
Chapter 4
Practical Aspects of Kelvin Probe Force
Microscopy in Liquids

Kei Kobayashi and Hirofumi Yamada

Abstract There has been a strong demand for the development of scanning probe
techniques that can map the distribution of surface charge and surface potential at
nanometer scale in liquid media. While electrostatic force microscopy (EFM) and
Kelvin probe force microscopy (KPFM) have routinely been used in vacuum and
ambient conditions, they are not readily applicable in polar liquid media. In this
chapter, we review the practical aspects of electrostatic and capacitive force
detection in liquids and discuss the feasibility of measuring the surface charge or
potential distribution in polar liquid media.

4.1 Introduction

Electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM)
are scanning probe techniques for mapping local surface charge and potential.
These methods utilize the detection of the electrostatic forces induced by an
alternating modulation voltage that is applied between the tip and sample surface.
These methods have been commonly used under ambient conditions as well as in
vacuum environments. Recently, there has been a strong demand for local surface
charge and potential measurements in polar liquids, especially in aqueous solutions
containing electrolytes (ions). However, since the surface charges are screened by
the surrounding counter ions in aqueous solutions, forming an electric double layer
(EDL), the electrostatic interaction between tip and surface is not as simple as that
in vacuum or air.

The spatial resolution of the scanning probe techniques stems from the strong
distance dependence of the tip-sample interaction. We first review the potential
profile of the EDL and analyze the electrostatic force as well as the capacitive force
acting between the tip and sample in terms of the tip-sample distance dependence,
that is critical for obtaining high spatial resolution in the local surface charge and
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potential measurements. We then discuss the possibility of the local surface charge
and potential measurements in liquid media using voltage modulation techniques in
detail and present some criteria for achieving nanometer-scale surface charge and
potential measurements. Finally, we also demonstrate the surface charge mea-
surement on a biological sample using the three-dimensional (3D) force mapping
technique, as an alternative method to map the local surface charge and potential in
liquid media.

4.2 Electric Double Layer

In this section, we review the basic properties of the EDL [1]. When a charged
surface is exposed to an aqueous solution containing ions, counter ions having the
charge opposite to the surface charge in the solution are attracted to the charged
surface, which causes a density gradient toward the charged surface. The distri-
bution of the ion of any species i in the solution follows the Boltzmann distribution,
given by

ni = n∞i exp −
zieϕ
kBT

� �
, ð4:1Þ

where ϕ is the potential measured with respect to the bulk solution, e and zi are the
elementary charge and the ion valence, n∞i is the ion concentration in the bulk
solution, and kB and T are the Boltzmann constant and temperature. The total charge
density is thus given by

ρ= ∑
i
zieni = e∑

i
zini. ð4:2Þ

Since the charge density is related to the potential by the Poisson’s equation as

ρ= − εrε0∇2 ϕ, ð4:3Þ

we obtain the Poisson-Boltzmann equation by combining (4.1) and (4.3), which is
given by

∇2ϕ= −
e

εrε0
∑
i
zin∞i exp −

zieϕ
kBT

� �
. ð4:4Þ

Here we consider the one-dimensional (1D) capacitor model, in which a pair of
planar metallic electrodes are facing each other in an aqueous solution, as shown in
Fig. 4.1a. The Poisson-Boltzmann equation for the 1D capacitor model is given by
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d2

dx2
ϕ xð Þ= −

e
εrε0

∑
i
zin∞i exp −

zieϕ
kBT

� �
, ð4:5Þ

where x is a coordinate. In order to further simplify the equation, we consider the
case where only monovalent ions exist in the solution (a 1:1 electrolyte). In this
case, the equation is simplified as

d2

dx2
ϕ xð Þ= en∞

εrε0
sinh

eϕ
kBT

� �
, ð4:6Þ

where n∞ is the concentration of the monovalent ions. By solving (4.6) with a
boundary condition of the surface potential at the charged surface, ϕ 0ð Þ=ϕD, we
obtain

tanh eϕ ̸(4kBT)½ �
tanh[eϕD ̸(4kBT)]

= e− κDx, ð4:7Þ

where κD is given by

κD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e2n∞

εrε0kBT

s
. ð4:8Þ

Fig. 4.1 Schematic model of equally charged electrodes in electrolyte. a Gouy-Chapman model.
b Potential profile in Gouy-Chapman model. c Gouy-Chapman-Stern (GCS) model. d Potential
profile in GCS model. OHP stands for the outer Helmholtz plane, which is defined as the surface of
the compact layer

4 Practical Aspects of Kelvin Probe Force Microscopy … 103



κ − 1
D is the so-called the Debye screening length (LD) corresponding to the

thickness of the diffuse layer, in which the concentration of the counter ions is
higher than in the bulk. Figure 4.1b shows a potential profile of a pair of equally
charged electrodes. The left-hand side of (4.7) can be simplified as

ϕ xð Þ
ϕD

= exp − κDxð Þ, ð4:9Þ

when the surface potential is low and the condition

eϕD ̸ 4 kBTð Þ<0.5, ð4:10Þ

is met, namely for ϕD < 50mV. Note that (4.9) is the solution of the linearized
version of the 1D Poisson-Boltzmann equation, which is given by

d2ϕ xð Þ
dx2

= κ2Dϕ xð Þ. ð4:11Þ

Since the relationship between the surface potential and the surface charge
density is determined by Gauss’s law, the surface charge on the electrode with the
potential ϕD is given by

σs = − εrε0
dϕ xð Þ
dx

����
x=0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTεrε0n∞

p
sinh

eϕD

2kBT

� �
, ð4:12Þ

and the capacitance of the diffuse layer per unit area is defined by

CD =
dσs
dϕD

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2εrε0n∞

kBT

s
cosh

eϕD

2kBT

� �
= κDεrε0 cosh

eϕD

2kBT

� �
. ð4:13Þ

This simple interface model is referred to as the Gouy-Chapman model. Since
the model fails to explain the experimentally measured capacitance versus voltage
characteristics, Stern modified the Gouy-Chapman model by taking into account the
finite size of the ions and introduced an idea of a thin layer (compact layer or Stern
layer) on the surface where even the bound counter ions cannot reach, as shown
schematically in Fig. 4.1c. Since the charge density in the compact layer is zero, the
capacitance of the compact layer per unit area is simply given by

CS =
εrε0
tc

, ð4:14Þ

where tc is the thickness of the compact layer. Now the surface potential of the
electrode is modified to
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ϕ0 =ϕD +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTn∞

εrε0

r
sinh

eϕD

2kBT

� �
tc. ð4:15Þ

This interface model is referred to as the Gouy-Chapman-Stern (GCS) model, in
which the EDL is composed of two layers; i.e., the diffuse layer and the compact
layer. Figure 4.1d shows a potential profile of a pair of equally charged electrodes
in the GCS model.

4.3 Capacitive Force

The electrostatic force acting between tip and sample in EFM or KPFM (Fel) is
generally described as

Fel =
1
2
dCts

dz
V2
ts, ð4:16Þ

where Cts is the capacitance between tip and sample, Vts is the voltage between tip
and sample, and z is the tip-sample distance. When a modulation voltage of an
amplitude Vac at an angular frequency ωm (frequency: fm) with a dc offset voltage
Vdc, namely Vm = Vdc + Vac cos(ωmt), is applied between tip and sample, the
electrostatic force becomes

Fel =
1
2
dCts

dz
Vdc +VSPð Þ2 + 1

2
V2
ac + 2 Vdc +VSPð ÞVac cos ωmtð Þ+ 1

2
V2
ac cos 2ωmtð Þ

� �
ð4:17Þ

where VSP is the surface potential difference between tip and sample. The last term
in the equation (2ωm component) is often referred to as the capacitive force.

In order to analyze the electrostatic force acting between tip and sample that is
induced by the modulation voltage, it is important to understand the voltage drop of
the modulation voltage between a pair of electrodes which are facing each other [2].
The equivalent circuit for a pair of facing electrodes in electrolyte can be depicted as
shown in Fig. 4.2a. Note that the circuit is valid only when the EDLs of the surfaces
do not overlap with each other. In this model, the EDL capacitance CEDL is
comprised of a series of the compact (Stern) layer capacitance CS and the diffuse
layer capacitance CD. The impedance of the bulk solution is expressed by a parallel
circuit of the bulk solution resistance per unit area, RB, and capacitance per unit
area, CB. RB is described as

RB = dρB, ð4:18Þ
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where d and ρB are the distance between the electrodes and the resistivity of the
electrolyte, respectively.

When fm is very low, the modulation voltage is effectively applied to the
electrode/electrolyte interface, and charge and discharge of the diffuse layer occur
with an ionic current flow in the bulk solution. This happens when fm is lower than
a threshold frequency (fD), which is defined as the frequency at which the impe-
dance of CD becomes smaller than RB, i.e.,

fD =
1

2π RB CD ̸2ð Þ =
1

π dκDεrε0ρB cosh
eVD

ac
2kBT

� 	∝
ffiffiffiffiffiffi
n∞

p

εr
, ð4:19Þ

where VD
ac is the magnitude of the modulation voltage applied to the diffuse layer,

which roughly corresponds to Vac/2 because Vac is effectively applied to the two
diffuse layers and divided by the two. In this case, the impedance of the bulk
solution is dominated by the bulk solution resistance RB, and most of the modu-
lation voltage is effectively applied to CD, which does not depend on the tip-sample
distance. This causes a modulation in the cantilever deflection induced by the
surface stress variation [3, 4]. Therefore, fm should be higher than fD for EFM or
KPFM in aqueous solutions.

Even though this criterion is met; i.e. fm is higher than fD, ionic current flow still
occurs in the bulk solution; the equivalent circuit in this regime is depicted in
Fig. 4.2b. Therefore, fm should be even higher than another threshold frequency,
namely the characteristic relaxation frequency of the ionic current flow (fc), which is
dependent only on the physical property of the solution, defined as

Fig. 4.2 Equivalent circuits for a pair of facing electrodes in aqueous solutions for a modulation
frequency (fm) in the ranges of a fm < fD, b fD < fm < fc, and c fc < fm. d Snapshot of the potential
profile when the voltage of the sample is positive with respect to the cantilever and tip. In the low
modulation frequency regime (fm < fD), only the potential gradient (electric field) at the interface is
modulated, and the cantilever deflection is predominantly caused by the surface stress variation. In
the high modulation frequency regime (fc < fm), the electric field in the bulk solution is effectively
modulated, and the cantilever deflection is predominantly caused by the capacitive force
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fc =
1

2 πεrε0ρB
∝
n∞
εr

. ð4:20Þ

If this criterion is met, the impedance of CB becomes smaller than RB, and thus a
further simplified equivalent circuit, shown in Fig. 4.2c, can be used.

Figure 4.2d illustrates a potential profile between tip and sample for an alter-
nating modulation voltage [2, 5]. The figure depicts a snapshot of the potential
profile when the voltage of the sample is positive with respect to the cantilever with
a tip. The thin voltage potential curve corresponds to the profile for a lower
modulation frequency (fm < fD: Fig. 4.2a), while the thick voltage potential curve
corresponds to that for a higher modulation frequency (fm > fc: Fig. 4.2c). In the
former case the cantilever deflection induced by the surface stress variation is
prominent, while in the latter case the modulation voltage is effectively applied in
CB and the cantilever deflection induced by the capacitive force is expected.

We can calculate the capacitive force in aqueous solutions as a function of the
tip-sample distance. The total capacitive force acting on a cantilever with a tip is
considered as a sum of the force components acting on a spherical tip apex, a
conical tip body, and a cantilever part [6, 7]. Each component can be calculated by
integrating the force acting on a unit area by taking the voltage division ratio
between CB and CS into account for each component [2]. It should be noted that the
capacitive force as well as the electrostatic force at the tip-sample distance of less
than a few tens of nanometers is affected by the dielectric saturation, i.e. the
reduction of the dielectric constant in the EDL in the case of a high electric field
[8, 9]. The Booth equation is generally used for the dielectric saturation, which is
given by

εr Eð Þ= n2w +
3 ε∞r − n2w

 �

β E
coth β Eð Þ− 1

βE

� �
, ð4:21Þ

where nw is the refractive index of water, and β is given by

β=
5 μw n2w + 2


 �
2kBT

, ð4:22Þ

where μw is the electric dipole moment of a water molecule. Although the dielectric
constant is a nonlinear function of the electric field, it can be approximated to a
parabolic form when the electric field is less than 0.1 V/nm as

εr Eð Þ≈ε∞r − vE2, ð4:23Þ

using a constant v.
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4.4 Electrostatic Force

Here, we consider the variation in the potential profile when the tip-sample distance
is reduced. Figure 4.3a shows a schematic of ac potential profiles for a large and a
short distance with fm higher than fc. As the tip-sample distance decreases, the
alternating electric field in the bulk solution is increased. However, because of the
increase in CB, the voltage division ratio between CB and CS also changes. In other
words, the potential drop in CS also increases by the reduction of the tip-sample
distance. This phenomenon deteriorates the spatial resolution of the electrostatic
force as well as the capacitive force measurements [2].

We also calculated the electric field induced by an externally applied dc voltage
Vdcð Þ, as shown in Fig. 4.3b. In the GCS model, when the distance between the
electrodes is large and there is no overlap of the EDLs (d > 2LD), the potential
gradient at the midpoint is almost zero. As the two surfaces come close to each
other, an increase in the potential gradient at the midpoint is expected due to the
charge regulation [10, 11].

We can calculate the electrostatic force per unit area, namely the Maxwell stress
(Tel) using the dc electric field Em

dc


 �
and ac electric field Em

dc


 �
at the midpoint

(x = d/2) as

Tel ωmð Þ= 1
2
εrε0E2 =

1
2
εrε0 Em

dc +Em
ac cos ωmtð Þ� 2

=
1
2
ε0εr Em

dc


 �2 + 1
2

Em
ac


 �2 + 2Em
dcE

m
ac cos ωmtð Þ+ 1

2
Em
ac


 �2 cos 2ωmtð Þ
� �

.

ð4:24Þ

The dc electric field at the midpoint can be calculated from the dc potential
profile between the electrodes. The potential of the electrode surface can be

Fig. 4.3 a Schematic of ac potential profiles between a pair of facing electrodes in aqueous
solution for two tip-sample distances. The ac potential profiles depict an instantaneous maximum
voltage for the case when Vac is applied to the left electrode (sample) with respect to the right
electrode (cantilever with a tip). b Schematic of dc potential profiles between a pair of facing
electrodes for two tip-sample distances
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considered as constant in weak electrolyte solutions such as pure water [11]. For the
calculation of the dc potential profile between the two electrodes, an analytical
solution expressing the relationship of d, ϕ0, and E is required. However, the
analytical solution of the Poisson-Boltzmann equation can be obtained only in the
case when ϕd is less than 50 mV and the distance between the surfaces is larger
than LD [12]. Therefore, we used an approximate equation, which is valid for
arbitrary potential, by the linear superposition approximation (LSA) [13]. The dc
electric field at the midpoint between the surfaces is expressed as

Em
dc = −

dϕdc

dx

����
x= d ̸2

=
2kBT
de

− ln
1+ γ1e

− κDd
2

1− γ1e
− κDd

2

" #
+ ln

1+ γ2e
− κDd

2

1− γ2e
− κDd

2

" #( )
+

4κDkBT
de

− γ1 + γ2ð Þe− κDd
2 ,

ð4:25Þ

where γi is given by

γi = tanh
eϕi

4kBT

� �
. ð4:26Þ

The first and second terms in (4.25) are the dc electric field at the midpoint when
the EDLs of the surfaces are not overlapping, and that when they are overlapping,
respectively. On the other hand, the ac electric field at the midpoint between the
surfaces is expressed as

Em
ac = −

dϕac

dx

����
x= d ̸2

=
Vac

d

1+ 2 CB
CS

2 CB
CS

fc
fm

� 	2
+ 1+ 2 CB

CS

� 	2 cos ωmtð Þ ð4:27Þ

taking the voltage division ratio into account. Furthermore, we took into account the
dielectric saturation [8, 9].

We measured the electrostatic and capacitive forces induced on a conductive
cantilever with a tip when an alternating voltage is applied between the cantilever
and a sample surface in aqueous solutions [14]. We found that the electrostatic force
contribution to the cantilever deflection becomes dominant when a high modulation
frequency was used. However, we could not observe the steep increase in the
electrostatic force that should be expected for the electrostatic force acting on the tip
apex. On the contrary, we observed the electrostatic force even when the cantilever
was far from the sample surface, despite that the potential gradient at the midpoint
is expected to be almost zero in the GCS model (see Fig. 4.3b) and thereby neg-
ligible electrostatic force since there is no overlap of the EDLs (d > 2LD). We
consider that this is due to the alternating electric field being directly applied to CB

between the cantilever part and sample surface with a high modulation frequency
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(large Em
ac) and thus an unexpected voltage drop in the bulk solution (nonzero Em

dc)
could cause a significant electrostatic force on the cantilever part since it is pro-
portional to the product of Em

ac and Em
dc. Therefore, we consider that we need to

reduce the long-range parasitic electrostatic force acting on the cantilever.
We measured the capacitive and electrostatic force in an aqueous solution using

a colloidal probe (CP) cantilever to demonstrate the effect of the reduction of the
long-range parasitic electrostatic force. Figure 4.4a shows the schematics of the dc
electric field distribution between a cantilever with a regular sharp tip and the
sample in air. The electric field exists between the entire cantilever and the sample.
On the other hand, Fig. 4.4b shows the dc electric field distribution between a
regular cantilever and a sample in water. Since the dc electric field is screened by
the EDLs, there should be no dc electric field at the midpoint between the cantilever
part and sample. However, we indeed observed the long-range parasitic electrostatic
force acting on the cantilever part. Figure 4.4c shows the dc electric field distri-
bution between a CP cantilever and a sample in water. Since the effective inter-
action area of the CP is much larger than that of the regular cantilever, it is expected
that we could detect the electrostatic force acting on the CP that overwhelms the
parasitic electrostatic force acting on the cantilever part by using the CP cantilever.

We used the second resonance mode of the CP cantilever, which was around
855 kHz, in order to excite the cantilever at a high frequency. The spring constant
and quality factor at the second resonance were determined as 1,350 N/m and 12,
respectively. Figure 4.5a shows the amplitude of the ωm component as a function of
Vdc obtained when the tip-sample distance was kept at about 10 nm in pure water.
Vdc and Vac were set at 0 V and 2.8 V peak-to-peak, respectively. The result shows
that the hysteresis caused by the surface stress effect is negligible, but no minimum
point was observed in this measurement range. This fact means that the KPFM bias
voltage feedback cannot be used even using the CP cantilever. As explained in
Fig. 4.3b, Vdc mainly drops at CS, while the electric field in CB matters the mea-
sured electrostatic force. Depending on the combination of the materials of tip and
sample and the electrolyte, the force minimum might be observed in the

Fig. 4.4 Schematics of the electric field distributions in the experimental conditions with a
metal-coated regular cantilever with a tip in a air, b water, and c a metal-coated colloidal probe
(CP) cantilever in water. The red arrows show the electric field between the tip and the sample, and
the blue arrows show the electric field in the EDLs. Reprinted from J. Appl. Phys. 116, 134307
(2014) with the permission of AIP Publishing
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measurement range, but it is difficult to estimate the surface potential difference
anyway.

Figure 4.5b, c show plots of the amplitudes of the ωm and 2ωm components as a
function of the tip-sample distance, respectively. In both results, as the tip-sample
distance was decreased, the magnitude of both components increased due to the
increase in CB. The purple broken line shows the offset caused by the electrostatic
force acting on the cantilever, which has almost no dependence on the tip-sample
distance. The increase in the 2ωm component was almost double the offset at the
closest distance, while the ωm component showed a steep increase. The blue and
green broken curves shown in Fig. 4.5b, c are the fitting curves calculated by the
theoretical equation, (4.24), without and with taking into account the voltage
division by CS in (4.27), respectively. From the best fitted parameters, the local
surface potential difference under the CP was estimated to be 0.25 V. We also
obtained the parameters such as LD = 30 nm and CS = 0.011 F/m2 by the fitting.
LD was shorter than that expected from (4.8) probably because of the dissolved
CO2 from the ambient, while CS was smaller than the literature value of 0.2–0.3
F/m2 [15] probably because of the surface roughness, adsorbates or contaminants.

Finally, we discuss the criteria for the geometry of the cantilever and tip required
for the local surface potential measurements. Reduction of the cantilever dimen-
sions and increase of the tip height both would lead to the reduction of the parasitic
long-range electrostatic force. In particular, the reduction of the cantilever dimen-
sions is preferred because it increases the resonance frequency, which is favorable
for sensitive force detection. Note that even if such a dedicated force sensor is
available, the Stern layer capacitance and the dielectric constant that is typically
lower than the liquid media attenuate the voltage division ratio in the bulk solution
and thereby attenuate the local electrostatic force. Therefore, great care should be
taken to estimate the local surface potential using the voltage modulation
techniques.

Fig. 4.5 a Amplitude of ωm as a function of Vdc in water. Amplitudes of b ωm component
(fm = f2 = 855 kHz) and c 2ωm component (fm = f2/2 = 378 kHz) of the cantilever deflection
signal as a function of the tip-sample distance in water. The inset in b shows the magnified data at
large distance. The red, blue, and green curves show the experimental curve, theoretically fitted
curve without taking into account the voltage division ratio, and with it, respectively. The purple
broken line shows the offset in the oscillation amplitude caused by the electrostatic/capacitive force
acting on the cantilever other than the colloid. Reprinted from J. Appl. Phys. 116, 134307 (2014)
with the permission of AIP Publishing
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4.5 Surface Charge Measurement by Force Mapping

We have shown that the detection of the capacitive and electrostatic force induced
by the modulation voltage application are fairly complicated. It is rather straight-
forward to directly measure the electrostatic force acting on the cantilever with a tip
as a function of the tip-sample distance by a force distance curve measurement, and
then analyze it to deduce the surface charge and/or surface potential [16–20]. In this
section, we demonstrate the local charge density measurement of plasmid DNA
molecules using frequency modulation AFM (FM-AFM). For small-amplitude
FM-AFM, the frequency shift Δfð Þ signal is approximately proportional to the force
gradient. Hence, an increase in the electrolyte concentration leads to an increase in
the observed Δf signal as well as in the spatial resolution because of the decrease in
LD despite the weakening of the Fel itself.

We used plasmid pUC18 (2686 base pairs) DNA molecules (Takara Bio) on a
muscovite mica (Furuuchi Chemical) as a model sample. We coated the mica
substrate with a positively charged poly-L-lysine (PL) layer. A water solution of the
DNA (2–3 mg/L) was dropped onto the PL-coated mica surface. After 5–10 min,
the sample was rinsed with a KCl solution, and imaged by FM-AFM without
drying.

We used a home-built FM-AFM setup with an ultra-low noise deflection sensor
[21] and a photothermal excitation setup [22]. We used a cantilever with a spring
constant of about 30 N/m. The resonance frequency of the cantilever in the solution
was about 150 kHz. The oscillation amplitude was set to 0.4 and 0.8 nm
peak-to-peak in the 100 mM and 10 mM KCl solutions which were slightly smaller
than LD (0.97 and 3.07 nm at 298 K), respectively, to obtain a better spatial res-
olution. We obtained 3D Δf maps in a volume of 60 × 40 × 8.8 nm3

(128 × 64 × 200 pixels) in XYZ by consecutively collecting Δf maps in 2D(ZX)
planes, which were collected by recording the Δf data while approaching the tip to
the sample surface with a velocity of about 300 nm/s (corresponding to a triangular
waveform of about 17 Hz) until Δf reached a predetermined threshold value [23].

For calculation of the surface charge from the measured frequency shift map, we
employed the DLVO (Derjaguin, Landau, Verwey and Overbeek) force model [24],
which assumes the total interaction force as the sum of Fel and van der Waals force
(FvdW). For a 1:1 symmetric electrolyte, the EDL force vector acting between two
surfaces is calculated by

F
!

el =
ZZ
S

2n∞kBT cosh
eϕ
kBT

� �
− 1

� �
I−

εrε0
2

∇ϕð Þ2
� �

⋅ bn dS, ð4:28Þ

where the z component of F
!

el gives Fel. The first term is the osmotic pressure
tensor term, which is always repulsive, and the second term is the Maxwell stress
tensor term, which is always attractive, both of which can be calculated once the
distribution of the potential is determined [25, 26]. I and bn are the unit tensor and
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the unit normal vector, respectively. We calculated the potential distribution by
solving the Poisson-Boltzmann equation [27, 28]. While the constant charge or
constant potential condition is commonly known, the surface conditions in the
electrolytes are always somewhere between these extremes (charge regulation)
[11, 29]. We calculated the potential distribution with the LSA [13, 30]. Namely,
we first calculated the surface potential and charge densities of the two surfaces
under the condition that the EDLs do not overlap. Secondly, the potential distri-
bution between the two surfaces was determined by linearly superposing the
effective potential distributions calculated for the two surfaces using the potential
formulae. Finally, Fel acting between the surfaces was calculated using (4.28) from
the potential and the electric field [24, 30]. Then we calculated the theoretical Δfel
curves from the theoretical Fel curves using the experimental parameters. The DNA
molecule was modeled as a cylinder with a radius of 1.3 nm considering the
hydration layers on the DNA, and the tip radius was set to 12 nm as it gave the best
fit of the theoretical Δf curves to the experimental Δf curves.

For calculation of FvdW, we employed the surface element integration
(SEI) method using the Derjaguin construction [25], as

FvdW z+ z0ð Þ=
ZZZ
Vt

ZZZ
Vs

Fatom− atom rð ÞdVsdVt≈
ZZ
Sts

PvdW dSts, ð4:29Þ

where z0 is an offset parameter used to correct the difference in the onset position of
the FvdW. PvdW is FvdW per unit area given by

PvdW zð Þ= − Aν=0
H exp − 2z ̸λDð Þ+Aν>0

H

�  1
6π z3

, ð4:30Þ

where Aν=0
H and Aν>0

H are the Hamaker constants representing the zero-frequency
and dispersion contributions, respectively. The radius of the DNA was set to 1.0 nm
for the calculation of FvdW.

Figure 4.6a, b show the topography images reconstructed from the 3D Δf maps.
The helical structures of the DNA molecules are visible in both images, as indicated
by the arrows in the images. The helical structures are less clear than our previous
result [31] mainly due to the larger roughness of the PL layer surface. Figure 4.6c, d
show the 2D(XY) Δf maps obtained at a distance of around 0.4 nm above the DNA
molecules in the 100 mM and 10 mM solutions, respectively. Figure 4.6e, f show
the 2D(ZX) Δf maps obtained in the XY planes including lines A–B and C–D that
cross the DNA molecules in the 100 mM and 10 mM solutions, respectively. The
yellow pixels in each map represent the points without data because the tip was
retracted. The interface of the regions with and without data in each map represents
the topographic line profile, from which the heights of the DNA molecules are
estimated to be about 1.8 and 1.6 nm in the 100 mM and 10 mM solutions,
respectively.

In principle, repulsive and attractive Fel are expected on the DNA molecules and
the PL layer, respectively. Since LD is half the height of the DNA molecules in the
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100 mM KCl solution, the EDL of the PL layer (blue area) is not overlapped with
that of the DNA molecule (red area). On the other hand, in the 10 mM KCl
solution, LD is 1.5 times larger than the height of the DNA molecule. Hence the
EDL of the PL substrate (blue) is overlapped with that of the DNA molecule (red).

Fig. 4.6 a and b are topography images of plasmid DNA molecules on mica coated with a
poly-L-lysine layer at constant Δƒ of +100 Hz reconstructed from 3D Δf data in 100 mM and
10 mM KCl solutions, respectively. The arrows indicate the helical periodicity of the DNA
molecules, which is about 3.6 nm. c and d are 2D(XY) Δf maps obtained at the surface of 0.4 nm
from DNA in 100 mM and 10 mM KCl solutions, respectively. e and f are 2D(ZX) Δf maps of the
plasmid DNA molecules extracted from the 3D Δf data in a ZX plane crossing DNA in 100 mM
and 10 mM KCl solutions, respectively. The black dotted curves schematically indicate LD in each
solution. Reprinted from [19], © IOP Publishing. Reproduced with permission. All rights reserved
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Therefore, Fel on the DNA molecule is not solely reflected by the EDL of the DNA
molecule, but also reflected by the EDL on the PL layer in 10 mM solution.

We then constructed theoretical 2D Δfel maps to determine if they are consistent
with the experimental 2D(XY) Δfel maps. Figure 4.7a, b show the theoretical 2D
Δfel maps for 100 mM and 10 mM KCl solutions, respectively. The lateral size of
the DNA molecule was set to about 7 times larger than the actual size considering
the tip convolution effect. Note that Δfel caused by Fel spreads out to the distance of
LD in each map.

Figure 4.7c shows the averaged Δf versus distance curves measured on the DNA
molecule and the PL layer in the 100 mM solution at the locations indicated by the
E–Eʹ and F–Fʹ lines, respectively, in Fig. 4.6e. The red and blue solid curves are
obtained on the DNA molecule and PL layer, respectively. On both surfaces, the
exponential Fel is dominant at distances larger than 0.5 nm, while FvdW and Pauli
repulsion force are dominant at distances less than 0.5 nm. Since Fig. 4.6e showed
that the EDL of the PL substrate (blue area) was not overlapped with that of the

Fig. 4.7 a and b are theoretically calculated 2D(ZX) Δfel maps (30 × 15 nm2) in 100 mM and
10 mM KCl solutions, respectively. The gray circles indicate the positions of the DNA molecules.
c and d are 1D Δf curves extracted from the 2D(ZX) Δf maps in 100 mM and 10 mM KCl
solutions. The red and blue curves show the experimental data obtained on the DNA molecules
and the PL substrate, respectively, and the black dotted curves show the theoretical curves that
gave the best fit. Reprinted from [19], © IOP Publishing. Reproduced with permission. All rights
reserved
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DNA molecule (red area) in the 100 mM solution, we calculated the theoretical
force curve on the DNA molecule by setting n∞ = 130 mM and pH = 6.0 of the
solutions as the fitting parameters. Note that the PL layer was not taken into account
in this case, and we set the charge density of the DNA (σ DNA) as −150 mC/m2. The
theoretical Δfel curve that gave the best fit to the experimental Δf curve on the DNA
is shown as the dotted curve in Fig. 4.7c. For these conditions ϕsilica and σsilica were
determined to be −6 mV and −17 mC/m2, respectively. This result suggests that the
charge density of the molecule can be quantitatively evaluated using FM-AFM in a
strong electrolyte.

In the case of the 10 mM solution, we found from Fig. 4.6f that the EDL of the
PL substrate (blue area) was overlapped with that of the DNA molecule (red area).
In such a case, the PL substrate should be taken into account to estimate the charge
density on the DNA molecule because Fel measured on the DNA molecule was
influenced by the positive charges on the PL substrate. We plotted the theoretical
Δƒel curves on the DNA molecule that gave the best fit to the experimental Δf
curve using the models with and without the PL layer in the 10 mM solution in
Fig. 4.7d, using the parameters n∞ =15 mM and pH = 5.7. We found that the
theoretical Δfel for the model with the PL layer was about 30% larger than that
calculated for the model without the PL layer. The result suggests that it is difficult
to estimate the charge density in an electrolyte of such a low concentration with a
nanometer-scale resolution. Therefore, the charge density measurement by
FM-AFM in a strong electrolyte is preferred.

4.6 Summary

This chapter reviews the practical aspects of the surface potential and charge
measurement based on the electrostatic force detection in liquid environment. We
first reviewed the basic properties of the EDL, and then analyzed the capacitive
force and electrostatic force induced by the alternating modulation voltage. We
presented the criteria for the modulation frequency for obtaining high spatial res-
olution in local surface charge and potential measurements, namely fm > fD and
fm > fc. Several researchers have also demonstrated the electrostatic force detection
based on the voltage modulation technique with a modulation frequency that meets
the criteria [5, 32–35].

We observed a long-range parasitic electrostatic force even when a high-
frequency modulation voltage that meets the criteria was used, and suggested the
use of a cantilever with a small surface area and/or a tip with a high aspect ratio. We
then demonstrated a local surface potential and charge measurement using a CP
cantilever. Even if the local information on the surface charge or surface potential
under the tip can be detected, the KPFM bias feedback may not be used since the
dependence of the electrostatic force on the applied dc voltage was not
straightforward.
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Finally, we also demonstrated a surface charge measurement on a biological
sample using the 3D force mapping technique, which is an alternative method to
map the local surface charge and potential in liquid media. Since the lateral reso-
lution is determined by the overlap of the EDLs, the charge density measurement
with a nanometer-scale resolution is only feasible in a strong electrolyte.
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