
Ethereum: State of Knowledge
and Research Perspectives

Sergei Tikhomirov(B)

SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
sergey.s.tikhomirov@gmail.com

Abstract. Ethereum is a major blockchain-based platform for smart
contracts – Turing complete programs that are executed in a decentral-
ized network and usually manipulate digital units of value. A peer-to-peer
network of mutually distrusting nodes maintains a common view of the
global state and executes code upon request. The stated is stored in a
blockchain secured by a proof-of-work consensus mechanism similar to
that in Bitcoin. The core value proposition of Ethereum is a full-featured
programming language suitable for implementing complex business logic.

Decentralized applications without a trusted third party are appealing
in areas like crowdfunding, financial services, identity management, and
gambling. Smart contracts are a challenging research topic that spans
over areas ranging from cryptography, consensus algorithms, and pro-
gramming languages to governance, finance, and law.

This paper summarizes the state of knowledge in this field. We pro-
vide a technical overview of Ethereum, outline open challenges, and
review proposed solutions. We also mention alternative smart contract
blockchains.

Keywords: Blockchain · Ethereum · Smart contracts
State of knowledge

1 Introduction

Bitcoin [Nak08] is the first fully decentralized digital currency introduced in 2008
and launched in 2009. It innovatively combines cryptographic techniques with
economic incentives to make rational participants likely to play by the rules.
Bitcoin gained significant traction, reaching $80 billion market capitalization
in September 2017. Hundreds of alternative cryptocurrencies based on similar
general design have appeared since Bitcoin’s launch. Programming languages in
early blockchains, e.g., the Bitcoin scripting language, were deliberately limited
to reduce complexity for the sake of security.

Ethereum [VB+14,Woo14], announced in 2014 and launched in 2015, aims
at creating a universal blockchain-based application platform. It incorporates a
Turing complete language, making it theoretically possible to express all practi-
cal computations in smart contracts – pieces of code permanently stored on the
c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 206–221, 2018.
https://doi.org/10.1007/978-3-319-75650-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_14&domain=pdf

Ethereum: State of Knowledge and Research Perspectives 207

blockchain and capable of responding to users’ requests. This enhanced function-
ality introduces new security challenges related to language design and secure
programming practices.

Ethereum is not the only smart contract blockchain system [BP17]. Ethereum
Classic [Eth17c] is an alternative blockchain originating from a controversial
Ethereum update. Rootstock [Roo17] and Qtum [Qtu17] aim at implementing
smart contracts in combination with the Bitcoin blockchain. Chain [Cha17a],
Corda [Cor17], and Hyperledger [Hyp17] propose permissioned (i.e., with a fixed
set of approved participants) smart contract blockchains, designed to simplify
transactions between corporate entities.

This paper focuses on Ethereum as the most mature open blockchain with
Turing complete programming capabilities. We summarize the state of knowl-
edge and outline the research perspectives in this rapidly developing field. We
assume familiarity with the basic blockchain concepts; [BMC+15,TS15] provide
the necessary background.

2 Technical Overview

2.1 State and Accounts

Ethereum can be thought of as a state machine. Nodes of the Ethereum peer-
to-peer network maintain a shared view of the global state. A user interacts
with the network by issuing a transaction representing a valid state transition.
Nodes pick transactions from the mempool (the set of unconfirmed transactions),
verify their validity, perform the corresponding computation (possibly changing
ownership of units of the Ethereum native cryptocurrency ether), and update the
state. There are two types of accounts in Ethereum: externally owned accounts
and contract accounts controlled by a private key or by a smart contract – a
piece of code deployed on the blockchain – respectively.

The account state consists of the following fields:

– nonce – the number of transactions sent by this account (for externally con-
trolled accounts) or the number of contract creations made by this account
(for contract accounts);

– balance – the number of wei1 owned by this account;
– storageRoot – Merkle Patricia tree root of this account’s storage;
– codeHash – hash of this account’s contract bytecode.

Accounts’ 160-bit addresses2 are derived from its public key or, in case of con-
tract accounts, from the address of the contract’s creator and its nonce [eth16].
The global state maps addresses to account states. The primary data structure
in Ethereum is the Merkle Patricia tree – a radix tree optimized for key-value
mappings with 256 bit keys [VBR+17,Buc14]. The root hash authenticates the
whole data structure. Values pairs are editable in logarithmic time.
1 Smallest denomination of ether: 1 ether = 1018 wei.
2 Addresses are usually written in hex with a 0x prefix.

208 S. Tikhomirov

The Ethereum state model (accounts and states) differs from than in Bitcoin.
The Bitcoin blockchain stores unspent transaction output (UTXO); balances of
addresses are calculated off-chain by wallet software.

2.2 Transactions and Gas

The halting problem – determining if a given program will ever halt – is
unsolvable in the general case [Chu36]. This poses a challenge: nodes running
the Ethereum virtual machine (EVM) cannot foresee the amount of resources
required for validating a transaction, which enables denial-of-service attacks.

To overcome the issue, the Ethereum protocol incorporates a pricing mecha-
nism. It makes resource-intensive computations in smart contracts economically
infeasible. Every computational step in EVM is priced in units of gas. EVM
opcodes and their gas costs are defined in the Yellow paper [Woo14]. The price
of a gas unit in ether is determined by the market. For every transaction, the
sender specifies the maximum amount of gas that the intended computation is
expected to consume (the gas limit) and the price the user wishes to pay per
unit of gas (the gas price). The transaction fee equals the gas limit multiplied
by the gas price. If the execution is successful, the remaining ether is refunded.
If an error occurs, the transaction has no effect on the state, but all provided gas
is consumed. Miners can vote to gradually change the limit on the total amount
of gas consumed in a block [jnn15].

A transaction is a signed data structure comprising a set of instructions to
be atomically executed by the EVM. It consists of the following fields:

– nonce – the number of transactions sent by the sender;
– gasPrice – the number of wei per gas unit that the sender is paying;
– gasLimit – the maximum amount of gas to be spent during execution;
– to – the destination address (0x0 for contract creation transactions);
– value – the number of wei transferred along with the transaction;
– v, r, s – signature data.

There are two types of transactions in Ethereum. A contract creation trans-
action is used to deploy a new contract. It contains an additional init field that
specifies the EVM code to be run on contract creation, as well as the EVM code
of the new contract. A message call transaction is used to execute a function of
an existing contract (with arguments specified by the an optional data field) or
to transfer ether.

2.3 Block Structure and Mining

Ethereum uses proof-of-work (PoW): nodes compete to find a partial collision of
a cryptographic hash function and produce the next block3. Both Bitcoin [Wui17]
and Ethereum [Joh17] chose the heaviest chain as a valid one in case of forks,
where a chain’s weight is defined as the sum of its blocks’ difficulties.
3 See [ato16] for a visual interpretation of the block structure in Ethereum.

Ethereum: State of Knowledge and Research Perspectives 209

Good connectivity is crucial for Bitcoin mining operation: the resources spent
mining on a block other than the latest one are essentially wasted. Good con-
nectivity puts big pools at an advantage, while blocks from worse connected
miners propagate slowly and increase the orphan rate. Thus Bitcoin mining is
prone to centralization. To be able to operate with block times much shorter
than Bitcoin’s 10 min (about 30 s in September 2017), Ethereum uses a mining
protocol [doc17] similar to GHOST [SZ13]. Ethereum considers uncles – valid
orphan blocks that are ancestors of the current block (no more than 6 generations
deep). For each block, the miner receives a static reward of 5 ether, payments
for the gas consumed by transactions in the block, and 1/32 of the static reward
(0.15625 ether) per uncle, whose hash is included in the block header (no more
than 2 uncles per block). Miners of uncles whose headers get included in the
main chain receive 7/8 of the static reward (4.375 ether). Due to uncles, the
energy spent on orphan blocks contributes to security, increasing the amount of
work required for a double-spend.

Contrary to Bitcoin, where coins are issued on a diminishing rate with a total
cap of 21 million, Ethereum issues ethers at a constant rate with no total cap.
Ethereum’s issuance parameters may change after switching to proof-of-stake
(see Sect. 3.1).

Bitcoin PoW uses a general purpose cryptographic hash function SHA-256,
which can be efficiently implemented in hardware. Specialized mining equipment
(application-specific integrated circuits, ASIC) is orders of magnitude more effi-
cient than commodity hardware, which puts small miners at a disadvantage.
Ethereum uses a memory hard hash function Ethash and targets GPUs as the
primary mining equipment. It helps prevent mining centralization akin to Bit-
coin’s and throttles CPU mining (botnets or cloud VM instances can be rented
for a short time to perform an attack).

Table 1 compares some properties of Bitcoin and Ethereum. Note that the
practical requirements regarding the disk space for an Ethereum node can be
greatly reduced due to the explicit storage of account balances and data as
opposed to Bitcoin’s UTXO [Dom17].

Table 1. Bitcoin and Ethereum, September 2017 [Eth17d,Bit17c,Eth17e,Bit17b,
Coi17a]

Metric Bitcoin Ethereum

Number of nodes 9428 22007

Blockchain size 158 GB 52 GB

Transactions per hour 8509 12406

Market capitalization ($ million) 62812 27200

Daily trading volume ($ million) 997 420

2.4 Smart Contract Programming

EVM bytecode is a low-level Turing complete stack-based language operating
on 256-bit words designed to be simple compared to general purpose VMs

210 S. Tikhomirov

like JVM, execute deterministically, and natively support cryptographic primi-
tives [But17b]. Developers usually write contracts in high-level languages target-
ing EVM, the most popular one being Solidity [Sol17] – a statically typed lan-
guage with a Javascript-like syntax. Others include Serpent [Ser17] (deprecated
in 2017 [Cas17]) and LLL [Ell17] (Python- and Lisp-like syntax respectively).

1 pragma solidity 0.4.17;

2 contract StringStorageContract {

3 string private str = "Hello , world!";

4 function getString () public constant returns (string) {

5 return str;

6 }

7 function setString(string _str) public {

8 str = _str;

9 }

10 }

Listing 1.1. A simple contract in Solidity

2.5 Applications

Among many potential applications of smart contracts [McA17], crowdfunding
is arguably the first widely successful one. The first wide-scale Ethereum-based
crowdfunding project was a decentralized investment fund called The DAO,
launched on 30 April 20164. In 2017, the amount of money collected during
so-called initial coin offerings (ICO) skyrocketed, reaching $1.8 bn [Coi17b] and
surpassing early stage venture capital funding [Sun17]. ICO is usually based
around a token – a smart contract that maintains a list of users’ balances and
allows them to transfer tokens or buy and sell them for ether. Tokens are usually
implemented with respect to the API defined in the ERC20 standard [Vog17].
The ICO organizers often promise that the tokens will be required to use the
to-be developed product or service. Prominent Ethereum applications include
decentralized file storage [Fil17,Sia17,Sto17] and computation [Gol17,Son17],
name systems [ENS17], and prediction markets [Aug17,Gno17].

3 Open Problems

3.1 Core Protocol

Cryptographic Primitives. Ethereum uses ECDSA for signatures5, Kec-
cack256 for generating unique identifiers6, and Ethash [Eth17a] for proof-of-work.

4 In June 2016, an unknown hacker exploited a vulnerability in the DAO code and
withdrew around $50 million, leading to a controversial [ETC16] hard fork.

5 See [May16] for a study of ECDSA security in Bitcoin and Ethereum.
6 Though Keccak256 is the winning proposal in the SHA3 competition, it differs from

the officially standardized SHA3. SHA3 in the Ethereum documentation and source
code refers to Keccak256.

Ethereum: State of Knowledge and Research Perspectives 211

Based on Dagger [But13] and Hashimoto [Dry14], Ethash is a memory intensive,
GPU-friendly and ASIC-resistant hash function7.

The algorithm is composed of four steps. In the first step, a seed is created
from the blockchain by hashing the headers of each block together with the
current epoch using Keccak. An epoch consists of 30 thousand blocks. In the
second step, a 16 MB pseudorandom cache is generated from the seed using a
memory-hard hash function. In the third step, done once per epoch, a linearly
growing dataset (approximately 2 GB in 2017 [DAG17]) consisting of 64 byte
elements is generated from the cache using a non-cryptographic hash function
Fowler-Noll-Vo [Nol17]. In the fourth step, the dataset, a header, and a nonce
are repeatedly hashed until the result satisfies the difficulty target.

Both Dagger and Hashimoto, in contrast to standardization attempts like the
SHA-3 competition [SHA17] or the Password hashing competition [PHC15], were
announced shortly before the Ethereum launch and did not undergo significant
cryptanalysis in the academic community. The Ethash design rationale [Eth17b]
lacks details on why established and well-tested memory-hard hash functions
do not serve the purpose. [Ler14] claims that an earlier version of Dagger (as
of 2014) was flawed. Rigorous cryptanalysis of Ethereum’s underlying crypto-
graphic primitives is required to guarantee its long-term security.

Consensus Mechanism. Though some argue that PoW is the only viable
blockchain consensus mechanism [And14,Szt15], Ethereum is planning to switch
from proof-of-work to proof-of-stake (PoS) [Her17]. As of September 2017, the
first step of a two-stage process is due October 2017, transitioning Ethereum to
a hybrid PoW-PoS consensus mechanism. The second step will make Ethereum
fully PoS. PoS aims to address the drawbacks of PoW:

– energy consumption comparable to a mid-sized country as of 2017 [Dig17];
– centralization risks: miners are incentivized to invest in specialized hardware,

which pushes up the entry cost of participating and puts big miners at an
advantage due to economies of scale;

– game-theoretic attacks like selfish mining [ES13].

PoS can be described as “virtual mining”: a miner purchases coins instead
of hardware and electricity. The consensus mechanism distributes power propor-
tionally to the amount of coins miners hold (stake), not computing power (see
[BGM16] for a review of cryptocurrencies without PoW). Known issues with
naive PoS implementations include:

– Nothing-at-stake. As producing new blocks incurs only a negligible cost, a
rational PoS validator extends all known chains to get a reward regardless of
which one wins. This opens the door to attacks that require far less than 51%

7 Ethash is also referred to as Dagger-Hashimoto. Official documentation [Eth17a]
states that Ethash “is the latest version of Dagger-Hashimoto, although it can no
longer appropriately be called that since many of the original features of both algo-
rithms have been drastically changed”.

212 S. Tikhomirov

of the stake8: the attacker’s chain wins if the attacker supports it exclusively,
whereas other validators behave rationally and support all chains.

– Randomly choosing validators. Using randomness from the blockchain itself
(i.e., previous block hash) to determine the next validator is insecure, as it
is determined by validators in previous rounds. A possible solution is to use
verifiable secret sharing for randomness generation.

– Transaction finality. In PoW, a block header which has a hash less than the
target simultaneously represents the choice of the next validator and the very
act of validating the block. PoS separates choosing the next validators and
producing the block. A PoS validator may create its own chain, plug in a
constant instead of a pseudo-random number generator (PRNG) output, and
produce blocks despite owning an arbitrarily small stake.
A rule of thumb in Bitcoin considers transactions older than six blocks final,
as the chance of a minority attacker overtaking the main chain becomes negli-
gible. By contrast, as PoS blocks cost nearly nothing to produce, an attacker
can secretly create an alternative chain starting from the genesis block. To
prevent this, a PoS blockchain must provide finality – i.e., guarantee that
after a fixed number of blocks old transaction can not be reversed9.

The central concept of the proposed Ethereum PoS algorithm Casper
[But16a] is “consensus by bet”: validators bet on the future blockchain
state [PoS16,But17c]. Casper addresses the nothing-at-stake problem by intro-
ducing validator punishments for incorrect behavior, e.g., extending multiple
chains, in addition to rewards, which makes the game-theoretic analysis of the
protocol more complex. Long range attacks are addressed with the concept of
finality [But17a].

Recent PoS designs also include 2-hop blockchain [DFZ16], Algorand [Mic16],
Ouroboros [KRDO16], SnowWhite [DPS16], Proof of luck [MHWK17].
Blockchain networks Ripple [SYB14] and Stellar [Maz14] use consensus mecha-
nisms inspired by Byzantine fault tolerant consensus protocols like PBFT [CL02].
Developing an efficient, secure and incentive compatible PoS algorithm is an
important task in blockchain research.

Scalability. Open blockchains deliberately sacrifice performance for what a
smart contracts pioneer Nick Szabo describes as social scalability [Sza17] –
“the ability of an institution [...] to overcome shortcomings in human minds
[...] that limit who or how many can successfully participate”. Both Bitcoin
and Ethereum have been facing scalability problems [Sil16,Bit17a]. Improv-
ing blockchain scalability while minimally sacrificing security is an important
research direction. Blockchain scalability can be defined as two goals: increasing

8 A commonly used term “51% attack” is not precisely correct: “51%” here means
“strictly greater than 50%”.

9 Interestingly, the reference Bitcoin implementation uses checkpoints to skip valida-
tion of very old blocks for efficiency, effectively providing finality for transactions
older than the latest checkpoint [Bit16].

Ethereum: State of Knowledge and Research Perspectives 213

transaction throughput and decreasing the requirements on bandwidth, storage,
and processing power for nodes (thus preserving decentralization).

The first goal can be addressed by payment channel networks and sharding.
A bidirectional payment channel is a protocol that lets users exchange signed
transactions before publishing of them on-chain as settlement. A network of
payment channels is a protocol that finds a sequence of payment channels across
the network, a mechanism similar to the IP packet routing [McC15]. Payment
channel networks for Bitcoin [Lig16] and Ethereum [Rai17] are in development.

In open blockchains, every node is usually required to process every trans-
action. This provides strong security, but severely limits scalability. Sharding
[GvRS16,LNZ+16] might alleviate this problem by spreading transactions across
groups of nodes (shards), which should be large enough to provide a sufficient
level of security and a significantly better throughput [Sha16].

The second goal can be addressed by skipping the validation of old
blocks [Jun17] or by additionally providing new nodes with full snapshots of
a previous state [Par17].

Privacy. Most open blockchains10, including Ethereum, guarantee integrity and
availability, but provide little to no privacy. All transactions are broadcast in
plaintext and can be intercepted (or later obtained from the blockchain) and
analyzed. Deanonymization of blockchain transactions is an active business area
with start-ups (e.g., [Cha17b]) offering blockchain analysis tools, which is in line
with government demands of KYC/AML compliance for financial services.

A common but only partially efficient privacy preserving practice in Bitcoin,
which takes advantage of the UTXO structure of its state, is to use a new address
for every transaction. This technique is not applicable in Ethereum, because it
uses addresses for authentication and explicitly maps them to accounts states.
For instance, if a user purchases tokens using a particular address, they have to
use the same address to redeem them.

An additional privacy challenge comes from the requirement to hide business
logic behind smart contract code. Though Ethereum only stores bytecode, users
are reluctant to trust contracts without published source code. Moreover, byte-
code analysis11 tools are already available [NPS+17,Sui17]. Possible research
directions in the privacy domain include privacy preserving smart contracts
with zero-knowledge proofs [KMS+15] (support for zero-knowledge proofs in
Ethereum was first tested in September 2017 [O’L17]), mixing, computations on
encrypted data, and code obfuscation.

10 Except those using dedicated privacy-preserving cryptographic techniques, e.g., Dash,
Monero, Zcash.

11 Decompiling bytecode to source code is hardly possible as the information about
function and variable names is lost during compilation; nevertheless it is possible
to display bytecode as a sequence of mnemonics or convert it into an intermediate
higher-level representation suitable for analysis.

214 S. Tikhomirov

3.2 Smart Contract Programming

Programming Languages. Security is of paramount importance in smart
contract programming [ABC17,DAK+15]. Contrary to traditional software,
smart contracts can not be patched, which brings new challenges to blockchain
programming [PPMT17]. Multiple approaches exist to contract program-
ming [STM16]. Areas of research in this domain include systematizing good and
bad programming practices [Con16,CLLZ17], designing general-purpose [Hir17a,
But17d,PE16] as well as domain-specific [BKT17,EMEHR17] smart contract
programming languages, and developing tools for automated security analy-
sis [LCO+16,Sec17] and formal verification [BDLF+16] of smart contract source
code, EVM bytecode, and the EVM itself [Hir17b].

Secure Contract Programming. An important challenge is to describe smart
contracts’ execution model (possibly drawing parallels from concurrent program-
ming on a multi-threaded processor [SH17]) and to develop a usable and formally
verifiable high-level language reflecting this model. Some argue that Solidity
inclines programmers towards unsafe development practices [ydt16]. Typical vul-
nerabilities and issues in Solidity might include:

1. Re-entrancy. Contracts can call each other. Malicious external contracts
can call the caller back. If the victim contract does its internal bookkeeping
after returning from an external call, its integrity can be compromised12.

2. Miner’s influence. Miners can to some extend influence execution (front-
running, censorship, or altering environmental variables, e.g., timestamp).

3. Out-of-gas exceptions. Computation in Ethereum is many orders of magni-
tude more expensive than with centrally managed cloud computing services.
Developers who do not take it into account may implement functions that
require too much gas to fit in the block gas limit and thus always fail.

Trusted Data Sources. Many smart contract applications (financial deriva-
tives, insurance, prediction markets) depend on real-world data. Ethereum is iso-
lated from the broader Internet to guarantee consistent execution across nodes.
A popular approach to providing data to contracts in a trust-minimizing way is
an oracle – a specialized data provider, possibly with a dedicated cryptographic
protocol to guarantee integrity [Ora17]. A recent development is TownCrier – an
oracle built with trusted hardware [ZCC+16].

3.3 Higher Level Issues

Governance. In June 2016, a massive Ethereum-based crowdfunding project –
The DAO – ended in a disaster: an unknown hacker exploited a bug in the smart
contract and obtained around $50 million out of $150 million collected [Sir16].

12 This bug led to the DAO hack of 2016.

Ethereum: State of Knowledge and Research Perspectives 215

Despite the fact that the Ethereum protocol correctly executed the smart con-
tract code, the Ethereum developers implemented a hard fork that allowed stake-
holders to withdraw their deposits. This event raised concerns about Ethereum’s
governance, as the fork violated the premise of decentralized applications running
“exactly as programmed” and lead to the creation of Ethereum Classic [Eth17c].
Governance mechanisms should provide certainty over how updates (potentially
breaking compatibility) are introduced.

Though the gas price in ether is determined by the market, the relative gas
costs of EVM bytecodes are constant. In September 2016, an attacker exploited
a weakness in gas pricing and organized a DoS attack on the network, taking
advantage of the fact that certain operations were under-priced [But16b]. The
problem was ultimately fixed with a hard fork. Research is needed to propose
more flexible mechanisms for determining relative prices of EVM operations.

Incentives. Open blockchains rely on the participants’ rationality [CXS+17]
and must maintain incentive compatibility, so that rational behavior leads to the
overall benefit for the network [LTKS15]. This introduces a new field of study
dubbed cryptoeconomics – the study of incentives in cryptographic systems.
The trustless nature of smart contracts might be used for benign (managing
mining pools [LVTS17]) as well as for malicious (providing automatic rewards for
attacking mining pools [VTL17]) purposes. Rigorous research should guarantee
the proper functioning of the blockchain networks and applications based on a
definition of rational behavior.

Usability. Considering the influx of new people into the blockchain space,
usable yet secure lightweight blockchain software is needed. From the human-
computer interaction (HCI) perspective, a challenging task would be to help
users grasp the smart contracts fundamentals without going into technicalities.
Research shows that cryptographically sound systems may fail to gain traction
due to usability issues [RAZS15]. HCI research is needed to make blockchains
and smart contracts usable by general public.

Ethical and Legal Issues. Information security researchers usually adhere to
the “responsible disclosure” policy: they report a bug privately to the vendor
and give developers time to fix it before publishing the information in the open.
Though some oppose this practice [Sch07], it is assumed to decrease the proba-
bility of an attack on the live system (unless the attackers discover the same bug
independently before a patch is applied). Ethereum introduces a new dimension
to the responsible disclosure debate, as smart contracts can not be patched. It
is unclear whether it is ethical to fully disclose a vulnerability discovered in a
smart contract, if developers can not fix it anyway13.
13 A technical response to this issue could be updateable contracts: users communicate

with a proxy contract, which redirects their transactions to the latest version of the
main contract. Such scheme assumes that the developers are honest and competent
so that the latest update does not run away with everyone’s money.

216 S. Tikhomirov

A whole separate range of topics, which is outside the scope of this paper,
is how (and if at all) smart contracts fit into existing legal frameworks. For
instance, BitLicense [ofs15] – a controversial [Act15] piece of regulation that came
into force in New York in 2015 – prompted many cryptocurrency businesses to
withdraw their services from the residents of this US state [Rob15]. In July 2017,
the US Securities and Exchange Commission stated that issuers of digital assets
may be subject to requirements of the US law [SC17].

4 Conclusion

Ethereum is a fascinating research area at the intersection of multiple fields:
cryptography and distributed systems, programming languages and formal ver-
ification, economics and game theory, human-computer interaction, finance and
law. The promise of smart contracts is not limited to making existing processes
more efficient by putting parts of their logic onto a very inefficient, yet very secure
decentralized network. This new way of handling value without a trusted third
party opens up whole new classes of previously impossible use cases. Thorough
research is needed to realize this vision.

References

[ABC17] Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum
smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS,
vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54455-6 8

[Act15] EFF Action. Stop the BitLicense (2015). https://act.eff.org/action/stop-
the-bitlicense

[And14] Andreev, O.: Proof that proof-of-work is the only solution to the
Byzantine generals’ problem (2014). http://nakamotoinstitute.
org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-
byzantine-generals-problem/

[ato16] atomh33ls. Ethereum block architecture (2016). https://ethereum.
stackexchange.com/a/6413/5113

[Aug17] Augur (2017). https://augur.net/
[BDLF+16] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A.,

Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T.,
Swamy, N., Zanella-Béguelin, S.: Formal verification of smart contracts:
short paper. In: Proceedings of the 2016 ACM Workshop on Program-
ming Languages and Analysis for Security, PLAS 2016, pp. 91–96. ACM,
New York (2016)

[BGM16] Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of
work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 10

[Bit16] bitcoin/src/chainparams.cpp (2016). https://github.com/bitcoin/
bitcoin/blob/master/src/chainparams.cpp#L146

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://act.eff.org/action/stop-the-bitlicense
https://act.eff.org/action/stop-the-bitlicense
http://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
http://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
http://nakamotoinstitute.org/mempool/proof-that-proof-of-work-is-the-only-solution-to-the-byzantine-generals-problem/
https://ethereum.stackexchange.com/a/6413/5113
https://ethereum.stackexchange.com/a/6413/5113
https://augur.net/
https://doi.org/10.1007/978-3-662-53357-4_10
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp#L146
https://github.com/bitcoin/bitcoin/blob/master/src/chainparams.cpp#L146

Ethereum: State of Knowledge and Research Perspectives 217

[Bit17a] Block size limit controversy (2017). https://en.bitcoin.it/wiki/Block size
limit controversy

[Bit17b] Cryptocurrency statistics (2017). https://bitinfocharts.com/
[Bit17c] Bitnodes.21.co. Global Bitcoin nodes distrubution (2017). https://

bitnodes.21.co/
[BKT17] Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: secure derivative

contracts for Ethereum (2017). https://hdl.handle.net/10993/30975
[BMC+15] Bonneau, J., Miler, A., Clark, J., Narayanan, A., Kroll, J.A., Felten,

E.W.: Research perspectives and challenges for Bitcoin and cryptocurren-
cies. Cryptology ePrint Archive, Report 2015/261 (2015). http://eprint.
iacr.org/2015/261

[BP17] Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts:
platforms, applications, and design patterns. CoRR, abs/1703.06322
(2017)

[Buc14] Buchman, E.: Understanding the Ethereum trie (2014). https://
easythereentropy.wordpress.com/2014/06/04/understanding-the-
ethereum-trie/

[But13] Buterin, V.: Dagger: a memory-hard to compute, memory-easy to verify
Scrypt alternative (2013). http://www.hashcash.org/papers/dagger.html

[But16a] Buterin, V.: Casper the friendly finality gadget (2016). https://github.
com/ethereum/research/blob/master/casper4/papers/casper paper.md

[But16b] Buterin, V.: Long-term gas cost changes for IO-heavy operations to mit-
igate transaction spam attacks (2016). https://github.com/ethereum/
eips/issues/150

[But17a] Buterin, V.: Casper the friendly finality gadget (2017). http://vitalik.ca/
files/casper note.html

[But17b] Buterin, V.: Design rationale (2017). https://github.com/ethereum/wiki/
wiki/Design-Rationale

[But17c] Buterin, V.: Minimal slashing conditions (2017). https://medium.com/
@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c

[But17d] Buterin, V.: New experimental programming language (2017). https://
github.com/ethereum/viper

[Cas17] Castor, A.: One of Ethereum’s earliest smart contract languages
is headed for retirement (2017). https://www.coindesk.com/one-of-
ethereums-earliest-smart-contract-languages-is-headed-for-retirement/

[Cha17a] Chain (2017). https://chain.com/
[Cha17b] Protecting the integrity of digital assets (2017). https://www.chainalysis.

com/
[Chu36] Church, A.: A note on the Entscheidungs problem. J. Symb. Logic 1(1),

40–41 (1936)
[CL02] Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive

recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)
[CLLZ17] Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts

devour your money. In: SANER, pp. 442–446. IEEE Computer Society
(2017)

[Coi17a] Cryptocurrency market capitalizations (2017). https://coinmarketcap.
com/

[Coi17b] Coindesk. ICO tracker (2017). https://www.coindesk.com/ico-tracker/
[Con16] Ethereum contract security techniques and tips (2016). https://github.

com/ConsenSys/smart-contract-best-practices

https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://bitinfocharts.com/
https://bitnodes.21.co/
https://bitnodes.21.co/
https://hdl.handle.net/10993/30975
http://eprint.iacr.org/2015/261
http://eprint.iacr.org/2015/261
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
http://www.hashcash.org/papers/dagger.html
https://github.com/ethereum/research/blob/master/casper4/papers/casper_paper.md
https://github.com/ethereum/research/blob/master/casper4/papers/casper_paper.md
https://github.com/ethereum/eips/issues/150
https://github.com/ethereum/eips/issues/150
http://vitalik.ca/files/casper_note.html
http://vitalik.ca/files/casper_note.html
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://github.com/ethereum/viper
https://github.com/ethereum/viper
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
https://www.coindesk.com/one-of-ethereums-earliest-smart-contract-languages-is-headed-for-retirement/
https://chain.com/
https://www.chainalysis.com/
https://www.chainalysis.com/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://www.coindesk.com/ico-tracker/
https://github.com/ConsenSys/smart-contract-best-practices
https://github.com/ConsenSys/smart-contract-best-practices

218 S. Tikhomirov

[Cor17] Corda (2017). https://www.corda.net/
[CXS+17] Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized

execution of smart contracts: agent model perspective and its impli-
cations (2017). http://fc17.ifca.ai/wtsc/Decentralized%20Execution
%20of%20Smart%20Contracts%20-%20Agent%20Model%20Perspective
%20and%20Its%20Implications.pdf

[DAG17] Dag file size calculator (2017). https://investoon.com/tools/dag size
[DAK+15] Delmolino, K. Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step

towards creating a safe smart contract: lessons and insights from a
cryptocurrency lab. Cryptology ePrint Archive, Report 2015/460 (2015).
http://eprint.iacr.org/2015/460

[DFZ16] Duong, T., Fan, L., Zhou, H.-S.: 2-hop blockchain: combining proof-
of-work and proof-of-stake securely. Cryptology ePrint Archive, Report
2016/716 (2016). http://eprint.iacr.org/2016/716

[Dig17] Digiconomist. Bitcoin energy consumption index (2017). http://
digiconomist.net/bitcoin-energy-consumption

[doc17] Ethereum documentation. Mining (2017). http://ethdocs.org/en/latest/
mining.html

[Dom17] Domchi. What are the ethereum disk space needs? (2017). https://
ethereum.stackexchange.com/q/143/5113

[DPS16] Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919 (2016). http://eprint.iacr.
org/2016/919

[Dry14] Dryja, T.: Hashimoto: I/O bound proof of work (2014). https://pdfs.
semanticscholar.org/3b23/7cc60c1b9650e260318d33bec471b8202d5e.pdf

[Ell17] Ellison, D.: An introduction to LLL for Ethereum smart contract devel-
opment (2017). https://media.consensys.net/an-introduction-to-lll-for-
ethereum-smart-contract-development-e26e38ea6c23

[EMEHR17] Egelund-Müller, B., Elsman, M., Henglein, F., Ross, O.: Automated exe-
cution of financial contracts on blockchains (2017). https://ssrn.com/
abstract=2898670

[ENS17] ENS (2017). https://ens.domains/
[ES13] Eyal, I., Gün Sirer, E.: Majority is not enough: Bitcoin mining is vulner-

able. CoRR, abs/1311.0243 (2013)
[ETC16] The Ethereum Classic declaration of independence (2016). https://

ethereumclassic.github.io/assets/ETC Declaration of Independence.pdf
[eth16] eth. How is the address of an ethereum contract computed? (2016).

https://ethereum.stackexchange.com/q/760/5113
[Eth17a] Ethash (2017). https://github.com/ethereum/wiki/wiki/Ethash
[Eth17b] Ethash design rationale (2017). https://github.com/ethereum/wiki/wiki/

Ethash-Design-Rationale
[Eth17c] Ethereum Classic (2017). https://ethereumclassic.github.io/
[Eth17d] Etherchain.org. Mining statistics (last 24h) (2017). https://etherchain.

org/statistics/miners
[Eth17e] Ethernodes.org (2017). https://www.ethernodes.org/network/1

[Fil17] Filecoin (2017). https://filecoin.io/
[Gno17] Gnosis (2017). https://gnosis.pm/
[Gol17] Golem (2017). https://golem.network/

[GvRS16] Gencer, A.E., van Renesse, R., Sirer, E.G.: Service-oriented sharding with
Aspen. arXiv preprint arXiv:1611.06816 (2016)

https://www.corda.net/
http://fc17.ifca.ai/wtsc/Decentralized%20Execution%20of%20Smart%20Contracts%20-%20Agent%20Model%20Perspective%20and%20Its%20Implications.pdf
http://fc17.ifca.ai/wtsc/Decentralized%20Execution%20of%20Smart%20Contracts%20-%20Agent%20Model%20Perspective%20and%20Its%20Implications.pdf
http://fc17.ifca.ai/wtsc/Decentralized%20Execution%20of%20Smart%20Contracts%20-%20Agent%20Model%20Perspective%20and%20Its%20Implications.pdf
https://investoon.com/tools/dag_size
http://eprint.iacr.org/2015/460
http://eprint.iacr.org/2016/716
http://digiconomist.net/bitcoin-energy-consumption
http://digiconomist.net/bitcoin-energy-consumption
http://ethdocs.org/en/latest/mining.html
http://ethdocs.org/en/latest/mining.html
https://ethereum.stackexchange.com/q/143/5113
https://ethereum.stackexchange.com/q/143/5113
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
https://pdfs.semanticscholar.org/3b23/7cc60c1b9650e260318d33bec471b8202d5e.pdf
https://pdfs.semanticscholar.org/3b23/7cc60c1b9650e260318d33bec471b8202d5e.pdf
https://media.consensys.net/an-introduction-to-lll-for-ethereum-smart-contract-development-e26e38ea6c23
https://media.consensys.net/an-introduction-to-lll-for-ethereum-smart-contract-development-e26e38ea6c23
https://ssrn.com/abstract=2898670
https://ssrn.com/abstract=2898670
https://ens.domains/
https://ethereumclassic.github.io/assets/ETC_Declaration_of_Independence.pdf
https://ethereumclassic.github.io/assets/ETC_Declaration_of_Independence.pdf
https://ethereum.stackexchange.com/q/760/5113
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://github.com/ethereum/wiki/wiki/Ethash-Design-Rationale
https://ethereumclassic.github.io/
https://etherchain.org/statistics/miners
https://etherchain.org/statistics/miners
https://www.ethernodes.org/network/1
https://filecoin.io/
https://gnosis.pm/
https://golem.network/
http://arxiv.org/abs/1611.06816

Ethereum: State of Knowledge and Research Perspectives 219

[Her17] Hertig, A.: Ethereum’s big switch: the new roadmap to proof-of-
stake (2017). https://www.coindesk.com/ethereums-big-switch-the-new-
roadmap-to-proof-of-stake/

[Hir17a] Hirai, Y.: Bamboo: a morphing smart contract language (2017). https://
github.com/pirapira/bamboo

[Hir17b] Hirai, Y.: Formal verification of Ethereum contracts (2017). https://
github.com/pirapira/ethereum-formal-verification-overview

[Hyp17] Hyperledger (2017). https://www.hyperledger.org/
[jnn15] jnnk. What is gas limit in Ethereum? (2015). https://bitcoin.

stackexchange.com/a/39197
[Joh17] Johnson, N.: What is the exact “longest chain” rule implemented

in the ethereum “homestead” protocol? (2017). https://ethereum.
stackexchange.com/a/13750/5113

[Jun17] Junge, H.: What is Geth’s “light” sync, and why is it so fast? (2017).
https://ethereum.stackexchange.com/a/11300

[KMS+15] Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the
blockchain model of cryptography and privacy-preserving smart con-
tracts. Cryptology ePrint Archive, Report 2015/675 (2015). http://eprint.
iacr.org/2015/675

[KRDO16] Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably
secure proof-of-stake blockchain protocol. Cryptology ePrint Archive,
Report 2016/889 (2016). http://eprint.iacr.org/2016/889

[LCO+16] Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart
contracts smarter. Cryptology ePrint Archive, Report 2016/633 (2016).
http://eprint.iacr.org/2016/633

[Ler14] Lerner, S.D.: Ethereum “Dagger” PoW function is flawed (2014). https://
bitslog.wordpress.com/2014/01/17/ethereum-dagger-pow-is-flawed/

[Lig16] Lightning network (2016). https://lightning.network/
[LNZ+16] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A

secure sharding protocol for open blockchains. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp. 17–30. ACM (2016)

[LTKS15] Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives
in the consensus computer. Cryptology ePrint Archive, Report 2015/702
(2015). http://eprint.iacr.org/2015/702

[LVTS17] Luu, L., Velner, Y., Teutsch, J., Saxena, P.: SmartPool: practical decen-
tralized pooled mining. Cryptology ePrint Archive, Report 2017/019
(2017). http://eprint.iacr.org/2017/019

[May16] Mayer, H.: ECDSA security in Bitcoin and Ethereum: a research survey
(2016)

[Maz14] Mazières, D.: The Stellar consensus protocol: a federated model for
internet-level consensus (2014). https://www.stellar.org/papers/stellar-
consensus-protocol.pdf

[McA17] McAdams, D.: An ontology for smart contracts (2017). https://iohk.io/
research/papers/#QCNR6SCZ

[McC15] McCone, R.: Ethereum Lightning network and beyond (2015). http://
www.arcturnus.com/ethereum-lightning-network-and-beyond/

[MHWK17] Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an effi-
cient blockchain consensus protocol. Cryptology ePrint Archive, Report
2017/249 (2017). http://eprint.iacr.org/2017/249

https://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
https://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://github.com/pirapira/ethereum-formal-verification-overview
https://github.com/pirapira/ethereum-formal-verification-overview
https://www.hyperledger.org/
https://bitcoin.stackexchange.com/a/39197
https://bitcoin.stackexchange.com/a/39197
https://ethereum.stackexchange.com/a/13750/5113
https://ethereum.stackexchange.com/a/13750/5113
https://ethereum.stackexchange.com/a/11300
http://eprint.iacr.org/2015/675
http://eprint.iacr.org/2015/675
http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2016/633
https://bitslog.wordpress.com/2014/01/17/ethereum-dagger-pow-is-flawed/
https://bitslog.wordpress.com/2014/01/17/ethereum-dagger-pow-is-flawed/
https://lightning.network/
http://eprint.iacr.org/2015/702
http://eprint.iacr.org/2017/019
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://iohk.io/research/papers/#QCNR6SCZ
https://iohk.io/research/papers/#QCNR6SCZ
http://www.arcturnus.com/ethereum-lightning-network-and-beyond/
http://www.arcturnus.com/ethereum-lightning-network-and-beyond/
http://eprint.iacr.org/2017/249

220 S. Tikhomirov

[Mic16] Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR,
abs/1607.01341 (2016)

[Nak08] Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008).
https://bitcoin.org/bitcoin.pdf

[Nol17] Landon Curt Noll. FNV hash (2017). http://www.isthe.com/chongo/
tech/comp/fnv/index.html

[NPS+17] Norvill, R., Pontiveros, B.B.F., State, R., Awan, I., Cullen, A.: Auto-
mated labeling of unknown contracts in Ethereum (2017). https://
bradscholars.brad.ac.uk/handle/10454/12220

[ofs15] Department of financial services. Bitlicense regulatory framework (2015).
http://www.dfs.ny.gov/legal/regulations/bitlicense reg framework.htm

[O’L17] O’Leary, R.R.: Ethereum’s Byzantium testnet just verified a private
transaction (2017). https://www.coindesk.com/ethereums-byzantium-
testnet-just-verified-private-transaction/

[Ora17] Oraclize (2017). http://www.oraclize.it/
[Par17] Warp sync snapshot format (2017). https://github.com/paritytech/

parity/wiki/Warp-Sync-Snapshot-Format
[PE16] Pettersson, J., Edström, R.: Safer smart contracts through type-

driven development (2016). https://publications.lib.chalmers.se/records/
fulltext/234939/234939.pdf

[PHC15] Password hashing competition (2015). https://password-hashing.net/
[PoS16] Proof of stake FAQ (2016). https://github.com/ethereum/wiki/wiki/

Proof-of-Stake-FAQ
[PPMT17] Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented soft-

ware engineering: challenges and new directions. CoRR, abs/1702.05146
(2017)

[Qtu17] Qtum (2017). https://qtum.org/en/
[Rai17] Raiden network: high speed asset transfers for Ethereum (2017). http://

raiden.network/
[RAZS15] Ruoti, S., Andersen, J., Zappala, D., Seamons, K.E.: Why Johnny still,

still can’t encrypt: evaluating the usability of a modern PGP client.
CoRR, abs/1510.08555 (2015)

[Rob15] Roberts, D.: Behind the “exodus” of Bitcoin startups from New York
(2015). http://fortune.com/2015/08/14/bitcoin-startups-leave-new-
york-bitlicense/

[Roo17] Rootstock (2017). http://www.rsk.co/
[SC17] U.S. Securities and Exchange Commission. SEC issues investigative

report concluding DAO tokens, a digital asset, were securities (2017).
https://www.sec.gov/news/press-release/2017-131

[Sch07] Schneier, B.: Debating full disclosure (2007). https://www.schneier.com/
blog/archives/2007/01/debating full d.html

[Sec17] Securify. Formal verification of Ethereum smart contracts (2017). http://
securify.ch/

[Ser17] Serpent (2017). https://github.com/ethereum/wiki/wiki/Serpent
[SH17] Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. CoRR,

abs/1702.05511 (2017)
[Sha16] Sharding FAQ (2016). https://github.com/ethereum/wiki/wiki/

Sharding-FAQ
[SHA17] SHA-3 competition (2007–2012) (2017). http://csrc.nist.gov/groups/ST/

hash/sha-3/index.html

https://bitcoin.org/bitcoin.pdf
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://bradscholars.brad.ac.uk/handle/10454/12220
https://bradscholars.brad.ac.uk/handle/10454/12220
http://www.dfs.ny.gov/legal/regulations/bitlicense_reg_framework.htm
https://www.coindesk.com/ethereums-byzantium-testnet-just-verified-private-transaction/
https://www.coindesk.com/ethereums-byzantium-testnet-just-verified-private-transaction/
http://www.oraclize.it/
https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format
https://github.com/paritytech/parity/wiki/Warp-Sync-Snapshot-Format
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://password-hashing.net/
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://qtum.org/en/
http://raiden.network/
http://raiden.network/
http://fortune.com/2015/08/14/bitcoin-startups-leave-new-york-bitlicense/
http://fortune.com/2015/08/14/bitcoin-startups-leave-new-york-bitlicense/
http://www.rsk.co/
https://www.sec.gov/news/press-release/2017-131
https://www.schneier.com/blog/archives/2007/01/debating_full_d.html
https://www.schneier.com/blog/archives/2007/01/debating_full_d.html
http://securify.ch/
http://securify.ch/
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Ethereum: State of Knowledge and Research Perspectives 221

[Sia17] Sia (2017). https://sia.tech/
[Sil16] Siludin. Let’s talk about how poor this network is at handling any type

of major transaction traffic (2016). https://redd.it/6ifl5f
[Sir16] Gün Sirer, E.: Thoughts on The DAO hack (2016). http://

hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
[Sol17] Solidity official documentation (2017). https://solidity.readthedocs.io/
[Son17] Sonm (2017). https://sonm.io/

[STM16] Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts
for distributed ledger technology. Cryptology ePrint Archive, Report
2016/1156 (2016). http://eprint.iacr.org/2016/1156

[Sto17] Storj (2017). https://storj.io/
[Sui17] Suiche, M.: Porosity. Decompiling Ethereum smart-contracts (2017).

https://blog.comae.io/porosity-18790ee42827
[Sun17] Sunnarborg, A.: ICO investments pass VC funding in blockchain

market first (2017). https://www.coindesk.com/ico-investments-pass-vc-
funding-in-blockchain-market-first/

[SYB14] Schwartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algo-
rithm. Ripple Labs Inc White Paper (2014). https://ripple.com/files/
ripple consensus whitepaper.pdf

[SZ13] Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction processing.
Fast money grows on trees, not chains. Cryptology ePrint Archive, Report
2013/881 (2013). http://eprint.iacr.org/2013/881

[Sza17] Szabo, N.: Money, blockchains, and social scalability (2017). https://
unenumerated.blogspot.lu/2017/02/money-blockchains-and-social-
scalability.html

[Szt15] Sztorc, P.: Nothing is cheaper than proof of work (2015). http://www.
truthcoin.info/blog/pow-cheapest/

[TS15] Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey
on decentralized digital currencies. Cryptology ePrint Archive, Report
2015/464 (2015). http://eprint.iacr.org/2015/464

[VB+14] Vogelsteller, F., Buterin, V., et al.: Ethereum whitepaper (2014). https://
github.com/ethereum/wiki/wiki/White-Paper

[VBR+17] Vogelsteller, F., Buterin, V., Reitwiessner, C., Kotewicz, M., et al.:
Merkle Patricia trie specification (2017). https://github.com/ethereum/
wiki/wiki/Patricia-Tree

[Vog17] Vogelsteller, F.: ERC: token standard (2017). https://github.com/
ethereum/eips/issues/20

[VTL17] Velner, Y., Teutsch, J., Luu, L.: Smart contracts make Bitcoin mining
pools vulnerable. Cryptology ePrint Archive, Report 2017/230 (2017).
http://eprint.iacr.org/2017/230

[Woo14] Wood, G.: Ethereum: a secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151 (2014). http://yellowpaper.
io/

[Wui17] Wuille, P.: What does the term “longest chain” mean? (2017). https://
bitcoin.stackexchange.com/a/5542/31712

[ydt16] ydtm. The bug which the DAO hacker exploited was not merely in the
DAO itself (2016). https://redd.it/4opjov

[ZCC+16] Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town Crier: an
authenticated data feed for smart contracts. Cryptology ePrint Archive,
Report 2016/168 (2016). http://eprint.iacr.org/2016/168

https://sia.tech/
https://redd.it/6ifl5f
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://solidity.readthedocs.io/
https://sonm.io/
http://eprint.iacr.org/2016/1156
https://storj.io/
https://blog.comae.io/porosity-18790ee42827
https://www.coindesk.com/ico-investments-pass-vc-funding-in-blockchain-market-first/
https://www.coindesk.com/ico-investments-pass-vc-funding-in-blockchain-market-first/
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
http://eprint.iacr.org/2013/881
https://unenumerated.blogspot.lu/2017/02/money-blockchains-and-social-scalability.html
https://unenumerated.blogspot.lu/2017/02/money-blockchains-and-social-scalability.html
https://unenumerated.blogspot.lu/2017/02/money-blockchains-and-social-scalability.html
http://www.truthcoin.info/blog/pow-cheapest/
http://www.truthcoin.info/blog/pow-cheapest/
http://eprint.iacr.org/2015/464
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/eips/issues/20
https://github.com/ethereum/eips/issues/20
http://eprint.iacr.org/2017/230
http://yellowpaper.io/
http://yellowpaper.io/
https://bitcoin.stackexchange.com/a/5542/31712
https://bitcoin.stackexchange.com/a/5542/31712
https://redd.it/4opjov
http://eprint.iacr.org/2016/168

	Ethereum: State of Knowledge and Research Perspectives
	1 Introduction
	2 Technical Overview
	2.1 State and Accounts
	2.2 Transactions and Gas
	2.3 Block Structure and Mining
	2.4 Smart Contract Programming
	2.5 Applications

	3 Open Problems
	3.1 Core Protocol
	3.2 Smart Contract Programming
	3.3 Higher Level Issues

	4 Conclusion
	References

