
Chapter 15
Stochastic Tools for Network Intrusion
Detection

Lu Yu and Richard R. Brooks

Abstract With the rapid development of Internet and the sharp increase of network
crime, network security has become very important and received a lot of attention.
We model security issues as stochastic systems. This allows us to find weaknesses in
existing security systems and propose new solutions. Exploring the vulnerabilities
of existing security tools can prevent cyber-attacks from taking advantages of the
system weaknesses. We propose a hybrid network security scheme including intru-
sion detection systems (IDSs) and honeypots scattered throughout the network. This
combines the advantages of two security technologies. A honeypot is an activity-
based network security system, which could be the logical supplement of the passive
detection policies used by IDSs. This integration forces us to balance security
performance versus cost by scheduling device activities for the proposed system. By
formulating the scheduling problem as a decentralized partially observable Markov
decision process (DEC-POMDP), decisions are made in a distributed manner at
each device without requiring centralized control. The partially observable Markov
decision process (POMDP) is a useful choice for controlling stochastic systems. As
a combination of two Markov models, POMDPs combine the strength of hidden
Markov Model (HMM) (capturing dynamics that depend on unobserved states) and
that of Markov decision process (MDP) (taking the decision aspect into account).
Decision-making under uncertainty is used in many parts of business and science.
We use here for security tools. We adopt a high-quality approximation solution
for finite-space POMDPs with the average cost criterion and their extension to
DEC-POMDPs. We show how this tool could be used to design a network security
framework.
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15.1 Intrusion Detection System

Intrusion detection systems continuously monitor the computer system or network
and generate alarms to inform the system administrator of suspicious events.
IDSs are now considered a necessary addition to the security infrastructure of
an organization [9]. The objective of intrusion detection is to detect malicious
activities and accurately differentiating them from benign activities. According
to the Common Intrusion Detection Framework (CIDF) [11], a general IDS
architecture has four modules:

• Event-box (E-box) sensors monitor and collect information about the target
system.

• Database-box (D-box) stores information from the E-box.
• Analysis-box (A-box) analyzes data stored in D-box and generates alarms if

necessary.
• Response-box (R-box) implements countermeasures to thwart malicious intru-

sions.

The primary classes of detection methodologies include signature-based detec-
tion, anomaly-based detection, and stateful protocol analysis [9]. IDSs that employ
signature-based detection identify attacks by comparing existing signatures of
known attacks with the stored network traffic. When a match is found, IDSs
will trigger the corresponding countermeasure to counteract the detected intrusion.
Signature-based detection provides accurate detection results for well-specified
attacks and effective known countermeasures can be taken. The major drawback of
signature-based detection is its inability to detect new, unknown attacks. With new
attacks appearing continuously, signature-based detection techniques suffer from
high false negative (FN) rates. The anomaly-based detection has the potential to
detect new types of attacks by estimating the deviation of observed information from
the predefined baseline of “normal.” However, there still exist several significant
issues regarding anomaly-based detection, including high FP rates, low throughput
but high cost, absence of appropriate metrics, etc. [5]. Stateful protocol analysis
may provide more accurate detection results than the anomaly-based detection
but is much more resource intensive due to the complex analysis and overhead
generated from state tracking [9]. Typically, the more an IDS’s detection accuracy
can be improved from the default configuration, the less efficient it is. As a
result, continuous monitoring may cause excessive computation bandwidth, which
is undesirable for any computer system and network.

In addition, various intrusion prevention technologies have been implemented
in IDSs, such as logging off the unauthorized user, shutting down the system, or
reconfiguring the network if possible [16], etc. Despite strengthening the security of
the information and communication systems, the intrusion prevention capabilities
entail high cost in terms of energy and host resources.

It is not hard to see from the above introduction that, as a popular and effective
tool against cyber-attacks by guarding the system’s critical information, the resource
cost of IDSs must be taken into account. IDS scheduling is needed to balance
between security performance and resource consumption.
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There are three primary types of IDS, namely, network-based IDS (NIDS), host-
based IDS (HIDS), and stack-based IDS (SIDS). We choose HIDS since HIDS
can be selectively deployed on critical machines, such as management servers, data
servers and administrator consoles, etc.

15.2 Honeypot

Honeypots are needed to supplement IDSs in the proposed security scheme because
they complement most other security technologies by taking a proactive stance.
A honeypot is a closely monitored computing resource used as a trap to ensnare
attackers. As defined by Spitzner in [10], “A honeypot is a security resource whose
value lies in being probed, attacked, or compromised.” The principal objectives of
honeypots are to divert attackers away from the critical resources and study attacker
exploits to create signatures for intrusion detection. The attraction of honeypots to
attackers mitigates the threat of malicious attacks and thus helps secure the valuable
information and important services located on the real targets.

Based on the level of interaction between the honeypots and the attackers,
honeypots can generally be divided into the high-interaction honeypots and the low-
interaction honeypots. Typical examples are honeyd [8] and honeynet [10]. Honeyd
allows users to set up multiple virtual honeypots with different characteristics and
services on a single machine. Honeynet monitors a larger and more diverse network
when one honeypot may not be sufficient. It is very complex and expensive to
deploy and maintain a high-interaction honeypot because it emulates almost all the
activities found in a normal operating system. Deployment and configuration of a
low-interaction honeypot is much easier and cheaper since it only simulates some
system services. “BitSaucer” [1] proposed by Adachi et al. is a hybrid honeypot
composed of both low-interaction and high-interaction capabilities.

Honeypots can also be divided into: research and production honeypots [7]. The
primary function of a research honeypot is to extract the signatures of emerging
attacks, which can be used to improve the detection accuracy of IDSs. A thorough
understanding of the observed traffic data is time-intensive and requires analysts
with comprehensive expertise in almost all network-related fields. Moreover, the
deployment of research honeypots provides little benefit in strengthening the system
security. Production honeypots are placed within the production network to mitigate
risk. Most production honeypots are low-interaction honeypots and capture limited
information. Example of production honeypot is Nepenthes [2]. Since our scheme is
meant to improve security, we use production honeypots in combination with IDSs.

A honeypot mostly does not deal with false positives like IDS since all the
services simulated by a honeypot have no production value. All the traffic that enters
and leaves a honeypot is suspicious and should be monitored and analyzed [4].
However, not all attempts to access a honeypot are malicious. For example, a person
might mistype the address of a computer and accidentally connect to a deployed
honeypot. As a result, uncertainty is also involved in honeypots scheduling.
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Fig. 15.1 Example distributed hybrid security scheme combining HIDSs with honeypots

15.3 System Model

Both HIDSs and honeypots detect intrusions and can operate at all times. However,
intrusion detection and system emulation consume a large amount of energy and
other resources, including memory, processor usage, and disk storage. We need to
balance security performance and the resource cost by scheduling IDS and honeypot
activities. The scheduling problem is modeled as a discrete-time process. In the
proposed scheme, more than one HIDS or honeypot can be active during each time
period.

We now consider an example of the hybrid system. Assume a local area network
(LAN) is equipped with K − H HIDSs and H honeypots. This brings the total
number of the security devices to K . Without loss of generality, we also assume
the network topology is static and there are more machines than available HIDSs.
Inevitably, only some machines have HIDSs installed. An example network is
shown in Fig. 15.1.

Suppose each HIDS can operate in three modes: monitor, prevention, and
sleep, which are the action spaces for a HIDS. The HIDS is set to monitor for
intrusion detection and can sleep for energy saving. A preventive action might be
taken by switching to prevention mode if an unauthorized or malicious activity is
identified and consumes more resources. Similarly, the action space of a deployed
honeypot can be specified as monitor, analysis, and sleep. Further analysis will
be carried out if traffic anomalies are detected. Each HIDS makes decision based
on local information, which can be modeled as a partially observable Markov
decision process (POMDP), which combines the strength of hidden Markov model
(HMM) [6, 15] (capturing dynamics that depend on unobserved states) and that of
Markov decision process (MDP) (taking the decision aspect into account).
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Let S(k)(t) denote the state of an arbitrary device k (HIDS or honeypot) at time
t , we assume S(k)(t) = 〈X(i)(t), Y (k)(t)〉, where X(k)(t) represents the security
condition and Y (k)(t) represents the resource consumption level. For instance,
the security state can be simply divided into: “secure” and “compromised.”
If we use the notation X to denote the state space of X(k)(t), then X =
{secure, compromised}. The state space of Y (k)(t), denoted by Y , includes three
consumption levels: {low,medium, high}. The correspondence between different
consumption levels and operating states are:

• Low: The device is not chosen, i.e., in the sleep mode.
• Medium: The device is working in the monitor mode.
• High: The HIDS/honeypot is working in prevention/analysis mode.

Since the IDSs used are HIDSs, each HIDS only monitors the machine it resides
on, ignoring the rest of the network. As a decentralized control scheme, the decision
to activate a certain security device is based on local observations. To complete
the problem, we assume the observation space is identical to the space of security
conditions, i.e., O = X = {“secure”, “compromised”}. Note that an intrusion
alarm does not necessarily mean there is an attack, and vice versa. Intrusion
detection can make two types of errors: false positive (FP) and false negative (FN).
A large volume of FPs result in lots of time wasted on determining whether an
alert is an attack when it is actually benign [3]. FNs result in security holes due to
failing to raise alarms when intrusions occur. Since the goal of intrusion detection
is to precisely differentiate the intrusions from legitimate behaviors, both errors are
significant performance indexes of IDSs and have been embodied in the observation
probabilities. For instance, the following observation probability

Pr{O(k)(t + 1) = “compromised” | A(k)(t)

= “monitor”, S(k)(t + 1) = 〈secure,medium〉} (15.1)

is equal to the FP rate of device k.
The local state of each host in the network is closely related to the security

posture of the entire network. The analysis is divided into two cases:

• Switching between different modes of an HIDS will change the power consump-
tion level of the local machine but have no influence on the attack activities in
the LAN.

• The activation of a honeypot will positively impact the network’s operation and
security by distracting adversaries away from the valuable resources in the LAN
and accordingly will mitigate the threat posed to the rest of the network.

It is obvious from the preceding analysis that the choice of each agent may affect
the state of the entire network. This makes the decentralized partially observable
Markov decision process (DEC-POMDP) a more suitable tool to model the schedul-
ing for the distributed system. Some might argue that a centralized controller can
also be adopted in this case. However, a common drawback exists in most central-
ized controls: it may consume a prohibitive amount of bandwidth and instantaneous
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communication between the agents and the controller. In addition, possible security
breaches are brought in since the transmitted information may be intercepted by the
adversaries. Therefore, the DEC-POMDP is generally more preferable.

15.4 DEC-POMDP Formulation for the Distributed Hybrid
Security System Combining IDS and Honeypot

We define the state of the DEC-POMDP formulation at time t , denoted by S(t), as
the combination of S(k)(t), i = 1, 2, · · · ,K . Notationally,

S(t) = [S(1)(t), S(2)(t), · · · , S(K)(t)]

Similarly, we can write the action of time t as

A(t) = [A(1)(t), A(2)(t), · · · , A(K)(t)]

We now consider the state transition law. The state S(t) evolves based on a (|X | ×
|Y |)-state Markov decision process. Let W denote the state transition probability
function, then

W(s, a, s′) = Pr{S(t + 1) = s′|S(t) = s, A(t) = a}

where s, s′ ∈ S K and a ∈ A K .
The observation probabilities of the DEC-POMDP formulation are slightly

different from the standard POMDP. As indicated in (15.1), the quantities of the
observations probabilities are assigned according to the FP and FN rates of the
devices. Consequently, the observation of each agent only depends on the local
information. It follows that V (k)(a, s′, o′), the observation probability of device i, is
given by

V (k)(a, s′, o′) = Pr{O(k)(t + 1) = o′ | A(k)(t) = a, S(k)(t + 1) = s′}

Finally, the immediate reward at time t is defined as the sum of each local immediate
reward

r(S(t), A(t)) =
K∑

k=1

r(S(k)(t), A(k)(t)) (15.2)

The values of the immediate rewards are assigned according to the following rules:
A successful detection of an attack results in a large reward; on the contrary,
an unnecessary further analysis staged due to a misjudgment will cause a large
penalty, so will the misdetection of an attack; furthermore, monitoring is not free
and monitoring a secure machine comes at a small penalty.
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15.5 NLP-Based Solution of the DEC-POMDP

The scheduling model for the hybrid system is a DEC-POMDP. Thus, we need
to augment the POMDP solution method in [13, 14] to situations of multiple
controllers. As was mentioned in [12], the solution of a DEC-POMDP consists of a
set of policy graphs, one for each agent. Accordingly, the goal is to optimize a set of
finite state machines (FSM). We will show in the followings that the extension of the
NLP-based solution in [13, 14] to DEC-POMDP is very straightforward. In order to
present the algorithm for DED-POMDPs, we make the following assumptions:

• There are K agents in the DEC-POMDP.
• The state space of the DEC-POMDP is denoted by S . Each agent has the same

action space A (“prevention” of an IDS corresponds to “analysis” of a honeypot)
and observation space O .

• Each agent chooses the actions according to a fixed-size FSC. The set of the
nodes in the FSC of agent k is denoted by N (k).

• We use the notation n to denote a vector of length K , where n(k) ∈ N (k). The
observation vector o and the action vector a are defined likewise.

• xk(n, a) and yk(n, o′, n′) are the control variables of the FSC of agent k.

The formal representation of the NLP-based solution of DEC-POMDPs satisfying
the above assumptions is:

Forvariables :πnsaandg(k)(nk, ok
′, nk

′, ak
′),

whereg(k)(nk, ok
′, nk

′, ak
′) = xk(n

′, a′)yk(n, o′, n′)
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∑

n
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The optimal solution to the NLP in (15.3) provides an optimal set of FSCs of the
given size. The solution representation owes its availability to one critical factor:
each agent behaves independently. That is, all the policy graphs are independent
from each other.

15.6 Summary

This chapter starts with the introduction of the two security technologies adopted in
the proposed security scheme. We choose HIDS, in combination with honeypot,
with the purpose to integrate the advantages of both tools in our system. We
formulate the decentralized control of the system as a DEC-POMDP. In the end
of the chapter, we show how to extend the FSC-based POMDP algorithm described
in [13, 14] to solving DEC-POMDP.
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