
Formal Analysis of Combinations
of Secure Protocols

Elliott Blot1, Jannik Dreier2(B), and Pascal Lafourcade1

1 LIMOS, University Clermont Auvergne, Clermont-Ferrand, France
elliott.blot@gmail.com, pascal.lafourcade@uca.fr

2 LORIA, Université de Lorraine, INRIA, CNRS, Nancy, France
jannik.dreier@loria.fr

Abstract. When trying to prove the security of a protocol, one usually
analyzes the protocol in isolation, i.e., in a network with no other proto-
cols. But in reality, there will be many protocols operating on the same
network, maybe even sharing data including keys, and an intruder may
use messages of one protocol to break another. We call that a multi-
protocol attack. In this paper, we try to find such attacks using the
Tamarin prover. We analyze both examples that were previously ana-
lyzed by hand or using other tools, and find novel attacks.

1 Introduction

When analyzing the security of protocols, one aims at proving specific security
properties. The most common types of properties are secrecy, meaning that an
intruder cannot know a secret value, and authentication, meaning that if A thinks
he is talking to B, then he is really talking to B. In our digitalized world there
are more and more cryptographic protocols everywhere, and we want to verify
them to ensure their security.

It is not realistic to assume that a protocol is running alone in the network,
and in the real world, an intruder can try to use messages of other protocols in
the network to break a protocol. That is what we call a multi-protocol attack.

More precisely, we study the following problem of multi-protocols attacks.
Given two protocols that ensure a certain security property in isolation, are
they still safe for this property if we put them together in the same network?
Unsurprisingly there exist many combinations of protocols where this is not the
case, i.e., where we can mount multi-protocols attacks.

There are a lot of tools for automatic analysis of security properties, like
ProVerif [3], AVISPA [2], Athena [27], Scyther [12], or Tamarin [23]. But they
are generally used to analyze the security of a protocol executed in isolation,

This research was conducted with the support of the Indo-French Centre for the
Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La
Promotion De La Recherche Avancée (CEFIPRA) through the project DST/CNRS
2015-03 under DST-INRIA-CNRS Targeted Programme, and by the CNRS PEPS
SISC ASSI 2016/2017.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 53–67, 2018.
https://doi.org/10.1007/978-3-319-75650-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_4&domain=pdf

54 E. Blot et al.

meaning that each agent only executes the analyzed protocol. In this paper, our
aim is also to automatically find multi-protocols attacks using Tamarin.

Contributions: Several multi-protocols attacks have been found manually or
using other tools, our aim is to find them automatically using the Tamarin
prover [23]. Our contributions are the following:

– We automatically find all the manual attacks described in [22]. Moreover, we
find novel different attacks on the same properties, or unknown attacks on
different properties. This demonstrates the limitations of a manual approach
for finding attacks. It underlines that automatic verification is a very efficient
approach for analyzing the security of cryptographic protocols.

– We analyzed all the protocols given in [9], where the authors used Scyther, a
different protocol verification tool. We confirm the results from Scyther using
Tamarin.

– We developed an algorithm to simplify the process of creating the multi-
protocol specification file in Tamarin from the individual protocol specifica-
tions. The algorithm also automatically generates necessary helping lemmas
in Tamarin in order to verify the combination of the two protocols more effi-
ciently. The algorithm is implemented in Python, and available online [15].

Related work: The existence of multi-protocol attack have been introduced
by Kelsey, Schneier, and Wagner in [18]. In this paper the attacks were found
manually and the authors consider protocols crafted to break other protocols.

In [22], Mathuria, Raj Singh, Venkata Sharavan, and Kirtankar found six
multi-protocol attacks based on 13 protocols from literature: Denning-Sacco pro-
tocol [13], amended Woo-Lam protocol [5], ISO Five-Pass protocol [7], Abadi-
Needham protocol [1], six protocols from Perrig and Song using APG [26], and
three protocols from Zhou and Foley using ASPB [30]. In contrast to these works,
we use an automatic verification tool to find these attacks.

Cremers found many multi-protocol attacks in [9], using the tool Scyther,
with 30 protocols from literature including Needham Schroeder protocol [24],
Needham Schroeder symmetric key protocol [24], Needham Schroeder symmetric
key amended protocol [25], Lowe’s modified version of the Needham Schroeder
protocol [19], SPLICE/AS [29], Hwang and Chen’s version of SPLICE/AS [16],
Clark and Jacob’s version of SPLICE/AS [8], a basic SOPH example (Secret-Out
Public-Home), Woo Lam pi f [28], Kao Chow v.1, v.2 and v.3 [17], Yahalom’s
protocol [4], and Lowe’s version of Yahalom protocol [21]. Compared to this work
we use the Tamarin instead of Scyther.

There is also a considerable amount of work of preventing multi-protocol
attacks by construction using special composition frameworks. These frameworks
exist in the computational (e.g., Universal Composability [6]) and in the symbolic
setting (e.g., Protocol Composition Logic [14]).

Outline: The paper is structured as follows. In Sect. 2, we present the results
we obtain and we compare them with those obtained manually in [22] or using
Scyther [9]. Then, Sect. 3 discusses our workflow in Tamarin, and finally the last
section concludes the paper.

Formal Analysis of Combinations of Secure Protocols 55

2 Multi-protocol Attacks

First we define the properties that we want to verify for each protocol. We define
one property for secrecy and two authentication properties.

– Secrecy [10]: if A claims the secrecy of a variable NA at the end of the run of
the protocol, then an intruder cannot know this variable.

– Non-injective agreement [11]: if a protagonist A completes a run apparently
with B, then B has run the protocol with A and A agrees with all other
protagonist on all values. This is not exactly the same definition as in [20],
but we keep this definition because it is this one that is used by Scyther.

– Non-injective synchronisation [11]: if a protagonist A completes a run as the
initiator apparently with B as the responder, then B has run the protocol
as the responder with A, and all messages sent and received are exactly like
described in the specification of the protocol, in the same order.

We call a type-flaw attack an attack where the intruder uses data of a different
type than the data expected by the protocol. For example, in such an attack,
the intruder could use two nonces N1, N2 instead of another single nonce N
(N = (N1, N2)), or uses an ID as a nonce. We consider separately the case
where the intruder can make type-flaw attacks (such attacks are valid) and the
case where the intruder cannot (such attacks are not valid).

All our Tamarin files are available online [15].

2.1 Attacks by Cremers [9]

First we study the protocols analyzed in [9] using Scyther. We modeled all these
protocols individually in Tamarin. Figure 1 presents our results using Tamarin
for the properties described previously, and Fig. 2 presents our results for multi-
protocols using Tamarin, where we verify the properties for the first of the two
protocols. In these figures, ni-synch stands for non-injective synchronisation, sec
stands for secrecy and ni-agree stands for non-injective agreement. Moreover,
means that we did not find any attacks, and means there is at least one attack
for the property. A yellow box means that the first protocol (the one for which
we verify the security properties in the combination) is safe for this property in
isolation, and red box means that both protocols are safe for this property in
isolation. Empty box means that the property is not relevant for this protocol,
for example the key KAB does not exist in the protocol in the property secrecy
A KAB and secrecy B KAB , or a protagonist A never obtains a nonce NB in
the property secrecy A NB .

We find the same results with Tamarin as with Scyther. We do not consider
type-flaw attack for these protocols, because the number of combination with
multi-protocol attack is too large (more than 100 different combinations) to
model them all manually with Tamarin. All timings are calculated with 6 CPUs
of 2 GHz and 32 GB of memory.

We can see in Fig. 2 that even if two protocols are safe in isolation for a
property, it is not guaranteed that the combination of this two protocols is safe

56 E. Blot et al.

Fig. 1. Results found using Tamarin with NS = Needham Schroeder [24], NSS =
Needham Schroeder Symmetric Key [24], NSSA = Needham Schroeder Symmetric
Key Amended [25], NSL = Needham Schroeder Lowe [19], AS = SPLICE/AS [29],
AShc = Hwang and Chen version of SPLICE/AS [16], AScj = Clark and Jacob version
of SPLICE/AS [8], K = Kao Chow [17], K2 = Kao Chow v.2 [17], K3 = Kao Chow
v.3 [17], WLpif = Woo Lam pi f [28], Y = Yahalom [4], YL = Yahalom Lowe [21],
soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-
agree denotes non-injective agreement, and sec A NA denotes the fact that A claims
the secrecy of NA.

too if they share keys, and multi-protocol attacks are not only due to the other
protocol that is not safe for this property.

We would expect that Tamarin takes more time to analyze properties for
multi-protocols than for protocols in isolation, due to the increased number of
transitions and the larger number of traces with the new protocol.

Formal Analysis of Combinations of Secure Protocols 57

Fig. 2. Result found with Tamarin. NS = Needham Schroeder [24], NSS = Need-
ham Schroeder Symmetric Key [24], NSSA = Needham Schroeder Symmetric Key
Amended [25], NSL = Needham Schroeder Lowe [19], AS = SPLICE/AS [29], AShc =
Hwang and Chen’s version of SPLICE/AS [16], AScj = Clark and Jacob’s version of
SPLICE/AS [8], K = Kao Chow [17], K2 = Kao Chow v.2 [17], K3 = Kao Chow v.3 [17],
WLpif = Woo Lam pi f [28], Y = Yahalom [4], YL = Yahalom Lowe [21], soph = a
SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes
non-injective agreement, and sec A NA denotes fact that A claims the secrecy of NA.
* = the first protocol is safe in isolation, ** = both protocol are safe in isolation (Color
figure online)

But as we can see in Figs. 1 and 2, this is not always the case, like for example
for the property ni-synch A for Kao Chow (K) in Fig. 1, and for Kao Chow + Woo
Lam pi f (K + WLpif) in Fig. 2. This is generally due to the fact that Tamarin
finds an attack more rapidly than a proof as Tamarin stops after the first attack
it finds (it does not try to find all attacks).

It can also happen that Tamarin proves a property for the combination of
protocols more quickly than for the protocols in isolation, like for example Need-
ham Schroeder Lowe in Fig. 1 and Needham Schroeder Lowe + SPLICE/AS in
Fig. 2 for ni-synch A. This can occur for example if the precomputations are the
dominating part of the total runtime.

58 E. Blot et al.

2.2 Attacks by Mathuria et al. [22]

We try to find the attacks described in [22] using Tamarin, to see if we find the
same or different attacks if we use an automatic tool. The properties verified
are not clearly defined in [22], so we keep the properties as defined previously.
More precisely, we verified different authentication properties: non-injective syn-
chronization, non-injective agreement, and a weaker agreement property. The
property non-injective agreement as define previously is too strong to get com-
parable result with the paper, most of protocols of the paper are not safe for
this property even in isolation. So we consider a weaker authentication property
defined as follows:

– weaker agreement : if B thinks that a nonce NA is generated by A, then A
has generated NA and B authenticates A (called Aut A in Figs. 3 and 4).

Figure 3 summarizes results that we obtain with Tamarin in isolation on pro-
tocols from [22], and Fig. 4 summarizes results we obtain for the multi-protocols.
As previously, ni-synch stands for non-injective synchronization, sec stands for
secrecy and ni-agree stands for non-injective agreement. Moreover means that
we did not find any attacks, and means there is at least one attack for the
property. A yellow box means that the first protocol (the one for which we verify
security in the combination) is safe for this property in isolation, and red box
means that both protocols are safe for this property in isolation. An empty box
means that the property is not relevant for this protocol.

We can see in Fig. 3 in the case of APG.3 for non-injective synchronization
and non-injective agreement, all attacks which we found in isolation are type-
flaw attacks, and the protocol is safe if we do not consider type-flaw attacks. But
attacks we found for APG.3 with APG.2 are not type flaw attacks (see 2.2), so
we consider type-flaw attacks separately in this paper. But in the case of ZF.2,
we have a protocol that is not safe for any property, considering type-flaws or
not. So it is useless to see if ZF.2 can have a multi-protocol attack for a property
in combination with an other protocol, a point that the authors of the original
paper missed most likely since they searched for attacks manually.

The property weaker agreement seems to be closest to the property used
in [22], because we found the same attacks for some protocols. Thus, in rest of
the paper, we only present attacks on this property.

In comparison to the original paper we have found, using Tamarin, sometimes
different attacks, and sometimes new attacks on the authentication of other
protagonists in the same combination of protocols. This is likely due to the
fact that Mathuria et al. searched for attacks manually, and were thus probably
unable to analyze all combinations in detail or missed attacks in their analysis.

In all protocols, we have three participants, A the initiator, B the responder,
and S the trusted server. We use symmetric encryption, so S shares the key
KAS (respectively KBS) with A (respectively B). Moreover, KAB denotes the
session key between A and B, and NA (respectively NB) a nonce generated by
A (respectively B). Then {M}K denotes the cipher-text obtained by encrypting
a message M with the symmetric key K. As in the original paper, we assume

Formal Analysis of Combinations of Secure Protocols 59

Fig. 3. Results found with Tamarin with APG from [26], DS = Denning Sacco [13],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [7], AN = Abadi Needham [1],
ZF from [30], * = only type-flaw attacks.

that each participant shares the same key for both protocols. In the following,
when we talk about authentication, we mean non-injective agreement.

In the following we discuss our results in details. First we discuss attacks
that we found and that differ from those presented in [22], then we present new
attacks for properties that were not analyzed in [22].

Different Attacks

APG.4 with APG.6: The first attack is on the authentication of A. In this
attack, two protagonists A and A′ initiate the APG.6 [26] protocol with B, and
the intruder C pretends to be A in APG.4 [26]. In the protocol initiated by A′, C
learns (NA′ , N ′

B , A
′), used as a session key, and its ciphertext {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to B.

60 E. Blot et al.

Fig. 4. Results found with Tamarin with APG from [26], DS = Denning Sacco [13],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [7], AN = Abadi Needham [1],
ZF from [30], * = the first protocol is safe in isolation, ** = both protocols are safe in
isolation. (Color figure online)

In Fig. 5, steps on the left hand side are steps of APG.4, and steps on the right
hand side are steps from APG.6.

This attack is a type-flaw attack, because the intruder uses (NA′ , N ′
B , A

′)
as a session key. So we blocked type-flaw attacks in Tamarin to see if there are
other types of attacks, and we did not find other attacks on the authentication
of A.

Denning-Sacco with Amended Woo-Lam: This attack is on the authentication
of A. Again, it is a type-flaw attack, because the intruder uses (KAB , T) as a
nonce. In this attack, the intruder C plays the role of A and S in both protocols.
First, B initiates a protocol Woo-Lam [5] with C who impersonates A. Then C
sends the ID of A and a fake session key and a timestamp as a nonce. B encrypts
that and C has now a valid message to send to B in Denning-Sacco [13]. This
attack is described in Fig. 6.

We did not find other types of attacks for this protocol when we blocked
type-flaw attacks in Tamarin using a modified model.

Formal Analysis of Combinations of Secure Protocols 61

C A′B

B C S A′

A′C

C AB

B C S A

AC

CB

NA, ANA, A

{NA, NB , A}KBS , B {NA, NB , A}KBS , B
{KAB , NB}KBS ,
{KAB , NA, NB , B}KAS

NB , {KAB , NB}KBS

NA′ , A′NA′ , A′

{NA′ , N ′
B , A

′}KBS , B {NA′ , N ′
B , A

′}KBS , B

{KA′B , N
′
B}KBS ,

{KA′B , NA′ , N ′
B , B}KA′S

N ′
B , {KA′B , N

′
B}KBS

{NA′ , N ′
B , A

′}KBS ,
{NB}(NA′ ,N′

B
,A′)

APG.6APG.4

Fig. 5. Representation of the attack on APG.4 with APG.6.

C B

BC

B BC

B

A, (NA = (KAB , T))

{A, (NA = (KAB , T))}KBS{A,KAB , T}KBS

Denning-Sacco Woo-Lam

Fig. 6. Representation of the attack on Denning-Sacco with Woo-Lam.

New Attacks

APG.1 with APG.2: The attack described in [22] is an attack on the authen-
tication of B, but we also found an attack on the authentication of A. In this
attack, the intruder C plays the role of A in both protocols. First, B runs the
APG.2 [26] protocol as the initiator and then the protocol APG.1 [26] as the
responder. C can pretend to be A in APG.1 and B will accept. In Fig. 7 steps
at the left are steps from APG.1, and the right part are steps from APG.2 .

APG.3 with APG.2: This attack is an attack on the authentication of B.
This attack is possible if A runs the APG.3 [26] protocol as the initiator, and
APG.2 [26] as the responder. In this attack, C plays the roles of B and S in
both protocols. Then C can pretend to be B in APG.3, and A will accept. In
Fig. 8 steps at the left are steps of APG.3, and at the right part are steps from
APG.2.

62 E. Blot et al.

BCB

B S C S

SBCB

NB , A NB , B

m {NB , N
′
B , B}KAS {NB , N

′
B , B}KAS

{NB , N
′
B , B,A}KBSN ′

BN ′
B

m = {NB , N
′
B , A,B}KBS , B

APG.1 APG.2

Fig. 7. Representation of the attack on APG.1 with APG.2.

CA A

ACA

NA, A NA, B

{NA, N
′
A, B}KAS , A{NA, N

′
A, B}KAS

APG.3 APG.2

Fig. 8. Representation of the attack on APG.3 with APG.2.

BCB

B S C S

SBCB

NB , A NB , B

m {NB , N
′
B , B}KAS {NB , N

′
B , B}KAS

{NB , N
′
B , B,A}KBSN ′

BN ′
B

m = {A,NB , N
′
B}KBS , B

APG.3 APG.2

Fig. 9. Representation of the attack on APG.3 with APG.2.

We also found an attack on the authentication of A. In this attack, the
intruder C plays the role of A in both protocols. B runs the APG.2 protocol as
the initiator, and APG.3 as the responder. C can pretend to be A, and B in
APG.3 will accept. In Fig. 9 steps at the left are steps from APG.3, and steps
at the right are steps from APG.2.

APG.4 with APG.6: We found an attack on the authentication of B. In this
attack, A initiates the protocol APG.3, then the intruder C will initiate APG.6
with B, using data sent by A in the other protocol. Finally, C sends the answer

Formal Analysis of Combinations of Secure Protocols 63

CA B

BCS

S A

NA, A NA, A

{NA, NB , B}KBS , B{NA, NB , B}KBS , B

{KAB}KBS , {KAB , NA, NB , B}KAS

APG.4 APG.6

Fig. 10. Representation of the attack on APG.4 with APG.6.

C A′B

B C S A′

A′C

C AB

B C S A

AC

CB

NA, ANA, A

{NA, NB , A}KBS , B {NA, NB , A}KBS , B
{KAB , NB}KBS ,
{KAB , NA, NB , B}KAS

NB , {KAB , NB , A}KBS

NA′ , A′NA′ , A′

{NA′ , N ′
B , A

′}KBS , B {NA′ , N ′
B , A

′}KBS , B

{KA′B , N
′
B}KBS ,

{KA′B , NA′ , N ′
B , B}KA′S

N ′
B , {KA′B , N

′
B , A

′}KBS

{NA′ , N ′
B , A

′}KBS ,
{NB}(NA′ ,N′

B
,A′)

APG.6APG.5

Fig. 11. Representation of the attack on APG.5 with APG.6.

of B to the server in APG.4, and lets the protocol run. In Fig. 10, steps on the
left hand side are steps from APG.4, and steps on the right hand side are steps
from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.4, so C can get a response from B, while B does not act in
APG.4.

APG.5 with APG.6: This attack is on the authentication of A. In this attack, two
protagonists A and A′ initiate the APG.6 [26] protocol with B, and the intruder
C pretends to be A in APG.5 [26]. In the protocol initiated by A′, C learns
(NA′ , N ′

B , A
′), used as a session key, and its encrypted version {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to
B. In Fig. 11, steps at the left part are steps of APG.5, and steps on the right
are steps from APG.6.

64 E. Blot et al.

CA B

BCS

S A

NA, A NA, A

{NA, NB , B}KBS , B{NA, NB , B}KBS , B

{KAB , NA, NB , {KAB}KBS}KAS

APG.5 APG.6

Fig. 12. Representation of the attack on APG.5 with APG.6.

This attack is a type-flaw attack. So we changed our model to disable such
type-flaw attacks in Tamarin to see if there are other types of attacks, and we
did not find another attack on the authentication of A.

We also found an attack on the authentication of A where the intruder uses
(NA′ , N ′

B , A
′) as a session key. In this attack, A initiates the protocol APG.5,

then the intruder C will initiate APG.6 with B, using data sent by A in the
other protocol. Finally, C sends the answer of B to the server in APG.5, and lets
the protocol run. In Fig. 12, steps on the left hand side are steps from APG.5,
and on the right hand side are steps from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.5, so C can get a response from B, while B does not act in
APG.5.

3 Workflow in Tamarin

As we had to write many different combinations of multiple protocols to obtain
our results, we tried to simplify the process by adopting the following workflow
to combine to protocols:

1. Specify each protocol individually and check the properties in isolation using
Tamarin.

2. Generate the files for all the required combinations using the individual spec-
ifications.

3. Verify the combined protocols, and compare the results to known results.

To simplify the process of generating the combined specifications, we adopted
certain (mostly syntactic) conventions when specifying the protocols. These
mostly concern the common setup rules (key distribution etc.), the placement of
labels, and the uniqueness of labels to avoid conflicts.

These conventions allowed us to develop an algorithm that can generate
the input files of the composed protocols based on the individual specifications,
including intermediate lemmas that simplify the analysis for Tamarin by remov-
ing undesirable cases for the subsequent analysis. The generation of these lem-
mas goes beyond a pure syntactical merger of the individual files. The algorithm

Formal Analysis of Combinations of Secure Protocols 65

requires some interaction with Tamarin, but noticeably simplifies the following
analysis. The main idea is that if Tamarin finds an a problem in the merged
lemma, then we need to analyze the trace produced by the tool and to modify
the lemma. This procedure seems to be systematic for all the examples that we
have considered here.

This algorithm is implemented in Python, and works automatically on most
combinations from [9,22]. Only in a handful of cases we need to manually adapt
the produced output to obtain a valid lemma that removes all undesirable cases.
Note that even in these cases, the manual intervention was only necessary to
create the models, the following analysis was then automatic. For more infor-
mation about this algorithm, see the extended version of this paper [15]. The
implementation is also available on line [15].

4 Conclusion

In this paper, we perform an automated analysis of multi-protocols in Tamarin.
For this we have used the both protocols studied in [9] using Scyther and the pro-
tocol studied in [22] manually. In all cases where attacks were known previously,
we also find attacks. However, the tool sometimes finds different attacks than the
ones found manually or using Scyther. Moreover, we also find new and unknown
attacks, underlining the advantages of an automatic analysis. We also proposed
an algorithm to systematically merge two Tamarin files for our analysis.

Our future work is to see how we can integrate our algorithm for automat-
ically merging two Tamarin files into the tools in order to facilitate the life
of Tamarin users. Finally our experience also shows us that it might even be
possible to propose a similar heuristic to help Tamarin users by automatically
generating such helping intermediate lemmas.

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

2. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.:
The AVISPA tool for the automated validation of internet security protocols and
applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 27

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations,
CSFW 2001, Washington, DC, USA, pp. 82–96. IEEE Computer Society (2001)

4. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

5. Buttyan, L., Staamann, S., Wilhelm, U.: A simple logic for authentication protocol
design. In: 11th IEEE Computer Security Foundations Workshop, pp. 153–162.
IEEE Computer Society Press (1998)

https://doi.org/10.1007/11513988_27

66 E. Blot et al.

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

7. Clark, J., Jacob, J.: A survey of authentication protocol literature: version 1.0
(1997)

8. Clark, J.A., Jacob, J.: On the security of recent protocols. Inf. Process. Lett. 56(3),
151–155 (1995)

9. C. Cremers. Feasibility of multi-protocol attacks. In: Proceedings of the First Inter-
national Conference on Availability, Reliability and Security (ARES), Vienna, Aus-
tria, pp. 287–294. IEEE Computer Society (2006)

10. Cremers, C., Mauw, S.: Security properties. In: Operational Semantics and Verifi-
cation of Security Protocols. ISC, pp. 37–65. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-540-78636-8 4

11. Cremers, C., Mauw, S., de Vink, E.: Injective synchronisation: an extension of the
authentication hierarchy. Theor. Comput. Sci. 367(1), 139–161 (2006)

12. Cremers, C.J.: Unbounded verification, falsification, and characterization of secu-
rity protocols by pattern refinement. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS 2008, pp. 119–128. ACM, New
York (2008)

13. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

14. Durgin, N.A., Mitchell, J.C., Pavlovic, D.: A compositional logic for proving secu-
rity properties of protocols. J. Comput. Secur. 11(4), 677–722 (2003)

15. Elliott, B., Dreier, J., Lafourcade, P.: Formal Analysis of Combinations of Secure
Protocols (Extended Version). Technical report (2017). https://hal.archives-
ouvertes.fr/hal-01558552v3

16. Hwang, T., Chen, Y.-H.: On the security of SPLICE/AS - the authentication sys-
tem in WIDE internet. Inf. Process. Lett. 53(2), 97–101 (1995)

17. Kao, I.-L., Chow, R.: An efficient and secure authentication protocol using uncer-
tified keys. SIGOPS Oper. Syst. Rev. 29(3), 14–21 (1995)

18. Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol
attack. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Proto-
cols 1997. LNCS, vol. 1361, pp. 91–104. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028162

19. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

20. Lowe, G.: A hierarchy of authentication specification. In: 10th Computer Security
Foundations Workshop (CSFW 1997), 10–12 June 1997, Rockport, Massachusetts,
USA, pp. 31–44. IEEE Computer Society (1997)

21. Lowe, G.: Towards a completeness result for model checking of security protocols.
J. comput. secur. 7(2–3), 89–146 (1999)

22. Mathuria, A., Singh, A.R., Shravan, P.V., Kirtankar, R.: Some new multi-protocol
attacks. In: Proceedings of the 15th International Conference on Advanced Com-
puting and Communications, ADCOM 2007, Washington, DC, USA, pp. 465–471.
IEEE Computer Society (2007)

23. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

24. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-540-78636-8_4
https://doi.org/10.1007/978-3-540-78636-8_4
https://hal.archives-ouvertes.fr/hal-01558552v3
https://hal.archives-ouvertes.fr/hal-01558552v3
https://doi.org/10.1007/BFb0028162
https://doi.org/10.1007/BFb0028162
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Formal Analysis of Combinations of Secure Protocols 67

25. Needham, R.M., Schroeder, M.D.: Authentication revisited. SIGOPS Oper. Syst.
Rev. 21(1), 7 (1987)

26. Perrig, A., Song, D.: Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols.
In: Proceedings of the 13th IEEE Workshop on Computer Security Foundations,
CSFW 2000, Washington, DC, USA, pp. 64–76. IEEE Computer Society (2000)

27. Song, D.X., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic
security protocol analysis. J. Comput. Secur. 9(1–2), 47–74 (2001)

28. Woo, T.Y.C., Lam, S.S.: A lesson on authentication protocol design. SIGOPS Oper.
Syst. Rev. 28(3), 24–37 (1994)

29. Yamaguchi, S., Okayama, K., Miyahara, H.: The design and implementation of an
authentication system for the wide area distributed environment. IEICE Trans.
Inf. Syst. 74(11), 3902–3909 (1991)

30. Zhou, H., Foley, S.N.: Fast automatic synthesis of security protocols using backward
search. In: Proceedings of the 2003 ACM Workshop on Formal Methods in Security
Engineering, FMSE 2003, pp. 1–10. ACM, New York (2003)

	Formal Analysis of Combinations of Secure Protocols
	1 Introduction
	2 Multi-protocol Attacks
	2.1 Attacks by Cremers [9]
	2.2 Attacks by Mathuria et al. [22]

	3 Workflow in Tamarin
	4 Conclusion
	References

