fewer transfer events for a
given problem and reducing the number of binary variables. In order to obtain the
global optimum solution, the authors propose a specialized outer approximation
algorithm. The latter focuses on effectively solving a mixed-integer linear pro-
gramming (MILP) relaxation of the non-convex MINLP to obtain a rigorous lower
bound (LB) on the global optimum. Cutting planes derived by spatially decom-
posing the network are added to the MILP relaxation of the original non-convex
MINLP in order to reduce the solution time for the MILP relaxation. The solution
of this relaxation is used in order to obtain a feasible solution to the MINLP which
serves as an upper bound (UB). The lower and upper bounds are made to converge
to within a specified tolerance in the proposed outer-approximation algorithm. On
applying the proposed technique to test examples, significant savings are realized in
the computational effort required to obtain provably global optimal solutions.

In 2010, Mouret et al. (2010) proposed four different time representations with
corresponding strengthened formulations that rely on exploiting the
non-overlapping graph structure of process operation scheduling problems through
maximum cliques and bicliques. The representations are: (a) Multi-operation
sequencing (MOS), (b) Multi-operation sequencing with synchronized start times
(MOS-SST), (c) Multi-operation sequencing with fixed start times (MOS-FST) and
(d) Single operation sequencing (SOS). Using the common concept of priority-slot,
the authors show that it is possible to derive relationship results between these time
representations. These formulations are compared, and applied to single-stage and
multi-stage batch scheduling problems, as well as crude-oil operations scheduling
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problems. Computational results show that the Multi-Operation Sequencing time
representation is superior to the others as it allows efficient symmetry-breaking and
requires fewer priority-slots, thus leading to smaller model sizes.

Another comprehensive integrated optimization model based on continuous-time
formulation for the scheduling problem of production units and end-product
blending problem is presented by Shah and Ierapetritou (2011). The addressed
problem is to determine the detailed schedule of each production unit and each
demand order unloading for a short time period (typically 10 days–1 month) by
taking into account the operational constraints of the plant. The schedule defines
which products should be produced and which materials should be consumed to
meet the market needs satisfying the demand and product specifications. The
model, which is based on Ierapetritou and Floudas (1998b), incorporates quantity,
quality, and logistics decisions related to real-life refinery operations. These feature
start-up, minimum run length, fill-draw-delay, one-flow out of blender,
sequence-dependent changeovers, maximum heel quantity, and downgrading of
product. The objective function maximizes both the performance (by minimizing
the use of units and tanks, all the connection between production units and tanks,
start up setups, changeovers, and production downgrading) and the profit of total
production. The authors introduce valid inequalities in their model, apply their
method in two case studies of real-life large-scale problems (Honeywell refinery)
and present their results. Thanks to the valid inequalities the computational time
needed to reach optimal solution is significantly reduced. However, it is still high
and the authors conclude that decomposition approaches or heuristics are required
for future work in order to achieve even more reduced computational time.

In 2012, a comparative study was published considering three continuous-time
models for scheduling of crude oil operations a refinery Chen et al. (2012). The
authors compare the event-based model, proposed by Jia et al. (2003), the unit slot
model, proposed by Hu and Zhu (2007), and the multi-operations sequence
(MOS) model, proposed by Mouret et al. (2010). Pros and cons of different models
are highlighted based on modeling and computational experiments. The models are
reviewed, analyzed, modified and implemented. Experimental results show that the
MOS model needs less computational time than the other two models, but fails to
find the best solution of some problems.

The same year, Yadav and Shaik (2012) proposed a simplified
State-Task-Network (STN) based formulation to address the problem of short-term
scheduling of crude oil operations using unit-specific event-based continuous-time
representation by incorporating explicit storage tasks for handling material transfer
from storage and charging tanks. In a traditional STN representation tasks are
normally defined based on the different processing operations occurring in a unit. In
the proposed model, in order to effectively handle the unloading and loading
operations the transfer of oil from one storage unit to another unit is treated as a
task. Unloading of crude-oil from vessels to storage tank is termed as unloading
task, transfer of crude-oil from storage tank to charging tank is termed as transfer
task, and charging of CDUs from crude-mix stored in charging tank as charging
task. The corresponding units suitable for these tasks would be the respective
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pipelines connected between the upstream and downstream units. Because of the
STN representation, which naturally treats all tasks and states in a unified way,
there is no need to consider explicit variables and constraints based on each unit
(vessels, storage tanks, charging tanks, etc.). And hence, there is no need to write
separate allocation constraints, material balances, and duration constraints for each
unit (vessels, storage tanks, charging tanks, etc.) in a repeated manner. Constraints
are developed for different cases corresponding to material flow in a tank based on
(i) whether bypassing is allowed or not, (ii) whether crude mixing is allowed or not,
and based on (iii) whether simultaneous input and output is allowed or not. The
original model developed by the authors corresponds to a mixed integer nonlinear
programming problem (MINLP) which is difficult to solve and requires high
computational effort. To reduce the computational effort, they initially relax our
MINLP model by dropping nonlinear constraints and they deal with the compo-
sition discrepancies, which the MILP may have, by solving the original MINLP
model, as well, in order to rectify composition discrepancies. A few benchmark
examples from the literature are solved using the proposed model giving promising
results with improved objective functions compared with the results reported in
previous works.

A couple of years later, Zhang and Xu (2014) introduced a reactive scheduling
methodology for short-term crude oil operations so as to manage crude movements
from ship unloading to distillation processing under various uncertainties. It con-
tains a two-stage solving procedure for handling uncertainties such as shipping
delay, crude mixture demand change, and tank unavailability. On the first stage, a
deterministic schedule is initially obtained based on a continuous-time global event
model using nominal data provided/projected at the beginning of each scheduling
time horizon. On the second stage, indicator binary variables are implemented
respectively under any occurrence of different uncertainties to collect information
from the current deterministic schedule through defining “executed” tasks. On the
basis of the information, rescheduling models are configured correspondingly under
diverse uncertainty scenarios by combining the first-stage scheduling model and
amendment constraints associated with those “executed” tasks. In their imple-
mentation of their method, the authors have taken into consideration four cases of
uncertainties: (a) shipping delay, (b) crude mixture demand increase, (c) storage
tank malfunction and (d) multiple uncertainties. The raised case studies have
demonstrated that the developed reactive scheduling methodology can generate
optimal rescheduling solutions seamlessly connected to the current completed
scheduling operations and thus ensure the optimal operational continuity under
impacts from various uncertainties. In addition, the methodology can systematically
explore possible rescheduling actions for continuous crude operations without any
presumed heuristics.

Another study focusing on scheduling of refinery operations from crude oil
processing to the blending and dispatch of finished products was published by Shah
and Ierapetritou (2015). Based on their previous work Shah and Ierapetritou (2011),
the authors introdced a Lagrangian decomposition (LD) algorithm to solve the
integrated scheduling problem using an iterative procedure and applied it to realistic
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large scale refinery scheduling problem to evaluate its efficiency. The LD algorithm
involves relaxing complicating constraints to the objective function by introducing
Lagrange multipliers to form a relaxed version of a primal problem. In LD algo-
rithm, one can obtain lower bound and upper bound of the optimal value of the
initial problem at each iteration. A novel strategy was presented to formulate
restricted relaxed sub-problems based on the solution of the Lagrangian relaxed
sub-problems that take into consideration the continuous process characteristic of
the refinery. More specifically, the integrated full-scale scheduling problem is
decomposed into two independent sub-problems: (a) the production unit scheduling
problem (PSP) and (b) the blend scheduling problem (BSP) using spatial decom-
position. In the proposed algorithm, referred to as restricted Lagrangian decom-
position algorithm, the best lower bound is obtained amongst the restricted-relaxed
sub-problems and relaxed sub-problems in each iteration. To improve the perfor-
mance of the algorithm, a preprocessing step, constraints for decomposed
sub-problems, and inclusion of the best upper bound’s solution in lower bounding
problems are proposed. The proposed restricted relaxed sub-problems produce
better lower bounds and better upper bounds. Computational results of a real case
study show that the proposed algorithm is very effective and provide better solu-
tions in reasonable times.

12.3.3 Heuristic

As previously analyzed, the problem of crude oil scheduling in a refinery is a very
complicated problem. Solving it by modelling it as a Mixed Integer Program can be
very demanding in terms of CPU time. This is due to the fact that the optimization
tools based on branch-and-bound or branch-and-cut methods can be difficult and
sometimes inadequate due to the associated complexity (i.e. number of variables
and nonlinear constraints). The impractical amount of time needed to reach the first
integer/feasible solution has led several researchers to the development of heuristic
algorithms. The advantage of such algorithms is their ability to solve large-scale
problems. However, they do not guarantee either global optimality or feasibility.

One of the first heuristics applied on the problem of Scheduling of Crude Oil
(SCO) was proposed by Kelly (2002). The heuristic, known as the Chronological
Decomposition Heuristic (CDH), is a time-based divide-and-conquer strategy
intended to efficiently find integer-feasible solutions to practical scale production
scheduling optimization problems, such as the SCO problem. The CDH is not an
exact algorithm in that it will not find the global optimum, although it does use
either branch-and-bound or branch-and-cut. The CDH is specifically designed for
production scheduling optimization problems, which are formulated by discrete
time representation using a pre-specified time grid with fixed time period spacing.
However, the approach can easily be tailored to continuous time formulations. The
basic idea of the CDH is to chop the scheduling time horizon into aggregate time
intervals (time-chunks), which are a multiple of the base time period. Each
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time-chunk is solved using mixed-integer linear programming (MILP) techniques,
beginning from the first time-chunk and moving forward in time using the tech-
nique of chronological backtracking if required. The efficiency of the heuristic is
that it decomposes the temporal dimension into smaller-sized time-chunks which
are solved in succession instead of solving one large problem over the entire
scheduling horizon. The CDH is also able to handle other more complicated
logic-type constraints such as mixing delays (a time lag between flows in and flows
out of a tank) and production run-lengths with straightforward modifications. As the
author mentions, the CDH should be considered a step in the direction of aiding the
scheduling user in finding integer-feasible solutions of reasonable quality quickly.

One year later, the same author published another heuristic for the problem of
Scheduling of Crude Oil (SCO) (Kelly 2003). The author presents an effective
primal heuristic to encourage a significant reduction of binary variables. This
heuristic can be applied before an implicit enumerative type search to find
integer-feasible solutions for the SCO problem which is formulated as a discrete
time, mixed integer linear programming problem (MILP). The basis of the tech-
nique is to employ four different well-known smoothing functions into the
framework of a Smooth-and-Dive Accelerator (SDA) algorithm. The first
smoothing function is the quadratic smoothing function, proposed in Raghavachari
(1969). The second smoothing function, the sigmoidal smoothing function intro-
duced by Chen and Mangasarian (1996), also known as the neural network
smoothing function, is formulated to smooth the well-known sum of the
integer-infeasibility metric. The third smoothing function is the interior-point
smoothing function, also known as the Chen–Harker–Kanzow–Smale function.
Finally, the fourth smoothing function is known as the Fischer–Burmeister
smoothing function. The focus of the SDA is to decrease the time required to find
locally optimized solutions using branch-and-bound or branch-and-cut. The basic
algorithm of SDA is to successively solve the linear relaxation of the initial MILP
with the smoothing functions added to the existing problem’s objective function
and to use, if required, a sequence of binary variable fixing known as diving. If the
smoothing function term is not driven to zero as part of the recursion then a
branch-and-bound or branch-and-cut search heuristic is used to close the procedure,
finding at least integer-feasible primal infeasible solutions. The heuristic’s effec-
tiveness is illustrated by its application to an oil refinery’s crude oil scheduling
problem. The main benefit of the SDA over the standalone branch-and-cut imple-
mentation is the reduction in the number of 0–1 variables from the root LP
relaxation to the invocation of the branch-and-cut.

A more recent study based on a heuristic was published by An et al. (2017),
focusing on the case when the number of charging tanks is not sufficient. This
happens when some charging tanks have to be maintained or more distillers are
installed without enough charging tanks being built. In this case, in order to make a
refinery able to operate, a charging tank has to be in simultaneous charging and
feeding to a distiller for some time, called simultaneously-charging-and-feeding
(SCF) mode, leading to disturbance to the oil distillation in distillers. A hybrid Petri
net model is developed to describe the behavior of the system. Then, a scheduling
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method is proposed to find a schedule such that the SCF mode is minimally used. It
is computationally efficient. An industrial case study is given to demonstrate the
obtained results.

12.3.4 Hybrid Methods

Apart from the methods that use solely Mathematical Formulations and the methods
that apply solely heuristics, there have been studies in the literature combining both
approaches. Due to this combination, they are considered as hybrid methods. The
hybrid methods generally try to exploit the benefits of both the heuristics and the
Mathematical Programming. In fact, they solve a problem nearly as fast as a cor-
responding heuristic, but with reduced optimality gap, meaning that they are closer
to the global optimal solution derived by Mathematical Programming.

Such a hybrid algorithm was proposed by Wenkai et al. (2002) in order to solve
the mixed-integer nonlinear programming (MINLP) model of scheduling of crude
oil unloading, storage, and processing. The algorithm combines two mixed-integer
linear programming (MIP) models and a nonlinear programming (NLP) model, in
order to solve the cases in which the required blend properties are not obtained. The
number of binary variables is reduced by incorporating the tri-indexed binary
variables in bi-indexed variables. The authors also incorporated multiple oil types,
multiple docks, and multiple processing units, but maintained the constraint spec-
ifying that a CDU can be loaded only by two different tanks. For handling
large-scale problems, heuristics are included in the formulations to further reduce
the solution time. The proposed algorithm requires an iterative solution of an
integer NLP problem but does not guarantee a feasible solution.

A couple of years later, Reddy et al. (2004a) present a mixed-integer nonlinear
programming (MINLP) formulation and a mixed-integer linear programming
(MILP)–based solution approach for optimizing crude oil unloading, storage, and
processing operations in a multi-CDU (crude distillation unit) refinery receiving
crude from multiparcel VLCCs (very large crude carriers) through a high-volume,
single-buoy mooring (SBM) pipeline and/or single-parcel tankers through multiple
jetties. The authors implement a hybrid time representation, where the MINLP is a
discrete-time model that allows multiple sequential crude transfers to begin even at
intermediate points in a period, thus mimicking a continuous-time formulation.
Their solution approach could be considered as a hybrid one, since they impose a
heuristic iterative algorithm and do not solve a simple Mathematical Program, thus
leading to quick, but sub-optimal solutions. More specifically, to avoid MINLP/
NLP solutions, the MINLP is relaxed by dropping the non-linear constraints
associated the parcel-to-tank and tank-to-CDU allocations. The resulting relaxation
is a MILP, and will inevitably suffer from the composition discrepancy, because the
optimizer can push arbitrary amounts of individual crudes rather than the correct
mixture to CDU. However, their solution approach corrects composition discrep-
ancy without solving a single NLP, although the problem is inherently nonlinear, by
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fixing parcel-to-tank and tank-to-CDU allocations based on corrected compositions.
Thus, their method cannot produce infeasible results. This is achieved by identi-
fying a part of the horizon, for which MINLP’s linear relaxation is exact, and then
solving this MILP repeatedly with progressively shorter horizons. With this pro-
cedure, a MILP is iteratively solved, avoiding the additional resolution of a NLP, as
was the case in Wenkai et al. (2002). Moreover, Reddy et al. (2004a) include in
their models several real features such as multiple tanks feeding one CDU, one tank
feeding multiple CDUs, SBM pipeline, brine settling, tank-to-tank transfers, and so
forth. The scheduling objective is the maximization of total gross profit instead of
the minimization of operating cost because the former includes the effect of crude
compositions and crude margins, whereas the latter does not. The authors define
gross profit as the sum of crude margins (netbacks) minus the operating costs
related to logistics, where crude margin is the total value of cuts from a crude oil
minus the costs of purchasing, transporting, and processing the crude.

Extending their previously referred work, Reddy et al. (2004b) presented a
continuous-time mixed integer linear programming (MILP) formulation for the
short-term scheduling of operations in a refinery that receives crude from very large
crude carriers via a high-volume single buoy mooring pipeline. The solution
approach is again a hybrid one, since it incorporates a heuristic iterative algorithm
in order to eliminate the crude composition discrepancy and it does not guarantee
global optimality. A direct head-to-head comparison between the discrete-time and
continuous-time formulations reveals that the proposed continuous-time approach
outperformed the discrete-time one for problems with longer horizons, although the
latter appeared to be better for smaller and more complex problems.

A study focusing on the in-line diesel blending and distribution subsystem of an
oil refinery was made by Neiro et al. (2014). The proposed formulation is based on
a hybrid time representation in which time horizon is partitioned into periods of
equal length representing days at which points demand may be incurred. Within
each day a pre-specified number of time slots is postulated, whose duration is to be
determined by the optimization problem. The set of slots is subdivided in mutually
exclusive subsets and assigned to each of the days. Consequently, slots used to
represent events in the first day are not the same as those used in the second day and
so forth (Fig. 12.5a). Moreover, throughout the time horizon slots are placed in
monotonically increasing order. Resource-centric representations are considered for
the continuous timing decisions (Fig. 12.5b). Overlapping operations must be
assigned to the same time slot in each day, however, neither durations nor start/
finish times need to coincide. The hybrid time representation takes advantage of the
flexibility of the continuous time representation and enables handling of interme-
diate due dates with the use of fixed time points. Time variables are defined in terms
of resources instead of transfer operations leading to a smaller size formulation.
Results from a real-world case are used to validate the proposed formulation that
takes into consideration capacities and operating rules while minimizing costs.
Solution time is dramatically decreased by adding valid inequalities for symmetry
breaking. Two scenarios are analyzed to illustrate the importance of the short-run
optimized schedule as opposed to the one-day planning.
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12.4 Conclusion

Having reviewed the literature on the Scheduling of Crude Oil (SCO), one defi-
nitely would conclude that it is a very complex and demanding problem to be
solved. The researchers have approached the problem from various aspects, coming
up with mathematical models with either discrete or continuous time representation,
heuristic and hybrid methods. The progress made over the last two decades for the
solution of the SCO problem is huge, thanks to the novel introduced methodologies.

Many of the challenges of the SCO problem have been approached, but yet
future research will have to deal with them in a more detailed and holistic way. One
main aspect of the problem, which has concerned some researchers, but will still
concern future researchers, is the uncertainty of the refinery system. Shipping delay/
early arrival, crude mixture demand variation, tanks malfunction are some of the
stochastic events that influence the schedule of a refinery. A second aspect of the
problem to be dealt with in future research is the globality and feasibility/optimality
of the overall schedule in a refinery. Instead of focusing only on the refinery
front-end or focusing only on the refinery processing, resulting in a global optimal
solution for the schedule of the whole system is a challenge for future work. Finally,
despite the numerous studies, dealing with the Non-Linearity of the SCO problem
will still be subject of future papers. If one would consider all these three aspects
(stochasticity, globality, non-linearity) together, he/she would reach the conclusion
that a lot remains to be done on the way solving the complicated problem of Crude
Oil Scheduling.

Fig. 12.5 Time Representation: a hybrid time representation framework, b resource-centric
representation for continuous timing decisions (Neiro et al. 2014)
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Chapter 13
Fuzzy MCDM Methods in Sustainable
and Renewable Energy Alternative
Selection: Fuzzy VIKOR and Fuzzy
TODIM

Zeynep Kezban Turgut and Abdullah Çağrı Tolga

Abstract In recent years, there has been a remarkable trend toward sustainable and
renewable energy sources due to environmental problems and depletion of fossil
energy sources. Authorities encourage energy investors to tend this field and
consequently many investors develop an energy planning for next decades based on
renewable energy sources. At this stage, it is a crucial step to choose energy type
and develop a strategic plan based on it. In this study, we aimed to find out the best
performing sustainable and/or renewable energy alternative and thus guide decision
makers on energy investments. We evaluated four energy power plant types, which
are solar, wind, hydroelectric and landfilled gas (LFG). Multi-criteria decision
making (MCDM) methods are very appropriate for the evaluation of the renewable
energy alternatives, with many factors to consider. We conducted a real life case
study with two different MCDM methods; VIKOR and TODIM, and compared
their results. In order to cope with vagueness and uncertainty in this evaluation
process, we integrated fuzzy sets into both methods. Finally, we presented a sen-
sitivity analysis to see how robust decisions we obtained.

13.1 Introduction

There are different kinds of energy sources in nature; among these sources fossil
fuels have major use rate to meet energy need (Tasri and Susiwalati 2014). This
high-level consumption rate has caused a rapid reduction of reserves and has been
creating serious environmental problems. Fossil fuel utilization is a primary source
of CO2 emission, which causes heating of Earth’s surface and thus results in
dangerous climate change. Critique temperature for Earth’s surface, 2 °C, will be
exceeded by 2100 according to forecasts of leading institutions such as
International Energy Agency, European Commission (Myers 2015). Besides, fossil
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fuel reduction causes energy shortage in the next decades and therefore in both
energy supply and environmental pollution side, unconscious consumption of fossil
fuels should be lowered to an acceptable level. As a consequence of these issues,
governments have put emphasis on and legislative regulations such as Kyoto
Protocol and Paris Agreement have emerged as a concrete step for taking precau-
tions against global warming and its impacts. In relation to that, authorities have
been seeking for a solution to overcome these problems. As a result of this, an
orientation has been occurred towards renewable energy sources (RES) since it was
a solution to both supplying energy need and reducing carbon emissions. Therefore,
it became a trend followed by governments, companies, and researchers to utilize
clean energy sources to meet energy demand and to solve environmental problems.

Through legislative regulations, many governments have started to prepare a
strategic energy plan based on RES and set a target to reduce greenhouse gas
(GHG) emissions by certain levels. In order to achieve these goals, policy makers
have been trying to replace conventional energy sources with sustainable and
renewable energy sources to meet energy requirements. Accordingly, new energy
production projects have been created and investors have been encouraged to invest
in this field. For example; purchasing guarantee per kilowatt-hour generated elec-
tricity during specified years is provided under the name of government support
policy.

As well as legislative regulations, other factors such as advancing energy
technologies, carbon regulation and trading, trend towards clean energy, rising
decision maker’s expectations boost energy sector and create competitive energy
market. After these developments in energy field, sustainable and renewable energy
has become a growing sector and it has a room for improvements. This case triggers
firms situated in energy sector and they question about what sustainable and/or
renewable energy source they should invest in for next decades. This issue requires
evaluating technical, economical, environmental and social aspects. As a conse-
quence, the firms need to develop a strategic energy plan. It is a road map of the
firms in their sector and describes organizational goals and how to attain them over
the next years. A strategic energy plan becomes more important to be successful in
relatively new renewable energy sector. At this stage it is a crucial step to choose
energy type and develop a strategic plan based on it. Managers may have difficulty
making decision and they can use special tools to assist them in determining sus-
tainable and renewable energy source to produce energy. One of the tools is
multi-criteria decision making (MCDM) methodology, which assesses alternatives
and develops a ranking system. MCDM approach is one of the most adopted
technique in energy planning studies in the literature (Sellak et al. 2017).

This study suggests two different MCDM methods, namely VIKOR and
TODIM, in order to choose the best sustainable and renewable energy alternatives.
The first method is VIKOR technique with several additional benefits, which enable
maximum group utility of the majority with minimum individual regret of the
opponent (Opricovic and Tzeng 2004). Many researchers apply MCDM methods
by integrating one method with another to reach better results. It is also the case
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with VIKOR studies. The most preferred integration with VIKOR is fuzzy set
approaches (Yazdani and Graeml 2014; Mardani et al. 2016). The fuzzy set theory
was developed by Zadeh in 1965 to cope with vagueness and impreciseness in real
world problems. In this regard, when we analyze the decisions with energy power
plants, we face fuzziness in data. For instance, annual electricity production from
solar energy, wind energy or hydropower energy heavily depend on seasonal
conditions. The annual production amount may not be regular. Through the fuzzy
set theory, we are able to define an accurate interval rather than assigning an exact
value for the annual production estimation. Therefore we integrated VIKOR
method with fuzzy sets in order to improve the quality of results in our study.

In real life problems, risk always exists and it is an important factor in decision-
making process. However, most of the MCDM techniques are not able to cope with
risk or do not consider risk factor in their methodologies. As the second MCDM
technique in our study, we chose TODIM (an acronym in Portuguese of Interactive
and Multicriteria Decision Making) method so that we can add risk factor to our
decision-making problem. Renewable energy power plants include a lot of risk
from many different aspects. Especially solar, wind and hydraulic power plants are
dependent on season conditions. For example, rain level is a risk factor for
hydraulic energy power plants. If the geographical areas of hydraulic power plants
have low rain rate in any year, it affects the energy production amount negatively.
Therefore adding risk factor to energy power plant evaluation problems is a critical
issue to receive consistent and reliable results.

TODIM is a discrete MCDM technique based on prospect theory and deals with
risk in decision-making process. Prospect theory is developed by Kahneman and
Tversky (1979) and it is proposed to be a descriptive model, alternative to utility
theory for decision making under the condition of risk. The theory reveals that
people rely on the potential value of gains and losses rather than the final outcome
when they make a decision. This feature of the theory contradicts with utility theory
because utility theory assumes that people make rational decisions based on final
outcome. The prospect theory has a value function and it is defined on deviations
from a reference point (Kahnemann and Tversky 1979). The value function has an
S-shaped curve and shows gains and losses on it. The function generally shows a
concave characteristic above the reference point, meaning risk aversion in case of
gains; and commonly convex characteristic below the reference point, which rep-
resents propensity to risk in case of losses (Rangel et al. 2011). Risk aversion in the
case of gain means that people prefer certain or high probable gains even they have
a chance to earn far more than that gain. Risk propensity in the case of losses refers
that when people are faced with loss, they are willing to take a risk if there is a
chance to earn. After that, it is understood that equal amount of gain and loss does
not have equal importance for people, fear of loss outweighs gain. This finding of
Kahneman brings him Nobel economy prize in 2002.

In TODIM method gains and losses of each alternative over another are cal-
culated for each criterion. Pairwise comparison of alternatives leads us to find the
best option among the alternatives. As it is in the prospect theory, TODIM has a
value function as well and shape of the function of TODIM is the same as the value
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function of prospect theory. TODIM is a discrete method and is not able to cope
with uncertain conditions. Therefore, we need to integrate fuzzy sets into TODIM
methodology to increase the quality of results as we did in fuzzy VIKOR.
Integrated fuzzy TODIM method is not one of the widespread studies in literature
and early studies can be found at the beginning of the 2000s (Nobre et al. 1999). In
the last decade, there have been limited numbers of fuzzy TODIM applications such
as studies of Tosun and Akyüz (2015), Krohling and Souza (2012), Hanine et al.
(2016). Besides, Gomes and Rangel conducted the early studies of discrete TODIM
method in 1992.

In this chapter, a real life study in energy field is presented. The evaluation
criteria constitute the most significant aspects of a power plant. To sum up, in this
study, fuzzy VIKOR and fuzzy TODIM methods have been used to find best
sustainable and renewable energy power plant option among the alternatives. The
study was formatted in the following way: After this introduction section, fuzzy
MCDM models are analyzed. In the next part, application of VIKOR and TODIM
methods are conducted and finally ended up with conclusion section.

13.2 Literature Review

In this section, we analyze the renewable energy (RE) studies over the past two
decades. Mirasgedis and Diakoulaki (1997) performed a cost analysis of electricity
production systems including REs. They used MCDM methods for identifying their
environmental impacts. Iniyan and Sumathy (1998) presented a study to find an
optimal RE model reducing cost-efficiency ratio and they also presented best uti-
lization fields of REs. Beccali et al. (2003) prepared an action plan to spread RE
technologies and used ELECTRE method to find the best technology. Afgan and
Carvalho (2001) made an assessment study to specify RE power plant evaluation
criteria in sustainability frame. They created sustainability index of the alternatives
and accordingly made some comparisons.

Kaya and Kahraman (2010a) applied AHP and VIKOR techniques to obtain the
best renewable energy option and the plant site for Istanbul under fuzzy environ-
ment. They used AHP method to obtain criteria weights and utilized VIKOR for the
remaining part. The same topic with different techniques and criteria was investi-
gated to reach best energy policy and technology. In this regard, Kaya and
Kahraman (2010b) preferred fuzzy AHP technique while Kahraman and Kaya
(2011) applied modified fuzzy TOPSIS. Zerpa and Yusta (2015) applied an inte-
grated AHP-VIKOR method in their study for energy planning for Istanbul. They
asked four groups of experts’ opinions in different sectors such as academia, private
companies and determined the criteria weights. The authors highlighted that for the
remote-rural area electricity production projects; there is a conflict between tech-
nical, economical criteria and social, environmental criteria. Finally, hybrid
renewable technology systems were found as the best solution for their problem.
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Şengül et al. (2015) analyzed RE resources for Turkey with fuzzy TOPSIS and
applied Shannon’s entropy methodology. According to their criteria, the best option
was hydropower for Turkey.

Tasri and Susilawati (2014) conducted a study for Indonesia and aimed to find
the best RE alternative in terms of generating electricity. They evaluated RE
resources with fuzzy AHP technique and found that hydropower is the most
appropriate alternative for Indonesia. Streimikiene et al. (2012) had same research
with MULTIMOORA and TOPSIS to find best sustainable electricity generation
technologies. The authors suggest water and solar thermal resources in this regard.

Zhang et al. (2015) emphasized the conflicting criteria when RE alternatives are
evaluated and stated that traditional MCDM methods are inadequate to overcome
this matter. They proposed an improved model integrated Choquet Integral with
fuzzy sets.

Qin et al. (2017) extended classical TODIM method in their studies and pro-
posed a fuzzy TODIM technique to solve multi-criteria group decision-making
(MCGDM) problems under fuzzy environment. They tried different values of
attenuation factor, however the best alternative stayed the same as hydropower.

Almost every country goes through choosing an appropriate electricity pro-
duction system. All over the world, there are many researchers who perform
MCDM selection process for their countries energy planning. For example, San
Cristobal (2011) worked on renewable energy project alternatives provided by
Spanish Government within its energy policy. He utilized AHP method for
weighting process and performed VIKOR method for selection among alternatives.
Abdullah and Najib (2014) realized a similar study for Malaysia with a different
technique. In order to cope with uncertainty, the researchers applied intuitionistic
fuzzy analytic hierarchy process (IF- AHP). They used a different scale to convert
linguistic variables to numbers. Streimikiene et al. (2016) carried out a study for
Lithuania to choose the best electricity production system. They applied AHP
methodology and selected the biomass energy as the best option. Also, a sensitivity
analysis was realized by ARAS (Additive Ratio Assessment method). Zhao and
Guo (2015) performed a study for Chinese government to constitute right energy
policies. They implemented a hybrid MCDM method in two phases: the superiority
linguistic ratings and entropy weighting method for index weight determination and
the fuzzy grey relation analysis for ranking alternatives. Their results showed that
solar energy type is the best option followed by wind and biomass power. Al Garni
et al. (2016) conducted a study using AHP method for Saudi Arabia to evaluate
renewable power generation sources and obtained solar photovoltaic as the most
favorable technology. Greece and Iran have more specific studies of wind energy in
renewable energy alternatives. Shirgholami et al. (2016) applied selection process
for wind turbine technologies by AHP method in Iran. Vagiona and Karanikolas
(2012) used AHP to find out the most efficient area in electricity production to
construct offshore wind farms in Greece.
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13.3 Fuzzy Multi Criteria Decision Making Models

Fuzzy Multi-Criteria Decision Making (FMCDM) models are decision-making
methods integrated with fuzzy approaches. Fuzzy techniques are the most preferred
combination with MCDM methods in the literature (Asemi et al. 2014). It copes
with uncertain, vague and ambiguous situations of real life problems. There are
several types of fuzzy sets used in the literature, i.e. type-2 fuzzy sets, intuitionistic
fuzzy sets, and hesitant fuzzy sets. Applying FMCDM methods increases the
quality of decision-making process. The most used application areas of fuzzy
MCDM methods are computer science, engineering, mathematics, decision sci-
ences, business and management, and environmental sciences (Kahraman et al.
2015).

13.3.1 Fuzzy Set Theory

Zadeh (1965) specified a fuzzy set such that it is a class of objects with a continuum
of grades of membership and this set allows its members to have different grade of
membership from 0 to 1. The definition of a fuzzy set is as follows (Zimmermann
2010):

If X is a collection of objects denoted generically by x, then a fuzzy set eA in X is
a set of ordered pairs:

eA ¼ x; leA xð Þjx 2 X
� �n o

ð13:1Þ

leA xð Þ is called the membership function (generalized characteristic function)

which maps X to the membership space M. Its range is the subset of nonnegative
real numbers whose supremum is finite. If a fuzzy set is convex and normalized,
and its membership function is defined in R and piecewise continuous, it is called as
fuzzy number. Normalization of a fuzzy set means that maximum degree of
membership function is 1 (Gao et al. 2009).

There are different types of fuzzy numbers defined such as triangular, bell
shaped, trapezoidal. We have preferred triangular fuzzy numbers (TFN) to imple-
ment fuzzy MCDM techniques in this study. It provides more accuracy in results
and ease of computation (Tsai and Chou 2011). A TFN is defined as follows (Chen
et al. 1992):

Let x; l;m; u 2 R and leA xð Þ is a membership function of x in eA. A triangular

fuzzy number eA ¼ l;m; uð Þ is defined as in (13.2):
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leA xð Þ ¼
0; x� l;
x�lð Þ
m�lð Þ ; l\x�m;
u�xð Þ
u�mð Þ ; m\x� u;
0; x[ u:

8>><>>: ð13:2Þ

where l is the lower bound and u is the upper bound and m is the most probable
value of fuzzy number eA.

We utilized linguistic variables in this study to estimate importance weight of the
evaluation criteria and to assess performance of the alternatives according to
qualitative criteria. Linguistic variables were expressed by triangular fuzzy num-
bers. Tables 13.1 and 13.2 show the corresponding fuzzy numbers of the linguistic
terms (Chang 2014).

In this chapter, we implemented fuzzy VIKOR and fuzzy TODIM methods in
our problem. VIKOR is a distance-based technique while TODIM achieves results
through pairwise comparison.

13.3.2 Fuzzy VIKOR

VIKOR method was developed by Opricovic in 1990 for multicriteria optimization
of complex systems. It solves MCDM problems containing conflicting and non-
commensurable (different unit) criteria (Opricovic 2011). In case of having
conflicting criteria in the problem, the method provides a compromise ranking list
and a solution set. The compromise ranking is obtained by measuring distance of
the alternatives to the ideal. In Fig. 13.1, it is illustrated that the compromise
solution Fc is the closest point to the ideal F. The strength of the method is to
provide a maximum ‘‘group utility’’ for the ‘‘majority’’ and a minimum of an
individual regret for the ‘‘opponent’’ (Opricovic and Tzeng 2004).

Table 13.1 TFN values for
the determination of criteria
weights

Linguistic terms Corresponding TFNs

Very Low (VL) (0.0, 0.1, 0.2)

Low (L) (0.1, 0.2, 0.3)

Medium Low (ML) (0.2, 0.35, 0.5)

Medium (M) (0.4, 0.5, 0.6)

Medium High (MH) (0.5, 0.65, 0.8)

High (H) (0.7, 0.8, 0.9)

Very High (VH) (0.8, 0.9, 1.0)
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Development of the VIKOR technique is based on the following Lp metric form:

Lpj ¼
Xn
i¼1

wi f
�
i � f ij

� �
= f �i � f�i
� �� �p( )1=p

; 1 � p � 1; j ¼ 1; 2; . . .J:

ð13:3Þ

L1j produces Sj in (13.10) and L1j produces Rj in (13.11). The solution obtained
by minj Sj represents a maximum group utility and by minj Rj represents minimum
individual regret of the opponent (Opricovic and Tzeng 2007).

In a similar manner, the fuzzy VIKOR method has been developed to achieve a
compromise solution in a multicriteria decision making problem under fuzzy
environment where both criteria and weights could be fuzzy sets. In this fuzzy
MCDM problem, there are m number of alternatives j = 1, 2, … m and n number of
criteria i = 1, 2,… n. Aj indicates the jth alternative, Ci indicates the ith criterion. ef ij
is a triangular fuzzy number which is performance rating of jth alternative by ith
criterion such that ef ij ¼ lij;mij; rij

� �
, lij and rij are the lower and upper bounds

respectively, mij is most likely value of ef j. Ib denotes the set of benefit criteria and Ic
denotes cost criteria. To construct framework of the problem, we note that there are
m alternatives, n evaluation criteria, and k decision makers. This system can be
expressed in a matrix format such that:

Table 13.2 TFN values for
the performance evaluation

Linguistic variables Corresponding TFNs

Very Poor (VP) (0, 1, 2)

Poor (P) (1, 2, 3)

Medium Poor (MP) (2, 3.5, 5)

Fair (F) (4, 5, 6)

Medium Good (MG) (5, 6.5, 8)

Good (G) (7, 8, 9)

Very Good (VG) (8, 9, 10)

Fig. 13.1 Ideal and
compromise solutions

284 Z. K. Turgut and A. Ç. Tolga



A1 A2 � � � Am

eD ¼

C1

C2

..

.

Cn

ef11 ef21 � � � ef1mef21 ef22 � � � ef2m
..
. ..

. ..
. ..

.

efn1 efn2 � � � efnm

2666664

3777775
j¼1;2;...;m;¼ 1;2;...;n

ð13:4Þ

eD is a performance matrix with n � m size, where ef ij is the performance rating
of alternative Aj evaluated by criterion Ci It is formed as:

ef ij ¼ 1
k
ef 1ij�ef 2ij� � � � �ef kijh i ð13:5Þ

where ef kij is the performance rating determined by kth decision maker of alternative
j evaluated by ith criterion.

The fuzzy VIKOR method is described in the following steps (Opricovic 2011).

Step 1: Determination of fuzzy best ef �i ¼ l�i ;m
�
i ; r

�
i

� �
and fuzzy worst ef 	i ¼

l	i ;m
	
i ; r

	
i

� �
values of all criteria

ef �i ¼ MAXj
ef ij; ef 	i ¼ MINj for i 2 Ib; ð13:6Þ

ef �i ¼ MINj ef ij; ef 	i ¼ MAXjef ij for i 2 Ic: ð13:7Þ

Step 2: Computation of normalized fuzzy difference edij

edij ¼ ef �i
ef ij� �
=ðr�i � l	i Þ for i 2 Ib; ð13:8Þ

edij ¼ ef ij
ef �i� �
= r	i � l�i
� �

for i 2 Ic: ð13:9Þ

Step 3: Computation of eSj ¼ Slj; S
m
j ; S

r
j

� �
and eRj ¼ Rl

j;R
m
j ;R

r
j

� �
. eSj refers to

distance of alternative j from the fuzzy best value, similarly eRj is the distance from
the fuzzy worst value.

eSj ¼Xn
i¼1

� ewi � edij

� �
ð13:10Þ

eRj ¼ MAXi ewi � edij

� �
ð13:11Þ
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ewi ¼ 1
k
ew1
i � ew2

i� � � � � ewk
i

� � ð13:12Þ

where ewi is the fuzzy importance weight of ith criterion, which is determined by
decision makers. ewk

i shows the fuzzy importance weight of ith criterion and
determined by kth decision maker.

Step 4: Computation of the values eQj ¼ Ql
j;Q

m
j ;Q

r
j

� �
by the formula

eQj ¼ v eSj 
 eS�� �
= S	r � S�l
� �� 1� vð Þ eRj 
 eR�� �

= R	r � R�l� � ð13:13Þ

where eS� ¼ MINjeSj, S	r ¼ MAXjSrj , eR� ¼ MINj eRj, R	r ¼ MAXjRr
j and while v is a

weight to represent the maximum group utility, 1 − v indicates the weight of the
individual regret. v value can be estimated by v ¼ nþ 1ð Þ=2n or could be 0.5 to
compromise both side.

Step 5: Defuzzification of eSj; eRj and eQj. There are various ways of defuzzifica-
tion operation applied in different studies. In this study, we prefer to use the
equation that Opricovic (2011) used in his study to convert fuzzy numbers into
crisp scores. It is given by (13.14):

Crisp eN� � ¼ 2mþ lþ rð Þ=4 ð13:14Þ

Step 6: Ranking the alternatives by crisp value of S,R and Q in ascending order.
There are three ranking lists Af gS; Af gR; Af gQ.

Step 7: Reaching the compromise solution
The alternative having the smallest Q value indicates the best option among the

alternatives if the following conditions are satisfied.
C1. Acceptable Advantage

QðA 2ð ÞÞ � Q A 1ð Þ
� �

�DQ ð13:15Þ

where A 1ð Þ and A 2ð Þ are first and second best alternative respectively in the
Q ranking list. The threshold DQ ¼ 1= J � 1ð Þ

C2. Acceptable stability in decision making
The best alternative A 1ð Þ must also be the best ranked by S or/and R. If one of the

conditions is not satisfied, then a set of compromise solutions is proposed, which
consists of:

Alternatives A 1ð Þ and A 2ð Þ if only the condition C2 is not satisfied, or
Alternatives A 1ð Þ, A 2ð Þ, …, A Mð Þ if the condition C1 is not satisfied; A Mð Þ is

determined by the relation QðA Mð ÞÞ � Q A 1ð Þ� �
\DQ for maximum M (the positions

of these alternatives are ‘‘in closeness’’).
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13.3.3 Fuzzy TODIM

Prospect theory creates the infrastructure of TODIM method. The theory and
method presented individually in the following sections.

13.3.3.1 Preliminaries on Prospect Theory

TODIM method (an acronym in Portuguese for iterative multicriteria decision
making) is an MCDM method based on prospect theory and it was proposed by
Gomes and Lima (1992). Prospect theory was developed by Kahneman and
Tversky (1979) and it is a proposed descriptive model for decision making under
condition of risk. Prospect theory has a value function indicating risk aversion and
risk propensity and it is described in the following expression:

v xð Þ ¼ x/ if x� 0
�h �xð Þb if x\0

�
ð13:16Þ

where / and b are parameters related to gains and losses, respectively. Parameter h
represents a characteristic of being steeper for losses than for gains. In case of risk
aversion, h > 1. Kahneman and Tversky (1979) experimentally determined the
values of /¼ b ¼ 0:88, and h ¼ 2:25. Further, they suggest that the value of h is
between 2.0 and 2.5 (Krohling and Souza 2012). This function is S-shaped as
shown in Fig. 13.2.

Concave curve represents the gains and convex curve represents the losses. As it
is in the prospect theory, TODIM has a value function as well and its shape is the
same as the value function of prospect theory as shown in Fig. 13.2.

Fig. 13.2 The value function
of prospect theory
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13.3.3.2 Fuzzy TODIM Method

Fuzzy TODIM is an integrated model of fuzzy sets with traditional TODIM. The
method makes pairwise comparison between alternatives with regard to each cri-
terion and gains and losses of each alternative over the others are obtained. The sum
of gains and losses of each alternative gives dominance degree of that alternative. In
the final step, alternatives are ranked by these dominance degrees.

Let there are m number of alternatives i ¼ 1; 2. . .m and n number of evaluation
criteria j ¼ 1; 2. . . n. Ai denotes the ith alternative, Cj denotes the jth criterion. Each
criterion has different importance degree and w ¼ w1; w2. . .wnð ÞT is a weight
vector, where wj denotes the importance weight of criterion Cj, such thatPn

j¼1 wj ¼ 1 and 0�wj � 1: Alternatives have a performance value for each cri-
terion. exij is a performance value of ith alternative with respect to jth criterion. Note
that wj is a discrete number and exij is a triangular fuzzy number.

The steps of the fuzzy TODIM method are organized by using studies of Tosun
and Akyüz (2015), Xiao and Zhi-ping (2011), Sen et al. (2016).

Step 1: Determination of criteria weight and performance values of alternatives.
For the performance evaluation of alternatives according to qualitative criteria

and determination of criteria weights, triangular fuzzy numbers are used in this
fuzzy TODIM method. Alternatives have numerical values for quantitative criteria.
Performance evaluation and weight determination processes are conducted by
decision makers. The equations of TODIM are given in the following:

exij ¼ 1
k

Xk
e¼1

exeij
" #

i ¼ 1; 2. . .m ð13:17Þ

where exeij is the performance rating determined by eth decision maker of alternative
i evaluated by jth criterion. k is the number of decision makers.

ewj ¼ 1
k

Xk
e¼1

ewe
j

" #
j ¼ 1; 2. . . n ð13:18Þ

where ewe
j is the weight of jth criterion, determined by eth decision maker. If

performance values are in different units, normalization of the values is necessary.
The fuzzy normalized value of exij ¼ lij;mij; uij

� �
is erij and calculated as:

erij ¼ lij
u�j

;
mij

u�j
;
uij
u�j

 !
; j 2 B ð13:19Þ

erij ¼ l�j
uij

;
l�j
mij

;
l�j
lij

	 

; j 2 C ð13:20Þ
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B and C are the sets of benefit and cost criteria respectively. u�j ¼ maxiuij if
j 2 B, l�j ¼ minilij if j 2 C: This normalization method standardizes the fuzzy
performance values and makes the value range between 0 and 1, i.e. [0,1].

Step 2: Defuzzification of fuzzy criteria weights.
Defuzzification method used in this study belongs to Abdel-Kader and Dugdale

(2001). a is index of optimism. Bigger values of a represent an optimistic decision
maker, whereas smaller values represent a pessimistic decision maker. a parameter
reflects the decision maker’s risk attitude. For example, a decision maker who
avoids risk because of uncertain situations may prefer a low value of a: Different
index of optimism values can be used in researches for sensitivity analysis. In this
study index of optimism (a) is accepted as 0.5, which is a neutral point in order to
balance between optimism and pessimism.

Let a 2 0; 1½  be index of optimism. For a triangular fuzzy numbereFj ¼ ðlj;mj; ujÞ j ¼ 1; 2. . . n; let V eFj
� �

be the value of eFj and ordering can be
calculated as;

V eFj
� � ¼ mj a

uj � xmin
xmax � xmin þ uj � mj

� �
þ 1� að Þ 1� xmax � lj

xmax � xmin þmj � lj

� �� 
ð13:21Þ

where xmin ¼ inf S, xmax ¼ sup S

S ¼
[n
j¼1

Sj ð13:22Þ

and

Sj ¼ l1;m1; u1; . . .; ln;mn; unð Þ j ¼ 1; 2. . .n ð13:23Þ

Calculated weights with the ordering method are normalized by the following
formula:

wj ¼
V eFj
� �Pn

j¼1 V eFj
� � ð13:24Þ

Step 3: Calculation of Gains and Losses.
Gains and losses of an alternative over the other alternatives are estimated by

pairwise comparison. Let exij and exkj are performance values of alternative Ai and Ak

respectively regarding to criterion Cj, k ¼ 1; 2. . .m. The performance values exij and
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exkj are represented by TFNs. The Euclidian distance between them are calculated by
the following equation:

d bxij;bxkj� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

xlij � xlkj
� �2

þ xmij � xmkj
� �2

þ xuij � xukj
� �2� �s

ð13:25Þ

Gains ðGj
ikÞ and losses ðL j

ikÞ of Ai against Ak regarding to criterion Cj are given
as:

For benefit criteria:

Gj
ik ¼ d bxij;bxkj� �

; bxij �bxkj
0; bxij\bxkj

�
ð13:26Þ

L j
ik ¼

0; bxij �bxkj
�d bxij;bxkj� �

; bxij\bxkj
�

ð13:27Þ

For cost criteria:

Gj
ik ¼

0; bxij �bxkj
d bxij;bxkj� �

; bxij\bxkj
�

ð13:28Þ

L j
ik ¼

�d bxij;bxkj� �
; bxij �bxkj

0; bxij\bxkj
�

ð13:29Þ

It is obvious that Gj
ik þ L j

ki ¼ 0 and Gj
ii ¼ L j

ii ¼ 0. Using the equations, gain

matrix Gj ¼ Gj
ik

� �
m�m and loss matrix Lj ¼ L j

ik

� �
m�m are constructed for each

criterion.
Step 4: Calculation of criteria’s relative weights wjr.
Relative weights of criteria are estimated based on a reference criterion. It is the

criterion with highest weight. Let Cr be the reference criterion, the relative weight
wjr of criterion Cj to the reference criterion Cr is found as follows:

wjr ¼ wj=wr ð13:30Þ

where wj is the weight of criterion Cj and wr is the weight of the reference criterion
Cr.

Step 5: Construction of dominance degree matrix.

/j þð Þ
ik denotes the dominance degree of gain and /j �ð Þ

ik denotes dominance degree
of loss. To construct the matrix, dominance degree of alternative Ai over Ak for
criterion Cj is calculated with the following equations.
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/j þð Þ
ik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gj

ikwjr=
Xn
j¼1

wjr

 !vuut ð13:31Þ

/j �ð Þ
ik ¼ � 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L j

ik

Xn
j¼1

wjr

 !
= wjr
� �vuut ð13:32Þ

where h is attenuation factor of the loss. Overall dominance degree / j
ik is found as

follows:

/ j
ik ¼ /j þð Þ

ik þ/j �ð Þ
ik ð13:33Þ

after that dominance degree matrix /j ¼ / j
ik

� �
m�m for criterion Cj can be

constructed.

Step 6: Construction of overall dominance degree matrix.
Overall dominance degree of alternative i on alternative k is calculated by:

dik ¼
Xn
j¼1

/ j
ik ð13:34Þ

It creates an m � m size dominance degree matrix D and D ¼ dik½ m�m.
Step 7: Calculation of overall value of each alternative and ranking the

alternatives.
Based on matrix D; the overall value of alternative Ai can be calculated as

follows:

n Aið Þ ¼
Pm

k¼1 dik � mini2M
Pm

k¼1 dik
� �

maxi2M
Pm

k¼1 dik
� �� mini2M

Pm
k¼1 dik

� � ð13:35Þ

0� n Aið Þ� 1 and greater n Aið Þ indicates better alternative. Therefore the alter-
natives are ranked according to descending order of overall value n Aið Þ:

13.4 An Application: A Strategic Selection of a Firm
in Sustainable and Renewable Energy Sector

In this section we present a real life case from Turkey. We aim to find out the best
performing sustainable and renewable energy alternative and by means of this to
lead the energy investors. We conducted this study based on four most common
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sustainable and renewable energy power plant types, which are solar energy (SE),
wind energy (WE), hydraulic energy (HE) and specifically land filled gas energy
(LFG-E) consisting of solid waste under the category of biomass.

In this study, we worked with experts in their field and powerful companies in
energy sector. There are four decision makers, two of them are academicians whose
area of expertise is renewable energy and the others are expert engineers in the field of
energy trading and investment. An assistant professor from energy institute of
İstanbul Technical University helped us for technical aspects of the power plants and
made significant review for the criteria determination and performance evaluation.
Another assistant professor who studies on renewable energy area from İstanbul
University contributed our study for criteria and performance evaluation. Besides we
have received data of LFG, solar and wind power plants from a company working
internationally and an important actor of energy sector of Turkey with 30 years of
experience.We also received help from themanager of this company’s energy trading
investments department. Our forth decision maker is a general manager of a con-
sultancy company which work with renewable energy companies. They analyzed our
criteria and alternatives, reflected their field viewpoint and knowledge on our study.
Lastly hydraulic energy data was taken from another company, which develops and
invests in power and water infrastructure and it is qualified by World Bank.

13.4.1 Application of Fuzzy VIKOR Technique

13.4.1.1 Determination of Evaluation Criteria

One of the most important aspects of the multicriteria problem is to determine
evaluation criteria properly. In this study, firstly we utilized the literature to choose
energy evaluation criteria afterwards revised with the decision makers. As the most
frequently adopted criteria in the energy evaluation studies are used, there are some
rarely used criteria such as government support rate and cost increasing rate
(Büyüközkan and Güleryüz 2017). After the carefully investigation of the energy
production subject, we determined the criteria list that needs to be considered to
evaluate sustainable energy power plants. In the following table, the criteria list is
presented and necessary information related to them is given (Şengül et al. 2015;
Cavallaro and Ciraolo 2005) (Table 13.3).

We can categorize the criteria as technical from C1 to C9, economical from C10

to C16, and economical from C17 to C22.
To estimate importance weight, a questionnaire was prepared and sent to the

decision makers. They evaluated all the criteria individually by referring the lin-
guistic variables in Table 13.1. Table 13.4 shows the decision makers’ opinions on
how important the mentioned criteria are. By using (13.12), we synthesized four
different opinions on one criterion by averaging corresponding TFN values given
by the decision makers. Calculation steps were explicitly provided in the following:

Fuzzy importance weight and crisp score of criterion C1:
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Table 13.3 Evaluation criteria for power plants

Criterion Description Units

C1: Technical efficiency It is the amount of useful energy that we can gain
from an energy source

ratio

C2: Technical risk The probability of loss resulted from process of a
power plant and effects of environmental
conditions on the plants i.e. rain, icing

–

C3: Maturity It measures the availability of technology and its
reliability

–

C4: Net annually electricity
production

It refers to net amount of energy generated from an
energy source at the end of the year

MWh/year

C5: Construction time It is the length of construction period for the RE
plants

months

C6: Land use It represents annual net electricity per m2 kWh/m2

C7: Per unit installed power It is the installed power of the plant per km2 MW/km2

C8: Plant lifetime It is the service life of the plants year

C9: Reserve potential It states Turkey’s RE energy potential MW

C10: Annual income It is the annual income obtained from power
plants’ operations

cent/kWh

C11: Investment cost It contains all type of costs related to equipment,
installation, construction and engineering services

cent/kWh

C12: Total operating cost It refers to costs due to energy plants’ s operation,
repair and maintenance activities including
personal and service facility costs

cent/kWh

C13: Payback period It is the time of repay period of investments year

C14: Government support
rate

It refers to rate of guarantee of electricity purchase
by the government

cent/kWh

C15: Operation and
maintenance cost
increasing rate

It refers to increasing cost rate over the years
related to RE plant’s operations and maintenance
activities

%
(percentage)

C16: Employment It refers job creation in the RE plants number

C17: Lifecycle GHG
emissions

Generation of greenhouse gas emissions due to
plant operations. These gasses are hazardous and
cause global warming. CO2, CH4, N2O etc

ton/year

C18: GHG emissions
avoided

When we produce an amount of electricity from
clean energy sources, conventional energy systems
don’t have to be used produce that amount of
electricity. In this case the RE system prevents
CO2 emissions generating from conventional
plants

CO2-eq kg/
kWh

C19: Impact on ecosystem It refers to potential risk to ecosystem that may be
caused by RE plants, including liquid and solid
disposals and costs caused by them, magnetic
hazard, changing of microclimate and causing bad
smell

–

C20: Social acceptability It refers to public opinion about RE plants –

C21: Noise It measures the noise level caused by RE plants –

C22: Visual impact It evaluates visual pollution caused by RE plants –

Note [–] denotes not having a unit because they are qualitative criteria
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ew1 ¼ 1
4

0:8; 0:9; 1:0ð Þ� 0:7; 0:8; 0:9ð Þ� 0:8; 0:9; 1:0ð Þ� 0:8; 0:9; 1:0ð Þ½ 
¼ 0:775; 0:875; 0:975ð Þ

Crisp ew1ð Þ ¼ 2 0:875ð Þþ 0:775þ 0:975
4

¼ 0:875

The other criteria weights and crisp scores are calculated in the same way.
Consequently, the criteria and their fuzzy weights are shown in Table 13.5. The
crisp score column of it indicates the order of importance of each evaluation cri-
terion. According to Table 13.5, first three important criteria are technical effi-
ciency, government support rate, GHG emission avoided, and impact on ecosystem
and investment cost. It proves that technical, economical and environmental aspects
should be analyzed together for a power plant evaluation.

13.4.1.2 Creating of the Performance Matrix

Before creating the decision matrix, we need to specify the criteria by their features.
We have 5 qualitative criteria such as visual impact, maturity and 17 quantitative

Table 13.4 Decision
makers’ opinions on criteria
importance

Criteria D1 D2 D3 D4

C1 VH H VH VH

C2 H VH MH VH

C3 H H VH H

C4 VH M VH VH

C5 MH L MH MH

C6 L H M MH

C7 L H M MH

C8 H MH VH M

C9 VH H H H

C10 VH M VH VH

C11 VH MH VH VH

C12 H H VH H

C13 H MH H VH

C14 VH H VH H

C15 MH H VH H

C16 MH L M L

C17 H VH MH H

C18 H VH VH H

C19 H VH VH H

C20 M H VH H

C21 L H MH H

C22 L VH MH L
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criteria such as electricity production amount, payback period. C2, C5, C11, C12,
C13, C15, C17, C19, C22 are defined as cost criteria stating drawback and the rest are
defined as benefit criteria stating advantage. For the qualitative criteria, the decision
makers rated the alternatives by referring Table 13.2. In order not to cause con-
fusion for the decision makers, we wanted they to assume all qualitative criteria as
benefit. For example; when solar energy is rated in terms of noise, if a decision
maker evaluates it as very good (8, 9, 10), it does not mean that solar energy is very
noisy it states solar energy is in a very good condition in terms of noise, doesn’t
cause high undesirable noise level. Table 13.6 shows the decision makers’ evalu-
ation rates for the alternatives with respect to the qualitative criteria.

As in (13.5), we estimated the performance rating of the alternatives by aver-
aging corresponding TFN values given by the decision makers. Performance value
of Alternative 1, which is solar energy for the second criterion is presented as an
example:

ef21 ¼ 1
4

4; 5; 6ð Þ� 7; 8; 9ð Þ� 7; 8; 9ð Þ� 8; 9; 10ð Þ½  ¼ 6:5; 7:5; 8:5ð Þ

Table 13.5 Fuzzy
importance weights of the
criteria

Criteria Fuzzy importance weight Crisp score

C1 (0.775, 0.875, 0.975) 0.875 [1]

C2 (0.7, 0.813, 0.925) 0.813 [6]

C3 (0.725, 0.825, 0.925) 0.825 [5]

C4 (0.7, 0.8, 0.9) 0.8 [7]

C5 (0.175, 0.313, 0.45) 0.313 [15]

C6 (0.433, 0.55, 0.667) 0.55 [12]

C7 (0.433, 0.55, 0.667) 0.55 [12]

C8 (0.6, 0.713, 0.825) 0.713 [10]

C9 (0.733, 0.833, 0.933) 0.833 [4]

C10 (0.7, 0.8, 0.9) 0.8 [7]

C11 (0.725, 0.838, 0.95) 0.838 [3]

C12 (0.725, 0.825, 0.925) 0.825 [5]

C13 (0.675, 0.788, 0.9) 0.788 [8]

C14 (0.75, 0.85, 0.95) 0.85 [2]

C15 (0.675, 0.788, 0.9) 0.788 [8]

C16 (0.275, 0.388, 0.5) 0.389 [14]

C17 (0.675, 0.788, 0.9) 0.788 [8]

C18 (0.75, 0.85, 0.95) 0.85 [2]

C19 (0.75, 0.85, 0.95) 0.85 [2]

C20 (0.65, 0.75, 0.85) 0.75 [9]

C21 (0.5, 0.613, 0.725) 0.613 [11]

C22 (0.375, 0.488, 0.6) 0.488 [13]

Note: [] denotes importance order of the criteria
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On the other hand for the quantitative criteria, we did not consult the judgments
of the decision makers on the power plants because we have given numeric data for
each alternative. Fuzzy performance values of the alternatives regarding to quali-
tative and quantitative criteria were gathered and Table 13.7 shows the fuzzy
performance ratings of all the alternatives.

13.4.1.3 Calculation of Normalized Fuzzy Differences

After we obtained the performance matrix, Eqs. 13.6 and 13.7 were used to specify
fuzzy best and worst values (Table 13.8). Here it is important to note that we
assumed all qualitative criteria as benefit to make evaluation process convenient for
the decision makers. In this case, cost criteria are C5, C11, C12, C13, C15 and C17 in
our problem. They are construction time, investment cost, total operating cost,
payback period, operation and maintenance cost increasing rate, and lifecycle GHG
emissions respectively.

In the next step, Eqs. 13.8 and 13.9 were applied to calculate the normalized
fuzzy difference. In the following, an example of normalization in terms of benefit
and cost criterion is shown:

Normalization with benefit criterion:

Table 13.6 Decision
makers’ opinions on
performance ratings of the
alternatives

C2 C3 C19 C20 C21 C22

D1

SE F F G VG G G

WE F G G VG F G

HE G G P P P P

LFG-E P G VG VG F F

D2

SE G VG VG MG VG P

WE G MG VG F VP P

HE G MP P P P MP

LFG-E F G MP VP P VP

D3

SE G VG G VG VG G

WE G VG F MG F MG

HE G VG MP MG F F

LFG-E F MG VG G G F

D4

SE VG VG VG VG VG VG

WE VG VG VG VG F G

HE VG VG G VG P VG

LFG-E G G VP MG F F
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ed11 ¼ 0:8; 0:913; 0:95ð Þ
 0:15; 0:187; 0:22ð Þ
0:95� 0:15ð Þ

¼ 0:8� 0:22ð Þ; 0:913� 0:187ð Þ; 0; 95� 0:15ð Þ
0:95� 0:15ð Þ

¼ 0:725; 0:908; 1ð Þ

Normalization with cost criterion:

Table 13.8 Fuzzy best and worst values of the alternatives

Fuzzy best value Fuzzy worst value

L m r l m r

C1 0.8 0.913 0.95 0.15 0.1866 0.22

C2 7.25 8.25 9.25 3.25 4.25 5.25

C3 7 8.125 9.25 6.25 7.375 8.5

C4 293,706 294,000 294,294 44,580.375 44,625 44,669.625

C5 11.538 11.55 11.561 25.174 25.2 25.225

C6 587.412 588 588.588 0.209 0.21 0.21

C7 77.922 78 78.078 0.066 0.066 0.066

C8 51.398 51.45 51.501 26.224 26.25 26.276

C9 58,741.2 58,800 58,858.8 3978.667 3982.65 3986.633

C10 27.939 27.967 27.995 7.343 7.35 7.357

C11 17.607 17.625 17.643 71.082 71.153 71.224

C12 0.688 0.689 0.69 2.270 2.272 2.275

C13 5.245 5.25 5.255 10.49 10.5 10.511

C14 14.685 14.7 14.715 5.769 5.775 5.781

C15 3.409 3.413 3.416 13.636 13.65 13.664

C16 52.448 52.5 52.553 7.343 7.35 7.357

C17 6 26 124 13 85 731

C18 7.84 7.848 7.856 0.895 0.896 0.897

C19 7.5 8.5 9.5 2.75 3.875 5

C20 7.25 8.375 9.5 3.75 4.875 6

C21 7.75 8.75 9.75 1.75 2.75 3.75

C22 5.75 6.75 7.75 3 4 5
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ed51 ¼ 11:538; 11:55; 11:562ð Þ
 11:538; 11:55; 11:562ð Þ
25:225� 11:538ð Þ

¼ 11:538� 11:562ð Þ; 11:55� 11:55ð Þ; 11:562� 11:538ð Þ
25:225� 11:538ð Þ

¼ �0:002; 0; 0:002ð Þ

All the other normalization calculations were done in the same way and the
results are presented in Table 13.9.

13.4.1.4 Calculation of eSj; eRj and eQj Values

eSj and eRj values computed were using Eqs. 13.10 and 13.11 with the data listed in

Table 13.9. For eQj value, 13 was used and v value was estimated as 0.52 utilizing
the formula in Step 4. Examples of calculation method were presented for fuzzy S,
R and Q values. All the results of the computations are placed in Table 13.10.eS1 ¼ 0:775; 0:875; 0:975ð Þ� 0:725; 0:908; 1ð Þ½  � � � � � ½ 0:375; 0:488; 0:6ð Þ�

�0:421; 0; 0:421ð Þ ¼ 0:562; 0:795; 0:975ð Þ � � � � � �0:158; 0; 0:253ð Þ
¼ 3:178; 5:846; 9:641ð ÞeR1 ¼ MAX1ð 0:775; 0:875; 0:975ð Þ� 0:725; 0:908; 1ð Þ½ ; . . .; ½ 0:375; 0:488; 0:6ð Þ�

�0:421; 0; 0:421ð Þ ¼ 0:562; 0:795; 0:975ð Þ; . . .; �0:158; 0; 0:253ð Þ
¼ ð0:748; 0:849; 0:9Þ

v ¼ ð22þ 1Þ=44 ¼ 0:52

eQ1 ¼ 0:52
3:178; 5:846; 9:641ð Þ
 1:710; 4:137; 7:096ð Þ½ 

13:778� 1:710

þ 1� 0:52ð Þ 0:748; 0:849; 0:975ð Þ
 0:732; 0:832; 0:933ð Þ½ 
0:975� 0:732

¼ 0:534; 0:106; 0:822ð Þ

Table 13.10 Fuzzy S, R and Q values of the alternativeseSj eRj eQj

SE (3.178, 5.846, 9.641) (0.748, 0.849, 0.975) (−0.534, 0.106, 0.822)

WE (5.507, 8.724, 12.38) (0.748, 0.849, 0.95) (−0.434, 0.266, 0.89)

HE (6.312, 9.754, 13.778) (0.748, 0.849, 0.95) (−0.399, 0.275, 0.951)

LFG-E (1.71, 4.137, 7.096) (0.732, 0.832, 0.933) (−0.63, 0, 0.63)
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13.4.1.5 Defuzzification and Ranking the Alternatives

This study adopts the defuzzification method given as a formula in Step 5 to obtain
crisp scores of fuzzy numbers. We obtained Table 13.11 showing the crisp score of
S, R and Q values and ranked list of alternatives based on their crisp scores.
Consequently, there are three ranking lists of alternatives and fourth alternative that
is LFG power plants is in the first order in each ranking list.

According to the result of fuzzy VIKOR application, LFG is the best performing
option among the alternatives. Q value of first and second alternative is 0 and 0.125
respectively and our DQ value is 0.33. According to the methodology the difference
of Q values of the first and second alternatives should be less than the threshold
DQ. Therefore, the results do not satisfy Condition 13.1 in VIKOR methodology,
which states there is a considerable difference “acceptable advantage” between the
alternatives. It means that LFG is still our best compromise solution; on the other
hand selection of LFG among the alternatives as a sustainable energy resource does
not far outweigh the other alternatives. Rests of the alternatives too are in the set of
compromise solutions and a decision maker may prefer one of them.

Crisp eS1� �
¼ 2 5:846ð Þþ 3:178þ 9:641

4
¼ 6:128

Crisp eR1
� � ¼ 2 0:849ð Þþ 0:748þ 0:975

4
¼ 0:855

Crisp eQ1

� �
¼ 2 0:106ð Þ � 0:534þ 0:822

4
¼ 0:125

13.4.1.6 Categorical Analysis of the Alternatives

We want to learn the performance of the alternatives separately by technical,
economical and environmental aspects. Technical criteria are from C1 to C9, eco-
nomical is from C10 to C16 and environmental C17 to C22. Same calculation steps of
VIKOR technique were applied on corresponding criteria and ranks of the alter-
natives were obtained in three aspects.

Table 13.11 Q, S and R ranking list of alternatives

Crisp scores Ranking

Alternatives Q S R Af gQ Af gs Af gR
SE 0.125 6.128 0.855 2 2 3

WE 0.247 8.834 0.849 3 3 2

HE 0.275 9.899 0.849 4 4 2

LFG-E 0 4.27 0.832 1 1 1
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According to VIKOR technique application, LFG-E is the best alternative. Here
we observe that LFG-E is in the first place in terms of three aspects. It shows the
consistency of VIKOR application result. Similarly, HE always takes the last place
in the technical, economical and environmental rank. Solar energy is the second

Table 13.12 Fuzzy and crisp S, R and Q values of the alternatives in technical aspect

Technical SE WE HE LFG-EeSj (1.438, 2.722,
4.173)

(1.886, 3.448,
5.116)

(0.778, 1.982,
3.45)

(0.778, 1.982,
3.45)

Sj 2.764 3.475 3.146 2.048eRj (0.698, 0.799,
0.975)

(0.599, 0.71,
0.853)

(0.669, 0.765,
0.925)

(0.732, 0.832,
0.933)

Rj 0.818 0.718 0.781 0.832eQj
(−0.441, 0.2,
0.881)

(−0.503, 0.186,
0.854)

(−0.466, 0.21,
0.904)

(−0.484,
0.146,0.739)

Qj 0.21 0.181 0.215 0.137

Rank 3 2 4 1

Table 13.13 Fuzzy and crisp S, R and Q values of the alternatives in economical aspect

Economical SE WE HE LFG-EeSj (1.854, 2.21,
2.569)

(3.209, 3.774,
4.341)

(3.51, 4.095,
4.683)

(0.787, 0.91,
1.036)

Sj 2.211 3.775 4.096 0.911eRj (0.723, 0.836,
0.95)

(0.698, 0.799,
0.9)

(0.747, 0.848,
0.95)

(0.473, 0.542,
0.612)

Rj 0.836 0.799 0.848 0.542eQj
(0.219, 0.455,
0.691)

(0.395, 0.65,
0.905)

(0.483, 0.742,
1)

(−0.162, 0,
0.162)

Qj 0.455 0.65 0.742 0

Rank 2 3 4 1

Table 13.14 Fuzzy and crisp S, R and Q values of the alternatives in environmental aspect

Environmental SE WE HE LFG-EeSj (0.115, 0.913,
2.898)

(0.412, 1.502,
2.923)

(1.284, 2.54,
4.267)

(0.144, 1.245,
2.61)

Sj 1.152 1.584 2.658 1.311eRj (0.748, 0.849,
0.95)

(0.748, 0.849,
0.95)

(0.748, 0.849,
0.95)

(0.109, 0.362,
0.704)

Rj 0.849 0.849 0.849 0.384eQj
(−0.377, 0.243,
0.829)

(−0.307, 0.321,
0.822)

(−0.191,
0.458, 1)

(−0.661, 0.044,
0.658)

Qj 0.235 0.289 0.431 0.021

Rank 2 3 4 1
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best alternative. However it falls in the third order in technical category, wind
energy is placed in the second order. A decision maker who puts great emphasize
on technical performance may select wind energy type when compared to solar
energy (Tables 13.12, 13.13 and 13.14).

13.4.2 Application of Fuzzy TODIM Technique

13.4.2.1 Determination of Criteria Weight and Performance Values
of the Alternatives

In this section we will apply a different technic TODIM to the same case. Criteria
weighting and performance rating are mutual phases in both techniques. Therefore
we can use the criteria weights and performance rating values calculated in VIKOR
technic application.

Our data is in different units thus we need to normalize performance values by
using Eqs. 13.19 and 13.20. An example of normalization in terms of benefit and
cost criterion is shown:

For benefit criterion:

er11 ¼ 0:15
0:95

;
0:187
0:95

;
0:22
0:95

	 

¼ 0:158; 0:196; 0:232ð Þ

For cost criterion:

er15 ¼ 11:538
11:562

;
11:538
11:55

;
11:538
11:538

	 

¼ 0:998; 0:99; 1ð Þ

After this standardization process we constructed normalized performance
matrix. It is shown in Table 13.15.

13.4.2.2 Defuzzification of Fuzzy Criteria Weights

Fuzzy criteria weights given in Table 13.5 were defuzzified by using Eqs. (13.21)
and (13.22) and the obtained crisp weights were normalized by using Eq. (13.24)
The results are presented in Table 13.16. In the following, examples of the cal-
culations are given.
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V eC1

� �
¼ 0:875 0:5

0:975� 0:175
0:975� 0:175þ 0:975� 0:875

� ��
þ 1� 0:5ð Þ 1� 0:975� 0:775

0:975� 0:175þ 0:875� 0:775

� �
¼ 0:729

X22
j¼1

V eCj

� �
¼ 0:729þ 0:618þ � � � þ 0:197 ¼ 11:147

w1 ¼ 0:729
11:147

¼ 0:065

13.4.2.3 Calculation of Gains and Losses

After the standardization (normalization) process of the performance ratings, all
criteria turned into benefit criteria features. For example before normalization, the
biggest value is the best value for benefit criteria and the smallest value is the best
value for cost criteria. After normalization, all criteria’s best value is the biggest
value of the performance ratings. Therefore gain and loss matrices were calculated

Table 13.16 Defuzzificated,
normalized and relative
weights of the criteria

Vj Wj Wjr

C1 0.729 0.065 1

C2 0.618 0.055 0.847

C3 0.642 0.058 0.88

C4 0.6 0.054 0.823

C5 0.069 0.006 0.094

C6 0.26 0.023 0.357

C7 0.26 0.023 0.357

C8 0.464 0.042 0.636

C9 0.656 0.059 0.899

C10 0.6 0.054 0.823

C11 0.66 0.059 0.905

C12 0.642 0.058 0.88

C13 0.577 0.052 0.792

C14 0.685 0.061 0.939

C15 0.577 0.052 0.792

C16 0.114 0.01 0.157

C17 0.577 0.052 0.792

C18 0.685 0.061 0.939

C19 0.685 0.061 0.939

C20 0.521 0.047 0.714

C21 0.331 0.03 0.455

C22 0.197 0.018 0.27
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according to the benefit criteria calculation method 26–27. An example of calcu-
lation are presented as follows:

ex21 ¼ 0:2631; 0:3052; 0:4211ð Þ[ex12 ¼ 0:1579; 0:1964; 0:2316ð Þ

d ex21;ex12ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

0:2632� 0:1579ð Þ2 þ 0:3052� 0:1964ð Þ2 þ 0:4211� 0:2316ð Þ2
h ir

¼ 0:1400

G1
21 ¼ 0:1400; L121 ¼ 0 and L112 ¼ �0:1400

G1 ¼

0 0 0 0

0:1400 0 0 0

0:2210 0:0814 0 0

0:7402 0:6058 0:5280 0

26664
37775

L1 ¼

0 �0:1400 �0:2210 �0:7402

0 0 �0:0814 �0:6058

0 0 0 �0:5280

0 0 0 0

26664
37775

As it can be noticed, the loss matrix is transpose of the gain matrix with minus
sign. These calculations were iterated for all the 22 criteria and at the end we have
44 matrices, half of them belong to gain matrix and the other half belong to loss
matrix.

13.4.2.4 Calculation of Criteria’s Relative Weights wjr

wjr values were calculated using Eq. 13.30. The reference criterion is C1 with the
highest importance weight. The results presented in Table 13.16 in the third col-
umn. An example is as follows:

w1r ¼ 0:065
0:065

¼ 1

13.4.2.5 Construction of Dominance Degree Matrix

In this study h values are specified as 1, 2.5, 3 and 4. An example of calculations
regarding to first criterion and for h equals 1 is presented in the following:
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/1 þð Þ
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0ð Þð1Þ= 15:287ð Þ

p
¼ 0

/1 �ð Þ
12 ¼ � 1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:14ð Þ 15:287ð Þ= 1ð Þ

p
¼ �1:4630

/1
12 ¼ �1:4630

/1 ¼

0 �1:4630 �1:8379 �3:3638

0:0957 0 �1:1152 �3:0431

0:1202 0:0729 0 �2:8409

0:2200 0:1991 0:1858 0

26664
37775

Same calculations repeated separately for rest of the criteria when h equals 1,
2.5, 3 and 4.

13.4.2.6 Construction of Overall Dominance Degree Matrix

Overall dominance degree matrices were constructed for each h value as in the
following formula.

d12 ¼ /1
12 þ/2

12 þ � � � þ/22
12 ¼ �1:463þ 0þ � � � þ 0:038 ¼ �6:1786

for h ¼ 1:

D1 ¼
0 �1:6934 �6:0760 �12:8445

�15:5272 0 �6:4835 �20:9836
�18:1072 �10:7689 0 �23:4762
�10:7193 �5:4432 �4:8552 0

2664
3775

13.4.2.7 Calculation of Overall Values and Ranking the Alternatives

In the following the calculations were made for h ¼ 1. Results for the other h values
were givenunder the sensitivity analysis inSect. 4.2.8. Fromfirst rowof theD1 matrix:

d11 ¼ 0; d12 ¼ �6:1786; d13 ¼ �17:5832 and d14 ¼ �33:8932X4
k¼1

d1k ¼ 0� 6:1786� 17:5832� 33:8932 ¼ �57:6549

X4
k¼1

d2k ¼ �110:9697

X4
k¼1

d3k ¼ �134:4190

X4
k¼1

d4k ¼ �60:8709
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As it is stated in Eq. 13.34:

n SEð Þ ¼ �57:6549ð Þ � �134:4190ð Þ½ = �57:6549ð Þ � �134:4190ð Þ½  ¼ 1

n WEð Þ ¼ 0:3055, n HEð Þ ¼ 0 and n LFG� Eð Þ ¼ 0:9581
According to the results rank of the alternatives for h ¼ 1 were obtained as:

SE[LFG - E[WE[HE.

13.4.2.8 Sensitivity Analysis for TODIM

We conducted a sensitivity analysis for TODIM to see the effect of different situ-
ations on the results. In this regard, in order to analyze the influence of the
parameter h, we tried different h values in the application. Table 13.17 shows
overall value of the alternatives for each h value and ranking lists are in
Table 13.18. The order of the alternatives changed at h ¼ 3 and LFG-E and SE
interchanged. This order stayed the same when h is equal to 4. The suggested h
interval is between 2 and 2.5 (Krohling and Souza 2012). In this case, energy
investors may base on the ranking list of h ¼ 2:5. On the other hand, an investor
who concerns and wants to prevent risk may prefer the order for h ¼ 3 or 4:

The emergent shape in Fig. 13.3 has the same characteristic feature with
S-shaped graph of prospect theory. In Fig. 13.3, for the gain part, x-axis represents
real gain calculated by Eq. 13.26 and y-axis represents dominance degree for gain
in Eq. 13.31. In a similar manner, for the loss part x-axis represents real loss
calculated by Eq. 13.27 and y-axis represents dominance degree for lost in
Eq. 13.32. Consequently in the graph of TODIM method x-axis is for the real gain
and loss values, and y-axis reflects the effects of those gains and losses. In Fig. 13.3,
we can observe that the effect of loss is more than the loss itself. This difference is
decreasing as h value increase and that is why bigger value of h gives secure results
in terms of risk.

In order to better visualize gain part of the Fig. 13.3, we drew it separately as
Fig. 13.4 and concavity of the graph is apparent. Here the difference of gain and its
effect is very close to each other. This situation results from prospect theory’s
characteristic features. For more explanation see the introduction section.

Table 13.17 Overall value
of the alternatives in different
h values

h = 1 h = 2.5 h = 3 h = 4

n SEð Þ 1 1 0.3068 0.9856

n WEð Þ 0.3055 0.2948 0.0255 0.2809

n HEð Þ 0 0 0 0

n LFG� Eð Þ 0.9581 0.9873 1 1
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Table 13.18 Rank of the
alternatives by h values

h values Rank of the alternatives

h = 1 SE[LFG� E[WE[HE

h = 2.5 SE[LFG� E[WE[HE

h = 3 LFG� E[ SE[WE[HE

h = 4 LFG� E[ SE[WE[HE

Fig. 13.3 Value function of TODIM method application with different h values

Fig. 13.4 Gain function of TODIM application
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13.5 Conclusion

In this chapter we have presented a solution regarding strategic energy source
selection of a firm in energy sector. Sustainable and renewable energy alternatives
have been evaluated by fuzzy VIKOR and fuzzy TODIM methods separately.
VIKOR and TODIM are both multi-criteria decision-making techniques. Their
basic principles are to rank the alternatives through specified criteria. Uncertainty
analysis is a fundamental stage in energy planning process. We could integrate
fuzzy sets into both VIKOR and TODIM successfully. According to results of the
case, LFG is the best sustainable energy source option among the alternatives by
fuzzy VIKOR application. The main reason for obtaining this result is that LFG
power plants have performed very well in the technical, economical and environ-
mental categories. For the criteria having high importance weight such as technical
efficiency and GHG emissions avoided, LFG has best performance rating most of
the time. Solar energy power plants are the second best alternative but the weakness
of solar energy is in its technical efficiency. Wind energy performs well in terms of
technical and environmental aspects however it is not very attractive economically.
The worst alternative is hydraulic. Hydraulic power plants are not very
environment-friendly energy production systems comparing to other renewable
energy sources. Although they are technically and economically effective, hydraulic
energy falls behind the other alternatives in this study.

In the evaluation with TODIM technique, the best alternative is solar energy
under the normal conditions (h equals 1 and 2.5). It can be said that VIKOR and
TODIM results are consistent with each other. LFG-E is the best alternative but
Q values of the alternatives are close to each other, thus it doesn’t have an
acceptable advantage on the other alternatives. TODIM method results in LFG-E as
the best energy alternative in the case of risk aversion when h equals 3 and 4. In
other words as the concern of risk increase, LFG becomes to be best alternative.
According to TODIM method, an investor reluctant to deal with risk may prefer
LFG-E and it satisfies the decision makers. However, to choose solar energy to
invest can’t be defined as a wrong decision, it also satisfies and is capable of
meeting expectations. Consequently, we suggest energy investors LFG-E to invest,
which reveals as the best energy alternative by VIKOR and TODIM technic and a
secure option in the case of risk aversion.

In this evaluation system, first three most important criteria are technical effi-
ciency, impact on the ecosystem, GHG emissions avoided and government support
rate. As a consequence technical, economical and environmental aspects of
renewable energies are almost equally important and cannot be thought separately.
Analyzing a power plant considering only one or two aspects of renewable energies
may mislead decision makers and the results may not be reliable. We conducted this
study regarding all the important criteria within technical, economical and envi-
ronmental scope. This makes our results more quality and improves the reliability.

Waste creates both economical and environmental problems in the cities and
LFG power plants are a smart and efficient way of eliminating and utilizing of waste
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while producing energy. Therefore municipalities need a comprehensive waste
management policy to use LFG opportunity and so to create a sustainable envi-
ronment in the cities. LFG power plants are followed by solar, wind and hydraulic
alternatives.

For the further studies, a research can be conducted locally in a specific region to
find out best performing alternatives regarding that area to increase utilization of
renewable energy. Different sophisticated economic applications like real options
can be applied in lieu of net present value.

This is a comparative study of fuzzy VIKOR and fuzzy TODIM techniques.
TODIM technic provides us a pairwise comparison between the alternatives and by
this means we can check gains and losses of any two alternatives regarding any
criteria. TODIM method differs from VIKOR by this feature. On the other hand,
VIKOR is a distance based method and ranks the alternatives accordingly. Besides
ranking the alternatives, VIKOR yields a solution set and an alternative can be
preferred in that set. Finally, the main difference between the techniques is that
TODIM adds risk factor in the system and it enriches the scope of evaluation
process. In the literature, there are remarkable amount of VIKOR studies in dif-
ferent fields. VIKOR application papers in sustainable and renewable energy area
are nearly at 8% (Mardani et al. 2016). VIKOR technic part of this comprehensive
study enriches the literature. On the other hand, TODIM and fuzzy TODIM rela-
tively new techniques; there are not sufficient numbers of studies yet. Especially in
terms of fuzzy TODIM, there is very limited number of papers and this study is one
of the first applications of evaluation of sustainable and renewable energy systems
by fuzzy TODIM. Therefore this study may be a reference for next studies in the
energy field.
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Chapter 14
Designing Distributed Real-Time Systems
to Process Complex Control Workload
in the Energy Industry

Eduardo Valentin, Rosiane de Freitas and Raimundo Barreto

Abstract The energy industry demands computing system technologies with
advanced state-of-the-art techniques to achieve reliability and safety for monitoring
and properly dealing with several complex constraints. These computing systems
also require delivering correct data at the right time imposing hard real-time con-
straints, because there are lots of situations where missing critical data may be
catastrophic. The challenges faced by computer engineers in the energy industry
also include designing distributed real-time systems to process such complex
control workload. Besides, the computing system may also demand high energy
consumption on its own. In this chapter, we demonstrate how to construct a
mathematical formulation applicable for these computing systems and how to solve
it to distribute the hard real-time workload of the process control systems consid-
ering technological constraints and optimizing for low power consumption of such
computing systems. We present two computational techniques of resolution: an
exact algorithm based on Branch-and-Cut and a meta-heuristic based on Genetic
Algorithm. While the exact algorithm combines a branch-and-cut strategy with
response time based schedulability analysis, the genetic algorithm still considers the
response time schedulability analysis but follows an evolutionary solving strategy.
Both computational techniques deliver solutions for heterogeneous computing
systems with a control application, considering precedence, preemption, mutual
exclusion, timing, temperature, and capacity constraints. In computational experi-
ments, we present the usage of such techniques in a case study based on a control
system for a power plant monitoring application.
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14.1 Introduction

Engineers working in the energy field have an increasing need for state-of-the-art
computer system technology. Challenges involve reliability and safety in refinery
and power distribution operations. Delivering correct data at the right time imposes
hard real-time constraints in these systems, because in many situations missing
critical data may be catastrophic. Nevertheless, the computing systems applied in
the energy sector may also demand high energy consumption on its own due to the
necessity to continuously deliver reliable and trustworthy results.

In large data centers, for example, power consumption is a major concern due to
the increasing expense in room cooling systems and mainly due to the expensive
power bills. For instance, according to Eric Schmidt, CEO of Google, “What
matters most to the computer designers at Google is not speed but, power, low
power, because data centers can consume as much electricity as a city” (Markoff
and Lohr 2002). Also, according to the Department of Energy (DoE) of the United
States, power is one of the major challenges to overcome to achieve the needed
computing excellence required to advance in many applications of the energy
industry (Department of Energy (DoE) 2014).

In this chapter, we demonstrate how to construct a mathematical formulation
applicable for these computing systems and how to solve it to distribute the hard
real-time workload of the process control systems considering technological con-
straints and optimizing for low power consumption of such computing systems.

The organization of this chapter is as follows. We present how a typical com-
puting system architecture and how a hard real-time task model for a energy sector
monitoring application look like in Sects. 14.2 and 14.3, respectively. We show
how a mathematical formulation can be written associating combinatorial opti-
mization with schedulability analysis in Sect. 14.4. We also explain two strategies
to solve such formulation, evolutionary based and branch-and-cut based, in
Sects. 14.5 and 14.6. We also exemplify how such advanced techniques can be
applied in a case study for a monitoring control application of the energy sector in
Sect. 14.7. We close this chapter with final comments in Sect. 14.8.

14.2 Typical Multi-processor Architecture

Practitioners execute applications with hard deadline restrictions on multiple
heterogeneous processors due to the expected energy consumption reduction.
Nevertheless, developing software with timing constraints for multiple heteroge-
neous processors is a complex task. Scheduling becomes especially hard to deal
with, particularly under low power constraints.

Adopting multiple processing elements to enhance the computing capability and
to reduce the power consumption is a common design strategy, especially for
embedded systems. Therefore, the heterogeneous multicore platforms have become
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the de facto solution to cope with the rapid increase of system complexity, relia-
bility, and energy consumption (He and Mueller 2012).

For this reason, a simple way to create a processing model for the energy
industry applications is to use as reference a Multi-Processor System-On-Chip
(MPSoC) architecture. We can state then that the system is composed by a set, H, of
m processors, H ¼ H1;H2; . . .;Hm

� �
. Each core may operate on l different per-

formance states, 1 � k � l. The frequency of performance state k on the pro-
cessor i is Fik and the power consumption is Pik. The set of frequencies of one core
is not necessarily the same of other cores. Also, a task may have different code size
and execution time for different processors, due to instruction set and performance
state differences. The idle power of processor i is Pidle;i.

14.3 Hard Real-Time Workload Model

A typical hard real-time workload can be represented by a task model of periodic
tasks. A task model M is a set composed by n task sj. A task sj 2M, with 1 �
j � n, has the properties: worst-case execution cycle WCECj; worst-case execu-

tion time Cj fð Þ, which is a function of frequency f, thus Cj fð Þ ¼ WCECj

f ; period of

execution Tj; deadline Dj. A task sj also has the following properties, specific to
fixed priority policies: fixed priority pj; set of high priority tasks hpj representing the
tasks sj with a priority higher than the priority of sj. The response time Rj is
dependent not only on task set characteristics, but also on the target platform, and
on the task allocation and frequency distribution that have been selected for the
workload. A task model can be locally processed in a single processor using a fixed
priority based on-line scheduler, such as Deadline Monotonic.

DeadlineMonotonic (DM) is a fixed priority based on-line scheduler in which task
priorities decrease with larger deadlines. Audsley et al. (1993) extend the schedula-
bility test proposed by Lehoczky et al. (1989) for DM, considering the release jitter Jj
and the local blocking delay Bj due to semaphore usage. The delay Bj caused by low
priority tasks accessing shared resources in the same processors using Priority Ceiling

Protocol can be estimated as Bj ¼ maxjk Djkj pj\pi
� �

^ C Skð Þ� pið Þ
n o

, where C

(Sk) is the ceiling priority of the shared resource Sk. The schedulability test proposed
by Audsley is Rj �Dj; 81� j� n, where Rj ¼ Ij þ Jj.

The task influence Ij in multiple processors may be calculated as

Inþ 1
j ¼ Cj þBr

j þBj þ
P

p2 hp jð Þ
Inj þ Jp þB

r
p

Tp
� Cp. Precedence constraints can be

represented by including the maximum response time of the predecessors tasks in
the Jj component of the task sj. Also, when precedence constraints occur across
different processors, this imposes an additional messaging cost that may be
incorporated in the emitting task to perform inter-processor communication. When
the Multiprocessor Priority Ceiling Protocol is in place to avoid priority inversion
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issues, the remote blocking delay Br
j is an upper bound for the blocking time

suffered by task sj from other tasks in a different processor. Response time tests are
computationally expensive but provide exact conditions, i.e., sufficient and neces-
sary. The test uses task’s WCEC, periods, and the concept of critical instant phasing
(Lehoczky et al. 1989).

14.4 Mathematical Formulation

A classical mathematical model that resembles modern heterogeneous multicore
platforms is the Multilevel Generalized Assignment Problem—MGAP (Glover
et al. 1979), though it was originally conceived in the manufacturing context.
The MGAP consists of minimizing the assignment cost of a set of jobs to machines,
each having associated therewith a capacity constraint. Each machine can perform a
job with different performance states that entail different costs and amount of
resources required. The MGAP is originally in the context of large manufacturing
systems as a more general variant of the well-known Generalized Assignment
Problem (GAP). In this paper, we correlate MGAP model with the problem of
assigning frequencies and distributing hard real-time tasks on heterogeneous pro-
cessors, minimizing energy consumption.

Considering the schedulability test proposed by Audsley, we propose the MGAP
formulation using tasks response times as seen in Eqs. 14.1a–14.1f, based on the
formulation of Valentin et al. (2016b).

MinimizeW xð Þ ð14:1aÞ

s:t: :
Xm
i¼1

X1
k¼1

xijk ¼ 1; j 2 1; . . .; nf g ð14:1bÞ

Xn
j¼1

X1
k¼1

WCECij

FikTj
xijk

� �
� 1; i 2 1; . . .;mf g ð14:1cÞ

Wi � jmax
i � jamb

q
; i 2 1; . . .;mf g ð14:1dÞ

Rj �Dj; j2 1; . . .; nf g ð14:1eÞ

xijk 2 0; 1f g; 1� i�m; 1� j� n; 1� k� l ð14:1fÞ

where the tri-indexed decision variable xijk represents the distribution and assign-
ment, i.e. when xijk = 1 the task sj executes in the processor i at performance state
k, or frequency Fik, when xijk = 0, the task sj is distributed somewhere else.
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A distribution is a partitioned approach in which each processor i executes a local
scheduler responsible for a partition of the real-time task workload and migration is
not allowed (see the set of constraints 14.1b). The set of constraints 14.1c represent
the maximum system utilization capacity of each processor i. The set of constraints
14.1d represent the temperature limits by creating a linear relation, where jamb is
the ambient temperature, jmax

i is the maximum junction temperature of each pro-
cessor i, q thermal resistance constant, and wi is power consumption of each
processor i. This formulation applies each task deadline as a constraint against their
response time in the linear programming (see the set of constraints 14.1e). The
matrix Rj is the response time of tasks sj for a given allocation configuration.
The response time of each task varies depending on the workload distribution and
the frequency assignment of the configuration because a change in the value of xijk
may result in a different computation time (Ci). Equation 14.1 is applicable for DM
scheduling policy (Dj � Tj).

We are using an objective function W xð Þ that minimizes energy consumption,
accounting dynamic and idle energy, over the time window represented by the
hyperperiod of the real-time tasks, i.e., the Least Common Multiple (LCM) of tasks
periods. We extend the objective functions presented by Valentin et al. (2016b) by
improving the idle energy estimation. Equations 14.2a–14.2c has the objective
function.

Minimize W xð Þ ¼
Xm
i¼1

Edyn;i xð ÞþEidle;i xð Þ� 	 ð14:2aÞ

Edyn;i xð Þ ¼
Xn
j¼1

X1
k¼1

LCM
Tj

� �
ClWCECijV2

dd;ikxijk

� �
ð14:2bÞ

Eidle;i xð Þ ¼ Pidle;i LCM 1�
Xn
j¼1

X1
k¼1

WCECi;j

FikTj
xijk

� � !
ð14:2cÞ

where Edyn;i is the energy consumption when processor i is active, Eidle;i is the

energy consumption when processor i is idle, WCECij

FikTj
represents the task sj uti-

lization, uijk, while executing in processor i at frequency Fik of performance state k,
is the circuit capacitance constant, and Vdd;ik is the voltage level to achieve fre-
quency Fik.

The term LCM
Tj

� �
ClWCECijV2

dd;ikxijk represents the dynamic energy associated

with the instances of execution of task j within the LCM. Each processor idle
energy, within the LCM time window, is computed for its estimated idle time in the

term Pidle;iLCM 1�Pn
j¼1

P1
k¼1

WCECi;j

FikTj
xijk

� �� �
.

The objective function represented in Eqs. 14.2a–14.2c may still be seen as a
MGAP formulation. Note that, without loss of generality, when we take the term
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Pidle;iLCM out of the sum, leaving the term mPidle;iLCM to be added to the final
objective function value, we have

cijk ¼ LCM
Tj

� �
ClWCECijV2

dd;ik � Pidle;iLCM
WCECi;j

FikTj

� �h i
.

14.5 Computational Techniques of Resolution

In this section, we explain the algorithmic strategy developed for the mathematical
formulation of Sect. 14.4. In Sect. 14.5.1, we explain an evolutionary algorithm
which produces an initial solution that can be used by the exact algorithm for
finding optimal solutions, described in Sect. 14.5.2.

14.5.1 Approximation by Means of Evolutionary Algorithm
(EA)

We wrote an evolutionary algorithm (EA), based on genetic algorithm, for each
mathematical model (Valentin 2009). We follow a similar approach as existing in
the literature for other formulations on this problem (Goossens et al. 2008). The
algorithm’s input is the processing model H and the desired task model M (see
Sect. 14.3). In our EA implementation, a solution is a chromosome that is a
sequence of 0’s and 1’s and each gene represents one of the elements of the
tri-indexed decision variable of the mathematical model. The algorithm can be
simplified into two steps: (i) Initialization with random-generated individuals and
(ii) Generations composed by individuals selected in tournaments and by the
evolutionary operators of elitism and crossover. Algorithm 1 illustrates the overall
process of our EA strategy and we describe the pieces of the EA as follows.

In the Initialization, we random-generate individuals. Random-generating indi-
viduals do not guarantee their feasibility, i.e. the generated individual may be
infeasible. The process of validating or transforming individuals into feasible
solution is onerous. Even then, we maintain all generations composed by feasible
individuals only. We random-generate a large number of individuals, 5000, to start
with a high diversity. If none of them is a feasible solution, we return the empty
set £. If we find less than 50 feasible individuals, then we return the one with
highest fitness. But when we find 50 feasible individuals, we repeat the following
steps for a maximum of 100 generations, or 10 generations with same best fitness,
and return the individual with best fitness. We perform the Elitism operator by
always including the individual with best fitness in the next generation. We execute
Selection by means of a tournament in the current population. Only 5 individuals,
randomly selected, participate in the tournament. The winner of the tournament is
the individual with best fitness among those participating of it. We also insert in the
next generation the result of a Crossover between winners of two tournaments. The
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crossover operation between individuals I1 and I2 is done by means of selecting a
pivot gene p. The genes lower than p are copied from I1, the remaining genes are
copied from I2. When resulting individual is not feasible, we return I1, if
fitness I1ð Þ[ fitness I2ð Þ, or I2 otherwise. We define the Fitness function to be:
1=E individualð Þ, where the function E individualð Þ is the estimated energy con-
sumption for the individual in consideration. The function E is computed using the
same energy estimation as in the objective functions of the integer programming
mathematical formulations.

14.5.2 Finding Optimal Solutions

We use a general branch-and-cut method combined with schedulability tests to
conduct the process of finding optimal solutions. A branch-and-cut is a
branch-and-bound with cut generation strategies. The algorithm’s input is the
processing model H, The desired task model M, and a possible upper bound ub,
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with objective function value and the solution structure found by the EA. The
algorithm outputs the optimal distribution of hard real-time tasks among the pro-
cessors that consumes less power among the possible assignments, informing as
well in which frequency each tasks may be executed, and the total system estimated
energy. The general solving strategy is listed in Algorithm 2.

The algorithm starts by denoting the set L of active problem nodes to contain
only the initial Integer Linear Problem. When the EA returns a feasible solution, the
upper bound v* and the optimal solution x* are set to match the output of the EA,
otherwise they are set to þ1 and to NULL, respectively. The algorithm iteratively
evaluates each element of the set L. Each problem node is initially tested against the
schedulability test that fits for the problem scheduling policy. In the case the
schedulability test accepts the node, then a regular branch-and-cut is followed. The
linear relaxation of the node is then computed and solved. When the linear relax-
ation is feasible, a procedure of generation of cutting planes is performed and
followed by a fathoming and pruning process. The problem node is then partitioned
and new restricted problem nodes are derived and incorporated into L. The iterative
process repeats until the set L is empty.

14.6 Analysis on EA Parameters

We have tuned the EA algorithm based on an analysis of five of its parameters:
number of generations, size of population, number of individuals in the tournament,
the use of elitism, and percentage of mutation. We considered the CPU time needed
to solve an instance with 30 tasks and 50% of estimated target CPU utilization. In
Fig. 14.1 we present some graphics in which the left column shows the average
CPU time and in the right column we present the average solution energy con-
sumption, for each analysed EA parameter. We plot only observations that could be
collected within an execution of less than one minute of CPU time.

As we can observe in Fig. 14.1, as expected, the execution time of the EA
increases with the number of generations used, but we have noticed almost no
change in the energy consumption. Similar pattern is seen for the number of
individuals participating in the tournaments. We see an improvement in the energy
consumption when the size of the population is higher than 20, but increasing the
size of the population also increases the EA execution time. We have decided to set
the parameters population and generation to 50 and the parameter tournament to 5,
to avoid increasing the EA execution time, but still finding solutions with lower
energy consumption. We have noticed that when we enable mutation, specially
with a rate higher than 7% the execution time of the EA increases considerably,
reaching more than 1 min in this analysis, and therefore, we decided to disable
mutation. We have not noticed any major difference in the convergence time when
enabling or disabling elitism for this particular analysis, but we decided to keep it
enabled to avoid loosing promising solutions found across generations.
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Fig. 14.1 Analysis of the influence of EA parameters on the EA execution time and on the quality
of the objective function (energy). Parameters: number of generations (generation), size of
population (population), number of individuals in the tournament (tournament), the use of elitism
(elitism), and percentage of mutation (mutation)
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14.7 Case Study: Power Plant Monitoring Control

In this section, we exemplify how to optimally distribute the hard real-time
workload of a power plant monitoring control in a target platform with multiple
heterogeneous cores. Power plants depend typically on rotating machines such as
steam turbines or generators and should be operated with maximum reliability,
capacity, efficiency and minimum operating and maintenance costs. A shutdown of
such machinery may be very costly and ideally avoided. Therefore, investing on
identifying and potentially eliminating reliability issues through effective condition
monitoring and predictive maintenance is key to modern power plant monitoring
systems.

Table 14.1 summarizes the task model of the power plant monitoring example.
We are considering precedence, preemption, mutual exclusion, temperature,
capacity, and timing constraint while distributing the computing workload. We
illustrate the precedence constraints (thin arrows) and mutual exclusion constraints
(dark thick edges) of this task model in the precedence graph of Fig. 14.2.

Table 14.1 An example of monitoring control hard real-time task model

si pi Ti (ms) Di (ms) WCECi (�103)

1 2 3 4

1 1 200 100 3000 3000 3000 3000

13 2 200 100 15,000 15,000 15,000 15,000

14 3 200 100 10,000 10,000 10,000 10,000

15 4 200 100 1000 1000 1000 1000

7 5 200 100 2000 2000 2000 2000

3 6 200 40 3000 3000 3000 3000

16 7 200 200 5000 5000 5000 5000

17 8 200 100 7000 7000 7000 7000

2 9 200 200 3000 3000 3000 3000

11 10 200 200 2000 2000 2000 2000

18 11 200 40 6000 6000 6000 6000

10 12 200 40 2000 2000 2000 2000

4 13 200 100 3000 3000 3000 3000

5 14 200 100 3000 3000 3000 3000

20 15 200 100 2000 2000 2000 2000

22 16 200 100 7000 7000 7000 7000

21 17 200 100 1000 1000 1000 1000

9 18 200 100 2000 2000 2000 2000

8 19 200 100 2000 2000 2000 2000

6 20 200 200 3000 3000 3000 3000

19 21 200 200 10,000 10,000 10,000 10,000

12 22 200 200 2000 2000 2000 2000

326 E. Valentin et al.



The application example we consider, the Power Plant Monitoring Control, is
composed of four logical activities that communicate among themselves: the Main
Control activity, the Sensor Hub activity, the Actuator Center activity, and the
Signal activity. The Main Control activity is responsible for managing the overall
control system and communicating with the other activities. The Sensor Hub
activity monitors environment, the Actuator Center activity is in charge of per-
forming actions on the event of detection of failure or reliability issues, and the
Signal activity reports and records any significant event detected in the system.

Fig. 14.2 Precedence graph
of power plant monitoring
control. Arrows represent a
precedence constraint, for
example, s1 precedes s13.
Dark thick edges represent
mutual exclusion constraint,
for example, s16 shares a
resource with s18
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The Main Control activity always starts by requesting ðs1Þ data from the Sensor
Hub. Current environment condition data is then sent back to the Main Control
ðs17Þ. The Main Control computes trend based on current and past environment
data extrapolating and forecasting any equipment failure or reliability issues and
communicates with Actuator Center ðs13Þ to implement any failure mitigation ðs20Þ
or equipment adjustment ðs22Þ needed. Main Control also sends ðs14Þ regular
reports of the events that happen in the control system to the Signal activity, which
is responsible for activating alarms and warnings.

As an example platform, we are considering four processors: two ARM A57’s
and two ARM A53’s. The ARM A57’s may operate on seven different frequencies
from 500 MHz to 1.9 GHz, and the A53’s may operate on seven different fre-
quencies from 400 MHz to 1.2 GHz. The idle power consumption is 50 mW. The

circuit capacitance constant C1 is 1e� 9W V2

Hz. The thermal resistance q is 0:11 C
W.

In this platform, we are considering the DVFS switching latency as an operation
executed within the context switch of tasks with a cost of 30 ms, included in the
release jitter Jj of each task. More robust response time analysis considering the
switching overhead in clusters and architecture influence (Valentin et al. 2015) may
be also combined with the branch-and-cut algorithm when necessary. We list the
platform characteristics in Table 14.2.

Table 14.2 Architecture characteristics of a typical multi-core heterogeneous platform

CPU Cl WV2=Hz
� 	

jmax
i Cð Þ q C=Wð Þ Voltages (V) Frequencies (GHz)

0 1e-09 125 0.11 0.94 1.9

0.86 1.8

0.86 1.7

0.78 1.6

0.77 1.5

0.77 1.0

0.77 0.5

1 1e-09 125 0.11 0.94 1.9

0.86 1.8

0.86 1.7

0.78 1.6

0.77 1.5

0.77 1.0

0.77 0.5

2 1e-09 125 0.11 0.82 1.2

0.82 1.1

0.7825 1.0

0.7575 0.9

0.7075 0.8

0.6825 0.7

0.6575 0.4
(continued)
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Even though temperature is a constraint left for mechanical engineering, it can
play a role while distributing the system workload. The ambient temperature in such
machineries will typically be higher than the regular room temperature (25 °C)
because the system is exposed to heat flowing from the mechanical engines,
reaching as high as 85 °C. The common silicon junction temperature is 125 °C.

After executing the branch-and-cut optimization algorithm considering the task
model of Table 14.1 and the target computing model of Table 14.2, we obtain the
optimal distribution listed in Table 14.3. The precedence graph with the allocation
is also illustrated in Fig. 14.3. For this case study, the optimal energy consumption
is 0.1049 J for the duration of the LCM (200 ms) of tasks periods. We initialized
the algorithm with the solution structure and an upper bound for the objective
function extracted from the configuration found by the evolutionary algorithm.
Utilizing this initial upper bound, the full optimization process took less than 1.5 h
to finish and the final optimal solution differs from the logical initial distribution.
Even though this case study has a set of 22 tasks, this algorithm has a reasonable
performance on task models with up to 50 tasks, finishing in less than 30 min with a
feasible solution for independent tasks (Valentin et al. 2016a, 2017).

As seen in Table 14.3, the schedulability analysis shows that the computed
response time of each task is less than their respective deadline, meeting all timing,
precedence, and mutual exclusion constraints. It is worth noting that Table 14.3
includes the inter-processor communication cost of tasks s4; s5; s6; s13; s14; s17; s18;
and s19. The optimization process converged to an optimal solution in which tasks
sharing resources are allocated in the same processor, avoiding remote blocking
delays. The optimal configuration for this case study uses only three of the four
available processors. The total utilization of the active processors (6.05, 16.98, and
25.00%) is well within their respective theoretical values (100%), safely respecting
the capacity constraint. This configuration with low utilization is selected by the
algorithm because it consumes the least energy, although it is common practice to
design real-time systems with high utilization. Also, the estimated temperature of
each ARM processors is less than 87 °C, in the thermal stabilization, giving enough
room in the temperature constraint.

We highlight, for example, that the logical distribution setting each application
activity to one processor is also feasible. This configuration uses all four processors

Table 14.2 (continued)

CPU Cl WV2=Hz
� 	

jmax
i Cð Þ q C=Wð Þ Voltages (V) Frequencies (GHz)

3 1e-09 125 0.11 0.82 1.2

0.82 1.1

0.7825 1.0

0.7575 0.9

0.7075 0.8

0.6825 0.7

0.6575 0.4
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Table 14.3 Optimal workload distribution result of the optimization process

Processor:
0

Utilization:
6.05%

Temperature:
86.85 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

15 1000 1.9 0.526 200 100 97.331

20 2000 1.9 1.053 200 100 48.684

22 7000 1.9 3.684 200 100 13.219

21 1000 1.9 0.526 200 100 49.797

7 2000 1.9 1.053 200 100 98.443

8 2000 1.9 1.053 200 100 52.458

9 2000 1.9 1.053 200 100 18.512

10 2000 1.9 1.053 200 40 28.513

11 2000 1.9 1.053 200 200 38.019

12 2000 1.9 1.053 200 200 108.909

Processor:
1

Utilization:
16.98%

Temperature:
86.73 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

1 3000 1.9 1.579 200 100 1.609

2 3000 1.9 1.579 200 200 3.188

3 3000 1.9 1.579 200 40 4.767

4 3001 1.9 1.579 200 100 6.346

5 3001 1.9 1.579 200 100 7.926

6 3001 1.9 1.579 200 200 9.505

16 5000 1.9 2.632 200 200 12.198

18 6001 1.9 3.158 200 40 18.483

17 7001 1.9 3.685 200 100 26.936

13 15,002 1.0 15.002 200 100 46.707

Processor:
2

Utilization:
25%

Temperature:
85.04 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

14 10,001 0.4 25.003 200 100 71.739

19 10,002 0.4 25.005 200 200 96.774

Processor:
3

Utilization:
0.0%

Temperature:
85.005 °C

si WCEC
(�103)

Frequency
(GHz)

Computation
(ms)

Ti

(ms)
Di

(ms)
Ri (ms)

330 E. Valentin et al.



at their respective maximum frequency. The timing, preemption, precedence, and
mutual exclusion constraints are met, given that each task response time is less than
their respective deadline. The capacity and temperature constraints are also met.
However, this configuration’s estimated total system energy is 0.1127 J for the
LCM (200 ms) of tasks periods, being at least 7.4% higher than the optimal.

An intuitive approach would be to target a low power configuration, having all
tasks allocated to a single ARM A53 CPU, executing at the lowest frequency of
400 MHz. That, however, is not a feasible configuration, given that the capacity
constraint is not met because the total CPU utilization would be 117.5% and several
tasks would not meet their deadlines in this situation.

Another intuitive approach would be to use again the logical distribution of one
activity to one processor, but locking the lowest available frequency, as the uti-
lization of each processor is not high. In this configuration, each processor uti-
lization is less than 32%, but the system is not schedulable because the response
time analysis indicates that tasks s7; s8; s10; s14; s15; s18; and s21 miss their respec-
tive deadlines basically due to the accumulated precedence.

Fig. 14.3 Precedence graph and task distribution of power plant monitoring control. White nodes
are allocated in one ARM A53. Light gray nodes are allocated in one ARM A57. Dark gray nodes
are allocated in the other ARM A57. The frequency that each task executes is represented close to
each respective node in the graph, for example, s19 executes at 400 MHz
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14.8 Final Remarks

In this paper, we exemplified how to optimally distribute the hard real-time
workload of a power plant monitoring control system. We applied robust methods
to avoid infeasible system configurations. Even though they can be computationally
expensive, their usage in design time is still justified, given that they help prevent
catastrophic scenarios.

We associated combinatorial optimization mathematical formulations and
response time based schedulability analysis to optimally distribute the hard
real-time workload of power plant monitoring system. We solved the combinatorial
problem by using a branch-and-cut algorithm that applies response time analysis
while walking through the problem nodes. We showed that all the considered
constraints of precedence, preemption, mutual exclusion, timing, temperature, and
capacity were met properly in our case study by using the response time analysis
with branch-and-cut combined method.

We are evaluating combining response time analysis in a Branch-Cut-Price
algorithm as future work. We also envision considering migration by performing
sensibility analysis to determine other feasible and optimal configurations to allow
for dynamic configuration switching.
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Chapter 15
Operational Planning in Energy Systems:
A Literature Review

Cengiz Kahraman, Sezi Çevik Onar, Başar Öztayşi and Ali Karaşan

Abstract Operational planning is the process of planning and organizing the
resources to achieve organization’s strategic plan. Planning the supply chain,
maintenance, marketing, and production operations are the main parts of opera-
tional planning. The operational planning for energy investments is crucial since
these investments are costly and the efficiency of the investments necessitates an
ample planning process. Also, the type of energy source changes the operational
planning need. Understanding these needs and the research gaps can enhance the
efficiency of the energy systems. The objective of this chapter is to reveal the
primary needs and research focuses on operation planning in energy systems.
A comprehensive literature review is conducted to identify the research focuses and
the gaps in operational planning in energy systems.

15.1 Introduction

Planning levels can be divided into three: operational level, tactical level, and
strategic level. Operational planning is the processes linking strategic objectives to
tactical objectives. Operational planning must answer where we are now, where we
want to be, how we can get there and, how we can measure our progress. Tactical
planning is the kind of planning emphasizing the present operations of various
departments of an organization within one year. Managers use tactical planning to
reveal what the departments of their organizations must do in order to be successful
within one year. Strategic planning tries to define the strategy or direction of an
organization and to make decisions on allocating its resources to pursue this
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strategy. Strategic planning deals with the whole business and tries to answer what
we do, for whom we do it, and how we can success it. Energy firms generally face
with operational risks arising from their systems, processes, and personnel.
Operational risks result from insufficient internal processes, personnel, and systems,
and/or from external events. They affect economic losses, injuries of personnel, and
environmental damages.

Operational planning in an energy firm includes sourcing operations, production
operations, after-sales service operations, marketing operations, and production
planning operations such as routing, scheduling, dispatching, monitoring, and
workforce planning. Each of these operations will be explained in Sect. 15.3 in
detail.

Theory and application of intelligence in energy systems have been reviewed by
many researchers in the literature. Zahraee et al. (2016) analyze artificial intelli-
gence optimum plans in the literature, making the contribution of penetrating
extensively the renewable energy aspects for improving the functioning of the
systems economically. Jha et al. (2017) summarize the state-of-the-art research
outcomes of renewable energy alternatives. They conclude that artificial intelli-
gence could assist in achieving the future goals of renewable energy. Statistical and
biologically inspired artificial intelligence methods have been implemented in
several studies to achieve their future aims. Daut et al. (2017) provide a review of
the building electrical energy consumption forecasting methods which include the
conventional and artificial intelligence methods. They review, recognize, and
analyse the performance of both methods for forecasting of electrical energy con-
sumption. Cuadra et al. (2016) reviewed computational intelligence techniques used
in wave energy applications, both in the resource estimation and in the design and
control of wave energy converters.

Intelligent techniques have been often applied to the solutions of operational
planning problems in energy sector in the literature. They have been successfully
used in a large variety of energy problems, including solar systems (thermal and
PV), wind energy systems, biomass energy systems, etc. Artificial Intelligence
(AI) methods and tools can be used to operational planning problems related to
managing the whole lifecycle of energy (Kayakutlu and Mercier-Laurent 2017). For
instance, Artificial Neural Networks (ANN) was used in Photovoltaic systems and
in Wind Energy Systems for maximum power point tracking of photovoltaic
generators and wind energy resource assessment (Thiaw et al. 2014). Ferrari et al.
(2016) challenged several computational intelligence paradigms, namely, Fuzzy
C-Means, Radial Basis Function Networks, k-Nearest Neighbor, and Feed-forward
Neural Networks, in the task of identifying the maximum power point from the
working condition directly measurable from the solar panel. Mohamed et al. (2017)
present a proposed particle swarm optimization (PSO) algorithm for an optimized
design of grid-dependent hybrid photovoltaic-wind energy systems. This algorithm
uses the actual hourly data of wind speeds, solar radiation, temperature, and elec-
tricity demand in a certain location.
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The remaining of the chapter is organized as follows. In Sect. 15.2, Energy
systems are briefly introduced. In Sect. 15.3, operational planning techniques are
presented. In Sect. 15.4, operational planning in energy management is explained.
In Sect. 15.5, conclusions and suggestions for further research are given.

15.2 Energy Systems

Energy is defined as “a fundamental entity of nature that is transferred between
parts of a system in the production of physical change within the system and usually
regarded as the capacity for doing work the capacity to do work.”
(Merriam-Webster). Energy can be in several forms, including heat, light, electrical
or nuclear energy. Researchers define two main groups of energy, primary and
secondary. The energy captured from the environment is called primary energy, the
energy is later transferred to secondary energy such as electricity or fuel (Belyaev
et al. 2002). The primary energy sources can be classified into three main groups:
fossil (nonrenewable) energy, renewable energy, and waste (Demirel 2012).

The remains of natural sources such as dead plants and animals are transformed
to energy source under the effect of heat and pressure. Coal, petroleum, natural gas,
and nuclear energy are the most commonly known nonrenewable energy sources.
Nonrenewable energy sources have high ratios of carbon and comprise mostly coal,
petroleum, and natural gas. The characteristics such as boiling point may vary
among these energy sources. While natural gas, has a shallow boiling point and
gaseous components, gasoline has a much higher boiling point. Density, melting
point, viscosity, and boiling point are formed based on the mixture of hydrocarbons.
Nonrenewable energy sources are commonly criticised on environmental issues
such as air pollution with harmful gases. Nuclear energy is different from the others
because the energy generation process does not provide any harmful gases since it
is based on fission of nuclear fuel (Bodansky 2004).

The energy source which is gathered from natural resources and which can
naturally replenish are called renewable energy sources. Hydroelectric, solar
energy, biomass, wind energy, geothermal heat, and ocean energy are among the
most commonly used renewable energy types. Renewable energy sources fulfill
nearly 20% of total electricity generation worldwide. The global trend is to make
investments in renewable energy because of climate change concerns and high oil
prices (EIA 2011). One of the most popular renewable energy is hydro energy.
A water tribune or generator converts the potential energy of dammed water to
kinetic energy by getting the force of moving water. Another renewable energy is a
solar energy which collects the energy from solar radiation. Photovoltaics and heat
engines are commonly used for solar powered electrical generation. The third group
of renewable energy is biomass, which is based on microorganisms and animals.
Biomass is considered as renewable energy, based on the carbon cycle since plants
absorb the sun’s energy, processes and produce biomass. Wood, crops, and algae
are among the biomass energy sources. Another well-known renewable energy
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source is the wind. Wind tribunes are used to generate electric. When airflow passes
through the turbines electric is generated by the tribune. Another renewable energy
type is geothermal energy, which is the heat originating from the original formation
of the planet. The main sources of geothermal energy are from radioactive decay of
minerals, volcanic activity, and solar energy absorbed at the surface. The final
renewable energy type is the ocean energy. The ocean energy focus on providing
electricity using the energy passed by ocean waves, tides, salinity, and ocean
temperature differences. The kinetic energy provided by the oceans is transferred to
tribunes to generate electricity.

Energy systems are designed and optimized by integrating abovementioned
energy sources. Liu et al. (2010) provide a brief overview of engineering techniques
used in energy systems including superstructure base modeling, mixed integer
programming, multiobjective optimization, and optimization under uncertainty.
Superstructure based modeling (ABM) uses mathematical modeling to represent a
complex system and define the optimal formation of a process (Yeomans and
Grossmann 1999). To apply ABM for process engineering, all possible combina-
tion of equipment, sequences of flows, and dependencies amongst them are defined
and characterized via mathematical programming. After the process design is
mathematically represented, the optimal process design is obtained by solving the
optimization problem. SBM has been used to solve many problems in energy
planning. The most recent fields include heat energy efficiency (Cui et al. 2017),
renewable energy supply system (Kwon et al. 2016), and distributed energy supply
system (Voll et al. 2013).

An optimization problem is called mixed-integer programming when there are
continuous and integer type of variables in the decision model. Since integer
variables can be restricted to be 0 or 1, mixed-integer problems can handle binary
variables. Some of the recent application areas of mixed integer programming in
energy systems planning include performance comparison of energy systems
(Yokoyama et al. 2017) and polygeneration energy systems design (Liu et al. 2009).

In most of the optimization problems, there are more than on the objective. The
optimization models which aims to optimize a problem according to various criteria
simultaneously is called multi-objective optimization. When there are trade-offs
among the objective functions, multi-objective optimization can be used. A typical
application of the problem in energy system design focuses on maximizing prof-
itability while minimizing the environmental influences. The literature provides
some examples of multi-objective optimization on hydrogen infrastructure strategic
planning (Hugo et al. 2005), polygeneration energy systems design (Liu et al.
2009), and energy efficiency (Zhou et al. 2015).

Most of the times, uncertainty is unavoidable and unpredictable in long-term
energy planning. Due to various factors such as nature of the involved tasks and
high variability, the parameters of the mathematical model cannot be precisely
known. The methods which focus on optimization under uncertainty can handle this
kind of uncertain parameters. Most commonly used methods for optimization under
uncertainty involves stochastic programming and fuzzy logic. The literature pro-
vides sample applications of uncertainty modeling in energy planning. The recent
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examples can be listed as; investment optimization (Cunico et al. 2017), design of
solar photovoltaic supply chain (Dehghani 2018), variability reduction in energy
planning (Murilo et al. 2017), microgrid energy management systems (Hu et al.
2016), and hydroelectric production planning (Zéphyr et al. 2017).

15.3 Operational Planning Methods

The operational plan can be described as a specific plan for the regulation of the
organization’s resources in pursuit of the strategic plan. It involves details about the
specific activities and events to carry out of strategies. It is planned as the
day-to-day management of the establishment. This planning process is created and
monitored by the chief executive and board of directors of the establishment.

Today many companies that have been established for different purposes are
applying operational planning in different fields in line with their strategic goals.

• Supply chain management enables the strategic plan to be achieved with
enhancing efficiency. A supply chain strategy is an agreement of channels, and it
is based on data sharing and management of data and operations within the
related firms (Chopra and Meindl 2007). These operations include managerial
continuums that extended to functional spaces within specific corporations and
link suppliers, factories, partners and consumers across organizational bound-
aries (Wang and Song 2017). (Iakovou et al. 2010) presented generic system
components and their unique characteristics for waste in biomass energy supply
chains that differentiate them from traditional supply chains. (Balaman and
Selim 2014) studied a fuzzy hybrid mathematical modelling composed of goal
programming and mixed integer linear programming that is used to find the
optimal design management for anaerobic digestion of bioenergy supply chains.
(Agusdinata et al. 2014) presented an agent-based simulation modeling frame-
work with artificial intelligence on uncovering system behaviors for designing
the network of biofuels supply chain. (Castillo-Villar 2014) presented a study to
review of applications on supply chain systems on energy with their theories,
challenges and possible future studies.

• Sourcing operations is a procural establishment process that aims to improves
continuously and re-appraises the purchasing goods from the suppliers of
cooperation. In a services industry, these operations assign to a service solution
which is specifically customized through the client’s wishes. In a production
atmosphere, it is often considered as a supply chain process of a component.
These processes are day-to-day tactical transactions and aim to help to purchase
orders from the suppliers. (Frackowiak and Beguin 2001) presented a study that
regards the electrochemical storage of energy in various carbon materials
determined as capacitor electrodes for the sourcing.

• Production operations aim to add value to product or service which will create
a long-lasting and robust customer relationship or association. Moreover, this
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can be accomplished by well and productive association between marketing and
production system. Production is a component of supply chain and not only
affects the suppliers’ system but also customer’s experience. (Rulkens 2007)
presented a study that production of biogas from sewage sludge on small,
medium, and large scales.

– Build to Stock is a way of production approach in which production
schedules created upon the sales foreseen and historical demands of the
customers.

– Build to Order or make to order is another way of production approach
where products are started to manufacture until an order for those products is
accepted.

– Engineer to Order is also manufacturing process that most complicated and
customized way of production. In this way of production, demands are
designed, engineered, and built in line with all customer requests.

• After-sales service operations refer to different products and services that are
sold by cooperation, and this cooperation is responsible for the customers’
satisfaction through all those products’ and services’ life cycle. The demands of
the customers must be satisfied for them to make a positive word of mouth in the
market. This effect makes an extraordinary support for the cooperation’s brands
and campaign. Thus, aftersales services are a crucial aspect of marketing
management and must not be ignored. (Mont 2002) indicated in his study that
the substitution of energy and materials with efficient services may influence
overall resource consumption.

Maintenance management deals with the continuity and availability of
resources in production plants for reaching the sustainability of the manufacturing
(Ben-Daya et al. 2009). Beeftink et al. (1990) presented a model that describes
energy for maintenance purposes as being obtained simultaneously from biomass
degradation as well as from substrate degradation more than growth requirements.
Medidi and Zhou (2006) studied maintaining an energy-efficient Bluetooth with
scatternet distributed scatter net formation algorithm with simulation results.
Cristaldi et al. (2011) presented a study for monitoring of a photovoltaic system to
analyze its efficiency via simulation methods. Also, there are types of maintenance
in the literature that are given below in detail:

• Corrective maintenance aims to correct the defects that can be discovered in
the different components and to communicate with the maintenance department
by users of the same equipment. So, this type of maintenance notices the defects
after the production phases and after the delivery to the customer is completed.

• Preventive maintenance is maintaining the components at a certain level and
scheduling the interferences of their vulnerabilities in the most well-timed. In
other words, the equipment is examined even if there is no evidence of any
problem. Also, periodic maintenance based on the total productive maintenance
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is also called as time-based maintenance a whole range of basic tasks such as
operating, monitoring, cleaning, etc.

• Predictive maintenance aims to continually identify and report the status and
functional capacity of the installments by recollecting the values of specific
variables, which substitute for the basic and operational abilities. It is a
requirement to identify physical variables such as heat, vibration, consumption
of energy, etc. to utilize this maintenance. On the other hand, zero hours
maintenance is also a type of maintenance that inspects the components at the
scheduled time intervals without considering appearing of any failure. These
two type of maintenance are the most complicated and advanced type of
maintenance since it needs to put together mathematical, physical and technical
knowledge.

Maintenaning operations diversify with the type of factory and its range of
manufacturing, but it has a significant role in production management since they
may prevent loss of production, material wastage, overtime. They also regulate the
production and workforce utilization. Hence, the absence of planned maintenance
service causes problems for the factory. So, it should be a primary operation for the
manufacturing plant by the cost-benefit analysis. Since maintenance systems also
cause the stopping the production, purchasing of spare parts, etc. they may have
high costs.

Marketing operations aim to make transparent, efficient, and accountable view
of marketing for a one step further than their competitor (Jauhari and Dutta 2009).
Marketing operations are often used in the energy sector (Mydock III et al. 2017).
Drummond and Hanna (2001) discussed the marketing of energy in a deregulated
environment. Rodriguez and Anders (2004) introduced a hybrid method for fore-
casting energy prices composed of artificial neural networks and fuzzy logic. Most
used marketing operations in the literature are given as below:

• Lead management is a set of methodologies, systems, and practices that are
created for generating new potential business, generally used in marketing
campaigns or programs.

• Reporting and analyzing can be expressed separately. The process of
exploring data and analyzing it is the most complex operations in the businesses.
Reporting is the operation that converts raw data into knowledge. Analyzing is
the operation that helps to make inferences from knowledge.

• Data management aims to develop architectures, and policies and to execute
practices and procedures for handling data correctly for needs of an enterprise.

• Campaign development is in need of planning and creativity for earning
substantial monetary resources. Campaign development takes time and aware
planning for a sustainable competition in the market.

• Content development is a technique that aims to create and distribute valuable
content to attract, acquire, and engage to the customer.
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Production planning operations are the planning of production and manufac-
turing systems in an industry (Chapman 2006). It utilizes the raw materials,
materials, and capacity of the production lines to serve the aims of factory man-
agement. Ni et al. (2006) reviewed the current developments on hydrogen pro-
duction technologies to make an overview of renewable energy sources and
represented potential practices for renewable hydrogen production in Hong Kong.
Zhang et al. (2017) introduced a study that for a hybrid computational approach
composed of simplex method and ant colony optimization to schedule products in a
pipeline with multi-plant pump stations. Teeuwsen et al. (2005) presented com-
putational intelligence methods for fast eigenvalue prediction in large intercon-
nected power systems. Schaffner et al. (2017) introduced a study that monitors to
people behaviors of moving into energy-efficient homes by using a dynamic
approach based on phased model. Production planning is composed of operations
which are given below:

• Routing is a specific way to a product or material in the manufacturing phase.
This specific way ends in the employment of all the applications take place until
the final product is developed.

• Scheduling is the process that aims to reach the most appropriate ordering,
controlling and optimizing for work and workloads for the manufacturing
systems. This process consists of machinery resources, workforce, raw materials
and final product.

• Dispatching indicates to control all processes in the manufacturing system from
supply part to customer shipment. Primary goal of this operation is date man-
agement and controlling capacity at specified time intervals.

• Monitoring means inspections of manufacturing site for any moment the pro-
duction is made that is made by the inspector. An inspector checks the repro-
ducibility of the factory, enforces terms of references, and also controls the
products in case of any defects.

• Workforce planning is a perpetual process that aligns the demands and
precedences of the cooperation for its workforce through the strategic objectives
that have confliction with law, regulations and the humanitarian aspect.

15.4 Operational Planning in Energy Management

The operation planning need of energy systems varies with the characteristic of
energy systems. For instance, for the bioenergy systems sourcing is the main
problem whereas predictive and corrective maintenance is crucial for nuclear
energy systems. In order to reveal the operation planning focuses on energy sys-
tems, we conduct a comprehensive literature review using “Scopus” database. We
summarize the literature review results by using graphical and tabular analysis.
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15.4.1 Supply Chain Management in Energy Systems

Many researchers have evaluated the supply chain operations in energy systems.
Supply chain management involves sourcing, production, and aftersales operations.
We list down the studies in Scopus database that use both “Supply chain” and
“Energy” in the title, abstract and keywords. A total of 4668 studies in Scopus
database use both “supply chain” and “energy” in the title, abstract and keywords
fields (Fig. 15.1).

15.4.2 Sourcing Operations in Energy Management

A total of 64 studies in Scopus database use both “supply chain”, “energy” and
“sourcing” in the “title, abstract and keywords” fields. Figure 15.2 shows the most
used keywords in these studies namely, environmental impact, biomass, sustainable
development, and bioenergy. Notably, the sourcing in bioenergy is one of the
primary area of interest. Richard (2010), Mirabella et al. (2013), Sikkema et al.
(2014), Meadows et al. (2014), Cambero et al. (2015), Paulo et al. (2015) and
Flodén and Williamsson (2016) highlighted the importance of sourcing strategy in
biofuel industry. Only a few studies focus on the sourcing problems in wind energy
production (Sarja 2012; Ghaffari and Venkatesh 2015).
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15.4.3 Production Operations in Energy Management

A total of 1808 studies in Scopus database use both “supply chain,” “energy” and
“production” in the “title, abstract and keywords” fields. Energy production con-
sidered as one of the leading operations management research area in the energy
field.

Similar to the sourcing operations, environmental impact, biomass, and sus-
tainable development are the leading research areas. Figure 15.3 shows the fre-
quency of usage of these keywords.

Providing sustainable development and minimizing the harmful impact on the
environment are the primary problems in energy production. Managing biomass
production is also a principal problem for the production operations. Various
researchers analyze the life cycles of energy investments. Not only traditional
energy investments but also the wind energy, solar energy, and biomass energy
investments are analyzed with life cycle analysis (Elia et al. 2011; García-Valverde
et al. 2010; Tryfonidou and Wagner 2004).
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15.4.4 Aftersales Operations in Energy Management

A total of 44 studies in Scopus database use both “energy” and “aftersales” in the
title, abstract and keywords fields. Among these studies, the primary focus is on
aftersales’ effect on sales and costs (Fig. 15.4). Also, the impact of sales operations
in developing countries are analyzed by five studies such as Gupta (1999), Rogers
(1999) and Kebede (2014). Several researchers focus on the aftersales operations in
solar energy and wind energy.

15.5 Maintenance Management in Energy Systems

Achieving reliability, increasing cost and energy efficiency are crucial for energy
systems. Maintenance planning and management enhance the performance of
energy systems. In literature, some studies analyze maintenance management in
energy systems.

15.5.1 Corrective Maintenance

A total of 79 studies in Scopus database use both “corrective maintenance” and
“energy” in the “title, abstract and keywords” fields. Figure 15.5 shows the most
used keywords in these studies namely, reliability, wind power, electric utilities and
nuclear energy.
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Analyzing the risks and applying corrective maintenance for wind power utilities
is an important research area (Wiggelinkhuizen et al. 2008; Presencia 2017; Zhang
2017; Lei and Sandborn 2018).

15.5.2 Preventive Maintenance

A total of 783 studies in Scopus database use both “preventive maintenance” and
“energy” in the “title, abstract and keywords” fields. Figure 15.6 shows the most
used keywords in these studies namely, costs and cost efficiency, reliability, energy
efficiency and nuclear energy. Maintaining reliability by increasing both cost and
energy efficiencies is the primary objective of preventive maintenance.

0 

2 

4 

6 

8 

10 

12 

14 

Reliability Wind power Electric U li es Nuclear energy

Correc ve Maintanence

Fig. 15.5 Corrective maintenance in energy systems focused areas

0 

20 

40 

60 

80 

100 

120 

140 

Costs Reliability Energy efficiency Nuclear energy

Preven ve Maintanence in Energy Systems

Fig. 15.6 Preventive maintenance in energy systems focused areas

346 C. Kahraman et al.



Due to the critically of the risks, the preventive maintenance has a crucial role in
nuclear energy (Pereira et al. 2010; Lusby et al. 2013; Yang 2015).

15.5.3 Predictive Maintenance

A total of 288 studies in Scopus database use both “predictive maintenance” and
“energy” in the “title, abstract and keywords” fields. Figure 15.7 shows the most
used keywords in these studies namely, reliability, wind power, electric utilities and
nuclear energy. Many researchers focus on the monitoring technologies such as
sensors, signal processing and telecommunication systems (Daneshi-Far 2010;
Hashemian 2011; Hashemian and Bean 2011; Zhu 2014).

Predictive maintenance is essential both for nuclear energy and wind energy
systems. Therefore, many researchers conduct studies for enhancing predictive
maintenance in these systems (Lin and Holbert 2009; Daneshi-Far et al. 2010;
Hashemian 2011; Hashemian and Bean 2011; Hashemian et al. 2011; Yang et al.
2014).

15.6 Marketing Operations in Energy Systems

The changing characteristics of the available resources and needs in different
locations make marketing of energy systems crucial. In Scopus database, we
searched for “marketing” and “energy systems” in the “title, abstract and keywords”
fields. 244 studies focus on marketing operations in energy systems (see Fig. 15.8).
The marketing of renewable energy systems is the main topic of these studies.
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Between 2002 and 2010, there is a significant increase in energy marketing studies
but with the full acceptance of renewables, these numbers have decreased.

We searched for “marketing,” “data management” and “energy” in the “title,
abstract and keywords” fields. 18 studies focus on marketing data management in
energy systems (Felzien et al. 2003; Verdú et al. 2006; Gabaldón 2008; Ceci 2015).

We searched for “marketing”, “analytics” and “energy” in the “title, abstract and
keywords” fields. Only five studies focus on marketing analytics in energy systems
(Wirl 1989; Kejariwal 2016; Akoka et al. 2017; Mueller 2017).

We searched for “marketing”, “campaign development” and “energy” in the
“title, abstract and keywords” fields. 51 studies focus on campaign development in
energy systems. Most of these studies focus on increasing the awareness and
penetration of renewable energy sources (Martinot et al. 2001; Tsoutsos 2002;
Gossling et al. 2005; Zorić and Hrovatin 2012).

We searched for “content management”, “marketing” and “energy” in the “title,
abstract and keywords” fields. None of the studies focus on marketing content
development in energy systems.

15.7 Production Planning in Energy Systems

In Scopus database, we searched for “production planning” and “energy” in the
“title, abstract and keywords” fields. 474 studies focus on production planning in
energy systems (see Fig. 15.9). After 2000, there is a significant increase in pro-
duction planning in energy systems.
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15.7.1 Routing

197 studies focus on routing problems in energy systems. Solar energy, sensors,
energy efficiency and energy utilization are the leading research areas (See
Fig. 15.10). The routing problems are considered as a part of solar energy har-
vesting optimization (Alippi and Galperti 2008; Dondi et al. 2008; Ismail 2008).
The energy optimization of sensor networks via the routing systems is another
important research area (Voigt et al. 2003; Bergonzini et al. 2009; Chen et al.
2012). 24 studies focused on the routing problems in wind energy systems (Gupta
et al. 2007; Phillips and Middleton 2012; Shafiee2015).
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15.7.2 Scheduling

Scheduling is an important area of interest for energy systems. 424 studies focus on
scheduling problems in energy systems. Optimization, renewable energy, wind
power and smart power grids are the leading research areas (See Fig. 15.11).

The power generation and supply of many renewable energy resources are
uncertain. Therefore, optimizing the generation and supply by using smart systems
become crucial for renewable energy systems (Gupta et al. 2007; Phillips and
Middleton 2012; Shafiee et al. 2015).

15.7.3 Dispatching

In the literature, 180 studies focus on energy dispatching problems. Electric load
dispatching, optimization, renewable energy resources and wind power are the
leading research areas in these studies (Xie and Ilić 2008, 2009; Tascikaraoglu et al.
2014). Figure 15.12 illustrates these research areas.

15.7.4 Workforce Planning

Only eight articles focus on workforce planning in energy systems. Several of these
studies focus on workforce planning in nuclear energy (Irizarry and Seemer 1986;
Sherrard and Horner 2007).
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15.8 Conclusions and Further Suggestions

In this chapter, we conduct a comprehensive literature review to reveal the state of
the art operational planning problems in energy systems. We classify the problems
and analyze the focus areas in the “Scopus” database. The result of the analysis
shows the main problems in different energy types.

In literature, there is a growing interest in solving operational planning problems
in renewable energy sources. Planning the supply chain operations are crucial for
bioenergy fuels. Achieving a sustainable development and minimizing the envi-
ronmental damage is the other focus areas for supply chain planning in energy
systems. Planning the aftersales operations for solar power and energy investments
in developing countries is crucial. Managing the maintenance is very important for
nuclear energy and wind energy. The researchers can analyze corrective mainte-
nance for solar energy. At the beginning of 2000 the marketing planning for
renewable energy resources considered as an essential problem but with the pen-
etration of renewables this need has been satisfied. Routing is important both for
solar energy and for wind energy. Supplying energy for the wireless networks and
designing the routes of these energy sources is another widely focused research
problem. Scheduling is crucial for all the renewable energy sources.

In the literature, there is a need for understanding the state of the art problems of
operational planning in energy systems. This chapter fulfills this need by defining
the energy systems and operational planning problems and can guide future studies
by showing the gaps. For the future, a qualitative study can be implemented to show
the correlations among the key focus areas.
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Chapter 16
Electrical Vehicle Charging Coordination
Algorithms Framework

Nhan-Quy Nguyen, Farouk Yalaoui, Lionel Amodeo,
Hicham Chehade and Pascal Toggenburger

Abstract The coordination of the electrical vehicles (EV) charging becomes an
important research subject in the actual context with the growth of the EV usage.
This is due to the harmful impacts of the grid and the overspending price of
uncoordinated charging procedure. This work tries to provide a framework to
configure and formulate the EV charging problem by the theoretical research on
scheduling problem with an additional resource. Given the numerous works in the
both domains, this would be advantageous to address such a general algorithm
framework. This chapter also introduces our configurations, named ACPF/ACPV,
to formulate and solve an actual EV charging problem for residential parking—our
case study. The purpose of this case study is to illustrate how the framework would
be implemented for real-life cases.

16.1 Introduction

Electrical vehicles (EV) have become an active topic that interested many
researching domains (Cazzola and Gorner 2016; Sperling 2013). One can notice an
extensive growth in term of EV sales: the milestone of two million electric cars has
been met by the end of 2016 (Leech 2017). Besides the economic and ecological
benefits of the EV deployment (Sperling 2013), one has to take into account its
disadvantages. Since the EV charging is a high-power consumption task, it can
cause much turbulence to the power grid. Also, uncoordinated charging procedure
could be costly for EV users because of the personal fix cost of power subscription
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and the uncontrolled load during peak hours (Nguyen et al. 2017b). One can find
numerous works on the optimal charging scheduling. Most of them can be classified
into two approaches: local scheduling (Deilami et al. 2011; Galus et al. 2012; Ma
et al. 2013; Mohsenian-Rad et al. 2010; Musardo et al. 2005) and global scheduling
(Adika and Wang 2014; Iversen et al. 2014; Li et al. 2011). Also, there are several
works on scheduling problems which concern the scheduling of EV charging
notably the parallel task scheduling problems (Blazewicz et al. 2011; Nguyen et al.
2016a, b; Sadykov 2012) and scheduling problems under single additional
renewable resources (Blazewicz et al. 2002; Hartmann and Briskorn 2010;
Józefowska et al. 2002; Nabrzyski et al. 2012; Waligóra 2009). The abundance of
works on the domains has, however, some disadvantages. First, the scheduling
problems developed for the EV charging, especially the control-theoretic approach,
are designed for a very specific problem. Second, general configurations and for-
mulations could be found in theoretical scheduling problems with an additional
resource. Yet, as far as we know, there are no frameworks which have been
developed to use those resolution methods for the EV charging coordination
problem. For that reason, we tend to present in this chapter a framework that can
link all those concerning works. This framework has to be both general and
implementable. The generality means that it can be configurable and applicable to
different real-life constraints and objectives. The implementability can be translated
in a sense that it can be constructed with engineered equipment and software.

The first section is, as we have previously done, to introduce the problem
addressed in this chapter and the research motivation. In the second section, we will
make more details on literature reviews. Then, we can classify the similar research
with real-life problems. Hence, in the third section, we can propose a charging
coordination configurations family named ACP which includes ACPF and ACPV
with its variation (ACPF 1, APCF 2, ACPV 1, ACPV 2.0, ACPV 2.1…). Those
configurations are a part of our research for an actual industrial project on the EV
charging management. In Sect. 16.4, we also present the predictive-reactive
framework for the real-time EV charging management. In Sect. 16.4.1, we intro-
duce a specific case study to illustrate how we can implement a configuration in an
industrial environment with the predictive-reactive framework. Finally, we will
draw conclusions and perspectives in Sect. 16.5.

16.2 Literature Review and Methods Classification

The literature review would be divided into three main parts. The first part is
dedicated to the EV optimal scheduling problems. The second part reviews the
classical scheduling problems under additional resources and the parallel tasks
scheduling problem. The final one classifies existed works into groups of con-
straints, objectives and approaches. This classification tries to link works in dif-
ferent domains with the common purpose of managing the charging procedure of
electric cars.
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First, we review the two mains approaches of optimal EV charging scheduling
problem: local approach and the global scheduling approach. In the local (or
implicit) approach, the EV charging coordination usually based on a “what if”
decision (causal properties), driven by some based-rule. For that reason, it can cope
quickly with real-time situations. However, when the problem is not treated wholly
with all its inputs, then we may find the bad result on cost/time minimization criteria
and may lead to infeasible solutions. One can find many theoretical-control oriented
works developed in this way. Both (Maasmann et al. 2014) and (Faddel et al. 2017)
developed a feedback controlled fuzzy algorithm. The former controller (Maasmann
et al. 2014) tend to level the energy consumed while the latter controller (Faddel
et al. 2017) aims to maximise the parking lot profit. (Al-Awami et al. 2016)
introduced a voltage-based controller to reduce the charging rate with respect to the
end-time of charge reference. Álvarez et al. (2016) presented four variations of
decentralised controller served the power balancing objective. The second main
approach to the EVCC problem is called global (or explicit) scheduling. This
scheduling approach takes into account the full input and tries to find global
optimal. The advantage of this scheduling is that the solution found has better
quality, and by taking into account all the constraints, feasible solutions can be
found in more extreme cases. Still, this approach finds difficulties when dealing
with randomness. Also, the computational cost of this method is indeed an obstacle
to deal with real-time scheduling. In the literature, we can find many works related
to the explicit approach, in the limit of this chapter, some featured works are cited.
Using the meta-heuristic resolution method, (Alonso et al. 2014) and (Lee et al.
2012) developed genetic algorithms to deal with the charging schedule problem to
minimise the total cost. To solve the coordination of EV charging and other elec-
trical equipment, (Adika and Wang 2014) proposed a demand side management
algorithm while (Karbasioun et al. 2013) introduced a power strip-packing algo-
rithm. Both algorithms aimed to flatten the power load (Iversen et al. 2014) pro-
posed a Markov chain formulation to deal with randomness behaviours of EV
client, then propose a stochastic optimisation schedule for the EVCC problem. We
resume all the mentioned works on Table 16.1.

In Table 16.1, we can rarely find works dealing with the time criteria objective
(total completion time/makespan minimization). The existing works privileged the
efficiency (cost) and the stability (resource levelling) to productivity (time criteria
minimization) and service’s degree of satisfaction. That is the reason why we would
introduce more works on the scheduling field as a complementary with the intention
to fill in the research gap. In the second part, we present two major approaches to
the scheduling problem: the scheduling problem with controllable processing under
single additional resource and the parallel task scheduling problem. With the first
approach, one can find two stand-out problems, namely Discrete-Continuous
Scheduling Problem (DCSP) and Cumulative Scheduling Problem (CuSP). In both
of the methods, the more resource a job consumes at a given time, the faster it can
reach its final state (completion state), and the total available resource is supposed
to be constant. The main difference lies in the resource consumption function, i.e.,
how can the resource consumption speed-up the jobs’ processes. The DCSP is first
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introduced by Weglarz (2012). In this problem, the processing time of a job is
controlled by its resource consumption rate which is defined by a processing rate
function. The DCSP assumes the processing rate function to be a convex function
which is not greater than linear. In the second problem, CuSP, the resource is
accumulated by a linear processing rate function (Baptiste et al. 1999). The DCSP
has an advantage in considering a more generic processing rate function. However,
most of the concerning works do not take into account of temporal constraints, i.e.,
release dates and deadlines of tasks, which is considered by CuSP. For the parallel
task scheduling problem, we will discuss two specifics types of tasks, namely:
moldable tasks and malleable tasks. Parallel tasks have processing time varied to
the number of operators assigned to them at a time whereas their surfaces are
constant. The number of operators assigned to the moldable task can be decided
only once. They can be seen as rectangles with chosen height to be packed
(Blazewicz et al. 2011). By default, moldable tasks are non-preemptable. The
malleable task has a number of operator varying with time (Beaumont et al. 2012;
Karbasioun et al. 2013). The malleable tasks can be interruptible or
non-interruptible. The majority of the works studying the scheduling problem under
additional resource and parallel task scheduling problem focus on the time criteria
optimisation: total or total weighted completion time minimization, makespan
minimization. Hence, those aspects fit well as a complementary to the research void
of the EVCC. The concerned work is resumed in Table 16.2.

Table 16.1 Classification of some EVCC approaches on the literature

Coordination
method

Resolution
approach

Works Objective

Cost
minimization

Power
leveling/
load
flattening

Time criteria
minimization

Local
(implicit)
scheduling

Feedback
controlled
fuzzy
algorithm

Maasmann
et al. (2014)

x

(Faddel et al.
2017)

x

Voltage-based
controller

Al-Awami
et al. (2016)

x

Decentralized
controller

(Álvarez et al.
2016)

x

Global
(explicit)
scheduling

Genetic
algorithm

Alonso et al.
(2014; Lee
et al. 2012)

x

Demand side
management

Adika and
Wang (2014)

x

Stochastic
scheduling

Iversen et al.
(2014)

x

Power strip
packing

Karbasioun
et al. (2013)

x
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16.3 ACPF-ACPV: The EV Charging Coordination
Configurations

After analysing the literature, we would like to classify the electrical vehicle
charging coordination (EVCC) into specific configurations. With that kind of
classification, one can decide which researching works can be used to solve each
specific problem. First, we identify three groups of constraints of the EVCC issue:
the human constraints, the technical constraints and the system capacity (or
resource availability) constraints. Their segregation is shown in Fig. 16.1.

We would explain in detail our classification in the order of numbered con-
straints. The system capacity constraints group contains two types of parking with
its corresponding power supply. In a dedicated parking, i.e. the power supply is
subscribed for only the charging of EV, the power bandwidth is equal to the
maximum power subscription, then it is considered to be constant. Let us take the
residential parking case as an example. In this case, the other devices sharing the
power with EV charging are the common facilities such as lightings and ventila-
tions. The sharing power is considered to be too little to have an impact on the total
power bandwidth. Hence the total available power supply is deemed to be constant.
In the second constraint, the power bandwidth is time-varying. This restriction is
critical to take into account because it makes the corresponding problem much
harder to solve (Nguyen et al. 2016a). It happens in a case where the power
bandwidth has to be shared with high-power consumption devices. The problem is
very common in the professional sector where the electrical supply for the EV
charging in the office parking is shared with industrial machines or at least com-
puters and office devices (US Department of Energy (DOE), North Carolina State
Energy Office 2014).

Fig. 16.1 A classification of EVCC constraints
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Despite the fact that EV chargers and electric vehicle supply equipment (EVSE)
have many characteristics (Yilmaz and Krein 2013) we can classify the technical
constraints into two subgroups. First, whatever the charging level is, or, it is a fast or
slow charger, it always has a maximum and minimum charging power (or current)
limits. The development of new protocol and charge-point technologies permits the to
change the power provided on EVSE (Schmutzler et al. 2013). Depend on what kind
of change can be made, we classify the charging power of EV into three categories:
fixed, semi-continuous and continuous rates. To explain those constraints, we
introduce some notification: let the charging job indexed by i, the scheduling horizon
is divided intoH interval indexed by k. The charging rate of job i at interval k is noted
by uik. Charging rate of job i is bounded by �ui and ui. If charging rate can only be fixed
at the beginning of the charging process by a value, u0i 2 �ui; ui½ � then it is called fixed
charging rate. With the parallel task problem notation, charging task with fixed rate
can be considered to be moldable. In the other cases, the charging rate is whether
continuous or semi-continuous. If at a given interval k, and the charging task has
started to process: uik 2 �ui; ui½ � the charging rate is called semi-continuous or con-
tinuous depending on the lower bound �ui. If �ui [ 0 thenthe charging rate is called
semi-continuous and the charging task is non-preemptive. In the contrary, If �ui ¼ 0
then the charging rate is called continuous, the charging task is then preemptive. The
segregation of charging rate is important because it defines our two configuration
ACPF and ACPV. The ACPF configuration (French: Algorithme de Charge de
Puissance Fixe, Charging Algorithm with Fixed Power) corresponds to the constraint
(4) and the ACPV (French: Algorithme de Charge de Puissance Variable, Charging
Algorithm with Varying Power) corresponds to the constraints (5) and (6).
Figure 16.2 illustrates examples of the power allocation of the five configurations.

The last group of constraints is created by the behaviours of EV users. Each of
them has a daily parking (i.e. plugging) time and a departure time (unplugging) time
that formulates the so-called time-windows constraint. With the scheduling problem
notation, plugging time can be seen as the release date of tasks and unplugging time
can be considered as the strict deadline of task (Yalaoui and Chu 2002). Every
charging task has a demanded energy to satisfy, called daily demand satisfaction
constraint. This group of constraints constitutes the stochastic characteristic of the
considered scheduling problem.

In Table 16.3, we specify the two configurations with their variations, accom-
panied by the constraints. According to each configuration, we cite the similar EVCC
problems and the similar theoretical scheduling problem resolution approaches.

In Table 16.3, the complexity is illustrated by three objectives: feasibility test,
makespan minimization and total weighted completion times minimization. In all
configurations, the human behaviours constraints group are the same.
Configurations having index increasing with the complexity so that one can esti-
mate the complexity of a specific EVCC problem. According to each pair of
configurations—complexity, one can choose a resolution method with reasonable
computational costs and researching effort. All the settings, except ACPF 2, have
their own resolution approaches.
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The lack of work on ACPF 2 is caused by the complexity of the time-varying
resource constraint. This variation prevents the adaptation of other existed works on
this specific problem. We can also find that the ACPV 2 has been the most general
configuration so far. For that reason, we have developed in our previous works two
approaches to solve these settings: the exact and approximate ones (Nguyen et al.
2016b; 2017a). More details on the mathematical formulation of the ACPV2
configuration can be found on (Nguyen et al. 2016b). An efficient heuristic named
Adapting and Layering to deal with the ACPV 2 can be found in (Nguyen et al.
2016a). An exact method to solve the problem by a Branch-and-Price algorithm is
introduced in (Nguyen et al. 2017a).

3

5

2

(a) ACPF 1 (b) ACPF 2 

(c) ACPV 1a (d) ACPV 1b 

(e) ACPV 2 

Fig. 16.2 Illustrations of 5 EVCC configurations with corresponding possible solutions
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16.4 Predictive-Reactive Framework

The predictive-reactive framework is introduced to implement the previously
mentioned EVCC configuration and to apply the scheduling algorithm to real life
case. Before illustrating the framework, we first introduce a study case extracted
from our EVCC project in France.

16.4.1 Case Study

The case study takes data from our industrial project of the EV charging man-
agement for residential parking in France. The objective of the EVCC is to optimise
total weighted end-of-charge times and the electrical cost. The electrical cost
includes the subscription cost (fix cost) and the usage cost (variable cost). Most of
the French electrical suppliers propose the on-peak/off-peak tariff where the
off-peak electrical cost is significantly lower than the on-peak one. Thus, to min-
imise the variable cost, all the EV must be charged within the off-peak period
(overnight schedule) subject to the EV plugging times at the end of the working day
and the expected unplugging times in the next morning. The histogram of arrivals
time and charging demand extracted from 125 charging events is shown in
Fig. 16.3a, b (Nguyen et al. 2017b). Concerning the fixed cost, there is a trade-off
between the power bandwidth subscribed and the feasibility rate of the EV charging
scheduling. Precisely, if the scheduling algorithm cannot find a feasible schedule
baseline for a given input, the manager unit will decide to start the charging process
earlier than the off-peak duration, i.e. before-off-peak shift. Thus, to re-assure the
feasibility, the charging cost before the off-peak becomes costlier. According to the
study case, the corresponding EVCC configuration is ACPF 1 or ACPV 1b,
depending on the type of the chargers used.

16.4.2 The Framework Conception

Thepredictive-reactive framework for theEVCCproblem isbasedon the rescheduling
manufacturing framework introduced by (Vieira et al. 2003). The predictive-reactive
policy (PRP) has a purpose to dealwith uncertainties in scheduling, given that we have
some degree of knowledge about the input. The schedule is called static if the number
of input jobs is known in advance, whereas it is called dynamic when the input set is
unknown. In this case study, the set of jobs is finite and known; the problem is then
static. In addition, historical informationof each job is logged in the database so thatwe
can assure a certain level of information for the planning. The first part of the PRP, the
predictive schedule (or the pre-schedule), intends to use that known information to
generate a schedule baseline. Theoretically, any solving process to find a solution for
the deterministic problem can be applied to produce a schedule baseline. Then, the
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secondpart of thePRP, the reactive schedule (or the reschedule), is designed to treat the
real-time events which are different to the baseline generated by prescheduling. More
strategies and policies on this framework can be found on (Pinedo 2015; Vieira et al.
2003). The policy chosen for our predictive-reactive framework can be resumed as
follows: (1) scheduling environment: static stochastic; (2) rescheduling strategy:
predictive-reactivewith event driven (i.e. new schedule is updated every time there are
new temporal events); (3) reschedulemethod: partial rescheduling. Thepurpose of this

Fig. 16.3 a Histogram with gamma distribution (a = 4:5; b = 1442) for the daily consumption
over 120 charging events. b Histogram with normal distribution l ¼ 17:5 h;r ¼ 0:8hð Þ for the
daily arrival times over 125 charging events
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framework is three folds, corresponding to three levels of decision. (1) Strategical
level: it decides a good power-bandwidth tominimisefixed cost. (2)Operational level:
daily, it decides the expected before-off-peak shift to assure a good planning feasibility
rate. (3) Applicable level: it manages the charge point in real-time, coping with every
new-coming event. The framework is described in Fig. 16.4.

Predictive schedule: In this framework, the pre-schedule work in a way that it
repeatedly solves many deterministic problems generated from a random generator.
The parameter of the random generator is defined by historical data, short-term or
long-term, using the maximum likelihood (MLE) approach. Scheduling algorithm
from the library will be selected to solve the generated instances according to the
configuration of the parking: ACPF, APCV or only resource levelling heuristic
namely Layering (Nguyen et al. 2016a, 2017b). The result of random simulators is
tracked to formulate a statistical estimation on the behaviour of the baseline subject
to the total power subscription and scheduling horizon (Nguyen et al. 2017b). The
preschedule generates two levels of schedule baseline: the strategical and the

Fig. 16.4 The Predictive—Reactive framework with corresponding scheduling algorithms library
and simulators
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operational level. The strategical schedule baseline, in this case, is the power
subscription for the EV charging parking. The total value of power subscribed is a
long-term decision. Therefore, it is calculated at the installation of the parking. This
sum of power can also be revised at every trimester. The estimation of power
subscription is got from the formula (16.1) presented by Nguyen et al. (2017b):

z Uð Þ ¼ f0 Uð ÞþPBW ðx[UÞ:fp Uð Þ ð16:1Þ

where:

• PBW ðx[UÞ is the probability of necessary power bandwidth to assure feasi-
bility and must be greater than the subscribed power U.

• f0 Uð Þ is the fixed cost of power subscription U which is usually linear:
f0 Uð Þ ¼ U � c0, c0 is the subscription cost per power unit.

• fp Uð Þ is the penalty cost while using total power U due to earlier start before
off-peak hours to satisfy all energy demands.

Optimal power subscription should minimize the cost U� ¼ arg minu z Uð Þð Þ.
Moreover, the penalty cost is calculated by fp Uð Þ ¼ UEU DSt½ � cpeak � coff�peak

� � ¼
FE Uð ÞUDc where EU DSt½ � is the expected duration of the charging operation before
the off-peak hours (i.e. DSt) when the total bandwidth is U. Dc is the difference of
price per kW between peak and off-peak hours. PBW ðx[UÞ and can be found by
two simulators: the bandwidth variation and the schedule length variation (Nguyen
et al. 2017b). The real-time events will be accumulated in the database. The pre-
dictive module then extracted from the database a fixed number of most recent
events to simulate. For the long-term baseline estimation, the module will extract
numerous events (� 100 events for each EV, corresponding to the charging
behaviours in around a trimester) to parameterize the simulator. Hence one can fix
the power subscription. Then, the schedule length variation will take short-term
events (about 25 events each EV corresponds to 1 month) to tune the random
generator. This simulator outputs the distribution of the schedule length according
to the power subscribe and the recent customer behaviour. Hence, before the
beginning of the charging process, one has to decide whether we have to start all the
charging earlier before the off-peak hours to assure feasibility.

Reactive schedule: With the long-term and short-term planning starting point,
the reschedule module has the information about the number of jobs it has to deal,
also about the total power it can use for the charging and does it have to start earlier
this day. The reactive schedule is driven by real-time events and has partial
rescheduling method. Precisely, at each event: arrival and plugging of an EV,
charging completion, changing of total power…, a new partial schedule will be
recalculated based on the present (plugged) EV in the parking. This planning is
partial due to the non-preemption properties of jobs. All the charging in the process
is untouched; only the new job should be rescheduled.

For the case study, the framework gives a sharp reduction: 89% of the total
power used with an expected earlier start of 4.6 min before off-peak hours.
Figure 16.5 (Nguyen et al. 2017b) would justify this result.
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Fig. 16.5 a Histogram of the maximum total charging power of 30 eV resulted from 10,000 tests.
b Expected shift (h) to start before off-peak hours to assure feasibility according to power
bandwidth used (nEV = 30 and ntests = 10,000)
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16.5 Conclusion

In this chapter, we introduce a framework for the EV charging coordination
problem. Pointing out the need of bridging the research on EVCC and theoretical
scheduling problems with additional resources, we introduce five generic config-
urations for EVCC problems with the potential concerned scheduling algorithm.
The complexity classification of each configuration suggests the corresponding
amount of computational efforts should be carried out, then define the hardware
requirements for the parking installation. To apply the settings to real-life problems,
we introduced a predictive framework based on the manufacturing scheduling
system strategy. The case study shows good time criteria and cost optimisation for
the specific case study on the EVCC of residential parking. Our research points out
a minor and major research gaps. Concerning the minor one, a scheduling method
developed for configuration ACPF 2 is still missing. For the major one, since our
EVCC problem is classified static and stochastic, a robust scheduling method could
be considered.
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Chapter 17
Multi-Site Energy Use Management
in the Absence of Smart Grids

Zeynep Bektas, Gülgün Kayakutlu and M. Özgür Kayalica

Abstract Demand-side management (DSM) allows an energy load to be balanced
across multiple consumers. Energy consumption fluctuations cause important costs
based on the alternating energy price tariffs. DSM creates opportunities for con-
sumers to reduce their energy consumption costs by smoothing the daily load curve.
An MINLP model is constructed based on power consumption, which aligns with
the production schedules of the industrial units. Then, these feasible schedules are
used as an input for a cooperative Bayesian game that is designed to balance the
hourly loads. A case study of three factories, where the demand-side manager tries
to minimize the instability of purchasing electricity from the general grid through
load balancing, is considered.

17.1 Introduction

As industrial power consumption increases, all processes encompassing energy
generation, transmission, distribution, and consumption are studied from different
angles. Indirect control from the demand side, in an energy market with multiple
suppliers and multiple consumers, has been studied for a long time. In countries
where residential consumption comprises a major share of the energy market, smart
grid applications are accompanied by incentives to implement demand-side man-
agement (DSM). DSM is a tool used by power system managers to provide bal-
anced consumption of power across the different hours of the day. It has been
shown in the literature that DSM usage balances electric energy consumption
Marzband et al. (2013).
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DSM control is not as rigid as control on the generation side since it does not
actually change the demand. DSM can be applied either to shift loads without
decreasing total power consumption by studying the energy efficiency, or to balance
hourly load flows under consumer constraints (Lopez et al. 2015).

The proliferation of smart grids represents a large share of the development of
DSM programs. These smart systems enable two-way digital communication
between power generators and consumers, which leads to participation that is more
active on the demand side (He et al. 2015).

The main goal of this study is to construct a new load management approach
from the perspective of demand-side management for multi-site manufacturing
conglomerates. The proposed load management is modeled by optimizing the
power usage and cooperation of consumers in order to reduce grid instability in the
absence of “smart” measures. The originality of the approach rests on developing an
optimized schedule of power consumption for multiple consumers and flattening
the load flows using a cooperative Bayesian game approach in the absence of smart
grids. Thus, when large numbers of industrial consumers put high power demands
on the general grid, this approach could minimize negative effects on the stability of
the grid in these districts.

When there is more than one consumer in a load management problem, the
problem can be approached as a game because there is more than one independent
decision maker. A recent development in DSM considers using game theory for
smart grid implementations. In developing countries, two-way digital communi-
cation infrastructures are not yet in place (Atikol 2013). This study proposes a
model to remove that deficiency by using Bayesian games to account for incom-
plete information cases through time-of-use (TOU) pricing rates. This allows
modeling the distribution of the load across multiple rates.

To strengthen our model framework, an industrial case comprising three facto-
ries (consumers) owned by a single entity, which purchases energy from the general
grid and distributes it to the factories, is studied with the aim of minimizing grid
instability. The entity, which is assumed to own all three factories in a particular
industrial zone, is taken as a demand-side manager (DSMr), whose objective is to
reduce the load instability of the transmission lines and the power costs simply by
optimizing the time schedules in concert with the factories in a cooperative fashion
that does not change daily total electricity consumption. The DSMr is neither a
power generator nor a supplier/dealer trading electricity in the market.

This paper uses a mixed integer nonlinear programming (MINLP) model pro-
posed for DSM. Bektas and Kayalica also provide a similar framework (Bektas and
Kayalica 2015). However, our model incorporates a game stage. The proposed
model consists of two stages with an MINLP model giving input data for the
Bayesian game. The originality of the study is enhanced by proposing a two-step
model to encourage cooperative use of energy resources in developing countries,
until they can catch up to the application of smart grids.

This paper is organized as follows. In Sect. 17.2, we explain the DSM approach.
The methodology is given in Sect. 17.3, followed by the problem in Sect. 17.4. The
case is explored in Sect. 17.5. The last section is reserved for the conclusion and
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future recommendations (Sect. 17.6). A flow diagram of the study is shown in
Fig. 17.1.

17.2 Demand-Side Management

Demand-Side Management (DSM) aims to use power efficiently by monitoring and
controlling the consumer demand. DSM is comprised of policies and measures
encompassing a wide range, from long-term energy efficiency programs to real-time
control of distributed energy sources (Lampropoulos et al. 2013). Hence DSM
programs either reduce or shift power consumption. A reduction in consumption is
enabled by energy efficiency studies (Mohsenian-Rad et al. 2010). Whereas, time
dependent pricing studies are focused on shaving the peaks by changing the hourly
consumption levels without changing total daily electricity consumption. Power
request stability is considered very important for the power suppliers; generating
energy without peaks increases the efficiency (Yang et al. 2012). The supply side
has raised this point for years and thus they played an important role in early DSM

Fig. 17.1 Flow diagram of the study
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studies (Tembine 2016). One of the main reasons for a DSM application is to
augment the stability of power grids.

A DSM program is specifically designed for a particular country or region.
During the design of the program, technical, economic, and political conditions are
considered. Moreover, in the program application process, energy sources, gener-
ation capacities, and potential values should be taken into account (Bergaentzle
et al. 2014). The evolution of smart grids has been the biggest contributor to DSM
improvements and increased the number of implementations (Lampropoulos et al.
2013). Smart grids consist of smart meters and surveillance systems with the ability
to facilitate management of consumption with respect to hourly prices.

The other significant approach we encounter in DSM studies is that of micro-
grids. They are convenient for DSM implementations because of their structure.
DSM and power scheduling studies have frequently been seen in microgrids as
well. Marzband et al. (2013) proposed a scheduling model for day-ahead and
real-time market using previously proposed algorithms. By using a gravitational
search algorithm in a similar system, they attained reductions in peak consumption
and costs in a way that fits the fundamental purposes of DSM studies (Marzband
et al. 2014).

Mohsenian-Rad et al. (2010) was one of the first studies where a scheduling
game approach was constructed for residential power consumers. The model
assumes multiple energy consumers and a single supplier; the consumers are
players who employ a strategy based on a daily energy consumption schedule.
Another scheduling game was designed by Bahrami and Parniani, which focused
on the charging requirements of electric vehicles (Bahrami and Parniani 2014).
Chen et al. (2014) searched for the uniqueness of Nash equilibrium by modeling a
cooperative game to minimize the personal energy costs of selfish players
Mangiatordi et al. (2013) proposed a multi-objective particle swarm optimization
algorithm to lead to the equilibrium point of a non-cooperative game for a dynamic
electricity pricing structure. Yang et al. (2012) designed a game with separate utility
functions for consumers and generators; this study resulted in an identification of
user satisfaction levels and found the effect of demand variability on costs. Su and
Huang set up a game theory model to discuss the “Energy Internet” concept.
Where, three different models are proposed for different kinds of energy cells.

Unlike other studies, the Nash equilibrium equation is turned into an opti-
mization problem using the Nikaido–Isoda function (Su and Huang 2014). Wu et al.
(2011) used dynamic potential game theory by setting up a model similar to the
model of (Mohsenian-Rad et al. 2010). Chen et al. (2011) used a Stackelberg game
in which the power generator is the leader while the consumers are followers.
Sheikhi et al. (2015) modeled a game in which the minimization of electric costs is
considered in order to be able to adapt current energy management units into smart
units. Nwulu and Xia determined hourly electric prices that are to be offered to
customers by using multi-targeted optimization and game theory. (Nwulu and Xia
2015). In an analytically strong paper using an oligopolistic setting, Allaz and Villa
utilize a Cournot-like approach and the prisoner’s dilemma to show that the
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introduction of a single forward market reduces the supplier’s market power (Allaz
and Vila 1993).

In most of the above articles, two-way communication between power genera-
tors and consumers is possible. Most of them use real-time pricing.

Self-power generating case in a developing country is different from the above
studies in three areas:

1. There is no smart grid infrastructure, therefore, no two way communication;
2. Holdings own the chemical product producer; the paper & pulp manufacturer

and woodwork at the same site and only care the total cost of energy;
3. Prices are set by the regulatory organization for 24 h and differentiations from

the committed generation are fined by penalties.

17.3 Methodology

Marzband et al. used several algorithms in different kinds of microgrid systems in
order to attain optimal scheduling for the purpose of optimal energy management.
They used the imperialist competitive algorithm and the Taguchi algorithm in
Marzband et al. (2015), artificial bee colony optimization in Marzband et al. (2015),
the imperialist competitive algorithm in Marzband et al. (2015), and finally, ant
colony optimization in Marzband et al. (2016). It is observed that when two-way
communication does not exist, it is no more deterministic and to be handled by
Bayesian approach.

In this study, we propose a combination of mixed integer nonlinear program-
ming (MINLP) and a Bayesian game, an approach that—to our knowledge—has
never been used in the DSM literature.

When only some of the variables in a mathematical model are constrained as
integers, we call this mixed integer programming. For example, max z ¼
x1 þ x2 subject to; x1 þ 2x2 � 10 and x1 � 0; x2 integer: On the other hand, when at
least either the objective function or the constraint function is nonlinear, the
mathematical model is called nonlinear. Therefore, when one or more functions of a
mixed integer mathematical model are nonlinear, it is called mixed integer non-
linear programming (Winston 2004). For instance, when the objective function in
the above model is z ¼ x1 � x2; it becomes an MINLP model.

As the second method, Bayesian game is used to model cases with incomplete
information. The important novelty of Bayesian game is the notion of “type,” which
was introduced by Harsanyi in 1967. The impact of the game components on the
utility of the players can be seen as natural effects. Nevertheless, type has to do with
the willpower of the player and it reflects his decisions (Lasaulce and Tembine
2011).

According to Harsanyi’s model (1967), a Bayesian game is expressed as follows.

17 Multi-Site Energy Use Management in the Absence … 379



G ¼ N; fTigi2N ; fSi Hið Þgi2N ; p H�ijHið Þ; fuigi2N
� � ð17:1Þ

where,

N ¼ 1; 2; . . .; nf g is a set of players;
Ti ¼ hi1; hi2; . . .f g is the type set for every player i;
Si Hið Þ is the possible strategies set for a player i who has chosen type

Hi;
pðH�ijHiÞ is the belief distribution of player i with type Hi in that the

types of others are H�i; ui is the objective function of player i.

The Bayesian–Nash equilibrium of game G is an optimal strategy vector of
s� s�1; s

�
2; . . .; s

�
n

� �
; if and only if Eq. (17.2) is valid for all i players and Hi types

(Lasaulce and Tembine 2011).

s�i Hið Þ 2 argmakssi
X
H�i

p H�ijHið Þ � ui si; s�i H�ið Þ;Hi;H�ið Þ ð17:2Þ

The intersection of Bayes rules and game theory appears to be in p belief
functions. The Bayes rule says that P AjBð Þ ¼ P BjAð Þ : P Að Þ½ �= P Bð Þ½ � is valid for
events “A” and “B” (Doya et al. 2011). The beliefs of players are also updated by
that rule in Bayesian games.

17.4 The Solution Proposed for Load Balancing
in the Absence of Smart Grids

17.4.1 Problem and Proposed Model

The problem under consideration and the proposed solution are aimed at a DSM in
Turkey, where there is not yet a smart grid implementation. Nevertheless, there are
organized industrial centers trying to redesign their power consumption schedules
through manufacturing processes to obtain reductions in power costs and to con-
tribute to the stability of power lines in the general grid. For instance, factories
producing stock such as paper and pulp, and chemical and metal sites commonly
use immense amount of power. The time scheduling for energy use among these
factories can be negotiated to improve load balancing.

In the problem, grid conditions using three-time TOU rates are applied.
Multi-time rate terms and current unit electricity prices in Turkey are given in
Table 17.1.

For a district with high demand, developing schedules for cooperative con-
sumption will remove grid instability, and improve the efficiency of power usage.

As long as the case is applying stock based production, without any change in
demand on the manufacturing side and without changing the total daily electricity
consumption, schedules can be planned to switch the power utilization times of

380 Z. Bektas et al.



certain electrical devices. To participate in such a study, production-planning teams
must be flexible enough to shift their load usage (Alvarez et al. 2004). Furthermore,
no load schedules are ignored during cases where energy generation is run to
respond 24 h a day, 7 days a week. Synchronized machine loading is still critical.

The primary objective is to flatten the peaks in the load curves where power is
consumed. Thus, the electrical devices in the factories must be inspected to dif-
ferentiate the shiftable and the non-shiftable devices. This will allow the working
hours of a device to be shifted to another hour during the day. For example, lighting
equipment is non-shiftable whereas an oven can be operated at different hours in
line with the production schedules.

The general approach with two-time rate plans in the load shifting programs is to
change consumption for a whole day ratio, or a peak-to-average (PAR) consumption
ratio (Lopez et al. 2015). Unlike generally accepted ratios, which are prepared for
two-time rates, we need at least two ratios for a three-time rate structure.

The objective function pursued is constructed to distribute the total daily load
equally. Each factory has to design the individual load curve while affecting the
general load curve of the district. In our case, there is no smart grid structure;
therefore, factories can only communicate once every 24 h, not on an hourly basis.
This fact necessitates the use of a holistic point of view to study the district. The
usage of a multi-directional communication network is replaced by a Bayesian
game, undertaking a mutual optimization with a central control system.

In the first step of a two-stage method, we obtain alternative solutions for the
MINLP model. Later, in the second stage, these alternative solutions will be
evaluated using a Bayesian game in order to achieve a cooperative solution that is
best for every player.

17.4.2 First Stage: Model for Power Consumers

The first step is to construct an indicator that will include the changes in machine
usage rates and to reflect the transmission between the rate terms as indicated in
Zhao et al. (2014). Minimizing this indicator will satisfy our goals. The indices,
variables and parameters of the model are given in Table 17.2.

In this model, lijt is the power consumption of the jth machine of the ith factory
at hour t if the machine is used which is represented by yijt being 1. For a clear

Table 17.1 Time-of-use rate terms and prices in Turkey (National rates. Republic of Turkey
Energy Market Regulatory Authority 2015)

Hour interval Unit price ($/kWh)

Normal 06:00–17:00 0.07

Peak 17:00–22:00 0.12

Off peak 22:00–06:00 0.03
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understanding of the consumption schedule that is obtained by lijt, Table 17.3 is
given in a matrix form for factory i. The aim is to reduce the total values of the
columns, without changing the total values of each row.

The assumptions are summarized below.

1. Every factory in the district works 24 h in three 8-hour shifts.
2. The factories use three-time TOU rates in the presence of smart meters, which

enable saving data with a time dimension.
3. The production activities of the factories are not interrupted during shift chan-

ges. The machines continue to work, so every machine has one setup process in
a day. From start of work to the end, li;j;t is greater than 0 and yi;j;t is equal to 1
for the jth machine of the ith factory.

Table 17.2 Nomenclature used in the MINLP model

i: Factories

j: Electrical devices for each factory

t: Hours of day (t = 1, 2, …, 24) (i.e.; t = 2 means the hour between 01:00 and 02:00)

li;j;t: The load used by device j of factory i during the hour t (kWh)

yi;j;t: The binary variable shows that device j of factory i works or not during the hour t

Li;t: The total load used by factory i during the hour t (kWh)

L:t: The total load used in the district during the hour t (kWh)

Ln: The average hourly load used in the district during a normal period (kWh)

Lni : The average hourly load used in factory i during a normal period (kWh)

Lp: The average hourly load used in the district during the peak period (kWh)

Lpi : The average hourly load used in factory i during the peak period (kWh)

Lo: The average hourly load used in the district during the off-peak period (kWh)

Loi : The average hourly load used in factory i during the off-peak period (kWh)

si;j: The daily required time to work device j of factory i (hour)

wi;j: The load used by device j of factory i for one hour of work (kWh)

di;j: Setup time for device j of factory i to start to work (hour)

dotp: Number of hours in the peak period

dotn: Number of hours in the normal period

doto: Number of hours in the off-peak period

Table 17.3 Daily electrical energy consumption schedule for factory i

0:00–1:00 1:00–2:00 … 23:00–0:00

Device 1 li;1;1 li;1;2 … li;1;24
Device 2 li;2;1 li;2;2 … li;2;24
⋮ ⋮ ⋮ ⋮

Hourly total loads of factory i Li;1 Li;2 … Li;24

382 Z. Bektas et al.



4. The total power consumption for each device, each factory, and the district are
constant each day.

For the three-time rate structure in Turkey, the argument is that besides reducing
peak usage, it would be very beneficial to also use models that encourage and
therefore increase off-peak use. That is why we decided to determine an indicator
that captures interphase transfers, which consists of changes to all rate terms.
Minimizing such an indicator in the objective function will represent the real
objective better and also be different than previous works Table 17.2.

Since the objective is to flatten the daily load curve, the intention is to make the
rate terms, which are sorted from largest to smallest, converge with each other. This
can be achieved by both decreasing the peak-to-normal ratio and the
normal-to-off-peak ratio. The best way to minimize these two ratios in the same
objective function is to use a specific form of these variables by summation.
Mathematically speaking, the benefit is two-fold. First, it prevents the variables
from disappearing due to simplification. Second, it preserves the structures of the
ratios and preserves what they represent. Therefore, a new indicator is proposed that
is suitable for the three-time rate structure as shown in Eq. (17.3).

Lp

Ln
þ Ln

Lo
¼ Lp:Lo þ Lnð Þ2

Ln:Lo
ð17:3Þ

By minimizing this indicator, transitions are smoothened and the load curve is
flattened. Thus, Lp for peak, Ln for normal, and Lo for off peak are formulated below
with respect to the three-time in the rate periods for Turkey; i.e., dotp, dotn, doto are
equal to 5, 11, and 8 h, respectively.

Lp ¼ L:18 þ L:19 þ L:20 þ L:21 þ L:22
dotp

ð17:4Þ

Ln ¼ L:7 þ L:8 þ L:9 þ L:10 þ L:11 þ L:12 þ L:13 þ L:14 þ L:15 þ L:16 þ L:17
dotn

ð17:5Þ

Lo ¼ L:23 þ L:24 þ L:1 þ L:2 þ L:3 þ L:4 þ L:5 þ L:6
doto

ð17:6Þ

The objective function can be rearranged to adapt to various rate structures. The
summation relations between themain decision variable of themodel li;j;t and the related
variables must be added to the model as constraints (17.7) and (17.8). The variable L:t

will be used to examine hourly total loads of the district, after obtaining the results.

Li;t ¼
X
j

li;j;t 8 i; t ð17:7Þ

L:t ¼
X
i

Li;t 8 t ð17:8Þ
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Because there is no change in the daily total power consumption in the district,
daily consumption of each factory and electrical device is defined as constants.
They are expressed in the constraints (17.9), (17.10), and (17.11) in which c2i is a
vector and c3i;j is a matrix.

X24
t¼1

L:t ¼ c1 ð17:9Þ

X24
t¼1

Li;t ¼ c2i 8 i ð17:10Þ

X24
t¼1

li;j;t ¼ c3i;j 8 i; j ð17:11Þ

Equation (17.11) expresses each shiftable or non-shiftable device of a given
factory as having a constant daily total load usage. However, for non-shiftable ones,
li;j;t is equal to a c4i;j;t three-dimensional constant matrix that will be known in
advance for these cases. The shiftable ones constitute the most important part of the
problem; only Eq. (17.11) is valid for these shiftable devices. The hourly required
load of a device is always the same with respect to its technical features denoted by
wi;j. Therefore, li;j;t is equal to 0 or wi;j for these devices theoretically. It is assured
by Eq. (17.12).

li;j;t ¼ yi;j;t � wi;j 8i; j; t ð17:12Þ

As an example, a shiftable device is the first device in the second factory and it
uses 100 W in an hour. If the total consumption for that device is foreseen in the
second row, the first column of the matrix is 400 W. The device has to work for 4 h
a day. That is why l2;1;t will be equal to 0 at any 20 t value, and 100 at other 4 t
values in all cases. This is shown by constraints (17.13) and (17.14).

X24
t¼1

li;j;t � si;j � wi;j 8i; j ð17:13Þ

X24
t¼1

yi;j;t � si;j 8i; j ð17:14Þ

On the other hand, the usable hours of a shiftable device are not completely
flexible. Flexibility occurs according to the needs of the factory and the work
sequences of the machines. For these devices, working intervals will be decided by
solving the model. The work sequences of the machines shape these intervals.
There may be more than one work sequence for electricity consuming devices in a
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factory. For instance, there may be a work sequence between machines 1-2-3-4, and
separate from this; there may be a different sequence between machines 5-6-7.
Work sequences and their setup times for each can be obtained as data.

Every work sequence can start after a certain setup time has passed at the
beginning of the 24-hour period. This, however, does not mean that every sequence
is going to start exactly at that time. It only means that the sequences are not going
to start before that time. Therefore, the constraints for the work sequences consist of
shiftable devices as written in (17.15) and (17.16).

If t� di;j then yi;j;t ¼ 0 ð17:15Þ

For machine j which is the first element of a sequence for factory i;

If
Xt� þ si;j�1

t� � di;j

yi;j;t ¼ si;j; then
Xt� þ si;j�1

1

yi;jþ 1;t ¼ 0 for following devices ð17:16Þ

Here, the index of jþ 1 expresses the device that follows j in the work sequence.
Eventually, the system constraints of the model are given in (17.17) and (17.18).

li;j;t � 0 8 i; j; t ð17:17Þ

yi;j;t 2 0; 1f g 8 i; j; t ð17:18Þ

This model is solved for each factory by using the GAMS (General Algebraic
Modeling System) software.

17.4.3 Second Stage: Bayesian Games in a Cooperative
Multi-Consumer System

A load management study is run for a single power line with multiple consumers
without a smart grid infrastructure. A Bayesian game is structured to obtain mutual
optimal load curves for the factories that collaborate to accept the necessary load
changes. Let us explain why we use a Bayesian structure. There are two types of
management in the proposed DSM system; the first one is the DSM manager (i.e.,
DSMr) who answers to the conglomerate; and the second one is the set of the
managers of the respective factories, who again answer to the conglomerate. The
factory managers are responsible for continuous production, and therefore, they
may impose one of the appropriate schedules that fit in with their production plans.
The DSMr, on the other hand, is responsible for the load balance in the district,
which accommodates the factories. Since there is no two-way digital communi-
cation infrastructure and since each factory manager choses his schedule inde-
pendently (and taking the choices of other factory managers’ decisions as given),
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there is incomplete information. Regarding the strategies (here, the schedules) of
the factory managers, the extent of information that the DSMr has is only
stochastic. This, needless to say, fits quite well within the Bayesian game approach.

The game model starts with the solutions for the MINLP model for each factory.
These solutions are electricity consumption schedules. Like (Chen et al. 2014), not
only the optimal solutions, but also all the feasible ones are taken into consideration
for scheduling. Load flow is the concern of the DSMr, which is separate from all the
factories. The Bayesian game model uses the variables and the parameters given in
Table 17.4.

Only a certain number of feasible schedules appear for each factory. In the game
theory model, each feasible schedule is a vector of types for the given factory. The
schedule that a factory chooses is private information and not known to the other
players. That is, the schedule for each factory is taken as a given for the other
factories. The values of each player’s belief function can be given in Eq. (17.19).
Therefore, n :ð Þ is a function that gives the number of elements of a set.

p Hi ¼ hiji
� � ¼ 1

n Tið Þ 8 i; ji ð17:19Þ

The objective functions of players, ui Hi;H�ið Þ; are generated in Eq. (17.20).
The indicators are included in the objective function with negative coefficients,
because the game has the goal of minimization (not maximizing the benefits). Here,
Indi means the indicator value for player i, and Indd means the indicator value for
the whole district.

If Indi ¼
Lpi � Loi þ Lni

� �2
Lni � Loi

and Indd ¼ Lp � Lo þ Lnð Þ2
Ln � Lo ;

ui Hi;H�ið Þ ¼ � Indi Hið Þþ Indd Hi;H�ið Þð Þ
ð17:20Þ

Table 17.4 The variables
and parameters used in the
game model

i: Players i ¼ 1; 2; . . .; nð Þ
ji: Index of player i’s types

Ti: Set of player i’s types

hiji : ji th possible type of player i (hiji 2 TiÞ
Hi: Chosen type by player i (Hi 2 Ti)

H�i: Chosen types by players except i

p : Belief function

ui: Objective function of player i

s�i : Optimal strategy of player i

s�: Optimal strategy vector
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To solve the problem, the Bayesian–Nash equilibrium is constructed. The
s� s�1; s

�
2; . . .; s

�
n

� �
optimal strategy shows the equilibrium point defined by the

equation system below. Each strategy represents one action.

s�i 2 argmax
X
H�i

p H�ijHið Þ:ui Hi;H�ið Þ 8 i ¼ 1; 2; . . .; n ð17:21Þ

When the belief functions are transformed with respect to the rule, the equation
system for equilibrium becomes (17.22).

s�i 2 argmax
X
H�i

pðHijH�iÞ:p H�ið Þ
p Hið Þ :ui Hi;H�ið Þ

� �
8i ¼ 1; 2; . . .; n ð17:22Þ

Unlike other applications, the p Hið Þ are not independent since the DSMr can
make moves according to the belief of one player.

17.5 Case Study

In this section, we study the model framework described above to see how load
balancing can benefit the players when they cooperate. It is simply assumed that,
when the DSMr does not lead, each factory manager acts in his individual
self-interest. This is considered a non-cooperative behavior. In the “single DSMr
with multiple energy consumers” cooperative game, the first step is to collect the
data for the factories. The proposed MINLP model is adapted to each factory, and
feasible solutions are determined. Finally, the Bayesian game is constructed and
mutual optimal consumption schedules are determined.

17.5.1 Initial State of the Factories

In the district for which the case study will be realized, there are three factories (a
paper manufacturer, a detergent manufacturer, and a hygienic product manufac-
turer), which work 24 h, 365 days a year. The same conglomerate owns all the
factories, including the district. The district buys all of its power from the general
grid. The general grid pricing strategy for the district is a specific one, i.e., a
three-time electricity rate. The factories produce different goods using different
machines. The assumptions in Sect. 17.4.2 are valid for the factories. The shiftable
devices in the factories used in the manufacturing processes with their work
sequences and the data for hourly load requirements and device working hour
requirements are given in Figs. 17.2, 17.3, and 17.4.
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There are also non-shiftable devices in all three factories for which the working
hours cannot be allowed to change. Generally, there are six entries: lighting, power
usage for the buildings, electricity expenses for the dining hall for three shifts
separately, and electricity expenses for the management offices. The lighting and
general expenses over 24 h, including usage of the dining halls on the 5th, 13th and
21st hours of the shifts, and offices at the work hours of 08:00 and 18:00 are taken
to be active and fixed. The power consumption amounts for non-shiftable devices in
each factory are also given in Table 17.5.

M1
800 kWh -  
12 hours

M3
200 kWh -  

4 hours

M7
100 kWh - 

2 hours

M11
20 kWh - 

1 hour

M13
50 kWh - 
2 hours

M17
40 kWh - 
2 hours

M4
200 kWh - 

4 hours

M8
100 kWh - 

2 hours

M12
20 kWh - 

1 hour

M14
50 kWh - 
2 hours

M18
30 kWh - 
2 hours

M2
500 kWh -  
10 hours

M5
150 kWh -  

3 hours

M9
100 kWh - 

1 hour

M15
50 kWh - 
2 hours

M19
30 kWh - 
2 hours

M6
150 kWh - 

3 hours

M10
100 kWh - 

1 hour

M16
50 kWh - 
2 hours

M20
30 kWh - 
2 hours

Fig. 17.2 Shiftable devices and work sequences for the paper factory

M1
100 kWh -  
16 hours

M4
20 kWh -  
4 hours

M7
10 kWh - 
2 hours

M2
100 kWh -  
14 hours

M5
20 kWh -  
4 hours

M8
10 kWh - 
2 hours

M3
80 kWh -  
12 hours

M6
200 kWh -  

6 hours

M9
50 kWh - 
2 hours

M10
30 kWh –  

Fig. 17.3 Shiftable devices and work sequences for the detergent factory
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The model also requires the setup times for the first elements in the feasible
sequences. The setup times for the first elements in the work sequences in the
factories are as follows: d1;1 ¼ 1; d1;2 ¼ 2; d2;1 ¼ 1; d2;2 ¼ 1; d2;3 ¼ 1; d3;1 ¼
1; d3;2 ¼ 2 and d3;3 ¼ 2: All of the other di;j values are equal to zero.

M1
400 kWh - 
18 hours

M4
40 kWh -  
3 hours

M2
500 kWh - 
18 hours

M5
40 kWh -  
3 hours

M3
500 kWh -  
18 hours

M6
40 kWh -  
3 hours

Fig. 17.4 Shiftable devices and work sequences for the hygienic products factory

Fig. 17.5 Daily load curves for the paper factory

Table 17.5 Hourly load consumption for non-shiftable devices in the factories

Paper factory Detergent
factory

Hygienic products
factory

Lighting (kWh) 3 2.5 2

General expenses of the building (kWh) 2 1.5 1

Dining hall—1st shift (kWh) 0.5 0.5 0.5

Dining hall—2nd shift (kWh) 0.5 0.5 0.5

Dining hall—3rd shift (kWh) 0.5 0.5 0.5

Management offices (kWh) 2 2 2
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Considering all of these factors, the DSM study is run with the intent of con-
verging the hourly loads for a district that buys all of its power from the general
grid.

In this section, we present the power-consumption state of the district (and the
factories) under the timing schedule prior to DSM. This can be seen as a
non-cooperative behavior application on the part of the decision makers, i.e., the
consumption scheduling decisions of the three factories are based on individual
self-interest. Although all the factories belong to the same conglomerate, each
factory is independently managed on its own, and this includes the power man-
agement. However, they all have to account for their management. In the absence of
a DSMr, each factory individually determines its production schedule and con-
sumes an exogenous amount of electricity within a working day. However,
although the power consumption is fixed, its cost may be reduced significantly
simply by optimizing the timing of consumption, i.e., through DSM and a DSMr. In
the following sections, we will execute the aforementioned model to propose that
under DSMr, which can be seen as a cooperative attempt initiated by the DSMr
(and therefore, by the conglomerate), time scheduling is beneficial.

The initial state depends on the historical data. The potential values vary
depending on the number of devices in the factory and the hourly load of each
machine, are set when producing the hourly consumption data for a factory.

Two months of 24 h per day data are accumulated to be used for calculating the
average indicator and the daily costs. The current values are given in Table 17.6.
These cost values are the net costs originating from electricity consumption without
considering the tax, line loss, and illegal usage rates.

17.5.2 DSMr Efficiency

In this section, the benefits of DSMr will be examined. This can be seen as an
attempt to cooperatively determine the optimal power consumption schedule that
will reduce power costs.

The main aim of this stage is to find all feasible consumption schedules that
satisfy the constraints of our model. Thus, the sub-models for the factories are built
and coded. For instance, the total number of shiftable and non-shiftable devices for
the paper factory is 26. Therefore, the index of j is from 1 to 26. The sub-model for
the paper factory is given in (17.23).

Table 17.6 The current states for all three factories according to the district data

Paper factory Detergent factory Hygienic products factory The district

Indicator 2.12 2.35 2.61 2.33

Cost $1339.49 $385.18 $1816.87 $3541.54
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Min z ¼ Lp1:L
o
1 þ Ln1

� �2
Ln1:L

o
1

ð17:23Þ

Subject to,

� For total hourly load; L1;t ¼
X26
j¼1

l1;j;t 8 t

� For total daily load;
X24
t¼1

L1;t ¼ c21 c21 ¼ 18541:5

� For non� shiftable devices;

y1;21;t ¼ 1 and y1;22;t ¼ 1 8 t

y1;23;t ¼ 1; if t ¼ 5
0; otherwise

�
y1;24;t ¼ 1; if t ¼ 13

0; otherwise

�

y1;25;t ¼ 1; if t ¼ 21
0; otherwise

�
y1;26;t ¼ 1; if 9� t� 18

0; otherwise

�

• For hourly load of devices wrt whether a device works or not, l1;j;t = y1;j;t:w1;j

8 j; t

� For each device to complete the daily load;
X24
t¼1

l1;j;t ¼ s1;j w1;j 8 j

� For each device to complete the required hours;
X24
t¼1

y1;j;t ¼ s1;j 8 j

• Defining the setup times, y1;1;1 ¼ 0, y1;2;1 ¼ 0 and y1;2;2 ¼ 0
• For the work sequence of M1-M3-M7-M11-M13-M17,
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� If y1;1;t ¼ 1;
Xtþ s1;1�1

t

y1;1;t ¼ s1;1 and
Xtþ s1;1�1

1

y1;3;t ¼ 0 8 t

� If y1;3;t ¼ 1;
Xtþ s1;3�1

t

y1;3;t ¼ s1;3 and
Xtþ s1;3�1

1

y1;7;t ¼ 0 8 t

� If y1;7;t ¼ 1;
Xtþ s1;7�1

t

y1;7;t ¼ s1;7 and
Xtþ s1;7�1

1

y1;11;t ¼ 0 8 t

� If y1;11;t ¼ 1;
Xtþ s1;11�1

t

y1;11;t ¼ s1;11 and
Xtþ s1;11�1

1

y1;13;t ¼ 0 8 t

� If y1;13;t ¼ 1;
Xtþ s1;13�1

t

y1;13;t ¼ s1;13 and
Xtþ s1;13�1

1

y1;17;t ¼ 0 8 t

� If y1;17;t ¼ 1;
Xtþ s1;17�1

t

y1;17;t ¼ s1;17 8 t

• For other work sequences M1-M4-M8-M12-M14-M18, M2-M5-M9-M15-M19,
and M2-M6-M10-M16-M20, the constraint sets are written in the same way.

• System constraints are: l1;j;t � 0 and y1;j;t 2 0; 1f g 8 j; t.
The sub-models for the 2nd and 3rd factories are also implemented similarly. For

the 2nd factory, the index of j is from 1 to 16, and for the 3rd factory, it is from 1 to 12.
The solutions are achieved using the GAMS Distribution 21.6 program, with the

CPLEX solver. Four different feasible consumption schedule alternatives are found
for the paper factory and hygienic products factory. Only three alternative schedules
are feasible for the detergent factory. Alternative schedules achieved through the
execution of the MINLP model are shown in Table 17.7.

The types and beliefs can be determined using the alternative schedules shown in
Table 17.7. Each alternative is given the equal chance. If there are four alternatives,
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the probability of choosing one of the schedules is 0.25, which is the case for both
player 1 (paper factory) and player 3 (hygienic products factory). For player 2
(detergent factory) there are only three alternatives, thus, for each, the probability is
0.33.

Under these conditions, the following sets are defined for the three-player
cooperative Bayesian game.

i ¼ 1; 2; 3
j1 2 T1 ¼ h11; h12; h13; h14f g
j2 2 T2 ¼ h21; h22; h23f g

j3 2 T3 ¼ h31; h32; h33; h34f g
ð17:24Þ

At this point, it should be noted that each type of h1j1 , h1j2 , h1j3 are vectors with
24 elements. The objective Eq. (17.20) and the belief vectors are used to calculate
values of the objective functions in all combinations. The objective values that are
composed are 4 	 3 	 4 size for each player. Table 17.8 shows the example for
player 1. The values are calculated similarly for players 2 and 3.

The equilibrium equations of the game are written according to the vectors of the
objective values. Since n = 3 is used in Eq. (17.21), the triple equation system takes
the form of (17.25), (17.26), and (17.27).

s�1 2 argmax
X
H�i

pðh2j2 \ h3j3 jh1j1Þ:u1 h1j1 ; h2j2 ; h3j3
� � ð17:25Þ

s�2 2 argmax
X
H�i

pðh1j1 \ h3j3 jh2j2Þ:u2 h1j1 ; h2j2 ; h3j3
� � ð17:26Þ

Table 17.8 The objective
values table for player 1

h21 h31 h32 h33 h34
h11 −3.595 −3.742 −3.571 −3.631

h12 −4.807 −4.992 −4.778 −4.852

h13 −4.177 −4.342 −4.151 −4.217

h14 −3.847 −4.003 −3.823 −3.885

h22 h31 h32 h33 h34
h11 −3.577 −3.722 −3.554 −3.613

h12 −4.783 −4.965 −4.754 −4.827

h13 −4.157 −4.319 −4.131 −4.196

h14 −3.828 −3.982 −3.804 −3.865

h23 h31 h32 h33 h34
h11 −3.610 −3.758 −3.586 −3.646

h12 −4.828 −5.015 −4.798 −4.873

h13 −4.195 −4.361 −4.168 −4.235

h14 −3.864 −4.021 −3.839 −3.902
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s�3 2 argmax
X
H�i

pðh1j1 \ h2j2 jh3j3Þ:u3 h1j1 ; h2j2 ; h3j3
� � ð17:27Þ

The belief functions are transformed with respect to the Bayes rule and
Eq. (17.22) is modified according to the triple system, and the sets in (17.28),
(17.29), and (17.30) are achieved.

s�1 2 argmax
X
H�i

pðh1j1 jh2j2 \ h3j3Þ:p h2j2 \ h3j3
� �

p h1j1
� � :u1 h1j1 ; h2j2 ; h3j3

� �" #
ð17:28Þ

s�2 2 argmax
X
H�i

pðh2j2 jh1j1 \ h3j3Þ:p h1j1 \ h3j3
� �

p h2j2
� � :u2 h1j1 ; h2j2 ; h3j3

� �" #
ð17:29Þ

s�3 2 argmax
X
H�i

pðh3j3 jh1j1 \ h2j2Þ:p h1j1 \ h2j2
� �

p h3j3
� � :u3 h1j1 ; h2j2 ; h3j3

� �" #
ð17:30Þ

When the given equilibrium equations are solved, for each type vector, the initial
values for the beliefs are calculated and updated using the Bayes rule. The starting
point for creating the probability of the beliefs is the fact that the players will play
for the strongest advantage; thus, probability for the strongest advantage will be
1 and the probability for the weakest advantage will be zero. When three players are
considered, using the above concept for finding the conditional probability
p h11jh21 \ h31ð Þ with totally different beliefs will result in the probabilities calcu-
lated in Table 17.8.

The beliefs are updated as to DSMr, where the DSMr is assigned the highest
return with belief 1 and the rest are assigned belief 0.

A sample scenario is designed as player 1, player 2, and player 3 choosing type 1
schedules of their own: The conditional probability of p h11jh21 \ h31ð Þ reflects the
decision of player 1. In this case, as seen in the objective values tables, player 1 can
gain −3.595, −4.807, −4.177, or −3.847, respectively. From these values, choosing
the first type by player 1 provides the highest benefit, i.e., −3.595. Therefore, the
DSMr assigns 1 to the situation where player 1 chooses its first type, and assigns 0
to the other three situations for which player 1 chooses one of the other types by
acting rationally. When all the actions are evaluated in a similar way, the following
result is obtained.

pðh11jh21 \ h31Þ:p h21 \ h31ð Þ
p h11ð Þ � u1 h11; h21; h31ð Þ ¼ 1: 0:25:0:33ð Þ

0:25
� �3:595ð Þ

¼ �1:18635

All possible scenarios for the type choices of the three players (e.g., player 1
chooses type 2 for itself, player 2 and player 3 choose type 3 for themselves; player
1 and player 3 choose type 4 for themselves and player 2 chooses type 3 for itself,
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etc.,) are mathematically expressed in the same way. When Eqs. (17.28), (17.29),
(17.30) are solved by replacing all the unknowns with the values obtained, the
equilibrium point of the Bayesian game is the set s� s�1 ¼ h11; s�2 ¼ h22; s�3 ¼ h33

� �
.

To express the solution with respect to a definition of the Bayesian–Nash equi-
librium, since Eq. (17.2) is valid for all players and all types of each, the set
s� s�1 ¼ h11; s�2 ¼ h22; s�3 ¼ h33
� �

is the optimal strategy for the Bayesian–Nash
equilibrium. This means that the paper factory chooses its first type, the detergent
factory chooses its second type, and the hygienic products factory chooses its third
type.

When the obtained s� s�1 ¼ h11; s�2 ¼ h22; s�3 ¼ h33
� �

equilibrium point is evalu-
ated in terms of each player, it is seen that it gives the best strategy even in the case
where some players have acted selfishly. Thus, the objective values are 1.17282 for
the paper factory, 0.79449 for the detergent factory, and 1.53285 for the hygienic
products factory. It can be observed in the objective values tables that none of the
players can achieve a better advantage by applying a different strategy. One opti-
mum strategy is obtained as stated in an existence theorem that says, “if the sets of
players, actions and types are finite, then there is at least one Bayesian–Nash
equilibrium in the game” (Lasaulce and Tembine 2011).

17.5.3 Results and Discussions

The Bayesian–Nash equilibrium leads us to the optimal strategy whereby the paper
factory chooses its first alternative schedule, the detergent factory chooses its
second alternative schedule, and the hygienic products factory chooses its third
alternative schedule. These choices contribute to cost reductions for both the fac-
tories and the district management. The improvements on the current state—the
non-cooperative game before the DSM study—are shown in Table 17.9.

As shown in Table 17.9, the indicators are minimized for all the factories and the
district using the LP model. The number of reductions varies based on the number
of machines used, the amount of power used by each machine, and the flexibility in

Table 17.9 Values before and after the study

Indicator value
(initial state)

Indicator value
(with DSMr)

Cost value per
day (initial state)

Cost value per
day (with DSMr)

Paper factory 2.12 1.49 $1339.49 $1049.82

Detergent
factory

2.35 2.13 $385.18 $354.69

Hygienic
products
factory

2.61 2.58 $1816.87 $1724.52

The district 2.33 2.06 $3541.54 $3129.03
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shifting the work hours. The value of the indicator is decreased 29.72% in the first
factory, 9.36% in the second factory, and only 1.15% in the last one, but the total
reduction is 11.59% for the district. The indicator value is a variable without unit,
and because of that, it is obtained by proportioning the average hourly loads (kWh/
kWh).

A remarkable saving is observed when the cost of daily power consumption is
calculated according to the alternative schedules. The cost of consumed electrical
energy for a day decreased by 21.63% in the first factory, 7.92% in the second
factory, 5.09% in the third one, and almost 11.66% for the whole district.

There are a few shiftable devices in the third factory with large levels of con-
sumption. Moreover, the power usage of those machines is not too flexible; that is
why the decrease in the indicator value of the third factory is less than the others.
The observations show that the indicator may be limited as the result of our model,
however, further cost reductions can be achieved in the long run.

The main goal of the study was to flatten the load curves by balancing hourly
electricity consumption. It can be seen from the load curves of the factories com-
pared in Figs. 17.5, 17.6, 17.7, and 17.8, that the proposed model allows for the
achievement of the main goal.

Figure 17.5 shows, in the load balance of the first factory, that the peak demand
is only at about 9:30 and there are numerous rises and falls in the hours following.
When the proposed model is applied and the schedules are chosen according to the
Bayesian game results, the regular flow is between 02:00 and 12:00 h at a lower
cost. It is also observed that the continuous rises and drops are smaller sizes after
the study. During the “peak rate” hours (between 17:00 and 22:00), the size of the
demand has quite diminished relative to the previous hours.

A similar trend is seen in the load balance graph for the second factory in
Fig. 17.6. Although the peak is observed at 14:00, a peak rate time, it drops
immediately and continues below the previous usage until the 24th hour.

Fig. 17.6 Daily load curves for the detergent factory
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The load balance curve for the third factory in Fig. 17.7 is somewhat different
than the other two due to less flexibility in the machines. It is kept in equilibrium for
quite a long period, which avoids the costs of fluctuations.

The most important load curve is the one for the district, which is seen in
Fig. 17.8. The graphic demonstrates the advantages of the proposed DSM model.
The peak demands are replaced between 03:00 and noon, where the rate with the
lower unit cost is used. After 12:00, a nearly smooth downward trend is obtained.
When the after-study graph is compared with the before-study graph, the entire

Fig. 17.7 Daily load curves for the hygienic products factory

Fig. 17.8 Daily load curves for the district
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smoothing out action is clearly observed since there had been a continuous fluc-
tuation beforehand, and peaks can be seen in the time ranges for the expensive
rates. It is clear that the proposed model also decreases the negative effects on grid
instability.

It is observed that only by using the optimized machine sequences in a coop-
erative way that the electricity costs for all the factories can be reduced. The price is
taken only for three-time rate structures; therefore, prices are not affected by the
changes in peak hours in each factory. The national grid declares prices for the three
different rate times the day before.

As expected, the number of machines that can be flexibly used has an effect on
the model. Therefore, the factory with the largest number of machines that could be
run at different hours achieved the biggest benefit in cost reduction by smoothing
the load. In the case of the DSMr, the overall benefits obtained are more important
than the single factory gains. In our case study, there seems to be a strong advantage
to using the DSMr. Thus, the primary goal of the proposed model is achieved. The
proposed model does not make any price prediction. In cases where there is a single
rate with fluctuating prices, the hourly prediction of prices should be included in the
model.

After obtaining the case study results, we can articulate the following policies for
manufacturing enterprises with multiple sites:

1. Power use priority should not be given to sites owning the maximum number of
machines. The site with the maximum number of machines could have the
maximum flexibility in machine use if the manufacturing site works to produce
to stock, not produce to order.

2. Smoothing the daily power load curves reduces the cost of energy in manu-
facturing; thus, energy efficiency considerations are not only valuable for saving
energy but also for saving money.

3. The most efficient use of power can be achieved at the Nash equilibrium point.
Total energy use can be smoother and the cost can be reduced if the scheduling
arrangements of the sites are made according to the Nash equilibrium, which can
be created depending on demand and machine capacities.

17.6 Conclusion and Suggestions

As technology advances, shares in total power demand and the importance of
electricity for human life have increased. Enhancements to new energy resources
and new technologies that promote efficient energy use have spread globally.
Research shows that the best use of electrical energy is only through improvements
in the efficiency of all the processes, namely, transmission, distribution, and con-
sumption. Smart grids and isolated grids are designed in developed countries to
satisfy efficiency improvements across all three stages.
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In our paper, a DSM-based load management model is proposed using the rate
model of a developing country. This research is original in the sense that load
shifting and flattening of the total district power curves is provided using a Bayesian
game where a smart grid or isolated grid is not used.

The study is framed for an industrial district with a single DSMr with three
factories (energy consumers). Recall that the district, the DSMr, and the factories
belong to the same entity. A DSM model is developed with the aim of flattening the
consumer load curves to minimize the grid instability caused by a district that does
not use two-way digital communication. Since there is no smart grid in the system,
the model is designed with the suggestion that every factory uses power con-
sumption schedules at the equilibrium point, so that no factory can obtain priority or
privilege. This can be designed since no option is given for power sales. The
preference is that cost reduction in the district is offered to the factories according to
their power consumption rate.

An indicator is created and calculated using an MINLP model. By solving the
model, the indicator values were decreased by almost 30%. Afterwards, a Bayesian
game is constructed to use the feasible schedules, creating reductions in daily power
costs up to 20%.

The objectives of the proposed DSM model are satisfied in the case study
experiments. The smoothing out and balancing of the energy load is achieved
without violating the existing production plans and changing total daily power
consumption of the district. Furthermore, optimum power-consumption schedules
are recommended for the factories. By applying the proposed two-stage DSM
model, load line instability is minimized while the power consumption costs of the
district are reduced.

The case study results and achievements allow the design of new policies for
energy efficiency considerations in developing countries.

Designing a new objective function for one-time rate users could develop the
model further. Varying usage of flexible machines will be a great improvement to
combine this model with the makespan studies. The case is taken for equally
important factories but the model can be improved based on conglomerate given
importances.

Our research will be continued to show the impact of Bayesian game structure
on isolated grids with the advantage of smart features. Moreover, future studies are
planned for the adoption of the proposed two-stage model in non-cooperative
environments in industrial centers, where multiple suppliers and multiple con-
sumers exist. Intraday law that permit buying from alternative suppliers and even
online will be interpreted in our future studies and the Energy Internet will certainly
be considered in an extension to this study.
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Chapter 18
A Systematic Approach to the Analysis
of Barriers and Drivers of the ESCO
Market in Turkey

Özgür Yanmaz, Cigdem Kadaifci, Umut Asan and Erhan Bozdag

Abstract This chapter suggests a new systematic approach to analyze the barriers
and drivers of energy service contracting. In order to identify the key barriers, the
proposed approach examines both direct and indirect causal relationships among
barriers and allows a systematic analysis of the actors’ roles in influencing the
market’s development. To justify the effectiveness and applicability of the proposed
approach, a case is provided where the energy service contracting market in Turkey
is examined.

18.1 Introduction

Energy efficiency has become one of the major concerns of many industries due to
the overall climate change, economic developments, fluctuating prices of energy
resources, technological innovations and increasing demand for renewable energy.
The increasing awareness of sustainable development in recent years has promoted
this growing interest. In this study, energy efficiency will be defined as “reducing
the energy consumption without causing any decline in production quality and
quantity in industrial establishments” (EIE 2007). By implementing energy effi-
ciency activities, firms may avoid waste, increase their productivity, and decrease
their costs and emission levels. These activities can be either outsourced or they can
be performed inside the firm by investing to the necessary assets such as workforce,
equipment, technology, etc. As a form of outsourcing, energy service contracting
plays a critical role in realizing energy efficiency improvements (Sorrell 2007).
These contracts, offered by energy service companies (ESCOs), provide an inclu-
sive service package to the clients that enable firms to deal with various difficulties
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in planning, implementing and monitoring their energy efficiency projects. The type
of contract mostly preferred by ESCOs suggests an energy savings offer to com-
mercial and industrial customers in which payments are subject to the energy
savings achieved or the renewable energy produced (Okay et al. 2008).

Although a trend of growth can be observed across many ESCO markets during
the past few years (Bertoldi and Boza-Kiss 2017), there are still certain factors
hindering the development of the energy service industry. Especially, capital
inadequacy of local firms, lack of effective risk management, transparency and
disclosure problems of firms, risk-averse approach of the banking system, difficult
to fulfill principles and procedures in the recent legal communiqué on ESCOs, and
insufficient knowledge of end-users and firms are some of the typical barriers
reported in the literature (Okay et al. 2008; Onaygil and Meylani 2007; Akman
et al. 2013). Recently, a number of articles and reports have been published that
identify and analyze key barriers and drivers for the development of the ESCO
markets. Most of these studies rely on survey data collected by means of ques-
tionnaires (Bertoldi and Boza-Kiss 2017; Kalangos 2017; Kindström et al. 2017
(among others)), in-depth interviews (Hannon et al. 2015; Sorrell et al. 2000) or
Delphi studies (Pätäri and Sinkkonen 2014). Providing either an overview of locally
relevant factors or of factors within a specific sector (see (Bertoldi and Boza-Kiss
2017)), the main concern of these studies is to group and prioritize these factors.
However, they do not employ any further systematic analysis to closely examine
the causalities and the relationships between the actors and barriers. Only few
studies suggest a systematic approach to analyze the causal relationships between
factors shaping the ESCO market. Fuzzy cognitive mapping (Asan et al. 2011),
fuzzy time cognitive mapping (Kadaifci et al. 2014) and DEMATEL (Basak et al.
2012) are methods employed for this purpose. These studies also ignore the roles
played by the main actors of the market.

In order to address the issues mentioned above, this chapter suggests a sys-
tematic approach that allows a detailed analysis of the barriers, drivers and actors of
the energy service contracting market. It does not only examine the barriers and
their direct causal relationships but also reveals important indirect relationships
which may change the priorities of the barriers. The proposed approach provides
also an overview of the interplay between the actors. Examining the actors’ plans,
motivations and the balance of power among them allows a better understanding of
the strategic issues of the energy service contracting market. To justify the effec-
tiveness and applicability of the proposed approach, a case is provided where the
energy service contracting market in Turkey is examined. In the recent past years
the energy industry in Turkey has undergone a change in terms of restructuring and
deregulation. The high growth rate of Turkey’s annual energy demand, the high
dependence on imports to meet the current demand, the high energy intensity of the
economy and the geopolitical position of Turkey indicate the need of further
energy-efficiency investments and also the necessity of planning, implementing and
controlling these investments (Turkyilmaz 2013). Experts who have knowledge and
experience on energy service contracting were involved in the process of
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determining the barriers, drivers, actors and their relationships. The findings pro-
vided the basis for developing strategies for the energy service contracting market
in Turkey.

The rest of this chapter is organized as follows. In order to familiarize the reader
with structural analysis and actors’ behavior analysis, the theoretical foundations of
the proposed approach are summarized in Sect. 18.2. In the following section the
proposed approach and its stages are presented. In order to demonstrate the
applicability and effectiveness of the proposed approach an application to the ESCO
Market in TURKEY is provided in Sect. 18.4. Finally, the contributions and lim-
itations of the proposed approach are summarized.

18.2 Theoretical Basis of the Proposed Approach

Scenarios are not intended to predict the future, instead they are stories for antic-
ipating it (Saritas and Aylen 2010) and are used when several interdependent
external and internal factors need to be considered and especially the future is
somewhat uncertain (Godet 1994). It seems unrealistic to predict a single future
while dealing with numerous interdependent factors, which the decision makers
may or may not have control on them, and the uncertainty about the future. Thus,
scenario methodologies are developed to consider all possible futures, to explore
alternative ways to reach them, and to show possible consequences (Godet 1994).
Among different scenario methodologies, the one belongs to the “la prospective”
school, is proposed by Michel Godet in order to (i) detect the priority issues,
namely key variables, (ii) determine the relationships between these variables and
the main actors related to the system under study, and how powerful these actors to
bring their projects into reality, and finally (iii) describe the system in form of
scenarios under some specific assumptions (Godet 1994).

In this study, the first two steps of the aforementioned scenario methodology,
which are two separate qualitative approaches, respectively called as MICMAC
(Matrice d’Impacts Croisés Multiplication Appliquéé a un Classement/Matrix of
Crossed Impact Multiplications Applied to a Classification) and MACTOR (Matrix
of Alliances and Conflicts: Tactics, Objectives and Recommendations), are used.
MICMAC allows to detect the priority issues, in other words the key variables
related to the scenario filed, and MACTOR provides a strategic point of view by
exploring actor-variable relationships and the power of these actors. In the fol-
lowing part, the theoretical basis of these approaches are given.

Cross Impact Analysis (CIA), developed by Gordon and Helmer in 1966
(Gordon 1994), is a means of forecasting futures considered possible interrelations
among future events (Chao 2008). The first application of this method was a game
for an aluminum production company to give players promotional gifts (Gordon
1994). Basically, the main concern of the very first version of CIA was to explore
how factors are likely to interact with each other (Porter and Hu 1990). Considering
the relationships through the effects of individual factors on others provide a useful
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tool to analyze the structure of the scenario field. Since then, the method has been
attracted attention of researchers and practitioners which result in several types of
CIA (including improvements and developments) and their applications in many
fields (Godet 1994; Chao 2008; Turoff 1972; Jeong and Kim 1997; Parashar et al.
1997; Bañuls et al. 2010; Turoff and Bañuls 2011; Villacorta et al. 2014). By these
improvements and developments in the method, it is evolved from considering only
the occurrence or not occurrence probabilities of events to taking the conditional
probabilities into account (Porter and Hu 1990).

All developed versions of CIA can be classified into three groups (Asan et al.
2004): probabilistic (i.e. quantitative), deterministic (i.e. qualitative), and fuzzy. In
quantitative CIA, a mathematical model considering the initial probabilities of all
determined events in the selected area and the existing interrelationships is built
(see (Gordon 1994)), while in qualitative one, interrelations among the events are
assessed by a group of experts in form of rating values (Villacorta et al. 2014). By
using qualitative techniques, one of major critics on probabilistic CIA partially
disappear, which means experts do not need to identify the initial probabilities,
conditional probabilities, and/or joint probabilities of events at all, they are only
asked for the linguistic assessments or the strength of the interrelationships via
determined scales (Weimer-Jehle 2006). Finally, fuzzy CIA enables researchers to
make assessments in fuzzy or linguistic form in order to deal with the uncertainty
caused by the lack of information (Asan et al. 2004).

After determining the key variables, the actors and their objectives related to the
system need to be identified. Key variables provide a manageable scenario building
process by dealing with a few critical factors, namely the most influential, depen-
dent, and key factors, instead of all of them, but they constitute only one single
dimension of the process. The actors in the system have different objectives either
compatible or incompatible with the system’s overall objectives and they may take
several actions to reach their own goals. Thus, the moves of actors, their actions,
and the balance of power need to be examined (Godet 1994). Examining the
relationships between the actors as well as their role and power on the specific
topics concerning the subject and on each other provide a significant information to
build more realistic and reliable scenarios.

The MACTOR method, developed in 1985, is based on a structural analysis
which identifies actors and key strategic issues (Heger et al. 2010), relationships
between actors, potential alliances and conflicts, and also the balance of power
(Munteanu and Apetroae 2007). As pointed out by the developer of the MACTOR
method, Michel Godet, “In order to identify the most probable results, it is nec-
essary to fully understand the actors’ projects and intentions, their methods of
action on one another, coupled with the constraints imposed on them” (Godet
1982). The MACTOR method produces either a graphical representation which can
also be identified as a positioning map of actors based on their influence and
dependence values or the convergence and divergence matrices and maps. The
distances between actors show the potential alliances and conflicts by demon-
strating how convergent or divergent they are. Besides observing the relative
strength through convergence and divergence matrices and maps, the actors can be
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classified based on their position on the positioning map as dominant, dominated,
independent, and key actors (Munteanu and Apetroae 2007).

This qualitative scenario methodology consisting of two distinct and also
sequential methods provides scenario analysts a useful approach to deal with
interrelations among numerous factors and also among considerably high number
of actors. Even they are proposed as scenario tools, each can be separately or
successively used in many areas and for different managerial problems. In the scope
of this study, both MICMAC and MACTOR are used and a new approach to energy
efficiency studies is proposed in terms of ESCOs.

18.3 Proposed Approach

The proposed approach consists of two methods of scenario methodology:
MICMAC and MACTOR. Determining key variables in the selected area provides
a more compact and manageable scenario building process, while determining
particular actions corresponds to these key variables and key actors have a sig-
nificant power on taking these actions and examining the relationships between
them result in more coherent and reliable scenarios. Instead of identifying the
drivers directly based on the scenario field analysis, literature review, and/or expert
opinions, determining them by considering the key variables improves relevance of
the process of thought through the right questions asked to the actors (Godet 1994).
This approach aims to provide a new systematic way to recommend macro level
strategies to the leading actors who have a significant impact on the actions
determined. The proposed approach given in Fig. 18.1 is explained below in detail.

The MICMAC method proposed by Duperrin and Godet (1973) in order to
examine the key variables in the system by questioning the interrelationships
among them is a qualitative CIA technique and consists in the following steps:

1. Problem Analysis: The extent of the analysis and the scenario field are iden-
tified and described. The scenario analysts determine in which field the sce-
narios developed and in what extent the required data is collected. Thereby, the
initial data is collected in this step.

2. Variable Definition: Based on the collected data, variables related to the system
are determined and described. In this study, the barriers in ESCO market are
selected as variables, and from this point on, the term variable is used to refer to
the barriers.

3. Relationship Analysis: A committee of experts is formed for assessing the
relationships. These experts can either have a profession on the related scenario
field or be academicians and/or practitioners. Variables under consideration are
classified into two types of relationships: direct and indirect.

– Direct Relationships: A cross-impact matrix is formed to represent all
possible relationships between the variables and determine their
strengths. A pairwise comparison considers all interrelations by asking: “if
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Fig. 18.1 The proposed approach
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variable A changed, what would be its direct impact on variable B?”. These
assessments, performed directly by the experts, represent the direct rela-
tionships between the variables and used to classify variables based on their
sum of rows and sum of columns.

– Indirect Relationships: This type of relationships are not directly assessed by
the experts. Instead, the cross-impact matrix is multiplied by its consecutive
powers “to study the diffusion of impacts through reaction paths and loops”
(Godet 1994). To be more specific, after the assessments are completed, the
cross-impact matrix is raised to a certain power until the order of the sum of
columns (and also the sum of rows) remains same in the consecutive iter-
ations. By doing that, all possible ways from a particular variable to others
are examined. This final matrix, which satisfies the stopping criteria,
becomes the basis of the classification of variables based on their influence
and dependence values (Godet 1994). Indirect relationship can be analyzed
for the assessments of experts reached consensus, for the average or for the
individual assessments.

4. Chart Analysis: To interpret the results, an influence-dependence chart, which
is a two-dimensional graph drawn based on the influence and dependence
values, is prepared (Godet 1994). On the influence-dependence chart, the ver-
tical axis represents the degree of influence and the horizontal axis represents the
degree of dependence (see Fig. 18.2). The chart, prepared for both the direct and
indirect relationships analysis, includes four regions which are used to classify
variables as influential, key, dependent, and excluded variables.

For a classified variable, being influential means that the relevant variable has a
considerable impact on the other variables in the system and despite its high impact,
other variables have almost negligible impact on it. On the contrary, dependent
variables are affected by influential and key variables. Highly influential and highly

Fig. 18.2 Influence-Dependence chart. Adapted from Godet (1994)
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dependent variables are key variables which cause a reaction of others in the system
in case of any change in these variables will occur. Lastly, excluded variables are
those which are not considered in the further scenario process.

The cut-off points of the influence-dependence chart can be calculated by using
the average ranks of the variables (Mariconda and Lurati 2015). But, in most cases,
the nature of the problem necessitates the experts to determine these imaginary
separation lines by considering the circumstances related to the system.

5. Key Variable Determination: The variables with both high dependence and
high influence are identified as key variables.

Based on the key variables (i.e. barriers) determined in CIA, the drivers corre-
spond to these variables and the actors have a considerable role in the system are
identified and relationships between them are analyzed to reveal the importance of
drivers and also the actual roles of actors on them to take strategic actions to deal
with existing barriers. In this study, the policies to be followed in ESCO market to
overcome existing barriers are selected as drivers, and from this point on, the term
driver is used to refer to the policies. The MACTOR method consists in the
following steps (Godet 1994):

1. Identifying Drivers Correspond to the Key Variables: The drivers corre-
spond to the determined key variables are identified and described. These dri-
vers represent strategic issues on which the actors confront each other, or in
other words on which the actor have convergent or divergent objectives.

2. Identifying Actors Related to the Problem on Hand: The key actors having a
direct or indirect control over the determined drivers are identified.

3. Assessing Actor-Driver Relationships: In order to run the MACTOR method,
there are two main inputs collected in two matrices. The first matrix is the
position matrix (MAO) that gives the position of actors over issues. The second
matrix (MDA) gives the direct relationships between actors. The matrix is used
to obtain agreement and disagreement coefficients, in other words convergence
and divergence of actors to the particular drivers.
The actor-driver matrix is prepared in order to examine the relationship between
the actors and the drivers. A group of experts assess these relationships by using
a predetermined scale where 0 indicates being neutral, +1 indicates being in
favor of and −1 indicates being opposed to a particular driver.

4. Building Direct and Indirect Relationship Matrices: To associate the impacts
of actors on drivers to the power of actors and to obtain the weighted
actor-driver matrix, the relationships between actors are examined. This step of
MACTOR method is based on the same principle as the MICMAC relationship
analysis. The direct relationships between actors are assessed by a group of
experts and by using matrix multiplication, the indirect relationships are
obtained. Note that only the second degree paths are checked, so the square of
the actor-actor matrix is calculated.
The actor-driver matrix and actor-actor matrix are merged by using a power
coefficient. Actors’ balance of power, a scalar determining the relative strength
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of each actor, is used in order to provide reasonable strategic recommendations.
Power coefficient for each actor is calculated by using Eq. 18.1 based on the
values in the indirect relationship matrix. If the scalar is high, the actor is in a
stronger position. Then, the balance of power coefficients is calculated by using
Eq. 18.2 to facilitate understanding and calculation.

ri ¼ MiP
Mi

� Mi

Mi þDi
ð18:1Þ

r�i ¼
ri
�ri

ð18:2Þ

where Mi is the total direct and indirect influence value of actor i, Di is the total
direct and indirect dependence value of actor i, ri is the power coefficient of
actor i and r�i is the balance of power coefficient of actor i.

5. Calculating the Weighted Matrix: The weighted matrix is obtained by mul-
tiplying the rows of actor-driver matrix by corresponding power coefficient to
show the convergence and divergence that reflect the strength of the actors.

6. Calculating Matrices and the Graphs of Convergence and Divergence: The
convergence and divergence matrices are calculated by using the weighted
matrix. To obtain the convergence (or divergence) values of each actor pair on a
particular policy, the values associated with these two actors are compared. If
these actors have the same position towards any policy (i.e. the sign of the
assessment is same), the absolute sum of the relevant assessments are calculated
and then it is divided by two. This absolute arithmetic average demonstrates the
common approach of these actors to the relevant policy. The average has a
positive sign to represent the convergence and a negative sign to represent the
divergence values. The convergence and divergence maps are prepared by using
the values in these matrices separately where actors are represented by nodes
connected by arcs, the thickness of which is proportionate to the intensity of the
convergence (or divergence) between pairs of actors (Bendahan et al. 2004).

18.4 Application

18.4.1 The ESCO Market in TURKEY

During the last decade, the energy industry in Turkey has been greatly affected by
the deregulation and restructuring activities. The global competitiveness has
become very critical and to become a powerful player in this competitive envi-
ronment, Turkey has to make difference with its technological innovations, effective
and efficient energy activities, production and service quality (Kadaifci et al. 2014).

According to the report of International Energy Agency in 2005, ESCOs were
not yet operating in the Turkish market, however energy efficiency activities have
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actually been being performed since 1995 in different sectors such as pharmaceu-
ticals, chemicals, automotive, agriculture, paint, food and beverages, airport, hos-
pital, and building by several medium-scale energy companies (Akman et al. 2013).
In Turkey, ESCOs (which are known as Energy Efficiency Consulting Companies)
operate as consulting firms which are state authorized and obliged to obey the
Energy Efficiency Law (EEL) and its communiqué, which primarily aims to
increase competitive advantage of Turkey in the global market (Akman et al. 2013).
Although the EEL has been developed in 2007 as a result of adapting with the
European Union accession period, the communiqué of the EEL related to ESCOs
was released in 2012. During the development process of this communiqué, ESCO
licenses have been suspended by the Ministry of Energy and Natural Resources
(MENR) and candidate companies had to wait until the regulations are approved
(Akman et al. 2013). Today, MENR, Energy Efficiency Coordination Board
(EECB) and General Directorate of Renewable Energy (GDRE) are responsible for
energy efficiency activities. The EEL promotes the efficient use of energy and
covers administrative structuring, energy auditing, financial instruments and
incentives, awareness raising and the establishment of an ESCO market for energy
efficiency services. With the EEL it is aimed to end the state monopoly and allow
private-sector participation in energy industries, aiming at cost-effective pricing
through competition (Okay et al. 2008).

A strategic plan for energy efficiency covering the years 2012–2023 have been
developed by General Directorate of Renewable Energy (EIE 2012). According to
this plan, the decrease in the amount of energy consumed per GDP of Turkey in the
year 2023 is targeted as 20%. The strategies reported in this plan, which are critical
for the energy service contracting market, can be summarized as follows (i) to
reduce energy intensity and energy losses in industry and services sectors, (ii) to
decrease energy demand and carbon emissions of the buildings; to promote sus-
tainable environment friendly buildings using renewable energy sources, (iii) to
provide market transformation of energy efficient products, (iv) to increase effi-
ciency in production, transmission and distribution of electricity, to decrease energy
losses and harmful environment emissions, (v) to reduce unit fossil fuel con-
sumption of motorized vehicles, to increase share of public transportation in
highway, sea road and railroad and to prevent unnecessary fuel consumption in
urban transportation, (vi) to use energy effectively and efficiently in public sector,
and (vii) to strengthen institutional capacities and collaborations, to increase use of
state of the art technology and awareness activities, to develop financial mecha-
nisms except public financial institutions (see EIE 2012). These strategies can only
be achieved in collaboration with ESCOs.

In the literature, there are a number of informative studies about the ESCO
market in Turkey which helped us identifying the potential barriers and drivers
influencing the market’s development. Onaygil and Meylani (2007) give an over-
view of energy service contracting and ESCOs and provide policy suggestions for
the forthcoming Turkish ESCO market. Okay et al. (2008) present views with
regard to the funding and related risks that are likely to be associated with the
forthcoming Turkish ESCO market. Also, the current situation of the
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Turkish ESCO market is analyzed through the latest communiqué by Akman et al.
(2013) from the 2013 perspective by considering the present barriers and oppor-
tunities. In another recent study, Kalangos (2017) investigates the barriers and
policy drivers to energy efficiency (EE) in specific sectors in Turkey (automotive,
chemicals and textile industries). Results point to the need for a policy structure that
tackles the recorded poor behavioral and managerial practices on energy efficiency
(EE), the lack of private EE capital funds, the inadequate energy service companies’
marketplace and energy suppliers’ loose EE practices. Besides, there are studies
focusing on the analysis of barriers and/or success factors of energy performance
contracting projects in different countries (Bertoldi and Boza-Kiss 2017; Kindström
et al. 2017).

18.4.2 Steps of the Proposed Approach

The proposed approach is applied to the ESCO market in Turkey. Effective use of
energy resources is a non-negligible issue for Turkey when it comes to increasing
energy consumption, climate change, and trade balance deficit. While energy effi-
ciency has such a great significance, awareness created and precautions taken about
this issue are quite a little. For a good future to live, it is inevitable to take potential
energy efficiency actions and give this topic the credit it deserves.

In this study, barriers that hinder development of ESCO market being important
factor on energy efficiency are analyzed using CIA. Then necessary actions to
overcome these barriers and actors playing a significant role to take these actions
are analyzed using MACTOR method.

18.4.2.1 Variable Definition

According to the researches, ESCO market in Turkey faces to 15 barriers including
economic market barriers related to risk, heterogeneity, hidden costs, etc. (D1), high
transaction costs (D2), poor market incentives provided by banks, public institu-
tions, and third parties (D3), lack of customer awareness and understanding (D4),
lack of data on energy use provided by government (D5), lack of customer infor-
mation (D6), lack of trust by the clients in ESCOs (D7), lack of well-established
partnerships between ESCOs and subcontractors (D8), negative influence of failed
projects on the market (D9), lack of internal financial resources (D10), organiza-
tional and behavioral barriers such as inertia, lack of interest, other priorities, and
lack of time, etc. (D11), lack of a supportive regulatory framework (D12), policy
makers focus on energy generation and supply rather than energy efficiency
improvement (D13), taxation rules that discourage investment (D14), and economic
stability of the country (D15).
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18.4.2.2 Relationship Analysis

The direct relationships between the barriers are assessed by a group consisting of
four experts who have profession on energy efficiency and ESCOs and three aca-
demicians who have researches on ESCO market. Each expert assesses the rela-
tionships and fills the cross-impact matrix separately based on a predetermined
scale consists of six linguistic expressions (there is no relationship between barriers
(0) and there is very little (1), little (2), medium (3), strong (4), and very strong
impact (5), respectively). The cross-impact matrix, i.e. direct relationship matrix,
filled by an expert is given in Table 18.1.

18.4.2.3 Matrix Multiplications

The cross impact matrix shows only direct relationships between barriers. Thus,
indirect impacts are needed to be determined using matrix multiplication. Sum of
rows for each variable represents influence level while sum of columns for each
variable represents dependence level of that barrier. The matrix multiplications are
performed until order of row sum and column sum are identical in consecutive
iterations. To avoid the information loss, the indirect relationships are explored for
each expert and the dependence and influence rankings are calculated and sorted
separately. All rankings corresponding to the barriers based on the individual expert
assessments are given in Table 18.2.

Table 18.1 Direct relationship assessments of one of the experts

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

D1 0 0 5 0 0 0 3 0 0 3 0 0 0 1 0

D2 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0

D3 5 0 0 0 0 0 1 0 0 5 1 0 0 0 0

D4 0 3 0 0 0 5 5 0 1 0 5 0 0 0 0

D5 3 0 0 0 0 5 3 0 1 0 0 3 0 0 0

D6 0 5 0 5 0 0 3 0 1 0 5 0 0 0 0

D7 0 1 0 0 0 0 0 0 5 0 3 0 0 0 0

D8 3 5 0 0 0 0 1 0 0 0 0 0 0 0 0

D9 1 0 3 0 0 0 5 0 0 0 1 0 0 0 0

D10 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0

D11 0 1 0 3 0 5 0 3 0 0 0 0 0 0 0

D12 5 0 3 0 3 0 3 3 1 3 0 0 1 5 0

D13 0 0 3 0 0 0 0 1 0 0 3 5 0 3 0

D14 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0

D15 5 1 5 0 0 0 0 0 0 1 0 0 0 1 0
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18.4.2.4 Chart Analysis

After being determined direct and indirect impacts between barriers using matrix
multiplications, the influence-dependence charts are prepared for seven experts to
determine which barriers are key, influential, dependent, and excluded. The cut-off
points of the influence-dependence chart is calculated by using the average ranks of
the barriers. A sample influence-dependence chart representing one of the expert’s
assessments is given in Fig. 18.3.

18.4.2.5 Key Barrier Determination

After the influence-dependence charts are prepared, the roles of the barriers are
examined based on their positions on the chart. As mentioned before, all calcula-
tions in the CIA methodology are performed separately for each expert due to
considering individual assessments in key barrier determination step. Interpreting
each assessment provides a broader perspective even though there are quite similar
classifications in terms of key barriers. Still, a considerable diversity of assessments
exists and should be represented in the further analysis. Key barriers determined to
be based on chart analysis considering differences and similarities are listed below
and also shown in Table 18.3.

Table 18.2 Rankings based on the expert assessments

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7

I D I D I D I D I D I D I D

D1 8 11 4 15 13 9 5 10 5 13 8 13 5 13

D2 1 10 5 13 4 10 3 13 9 4 7 10 2 12

D3 10 7 8 12 8 6 10 7 8 8 10 8 6 9

D4 5 9 2.5 9 14 3 8 9 2 9 2 9 15 7

D5 13 2 13 6 3 9 13 2 7 3 14 4 13 3.5

D6 6 8 2.5 8 9 3 6 8 2 5 2 7 14 10

D7 2 15 1 10 15 3 2 14 2 7 2 14 9 15

D8 4 12 9 14 12 13 7 12 11 14 6 15 3 6

D9 12 5 6 2 1.5 11 14 5 14 1.5 9 1.5 8 8

D10 3 13 7 7 10 3 1 11 4 10 4 12 1 11

D11 7 14 10 11 11 3 4 15 6 15 5 11 11 14

D12 15 4 14 5 5 12 15 4 12 6 12 6 12 3.5

D13 14 3 15 3 6 14 12 6 15 12 15 3 10 2

D14 9 6 11 4 7 7 9 3 10 11 11 5 4 5

D15 11 1 12 1 1.5 15 11 1 13 1.5 13 1.5 7 1

I ranks of influence
D ranks of dependence
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– D1: Economic market barriers
– D3: Poor market incentives
– D4: Lack of customer awareness and understanding
– D6: Lack of customer information
– D7: Lack of trust by the clients in ESCOs
– D8: Lack of well-established partnerships between ESCOs and subcontractors
– D9: Negative influence of failed projects on the market
– D11: Organizational and behavioral barriers
– D14: Taxation rules that discourage investment

Improvement of ESCO market depends on overcoming these key barriers
obtained by using Cross-Impact Analysis. In order to deal with these hindering
factors, some significant actions are needed to be taken. Not only the actions but
also the key actors who are responsible for or have impact on these actions are
crucial in terms of the future progress of the ESCO market. The actor-related part of
the proposed approach produces positioning map of actors, the conflicts and
potential strategic alliances among them, and consequently the strategic actions
recommended to the practitioners.
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Fig. 18.3 Influence-dependence chart of one of the experts

Table 18.3 Key barriers determined based on individual expert assessments

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7

D1 D3 D1 D4 D3 D1 D6

D8 D8 D8 D3 D7

D11 D13 D9

D14 D11
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18.4.2.6 Identifying Policies and Actors

Policies to overcome key barriers and actors having direct or indirect effects on
these barriers are identified. Here, the main questions are who are the actors in
ESCO market, how many actors should be taken into account, and which policies
are considered correspond to the key barriers determined in the previous method-
ology. Since the purpose of this study is to propose a new systematic approach for
recommending macro level strategies in general to any market, but in particular to
the ESCO market in Turkey, the leading actors who have a significant impact on the
policies are selected. Besides, the policies are identified based on a detailed liter-
ature survey including the academic articles and industry reports, and also on the
opinions of experts in the related area.

Policies cover six issues including increasing financial incentives (O1), enabling
regulations about the market such as energy price, project development processes,
etc. (O2), aligning strategies and priorities of ESCOs with the market (O3), pro-
viding information and awareness for customers (O4), establishing national policies
and legislations to improve the sector (O5), forming documentation of market
analysis and sectoral memory (O6). Eight actors which are Governments/Ministries
(A1), Local Authorities (i.e. Municipalities) (A2), Energy Efficiency Coordination
Board (covers TÜBİTAK, TMMOB, etc.) (A3), European Union (A4), ESCOs
(A5), Technology Suppliers (A6), Customers/End Users (A7), and Organizations
Providing Financial Support (A8) are identified based on their role in the ESCO
market.

18.4.2.7 Assessing Actor-Policy Relationships

Two types of relationships including actor-policy and actor-actor are assessed by
the same group of experts formed to assess the interrelationships among barriers.
First, the actor-policy relationships are assessed by using a predetermined scale
where +1 indicates being in favor of a particular policy, −1 indicates being opposed
to that policy, and 0 means being neutral. In contrast to the previous methodology,
the average assessments of experts are used for the further analysis. In Table 18.4,
the overall assessments are shown.

Table 18.4 The overall
assessments of expert w.r.t.
the actors’ position towards
policies

O1 O2 O3 O4 O5 O6

A1 −1 −1 0 1 1 −1

A2 0 0 0 1 0 0

A3 1 1 0 1 1 1

A4 1 1 0 1 1 1

A5 0 1 1 1 1 −1

A6 0 0 −1 0 0 0

A7 0 0 −1 0 0 0

A8 −1 0 0 0 0 1
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18.4.2.8 Building Direct and Indirect Relationship Matrices

While it is difficult to make actors talk about their strategies and priorities, and ask
them to reveal their own purposes as well as their strengths and weaknesses, it is
considerably easy to direct them to talk about other actors in the system (Godet
1994). Thus, after identifying their divergence and convergence to the particular
policies, examining their relationships with others and seeking for their power on
others will show the whole picture.

Actor-actor direct relationship matrix is filled based on the influence of one actor
on another by using a scale from 0 to 3 (0: No, 1: Weak, 2: Average, and 3: Strong
influence). The overall assessments of experts related to the actor-actor relation-
ships is given in Table 18.5.

Similar to the CIA, indirect relationships are examined through matrix multi-
plications. At this point, only the second degree paths are checked whether there is
an indirect influence of a particular actor on others. This matrix, given in
Table 18.6, shows overall dependence and influence values.

Table 18.5 Overall assessments on actor-actor relationships

A1 A2 A3 A4 A5 A6 A7 A8

A1 0 2.33 2.33 1.00 2.67 1.83 1.33 1.83

A2 0.83 0 0.50 0.17 1.17 0.33 1.00 0.50

A3 1.67 1.33 0 0.17 1.67 0.17 0.50 0.33

A4 1.83 0.50 1.33 0 1.83 0.67 0.00 0.83

A5 1.33 0.83 1.17 0.33 0 1.83 2.83 1.17

A6 0.50 0.17 0.33 0.33 2.33 0 0.50 0.50

A7 0.17 0.50 0.17 0.17 2.83 0.33 0 0.33

A8 0.67 0.00 0.17 0.17 2.67 1.33 0.67 0

Table 18.6 Indirect relationships between actors

A1 A2 A3 A4 A5 A6 A7 A8 I

A1 0.00 6.81 6.75 2.81 21.39 9.61 13.19 7.25 67.81

A2 3.36 0.00 3.89 1.67 8.31 4.86 5.17 3.69 30.94

A3 4.03 5.64 0.00 2.64 9.00 7.28 8.58 6.06 43.22

A4 5.97 7.69 7.03 0.00 11.47 8.22 9.69 6.53 56.61

A5 5.42 6.56 5.25 2.94 0.00 5.64 4.89 5.39 36.08

A6 4.83 3.97 4.58 1.53 5.44 0.00 7.94 4.28 32.58

A7 5.17 3.11 4.33 1.39 3.28 6.25 0.00 4.22 27.75

A8 4.92 4.64 5.44 2.14 7.36 6.47 9.19 0.00 40.17

D 33.69 38.42 37.28 15.11 66.25 48.33 58.67 37.42
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18.4.2.9 Constructing the Weighted Matrix

In order to provide reasonable strategic recommendations, actors’ power coeffi-
cients are calculated and by using these, the balance of power coefficients is
obtained to represent actors’ relative strength. The calculated coefficients are given
in Table 18.7. According to the findings, while Government/Ministries (A1) has the
strongest position of power, Customer/End Users appears to be in the weakest
position in ESCO market.

The balance of power coefficients and actor-policy matrix are used to construct
weighted matrix. The weighted actor-policy matrix, given in Table 18.8, is obtained
by multiplying each row of actor-policy matrix by power coefficient of the related
actor corresponds to that row.

18.4.2.10 Calculating Matrices and the Graphs of Convergence
and Divergence

Two types of output are obtained as a result of MACTOR method: convergence and
divergence matrices (Table 18.9) and maps. While convergence matrix identifies
actors which have common positions over policies, divergence matrix identifies
actors which have conflicts over them. Convergence and divergence maps in

Table 18.7 Balance of
power coefficients

Actors r*

A1 1.99

A2 0.61

A3 1.02

A4 1.96

A5 0.56

A6 0.58

A7 0.39

A8 0.91

Table 18.8 The weighted
actor-policy matrix

O1 O2 O3 O4 O5 O6

A1 −1.99 −1.99 0.00 1.99 1.99 −1.99

A2 0.00 0.00 0.00 0.61 0.00 0.00

A3 1.02 1.02 0.00 1.02 1.02 1.02

A4 1.96 1.96 0.00 1.96 1.96 1.96

A5 0.00 0.56 0.56 0.56 0.56 −0.56

A6 0.00 0.00 −0.58 0.00 0.00 0.00

A7 0.00 0.00 −0.39 0.00 0.00 0.00

A8 −0.91 0.00 0.00 0.00 0.00 0.91
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Figs. 18.4 and 18.5 are prepared by using these matrices to show the position of
actors on a map. The more the actors are distant one to another, the more the
intensity of their convergence (or divergence) is important. The thickness of the
lines between actors indicates how powerful the alliance or the conflict between the
actors are.

Convergence map shows that the Energy Efficiency Coordination Board and
European Union have strong relationship and they are carrying out similar works
about policies determined. Government/Ministries and ESCOs have common
objectives. There are some allies and conflicts between Government/Ministries,
Energy Efficiency Coordination Board, and European Union. Government/
Ministries have common policies either with the Energy Efficiency Coordination
Board and European Union. On the other hand, divergence map shows
Government/Ministries strongly conflicts on some policies with these actors being
allies. This shows coherent works are not carried out among these actors. Local
Authorities, Technology Suppliers, Customers/End Users, and Organizations pro-
viding Financial Supports have not considerable common benefits with the other
actors. Local Authorities, Technology Suppliers, ESCOs, and Customers/End Users
have negligible conflicts on drivers with the other actors.

The 2023 strategies associated with policies developed to improve ESCO market
are demonstrated in Table 18.10. In order to accomplish these strategies, required
actions need to be taken for corresponding policies.
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Fig. 18.4 The convergence map
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Table 18.9 The convergence and divergence matrices

A1 A2 A3 A4 A5 A6 A7 A8

A1 0.00 1.30 3.00 3.94 3.81 0.00 0.00 1.45

0.00 0.00 −4.50 −5.92 −1.27 0.00 0.00 −1.45

A2 1.30 0.00 0.81 1.28 0.58 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A3 3.00 0.81 0.00 7.44 2.36 0.00 0.00 0.96

−4.50 0.00 0.00 0.00 −0.79 0.00 0.00 −0.96

A4 3.94 1.28 7.44 0.00 3.77 0.00 0.00 1.43

−5.92 0.00 0.00 0.00 −1.26 0.00 0.00 −1.43

A5 3.81 0.58 2.36 3.77 0.00 0.00 0.00 0.00

−1.27 0.00 −0.79 −1.26 0.00 −0.57 −0.47 −0.73

A6 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00

0.00 0.00 0.00 0.00 −0.57 0.00 0.00 0.00

A7 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00

0.00 0.00 0.00 0.00 −0.47 0.00 0.00 0.00

A8 1.45 0.00 0.96 1.43 0.00 0.00 0.00 0.00

−1.45 0.00 −0.96 −1.43 −0.73 0.00 0.00 0.00
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All dominant actors have common understanding of and support for P4 and P5.
Thus, these policies are likely to be realized. However, a considerable difference
appears when it comes to the policies P1, P2, and P6. All 2023 strategies are related
to P2 on which Government/Ministries have conflicts with the European Union and
Energy Efficiency Coordination Board. Unless these three actors ensure coordina-
tion on this policy, realization of the following strategies seems rather challenging.
Governments/Ministries and Organizations providing financial support have dif-
ferent opinions with European Union and Energy Efficiency Coordination Board
with respect to P1 associated with the strategy SP-07. These actors should settle the
conflict to accomplish SP-07. Even it creates an additional workload to maintain
systematic documentation, analysis and control of the ongoing activities,
Government/Ministries and ESCOs should try to reach a common ground with
other actors to provide a better understanding and awareness as well as sectoral
improvement.

18.5 Conclusion

This chapter suggests a new approach to the analysis of the potential barriers and
drivers of energy service contracting markets. It allows to closely examine
causalities by analyzing both direct and indirect relationships between the barriers
as well as the actors and policies. Since the proposed approach considers the actors’
plans, motivations and the balance of power among them, it provides the basis of a
better understanding of the strategic issues of the energy service contracting market.
The effectiveness and applicability of the proposed approach is demonstrated by a

Table 18.10 Strategies-policies

2023 Strategies Policies

SP-01: To reduce energy intensity and energy losses in industry and services
sectors

P2

SP-02: To decrease energy demand and carbon emissions of the buildings; to
promote sustainable environment friendly buildings using renewable energy
sources

P2, P5

SP-03: To provide market transformation of energy efficient products P2, P3, P5

SP-04: To increase efficiency in production, transmission and distribution of
electricity, to decrease energy losses and harmful environment emissions

P2

SP-05: To reduce unit fossil fuel consumption of motorized vehicles, to
increase share of public transportation in highway, sea road and railroad and
to prevent unnecessary fuel consumption in urban transportation

P2, P4, P5

SP-06: To use energy effectively and efficiently in public sector P2, P5

SP-07: To strengthen institutional capacities and collaborations, to increase
use of state of the art technology and awareness activities, to develop
financial mechanisms except public financial institutions

P1, P2, P3, P4,
P6
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case study where the energy service contracting market in Turkey is examined. The
findings of the case study, verified by experts, point out the presence of potential
conflicts among the actors and the risk of failure in realizing some critical policies in
the future. Since the barriers and policies may vary depending on country specific
factors such as managerial cultures, market structures and political-legal systems, it
is difficult to generalize the empirical findings of the present study. A possible
future research direction might be extending the proposed approach to consider also
the uncertainty involved in the judgments.
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Chapter 19
Fuzzy Sets Based Performance
Evaluation of Alternative Wind Energy
Systems

Başar Öztayşi, Sezi Çevik Onar, Cengiz Kahraman and Ali Karaşan

Abstract Evaluation of energy systems requires linguistic terms under vague and
imprecise environment. The required design parameters of energy systems and the
corresponding system values of those parameters should be compared to reveal that
how much the alternative energy system meets the required design parameters. One
of the best methods for this comparison is multi-attribute axiomatic design method.
In this chapter, we present an intuitionistic fuzzy information axiom methodology
in order to select the best wind energy alternative. Information axiom is used in this
chapter, which is one of the two axioms of axiomatic design (AD) methodology.
Triangular intuitionistic fuzzy sets are also used in the methodology. Six wind
energy alternatives are evaluated based on eight attributes. A sensitivity analysis is
applied to examine the robustness of the given decisions.

19.1 Introduction

Renewable energy sources have an immense potential to meet the energy
requirements of the world. As these resources begin to be used, the energy security
of the world can be powered by modern conversion technologies by reducing the
long-term price of fuels from conventional sources, and decreasing use of fossil
fuels. Using renewable energies does not only impact on reducing the safety risks,
air pollution, and greenhouse gas emissions in the atmosphere but also they are
recycled in nature.

Wind energy, one of the most-used renewable energy sources, is a carbon-free
energy source depends on average wind speeds, wind turbine hubs, and turbulence
intensity. There is an inclination on wind energy especially increased rapidly in the
1970s starts with the oil embargo crisis. Since that time, be able to construct a wind
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energy system depends on many criteria such as country policies, supply chain
issues of transmission and integration with the electricity system, compatibility of
social and environmental conditions to the investment, economic concerns, and
regional deployment. Also, when we examine alternative energy systems for wind
energy, the two most important factors emerge; the first one is related with the
know-how of the system which is basically composed of engineering and perfor-
mance properties of the wind turbines and the other one is related to the availability
of wind resources, and the second one is suitability of the area for the installation
which can be called as availability of wind resources (Bansal et al. 2002).

There are many applications in the literature not only for the evaluation of
alternative wind energy systems, but also other types of alternative energy sources
studied. In these studies, most of the used methods are MCDM based techniques
such as interval-valued intuitionistic fuzzy analytic hierarchy process (IVIF-AHP)
(Onar et al. 2015), geographical information system (GIS) based AHP method
(Vasileiou et al. 2017), multi-attribute Choquet integral method (Cebi and
Kahraman 2013), modified ELECTRE method based on soft computing (Mousavi
et al. 2017), ordinary fuzzy VIKOR method (Wang 2017). When we examine these
studies, it is observed that classical methods cannot reflect the uncertainty and
indeterminacy situations well. In the light of sensitivity and comparative analyses, it
is also observed that some of the used methods for the solution of energy problems
are not suitable to obtain the best solution.

In order to surpass these disadvantages and to well-reflect the knowledge to the
problem solution, we applied multi-criteria intuitionistic fuzzy information axiom
method in this study. Multi-criteria information axiom is an MCDM method based
on designing the system with common areas which are determined by design ranges
and system ranges. Thus, it provides an important advantage since it does not force
the decision maker to define a single numerical value for design target (Kahraman
et al. 2017). Intuitionistic fuzzy sets can capture the uncertainty related to the
system by employing membership, non-membership, and hesitancy functions.
Hence, our proposed intuitionistic fuzzy information axiom method can handle not
only the uncertainties in specifications but also the hesitancies in decision makers’
preferences.

In this study, an intuitionistic fuzzy axiomatic design method is applied for a
selection among wind turbine alternatives for a wind energy investment in the
Aegean region of Turkey. After the application, one-at-a-time sensitivity analysis is
applied to check the robustness of the given decisions. The rest of the paper is
organized as follows. Section 19.2 defines the meaning of performance measure-
ment and presents a brief literature review on performance measurement.
Section 19.3 presents a literature review on the evaluation of alternative wind
energy systems based on MCDM methods. In Sect. 19.4, the proposed methodol-
ogy is introduced. In Sect. 19.5, an application for the Aegean region of Turkey to
determine the best wind turbine is given. The paper ends with the conclusions and
suggestions for further research.
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19.2 Performance Measurement

Performance measurement (PM) shows the outcome of an activity and accom-
plishment of the goal. It is also related to the goals of a company. PM is a socially
constructed concept that the expectation of a company should be defined, and the
borders of the concept should be retained (Wholey 1996). As a result of this
definition, the meaning of the term may change as the goal of a company might
change or as the context and competition might change in time. In other terms, the
meaning of performance may change based on the time and the place (Lebas 1995).

The process of PM involves collection and analysis of data about the perfor-
mance outcomes of whole systems, a sub-system or individuals (Behn 2003).
Meyer (2002) states that in PM both the executed actions and their consequences
should be compared with a standard or goal value so that a level of achievement can
be referenced. Folan et al. (2007) state three main issues about PM as a relation,
goal and characteristics. The first term “relation” emphasizes that the performance
should be measured by the effects of the actions on company’s outer environment.
The second concept “goal” is the perception of the environment by the company.
Based on this perception, the company sets its vision, core values, strategies and
finally the goals. Finally, the term “characteristics” means that PM should involve
well identified numerical key performance indicators. PM is used in different levels
of the company with different purposes (Meyer 2002). In the top managerial level, it
is used to evaluate overall activities and to prepare for the approaching perfor-
mance. In the lower levels, each team or individual can use PM to assess
self-performance and compensate. Also, PM can be used to motivate teams and
individuals to reach better actions. In corporate life, PM can also be used to roll up
performance values from the bottom to the top, and to cascade down the goals from
top to bottom, to make performance comparisons across units.

Financial ratios have been used to measure the performance of companies for
many years. However, PM systems based on indicators such as return on invest-
ment, and profitability can be misleading (Kaplan and Norton 1992). So more
comprehensive methods have been proposed to take account of the non-financial
perspective of companies. In one of the earliest studies, Keegan et al. (1989)
develop Performance Measurement Matrix (PMM) which include financial,
non-financial, exterior and interior indicators. Companies may use PMM matrix, as
a PM tool to detect the areas that need improvement. Strategic Measurement and
Reporting Technique (SMART) system is another model proposed in Wand
Laboratories. In SMART’s perspective, a company is evaluated in four perspec-
tives. The first perspective involves vision and mission statements; the second
perspective contains market measures and cost measures. Customer satisfaction,
elasticity and efficiency take place in the third perspective and quality, distribution,
lead time and cost take place in the last level (Cross and Lynch 1989). Fitzgerald
et al. (1991) propose another model namely “results–determinants framework”
which classify the indicators as, results and determinants. The “results” contains the
measures that are related to the outcomes of actions such as competitiveness and
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profitability. The latter one focuses on the determinants of the outcomes such as
reliability, distribution speed, and productivity. The model is based on the causality
between abovementioned results and determinants. Neely et al. (2002) propose a
relatively new PM framework., Performance Prism framework proposes a stake-
holder focused performance evaluation system. It defines five perspectives
including, stakeholder satisfaction, stakeholder contribution, strategies, processes
and capabilities. Management teams use these perspectives to design the PM.

One of the recent and most accepted PM frameworks is the Balanced Scorecard
proposed by Kaplan and Norton (1992). Based on the fact that in the information
age may be misleading since the companies create future value through investment
in customers, suppliers, employees, processes, technology and innovation, the
researchers show that financial performance measures are not sufficient. What is
more, the authors show that financials oriented PM may be misleading for com-
panies. From this point, the authors propose PM framework involving four per-
formance perspectives that are financial, customer, process and learning & growth.
Different from other methods, the balanced scorecard is a flexible methodology, it
allows companies to create new perspectives if needed, and also define their per-
formance indicators under the selected perspectives.

19.3 Literature Review

Du et al. (2017) proposed mutual information estimation method for parame-
ter determination method for wind turbines. The results of the real SCADA dataset
shows the effectiveness of the method with vague information. Ritter and Deckert
(2017) introduced a study that calculates wind energy index to support the wind
farm planners and makers by using wind speed data and true production data based
on long-term and low-scale analyses. Sun and Xu (2017) developed a hybrid model
composed of neural networks and particle swarm optimization for the assessment of
the wind turbine generators. The results of the application indicate the verification
and validation of the application for wind farms of proposed method. Rehman and
Khan (2017) developed and applied an MCDM model based on weighted sum
approach for the most appropriate turbine selection of the wind farms.
Abdulrahman and Wood (2017) introduced an optimization problem based on
commercial turbine selection for wind energy farms by using genetic algorithm.
Rehman and Khan (2016) identified the relevant criteria for wind turbine types and
then, applied a fuzzy MCDM method to determine the best wind turbine types for
wind farm in Saudi Arabia. The results revealed the effectiveness of the method for
the determination of wind energy alternatives. Kahraman et al. (2016) presented a
study that evaluate the wind energy technology investments based on benefit-cost
analysis with extension of interval-valued intuitionistic fuzzy sets. Petković and
Shamshirband (2015) studied on the selection of wind turbine model by using
adaptive neuro fuzzy inference system. The results determined that blade pitch
angle is the most important feature among the selection criteria of the wind turbine
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model. Theotokoglou and Balokas (2015) introduced a study that selects the wind
turbine blade and its materials by using finite element model. Gencturk et al. (2015)
proposed a study that selects the optimal wind turbine towers in seismic areas based
on the total cost by using taboo search algorithm. Onar et al. (2015) applied
interval-valued intuitionistic axiomatic design method to appraise wind energy
alternatives based on multi-expert environment. Montoya et al. (2014) introduced a
wind turbine selection method based on various multi-objective evolutionary
algorithms for the wind farms. The results determined that pareto envelope-based
selection algorithm has better results among the other ones such as improved pareto
evolutionary algorithm, nondominated sorting genetic algorithm-II, modified sort-
ing pareto evolutionary algorithm-II. Bagočius et al. (2014) proposed a study that
assesses the wind turbine types and location of wind farms with respect to experts’
opinions by using WASPAS method. Sun and Ren (2014) presented a study that
selects the wind turbine types for wind farms by using a hybrid method composed
of particle swarm optimization and BP neural networks. Van Buren et al. (2014)
identified the criteria that are relevant with robustness and fidelity of wind turbine
blades and then, applied the finite element model for the modelling of CX-100 wind
turbine blade for the most appropriate wind turbine alternatives. Bassyouni and
Gutub (2013) identified the most relevant materials selection strategy for the best
wind turbine blades fabrication. Chowdhury et al. (2013) introduced a study that
determines the wind energy turbines for wind farms based on changeable wind
conditions in North Dakota by using unrestricted wind farm layout optimization
method. Dong et al. (2013) applied a hybrid method composed of particle swarm
optimization, differential evolution, and genetic algorithm to evaluate wind turbines
in Huitengxile of Inner Mongolia. Chowdhury et al. (2013) introduced a hybrid
method composed of particle swarm and mixed-discrete optimization to arrange and
to select the wind farms turbines. Sarja and Halonen (2013) described the main
factors of wind turbines and then applied for a region in Finland to determine best
wind turbine manufacturer. Maity and Chakraborty (2012) presented a study that
determines turbine blade material selection for wind energy alternatives by using
fuzzy AHP. Kahraman, et al. (2010) identified the properties of wind energy
sources for the selection of renewable energy sources by using fuzzy axiomatic
design. Kaya and Kahraman (2010) determined the selection criteria of wind energy
sources for the renewable energy planning of Istanbul by using an integrated fuzzy
VIKOR & AHP methodology. Lee et al. (2009) studied on wind farms and their
critical selection criteria and then, determined the best suitable alternative of wind
farms by using an MCDM model. Fotuhi-Firuzabad and Dobakhshari (2009)
introduced a study that determines the most appropriate wind turbine types based on
a reliability-based approach for the wind farms. Tegou et al. (2009) studied an
integrated methodology composed of multi-criteria analysis and geographical
information systems to select most appropriate site for the wind turbines. Herbert
et al. (2007) reviewed wind energy resources’ criteria, methods for designing,
controlling and conversion of wind energy systems, and wind energy assessment
models.
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19.4 Methodology

In this section, the principles of information axiom under classical and fuzzy
environments are first given. Then intuitionistic fuzzy IA approach is presented.

19.4.1 Information Axiom

Axiomatic Design (AD) aims at creating a new design and/or to improve an existing
design based on the scientific rules (Suh 2005). Axiomatic Design
(AD) methodology involves two axioms (Suh 1990). These axioms are indepen-
dence axiom and information axiom. The independence axiom requires the inde-
pendence of functional requirements. The information axiom requires the
minimization of the information content of the considered design. The best alter-
native having the minimum information content among the alternatives satisfying
independence axiom is preferred (Suh 1990). The information content (I) is the
probability of satisfying the design goals represented by functional requirements
(FRs). The information content of a design is measured by (19.1) (Suh 1990):

Ii ¼ log2
1
pi

ð19:1Þ

where the probability of success (pi) is the intersection area of the probability
density functions of a system range (SR) and a design range (DR). This area is
called common area (Ac) or common range. pi is calculated as given in (19.2):

pi ¼
Z
DR

ps FRið ÞdFRi ð19:2Þ

where psðFRiÞ is the probability density function of a functional requirement.
When there are more than one FR, the total information content Is is calculated

by (19.3) (Suh 1990);

Is ¼
Xm
i¼1

log2ð1=piÞ ð19:3Þ

Under vagueness and impreciseness, ordinary fuzzy IA was developed by Kulak
and Kahraman (2005a, b) and Kahraman and Çebi (2009). Figure 19.1 shows how
the common range is determined when system and design ranges are defined by
triangular fuzzy numbers (Kahraman et al. 2018). The information content under
fuzziness is calculated as in Eq. (19.4):
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Ii ¼ log2
Area of System Range

Common Area

� �
i

ð19:4Þ

Based on the parameters given in Fig. 19.1, (19.4) can be given as in (19.5):

Ii ¼ log2
c� a

l1 c� bð Þ
� �

i
ð19:5Þ

The total information content of a system involving m functional requirements
under fuzziness is calculated by (19.6):

Is ¼
Xm
i¼1

log2
c� a

l1 c� bð Þ
� �

i
ð19:6Þ

19.4.2 Intuitionistic Fuzzy Sets

An intuitionistic fuzzy sets are expressed by a membership value and a
non-membership value for any x in X so that their sum is less than or equal to 1
(Atanassov 1986, 1999).

Definition 1 Let X 6¼ ; be a given set. An intuitionistic fuzzy set in X is an object
A given by

~A ¼ x; l~A xð Þ; v~A xð Þ��
; x 2 X

� �
; ð19:7Þ

where l~A : X ! 0; 1½ � and v~A : X ! 0; 1½ � satisfy the condition

Fig. 19.1 Triangular fuzzy SR, DR, and Ac
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0� l~A xð Þþ v~A xð Þ� 1; ð19:8Þ

for every x 2 X. Hesitancy is equal to “1� l~A xð Þþ v~A xð Þ� 	
”.

Definition 2 A Triangular Intuitionistic Fuzzy Number (TIFN) ~A is an intuition-
istic fuzzy subset in R with following membership function and non-membership
function:

l~A xð Þ ¼
x�a1
a2�a1

; for a1 � x� a2
a3�x
a3�a2

; for a2 � x� a3
0; otherwise

8<: ð19:9Þ

and

v~A xð Þ ¼
a2�x
a2�a01

; for a01 � x� a2
x�a2
a03�a2

; for a2 � x� a03
1; otherwise

8<: ð19:10Þ

where a01 � a1 � a2 � a3 � a03; 0� l~A xð Þþ v~A xð Þ� 1 and TIFN is denoted by
~ATIFN ¼ a1; a2; a3; a01; a2; a

0
3

� 	
.

Definition 3 Arithmetic operations for triangular intuitionistic fuzzy numbers are
as follows:

Let ~ATrIFN ¼ a1; a2; a3; a01; a2; a
0
3

� 	
and ~BTrIFN ¼ b1; b2; b3; b01; b2; b

0
3

� 	
be two

TIFNs. Then,

Addition: ~C ¼ ~Aþ ~B is also a TIFN:

~C ¼ a1 þ b1; a2 þ b2; a3 þ b3; a
0
1 þ b01; a2 þ b2; a

0
3 þ b03

� 	 ð19:11Þ

Multiplication: ~C ¼ ~A� ~B is approximately a TIFN:

~C ffi a1b1; a2b2; a3b3; a
0
1b

0
1; a2b2; a

0
3b

0
3

� 	 ð19:12Þ

Subtruction: ~C ¼ ~A� ~B is also a TIFN:

~C ¼ a1 � b3; a2 � b2; a3 � b1; a
0
1 � b03; a2 � b2; a

0
3 � b01

� 	 ð19:13Þ

Division: ~C ¼ ~Aø~B is approximately a TIFN:
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~C ffi a1=b3; a2=b2; a3=b1; a
0
1=b

0
3; a2=b2; a

0
3=b

0
1

� 	
: ð19:14Þ

Definition 4 Let ~A and ~B be two IFSs in the set X. The intersection of ~A and ~B is
defined as in (19.15) (Bora et al. 2012).

~A\ ~B ¼ xi;min l~A xið Þ; l~B xið Þ� 	
; max v~A xið Þ; v~B xið Þ� 	

xi 2 X

� � ð19:15Þ
The operations given below are based on the definitions given above.
Let ~ATIFN ¼ a1; a2; a3; a01; a2; a

0
3

� 	
and ~BTIFN ¼ b1; b2; b3; b01; b2; b

0
3

� 	
as in

Fig. 19.2 (Kahraman et al. 2017). l~A xið Þ and l~B xið Þ represent the membership
functions of the fuzzy sets ~A and ~B, respectively whereas v~A xið Þ and v~B xið Þ represent
their non-membership functions, respectively. The intersection, ~ATIFN \ ~BTIFN , is a
TIFN denoted by ~CTIFS ¼ b1; c2; a3; b01; c

0
2; a

0
3

� 	
where the membership values for

c2 and c02 are l\ c2ð Þ and v[ c02
� 	

, respectively. This TIFN can be represented by
~CTIFS ¼ b1; c2; l\ c2ð Þð Þ; a3; b01; c02; v[ c02

� 	� 	
; a03

� 	
. The red colored line represents

the union of the non-membership functions of ~A and ~B whereas the yellow colored
line represents the intersection of membership functions of ~A and ~B.

19.4.3 Aggregation Operators for TIFNs

Suppose Ii ¼ aLi ; a
M
i ; a

U
i

� �
; bLi ; b

M
i ; b

U
i

� �� 	
i ¼ 1; 2; . . .; nð Þ is a set of TIFNs, then

the result of the aggregation is a TIFN given by (19.16) (Zhang and Liu 2010):

Fig. 19.2 Intersection of two TIFNs
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fm I1; I2; . . .; Inð Þ ¼ 1�
Yn
i¼1

1� aLi
� 	wi ; 1�

Yn
i¼1

1� aMi
� 	wi ; 1�

Yn
i¼1

1� aUi
� 	wi

" #
;

 

	
Yn
i¼1

bLi
� 	wi ;

Yn
i¼1

bMi
� 	wi ;

Yn
i¼1

bUi
� 	wi ;

" #!
ð19:16Þ

where, w ¼ w1;w2; . . .;wnð ÞT is the weight vector of Ii i ¼ 1; 2; . . .; nð Þ; wi 2
0; 1½ �; Pn

i¼1 wi ¼ 1 (19.16) is modified as in (19.17) in order to satisfy the fol-
lowing conditions (Kahraman et al. 2017):

• The widespread of non-membership function must be larger than that of
membership function, and the midpoints of these functions must be equal to
each other.

• The sum of membership and non-membership degrees for any x must be at most
equal to 1.

fx I1; I2; . . .; Inð Þ ¼ maxð1�½
Yn
i¼1

1� aLi
� 	xi ;

Yn
i¼1

bLi
� 	xiÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

Yn
i¼1

1� aMið ÞxiÞ 	
Yn
i¼1

bMið Þxi

s
;

 

	minð1�
Yn
i¼1

1� aUi
� 	xi ;

Yn
i¼1

bUi
� 	xiÞ

#
; minð1�½

Yn
i¼1

1� aLi
� 	xi ;

Yn
i¼1

bLi
� 	xiÞ;

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

Yn
i¼1

1� aMið ÞxiÞ 	
Yn
i¼1

bMið Þxi

s
;max 1�

Yn
i¼1

1� aUi
� 	xi ;

Yn
i¼1

bUi
� 	xi

# !
ð19:17Þ

where x ¼ x1;x2; . . .;xnð ÞT is the weight vector of
Ii i ¼ 1; 2; . . .; nð Þ; wi 2 0; 1½ �; Pn

i¼1 xi ¼ 1.

19.4.4 A New Proposal for the Defuzzification of TIFNs

Chang et al. (2008) proposed the defuzzification method in (19.18) for TIFNs as in
Figs. 19.3 and 19.4.

�xt ¼ a01 þ a1 þ 2a2 þ a03 þ a3
6

ð19:18Þ

In this paper, we use the defuzzification method given by (19.20) as a modifi-
cation of Chang et al.’s (2008) approach.
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�xt ¼
l2 	 a01 þ a2 þ a03

� 	þ l1 	 a1 þ a2 þ a3ð Þ
6

ð19:19Þ

Considering the intersection function, the defuzzification formula for
~CTIFS ¼ b1; c2; l\ c2ð Þð Þ; a3; b01; c02; v[ c02

� 	� 	
; a03

� 	
) can be given by Eq. (19.20)

(Kahraman et al. 2017):

�xt ¼
1� v[ c02

� 	� 		 b01 þ c02 þ a03
� 	þ l\ c2ð Þ 	 b1 þ c2 þ a3ð Þ

6
ð19:20Þ

Fig. 19.3 Membership and non-membership functions of TIFN

Fig. 19.4 A TIFN with different heights for the most possible value
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19.4.5 Triangular Intuitionistic Fuzzy Information Axiom

In this chapter, intuitionistic fuzzy information axiom developed by Kahraman et al.

(2017) is used. The intuitionistic fuzzy common area of system range (fSR) and
design range (fDR) is illustrated in Fig. 19.5 (Kahraman et al. 2017).

DSR ¼ aþ a0 þ 2nþ jþ j0

6
ð19:21Þ

(19.22) considers the heights of the membership and non-membership functions
in the defuzzification process and calculates the defuzzified common area (DCA).

DCA ¼ l2 	 d0 þ q0 þ j0ð Þ þ l1 	 dþ qþ jð Þ
6

ð19:22Þ

Thus (19.23) can be used to compute the information content

Ii ¼ log2
DSR
DCA

� �
i

ð19:23Þ

Considering a decision matrix involving m alternatives and n criteria, the total
information content ITi can be calculated by (19.24).

ITi ¼
Xn
j¼1

Iij i ¼ 1; 2; . . .;m ð19:24Þ

Fig. 19.5 Intuitionistic fuzzy common area of system range (fSR) and design range (fDR)
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If the criteria have different importance weights, the total weighted information
content IwTi can be calculated by (19.25):

IwTi ¼
Xn
j¼1

Iij wj i ¼ 1; 2; . . .;m ð19:25Þ

19.5 Numerical Application

An investor wants to select wind turbines for a wind energy investment in the
Aegean region of Turkey. There are six wind turbine options, and the criteria have
been determined as reliability, technical characteristics, performance, cost factors,
availability, maintenance, cooperation and domesticity (Cevik et al. 2015). Each
wind turbine has different characteristics. Alternative 1 has 2 MW power; its wind
class is IIA and cut in/cut out speeds are 3 and 20, respectively. Alternative 2 has
2 MW power; its wind class is IIA and cut in/cut out speeds are 4 and 25,
respectively. Alternative 3 has 2 MW power; its wind class is IIA and cut in/cut out
speeds are 2 and 28, respectively. Alternative 4 has 2 MW power; its wind class is
IIA and cut in/cut out speeds are 3 and 25, respectively. Alternative 5 has 2 MW
power; its wind class is IIIA and cut in/cut out speeds are 4 and 25, respectively.
Alternative 6 has 2 MW power; its wind class is IIIB and cut in/cut out speeds are 3
and 18, respectively. The criteria have equal importance. The scale in Table 19.1 is
used to evaluate wind turbine alternatives (Kahraman et al. 2017). The design range
for each evaluation criterion is considered as “Very Good.”

Three experts evaluated the wind turbine alternatives. Two experts from the
company and one academician evaluated the wind turbine options. Table 19.2
shows the evaluations of the experts.

The individual evaluations of experts are aggregated by using intuitionistic fuzzy
aggregation operators, and the obtained aggregated matrix is given in Table 19.3.

The information content of wind turbines and their total information content I is
calculated as in Table 19.4.

The results indicate that Alt 3 is the best alternative followed by Alt 1 and Alt 2.
The worst alternative is Alt 6.

Table 19.1 Intuitionistic fuzzy evaluation scale (Kahraman et al. 2017)

Linguistic term Abbreviation Triangular intuitionistic fuzzy numbers

Very poor VP (0, 0, 0.25; 0, 0, 0.35)

Poor P (0, 0.25, 0.5; 0, 0.25, 0.6)

Fair F (0.25, 0.5, 0.75; 0.15, 0.5, 0.85)

Good G (0.5, 0.75, 1; 0.4, 0.75, 1)

Very good VG (0.75, 1, 1; 0.65, 1, 1)
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Sensitivity Analysis

To check the robustness of the results, we observed the changes in rankings when
the weights of the criteria are changed. A one-at-a-time sensitivity analysis is
applied, and the results are given in Fig. 19.6.

According to the sensitivity analysis results, the increase in the weight of per-
formance, cooperation, cost factors, technical characteristics and domesticity does
not change the wind turbine selection. Alt 3 is a robust decision. When the weights
of reliability, availability and maintenance increase, Alt 1 becomes the leading wind
turbine. The decision makers should carefully decide the weights of the alternatives.

Table 19.3 Aggregated evaluations of wind turbines

Reliability Technical
characteristics

Performance Cost factors

Alt
1

(0.71, 0.97, 1;
0.59, 0.97, 1)

(0.25, 0.5, 0.75;
0.15, 0.5, 0.85)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

Alt
2

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.48, 0.81, 0.93;
0.28, 0.81, 1)

(0.46, 0.7, 0.97;
0.33, 0.7, 1)

(0.46, 0.7, 0.97;
0.33, 0.7, 1)

Alt
3

(0.46, 0.7, 0.97;
0.33, 0.7, 1)

(0.57, 0.87, 0.97;
0.39, 0.87, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

Alt
4

(0.25, 0.5, 0.75;
0.15, 0.5, 0.85)

(0.42, 0.67, 0.94;
0.28, 0.67, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

Alt
5

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

Alt
6

(0.61, 0.91, 1;
0.47, 0.91, 1)

(0.71, 0.97, 1;
0.59, 0.97, 1)

(0.25, 0.5, 0.75;
0.15, 0.5, 0.85)

(0.25, 0.5, 0.75;
0.15, 0.5, 0.85)

Availability Maintenance Cooperation Domesticity

Alt
1

(0.63, 0.92, 1; 0.5,
0.92, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

(0.71, 0.97, 1;
0.59, 0.97, 1)

(0.71, 0.97, 1;
0.59, 0.97, 1)

Alt
2

(0.63, 0.92, 1; 0.5,
0.92, 1)

(0.42, 0.67, 0.94;
0.28, 0.67, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

Alt
3

(0.38, 0.62, 0.91;
0.23, 0.62, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

Alt
4

(0.63, 0.92, 1; 0.5,
0.92, 1)

(0.56, 0.89, 1;
0.44, 0.89, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

Alt
5

(0.42, 0.67, 0.94;
0.28, 0.67, 1)

(0.35, 0.59, 0.9;
0.21, 0.59, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

(0.68, 0.95, 1;
0.55, 0.95, 1)

Alt
6

(0.6, 0.89, 0.97;
0.41, 0.89, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)

(0.31, 0.55, 0.88;
0.18, 0.55, 1)
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Fig. 19.6 Sensitivity analysis
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19.6 Conclusion

Performance measurement, the process of quantifying the efficiency and effec-
tiveness of actions, is crucial for effective energy planning and technology selec-
tion. The literature on performance measurement provide two groups of studies; the
first group deal with ‘what to measure’ and provide information about measurement
frameworks, metrics and key performance the second group of studies deal with
‘how to measure’ problem and involve analytical techniques which can be used to
quantify performance. In this study, we handle energy performance measurement
problem as a fuzzy decision model. We use intuitionistic fuzzy axiomatic design to
determine the performance of energy alternatives taking into account eight different
criteria. Using information axioms, the desired level of performance can be better
expressed, and the alternatives can be better evaluated using intuitionistic fuzzy
sets.

For the further studies, other extensions of fuzzy sets such as Type-2 fuzzy sets,
hesitant fuzzy sets, multisets, neutrosophic sets and interval-valued intuitionistic
fuzzy sets can be used for energy performance problem, and the results can be
compared with the results of this study.
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Chapter 20
Sustainability Performance Evaluation
of Energy Generation Projects

Yağmur Karabulut and Gülçin Büyüközkan

Abstract Affordable and reliable energy is not only central to prosperity, but also
to poverty reduction, local development, environmental integrity, quality of life,
growth, and progress. Given the importance and wide scale of energy generation all
around the world, its ever growing economic, social and environmental aspects
need to be taken into better consideration. The sustainability performance of energy
operations shall be assessed on a project basis, as energy generation projects may
significantly vary, depending on the needs and circumstances. This chapter intro-
duces a novel approach for evaluating energy projects from a sustainability point of
view and estimates their sustainability performance as a decision-making support
tool. Decision environments can sometimes be complicated for an individual
decision maker (DM) to consider every aspect of the problem. Group decision
making (GDM) can be advantageous to reduce the impact of biased and personal
opinions on the decision process. Moreover, DMs’ judgments are mostly far from
being completely certain, making it more difficult to put their ratings into numerical
forms. In such circumstances, the fuzzy set theory can be applied to better represent
DMs’ preferences. This chapter applies GDM together with the fuzzy set theory to
find the importance of the selected evaluation criteria. Then, GDM and the fuzzy set
theory are combined with VIKOR (Vlse Kriterijumska Optimizacija Kompromisno
Resenje) technique to rank the energy project alternatives. This approach is par-
ticularly useful for its strength in dealing with actual energy projects so that it can
support both researchers and business managers to compare the sustainability
performance of planned or realized power plants in a balanced manner. The
usability of the proposed approach is shown in a case study from Turkey, where
different energy projects are evaluated for their overall sustainability performance.
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20.1 Introduction

Energy is essential to reduce underdevelopment, spur economic growth and ensure
environmental protection. According to the World Bank (2017), 1.06 billion people
today do not have access to electricity, despite its vital role in contributing to the
quality of life, economic progress and social advancement. Therefore, ensuring
energy supply in an affordable, reliable, low-carbon and sustainable way is crucial.
In 2015, countries worldwide agreed on a set of 17 goals to protect the planet and
ensure prosperity for all as part of a new sustainable development agenda. Each
so-called Sustainable Development Goal has specific targets to be achieved over the
next 15 years (United Nations 2015). Energy generation is related to all of these
goals. Nevertheless, at this rate of investments, the rate of electrification is fore-
casted to only reach 92% by 2030 (World Bank 2017), still leaving 8% of global
population in the dark. Given the importance of energy generation, its ever growing
economic, social and environmental aspects need to be taken into spotlight.

The world is struggling to find the optimal solution to expand its clean energy
base amid climate change concerns, air and water pollution of conventional power
generation and consistently decreasing capital costs for renewable energy tech-
nologies. Urgent measures are required to promote people’s access to energy,
supported by policies, regulations, and incentives to accommodate for the growing
role for the private sector to finance energy projects to assure investors to earn
returns on their investments (IBRD and World Bank 2017). Deciding on energy
projects solely on economic considerations has become a thing of the past, as
governments and communities scrutinize social and environmental dimensions
nowadays more than ever. Developing sustainably also requires preventing eco-
logical degradation and creating decent jobs and opportunities. The divergence
from fossil fuels towards renewables will, therefore, be inevitable. This, however,
does not explain which concrete energy projects investors should be investing in.
Ultimately, the aim is to build one or more of these most sustainable energy
projects.

There are many types of energy generation options available for investors.
Selecting the optimal project is important to ensure long term profitability, social
acceptance, and environmental protection. These implications of energy generation
do not only vary for different technologies, but also for the particular conditions of
each and every energy generation project. Therefore, identifying the most sus-
tainable energy generation project requires a careful review of alternative projects in
the light of different sustainability criteria (Büyüközkan and Karabulut 2017). New
methods for evaluating the level of sustainability of energy projects can help reduce
environmental burden and resource use, and also contribute to the local economy,
employment, and technology transfer. Widely recognized methods for selecting the
most sustainable energy generation project are largely missing, which would be
able to compare different energy projects with multiple criteria in differing
circumstances.
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This chapter introduces a novel approach for evaluating energy projects from a
sustainability point of view and estimate their sustainability performance for
decision making purposes. The uncertainty, subjectivity and vagueness of human
cognitive processes in the area of sustainability are handled with an evaluation
model based on the fuzzy multi criteria decision making (MCDM) method for
measuring the performance of alternative projects with regard to criteria. MCDM is
a capable and popular tool used in decision problems for assessing and ranking
alternatives on the basis of multiple, usually conflicting criteria. The proposed
approach is based on two analytical methods; the fuzzy set theory to determine the
importance weights of evaluation criteria and VIKOR (Vlse Kriterijumska
Optimizacija Kompromisno Resenje) to consolidate the ratings of feasible alter-
natives. These techniques are supported with a Group Decision Making
(GDM) approach to reduce the level of personal bias and subjectivity of individual
decision makers (DMs). The methodological workings are tested and validated on a
case from Turkey, where actual energy generation projects are compared. The
results intend to present how individual energy projects can be assessed in terms of
their overall sustainability impacts.

The chapter continues with a summary of the literature on the selection of energy
generation projects from a sustainability point of view, followed by the presentation
of publications that utilize the Fuzzy VIKOR technique. Then, the proposed
approach will be explained. The section after that will demonstrate the application
of the approach on a real case study. The final section will present authors’
conclusions.

20.2 Literature Review

There is extensive research on energy generation technologies and their sustain-
ability impacts. For concrete energy generation projects, on the other hand, liter-
ature is quite limited. In terms of the proposed methodology, the Fuzzy VIKOR
technique is a known method, as also discussed below.

20.2.1 Energy Generation Project Selection

There is a wide range of analytical methods in the literature that compare and rank
energy technologies (Kaya and Kahraman 2010). A very limited number of these
papers deal with specific energy projects, while many others focus on renewables,
national energy policies, optimization of energy mix or comparison of energy
technologies. Analytical methods, such as MCDM and fuzzy set theory, are popular
because of the variety of the factors that affect the eventual decision (Wang et al.
2009; Hsueh and Yan 2013).
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Looking at the last ten years of publications, Garg et al. (2007) studied different
thermal power plant alternatives with TOPSIS, another MCDM technique. Burton
and Hubacek (2007) explored the question whether small-scale energy projects
effectively fare better than large-scale ones with respect to social, economic and
environmental targets. In another paper, Chatzimouratidis and Pilavachi (2007)
evaluated 10 different energy generation technologies with regards to five envi-
ronmental criteria. The same authors, Chatzimouratidis and Pilavachi (2008),
studied the environmental impacts of ten different power plants on the living
standard by using the Analytic Hierarchy Process (AHP) method, a popular MCDM
approach. Chatzimouratidis and Pilavachi (2009) also discussed power plants in
terms of technological, economic and sustainability criteria again with the help of
AHP to find out that renewables fare better than thermal power plants in general.
Another article by Pilavachi et al. (2009) analyzed 9 power plant types fuelled with
natural gas or hydrogen. Using AHP for seven criteria, they concluded that natural
gas combined cycle plants perform better overall. Kowalski et al. (2009) determined
the most suitable sustainable energy technology by making use of an MCDM
technique and found out that natural gas is the best fuel type. Lee et al. (2009)
developed a new MCDM model, based on AHP, to select a suitable wind farm
project, while Kahraman et al. (2009) employed axiomatic design and AHP under
fuzzy environment to select the best possible renewable energy alternative. Wang
et al. (2009) reviewed MCDM methods for sustainable energy systems, including
criteria selection, criteria weighting, evaluation, and aggregation. Streimikiene et al.
(2012) developed an MCDM decision support framework for choosing the most
sustainable electricity production technology with the help of MULTIMOORA and
TOPSIS methods. More recently, Onar et al. (2015) focused on the evaluation of
wind energy investments and selected the most appropriate wind energy technology
with fuzzy MCDM techniques to help investors.

Some publications approach the subject with a more regional point of view. In
the past, Polatidis and Haralambopoulos (2004) developed a new
multi-participatory and MCDM framework to evaluate renewable energy alterna-
tives in Greece. Cavallaro and Ciraolo (2005) made use of selected evaluation
criteria for a case study in Italy, where they selected the most appropriate site for
wind energy. Another article by Krukanont and Tezuka (2007) presented an opti-
mization model based on two-stage stochastic programming to evaluate the energy
system of Japan, while Begic and Afgan (2007) evaluated different power system
options in Bosnia Herzegovina with a multi-criteria sustainability assessment
framework. Tsoutsos et al. (2009) identified a set of renewable energy technologies
for the island of Crete and then used MCDM approach for assessing them in terms
of economic, technical, social and environmental criteria, which are identified by
sectoral experts. Another researcher, Cristóbal (2011), combined AHP and VIKOR
to select a renewable energy project that suits national energy policies in Spain and
identified the biomass plant option to be the best choice. Nixon et al. (2013)
introduced an MCDM-based method for evaluating alternative technologies for
generating electricity from municipal solid waste in India. In another publication,
Nixon et al. (2014) presented a goal programming model to optimize the
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deployment of bio-energy plants in Punjab, India and demonstrated its use on two
alternative case scenarios. Zhang et al. (2015) developed an improved MCDM
method that is based on the fuzzy measure and integral to evaluate clean energy
options for Jiangsu province, China. They ranked the solar photovoltaic technology
as the first, followed by the wind, biomass, and nuclear technologies. Abdullah and
Najib (2016) proposed a method based on intuitionistic fuzzy AHP to establish a
preference in the sustainable energy planning decision-making problem in
Malaysia. In another recent paper, Ishizaka et al. (2016) explored the best energy
technologies for the United Kingdom by using GAIA (graphical analysis for
interactive aid) and AHP techniques. Recently, Grilli et al. (2017) deployed MCDM
methods to assess the best solutions for enhancing the production of renewable
energy in the Alps.

20.2.2 Energy Generation Project Selection in Turkey

There is extensive research on evaluating energy technologies in Turkey. These are
summarized next. In the last decade, Köne and Büke (2007) determined the optimal
fuel mixture for electricity generation in Turkey with Analytic Network Process
(ANP). Önüt et al. (2008) also used ANP to assess energy resources for the Turkish
manufacturing industry. Kahraman et al. (2009) used a fuzzy AHP method to select
the most appropriate renewable energy alternative for Turkey and concluded that
the wind power technology promises the best outcomes. Atmaca and Başar (2012)
performed multi-criteria evaluations of six different energy plants in Turkey with
respect to 13 criteria under 4 main clusters; technology and sustainability, economic
suitability, life quality and socio-economic. They used the ANP to find out that
nuclear power technology is the best solution, followed by natural gas. In a study by
Kaya and Kahraman (2011), a modified fuzzy TOPSIS method is proposed for
energy planning.

In more recent years, Kabak and Dağdeviren (2014) proposed a hybrid model
that considers benefits, opportunities, costs and risks related to energy technologies
and prioritized available renewable energy alternatives in Turkey with
ANP. Büyüközkan and Güleryüz (2014) developed an evaluation model to guide
planners with their critical renewable energy technology alternative selection pro-
cesses. In another paper, Erdogan and Kaya (2015) applied fuzzy AHP based on
interval type-2 fuzzy sets to obtain the weights of the criteria affecting energy
alternatives. Then, they fuzzified the TOPSIS method by interval type-2 fuzzy sets
to rank them. Şengül et al. (2015) used fuzzy TOPSIS method for ranking
renewable energy supply systems in Turkey, while Büyüközkan and Güleryüz
(2016) combined Decision Making Trial and Evaluation Laboratory Model
(DEMATEL) technique with ANP for selecting the most appropriate energy
technology in Turkey from an investor-focused perspective. Balin and Baraçli
(2017) used fuzzy AHP procedure based upon type-2 fuzzy sets, and interval type-2
TOPSIS method to find the best renewable alternative energy for Turkey. A similar
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problem was studied by Çolak and Kaya (2017), who introduced another MCDM
model for ranking renewable energy alternatives in Turkey. They integrated AHP
based on interval type-2 fuzzy sets with hesitant fuzzy TOPSIS methods for this
purpose. Another study in this field was published by Büyüközkan and Karabulut
(2017). They proposed a novel method combining AHP with VIKOR for better
selecting concretely defined energy projects from a sustainability point of view.
Büyüközkan and Güleryüz (2017) utilized linguistic interval fuzzy preferences with
DEMATEL, ANP and TOPSIS to find the most appropriate energy alternative for
Turkey. Özkale et al. (2017) analysed the strengths, weaknesses, opportunities and
threats (SWOT) of energy alternatives and applied PROMETHEE method to
ranked them for the Turkish energy market. Kuleli Pak et al. (2017) employed ANP
to find the sustainable energy scenario of Turkey.

This review suggests that energy technologies are researched with various
MCDM methods in terms of technologies, including geographic considerations.

20.2.3 Fuzzy VIKOR Literature

This chapter utilizes Fuzzy VIKOR, the combination of the fuzzy set theory and the
VIKOR method, to deal with the energy project selection problem from a sus-
tainability point of view. This combination is used in the literature for different
purposes. For example, Vinodh et al. (2013) made use of Fuzzy VIKOR to select
the best concept among five alternative designs for adopting agile manufacturing
for the speedy production of customized, high-quality products in different lot sizes.
Liu et al. (2014) again used linguistic variables, expressed as TFNs, to evaluate the
weights of the selection criteria with the help of Ordered Weighted Averaging
(OWA) operator to convert the fuzzy decision matrix into crisp values. VIKOR is
utilized to find the ranking of disposal site alternatives for municipal solid waste.
Chang (2014) developed a framework based on the concept of fuzzy sets theory and
the VIKOR method for evaluating hospital service quality and tested their method
on an empirical case with 33 evaluation criteria and 5 medical centers in Taiwan,
assessed by 18 evaluators. Mandal et al. (2015) developed a methodology for
identifying failure modes of overhead crane operations with the help of fuzzy set
theory and VIKOR to quantify risks of different human errors using the experts’
opinions. Rostamzadeh et al. (2015) introduced a quantitative Fuzzy VIKOR
evaluation model to solve the green MCDM problem with the help of TFNs to deal
with the imprecision of expert evaluations. More recently, Wu et al. (2016) applied
Fuzzy VIKOR to solve a CNC machine tool selection problem with the use of
linguistic input. In another paper, Sofiyabadi et al. (2016) used Fuzzy VIKOR to
measure the importance of key performance indicators in a successful service
business of LG, a South Korean multinational conglomerate corporation. The same
method was employed by Bahadır and Büyüközkan (2016) to select the most
appropriate robots for warehouses. In another paper, Wang (2017) made use of this
methodological combination for selecting the most suitable energy technology in
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China. Also lately, Foroozesh et al. (2017) integrated hesitant fuzzy sets with
VIKOR and applied it to new product selection and energy policy selection
problems under uncertainty.

20.2.4 Findings of Literature Review

This extensive literature analysis indicates the following research gaps:

i. Energy literature mostly discusses energy generation technologies. Concrete
projects are largely ignored. This can cause oversimplifications, as
project-specific conditions can be decisive for sustainability in different
decision-making problems.

ii. Energy literature frequently does not consider the different scales of sustain-
ability impacts. Sustainability of large and small-scale technologies are fre-
quently compared, which can lead to questionable findings. Alternative
projects that are evaluated shall be of comparable size so that their economic,
environmental and social implications can also be comparable.

iii. Fuzzy VIKOR is used very limited for energy related decision-making prob-
lems. So far, there is no publication which applies Fuzzy VIKOR to evaluate
concretely defined energy generation projects with a sustainability perspective.

To address these literature findings, a robust and practical Fuzzy VIKOR-based
framework is proposed for assessing and ranking alternative energy generation
projects in terms of their sustainability aspects.

20.3 Proposed Fuzzy VIKOR-Based Framework
for Energy Generation Project Selection

The proposed integrated Fuzzy VIKOR-based framework consists of a hierarchical
sustainability criteria model, integrated with MCDM methods to provide
researchers and business managers with a functional framework that can be applied
to other energy generation project selection problems. For a DM, it is sometimes
difficult to identify a single alternative that satisfies all the evaluation criteria at
once. In such MCDM problems, a compromise solution can be sought
(Büyüközkan and Ruan 2008). VIKOR is integrated to the proposed framework to
identify such compromise solutions by seeking a maximum group utility for the
majority and simultaneously a minimum of an individual regret for the opponent.
The original VIKOR requires crisp numerical input from a DM. Linguistic infor-
mation can be modelled by extending the VIKOR method with Zadeh’s (1965)
fuzzy logic to process such data to achieve a more comprehensive evaluation.
Considering that several DMs can be involved in real world problems, who prefer
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to voice their opinions with words instead of exact numbers, the VIKOR method
will be applied in a fuzzy environment with GDM.

Criteria weights are found with the fuzzy set theory and the ranking of energy
generation projects is achieved with Fuzzy VIKOR, both with the help of GDM.
The proposed evaluation procedure consists of the following consecutive phases:
(i) Identify evaluation criteria and their hierarchy; and, (ii) Determine criteria
weights and rank energy project alternatives with Fuzzy VIKOR.

20.3.1 Identify Evaluation Criteria and Their Hierarchy

Many factors affect the selection of the most sustainable energy generation project.
Each of these factors shall be addressed with usually vague and imprecise data
collected from a team of experts with different backgrounds. A GDM approach is
utilized with the fuzzy set theory to minimize the bias stemming from experts’
fuzzy evaluations and to better manage the associated uncertainties and partiality.
For this evaluation, first the evaluation criteria shall be identified.

The first phase in the proposed Fuzzy VIKOR-based framework is the deter-
mination of criteria for evaluating energy projects. These criteria, along with their
structured levels and definitions, are taken from Büyüközkan and Karabulut (2017),
as given in Fig. 20.1.

The objective of the decision-making problem is located at the highest level of
the proposed hierarchy. The main dimensions (C1, C2, and C3) are located on the
2nd level of the hierarchy, with their sub-assigned criteria in the 3rd and 4th levels.
The lowest level belongs to the energy generation project alternatives.
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C31: Business 
continuity 

C311: Technology 
and innovation

C312: Supply chain 
resilience

C313: Brand value

C314: Corporate 
governance

C32: Costs

C321: Initial and fixed 
costs

C322: Running and 
variable costs

C323: Depletion and 
rehabilitation costs

C33: Financial 
performance 

C331: Shareholder 
interests

C332: Value creation

C333: Impact of sust.
practices

C34: Product 
performance 

C341: Product qual.
and functionality

C342: Convenience

Fig. 20.1 Evaluation criteria and their hierarchy
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20.3.2 Determine Criteria Weights and Rank Energy
Generation Project Alternatives with Fuzzy VIKOR

In this second phase, the priority of the identified criteria will be found, with which
the alternative energy projects will be compared with each other. The techniques
used in this phase are introduced next.

20.3.2.1 Group Decision Making

An expert might not possess sufficient knowledge of part of the problem and, as a
consequence, he/she might not always provide all the needed information. Relying
on a single DM can pose risks in decision-making because of individual limitations
on experiences, preferences or biases. To address these difficulties, more than one
DM is involved in the process. A GDM process is characterized by its involvement
of two or more industry specialists who differ in their preferences but have the same
access to information, where each DM brings along her/his own perceptions, atti-
tudes, motivations, and personalities.

20.3.2.2 Fuzzy Assessment of Criteria Weights

When DMs are asked about their thoughts on the sustainability aspects of an energy
generation project, the responses will be mostly linguistic, which are inherently
imprecise, and unquantifiable. In such settings, DMs’ inputs can be collected as
fuzzy numbers to adequately represent the uncertainty in human perceptions. The
fuzzy set theory is a method proposed by Zadeh (1965) to handle ambiguity,
uncertainty, and vagueness of decision-making problems. Fuzzy sets are a class of
objects with a continuum of grades of membership from 0 to 1, implying partial
membership to that set. A linguistic value that is not described explicitly can be
represented mathematically in the interval [0,1] that indicates the degree of its
membership.

20.3.2.3 Rank Energy Generation Project Alternatives with Fuzzy
VIKOR

Following the fuzzy assessment of the criteria weights, the project evaluations are
collected from the DMs in fuzzy environment and used to compare and rank the
available energy generation project alternatives with VIKOR, another analytical
method. VIKOR as an MCDM technique is a powerful compromise ranking
method that is preferred for its ability for dealing with complex decision problems.
It can successfully process conflicting and non-commensurable criteria for choosing
the best solution from a set of available alternatives (Opricovic 1998; Opricovic and
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Tzeng 2004). It ranks alternatives on the basis of closeness of each alternative to the
ideal result under given conditions by providing the highest group utility for the
‘majority’ while maintaining the lowest individual regret of the ‘opponent’.
The general structure of the proposed Fuzzy VIKOR-based framework is illustrated
in Fig. 20.2.

Following the presentation of the sustainability model and the individual
methods that compose the integrated proposed Fuzzy VIKOR-based framework, its
steps are explained next.

Step 1. Construct a committee of DMs with K members, determine n alterna-
tives, and m criteria.

Step 2. Identify the evaluation base, in other words, the linguistic variables for
weighing the DMs, criteria and alternatives, all of which are given in Tables 20.1,
20.2 and 20.3 in this order.

Step 3. Collect the judgments of the DMs on the DMs, criteria, and alternatives.
DMs give their linguistic evaluations with the linguistic variables given in Step 2.

Step 4. Calculate DMs’ weights, kk, where k = 1, 2, …, K. The kth DM gives
his/her judgment about other DMs using the linguistic terms given in Table 20.1.
Their judgments are aggregated with “~kk” and de-fuzzified with “k0k” according to
the generalized mean of fuzzy number by Opricovic and Tzeng (2003). The
aggregation is done by the formula in Eq. (20.1).

~kk ¼
PK

t¼1 at
3

;

PK
t¼1 bt
3

;

PK
t¼1 ct
3

k 6¼ t ð20:1Þ

 

Fig. 20.2 General structure of the proposed framework
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Here, the parameters a, b and c are the indices for triangular fuzzy numbers,
where 1� k�K; 1� t�K. To map a fuzzy number into a corresponding crisp
number, Opricovic and Tzeng (2003) proposed the triangular fuzzy number (a, b, c)
de-fuzzification formula in Eq. (20.2).

k0k ¼
aþ bþ c

3

� �
ð20:2Þ

De-fuzzified values are normalized to adjust the values measured on a different
scale to a common scale between [0–1]. The normalization is accomplished with
Eq. (20.3).

Table 20.1 Evaluation scale
for DMs (Büyüközkan and
Ruan 2008)

Linguistic terms Fuzzy numbers

Extremely important EI 0:70 0:90 1:00f g
Very important VI 0:50 0:70 0:90f g
Important IM 0:30 0:50 0:70f g
Medium importance MI 0:20 0:30 0:50f g
Unimportant U 0:10 0:20 0:30f g
Very unimportant VU 0:00 0:10 0:20f g

Table 20.2 Evaluation scale
for criteria weights (Chen
2000)

Linguistic terms Fuzzy numbers

Very Very Low VVL 0:00 0:10 0:10f g
Very Low VL 0:10 0:20 0:30f g
Low L 0:20 0:30 0:40f g
Medium Low ML 0:30 0:40 0:50f g
Medium M 0:40 0:50 0:60f g
Medium High MH 0:50 0:60 0:70f g
High H 0:60 0:70 0:80f g
Very High VH 0:70 0:80 0:90f g
Very Very High VVH 0:80 0:90 1:00f g

Table 20.3 Evaluation scale
for alternative evaluations
(Chen 2000)

Linguistic terms Fuzzy numbers

Very Very Bad VVB 0:00 1:00 1:00f g
Very Bad VB 1:00 2:00 3:00f g
Bad B 2:00 3:00 4:00f g
Medium Bad MB 3:00 4:00 5:00f g
Intermediate I 4:00 5:00 6:00f g
Medium Good MG 5:00 6:00 7:00f g
Good G 6:00 7:00 8:00f g
Very Good VG 7:00 8:00 9:00f g
Very Very Good VVG 8:00 9:00 10:00f g

20 Sustainability Performance Evaluation of Energy Generation Projects 457



kk ¼ k0kPK
k¼1 k

0
k

ð20:3Þ

Step 5. Determine the aggregated fuzzy weight ~wj of criterion Cj, with j =
1, 2, …, m with Eq. (20.4) and establish criteria weighting matrix ~Wj with j criteria,
as shown in Eq. (20.5). Main criteria weights and sub-criteria weights are multi-
plied to find the final evaluation weights of the evaluation criteria.

In the past, Yager (1988) introduced an aggregation technique based on the
ordered weighted averaging operators. The so-called Ordered Weighted Averaging
(OWA) operators have been discussed in a large number of papers. Here, this OWA
operator in Eqs. (20.4) and (20.6) is applied.

kk ¼ k1; k2; . . .; kKð Þ, where kk 2 0; 1½ �; 1� k�K, andPK
k¼1 kk ¼ k1 þ � � � þ kk ¼ 1.
Furthermore,

~wj ¼
XK
k¼1

kka
k
j ;
XK
k¼1

kkb
k
j ;
XK
k¼1

kkc
k
j ð20:4Þ

where aj, bj, and cj are the kth largest elements of the DMs’ judgments.

~Wj ¼ ~w1; ~w2; . . .; ~wj
� � ð20:5Þ

Step 6. Determine the aggregation of fuzzy rating ~fij of alternative Ai i = 1,2, …,
n under criterion Cj j = 1, 2, …, m with the help of Eq. (20.6). Establish the fuzzy
matrix ~D with i alternative and j criteria, as shown in Eq. (20.7).

~fij ¼
XK
k¼1

kkakij;
XK
k¼1

kkbkij;
XK
k¼1

kkckij ð20:6Þ

where aj, bj, cj is the kth largest element of the DMs judgments.

~D ¼

~f11 ~f12
~f21 ~f22

� � � ~f1j
~f2j

..

. . .
. ..

.

~fi1 ~fi2 � � � ~fmn

2
6664

3
7775 ð20:7Þ

Step 7. Compute the values of ~f �j , the best values of benefit criteria and worst

values of cost criteria and ~f�j , the worst values of benefit criteria and best values of
cost criteria, as in Eqs. (20.8) and (20.9).
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Benefit criteria ~f �j ¼ maxj ~fij; ~f�j ¼ minj ~fij ð20:8Þ

Cost Criteria ~f �j ¼ minj ~fij; ~f�j ¼ maxj ~fij ð20:9Þ

Step 8. Calculate the values of ~Sj and ~Rj using Eqs. (20.10) and (20.11).

~Si ¼
Xn
j¼1

~wj
~f �j � ~f �ij

� �
= ~f �j � ~f�j
� �h i

ð20:10Þ

~Ri ¼ maxj ~wj ~f �j � ~f �ij
� �

= ~f �j � ~f�j
� �h i

ð20:11Þ

Here, ~Sj and ~Rj are used for ranking “group utility” and the “individual regret”,
respectively.

Step 9. Compute the values ~Qi using the ~S�i , ~S
�
i and ~R�

i , ~R
�
i values.

~S�i ¼ mini ~Si; ~S�i ¼ maxi ~Si ð20:12Þ
~R�
i ¼ mini ~Ri; ~R�

i ¼ maxi ~Ri ð20:13Þ
~Qi ¼ t ~Si � ~S�i

� 	
= ~S�i � ~S�i
� 	þ 1� tð Þ ~Ri � ~R�

i

� 	
= ~R�

i � ~R�
i

� 	 ð20:14Þ

Here, “t” is introduced as a weight of the strategy of “the majority of criteria”, as
proposed in the VIKOR method. Usually t value is taken as 0.5.

Step 10. Determine the ranking of the alternatives. De-fuzzify the triangular
fuzzy numbers into crisp numbers by using Eq. (20.15), as proposed by Opricovic
and Tzeng (2003).

aþ bþ c
3

ð20:15Þ

Alternatives are ranked by sorting each of the de-fuzzified Si, Ri, and Qi index
values. These Si, Ri, and Qi index values are sorted in an increasing order, as
proposed in the original VIKOR method (Opricovic 1998). The result is a set of
three ranking lists denoted as S[�], R[�] and Q[�].

Step 11. The alternative i1 corresponding to Q[1] (the smallest among Qi values)
is proposed as a single compromise solution if;

1. Alternative i1 has an acceptable advantage:
Q[2] − Q[1] � DQ where DQ = 1/(n − 1) and n is the number of the
alternatives.

2. Alternative i1 is stable, i.e. it is also the best ranked in S[�], R[�].

If one of the above conditions is unmet, then a set of compromise solutions is
proposed:
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(a) Alternatives i1 and i2, where Qi2 = Q[2], if only the 2nd condition is not met; or,
(b) Alternatives i1, …, iz, if the 1st condition is not met. Here, iz is determined by

the relation Q[z] − Q[1] < DQ for the maximum z where Qiz = Q[z].

20.4 Case Study

The proposed framework is applied to a case study with 3 energy projects, where
experts are provided with detailed project data to prevent evaluations to be affected
by prejudices or common opinions. In this case study, an energy project portfolio
from Turkey is compared to understand the extent of how sustainable they are.
Alternatives from Turkey with similar installed capacities, in megawatts (MW), are
chosen to facilitate balanced comparison, without any other selection factor. The
energy projects are presented in Table 20.4.

Four experts evaluated the weights of the evaluation criteria weights. Then, the
same experts scored the three alternative projects according to the criteria. All four
experts have experience in the Turkish energy sector between 5 and 20 years and
are adequately qualified for this evaluation.

20.4.1 Implementation of the Proposed Methodology

Step 1. A decision committee with 4 DMs ðkk; k ¼ 1; 2; 3; 4Þ are constructed and
3 alternatives (Ai, i = 1, 2, 3) and 3 main and 3 mid evaluation criteria with 33
sub-criteria are determined, as illustrated in Fig. 20.1.
Step 2. A six-point triangular fuzzy scale for DMs importance weights is used. For
the alternatives and criteria, nine-point scales are preferred.
Step 3. The judgments of DMs are collected as linguistic evaluations for the DMs,
criteria, and alternatives, as given in Tables 20.5, 20.6, and 20.7, respectively.
Step 4. DMs’ weights, kk, are calculated after gathering the evaluations of the DMs.
For instance, the second DM weighed the first DM as EI, the third DM as VI and
the fourth DM as I. These evaluations are aggregated with Eq. (20.1), as shown
below. All aggregated fuzzy values are illustrated in Table 20.8. Aggregated fuzzy
values are de-fuzzified with Eq. (20.2) and normalized with Eq. (20.3).

Table 20.4 Selected energy generation project alternatives

# Technology Installed capacity (MW) Location

A1 Wind power plant 43.75 Aegean region of Turkey

A2 Hydropower plant 33.0 Central Anatolia region of Turkey

A3 Landfill power plant 42.3 Marmara region of Turkey
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~k2 ¼
a ¼ 0:50 ¼ 0:70þ 0:50þ 0:30

3 ;
b ¼ 0:70 ¼ 0:90þ 0:70þ 0:50

3 ;
c ¼ 0:87 ¼ 1:00þ 0:90þ 0:70

3

0
@

1
A

k
0
2 ¼

0:50þ 0:70þ 0:87
3

¼ 0:689

k2 ¼ 0:689
2:767

¼ 0:249

Step 5. The aggregation of the fuzzy weight ~wj of criterion Cj, j = 1, 2, …, m, is
accomplished with Eq. (20.4). An illustration of the “a” indices is shown below;

– C1 = 0.30 * 0.60 + 0.25 * 0.50 + 0.25 * 0.40 + 0.20 * 0.30 = 0.465
– C11 = 0.30 * 0.50 + 0.25 * 0.40 + 0.25 * 0.30 + 0.20 * 0.30 = 0.365
– C111 = 0.30 * 0.80 + 0.25 * 0.60 + 0.25 * 0.50 + 0.20 * 0.50 = 0.615

The aggregated indices are multiplied to find the final weight. The first index of
C111 is calculated by 0.465 * 0.365 * 0.615 = 0.103. The final fuzzy output set of
fuzzy weights are converted by de-fuzzification into crisp weights. The criteria
weighting matrix, Wj, with its 33 criteria is established in Table 20.9.
Step 6. Aggregation of the fuzzy rating ~fij of alternative Ai under criterion Cj is
accomplished with Eq. (20.6). An illustration is displayed below for the first
alternative’s first indices;
f11 = 0.29 * 8 + 0.25 * 8 + 0.25 * 6 + 0.21 * 6 = 7.08
Step 7. ~f �j values and ~f�j values are calculated with the Eqs. (20.8) and (20.9).

Step 8. The values of ~Si and ~Ri are calculated with Eqs. (20.10) and (20.11), as
shown in Table 20.10.
Step 9. Computed ~Qi values are calculated with Eq. (20.14), using the values of ~S�i ,
~S�i and ~R�

i , ~R
�
i found by Eqs. (20.12) and (20.13). The Tables 20.11 and 20.12

show these values.
Step 10. The ranking order of alternatives is determined with the de-fuzzified
triangular fuzzy numbers. At this step, the generalized mean of fuzzy number
technique is used for the de-fuzzification. The triangular fuzzy number (a, b, c) are
de-fuzzified with Eq. (20.15). An illustration for the first alternative is given below;

Table 20.5 DM’s linguistic
evaluations of DMs

DM 1 2 3 4

1 EI EI EI

2 VI VI VI

3 VI VI EI

4 MI IM IM
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Table 20.6 DMs’ evaluations of alternatives

DM C111 C112 C113 C121 C122 C123 C131 C132 C133 C141 C142

A1 1 VVG VVG VVG G VVG VVG VB VVB VB G VVG

2 G B I VVG I G VVG VVG VB VVG VVG

3 VVG VVG VVG VVG VVG VVG G G G VVG VVG

4 G VVG VVG VVG VVG VVG G G VVG VVG VVG

A2 1 I B G VVB B VB VB I G I VVG

2 G B I VB VVG G B B I VVG B

3 G B I VB I VB VB B VB B I

4 G G B B VVG I B I VB VVG VVG

A3 1 VVG VVG VVG I B VVG I VVG VVG VVG VVG

2 VVG VVG VVG VVG B VVG VVG VVG VB VVG VVG

3 G VVG G I I I I I G G VVG

4 VVG VVG VVG G G VVG VVG VVG VVG VVG VVG

DM C143 C144 C211 C212 C213 C214 C221 C222 C223 C231 C232

A1 1 G VVG I I G I G G B B I

2 I I I G I G G VVG VVG VVG VVG

3 G VVG I G VVG VVG VVG VVG VVG G G

4 VVG VVG I G G VVG G VVG VVG G G

A2 1 B G G I I B B VB B B B

2 I I I G I G B G G I VVG

3 B I G I VVG I VB B VB VB VB

4 I VVG G I VVG VVG VB VVG G B G

A3 1 VVG G VVG G I G I I B I G

2 I I I G I G G VVG VVG VVG VVG

3 VVG G VVG I I VVG G VVG I G G

4 G VVG VVG I I VVG G VVG VVG G G

DM C233 C311 C312 C313 C314 C321 C322 C323 C331 C332 C333

A1 1 I B VVG I G G G G I G G

2 VVG G VVG VVG VVG I VVG I G VVG VVG

3 G VVG VVG G G I G I G VVG VVG

4 VVG VVG VVG G G I VVG VVG VVG VVG VVG

A2 1 VB B B I I G B VB G B VVB

2 I G VVG I G G VVG G G I G

3 I G VVB VB B B I I G B VVB

4 G I VVG I I VVG VVG VVG VVG G I

A3 1 G VVG VVG I VVG G I I I VVG VVG

2 VVG I G VVG VVG B G I G VVG VVG

3 G VVG G G G G G I VVG VVG G

4 G VVG G VVG G B G VVG VVG VVG VVG
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Qi ¼ 0:454þ 0:452þ 0:451
3

¼ 0:452

The energy project alternatives are ranked by sorting in an increasing order, as
instructed in the VIKOR method. The result is a set of three ranking lists denoted as
S[�], R[�] and Q[�]. The Table 20.13 displays the calculated values.
Step 11. The alternative A3 corresponds to the smallest among Qi values. It is the
proposed compromise solution if alternative A3 had an acceptable advantage, in
other words, 0.455 − 0.015 < 0.5 where DQ = 1/(3 − 1). However, A3 is not

Table 20.7 DMs’ importance weights for criteria

DM C1 C2 C3 C11 C12 C13 C14 C21 C22 C23 C31 C32 C33

1 MH MH M ML MH VL ML H H L VH M ML
2 ML ML VVH L M M L ML H MH VH VL H
3 M L VVH MH VVL MH L M VH ML M ML VH
4 H VL VH M L M L VH H VL MH L VH

DM C111 C112 C113 C121 C122 C123 C131 C132 C133 C141 C142 C143 C144

1 H MH ML H ML MH M VVH L M L L M
2 VVH H VVL M H M VVH ML ML L L L H
3 MH MH M H M M H MH ML M VVL VH VL
4 MH MH M VVH VVL H H H L M MH ML VVL

DM C231 C232 C233 C221 C222 C223 C211 C212 C213 C214

1 MH ML H H H L VL ML H L
2 MH M MH M VVH L VL L VVH VL
3 VVH VVL H H M M ML VVL H ML
4 M H M M VH ML L M M L

DM C331 C332 C333 C321 C322 C323 C311 C312 C313 C314

1 ML MH H MH ML H ML M VL M
2 M M H VVH H VVL H M VVL L
3 H M M H H L L VVH VVL L
4 VH M ML VVH M L M MH L VL

Table 20.8 DMs’ weights DM Weights

1 0:40 0:57 0:77f g 0.209

2 0:50 0:70 0:87f g 0.249

3 0:50 0:70 0:87f g 0.249

4 0:63 0:83 0:97f g 0.293
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Table 20.9 Criteria weights

1st level
criteria

2nd level
criteria

3rd level criteria Overall

C1 0.32 C11 0.27 C111 Air emissions 0.41 0.035

C112 Effluents and waste 0.36 0.031

C113 Other pollutants 0.23 0.020

C12 0.24 C121 Water consumption 0.41 0.031

C122 Energy use 0.26 0.020

C123 Raw material use 0.34 0.026

C13 0.29 C131 Ecosystem vulnerability 0.4 0.037

C132 Critical habitats 0.4 0.037

C133 Sustainable farming 0.2 0.019

C14 0.20 C141 Man. systems and programs 0.27 0.017

C142 Regulatory compliance 0.21 0.013

C143 Environmental governance 0.28 0.018

C144 Supply chain management 0.24 0.015

C2 0.23 C21 0.35 C211 Job creation 0.17 0.014

C212 Job satisfaction and quality 0.21 0.017

C213 Occupational health and safety 0.43 0.035

C214 Training and education 0.19 0.015

C22 0.42 C221 Social acceptance 0.35 0.034

C222 Public health and safety 0.42 0.041

C223 Cultural properties 0.23 0.022

C23 0.23 C231 Stakeholder relations 0.38 0.020

C232 Corporate social responsibility 0.26 0.014

C233 Principals and commitment 0.36 0.019

C3 0.45 C31 0.39 C311 Technology and innovation 0.3 0.053

C312 Supply chain resilience 0.39 0.068

C313 Brand value 0.11 0.019

C314 Corporate governance 0.21 0.037

C32 0.21 C321 Initial and fixed costs 0.45 0.043

C322 Running and variable costs 0.34 0.032

C323 Depletion and rehab. costs 0.22 0.021

C33 0.4 C331 Shareholder interests 0.36 0.065

C332 Value creation 0.31 0.056

C333 Impact of sustainable practices 0.34 0.061

Table 20.10 ~Si and ~Ri values ~Si ~Ri

A1 0:591 1:063 1:745f g 0:211 0:338 0:506f g
A2 2:308 4:330 7:178f g 0:220 0:349 0:521f g
A3 0:618 1:166 1:911f g 0:125 0:226 0:366f g
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ranked best in S[�]. Since one of the two conditions in Step 9 is not satisfied, a set of
compromise solutions consisting of the alternatives A3 and A1 is proposed.

20.5 Discussion of Results

An analytical decision support method is proposed for evaluating and ranking
concretely defined energy generation projects from a sustainability perspective.
This integrated method is then applied to a case in Turkey, where a group of experts
assessed three actual project alternatives. The results of the case study offer pow-
erful insight about the sustainability performance of energy generation projects,
where A1, the landfill power plant, is proposed together with A3, the wind farm, as
the most sustainable compromise set of project alternatives. This ranking is dis-
cussed with the DMs and it is observed that the results are in agreement with DMs’
expectations. As a comparative perspective, this result is also in general agreement
with energy technology selection literature. The wind, biogas and landfill tech-
nologies are frequently preferred in similar rankings over hydropower plants
(Kahraman et al. 2009; Kaya and Kahraman 2010, 2011; Büyüközkan and
Karabulut 2017).

According to this case study, the most important sustainability aspect is eco-
nomic, followed by environmental and social aspects. Under economic aspects,
C33, Financial Performance, and C31, Business Continuity, are deemed to be the
most influential factors in deciding on the energy generation project. Located under

Table 20.11 ~S�i , ~S
�
i and ~R�

i , ~R
�
i values

~S�i 0:591 1:063 1:745f g ~R�
i

0:125 0:226 0:366f g
~S�i 2:308 4:330 7:178f g ~R�

i
0:220 0:349 0:521f g

Table 20.12 ~Qi values

0:454 0:452 0:451f g
1:000 1:000 1:000f g
0:008 0:016 0:015f g

Table 20.13 Ranking lists for Q, S, and R

Alternative Qi Si Ri

Index Rank Index Rank Index Rank

A1 Wind farm 0.452 2 1.133 1 0.352 2

A2 Hydropower plant 1.000 3 4.682 3 0.364 3

A3 Landfill power plant 0.013 1 1.232 2 0.239 1
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these criteria, the overall most important sub-criteria with a global priority more
than 6% are identified as C312, Supply Chain Resilience, C331, Shareholder inter-
ests, and C333, Impact on sustainable practices. For the environmental criteria, C111,
Air Emissions, C131, Ecosystem Vulnerability, and C132, Critical Habitats, stand out
with global weights exceeding 3.5% each. For the social criteria, the experts
indicate that C213, Occupational Health and Safety, and C221, Social Acceptance,
are the most important sub-criteria with global weights more than 3% each, as
Table 20.9 displays. It should be noted that these weights are not limited to the
alternative energy generation projects in the case study and can be used in other
energy generation project selection problems as well.

The reason of using the fuzzy set theory is its ability to gather DMs’ linguistic
opinions, instead of exact numerical values, so that the ambiguity and uncertainty of
human judgments can be better captured and reduced. Criteria weights are evalu-
ated with this method in a GDM environment, which is advantageous over a single
DM for reducing individual bias and insufficient knowledge on certain aspects of
decision problems. VIKOR is preferred thanks to its strength of coming up with
compromise set solutions, a preferable feature in decision problems with subjective
criteria, such as sustainability. Input for VIKOR is collected from DMs as linguistic
input, which are then aggregated with GDM and de-fuzzified. The case study
indicates that this combined Fuzzy VIKOR-based framework generates plausible
results. Another benefit of this method is that the DMs are not asked to make
pair-wise comparisons, such as in AHP, which is cognitively demanding and time
consuming as the number of criteria increases.

This framework can be used by energy investors for effective and data-based
assessment of well-defined energy generation projects, instead of generic technol-
ogy comparisons that rely on individuals’ generalizations and common opinions.
Energy project selection is a significant decision problem for investors, which
requires the consideration of many different sustainability aspects. The proposed
method successfully integrates economic, environmental and social factors into this
decision process. It can guide business managers and researchers in reaching
realistic and practical judgments about sustainability performance of energy pro-
jects that are in operation, as well as estimating the level of the sustainability of
those projects that are under planning or construction. The criteria cover a wide
range of impacts, which can also help developers of energy generation projects to
take the necessary precautions for improving their projects’ sustainability perfor-
mance. It can also be useful to researchers for better understanding the underlying
sustainability components of energy project selection problem. The energy gener-
ation project selection model presented in this chapter can be used in different
geographies for smaller or larger concrete projects, as long as they are of compa-
rable size.
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20.6 Conclusion

Energy is essential for economic development, environmental protection and social
agenda. Energy generation is expected to be affordable, reliable, economically
viable, environmentally friendly and socially acceptable. Therefore, those energy
projects that satisfy these expectations shall be prioritized. This raises the question
of how to evaluate energy generation projects in terms of sustainability in a holistic
way.

This chapter presented a combined Fuzzy VIKOR-based framework for an
effective energy project selection from a sustainability point of view. The 4-level
criteria structure originally proposed by Büyüközkan and Karabulut (2017) con-
sisting of 3 main dimensions, 12 criteria, and 37 sub-criteria is integrated with two
MCDM techniques, the fuzzy set theory, and VIKOR, to evaluate this set of
multilevel criteria. An empirical case from Turkey is studied to demonstrate the
usability of the proposed framework for identifying the most sustainable energy
generation project from a set of alternative projects. Three projects are compared
with the help of four industry experts. The analysis resulted in a compromise
solution set, consisting of the wind farm and landfill power plant projects. This
suggests that the selected hydropower plant project is not sustainable enough, while
this implication shall not be simply extended and generalized to its technology,
considering that this evaluation is carried out for specific projects.

The article is original for different reasons. The work by Büyüközkan and
Karabulut (2017) is extended by making use of their criteria structure but inte-
grating with another technique, fuzzy set theory, to allow for uncertain and
imprecise evaluation data. This allows linguistic evaluations to be gathered from
experts, which is more natural and easier for human way of thinking. Thus, the
major scientific contribution of the proposed framework is its ability to select
specific energy generation projects, instead of generic energy technologies, on the
ground of their sustainability impacts with linguistic input.

The proposed Fuzzy VIKOR-based framework can be helpful to researchers and
businesses to better understand project-based evaluation and design more sustain-
able energy generation projects in a more structured manner. It allows DMs to
provide their opinions linguistically to mimic natural thinking, without having to
voice their judgments with numerical values. The method can also be applied
to smaller, larger or more projects in other geographies, as long as sufficient sus-
tainability information is available to DMs. This approach can guide energy gen-
eration project investors to identify acceptable compromises in their project
prioritization problems.

In terms of limitations, the interactions among evaluation criteria are not con-
sidered. One of the perspectives for future research is then to consider the inner
dependence of criteria and their interactions. Integration of the ANP technique
(Saaty 2008) can be a possible solution to extend this work.
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Chapter 21
Review of Collective Intelligence Used
in Energy Applications

Gülgün Kayakutlu and Secil Ercan

Abstract Low-Carbon Economy policies drive Europe for an integrated approach
for utility consumption and management; number of integrated distribution com-
panies are increasing. This new trend will soon cause the need for group decisions,
collective intelligence approach to the energy industry. This study aims to review
the collective intelligence concepts and methods to give a summary of collective
intelligence use in energy applications. It can be considered as a foundation for the
future of collective intelligence in the energy industry.

21.1 Introduction

New benchmarks on integrated utility industry of Europe shows positive results in
price reduction and energy saving (Georges et al. 2017). Solar and wind installa-
tions in Germany and extended nuclear installations in France are leading the
positive impact on aggressive policies for a low-carbon economy in Europe. The
more integrated the utility industries are, the more need will arise for group deci-
sions through a variety of dimensions. We believe this will cause the wider use of
collective intelligence in the energy field.

A recent development in the knowledge management field is represented by
collective intelligence to find better solutions for current social and cultural chal-
lenges (Elia et al. 2014). In only a few decades the nature inspired collective
intelligence methods have proven their value (Król and Lopes 2012). The growth of
network economy has steered for the success of collective approaches. Wikipedia
and Social media sites have been the sparkling results in information and com-
munication technologies. These methods achieved results representing collaborative
work provided by integrated but competitive brains in several industries.
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Using collective intelligence approaches have shown that “there could well be a
solution out there somewhere, far outside of the traditional places” (Bonabeau
2009). In order to choose the right tool that fits for locating the solution needs the
knowledge of concepts and the choices.

This article aims to review the collective intelligence concepts and methods
besides giving the summary of using these methods for the energy applications.
A brief on the future trends of using collective intelligence will also bring a new
dimension for the readers. It is strongly believed that the reviews given in this
chapter will give some hints for both the academicians and the practitioners in the
energy field.

This paper is so organized that the definitions and the main concepts of the
collective intelligence will be given in the following section. The third section is a
short review of the methods and the fourth section is reserved for the energy
applications. The last section will include the conclusions and results.

21.2 Collective Intelligence Concepts and Definitions

Collective Intelligence is generally defined as a group intelligence that emerges
from collaborative efforts of individual team members for a consensus in decision
making. The knowledge management specialists like Quinn and Nonaka would take
collective intelligence as an organizational learning rather than representing the
collection of knowledge (Merali 2000). According to Tapscott and Williams (2008)
if an organisation uses the collective intelligence for learning and group decisions
they should give an importance that the group has the four principals that enable the
success.

• Openness: Members of the decision team would join meetings without thinking
“I own this idea”, ready to share the ideas with the group. This will create an
opportunity for the review of other expert minds to clean the flaws and the bugs
as well as expanding the creativity.

• Peering: This principal is creating the basis for an equality for the decision
makers avoiding the need for a hierarchical approval. Since this basis would
allow peer contributions, the desired contributions will be equally contributing
to accomplish the common goals.

• Sharing: Though it seems similar to the openness, it is not limited to the new
ideas but sharing the intellectual property with the rest of the group. It is a
necessity for the flow of ideas and critics feeding in the group creativity.

• Global Acting: This concept is mainly introduced by the enhancement of
communications. It simply means that the organization should be open to the
industry and to the entire world of supply and marketing chains. This principle
will allow to overcome the borders of company, industry or country based
culture to enter the new markets with the new talents.

476 G. Kayakutlu and S. Ercan



As a learning Cross defines collective intelligence as part of the Fig. 21.1.
Wikipedia and on-line games are shown as the best examples of using the

collective intelligence for learning.
Moffet (2010) tells the story of collective intelligence growing from Wheeler’s

experience as follows:

In 1911 William Morton Wheeler observed ants working in a group and saw them not as an
individual but a single unit in a colony which created superorganism. A year later Emile
Durkheim identified society as the sole source of human logical thought.

It is known that humans interact in several ways which are similar to animal
interactions (Fisch et al. 2012):

• Individuals obey certain social rules—swarm of birds or fish obey rules to
survive.

• Individuals exchange information for a common goal-ants following the pher-
omone for food.

• Babies learn by observing mimics of mother-monkeys copy movement of other
monkeys or humans.

• Individuals learn from each other by rules or change of experience-small fish
learn to escape from the big fish with rules and experiences.

Hence knowledge created in collective synergy can act timely in critical situations
and moreover, may solve problems that cannot be solved individually.

It was only in the fifth generation of computer systems launched in Japan in
1980, that this concept has been accepted as the new era for social web (Kapetanios
2008). Main aim of this new approach is the absorption and spreading of infor-
mation through evolving knowledge processes. This new computing method has
created solutions with inspirations from the biological groups in the nature.

Fig. 21.1 Organisational
learning (Cross and Israelit
2000)
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The dynamic pattern mechanism of neurons has helped converting the contin-
uous time into discrete solutions, which saves execution time in computing (Conrad
1987). That is why Elsevier databases show that there have been more than 6000
researches just applying the Artificial Neural Networks (ANN) on time series data
for predictions in health, engineering, materials and other fields. Planning or
scheduling can be one of the fields where ANN is beneficial (García et al. 2014).
Stock Markets are of great interest in using the collective intelligence because, the
synthesis of a group of brains can avoid shortcomings. Kaplan (2001) has sum-
marized it decently in three major reasons of using the group synergy in investment:

• No single person has access to all the necessary information;
• No single person can use of all the alternative approaches to process the

information;
• A single investor can not all alone avoid mistakes caused by subjectivity.

Other widely known collective intelligence methods are ant colony and particle
swarm optimisation besides evolutionary algorithms.

Collective intelligence also helps combining a variety of information as in this
example of steel industry case given by Lazaric. The study aims to make a technical
analysis of the scrap quality and internal temperature of a blast furnace. However,
the approach to analysis is focused on different levels of knowledge which could be
lost by communication problems of experts from different “communities of prac-
tice” (Lazaric et al. 2003).

Use of collective knowledge creates an important organisational concept of
“collective memory”. This concept is almost in conflict with the history, since, the
ordinary people get concerned about present based on the considerations of the past.
However, in collective memory for an organization is constructed by giving access
to organizational information like mission, goals, objectives and basic policies. This
information is recorded in group meetings and help to educate the new employees
as well as supporting the multi-stage group tasks (Paul et al. 2004).

Literature review shows that Collective Intelligence has been the focus of a
variety of scientific fields like Medical Sciences, Management Science, Sociology,
Social Psychology, Information Technology and Knowledge Management. It has
been observed that earliest research is in medical science (Thomas 1973), but the
most crowded one is on creating the collective intelligence in the society, which is
still centre of attention (Tounsi and Rais 2018). In Fig. 21.2 you can see the
growing interest on collective intelligence for society, health, organizations and for
computation.

Collective intelligence is mostly used in societal and organisational search
because the approach is mainly used in complex environments to respond with
abstract chaotic models. Szuba (1999) defines the society with thinking and
non-thinking beings with “non-continuous” ways of interactions.
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21.3 Collective Intelligence Methods

Collective intelligence methods use a stochastic approach, since they include at
least one random variable. Szuba (1999) says individual in a society move ran-
domly because the inferences in real life are made randomly. He suggests using
Brownian movements to represent social behaviour summarizing his reasons as:

• Single incidences are random;
• Incidences use resources distributed in time and space among the individuals;
• Performance of any social structure depends on the organization;
• There are inconsistencies caused by facts and rules.

By defining the above, he can express the levels and performance of collective
intelligence mathematically. Maleszka and Nguyen (2015) have recently studied the
computational expression of the integration of individual intelligence. The first
assumption is individual intelligence is nonnegative, reflexive and symmetric so
that the following expressions are used to make mathematical definitions follow.

Nonnegative:

8x; y 2 U : dðx; yÞ� 0 ð21:1Þ

Fig. 21.2 Distribution of research on collective intelligence. Source SCOPUS
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Reflexive:

8x; y 2 U : dðx; yÞ ¼ 0 if x ¼ y ð21:2Þ

Symmetrical:

8x; y 2 U : dðx; yÞ ¼ dðy; xÞ ð21:3Þ

An Integrity function I2 Int(U) satisfies:

Unanimity:

8n 2 N and 8x 2 U Iðn:xÞ ¼ x ð21:4Þ

Simplification: Collective(X) is a multiple of Collective(Y)

IðXÞ ¼ IðYÞ ð21:5Þ

Consistency:

8x 2 Uðx 2 IðXÞÞ ) ðx 2 IðX [ xÞÞ ð21:6Þ

Proportion:

8X1 2 U and 8X2 2 U

ððX1 � X2Þ ^ ðx 2 IðX1ÞÞ ^ ðy 2 IðX2ÞÞÞ ) ðdðx;X1Þ� dðy;X2ÞÞ
ð21:7Þ
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Optimality of consistent X for any X 2 Q (U)

ðx 2 IðXÞÞ , ðdðx;XÞ ¼ min
y2U

dðy;XÞÞ
ðx 2 IðXÞÞ , ðd2ðx;XÞ ¼ min

y2U
d2ðy;XÞÞ ð21:8Þ

Complexity:

If X is consistent thenX�IðXÞ ð21:9Þ

Even though the collective intelligence of human beings can be shown mathe-
matically, computations show an exploration, exploitation dual dilemma between
the individuals. Although social learning through the current social media reduce
collective exploitation costs, total group exploration costs increase. Toyokawa et al.
(2014) have used the similarity of human interaction dilemma with social insects
approach and figured out that people can learn about the previous choices about
other and solve the exploitation-exploration dilemma. This is a recent example of
using the cases from the nature to solve collective intelligence problems.

A few decades ago nature inspired collective intelligence solutions were taken
by the scientists with strong suspicions. The improvements in computational
methods and artificial intelligence have success of those algorithms increased.
Though evolutionary algorithms and neural networks are also considered in col-
lective intelligence by some researchers, the majority accepts the early algorithms to
be ant colony and particle swarm optimisation (Penalva 2006).

In Ant Colony algorithm (ACO) a population of ants are initiated for random
solutions where each ant is assigned a transition probability. Then the pheromone
trail is updated. At each iteration, the pheromone amount is evaporated and best
ants can survive using the Eqs. (21.10)–(21.12) defined by Goss (Dorigo and
Di Caro 1999) (Fig. 21.3).

Probability with heuristic information g and S, and constants a and b depends
on the ratio of individual pheromone sij at iteration t and total of sij for all the ants:

qijðtÞ ¼
sijðtÞagb

ijP
j2S sijðtÞagb

ij

ð21:10Þ

where, pheromone is renewed by evaporation rate q:
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sijðtþ 1Þ ¼ ð1� qÞsijðtÞ ð21:11Þ

The trail is renewed for the global best path Dsij

sijðtþ 1Þ ¼ sijðtÞþDsij ð21:12Þ

Kennedy and Eberhardt (1995) defined Particle Swarm Optimization (PSO) to find
the individual best (particle best-Pbest) as well as the social best (Global
Best-Gbest). It is the best representative of showing that the ability of a group to
solve problems is richer than its individual members (Fig. 21.4).

This algorithm is defined by imitating simulating the flocking bird groups
(Sharafi and ElMekkawy 2015). Given the position and the velocity as below the
objective function is calculated for each particle to find the position and velocity for
personal and global best using the random number r.

Fig. 21.3 Typical food search of ants (Ghanbari et al. 2013)

Fig. 21.4 PSO geometry in
finding particle best and the
global best (Kennedy and
Eberhart 1995)
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xij ¼ xmin � rðxmax � xminÞ 8i ¼ 1; . . .;N; 8j ¼ 1; . . .; n

mij ¼ a
xminþ rðxmax � xminÞ

Dt

ð21:13Þ

After having found the particle and global best the velocity and positions are
recalculated using the constants c1 and c2:

mij  mijþ c1q
xpbij � xij

Dt

 !
þ c2r

xsbj: � xij
Dt

 !
8i ¼ 1; . . .;N; 8j ¼ 1; . . .; n

xij  xijþ mij � Dt

ð21:14Þ

Kitamura shows a good example of a two-objective operation planning problem for
a period of 24 h in industry using PSO, with the objectives being the simultaneous
minimization of energy cost and CO2 emissions (Kitamura et al. 2006). An oper-
ation schedule is worked out by dividing the problem into 1-h intervals.

PSO is widely used in forecasting and clustering in the energy field. Kumar and
Chaturvedi (2013) gives a good example of optimizing the power flow in the grid.
In this analysis, the total load of electricity is optimized considering the busses, the
branches, the generators and the transformers. These widely known algorithms
found applications in the areas of network security, pervasive computing, mobile
and embedded systems, pattern recognition, data classification as well as the energy
fields. Krol gives some examples with their impact in industry (Król and Lopes
2012):

The artificial immune system can efficiently detect changes in the environment or devia-
tions from the normal system behaviour via self-optimization and learning process. The
concepts of intercellular information exchange can be used to learn: efficient dispatching,
shortening of signalling pathways and modelling the control loop for a regulatory process in
an organism. Some bio-ideas can be successfully exploited to elaborate sound strategies
against cascading failures in the systems, or to provide insights into complex social phe-
nomena such as terrorist cells.

Artificial Bee Colony (ABC) is a new algorithm that is preferred in forecasting as
well. Karaboga and Akay (2007) defines the food sources, foragers as main
self-organisers. The foragers can be employed or non employed. The employed
foragers are associated with a particular food source, which they are exploiting or
are employed at. Unemployed Foragers are continually looking for a food source to
exploit. There are two types of unemployed foragers: scouts, searching the envi-
ronment surrounding the nest for new food sources and onlookers waiting in the
nest and establishing a food source through the information shared by employed
foragers. The algorithm defines two leading modes of behaviour: either recruits at
the food source or abandons the source. The important part of the algorithm is the
exchange of information among the bees. Employed foragers share their informa-
tion with a probability proportional to the profitability of the food source found in

21 Review of Collective Intelligence Used in Energy Applications 483



the dancing area. An onlooker on the dance floor, decides to employ herself at the
most profitable source. But, there is a greater probability of onlookers choosing
more profitable sources since more information is circulated about the more prof-
itable sources. Creating a solution mij for ith source and jth bee and find the
probability for each source through the fit function associated with it fiti, which is a
ratio of sum of all fit values for all the sources as calculated using Eq. (21.15) first.

mij ¼ xijþ/ijðxij � xkjÞ
where

k : 1; 2; . . .number of employed beesf g
j : 1; 2; . . .Df g
D : number of parameters to optimize

/ij 2 ½�1þ 1� random number

pi ¼ fitiPS
l¼1 fitl

ð21:15Þ

All these nature inspired methods can be used with the advantages in solving the
Non-Polynomial; applying the deep learning; designing the IT security; discover
semantic networks; financial portfolios; characteristic or demographic segmentation
(Kayakutlu and Mercier-Laurent 2017). The cutting-edge research used biological
or nature inspired intelligence algorithms in dynamic agent based systems. As in the
case of Zhang et al. (2015) where the swarm algorithm is used to define the
topology of the multi-agent dynamic intelligence.

More hybrid algorithms are constructed gradually, when an operational function
is studied together with nature concerns. BeeCup to study energy efficient mobile
communication clustering (Xia et al. 2014), bee swarm to design safe routing
(Bitam et al. 2013) and a harmony search for implementing energy efficient sensor
networks are good examples.

Zak & Zak (1994) have looked for responses to define collective brain through
the probabilistic structure can be installed and how can it be improved with col-
lective actions depending on the Newtonian dynamics and gradient descent. The
research could not find the structure but defined the improvements for collective
intelligence. Equation (21.16) defines the ith intelligent unit (neuron) to access m
existing and m + 1…n predicted information with its own probability function uI

which will eventually converge to 0 when no coincidence occurs.

_xi ¼ ci sin
kð

ffiffiffiffi
x
p
ai

X
j

TijxjÞ sin xtþ e20/iðxil; . . .; xim; ximþ 1; . . .; x
i
nÞ; e0 ! 0

L ¼
XZT

0

ðxi � xiÞ2dt for relatively l arg e T

ð21:16Þ
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L is the improvement structure depending on the synaptic (generally sigmoid)
oscillations Tij. There is no more a need for gradient descent because prediction is
continued on the same direction as far as L1 � L0 and L2 � L1. If the improve-
ment is not observed the direction is changed.

Gavrilets (2015) studied the collective action of the collaborative brain using the
evolutionary algorithms trying to show the individual costs and benefits when a
certain collaborative action. This research shows that collective action starts first
with the neighbouring groups after a certain state of benefit they become involved
in other collective actions. Evolution starts with “us versus them” and with the
cultural learning, social intelligence improves to “us versus nature”.

21.4 Collective Intelligence in Energy Applications

A review in Web of Science shows that individual algorithms like Ant colony and
Particle Swarm Optimization have been used in energy forecasting for long
(Kitamura et al. 2006; Dorigo et al. 2006; Toksarı 2009; Robinson 2005). However,
the collective learning or collective intelligence concepts have been introduced to
the industry only after the use of distributed energy, smart buildings, smart city
concepts and economic concerns are integrated with the climate concerns.
Non-profit services, federated operations and intellectual property rights forced the
collective management of the grids (Ishida et al. 2011) and smart building networks
(Rahimian et al. 2015; Nemoz 2013).

One of the early studies of collective learning applied in the energy industry is
focused on responding to “Why? What? How?” questions collaboratively
(Korsvold et al. 2010). The research results in collaboration on only one single
question, never combined. These findings would also explain the method oriented
use of collective intelligence in the energy industry, since, most of the research was
only targeting the economic analysis. Use of multiple resources has made the daily
life of energy generators more complex and introduced multi agent systems as a
tool for operations management (Saba et al. 2015).

Following the improvements in the energy research, review of collective intel-
ligence applications will be organised as forecasting studies, economic analysis,
strategic studies, operational analysis, performance review and future studies.

21.4.1 Energy Forecasting

Demand, renewable energy availabilities and the price are the main uncertainties in
the energy research. Energy forecasting studies in short and long terms are moti-
vated by these uncertainties.

Long term demand forecasts are the basis for creating policies. Early samples of
creating are fuel policies in Iran (Assareh et al. 2010) and long term power demand
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forecasting in China (Pi et al. 2010) and in Turkey (Ünler 2008). Toksari gives the
domestic power consumption forecasts for Turkey between 2014 and 2030 using a
hybridized ACO algorithm (Toksari 2016). The forecast is based on population,
import, export and GDP for two scenarios. A very recent study of Karadede et al.
(2017) on Natural gas consumption in Turkey has also used hybridized collective
intelligence to reduce the forecasting errors. However, with the analysis of He et al.
(2017) it is observed that the methodology might be of second importance to
improve the long term forecasts if the impact factors are well chosen.
Inopportunely, majority of long term demand forecasts still only rely on GDP,
Population, industrialization and resource availability where as the new factors are
to be defined as shown in Fig. 21.5.

Energy demand by the transportation is a specific industry demand which is
forecasted by using the artificial bee colony in Turkey (Sonmez et al. 2017). They
are expecting the energy use to be doubled in 2034, that of 2013.

The short-term forecasting is highly requested for the renewable energy resource
estimation, energy loading amount prediction and power price prediction.
Autoregressive Integrated Moving Average (ARIMA) is the generally preferable
method for short term forecasts. But as in the case of Su et al. (2014) using
(PSO) reduces the prediction errors of wind speed forecasting.

If distributed wind turbines are used in the wind farms, then hybridization of
PSO and ACO can be combined to suggest better schedules (Rahmani et al. 2013).
In majority of the short-term forecasts Artificial Neural Network (ANN) systems are
used as a black box as in the electricity generation using solar resources
(Bugała et al. 2018). In Bugala et al’s study, number of sunny hours, length of day,
air pressure, maximum temperature, cloudiness are taken as input and daily electric
energy is given as the output.

There is a remarkable change on the energy price forecasts which even makes
ministries of energies change their policies. There were studies to predict which
prices should be more beneficial for the power price forecasting (Melichar 2016;

Fig. 21.5 Sample of combining new and factors effecting the energy demand forecast (He et al.
2017)
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Lahiani et al. 2017). Conventionally prices are based on petroleum but now natural
gas seems the start of the market. So gas prices or both petroleum and gas prices are
to be taken as historical data. Doubts due to rapid changes in prices caused dis-
cussions even on DOE forecasts (Mamatzakis and Koutsomanoli-Filippaki 2014).
Sisodia et al. (2015) Sisodia discussed the existing pricing models in accordance
with the differences of the developing countries.

Raza and Khosravi (2015) give an insight to the intelligent studies on smart grids
and smart buildings. But unlike the load forecasts analysed in this review, Dudek
introduces a new technique for load prediction. He uses Artificial Immune System
for estimating the energy load by finding the data patterns and clustering the pat-
terns on similarities (Dudek 2015). Ma et al. (2017) reviews all the market models
including the IEA designed ones (e.g. MARKAL and LEAP) and discusses the
applicability of those models on district load forecasting. They construct a new
hybrid modelling framework where cuckoo search, a multi-objective optimization
algorithm is hybridized with some machine learning methods.

Multi Agent applications have taken off in short term prediction for the smart
grid management with distributed resources. The load demand schedule is to be
designed depending on the battery scheduling as in the case of Chaouachi et al.
(2013).

21.4.2 Energy Economy

Energy economy includes the investment analysis, cost optimization and lifecycle
evaluations of energy resources as well as cost comparisons. Portfolio construction
are also part of economic analysis, since the resources are operated together
according to the total cost. New technologies are centre of attraction for the eco-
nomic analysis. The first example is the multi objective analysis of the cost of
energy generation while minimizing the carbon emission and maximizing the wind
energy share. There are several economic studies alike, but Khodja et al. (2014)
used ACO to perform the analysis and showed that the results are achieved in
shorter computational time than the other methods.

An investment in a bioethanol is studied by using the particle swarm opti-
mization in Redlarski et al. (2017) where the multi objective optimization is
designed for the profitability of the supply chain and the investor separately.
Researchers emphasize the importance of location as well as the cost of a rich
variety of equipment requested. The solution is modelled by using several PSO run
in parallel.

In a review of intelligent techniques used for multiple energy resource usage in
energy generation mentions particle swarm optimization more for the use of multi
objective optimization but ant colonies and artificial immune system in hybrid
resource sizing (Zahraee et al. 2016).

A survey on Honey Bee Collective Intelligence algorithm use, shows that any
economic dispatch problem in energy field can use this method (Rajasekhar et al.
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2017). Actually, one of the dispatch evaluations for chiller dispatch used bee swarm
optimization to save energy (Lo et al. 2016).

21.4.3 Energy Strategies

Critical and long-term decisions are the subject of strategic analysis. Collective
intelligence techniques can well be used for the long term decisions in the energy
field. As in the case of reinforcement planning of the distribution systems studied
by Favuzza et al. (2007). It is a strategic plan since the costs are to be considered
together with the selling and buying conditions. The solutions are to be minimized
and the cables have to be installed optimally. An annual multi objective function to
create consensus of all the concerns at once is solved using Ant Colony Search
algorithm. The economic impact of the best strategy is minimized in minimum
computational time.

Facility location has always been a strategic decision. With the distributed
energy management the locations for the distribution centres are chosen through the
use of bi-level ant colony algorithm by Yegane et al. (2016). In this interesting
study, the case of two computing supply chain is analysed where both have the
chance to locate the distribution centre in the same place. The well-known NP-hard
problem by scenarios of importance for the followers. The results show that even
large-scale problems can be solved with the same algorithm.

Maintenance and spare part renewals in transmissions systems are strategic and,
it is well known that the mistakes may cause blackouts. Optimization problem for
maintenance plans are designed as a knapsack problem and solved using ant colony
optimization designed as a chain of capital and operational expenses (Rhein et al.
2017). Hazard rates are calculated with the designed new ant colony application and
the reliability of the transmission system is improved by the right timing.

The last sample of strategic analysis is on the fuel cell capacitors of the electric
vehicles. Strategic energy management system for the electrical vehicle is designed
by Koubaa and Krichen (2017) using a layer for rule based intelligence and the
second layer for the swarm optimisation. The rules are defined rules for standing/
breaking, demand, decelerating, accelerating and state of charge and then the PSO
is run to define the probabilities for state of charge to be more than minimum and
less than maximum. The first layer served for speeding up the computational time
and the second layer optimized hydrogen use, which is in fact better than the
approaches using genetic algorithm.

21.4.4 Energy Operations

There are numerous samples of collective intelligence applications in energy supply
chain operations, mainly on planning, scheduling and expansion of the transmission
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and distribution. The supply chain will be considered as energy generation, trans-
mission, distribution, and sales. After the distributed energy providing with
micro-grids, the samples are more concentrated on the energy generation operations
because of the hybrid use of the resources (Fig. 21.6).

Sorensen explains the difficulties of generation, transmission and distribution of
new energy sources like bio-fuels and liquid fuels which are foreseen to replace the
fossil sources. Watanabe (2005) and Li et al. (2005) give good distribution or
distribution expansion planning by using the ant colony optimization.

For allocation of distributed resources two features of the cat swarm are simu-
lated: seeking slowly to exploit and tracing fast (explore) using velocity (Chu et al.
2006). This algorithm has been the preferred collective intelligence for allocating
the turbines and keeping the reliability standards (Mezian et al. 2015; Selvakumar
et al. 2017).

In hybrid energy resources are used for power generation, multiple objectives
create an NP-Hard problem to solve. If minimizing the cost, minimizing the losses,
maximizing voltage stability and minimizing the emissions are the objectives there
is a need for hybridizing the solution algorithms. In the research of Kefayat et al.
(2015) pareto optimal is to be created in the case of discrete non-linear problems.
In fuel management of the above research the new algorithm is created to combine
the ACO and the ABC, so that the local optima problem of ACO can be avoided.

When distributed energy use started the concept of smart distribution has been
part of demand site management. An in depth analysis provided by Cardenas et al.
(2014) gives all the details intelligent algorithms used in detailed operations of
smart grids and smart distribution. A study of Zu, Mitra and Cai takes only the
planning details in smart grids considering the vulnerability, reliability and econ-
omy as multiple objectives (Xu et al. 2014). Multi agent systems with PSO are used
in optimizing the integration of distributed services.

Fig. 21.6 Research on
energy operations (SCOPUS
1970–2018)
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Energy problems have both the supply and demand sites. Demand site man-
agement has also been a concern of smart grids due to homogeneous use of energy
in the campus with supply equilibrium. The energy saving is possible by smoothing
the peaks. Sustainability, fair share of resources, control of energy utilization are the
complex problems that are solved by using collective intelligence techniques
(Palensky and Dietrich 2011; Yanine et al. 2014; Aghajani et al. 2017; Jin et al.
2017).

21.4.5 Energy Management Performance

Collective intelligence methods are mainly designed to approach optimality for
probabilistic non-linear objective functions, many examples of which are observed
in the energy field. Technical performances like energy transfer, conversion effi-
ciency is as important as the managerial performances as in building, grid or hub
management.

Udayraj et al. (2015) compares the performances of ACO, PSO and Cuckoo
Search in heat transfer. ACO is found to be better in time and step size when the
heat flux problem is studied with noise and temperature robustness. In Beltramo
et al. study biogas flow rate is optimised by using ANN and ACO with a perfor-
mance increase by identification of the significant variables. Optimal design of a
standalone wind-solar hybrid power generator needs a model for load sizing and
performance optimization overcoming the hourly uncertainties. Suhane et al. (2016)
has found a solution using the ant colony optimization measuring the performance
by total cost of demand load and unmet demand, contribution of different resources
and measuring the state of battery.

Performance of building management is improved by saving energy without a
compromise of the resident comfort. Faia et al. studies the previous cases after
having clustered the similar cases, uses the PSO to optimize the energy saving
parameters and gives those to the building SCADA system as the reduction sug-
gested (Faia et al. 2017). Results show that adequate savings are achieved.

Control of charge and discharge is optimized by Marzband et al. (2016) using a
multi-level Ant Colony algorithm in a stand alone Micro-grid. The novel algorithm
allows the ants find the best way to the food by showing them the path with
maximum pheromone. Real-time scheduling of the wind and solar resources and
the batteries was based on the parameters optimized by this algorithm.

Huo et al. (2018) studied the hub optimization for multi carrier energy infras-
tructure. Energy storage consideration while controlling the real-time changes in
demand and energy generation is analysed in the mentioned research. The perfor-
mance optimisation model is constructed with PSO hybridized with interior point
method. The suggested model is also applied on an eleven hub system and found
fast enough to be used online.

Gonzalez et al. (2018) suggests that the high cost of deep water and the
uncertainties force the offshore windfarm to be located in certain areas which may
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be crowded. Hence, the location project needs to solve the conflict of each investor
has his own self-interest but they have to collaborate for the best performance. They
developed a co-evolutionary algorithm using Nash equilibrium with a sequential
single project approach. Hence the algorithm generates two population to start,
calculates the Net Present Values as fit function for each and runs the Nash equi-
librium among the best choices before the mutation and crossover. Overall maxi-
mum benefits are achieved at the end.

21.5 Conclusions

This review is motivated by increasing necessity of using collective intelligence
methods to find a solution for the complex energy problems. An effort is given to
give collective dynamics in energy networks in knowledge clusters as defined (Liu
et al. 2013). The concepts and definitions are introduced before explaining the
mathematical expression of most widely known techniques. Overview of almost
ninety articles from respected scientific journals allowed the classification of the
energy fields where sample applications are presented.

It is observed that swarm and colony algorithms are not any more limited to PSO
and ACO but being extended gradually. They are applied according to the problem
specific features. Recently better results in forecasting, economic, strategic, oper-
ational and performance approaches for different energy problems are achieved by
combining the methods. Method hybridization is not specific to intelligent methods
like combining the PSO and ACO but also numeric optimizations like mixed
integer programming, interior-point and game theory approaches.

Future trends in the energy field show complexities in risk reduction (Bale et al.
2015), modelling and optimization of integrated energy supply systems (Burke and
Stephens 2017) and strategic decision making for multiple micro grids (Jalali et al.
2017). It is recommended that the new complexities proposed by these trends are to
be followed through the collective intelligence dimension.

This review will be helpful both the intelligence researchers as well as energy
planning, optimisation and management experts.
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Chapter 22
Fuzzy Collective Intelligence
for Performance Measurement
in Energy Systems

Cengiz Kahraman, Sezi Çevik Onar and Basar Oztaysi

Abstract Collective intelligence (CI) means that a group of people or animals can
solve problems efficiently and offer greater insight and a better answer than any
individual could provide. Fuzzy sets have been integrated with collective intelli-
gence techniques in order to allow uncertain, vague imprecise and incomplete
information to be incorporated to the CI models. The fuzzy CI techniques have been
rarely used in the solution of energy problems even they still present new research
opportunities to researchers. This chapter gives the results of the literature review
on fuzzy CI research for energy systems.

Keywords Collective intelligence � Fuzzy sets � Performance � Energy systems
Particle swarm optimization

22.1 Introduction

Collective Intelligence is the wisdom of crowds introduced by Francis Galton.
Collective intelligence is based on the fact that groups of people can be more
intelligent than an intelligent individual and that groups do not always require
intelligent people to reach a smart decision or outcome. Several collective intelli-
gence techniques have been proposed in the literature. The most efficient heuristic
based Swarm Intelligence algorithms are Particle Swarm Optimization (PSO),
Artificial Bee Colony (ABC), Bat algorithm (BA), Cat Swarm Optimization,
Bacterial Foraging, Stochastic diffusion search, Glowworm Swarm Optimization,
Gravitational search algorithm, Cuckoo Search Algorithm, Differential Evolution,
and Ant Colony Optimization (ACO) algorithm.

Fuzzy set theory (FST) has often been used in collective intelligence modeling
since FST allows uncertain, vague imprecise and incomplete information to be
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incorporated to the models. Chohra et al. (2010) develop a fuzzy cognitive and
social negotiation strategy for autonomous agents with incomplete information,
where the characters conciliatory, neutral, or aggressive, are suggested to be inte-
grated in negotiation behaviors. First, one-to-one bargaining process, in which a
buyer agent and a seller agent negotiate over price is developed for a
time-dependent strategy and for a fuzzy cognitive and social strategy. Second,
experimental measures carried out for different negotiation deadlines of buyer and
seller agents are detailed. Third, experimental results for both time-dependent and
fuzzy cognitive and social strategies are presented, analyzed, and compared for
different deadlines of agents. The suggested fuzzy cognitive and social strategy
allows agents to improve the negotiation process, with regard to the time-dependent
one, in terms of agent utilities, round number to reach an agreement, and percentage
of agreements. We present some examples of fuzzy collective intelligence algo-
rithms in the following.

Venayagamoorthy et al. (2009) present two new strategies for navigation of a
swarm of robots for target/mission focused applications including landmine
detection and firefighting. The first method presents an embedded fuzzy logic
approach in the particle swarm optimization (PSO) algorithm robots and the second
method presents a swarm of fuzzy logic controllers, one on each robot. The
framework of both strategies has been inspired by natural swarms such as the
school of fish or the flock of birds. In addition to the target search using the above
methods, a hierarchy for the coordination of a swarm of robots has been proposed.
The robustness of both strategies is evaluated for failures or loss in swarm mem-
bers. Yazdani et al. (2011) present a multiobjective optimization method that uses a
Particle Swarm Optimization algorithm enhanced with a Fuzzy Logic-based con-
troller. Their method uses a number of fuzzy rules and dynamic membership
functions to evaluate search spaces at each iteration. The method works based on
Pareto dominance and is tested using standard benchmark data sets.

Based on Ant Colony Optimization (ACO), Fidanova et al. (2012) use intu-
itionistic fuzzy estimation of start nodes with respect to the quality of the solution.
They suggest various start strategies. Sensitivity analysis of the algorithm behavior
according to estimation parameters is also made.

Wang et al. (2013) propose a hybrid artificial bee colony optimization (BCO) for
solving the fuzzy flexible job-shop scheduling problem. The proposed algorithm
utilizes multiple strategies in a combined way to generate the initial solutions with
certain quality and diversity as the food sources, and applies the left-shift decoding
scheme to convert solutions to active schedules. The exploitation search procedures
based on the crossover operators for machine assignment and operation sequence in
the employed bee phase are designed to generate the new neighbouring food
sources. To prevent premature convergence in the scout bee phase, the population is
updated by the new source with an adjustable search radius. Based on the Taguchi
method of design of experiment, the influence of parameter setting is investigated
and suitable parameter values are suggested. Fevrier and Valdez Castillo (2016)
present a modification of a bio-inspired algorithm based on the bee colony opti-
mization for optimizing fuzzy controllers. First, the traditional BCO is tested with
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the optimization of fuzzy controllers. Second, a modification of the original method
is presented by including fuzzy logic to dynamically change the main parameter
values of the algorithm during execution. Third, the proposed modification of the
BCO algorithm with the fuzzy approach is used to optimize benchmark control
problems. Dell’Orco et al. (2017) develop a new metaheuristic algorithm, based on
the Fuzzy Bee Colony Optimization (FBCO), which integrates the concepts of BCO
with a Fuzzy Inference System. The proposed method assigns, through the multi-
criteria analysis, airport gates to scheduled flights based on both passengers’ total
walking distance and use of remote gates, to find an optimal flight-to-gate
assignment for a given schedule.

Premkumar and Manikandan (2016) present the design of fuzzy proportional
derivative controller and fuzzy proportional derivative integral controller for speed
control of brushless direct current drive. Optimization of the above controllers’
design is carried out using nature inspired optimization algorithms such as particle
swarm, cuckoo search, and bat algorithms. The precise investigation through
simulation is performed using simulink toolbox. From the simulation test results, it
is found that bat optimized fuzzy proportional derivative controller has superior
performance than the other considered controllers. Khooban and Niknam (2015)
propose a new online intelligent strategy to realize the control of multi-area load
frequency systems. The proposed intelligent strategy is based on a combination of a
novel heuristic algorithm named Self-Adaptive Modified Bat Algorithm and the
fuzzy logic which is used to optimally tune parameters of proportional–integral
controllers which are the most popular methods.

Xu and Xuesong (2014) propose a new fuzzy identification method for T-S
model identification algorithm, based on cat swarm and least squares method. T-S
model identification is divided into structural and parameter identification. In the
structure identification using cats warm can effectively overcome the traditional
clustering algorithms. Using recursive least squares method to identify parts of the
model parameters, forming the fuzzy identification method is based on cat swarm
optimization.

Tabatabaei and Vahidi (2011) propose a novel methodology for the optimal
location and sizing of shunt capacitors in radial distribution systems. Their method
is based on a fuzzy decision making which using a new evolutionary method. The
capacitor placement optimization problem includes: minimizing the cost of peak
power, reducing energy loss and improving voltage profile. The installation node is
selected by the fuzzy reasoning supported by the fuzzy set theory in a step by step
procedure. Also an evolutionary algorithm known as bacteria foraging algorithm
(BFA) is utilized in solving the objective multivariable optimization problem and
the optimal node for capacitor placement is determined.

Neshat and Sepidname (2015) introduce fuzzy adaptive Swallow Swarm
Optimization (FASSO) method to provide advantages such as high speed of con-
vergence, avoidance from falling into local extremum, and high level of error
tolerance. González et al. (2015) use fuzzy gravitational search algorithm with
dynamic parameter adaptation for optimizing the modular neural network in a
particular pattern recognition application. The proposed method is applied to
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medical images in echocardiogram recognition. One of the most common methods
for detection and analysis of diseases in the human body, by physicians and spe-
cialists, is the use of medical images. Guerrero et al. (2015) describe the
enhancement of the Cuckoo Search (CS) Algorithm via Lévy flights using a fuzzy
system to dynamically adapt its parameters. The original CS method is compared
with the proposed method called Fuzzy Cuckoo Search (FCS) on a set of bench-
mark mathematical functions. Liu and Lampinen (2005) introduce a new version of
the Differential Evolution algorithm with adaptive control parameters—the fuzzy
adaptive differential evolution algorithm, which uses fuzzy logic controllers to
adapt the search parameters for the mutation operation and crossover operation.

There are not too many fuzzy collective intelligence works in energy systems in
the literature. The aim of this chapter is to summarize those published works and
give ideas to the readers how collective intelligence can be used under fuzziness for
the problems of energy systems.

The rest of this chapter is organized as follows. Section 22.2 presents some
graphical illustrations of the data on collective intelligence in energy systems.
Section 22.3 classifies fuzzy collective intelligence approaches to energy systems
under subtitles forecasting, economic analysis, strategic analysis, operational
analyses, and performance analyses. Finally, conclusion and suggestions for further
research are presented.

22.2 Literature Review: Graphical Analyses on CI
in Energy (SCO)

Various fuzzy collective intelligence methods and algorithms are utilized for
improving the performances of the energy systems. In this study, we categorize the
collective intelligence algorithms as intelligent agents, particle swarm, ant colony,
genetic algorithm, honeybee, particle bee, cuckoo search, artificial bee, bee swarm,
swarm intelligence, quantum particle swarm, bee colony, bat algorithm and but-
terfly algorithm. In Scopus database, we search for these algorithms, fuzzy and
energy performance at the “abstract, title and keywords” fields. We use the fol-
lowing search algorithm in the Scopus database: “(((TITLE-ABS-KEY (intelligent
AND agents) OR TITLE-ABS-KEY (particle AND swarm) OR TITLE-ABS-KEY (ant
AND colony) OR TITLE-ABS-KEY (genetic AND algorithm) OR TITLE-ABS-KEY
(honey AND bee) OR TITLE-ABS-KEY (particle AND bee) OR TITLE-ABS-KEY
(cuckoo AND search) OR TITLE-ABS-KEY (artificial AND bee) OR TITLE-ABS-
KEY (bee AND swarm) OR TITLE-ABS-KEY (swarm AND intelligence) OR TITLE-
ABS-KEY (quantum AND particle AND swarm) OR TITLE-ABS-KEY (bee AND
colony) OR TITLE-ABS-KEY (bat AND algorithm) OR TITLE-ABS-KEY (butterfly
AND algorithm) OR TITLE-ABS-KEY (collective AND intelligence))) AND (TITLE-
ABS-KEY (fuzzy)) AND TITLE-ABS-KEY (energy)) AND TITLE-ABS-KEY
(performance)”.

500 C. Kahraman et al.



There are a total of 599 studies utilized fuzzy collective intelligence methods for
performance measurement in energy systems. The studies by year are given in
Fig. 22.1.

Figure 22.1 shows the increasing trend on the collective intelligence methods in
energy system performance. Especially between 2006 and 2013; there is a signif-
icant rise in the field. These papers are published in various sources. These sources
can be grouped into three groups. The first group is the material science journals.
“Applied Mechanics and Materials” with 33 papers and “Advanced Materials
Research” with 23 papers are the leading journals that publish papers in collective
intelligence on energy system performance. Further analysis shows that these
studies held between 2012 and 2013. The second group is the energy journals (see
Fig. 22.2). “Energy” is the leading journal that publishes fuzzy collective intelli-
gence papers. “Energy Conversion and Management,” “International Journal of
Hydrogen Energy,” “Energy and Buildings” and “Renewable Energy” are the
leading energy journals that publish fuzzy collective intelligence in energy per-
formance measurement.

The third group is the methodological journals that focus on methods and
algorithms (see Fig. 22.3). “Advances in Intelligent Systems and Computing” is the
leading journal that publishes fuzzy collective intelligence papers.
“Communications in Computer and Information Science,” “Journal of Intelligent
and Fuzzy Systems,” “Mathematical Problems in Engineering,” and “Soft
Computing” are the leading methodological journals that publish fuzzy collective
intelligence in energy performance measurement.

In literature, various algorithms such as genetic algorithm, particle swarm,
artificial intelligence, ant colony, intelligent agents, bee colony, honeybee, artificial
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bee and quantum particle swarm are utilized in fuzzy collective intelligence in
energy system performance (see Fig. 22.4).

Genetic algorithm, particle swarm, and artificial intelligence are the leading
algorithms. Particle bee, cuckoo search, bee swarm, swarm intelligence, bat algo-
rithm and butterfly algorithms are not utilized in the literature. Fuzzy inference
based methods are the most used fuzzy methods in these studies (see Fig. 22.5).

Fuzzy inference specifically ANFIS and fuzzy neural networks are the leading
fuzzy methods in the field. The types of energy systems in the studies show a wide
range of variety, but the measuring and improving the performance of renewables is
the primary interest area. Figure 22.6 shows the most common energy problems.
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Fuzzy collective intelligence for performance measurement in solar and wind
energy systems are the principal areas of interest. Fuel cells and electric batteries are
the other leading energy problems in this field.

22.3 Fuzzy Collective Intelligence in Energy Systems

In this section, we classify fuzzy collective intelligence works applied in energy
systems based on the subtitles forecasting, economic analysis, strategic analysis,
operational analyses, and performance analyses.

22.3.1 Forecasting

In the literature collective intelligence methods have been widely used with fuzzy
logic in energy forecasting domain. Some of the most recent papers are listed in this
section. In one of the most recent studies, Hugett et al. (2017) present a model
which integrate fuzzy KNN (FKNN) and the artificial bee colony methods to
predict weld quality for a particular friction stir weld configuration. The authors use
artificial bee colony algorithm to determine the best parameters of the (F)KNN
model. The authors involve wavelet energy features extracted from weld signals of
X-Force, Y-Force, spindle rotational speed, feed rate, and plunge force are involved
to the original feature pool to improve model accuracy. Dounia et al. (2017) present
a multi-agent system based on wind and photovoltaic power prediction using
artificial neural networks. The paper aims to implement a hybrid renewable energy
system with generation units and storage units. To address uncertainties in the
system, the authors use a fuzzy logic technique to decide the auxiliary energy
source.

Wang et al. (2017) aim to optimize the thermal performance of parabolic trough
solar collector systems using the genetic algorithm-back propagation (GA-BP)
neural network model. The authors develop thermal performance prediction of the
parabolic trough solar collector systems based on GA-BP neural network model to
overcome fuzziness and incomplete information in the systems. Aziz et al. (2017)
propose an intelligent approach to predict the biochar yield which is a renewable
energy that produced from biomass thermochemical processes. The authors propose
adaptive neuro-fuzzy inference system approach and utilize a particle swarm
optimization algorithm to improve the prediction performance of the biochar.
Heating rate, pyrolysis temperature, Moisture content, holding time and sample
mass were used as the input parameters, and the outputs are biochar mass and
biochar yield. Chen et al. (2017) focus on predicting the carbon efficiency and the
comprehensive carbon ratio (CCR) is taken to be a measure of carbon efficiency. In
the paper a model involving three steps is proposed. In the first step, an integrated
fuzzy predictive model is proposed to predict the key state parameters based on the
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evaluation of current operating conditions. In the second step, a model is proposed
to predict the yield using predicts the yield by using predicted values of the state
parameters along with key material parameters are used as inputs for a particle
swarm optimisation-based backpropagation neural network predictive model In the
third step, the predicted yield is fed into the mechanism model in order to calculate
the CCR.

Sadaei et al. (2017) propose a short-term load forecasting approach using a
combination of Fuzzy Time Series (FTS) with Seasonal Auto Regressive
Fractionally Integrated Moving Average method. The authors utilize Particle
Swarm Optimization (PSO) to optimize the parameters of the method. Kassa et al.
(2017) propose an artificial neuro-fuzzy inference system based approach for
one-day-Ahead hourly wind power generation prediction. The proposed model is
compared with a hybrid genetic algorithm based back propagation neural network
model. The results show that the proposed approach outperformed the hybrid model
demonstrating its favourable accuracy and reliability. Ruan et al. (2017) propose an
on-line hybrid intelligent control system based on a genetic algorithm
(GA) evolving fuzzy wavelet neural network software sensor to control dissolved
oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking
wastewater. The outcomes specify that the reasonable forecasting and control
performances are achieved when the proposed model is used.

Kaboli et al. (2017) propose a model for electrical energy consumption using
optimized gene expression programming. The results are compared with those
obtained from artificial neural network, support vector regression, adaptive
neuro-fuzzy inference system, rule-based systems, linear and quadratic models
optimized by particle swarm optimization, cuckoo search algorithm, and back-
tracking search algorithm. The results reveal that the proposed method outperforms
the other artificial intelligence based models. Basterrech (2017) analyse the per-
formance of an automatic procedure for selecting the most important input features
which effect the solar irradiance. The proposed method is based on a generalisation
of swarm optimisation named Geometrical Particle Swarm Optimization. As a good
combination of weather information is defined, the authors utilize a reservoir
computing model as forecasting technique. Ahmet et al. (2017) present a new
hybrid algorithm that uses Krill Herd optimization algorithm and Adaptive
Neuro-Fuzzy Inference System for wind speed forecasting. In the proposed
approach Krill Herd optimization is used to optimize the parameters of Adaptive
Neuro-Fuzzy Inference System. The proposed model other models optimized using
particle swarm optimization and genetic algorithms.

Chen et al. (2017) propose a dynamic-neighbourhood particle swarm opti-
mization algorithm in the local optimal energy management strategy of plug-in
hybrid electric vehicles. The authors also propose an online correction algorithm
based on the backup control strategy and fuzzy logic. The authors also propose a
predictive energy management strategy with an online correction algorithm. Son
and Kim (2017) provide a precise model for the one-month-ahead forecast of
electricity demand in the residential sector. In this study, a total of 20 influential
variables are considered. A forecasting model based on support vector regression
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and fuzzy-rough feature selection with particle swarm optimization algorithms is
proposed. The proposed forecasting model was validated using historical data from
South Korea between January 1991 and December 2012. Alzoubi et al. (2017)
focus on determining the best linear model using an artificial neural network
(ANN) with the imperialist competitive algorithm (ICA-ANN) and ANN to predict
the energy consumption for land levelling. In this research, effects of various soil
properties such as embankment volume, soil compressibility factor, specific gravity,
moisture content, slope, sand percent and soil swelling index on energy con-
sumption are investigated. Panapakidis and Dagoumas (2017) propose a forecasting
model using proposed model combines the Wavelet Transform, Genetic Algorithm,
Adaptive Neuro-Fuzzy Inference System and Feed-Forward Neural Network. The
authors apply the model to day-ahead natural gas demand predictions problem and
show the forecasting performance of the model.

22.3.2 Economic Analyses

Economics may be unique among the sciences in offering a formal mathematical
proof that collective intelligence works, at least in the case of the market. a
counter-hypothesis to the Efficient Markets Hypothesis can be formulated to explain
the collective intelligence of the market—a counter-hypothesis that takes the natural
variation of market behavior into account (Lo 2015).

Families, armies, countries, and companies all act collectively in ways that seem
intelligent. Researchers have studied many fields from economics to political sci-
ence based on collective intelligence. Analyzing how individual people’s attitudes
are determined or how they make economic choices would not be central to col-
lective intelligence, but analyzing how different regulatory mechanisms in markets
lead to more or less intelligent behavior by the markets as a whole would be central
to collective intelligence (Malone et al. 2015).

Collectives or groups of individuals or animals do things that seem to be
intelligent. They jointly achieve better results than a single individual could
achieve. For instance, internet presents low cost communication and interaction
which makes it feasible for groups to do many more things than before. Web-based
collective intelligence is defined as the ability of a collective to learn or understand
or to deal with new or trying situations, the skilled use of reason, the ability to apply
knowledge to manipulate one’s environment or to think abstractly as measured by
objective criteria, based on the internet and associated technologies. These networks
allow for synchronizing and parallelizing the different phases of the innovation
process thus reducing transaction costs and costs of redesigning and testing prod-
ucts (Ickler 2010).

It has not yet much been studied on fuzzy collective intelligence based on
economic analyses for energy investments. For instance, Yin et al. (2014) present
a fuzzy logic controller for a parallel hybrid electric bus (PHEB). They propose a
genetic-ant colony algorithm in order to reduce fuel consumption and emissions,
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including hydrocarbon, carbon monoxide, nitrogen oxide and particulate matter for
optimum the fuzzy logic controller of PHEB, which is based on the ability of the
quick global searching of genetic algorithm and the mechanism of positive feed-
back of ant colonies algorithm. Hence, a great potential exists in this area for the
researchers who seeks for new research areas.

22.3.3 Strategic Analyses

Energy management strategy involves measuring energy usage, identifying the
ways to decrease this usage, developing and implementing necessary systems for
optimizing the energy usage and minimizing the costs and harms to the environ-
ment. Development of fuzzy control strategies for hybrid vehicles where the opti-
mal fuel consumption is one of the primary problems in this field. Various
computational intelligence techniques such as particle swarm optimization,
dynamic programming, and ant colony are combined with fuzzy logic to achieve
optimal control strategy for hybrid electric vehicles. Poursamad and Montazeri
(2008) develop a genetic fuzzy control strategy for fuel cell based hybrid electric
vehicles where the control is obtained with a fuzzy logic controller. Similarly, Zhou
et al. (2013) develop a fuzzy logic control strategy for hybrid electric vehicles by
using genetic algorithms. Ravey et al. (2012) used dynamic programming and fuzzy
logic controller in developing control strategies for hybrid electric vehicles. Wu
et al. (2008) develop fuzzy control strategies for hybrid electric vehicles where the
control parameters are optimized with particle swarm optimization. Li et al. (2014)
develop ant colony based control strategies for hybrid electric vehicles. Fuzzy
control strategies are adapted to not only to hybrid vehicles but also to various fields
such as to heating, ventilation and air-conditioning systems. Navale and Nelson
(2012) showed that the performances of adaptive fuzzy logic controllers enhanced
with genetic algorithms are superior to the conventional proportional, integral and
derivative controllers.

One of the primary objectives of energy management strategy is to predict
energy consumption and take the necessary actions for managing this need. Herrera
et al. (2016) try to achieve optimal battery and supercapacitor combinations in
tramways. The sizes of the energy storage systems are developed with
multi-objective genetic algorithms where costs such as energy absorbed and the
operating expenses are the primary determinants. Similarly, Yu et al. (2016)
develop a real-time energy management strategy for electric urban busses where the
objective is to achieve the optimal combination of conventional batteries and
supercapacitors. The problem is considered as a multi-objective optimization
problem where the cycle life of the battery, total consumption and the use of battery
are taken into account. Both dynamic programming and fuzzy control strategy are
used for optimizing the problem and the results show that dynamic programming
gives better results. When the genetic algorithm is used to optimize the membership

22 Fuzzy Collective Intelligence for Performance Measurement … 507



functions of the conventional fuzzy control strategy, the system performs almost as
good as dynamic programming.

Developing the operation strategy for the energy systems is another critical
research area. Moradi and Eskandari (2014) develop an operation strategy for
microgrids. Initial investment costs, operational strategy costs, purchase of elec-
tricity from the utility, maintenance, and operational costs, as well as revenues
including those associated with a reduction in non-delivered energy, the credit for
the reduction in levels of environmental pollution, and sales of electricity back to
the utility are taken into account for developing operational strategies. The quad-
ratic programming (QP) and the particle swarm optimization (PSO) algorithms are
used to define the operational strategy for the microgrid where the uncertainty in the
power price is modeled with fuzzy sets. Similarly, Cha et al. (2015) develop a
multi-agent system-based microgrid operation strategy.

22.3.4 Operational Analyses

The literature provides various energy operational management studies involving
fuzzy collective intelligence. In one of the most recent studies, Amrani et al. (2017)
propose a multi-agent approach for managing electric vehicle energy. The man-
agement strategy is a hybrid strategy, utilizing artificial intelligence, fuzzy logic and
genetic algorithms and the multi-agent systems. The fuzzy inference system is first
optimized off-line by the genetic algorithm. Then it is used during on-line checking
to take into account the uncertain case. Kanellos et al. (2017) propose a
cost-effective and emission-aware power management system for ships. The pro-
posed optimization method is exploiting an interactive approach based on particle
swarm optimization method and a fuzzy mechanism to improve the computational
efficiency of the algorithm. The proposed fuzzy-based particle swarm optimization
algorithm aims at minimizing the operation cost, limiting the greenhouse gas
(GHG) emissions and satisfying the technical and operational constraints of the
ship. Ravadanegh et al. (2017) propose a comprehensive method to solve a com-
binatorial problem consisting of distribution system reconfiguration, capacitor
allocation, and renewable energy resources sizing and sitting simultaneously and to
improve power system’s accountability and system performance parameters. Due to
finding solution which is closer to realistic characteristics, load forecasting, market
price errors and the uncertainties related to the variable output power of wind-based
DG units are put in consideration. The authors use NSGA-II accompanied by the
fuzzy set theory to solve the aforementioned multi-objective problem. The proposed
scheme finally leads to a solution with a minimum voltage deviation, a maximum
voltage stability, a lower amount of pollutant and lower cost.

Xu et al. (2017) propose an improved bacterial foraging optimization (IBFO)
algorithm by swarm intelligence algorithm to improve the establishment of rule
library. Initially, the imperfectness of fuzzy rule library based on artificial experi-
ence induction is analyzed. Then, the improved fuzzy control system is described.
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Finally, the Gaussian membership function parameters of the improved TSK fuzzy
system (C-ATSKFS, constant-ameliorative TSK fuzzy system) rule library are
optimized. Compared with the existing method, the improved algorithm can
effectively increase the recognition accuracy of the fuzzy control system which is
very critical in the fields of energy production and robot control. Abd et al. (2017)
focus on managing power consumption in cloud computing infrastructure. The
authors propose a DNA-based Fuzzy Genetic Algorithm (DFGA) that employs
DNA-based scheduling strategies to reduce power consumption in cloud data
centres. The method has a power-aware architecture for managing power con-
sumption in the cloud computing infrastructure. The authors also identify the
performances metrics that are needed to evaluate the proposed work performance.
The experimental results show that DFGA reduced power consumption when
compared with other algorithms. Hosseinpour et al. (2017) propose a flexible and
reliable framework based on a combination of artificial neural network, genetic
algorithm, and fuzzy systems for multi-objective exergetic optimization of con-
tinuous photobiohydrogen production process from syngas by Rhodospirillum
rubrum bacterium. To this end, the artificial neural network is extended with fuzzy
clustering method to model exergetic outputs by input variables. The outputs of
modelling system are then fed into a novel optimization approach developed by
hybridising additive linear interdependent fuzzy multi-objective optimization and
the elitist non-dominated sorting genetic algorithm. The optimization is carried out
to minimize the normalized exergy destruction and maximize the rational and
process exergetic efficiencies, simultaneously. The solutions of the proposed
approach are also compared with conventional fuzzy multi-objective optimization
procedure with independent objectives.

Mohammadi et al. (2017) present a fuzzy based methodology for distribution
system feeder reconfiguration considering DSTATCOM with an objective of
minimizing real power loss and operating cost. Installation costs of DSTATCOM
devices and the cost of system operation. In the proposed approach, the fuzzy
membership function of loss sensitivity is used for the selection of weak nodes in
the power system for the placement of DSTATCOM and the optimal parameter
settings of the DFACTS device along with an optimal selection of tie switches in
reconfiguration process are governed by a genetic algorithm. Rezvani et al. (2016)
focus on grid-connected intelligent hybrid battery/photovoltaic system using the
new hybrid fuzzy-neural method. To capture the maximum power point (MPP), a
hybrid fuzzy-neural maximum power point tracking method is applied. Obtained
results represent the effectiveness and superiority of the proposed method, and
approximately two percentage points increment the average tracking efficiency of
the hybrid fuzzy-neural in comparison to the conventional methods. The proposed
method has the advantages of robustness, fast response and good performance.
Chen et al. (2016) propose a novel optimal power management approach for plug-in
hybrid electric vehicles against uncertain driving conditions. To optimize the
threshold parameters of the rule-based power management strategy under a certain
driving cycle, the particle swarm optimization algorithm is employed, and the
optimization results are used to determine the optimal control actions. To better
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implement the power management strategy in real time, a driving condition
recognition algorithm is proposed to identify real-time driving conditions through a
fuzzy logic algorithm. To adjust the thresholds of the rule-based strategy adaptively
under uncertain driving cycles, a dynamic optimal parameters algorithm has been
further established accordingly, and it is helpful for avoiding the problem that the
thresholds of the rule-based strategy are very sensitive to the driving cycles. Finally,
in combination with the above efforts, a detailed operational flowchart of the par-
ticle swarm optimization algorithm-based optimal power management through
driving cycle recognition is proposed.

Aghbashlo et al. (2016) focus on optimization of continuous photobiological
hydrogen production using a hybrid approach. To this end, the authors propose a
multi-objective hybrid optimization technique was developed by coupling the elitist
NSGA-II with the adaptive neuro-fuzzy inference system to optimize the opera-
tional conditions of the photobioreactor. The syngas flow rate and culture agitation
speed are selected as the independent variables, while rational, and process exergy
efficiencies, as well as normalized exergy destruction, are dependent variables.
The ANFIS is used to establish an objective function for each dependent variable
individually based on the independent variables. The developed ANFIS model is
then utilized by the NSGA-II approach to finding the optimal operating conditions
leading to the highest rational and process exergy efficiencies and the lowest nor-
malized exergy destruction. Hussain et al. (2015) focus on optimization based fuzzy
resource allocation framework for smart grids. The authors propose a power flow
control scheme using a framework of fuzzy logic and genetic algorithm to manage
desired power flow levels within the smart grid efficiently. A fuzzy decision cri-
terion is designed to choose a most suitable power source to deliver power to a
certain demand. A genetic algorithm is used to choose a most suitable route from
source to demand and optimize a cost function based on distance. Simulations show
that the smart grid power flow can achieve the desired thresholds by incorporating
the proposed approach even in the presence of unpredictable power fluctuations
from renewable energy resources. Karavas et al. (2015) propose a multi-agent
decentralized energy management system based on distributed intelligence for the
design and control of autonomous polygeneration microgrids. The authors present
the design and investigation of a decentralized energy management system for the
autonomous polygeneration microgrid topology. The decentralized energy man-
agement system gives the possibility to control each unit of the microgrid inde-
pendently. The most important advantage of using a decentralized architecture is
that the managed microgrid has much higher chances of partial operation in cases
when malfunctions occur at different parts of it, instead of a complete system
breakdown. The designed system was based on a multi-agent system and employed
Fuzzy Cognitive Maps for its implementation. It is then compared to a case study
with an existing centralized energy management system. The technical performance
of the decentralized solution performance is on par with the existing centralized
one, presenting improvements in financial and operational terms for the imple-
mentation and operation of an autonomous polygeneration microgrid. Moradi et al.
(2015) energy management in microgrids are addressed from different perspectives
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such as economic efficiency, environmental restrictions, and reliability improve-
ment. The hybrid optimization method is used to optimize the type and capacity of
distributed generation, sources, and the capacity of storage devices. Quadratic
programming and particle swarm optimization algorithms are used for optimization
integrated with fuzzy logic.

22.3.5 Performance Analyses

Fuzzy sets have been used with collective intelligence techniques in the field of
performance. In one of the most recent studies, Jia et al. (2017) focus on the
performance of train operations regarding energy efficiency and service quality. The
authors formulate a bi-objective train-speed trajectory optimization model to min-
imize the energy consumption and travel time in an inter-station section simulta-
neously. For obtaining an optimal train-speed trajectory which has an equal
satisfactory degree on both objectives, a fuzzy linear programming approach is
applied to reformulate the objectives. Also, a genetic algorithm is developed to
solve the proposed train-speed trajectory optimization problem. Wang et al. (2017)
aim to optimize the thermal performance of parabolic trough solar collector systems
in order to improve its thermal performance, based on the genetic algorithm-back
propagation neural network model. In order to deal with issues such as fuzzy or
incomplete information and a complex architecture, the authors propose a system
based on genetic algorithm and backpropagation neural networks. Nilashi et al.
focus on energy performance prediction in residual buildings. The proposed method
utilizes clustering, noise removal and prediction techniques. In this manner
Expectation Maximization, Principal Component Analysis and Adaptive
Neuro-Fuzzy Inference System methods are used. The authors provide experi-
mental results on real-world dataset show the efficiency of the proposed method.
Sukumar et al. (2017) present a power management system for a grid-connected PV
and solid oxide fuel cell, considering variation in the load and solar radiation. The
objective of the proposed system is to minimize the power drawn from the grid and
operate the SOFC within a specific power range. Since the photovoltaic is operated
at the maximum power point, the power management involves the control of SOFC
active power where a proportional and integral (PI) controller is used. In the study,
the control parameters are determined by the genetic algorithm and simplex
method. Also, a fuzzy logic controller is also developed to generate appropriate
control parameters for the PI controller. The performance of the controllers is
evaluated by minimizing the integral of time multiplied by absolute error criterion.
Wang et al. (2017) focus on optimizing the thermal performance (system output
energy, thermal efficiency, and heat loss of cavity absorber) of parabolic trough
solar collector (PTC) systems to improve its thermal performance, based on the
genetic algorithm-back propagation (GA-BP) neural network model. There are
some undefined problems, fuzzy or incomplete information and a complex thermal
performance of the PTC systems. Therefore, the thermal performance prediction of
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the PTC systems based on GA-BP neural network model was developed.
Subsequently, the metrics performances have been adopted to understand the
algorithm and evaluate the prediction accuracy comprehensively.

Wang (2017) focus on performance problem of electric vehicles and present a
novel double—energy fuzzy control algorithm for battery-supercapacitor based on
particle swarm optimization. The proposed algorithm can avoid falling into local
optimum and being over-reliance on prior knowledge by using the swarm intelli-
gence global optimization and evolutionary operation. The simulation results show
that this method can improve the vehicle performances in the large extent and verify
the effectiveness of the control strategy. Huang and Chen (2017) develop a hybrid
powertrain in which a magnetic flywheel system (MFS) is integrated with the fuel
cells to improve the performance of fuel cells used in vehicles. The authors also
propose an auto-tuning proportional–integral–derivative (PID) controller based on
the controls of multiple adaptive neuro-fuzzy interference systems and particle
swarm optimization. Furthermore, MATLAB/Simulink simulations considering an
FTP-75 urban driving cycle are conducted, and a variability improvement of
approximately 27.3% in fuel cell output is achieved. Anicic and Jovic (2016)
investigate the hydrodynamic performance of a novel type of ducted tidal turbine.
The authors propose an adaptive neuro-fuzzy inference system to estimate power
coefficient value of the ducted tidal turbines. The backpropagation learning algo-
rithm is used for training this network. This intelligent controller is implemented
using Matlab/Simulink, and the performances are investigated. The simulation
results presented in this paper show the effectiveness of the developed method.

Aghbashlo et al. (2016) focus on optimizing the performance of a continuous
photobioreactor for hydrogen production from syngas via water gas shift reaction
by Rhodospirillum rubrum. To this end, a new multi-objective hybrid optimization
technique was developed by coupling the elitist NSGA-II with the ANFIS to
optimize the operational conditions of the photobioreactor. The ANFIS was used to
establish an objective function for each dependent variable individually based on
the independent variables. The developed ANFIS model was then utilized by the
NSGA-II approach to find the optimal operating conditions simultaneously leading
to the highest rational and process exergy efficiencies and the lowest normalized
exergy destruction. Aghajani et al. (2015) propose a multi-objective energy man-
agement system is proposed to optimize micro-grid performance in a short-term in
the presence of Renewable Energy Sources. In the typical micro-grid, different
technologies including Wind Turbine, PhotoVoltaic cell, Micro-Turbine, Full Cell,
battery hybrid power source and responsive loads are used which makes the energy
management problem very complex. The authors use multi-objective particle
swarm optimization algorithm to handle the nonlinearity in the problem. The
authors also utilize, fuzzy-based mechanism and non-linear sorting system to
determine the best compromise considering the set of solutions from Pareto-front
space. The numerical results represented the effect of the proposed Demand Side
Management scheduling model on reducing the effect of uncertainty. Camargo et al.
(2010) propose an intelligent supervision system for industrial production perfor-
mance in oil wells. The proposed method combines Genetic Algorithms, Fuzzy
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Classification, Neo-Fuzzy systems and Energy Mass Balance. In the study, the
completion geometry and the reservoir potential is considered in order to establish
the oil or gas flow that a well can produce. Calderaro et al. (2007) focus on wind
generators performance optimization and propose a design for wind tribunes that
generate an adaptive fuzzy model for maximum energy extraction. The proposed
design involves fuzzy clustering combined with genetic algorithms and recursive
least-squares optimization methods. Zhao et al. (2004) propose a multivalued fuzzy
behavior control system for robot navigation using singletons instead of fuzzy set
consequences. In the study, a genetic algorithm approach which improves the
performance of the proposed fuzzy system with singleton consequences is pro-
posed. The authors Show the effectiveness of the proposed system by simulation
results.

22.4 Conclusions

In this chapter, we examined the usage of fuzzy collective intelligence techniques in
energy systems. Even they have not frequently been used for energy problems in
the literature; there are still great opportunities for them to be used for the solution
of energy problems. Fuzzy collective intelligence techniques such as particle swarm
optimization, artificial bee colony, bat algorithm, cat swarm optimization, bacterial
foraging, stochastic diffusion search, glowworm swarm optimization, gravitational
search algorithm, cuckoo search algorithm, differential evolution, and ant colony
optimization algorithm have been already developed and used in the solutions of
other problems. This may provide a reference for them to be used in the energy
systems in the future.
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Chapter 23
A Framework for the Performance
Evaluation of an Energy Blockchain

Seda Yanik and Anil Savaş Kiliç

Abstract In this study, we first discuss the disruption and its impacts on the power
and utilities sector. We identify the drivers of the disruption and the impact it will
make on the sector. Then, as one of the drivers of disruption, we examine the
blockchain technology, its features, benefits and limitations. We identify a per-
formance evaluation framework for a power and utilities blockchain, in a dis-
tributed generation setting. Finally, we evaluate the performance factors’
interrelationships on the performance of the blockchain system and investigate the
importance and cause-effect groups of the factors.

23.1 Introduction

In a world where utilities see revenue opportunities arising from a new paradigm,
which is being formed by mega trends including emerging technologies; they think
that they have to change but are unsure about how to do it (Utility Dive 2016). The
power generation is becoming decentralized, fragmented, and democratized. Homes
and even electric vehicles will be nodes of providing electricity to the grid, on top of
consuming from it. These nodes are expected to be able to sell electricity to each
other autonomously in a peer-to-peer setting without an intermediary, and block-
chain is going in a direction that will position itself in the heart of this new paradigm.

There is a vision that blockchain will play a significant role in every aspect of
responding to disruption. It can help to modernize the physical infrastructure or to
develop new business models or to manage a new type of autonomous market.
However, blockchain has its limitations together with the benefits it serves.
Evaluation of the performance of the blockchain in response to the requirements of
the power and utilities sector is an important research topic. Power and utilities term
used in this study represents the entire value chain: generation, transmission, dis-
tribution and supply.
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In this study, we envision a distributed generation context where domestic
consumers can produce electricity at their homes, buy electricity from the grid or
other consumers, store the electricity at their homes and/or electric vehicles, sell the
surplus electricity to other consumers and/or to the grid. And the blockchain
enables the peer to peer setting to buying and selling as well as managing the smart
contracts, where different prices can be set autonomously based on supply and
demand or other parameters.

Our final aim in this study is to evaluate the performance of such a setting of a
power and utilities blockchain. It is important to understand what it is capable of
and what performance criteria should be prioritized to assess current use cases and
potential future applications in the power and utilities sector. To this aim, we
employ fuzzy DEMATEL (decision making trial and evaluation laboratory)
approach for exploring the importance of factors affecting the blockchain perfor-
mance and the interrelationships among the factors. DEMATEL is a multi-criteria
decision making method used to evaluate the interrelationships among factors of a
system. It uses expert opinion and draws results using the group knowledge of
experts. To represent the linguistic judgements of experts, we use fuzzy sets and
employ a fuzzy DEMATEL method. Finally we group the factors into cause and
effect groups.

The chapter is organized as follows: Sect. 23.2 discusses the changes and dis-
ruption that will transform the power and utilities sector. Section 23.3 describes
blockchain as an emerging technology and a driver of disruption. Then Sect. 23.4
presents the fuzzy DEMATEL method and its application to the power and utilities
blockchain and finally Sect. 23.5 concludes with the discussions and future research
suggestions.

23.2 Upcoming Disruption and What It Means for Power
and Utilities Sector

It is impossible to understand what blockchain means for power and utilities sector,
without examining all of the drivers of disruption and their impact on the sector.
Disruption is like the perfect storm where a number of factors has emerged to
mature at the same time period, which lead to a revolutionary path that lays ahead
of us for the upcoming decades. Blockchain is a significant disruption factor and its
future applications needs to be discussed in that context.

23.2.1 Disruption and Its Impacts

Disruption, a term coined by Clayton Christensen (1997), is fundamentally
changing the way the world works. According to Christensen, disruption can
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equally come from innovations other than technological breakthroughs (such as
new business models or new production processes). Actually, the idea of “dis-
ruptive innovation” has become so common that the number of media articles
mentioning “disruptive innovation” between 2010 and 2015 have increased more
than 440% (EY 2016) (Fig. 23.1).

The reason why the organizations and individuals are talking about disruption
ever-increasingly is the critical alteration of the three primary forces, as stated by
EY (2016): Technology, globalization, and demographics. Especially “technology”,
presenting the next wave of technologies such as Artificial Intelligence (AI),
robotics, Internet of Things (IoT), blockchain, Mixed Reality (MR), Additive
Manufacturing etc., is taking the innovation to a level it has never had the potential
to create this big impact before.

EY (2016) reveals that eight mega trends are the consequence of the mentioned
forces: Industry redefined, the future of smart, the future of work, behavioral rev-
olution, empowered customer, urban world, health reimagined, and resourceful
planet. All of these eight megatrends are interconnected: they are “the causes of”,
and “the effects that lead to” each other in a number of ways. Business articles
published by a number of other professional services firms or institutions also
reveal more or less the similar mega-trends (pwc 2016; Frost and Sullivan 2017;
Singh 2014; Weller 2016; Vielmetter and Sell 2014; Korn Ferry|Hay Group 2017).

Industry redefined is a critical trend for utilities as it stresses on industry con-
vergence, the blurring of two or more previously distinct industries and sets of
participants, which may lead to the disappearance of the utility sector as we know it
in a decade or two. For example, “smart home” or “connected home”, whatever the
name is given, is the target of many companies from a number of sectors: Utilities,
tech giants, telecom companies, and even automotive and pharmaceutical
companies.

The future of smart is the trend that connects every “thing”, collects and analyses
their data, and make them more autonomous and effective. Industry redefined and
the future of work trends incorporate IoT, AI, robotics, blockchain etc. to displace
humans and create “lights out” factories and offices.

Behavioral revolution is bringing the behavioral economics (BE) into the
mainstream, using smartphones and sensors to monitor behavior and respond
accordingly in real-time. Empowered customer trend is derived from the individual

Fig. 23.1 Number of media articles mentioning “Disruptive Innovation” (EY 2016)
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customers who understand their commercial value and want to participate more in
the commercial processes. Health reimagined trend focuses on the outcome of the
treatments and preventive healthcare, rather than the treatment itself and the effort
required for it.

As demographic trends push the world’s population to 9.7 billion by 2050,
natural resource constraints—whether in availability or infrastructure—challenge
established modes of consumption, from the individual to global corporate supply
chains (United Nations 2015), which is exactly why resourceful planet trend has
emerged.

And lastly; urban world trend is identified by the milestone in 2008; when the
majority of the world’s population started living in cities for the first time in history.
By 2050, at current rates of urbanization, the world will be two-thirds urban and
one-third rural, a reversal of the global distribution pattern of 1950 (United Nations
2015). The ongoing migration to urban centers and the natural growth increases the
urban population further more (EY 2017a). On top of that, it is evident that effects
of disruption are beginning to extend far beyond the business world. For example,
“sharing economy” start-ups such as Uber and Airbnb are already disrupting reg-
ulatory frameworks and some of the most disruptive technologies on the horizon
will not only disrupt corporate business models, but also society as a whole—
realigning income distribution, altering relationships between governments and
citizens, and perhaps even calling into question fundamental aspects of the human
experience (EY 2016). Even disrupters are facing the threat of being disrupted; as in
Arcade City’s effort to bypass the intermediary in mobility sharing, attacking
Uber’s business model with blockchain (Carmichael 2016).

23.2.2 What Disruption Means for Power and Utilities
Sector

Traditional utility model has been facing disruption for a long time; resulting in a
dramatic global value decline. The majors in Europe have not recovered from the
significant decline in their combined market value that began in early 2008
(Robinson 2015). Barclays Bank’s bond rating service has downgraded the entire
U.S. electric utility sector bond market rating against the U.S. Corporate Bond
Index due to the challenge from ratepayers’ increasing opportunities to cut grid
electricity consumption with solar and battery storage (Trabish 2014) (Fig. 23.2).

23.2.2.1 Drivers of Disruption

We have identified six drivers namely prosumers, emerging technologies, regula-
tions, de-regulations, aging workforce, and old infrastructure, which challenge the
traditional utility model struggling with impairments. These drivers have led to
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market value decline, and new market entries have been enabled by the emerging
technologies, which will be described in the following sections. Three types of
responses are identified as the best options to overcome the mentioned challenges:
Innovation on new customer experiences, new business models, and operational
efficiency solutions (Fig. 23.3).

Aging workforce and old infrastructure. It is widely articulated that the aging of
the workforce and old infrastructure are the most pressing challenges for the electric
industry (Utility Dive 2016). A total of 71% of the utility executives surveyed cited

%50 value slashed 
Europe’s top 20 utilities has been slashed in 
half over the last six years and their credit 
ratings have been downgraded (IPPR, 2014).

The falling value of European Utilities 
(Economist, 2013)

€104bn total writedown
in the sector to since the beginning of 2010, 
€30bn in 2015 (Financial Times, 2016) and 
€23bn in 2014 (EY, 2015a)

Fig. 23.2 Utility impairments

Fig. 23.3 Disruption of the traditional electricity value chain
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attracting the next generation of workers a “growing” or “urgent” concern, which
has become larger recently as a large portion of the workforce nears retirement age
(Engerati 2016).

In addition; the industry hosts aging grids and workforce assets, creating a need
for efficient asset performance and process performance management (Ericsson
2014). $40bn/year worth resources are wasted due old infrastructure and ineffi-
ciencies in the US alone (Institute for Electric Innovation 2015).

Regulation and deregulation. Clean energy and CO2 emission targets put a high
pressure on the decentralization of supply required by decarbonization, which has
created millions of small renewables. On the other hand, lagging regulations are
perceived as a barrier to it: Significant regulatory changes are required to adapt
disruption. 53% of utilities set forth that regulation delays investment (Engerati
2016). Lastly, liberalization processes such as unbundling and privatization are
moving forward. Value chain is being unbundled and eligibility limits are con-
verging to zero. Other players, such as telecoms, can easily climb over the barriers
of vertical integration and exclusive advantages of utilities.

Prosumers. 69% of utility executives stated that they were excelling in customer
satisfaction, confirmed by only 25% of customers (Engerati 2016), who no longer
benchmark utilities against each other, but sectors such as telco and banking. The
more frequent interaction customers have with utility customer services, the less
satisfied they are (EY 2015c).

Moreover, customers are evolving to the prosumer, who can also produce power
and challenge one-way physical flow that is only from the grid to themselves.

Emerging technologies. Global investment in disruptive energy technologies is
growing fast, creating new value streams and business models economically
compelling. Distributed energy concept has emerged, thanks to the technological
improvements that reshaped energy production landscape by photovoltaic panels,
electric vehicles, smart appliances, and battery storage (Munsing et al. 2017).
Adding the falling costs of these technologies into the equation, they have the
potential to become the primary energy source, reaching a 500 TWh solar gener-
ation capacity in 2020 (International Energy Agency 2016) and reducing the util-
ities market by half over the next 20 years (IPPR 2014). By 2035, microgrids could
become the base load in some mature markets (EY 2015b), with a capacity at record
high with over 150 GW installed in 2015 (International Energy Agency 2016).

IoT is another technological leap that is central to manage these components in a
microgrid, which can be described as “a collection of prosumers (residential nodes)
that are arranged within the same distribution feeder and support exchange of power
between them (Laszka et al. 2017)”. As utility-specific protocols are converging to
TCP-IP, utilities has become one of the largest IoT spenders and will be the 3rd
largest industry by expenditure in IoT, with over $69bn worldwide (Ericsson 2016).
There is a significant increase in number of IoT projects in the sector with more
than 1.5bn devices globally managed by utilities (Ericsson 2014). Utilities IoT
market size in 2014 is expected to be quadrupled as of 2020 (European Commission
2014). IoT is expected to grow mostly in consumer-interfacing devices such as
smart meters, thermostats, and appliances. Residential IoT market is expected to
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grow more than four times the size of 2016 (Metering and Smart Energy
International 2016a). Utilities’ use of IoT is still not sophisticated, yet the perceived
business value delivered by existing IoT use cases is high (Fig. 23.4).

US Utilities have mostly invested in utility-scale renewables, demand side
management, distributed generation and natural gas power plants. In the future,
respondents indicated that their companies should invest more in energy storage,
distributed generation and utility-scale renewables (Utility Dive 2016).

23.2.2.2 Impacts of Disruption

Very immediate, tangible and ultimate impact of disruption is the market value
decline, as explained previously.

New market entries is another consequence of disruption. Today’s customers
demand transparent and competitive pricing, as well as energy-efficient, environ-
mentally friendly solutions. Within the utilities industry, innovation sit on the
periphery rather than infiltrating the core business. Therefore, disruption is being
perpetrated by new entrants. Retailers from industries such as telecommunications,
consumer products, security services, and technology have moved into the smart
home market. Technology giants such as Google, Apple, and Amazon have made
major investments in the smart home. Hardware providers, such as Google’s NEST
business, software platform providers, such as EnergyHub, and aggregators, such as
Comverge, are all seeking opportunities in a space traditionally served solely by the
utilities. Consortiums have emerged as well: In March 2016, South Korea’s SK
Telecom signed a MoU with equipment provider Kocom, followed by a partnership
with Samsung Electronics to transform the South Korean city of Daegu into a IoT
test hub. SKT previously signed agreements with home automation company
Commax as well as Hyundai Telecom in 2015 (Metering and Smart Energy
International 2016c). Npower has launched an interactive trial for 300 homes using

93% increase in # of IoT projects by en-
ergy & utilities adopters (Vodafone, 2016)

Smart lighting growth: 5 times to 2.54bn is 
expected between 2014-2020

Utilities will spend $87.5bn for IoT prod-
ucts and services by 2018 (Ericsson, 2016)

€40bn utility IoT market is expected by 2020, 
4 times bigger than €10bn in 2014 (European 
Commission, 2014)

67% of utilities will account for overall 
M2M connections worldwide by 2023
(Utility Week, 2014)

$117bn residential IoT market in 2026 
is expected to grow from $26.5bn in 2016
(Metering & Smart Energy International, 2016)

900M smart meters is expected in 2020, creating $60bn efficiency (Greenough, 2015)

Fig. 23.4 Selected IoT market projections

23 A Framework for the Performance Evaluation of an Energy Blockchain 527



the latest smart home technology, working with D-Link and Yale with Nest inte-
gration (Moore 2015). German utility RWE has announced plans to acquire
grid-scale solar and storage provider Belectric through its renewable energy sub-
sidiary, Innogy SE (Metering and Smart Energy International 2016b).

The growth of new entrants, though halting at first, has captured close to 20%
market share (Utility Week 2016). Traditional utilities face the risk of becoming
mere infrastructure managers and seeing value formerly captured by their pro-
duction units transferred to other players in the value chain. This could lead to
further impairment of their traditional generation assets.

23.2.2.3 How to Respond Disruption

Three main ways are identified to help utilities fit into the quickly evolving energy
ecosystem: Creating a new customer experience on current business models,
developing new business models, and building efficient operations are the key
actions to be taken as a response to the disrupted market.

New customer experience. Customers expect free and accurate billing, of which
they are getting a sophisticated version from companies like Amazon. It’s not
enough to aim for neither modest incremental change nor best in the industry. From
the customers’ point of view, all they do is buy energy and get billed; and they
wonder why their bills are still wrong or why moving house is such a hassle.
Utilities need to (1) optimize Customer and Billing costs (2) understand their
customers (3) create loyalty (4) master the channels, and finally (5) use deep
customer knowledge to innovate. Based on business experience, it pays back sig-
nificantly (EY 2015c).

New business models. New market/technologies/pro-market regulation are on
the rise; and new business models are a requirement, not a nice to have. In 2014,
largest gross margins came from energy efficiency, demand response, and smart
metering (EY 2015a). By 2020, utilities expect 40% of revenues coming from new
models (Ericsson 2016). 74% of them view this as an ‘urgent’ or ‘growing concern
(Engerati 2016). Conventional and renewables both have a role to play too,
prompting an increasing number of corporate restructurings, spin-offs and JVs.
Furthermore, competition in emerging markets will be around technology,
leapfrogging fossil fuels (Fig. 23.5).

Efficient operations. Utilities are transforming;

• from grids with large centralized fossil power plants (PP) to a distributed
microgrid environment

• from managing stable supply to fluctuating supply
• from demand driven to demand side integrated operations
• from analog coupling of load to digital coupling integrating supply and demand

using digital communication.
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Both current and future operations require new technologies to come up with the
best possible operations and efficiency.

23.2.3 The Role of Blockchain as a Disruptor
and a Response to Disruption in Power and Utilities

Hileman and Rauchs (2017) studied 132 blockchain use cases recently and revealed
that 3% of the use cases belong to Power and Utilities sector. They also found out
that 32% of Distributed Ledger Technology service providers target energy sector.
When current and potential use cases are examined in the literature, it can be
concluded that blockchain has a role in every aspect of responding to disruption
mentioned in the previous sections. It can be incorporated to modernize the grid
(Basden and Cottrell 2017; Horta et al. 2016) or it can be approached as a potential
differentiator (Normandeau 2016) to develop new business models via its generic
features also applicable for other industries (pwc 2015, 2017; Deloitte 2016; EY
2017b; Merz 2016; Aitzhan and Svetinovic 2016): Decentralized storage of
transaction data, payments via cryptocurrencies and smart contracts can lead to a
market without intermediaries namely data aggregators such as suppliers, clearing
houses, brokers and energy trading platforms; enabling power generators or storage
units (nodes) trade electricity autonomously. Even supplier switching process is
subject to be an aspect of the past; for nodes will be able to buy electricity from
whichever provider fits their contractual terms at any point of time, which can be
named as “continuous switching”.

Having explained the general context; the scope of this study is the distributed
generation setting where domestic consumers can;

– produce electricity at their homes
– buy electricity from the grid or other consumers
– store the electricity at their homes and/or electric vehicles
– sell the surplus electricity to other consumers and/or to the grid
– buying and selling is performed in a peer to peer setting
– buying and selling includes smart contracts, where different prices can be set

autonomously based on supply and demand or other factors.

New business 
models, 19% 

Value added 
services supporting 
core business, 20% 

Traditional 
business model, 

61% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 23.5 Expected composition of utilities’ revenues (Ericsson 2016)
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23.3 Blockchain Technology

Digitalization enables more connectedness in the era of advanced information
technology making new ways of working such as crowdsourcing and shared
economy possible. Those, in return, are used to increase the utilization of resources.
In this futuristic world, there is a need for the coordination of virtually connected
people, machines and any kind of entity in a cost-effective and trustable way. To
this end, blockchain is a promising data management technology that enables the
distributed storage of data and the trustless transactions without the need for a
central authority.

Blockchain is an emerging data management technology which allows
self-organization of connected nodes as a network similar to the internet. The
autonomous governance of the nodes is maintained using a distributed consensus
mechanism. A blockchain constitutes a peer-to-peer network where there exists no
central authority. This technology enables multiple parties to share the database
secured by cryptographic signatures. The participants actually download a copy of
the same ledger (database) which contains all of the transactions made in the
database. It is a distributed system which is more transparent and free of various
general costs created by the central management efforts. Instead of a central
authority, the block chain uses a verification mechanism where nodes of the net-
work independently check the state and integrity of the blockchain using the pre-
defined consensus algorithm. This, in result, generates a safe and secure way for the
nodes/participants to modify the database even if they don’t know and trust each
other. This also ensures that the power is distributed through the network
(Fig. 23.6).

We can define five main components of the blockchain technology as follows
(Hileman and Rauchs 2017):

• Peer-to-peer network: Network for peer discovery and data sharing in a
peer-to-peer fashion

• Consensus algorithm: Algorithm used to reach an agreement on a value or
transaction at the blockchain without the need to trust or rely on participants

Fig. 23.6 Illustration of various structures of networks (Hagström and Dahlquist 2017)
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• Cryptography: techniques that ensure secure communication and transaction
such as one-way hash functions, Merkle trees and public key infrastructure
(private-public key pairs)

• Ledger: List of transactions bundled together in cryptographically linked
‘blocks’

• Validity rules: Rules used to maintain the network (i.e., what transactions are
considered valid, how the ledger gets updated, etc.)

These components may be specified differently for different choices of block-
chain architecture and design.

Blockchain literally is represented by the transaction storage approach of the
system which is named as blocks. A chain of transactions in the form of blocks and
the components of a block in detail are illustrated in Fig. 23.7. When the verifi-
cation of a transaction is completed it is stored as a block which is linked to the
previous block in chronological order. The blockchain protocol which is the dis-
tributed consensus mechanism is a collection of rules specifying how the partici-
pants should verify the transactions for all of the nodes in the network. Once a block
is added to the chain it cannot be changed, which is called as the immutability
property of the blockchain technology. The chaining of the blocks uses crypto-
graphic signatures (i.e. hashes) to ensure that the blockchain is reversible. A hash
function is a mathematical process that takes input data of any size, then performs
an operation on it, and returns output data of a fixed size.

The two main benefits of the blockchain technology are that it is trustless and
distributed. Blockchain presents a trusted environment for its participants without
any requirement of informal trust (e.g. handshake agreement) between its partici-
pants or traditional formal trust via central authority (e.g. courts). The way
blockchain guarantees trust is by its pre-announced working rules and
decision-making mechanisms thus it is confidential and transparent at the same
time. The second benefit of blockchain technology is due to its distributed structure.
This property enables a network to work without an intermediary or central
authority. Instead, the power is shared among the distributed participants.

Y(B0)

M1
0 

…

Y(B1)

Y(B0) 
…

Y(Bt)

Y(Bt-1) 
…

Y(Bt+1)

Y(Bt) 
…

… …

B0 B1 Bt Bt+1

Block Bt Contents
Y(Bt-1) 

M1
t 

M2
t 

…

MN
t 

Header
Block No
Time stamp
Validator ID
Hash of Con-
tents: Y(B0)

Fig. 23.7 Symbolic representation of the data in a blockchain (Sikorski et al. 2017)
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On the other side, blockchain has also limitations. The limitations of blockchain
are represented by a trilemma illustrated in Fig. 23.8. Trilemma means that only
two dimensions of the triangle can be achieved at a time (Hagström and Dahlquist
2017).

The three dimensions that make up the triangle are decentralization, scalability
and security. The blockchains that are in use such as bitcoin and ethereum are
decentralized and secure but they are not scalable. Scalability is commonly iden-
tified by the limits of throughput, together with latency. Compared to a traditional
database, blockchain is relatively slow. The speed of transaction (i.e. latency) and
the volume of transactions (i.e. throughput) in a blockchain depend on whether the
blockchain is private or public which in return specifies the type of consensus
algorithm used, block size limit and the time interval between each block, the
number of verification nodes and the transaction type (small cryptocurrency
transaction vs. large smart contract).

As discussed above blockchain performance depends on various design choices
and factors. Moreover these factors are closely interlinked to each other. These
factors are discussed extensively in the literature however there is not a consensus
about the importance and interrelations of the factors. In Sect. 23.4, we propose a
framework for evaluating the performance factors of a power and utilities block-
chain to identify their interrelationships among them and also their effect on the
performance of the blockchain.

23.4 Evaluating the Factors Affecting Blockchain
Performance

In this section, we first identify the factors that affect the performance of a
blockchain. Then, we evaluate the interrelationships among the factors using a
methodology. For this evaluation we first collect expert opinion specified as lin-
guistic variables. Then, we use fuzzy DEMATEL method to aggregate the opinions
and draw results related to the performance factors. In the following subsections,

Fig. 23.8 Trilemma triangle
of blockchains
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first we will describe the Fuzzy Dematel methodology, then define the performance
factors of a power and utilities blockchain and then using expert opinions we will
present the obtained results.

23.4.1 Fuzzy DEMATEL Method

DEMATEL which stands for decision making trial and evaluation laboratory is a
multi-criteria decision making method used to evaluate the interrelationships among
factors of a system. Usually, one can identify various factors for any type of system.
However, each factor may not be as important as the other because some factors
behave as a cause to affect the status of another factor. Sometimes the relationship
can be bilateral or sometimes some factors can be independent of any of the other
factors. While designing systems effectively and/or trying to improve the system
performance by changing the system factors, it will help to know about the inter-
relationships among the factors in order to obtain the intended results. Otherwise,
the relationships among the factors may yield secondary effects as a result of
changing one of the system factors.

DEMATEL was developed in Geneva Research Centre of the Battelle Memorial
Institute. It uses expert opinion and draws results using the group knowledge of
experts. While collecting expert opinions, experts are asked to evaluate the strength
of the relationship of factors pairwise. Using linguistic evaluation helps human
experts to express their knowledge because preferences of humans are often vague.
To represent these linguistics evaluations, fuzzy logic is employed in
Fuzzy DEMATEL method.

In fuzzy logic, a fuzzy set A in U is characterized by a membership function
lAðxÞ which associates with each point in U a real number in interval [0,1], with the
value of lAðxÞ at x representing “the grade of membership” of x in A (Zadeh 1965).

A formula for the membership function lAðxÞ of a triangular fuzzy number
(TFN) ~x which has a shape shown in Fig. 23.9, is given in Eq. 23.1, where a, b and
c denotes real numbers (Ross 1995):

lAðxÞ ¼ ðl;m; rÞ ¼
x�a
b�a ; a� x� b
c�x
c�b ; b� x� c
0 ; otherwise

ð23:1Þ

Algebraic operations for TFNs are given by (2)–(8) where all the fuzzy numbers
are positive (here it is assumed that a� 0; e� 0) (Chen et al. 1992):

ða; b; cÞþ ðd; e; f Þ ffi ðaþ d; bþ e; cþ f Þ ð23:2Þ

ða; b; cÞ � ðd; e; f Þ ffi ða� f ; b� e; c� dÞ ð23:3Þ
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ða; b; cÞ � ðd; e; f Þ ffi ðad; be; cf Þ ð23:4Þ

ða; b; cÞ � ðd; e; f Þ ffi a
f
;
b
e
;
c
d

� �
ð23:5Þ

k� ða; b; cÞ ffi ðka; kb; kcÞ;
ðkc; kb; kaÞ;

�
if
k� 0
k� 0

; 8k 2 < ð23:6Þ

k� ða; b; cÞ ffi
k
c ;

k
b ;

k
a

� �
;

k
a ;

k
b ;

k
c

� �
;

if
k� 0
k� 0

�
; 8k 2 < ð23:7Þ

ða; b; cÞk ffi ak; bk; ck
� �

;
1
ck ;

1
bk ;

1
ak

� �
;

if
k� 0
k� 0

; 8k 2 <
�

ð23:8Þ

We employ the following steps of the fuzzy DEMATEL procedure presented by
Ucal et al. (2012):

Step 1. Setting the goal and specification of the group of experts: Even though
fuzzy DEMATEL is a method for evaluating the interrelationships among factors,
one should initially set the goal of the study. Besides, group of experts are specified
at the beginning of the study.

Step 2. Identifying the factors and the fuzzy linguistic scale: The factors which
will be analyzed are identified by the analyst prior to the expert evaluations. The set
of factors should include all possible factors which are related to the goal of the
study. When identifying the factors, the analyst may also refer to the experts not to
miss any of the factors which may be related. In this phase, the scale that will be
used to judge the relationships among the factors by the experts are also specified.
The scales used in fuzzy Dematel is linguistic such as {Very high, High, Low, Very
low, No}. Each level of the scale is then represented by positive triangular fuzzy
numbers ðlij;mij; rijÞ. An example of the scale is shown in Table 23.1.

Step 3. Aggregating the assessments of experts. Initially, the experts are asked to
assess the strength of the pairwise relationship in terms of influences and directions
between factors,C ¼ fCiji ¼ 1; 2; � � � ; ng. After collecting the fuzzy assessments of
the experts, they are converted into fuzzy numbers. Finally those are defuzzified
into crisp values and aggregated as a single value which represents the group

μ

a b c

Fig. 23.9 Membership
function of a TFN
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opinion of the experts. We use the following CFCS (Converting Fuzzy data into
Crisp Scores) method for the defuzzification and aggregation operations:

Let ~zkij ¼ zklij; z
k
mij; z

k
rij

� �
indicate the fuzzy assessment of evaluator kðk ¼

1; 2; � � � ; pÞ about the degree to which the factor i affects the factor j.

Normalize fuzzy assessments of evaluators ~zkij ¼ zklij; z
k
mij; z

k
rij

� �
, the degree to

which the factor i affects the factor j, where kðk ¼ 1; 2; � � � ; pÞ is the evaluator k:

xklij ¼
ðzklij �minzklijÞ

maxzkrij �minzklij
ð23:9Þ

xkmij ¼
ðzkmij �minzklijÞ
maxzkrij �minzklij

ð23:10Þ

xkrij ¼
ðzkrij �minzklijÞ
maxzkrij �minzklij

ð23:11Þ

Compute left xklsij
� �

and right xkrsij
� �

normalized values:

xklsij ¼
xkmij

ð1þ xkmij � xklijÞ
ð23:12Þ

xkrsij ¼
xkrij

ð1þ xkrij � xkmijÞ
ð23:13Þ

Compute total normalized crisp value:

xkij ¼
xklsij 1� xklsij

� �
þ xkrsij
� �2

	 


1� xklsij þ xkrsij
h i ð23:14Þ

Table 23.1 Fuzzy linguistic
scale for fuzzy DEMATEL

Linguistic terms Triangular fuzzy numbers

Very high influence (VIH) ð0:75; 1:0; 1:0Þ
High influence (HI) ð0:5; 0:75; 1:0Þ
Low influence (LI) ð0:25; 0:5; 0:75Þ
Very low influence (VLI) ð0; 0:25; 0:5Þ
No influence (NI) ð0; 0; 0:25Þ
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Compute crisp values:

zkij ¼ min zklij þ xkij max zkrij �min zklij
� �

ð23:15Þ

Integrate crisp values:

zij ¼ 1
p

z1ij þ z2ij þ � � � þ zpij
� �

ð23:16Þ

Step 4. Developing the structural model: The structural model divides the factors
into two groups as cause group and effect group. First we use the initial
direct-relation matrix Z ¼ zij

� �
nxn to obtain the normalized direct-relation matrix

X ¼ xij
� �

nxn where 0� xij � 1, where i; j ¼ 1; 2; . . .; n.

X ¼ 1
max

0� i� 1

Pn
j¼1 zij

Z ð23:17Þ

Then, the total-relation matrix T is calculated by formula (23.18).

T ¼ XðI � XÞ�1 ð23:18Þ

Finally, the following values are computed to generate the causal diagram by
formulas (23.19–23.21).

T ¼ tij; i; j ¼ 1; 2; . . .; n ð23:19Þ

D ¼
Xn
j¼1

tij ð23:20Þ

R ¼
Xn
i¼1

tij ð23:21Þ

Finally a diagram is constructed to illustrate the cause-and-effect relations among
the factors. To draw the causal diagram, “prominence” values which are calculated
using adding up the D and R values and the “relation” values which are obtained by
subtracting R from D values are represented at the horizontal and vertical axis
respectively. Prominence presents the importance of the factors. Relation axis
divides the factors into two groups as cause and effect factors. If the factor is a
cause, it will take on positive relation values (i.e. D − R > 0), whereas factors that
receives effect will have a negative relation value. Hence, causal diagrams can visu-
alize the complicated causal relationships of factors into a visible structural model,
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providing valuable insight for problem-solving. Further, with the help of a causal
diagram, we may make proper decisions by recognizing the difference between
cause and effect factors.

23.4.2 Interrelationships of the Performance Factors
of an Power and Utilities Blockchain

We use fuzzy DEMATEL method to identify the interrelationships of the perfor-
mance factors of an energy blockchain. Blockchain is a promising new technology
which will enable collaboration among entities without a central authority. Thus, it
is autonomous and has many advantages due to its independency of intermediaries,
such as transparency and lower administrative costs. However blockchains also
have their limitations which could have adverse effects on the development of the
system. Understanding the factors which affect the performance of the blockchain
and their interrelationships could play significant role to identify the critical
components/factors of the system and designing the system accordingly.

Our aim is prioritizing the blockchain performance factors in this study. We
collect cause-effect judgements of three experts on the factor relationships. The
domain experts have of the following qualifications: the first expert is a senior
manager in a well-known multinational consultancy company responsible of energy
sector and emerging technologies, the second expert is an academician working on
innovation and energy management and the third expert has a senior technical
background on software development and is currently working at a technology
company innovating on blockchain solutions. We have reviewed the blockchain
literature to identify the factors that affects the performance of an energy block-
chain. As a result, we specify four main dimensions: user satisfaction, productivity,
collaboration and risk management. Each performance dimension is a result of
various factors/characteristics of the blockchain. We propose the below framework
for performance evaluation and specify the factors as follows:

User satisfaction
F1: Latency: is the time between the transaction initiation and its approval and containment in

a block

F2: Service quality: includes various quality dimension such as usability, increased monetary
incentives and value-added services such as extended reports, solutions that can be serviced by
possible intelligent extensions

F3: Control and power for users: is the level of empowerment of users which enable them to
control all their information and transactions

Productivity
F4: Cost minimization: relates to the costs of relatively lower transaction and time plus the

relatively high initial capital costs
(continued)
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(continued)

F5: Throughput of the database: is the number of transactions per second that the database
can manage

F6: Scalability and integration with internal and external systems: is the capability of the
system to be enlarged or downsized or integration capability with other systems

F7: Sustainability: specifies the needed resources and large energy consumption to maintain a
blockchain system

Collaboration
F8: Disintermediation: specifies the level of self-governance characteristics of the system

where parties are able to make an exchange without the oversight or intermediation of a third
party, additionally the advantage of ecosystem simplification

F9: Trust: is the trust level that the blocksystem provides by transparency, confidentiality,
privacy and traceability

Risk Management
F10: Cyber security: The cyber security level that the blockchain system provides by

encryption, resilience, durability, reliability and immutability

F11: Operational risk: all operational risks due to blockchain being an emerging technology,
resolving challenges such as transaction speed, the verification process, and data limits

F12: Business risk: All business risks for instance due to compliance with industry standards
and regulations and fraud, immutability and the lack of qualified human resources

We have used the scale presented at Table 23.1 for linguistic variables. Using a
survey form, we collected the experts’ judgements on the pairwise relationships of
factors 1–12 in terms of the strength of the cause and effect. The judgments of the
three experts are given in Table 23.2.

Then, we aggregated the expert judgements and employed the defuzzification
method using Eqs. 23.8–23.16. Finally, the structural model is formulated using
Eqs. 23.17–23.21. The total-relation matrix is given in Table 23.3.

Finally, the causal diagram is obtained for the performance factors of an energy
blockchain as in Fig. 23.10. The prominence (D + R) and the relation (D − R)
values of each factor are represented on the horizontal and vertical axis respectively.

The prominence value of a factor represents the importance of a factor. The
higher the prominence value, the more important is a factor for the performance of
the blockchain. The results show that factors 12, 11, 10, 9 and 8-namely business
risk, operational risk, cyber security, trust and disintermediation—are relatively
more important factors for the performance of an energy blockchain. The relation
dimension (y-axis) is related to the causal relations. As the relation value increases,
the factor becomes an influencer/cause factor. Whereas, as the relation value
decreases the factor is an effect factor which is influenced by other factors. Cause
group includes the factors 6, 5, 7, 1 and 3-namely scalability and integration,
throughput of the database, sustainability, latency and control and power for users.
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Table 23.2 Expert judgements

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
F1 NI HI HI VLI VHI VHI LI NI HI HI HI LI
F2 NI NI LI HI NI LI HI NI HI LI LI HI
F3 VLI HI NI HI NI LI LI HI VHI HI HI HI
F4 VLI HI LI NI NI HI HI HI NI NI LI LI
F5 VHI HI LI LI NI VHI LI LI LI LI LI LI
F6 HI HI LI HI HI NI HI LI HI LI HI HI
F7 VLI HI HI VLI VLI HI NI HI HI LI VHI VHI
F8 LI LI HI HI NI HI HI NI HI HI LI HI
F9 NI HI HI VLI NI VLI HI HI NI HI HI HI
F10 LI HI HI LI HI HI VHI LI VHI NI HI HI
F11 HI HI HI LI LI LI HI LI HI HI NI VHI
F12 VLI HI HI LI NI HI HI HI HI HI VHI NI

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
F1 NI VLI VLI VHI VHI LI VHI LI LI LI HI VLI
F2 NI NI NI NI NI NI NI NI HI NI NI NI
F3 NI VHI NI LI VLI NI HI LI VHI NI NI NI
F4 NI NI NI NI NI NI NI NI NI NI HI LI
F5 NI LI LI VHI NI LI VHI LI VLI LI HI HI
F6 NI VHI LI VLI NI NI LI NI NI HI LI LI
F7 VHI NI LI VHI NI NI NI NI NI NI HI LI
F8 NI HI VHI LI LI NI VHI NI VHI HI LI HI
F9 NI NI LI LI LI NI VHI LI NI HI NI HI
F10 NI NI VLI VLI NI HI HI NI VHI NI VHI VHI
F11 NI HI HI HI NI HI NI HI HI HI NI VHI
F12 NI LI HI LI LI HI NI NI LI NI NI NI

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
F1 NI HI NI VLI HI HI LI NI NI LI VHI VLI
F2 NI NI LI LI LI HI LI VLI LI NI VLI VLI
F3 LI LI NI LI HI NI VLI VHI VHI HI VLI NI
F4 HI HI VLI NI HI HI LI NI LI LI VLI VLI
F5 NI LI NI LI NI VHI VLI LI VLI VLI HI VLI
F6 NI VHI HI HI VLI NI HI NI VLI NI HI HI
F7 VLI VLI NI VHI LI NI NI NI NI NI LI LI
F8 HI VLI VHI HI HI LI HI NI HI HI HI HI
F9 HI VLI LI LI HI NI LI HI NI HI LI VLI
F10 VHI NI LI LI LI LI LI HI VHI NI HI HI
F11 VLI HI LI VLI HI HI NI HI HI LI NI HI
F12 LI LI HI LI LI HI NI HI LI VLI NI NI
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Table 23.3 The total-relation matrix

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

F1 0.16 0.34 0.29 0.32 0.30 0.33 0.34 0.23 0.32 0.29 0.37 0.32

F2 0.09 0.15 0.18 0.20 0.13 0.18 0.20 0.13 0.24 0.15 0.18 0.20

F3 0.18 0.33 0.22 0.31 0.21 0.23 0.30 0.28 0.37 0.26 0.28 0.28

F4 0.15 0.24 0.20 0.17 0.15 0.22 0.22 0.16 0.20 0.16 0.23 0.23

F5 0.19 0.33 0.28 0.33 0.17 0.33 0.32 0.25 0.30 0.26 0.33 0.32

F6 0.17 0.35 0.30 0.31 0.21 0.21 0.31 0.21 0.29 0.24 0.31 0.33

F7 0.19 0.25 0.25 0.29 0.18 0.22 0.19 0.19 0.25 0.19 0.29 0.29

F8 0.24 0.37 0.40 0.38 0.27 0.32 0.40 0.24 0.42 0.35 0.37 0.41

F9 0.18 0.28 0.30 0.29 0.22 0.23 0.33 0.27 0.25 0.29 0.29 0.32

F10 0.24 0.32 0.34 0.33 0.26 0.34 0.37 0.28 0.42 0.24 0.39 0.40

F11 0.21 0.38 0.36 0.34 0.25 0.34 0.32 0.31 0.40 0.32 0.28 0.41

F12 0.17 0.31 0.31 0.29 0.20 0.30 0.26 0.24 0.31 0.23 0.27 0.23
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Fig. 23.10 The causal diagram among the performance factors of an energy blockchain
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23.5 Conclusion

Blockchain is an emerging whereas promising technology that is estimated to
change many industries fundamentally. However, the limitations should be inves-
tigated very well to improve the system for the fulfillment of the crucial require-
ments of each industry. Because each industry, even each different segment of the
industry may have various requirements. Thus, the expected performance should be
analyzed well and the underlying factors for the performance should be evaluated
well.

In this study, we first present the disruption in the power and utilities sector and
the role blockchain can play in the transformation of the industry. Then we propose
a framework for the evaluation of the performance factor of blockchain using fuzzy
DEMATEL. The most important factors are found to be related to the risk
dimension. Additionally, it is also concluded that productivity dimension is
affecting the other dimensions of the performance for a power and utilities
blockchain.

Future research can focus on simulating the performance evaluation using
methods such as agent-based simulation. Besides, choosing the appropriate
blockchain type/setting (i.e. public/private etc.) based on the performance
requirements of a certain industry can be studied using multi-criteria decision
making techniques.
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Chapter 24
Energy Future: Innovation Based
on Time, Synergy and Innovation Factors

Eunika Mercier-Laurent and Gülgün Kayakutlu

Abstract Computational intelligence has been widely used to analyse the complex
problems in the energy field. Examples of using different methods in energy
applications for economic, strategic and operational analysis in the energy field.
Forecasting and Performance analysis examples are shown as a support for decision
makers. This article is the conclusion of the book defining a new vision for the
energy future based on innovation. A computational model is proposed to give a
new dimension for the decision makers in the energy field. The novel mathematical
model is defined to consider the energy future based on the innovation impacts
complemented with the time, synergy and system approaches.

24.1 Introduction

This book edifies the complexity in the energy systems and introduces a variety of
computational methods that are used in search for solutions. Energy complexity can
be shown in different levels. That is why, the samples for collaborative and com-
putational analysis are given in forecasting process, economic, strategic and oper-
ational decisions and performance calculations. The final section, future trends is
reserved to cover novel approaches. The first chapter was the use of block chains
which is new for the energy applications. This last chapter is focused on the wider
use of intelligence based innovation.

Sustainable resources management, ecological production/distribution systems
and eco-social-technological-ethical concerns in consumption are the issues of
energy systems today. Complexity of the natural systems, the need for evolutionary
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processes through improved reasoning and knowledge forge innovative solutions.
Innovation in the energy industry was focused on the renewable energy resources
and efficiency technologies. Planet concern, ecological and sustainable approaches
in the energy supply chain has opened the path for new infrastructures and novel
knowledge base.

The combined use of energy resources (a variety of renewables or renewable and
fossil) and increasing type of energy services (utility, micro-grid, self-energy pro-
ducing etc.) synergy between the energy systems urge to be a need (Kayakutlu and
Mercier-Laurent 2017). Innovation investments in the energy field are multiplying
to consider technological, ecological, social, economic and political aspects
(Mercier-Laurent 2011).

This article aims to model the innovation based future of energy by considering
all the innovation factors and impacts handled in time and considered with system
and synergy approach. The proposed mathematical model is developed based on
Mercier-Laurent’s insight to eco-innovation (Mercier-Laurent 2011).

This paper is so organized that innovation concepts handled in the paper will be
defined in next section followed by the evolution of innovation in the energy supply
chain. The proposed mathematical model will be built in the fourth section and the
last chapter will give the conclusions and recommendations for the future.

24.2 Innovation Concepts

Facing climatic change requires innovation in energy life cycle and education of a
wise use of this resource in connection to others as water and air (United Nations
2017). Paradoxically modern technology requires energy to work. We produce a
huge amount of data stored in data centers that we must cool. It is urgent to
understand the impacts produced by human activity and try to reduce them with the
aim to preserve our biosphere (Mercier-Laurent 2015). Such an approach requires
considering production and use of energy not separately but as inter-influencing
components of our biosphere and our wellbeing.

As a consequence, the general innovation process can be represented in a loop of
ideas, evaluation of impacts, transformation, generation of values and integration of
feedback at all stages as shown in Fig. 24.1.

The results include also sustainable success of all participants. The purpose of
such innovation is not only quick generation of revenue, but also improving our
quality of life while minimizing the impact on our biosphere.

While Corporate Social Responsibility consider three impacts: environmental,
economic and social at least seven inter-related impacts (economic, technological,
cultural, social, environmental, politic and cognitive) should be considered,
Fig. 24.2.

Advance in technology offer a plethora of tools that may help us simulating and
optimizing. New needs can also influence development of new technologies.
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While energy providers and distributors focus mainly on economic impact—
revenue—today trends and necessity of combining renewable energies introduce
new difficulty in evaluating and sharing of produced values.

Policies related to energy are top-down, while the feedback from what happen on
the bottom may be interesting to evolve them. Thanks to social networks we can

Fig. 24.1 General innovation process

Fig. 24.2 Innovation impacts
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know and reproduce experiments both on companies as on citizen levels in the new
uses of energy. One of them is circular energy that is to be developed.

Easy access to solar energy (upowa.org) change the way people use it, especially
in developing countries. UpOwa empowers local off-the-grid West and Central
African communities through smart access to electricity. From users’ experience
they develop progressively access to education and health care.

We can observe how far the access to energy influences the evolution of society
—from agriculture to start-up, empowering agriculture with technology, creating
new professions and new uses. Connected objects (IOT) and drones are also energy
consuming, many of them can use alternative energy at the condition that their
designers are able to think “differently”. Sometimes IOT and, automated vehicles,
automated pilots and other decision support systems decide for us, what kill our
capacity of thinking and problem solving.

New way of combining energies, practicing the circular energy is more complex
but it leads to optimized use of this resource. Designers of toys combine mechanical
with electric energies to move toys. Thinking “without frontiers” between fields
gives excellent results.

Education has a great influence on how energy will be used. Today it is urgent to
educate new attitudes—from waste of energy (wrong use of air conditioning sys-
tems—ex NY 17 °C inside while 40° outside).

24.3 Innovation in Energy Systems

Innovation improved in the energy industry by emission abatement technologies
and continued with the renewable resource technology improvements
(Mercier-Laurent 2009). As a result, the renewable energy sources have reduced
investment costs and take more roles in the energy markets. Current trends towards
less carbon intensive, more distributed, more interconnected and more intelligent
energy systems are part of a continuous process of energy systems evolution.
Sustainable development that has been the ultimate goal since the beginning of the
century. Sustainability can be simply defined as the development that responds to
today’s needs without compromising the needs for future generations (Duxbury
et al. 2017). It is obvious that sustainability is an evolutionary process growing to
the potential of evolutionary thinking in resource management (Rammel et al.
2007).

Collaborative efforts for “a stable, safe, reliable” energy supply, ensuring the
“energy balances in short and long term with a target to “promote social and
environmental justice” presents a wealthier life for the citizens (Crandall et al.
2014). These are all common interest for the Globe and yet, economic priorities do
not allow to realize them to the limits of human requests. Brasil has shown a
dramatic experience of wrong priorities through the agricultural issues experienced
as a result of the biomass investments. The focus on wind technology investments
with the interest to construct the whole technology production in the country has
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been a sharp economical turn (Juárez et al. 2014). Malaysia, a developing country
with a high speed and causing high increase in carbon emissions, is reconsidering
the energy policies by integrating the power and gas markets; an innovative
approach considering the social aspects of energy security (Shaikh et al. 2017).
Hence, the energy innovation may be done at the industrial, regional, national or
global level. Cross-country efforts benefit the feedbacks from the national policies.
At that level trends are either in using a certain technology with transition through
the cross border as in the case of geothermal energy investments; or, integrate the
different industries like utility sector and tourism. These efforts lead for the dis-
covery of knowledge insight of socio-political impacts in parallel with the technical
and economic paradigms (Araújo 2014).

The recent innovative evolutions are inclined to consider energy systems as
socio-technical systems (Johansen and Røyrvik 2014). When the impacts on
humanity is taken into consideration time becomes the first important issue. Energy
infrastructures are good examples to show the importance of time. There are utility
investments of several decades which have impacts on the society and trans-
portation. Paris sewerage system of 1370 years is a good example (Gaziulusoy and
Brezet 2015). Sustainability of the investments made today need to be considered
for the impacts of a lifetime ahead. Social, cultural and organisational levels of
innovation are to be analysed in multi-level dynamics.

The transition of social behaviour in energy use is very much effected by the
governing policies (Kuzemko et al. 2016). The politics changes as the energy
systems evolve and the change of politics influence the society in terms of accepting
and using the new systems.

Energy system integrations with the spread of the small grids have totally
changed the utility business. Community energy systems concept is growing with
the integration of micro-grids, hubs, virtual power plants, multi-carrier delivery and
multi-faceted supply systems (Koirala et al. 2016). As these operational synergies
drive for the research on local conditions for a city or region, there is a need for
strategic synergy. After COP21 commitments country politics and organisational
strategies have become “responsible, renewable and recyclable” (Peck and Parker
2015). Strategies are redesigned to be responsible to reduce energy consumption,
with a goal of achieving 100% renewable energy use as soon as possible and
recycle more than 50% of energy used.

Most recent research is on connected complexity of energy systems and inno-
vation systems. This approach emphasizes combined study of three different pic-
tures: first one is the concerns for responding to the demand analysed with
behavioural economics; secondly, optimized operations to minimize the costs and
maximize the benefits, and thirdly the evolutionary and institutional strategies
considering infrastructures, network effects and learning (Grubb et al. 2017).

A mirror reflecting the future is expected to include

• Synergy of operational and strategic energy systems;
• Analysis should not only cover the current state but the history as far as the

knowledge can be extracted and the forthcoming events;
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• Culture for the next generations should be wiser to combine the green, the
effective use and reutilization of different energy types;

• Policies should consider the social and cultural behaviours, human-technology
must be one;

• Smart technologies will be evolved for the intelligent ones to include learning
and adaptation to changes.

24.4 Computational Model Construction

Models on energy systems are basically designed for the energy markets and used
by the grids or micro-grids. The new evolutions allow to combine and model the
systems through a variety of single dimension, like environmental (Toba and Seck
2016), technological (Sgobbi et al. 2016), social (Miller et al. 2015), political
(Burke and Stephens 2017) and cultural (Ruotsalainen et al. 2017).

Literature survey on innovation concepts and theories showed that there is also a
need for a combined approach. The evolution of innovation in energy markets and
systems has taken us to the categorisation that we should work on the energy future
in three pillars: time, culture and synergy with the impact of seven innovation
factors as given in Fig. 24.1. The seven factors are technological (x1), environ-
mental (x2), social (x3), economic (x4), cultural (x5), political (x6) and cognitive
(x7). They are all taken as independent factors as shown in Fig. 24.3. The seven
innovation factors continuously are analysed within the impact of three generation
in time and different in different levels of innovation.

On March 31, 2015, there was a general blackout in Turkey, in some cities the
metro stopped for almost 8 h. The reasons are analysed to be equipment misfit in
the transmission infrastructure of the compact national grid. Almost 30 million were
effected. It is observed that the role of enabling systems, is likely to be more

Fig. 24.3 Innovation based future of energy
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significant for systems-of-systems architecting and analysis (Adler and Dagli 2012).
That will be the clue for our model to be concerned of different innovations systems
(systematic, synergetic and strategic) in different time states.

Time is taken as the past, present and future because the knowledge of a sys-
tem’s present state does not imply any clue about the initial conditions or future
states. In highly complex systems there is a need for defining the physical equations
for the dynamics and the sensitivity of the system in order to find a solution
(Kwapień and Drożdż 2012).

In our model t will stand for the time period (can be taken as a month, a year or a
decade). The three different time periods will be taken as t − 1 for the past, t for
present and t + 1 for the future. That means all the innovations, be systematic
f s1t�1; f

s1
t ; f s1tþ 1

� �
, synergetic f s2t�1; f

s2
t ; f s2tþ 1

� �
, or strategic f s3t�1; f

s3
t ; f s3tþ 1

� �
, will be

defined in three time periods.
Defining f sit (i = 1, 2, 3 and t = 1, .. n, n being the lifecycle of analysis) inno-

vation functions as a combination of all the innovation factors cannot be defined
linear as it will mean that technological or political impacts and the energy inno-
vation will be increasing at the same rate, furthermore that will mean the elastic-
ity = 1, which is not possible (Nagurney 1999). It could be defined as a quadratic
function like

f sit ¼ b0 þ b1X1t þ b2X2
2
t þ b3X3

2
t þ et ð24:1Þ

But then, it would mean that the factors X2 and X3 which are the independent
factors will have a homogeneous impact on energy innovation. As Lee and Chang
has shown for energy intensity relation with the economic factors, it is not possible
to have a total homogeneity (Lee and Chang 2008). Therefore a natural logarithmic
relation is defined as in the energy intensity models.

lnf sit ¼ bsi0t þ bsi1tlnX1t þ bsi2tlnX2t þ bsi3tlnX3t þ bsi4tlnX4t

þ bsi5tlnX5t þ bsi6tlnX6t þ bsi7tlnX7t þ et
ð24:2Þ

where, si is the innovation type for i = 1, 2, 3 indicating systematic, synergetic and
strategic t is used as t = t − 1, t and t + 1 so that past, present and future states can
be considered bsi0t; b

si
jt are constants for each type of innovation si at time t for j = 1,

2, 3, 4, 5, 6, 7 and et is an error term with minimal effect which is smaller than all
the above constants.

Innovation type i is defined as a function of XJ with J (J = 1, 2, 3, 4, 5, 6, 7)
being the factor number so that it can be expressed for the current generation as:

lnf sit ¼ bsi0t þ
X7
J¼

bsijt lnXJt þ et ð24:3Þ
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The impact of generations will be taken as a temporal evolution system of
Euler-Lagrange as in (Navarro-González and Villacampa 2013); since, it is a strong
belief that the knowledge of three generations are kept in balance in a family. States
from A to B are defined as in (24.3) (Navarro-González and Villacampa 2013).

SAB ¼
ZB

A

L x1; x2::ð Þdt ð24:4Þ

@SAB ¼ @L
@x

� @

@t
@L
@x

� �
¼ 0 ð24:5Þ

Since our objective is to maximize the innovation evolutions we should consider
the Lagrange expression of the previous generation is stated for a function gsit
defined with the same factors:

Lsi
t ¼ lnf sit þ

X7
j¼1

ksijt
dgsit
dxj

ð24:6Þ

where 0� ksijt � 1 for all si (i = 1, 2, 3), for all j (1, 2, 3, 4, 5, 6, 7) and for all t
(t = 1, .. n).

We can also include the previous to previous generation expressed by gg
including the same factor impacts so (24.6) becomes:

Lsi
t ¼ lnf sit þ

X7
j¼1

ksijt
dgsit
dxj

þ
X7
j¼1

csit
d2ggsit
dxj2

ð24:7Þ

where 0� csit � 1 and 0� ksijt � 1 for all si (i = 1, 2, 3), for all j (1, 2, 3, 4, 5, 6, 7)
and for all t (t = 1, 2, 3).

Now we can optimize the innovation either separately that makes three functions
to be optimized in parallel or sum them up by multiplying with constants.

This has been an innovation function defined in a perfect world without con-
straints. This function is to be improved considering all the possible constraints
based on the seven factors.

24.5 Conclusion

Energy is a perfect playground for innovation bridging renewable techniques,
distributed energy resources and smart use of energy environmental impacts in our
complex environment. Applied computational intelligence techniques have
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potential to improve decision making, planning, policy designing and operation of
the energy systems.

This article proposes a computational model to maximize the innovation in
energy systems defined by considering system, synergetic and strategic innovation
in three time periods as past, present and future and taking into account the three
generations. Each type of innovation is defined as a function of environmental,
technological, economical, sociological, cultural, political and cognitive impacts.
The proposed model should be considered as the initial step of creating computa-
tional intelligence for innovation in energy systems that we should consider in the
future. This model will be generalized to allow the application to the other fields.

Perspectives for the nearest future include the study of constraints depending on
all impacts so that all multiple objective functions can further be presented as
second order differentiable functions.

This model demonstrates clearly the complexity of the innovation in energy
systems. Even as proposed here we believe that it can be solved using the related
reasoning methods. After identifying the suited version of the model, it should be
converted to an agent based intelligent system so the model reasonable solutions.
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