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Preface

This volume contains the papers presented at the 10th International Symposium on
Foundations and Practice of Security (FPS 2017), which was hosted by Lorraine
Research Laboratory in Computer Science and Its Applications (LORIA), Nancy,
France, during October 23–25, 2017.

FPS 2017 attracted 53 submissions. At least three reviews were made for each
submitted paper. The decision on acceptance or rejection in the review process was
completed after intensive discussions over a one-week period. The Program Committee
accepted 17 full research papers and three short research papers for presentation. The
selected papers deal with diverse research themes, ranging from classic topics, such as
access control models, formal verification for secure protocols and network security to
emerging issues, such as security in blockchain and encrypted databases.

The best paper award of FPS 2017 was awarded to the contribution “Defending
Against Adversarial Attacks Using Statistical Hypothesis Testing” presented by Sunny
Raj, Sumit Kumar Jha, Laura Pullum, and Arvind Ramanathan. The program was
completed with three excellent invited talks given by Véronique Cortier
(LORIA-CNRS, France), Krishna Gummadi (Max Planck Institute for Software Sys-
tems, Germany), and Florian Kerschbaum (University of Waterloo, Canada).

Many people contributed to the success of FPS 2017. First, we would like to thank
all the authors who submitted their research results. The selection was a challenging
task and we sincerely thank all the Program Committee members, as well as the
external reviewers, who volunteered to read and discuss the papers. We greatly thank
the general chairs, Luigi Logrippo (Université du Québec en Outaouais, Canada) and
Jean-Yves Marion (Mines de Nancy, France), and the local organizer, Abdessamad
Imine, for the great efforts to organize and perfectly manage the logistics during the
symposium. Finally, we also want to express our gratitude to the publication chair,
Joaquin Garcia-Alfaro (Télécom SudParis), for his work on editing the proceedings.
Last but not least, thanks to all the attendees. As security becomes an essential property
in the information and communication technologies, there is a growing need to develop
efficient methods to analyze and design systems providing a high level of security and
privacy. We hope the articles in this proceedings volume will be valuable for your
professional activities in this area.

November 2017 José M. Fernandez
Abdessamad Imine

Luigi Logrippo
Jean-Yves Marion
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Attribute-Based Encryption as a Service
for Access Control in Large-Scale

Organizations

Johannes Blömer1, Peter Günther2, Volker Krummel2, and Nils Löken1(B)

1 Paderborn University, Paderborn, Germany
{johannes.bloemer,nils.loeken}@uni-paderborn.de

2 Diebold Nixdorf, Paderborn, Germany
{peter.guenther,volker.krummel}@dieboldnixdorf.com

Abstract. In this work, we propose a service infrastructure that pro-
vides confidentiality of data in the cloud. It enables information shar-
ing with fine-grained access control among multiple tenants based on
attribute-based encryption. Compared to the standard approach based
on access control lists, our encryption as a service approach allows us to
use cheap standard cloud storage in the public cloud and to mitigate a
single point of attack. We use hardware security modules to protect long-
term secret keys in the cloud. Hardware security modules provide high
security but only relatively low performance. Therefore, we use attribute-
based encryption with outsourcing to integrate hardware security mod-
ules into our micro-service oriented cloud architecture. As a result, we
achieve elasticity, high performance, and high security at the same time.

1 Introduction

Cloud computing [9] has become a popular computing model that allows enter-
prises to outsource their IT infrastructure. Resource pooling, multi-tenancy, and
elasticity enable high availability of services at low costs. A major concern with
cloud computing is security [4]. Particularly, a Cloud Service Provider (CSP)
should not learn confidential information from the data it stores or processes.
Such restrictions are imposed by data privacy laws, industry-specific regulation
and standards, or by companies willing to outsource data but worried about the
confidentiality of their secrets.

Many solutions for protecting data confidentiality in the cloud have emerged
over time. Attribute-Based Encryption (ABE) has often been proposed as a
solution, but is not deployed in practice. Solutions not based on ABE are already
deployed. Cloud storage providers, e.g. Dropbox,1 encrypt data before storage

This work was partially supported by the Federal Ministry of Education and
Research (BMBF) within the collaborate research project Securing the Financial
Cloud (SFC), grant 16KIS0058K, and the German Research Foundation (DFG)
within the Collaborative Research Centre On-The-Fly-Computing (SFB 901).

1 https://www.dropbox.com.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-75650-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_1&domain=pdf
https://www.dropbox.com


4 J. Blömer et al.

ensuring confidentiality from outsiders. Since the provider encrypts the data,
confidentiality against insiders is not guaranteed. Protection from insiders can
be achieved by client-side encryption, e.g. Cryptomator,2 or encryption as a
service, e.g. Ciphercloud.3

The latter two solutions are sufficient for individuals, but fall short of large
organizations’ needs. Typically, large organizations have members with heteroge-
neous rights to access data with rather complex policies describing such access
rights in a fine-grained manner. Both, encryption as a service and client-side
encryption do not provide fine grained access control. Additionally, with encryp-
tion as a service the encryption provider has access to plaintext data, requiring
trust in the provider. Client side-encryption partially negates the benefits of
resource pooling in the cloud.

Our contribution. In this paper we present a novel approach to fine-grained
access control as a service. Our solution leverages the cloud’s resources, while
our design ensures confidentiality of data from the CSP. It is based on three
components that are integrated into a system for access control as a service.
Particularly, we have (1) a cloud-based service for Access Control with Encryp-
tion (ACE), (2) a cloud design that complements our ACE service, and (3) an
infrastructure for identity and key management.

Our ACE service achieves fine-grained access control via Attribute-Based
Encryption (ABE) with outsourcing as defined in [7]. We exploit outsourcing
to design a cloud infrastructure complementing ACE such that ACE can take
advantage of the cloud’s resources to achieve efficiency. At the same time, our
solution ensures confidentiality of data even against insider attacks. We further-
more show how to adapt the existing infrastructure for identity and key man-
agement of large-scale organizations to the specifics of access control via ABE.
This enables user revocation without re-encryption through the application of
standard mechanisms.

Related work and discussion. Our approach to ACE is based on ABE [1,12]
with outsourcing, as introduced by Green et al. [7]. In [7] outsourcing enables
mobile devices to perform ABE decryption by limiting their computations to the
security critical part of the decryption, while the computationally expensive but
non-critical part is performed by the cloud. We use this mechanism within the
cloud to execute the security critical part of decryption on so-called hardware
security modules, thus achieving high security. We use standard cloud services
for non-critical computations, thus achieving efficiency.

Numerous papers identify issues with ABE that hinder its deployment in the
cloud, e.g. [14–18]. Issues include that (1) data integrity is not protected, (2)
fine-grained access control for write access is typically ignored, and (3) user’s
access cannot be revoked once granted. Zhao et al. [18] suggest attribute-based
signatures to address the first two issues. This proposal is rather generic and can
also be applied in our scenario. However, this is beyond the scope of this paper.
2 https://cryptomator.org.
3 https://ciphercloud.com.

https://cryptomator.org
https://ciphercloud.com
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Means to revoke users’ access rights are proposed in numerous papers
[14–17]. These papers specifically suggest modifications to ABE schemes that
allow user’s access rights to be revoked. Particularly, they propose re-encrypting
all ciphertexts that the revoked user had access to, as well as updating all the
remaining users’ cryptographic keys. This approach is very costly for all parties
involved, especially for the party who re-encrypts the ciphertexts. Therefore,
additional features are suggested to reduce the load of some parties. For exam-
ple, Yang et al. [15] and Yu et al. [16] suggest to delay the re-encryption of a
particular ciphertext until some user actually requests the ciphertext. Yu et al.
additionally use a technique similar to outsourcing [7] in order to reduce users’
loads when updating their keys: only the non-critical parts of the users’ keys
need to be updated, so key updates can be applied by a cloud server.

Achieving outsourced decryption [7] and user revocation, the scheme of Zhang
et al. [17] at a first glance looks most similar to our approach to access control
with encryption in the cloud. They consider the cloud’s structure when outsourc-
ing computations: decryption is outsourced to fog nodes, i.e. cloud resources close
(e.g. in a geographical sense) to the user. Hence, Zhang et al. increase ABE’s
efficiency using cloud resources, but in contrast to us, do not fully deploy ABE
in the cloud in a secure way.

Paper organization. In Sect. 2 we discuss how ABE can be used for access control
in the cloud. Section 3 gives a brief introduction to ABE and some of its proper-
ties. Section 4 presents ACE and its complementing cloud design. In Sect. 5 we
present the infrastructure for identity and key management. Section 6 presents
proofs of concept concerning the ABE schemes underlying ACE and the core
technologies that we have used to implement ACE. Finally, the paper is con-
cluded in Sect. 7.

2 Approaches to ABE for Cloud Infrastructures

As a starting point, we consider two basic approaches for realizing access con-
trol in the cloud via ABE. In the security-oriented approach (see Fig. 1a), we
store ABE encrypted data at a Cloud Service Provider (CSP). Encryption and
decryption of the data is handled by the user. In the service-oriented approach
(see Fig. 1b), we also store ABE encrypted data at a CSP, but encryption and
decryption of the data is handled by an encryption service in the public cloud
on the user’s behalf.

In the security-oriented method, users do not have to trust the CSP, because
all data is encrypted by the users. Since users provide own resources for ABE,
this approach does not benefit from resource pooling and elasticity in the cloud.
This method also prohibits ABE’s tight integration into complex applications
where many services process the decrypted data.

The service-oriented approach offers resource pooling and elasticity. Further-
more, it can be coupled with services for data processing. However, this method
requires users to ultimately trust the CSP.
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Fig. 1. ABE performed in a cloud environment.

In this work, we enhance the service-oriented approach with mechanisms
to obtain security similar to the security-oriented method while preserving the
elasticity of the service-oriented approach. To achieve this, we partition the com-
putations of ABE encryption and decryption into sub-services according to their
security and elasticity requirements.

3 Attribute Based Encryption with Outsourcing

We describe ABE-OS-KEM, a primitive that underlies the architecture for our
ACE service. We also cover security guarantees and requirements.

3.1 ABE-OS-KEM

Access control can be cryptographically enforced by Attribute-Based Encryption
(ABE) [1]. In ABE, ciphertexts are associated with access structures. Access
structures represent Boolean formulas consisting only of AND and OR operators.
Users hold attributes, e.g. role descriptions, represented by secret keys. Attribute
sets represent interpretations of the variables in Boolean formulas, and satisfy
an access structure if their interpretations satisfy the policy’s formula. Only
attributes satisfying a ciphertext’s policy are able to decrypt that ciphertext.

Our approach to protect the confidentiality of outsourced data follows the
KEM/DEM paradigm [8, Chap. 11.3]. The Data Encapsulation Mechanism
(DEM) with algorithms (Encrypt,Decrypt) takes keys from some key space K.
Our Key Encapsulation Mechanism (KEM) is based on ABE:

Definition 1. An ABE-KEM consists of algorithms

Setup: given a security parameter Λ, output public parameters pubABE and a
master secret mskABE.

Keygen: given pubABE, mskABE and an attribute set AID , output a user key
skABE,ID .

Encaps: given pubABE and a policy A, output a symmetric key k ∈ K and a
ciphertext CTABE.

Decaps: given pubABE, skABE,ID and ciphertext CTABE, output a symmetric
key k.
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We require for all correctly set up systems, policies A, tuples (k,CTABE) ←
Encaps(pubABE,A), and user keys skABE,ID , if the attributes in skABE,ID satisfy
A then Decaps(pubABE, skABE,ID ,CTABE) = k.

Typically, the Decaps algorithm is computationally expensive [7]. Therefore,
[7] splits the Decaps algorithm into a computationally expensive part that is
not security critical, and a security critical part that is rather efficient. Splitting
Decaps yields a variant of ABE-KEM that we call ABE-OS-KEM, as it allows
to partially outsource computations to the cloud.

Definition 2. An ABE-OS-KEM consists of the following algorithms

Setup, Keygen and Encaps, are as in Definition 1.
Transkey: given pubABE and skABE,ID , output a transformation key tk ID and a

decapsulation key skPK,ID .
Transform: given pubABE, tk ID and CTABE, output partially decrypted cipher-

text CTPK.
Decaps: given pubABE, skPK,ID and CTPK, output a symmetric key k.

We require for all correctly set up systems, policies A, tuples (k,CTABE) ←
Encaps(pubABE,A), user keys skABE,ID , and key pairs (tk ID , skPK,ID) ←
TransKey(pubABE, skABE,ID) if skABE,ID satisfies A then

Decaps(pubABE, skPK,ID ,Transform(pubABE, tk ID ,CTABE)) = k.

The original Decaps algorithm is split into two algorithms: Transform and
Decaps. The additional algorithm TransKey is required to produce separate keys
required by algorithms Transform and Decaps.

For our proof of concept implementation, we constructed an ABE-OS-KEM
based on the ciphertext-policy ABE scheme of Rouselakis and Waters [11] and
the outsourcing technique of Green et al. [7]. We present our ABE-OS-KEM in
Sect. 6.1.

3.2 Security of ABE-OS-KEM and Protection of Keys

For the security of our ABE-OS-KEM, we adopt the notion of security against
replayable chosen-ciphertext attacks (RCCA, see [7]): no reasonable adversary
learns any information about the key encapsulated in a certain ciphertext, nor
can that key be modified unnoticeably. These properties even hold for adversaries
with access to arbitrary transformation keys.

In an ABE-OS-KEM, we consider several types of keys for decryption. Keys
are categorized as critical and non-critical for security. Transformation keys
(tk ID) are non-critical. Critical keys are further classified as user-specific and
file-specific. Keys skABE,ID and skPK,ID are user-specific, while the data encap-
sulation mechanism’s symmetric keys are file-specific.

Knowledge of a user key allows decryption of ciphertexts with policies sat-
isfied by the user key. Hence, such a key is security critical. An ABE-OS-KEM
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Fig. 2. The interaction during session initialization and the sub-services’ internal states
after initialization. The user sets up the session with the session service that computes
a transformation key given to FileCrypt, which relays the transformation key to the
transformation service.

being a KEM, each file is encrypted under an individual symmetric key k. Thus,
if a symmetric key leaks, the corresponding file leaks. Thus, also the symmetric
keys have to be considered as critical to security. In an ABE-OS-KEM, trans-
formation keys tk ID are meaningless without their respective decapsulation keys
skPK,ID . Together the transformation keys and decapsulation keys have the same
decapsulation capabilities as the user keys they are derived from. The order in
which operation Transform and Decaps are performed then give the classification
of transformation keys to be non-critical and decapsulation keys to be critical
and user-specific.

4 Access Control with Encryption and Cloud Design

In this section, we describe our service for access control with encryption in
the cloud (ACE). Our goal is a service that provides the security of the security-
oriented approach from Sect. 2 and the elasticity of the service-oriented approach.
We first split ACE into sub-services based on our ABE-OS-KEM and its keys.
Then we present our model of a cloud. Subsequently, we match ACE sub-services
to the components of our cloud design. Finally, we discuss our approach in terms
of security and elasticity.

4.1 Access Control with Encryption via ABE

We aim to realize ACE via ABE using our ABE-OS-KEM. As discussed in
Sect. 3.2, several categories of keys exist in an ABE-OS-KEM. For each of the
categories, we establish a separate sub-service: a session service handling user-
specific keys, a FileCrypt service for file-specific keys, and a transformation ser-
vice handling non-critical keys. Hence, the session service implements algorithms
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Fig. 3. Interactions during file access. ABE ciphertext CTABE is transformed into
partially decrypted ciphertext CTPK by the transformation service using the trans-
formation key. The session service performs a Decaps operation on CTPK using the
decapsulation key skPK,ID and obtains k which is used by FileCrypt to decrypt CTk.
The user receives the result.

TransKey and Decaps, the transformation service implements Transform and File-
Crypt implements Encaps as well as algorithms Encrypt and Decrypt of the data
encapsulation mechanism.

We further explore our services’ interactions. Particularly, we discuss how
users set up a session with ACE and access files. We omit file uploads, because
they only involve the FileCrypt service.

The interactions for setting up a session of ACE are shown in Fig. 2. The
session service uses the user’s key skABE,ID to compute transformation key tk ID

and decapsulation key skPK,ID via algorithm TransKey. While the service keeps
the skPK,ID secret, tk ID is handed over to FileCrypt and forwarded to the trans-
formation service in the public cloud.

For decryption, the sub-services interact as shown in Fig. 3. When the user
requests an encrypted file, stored as (CTABE,CT k) in cloud storage, the trans-
formation service receives a copy of CTABE and applies algorithm Transform.
The resulting CTPK is given to the session service. The session service applies
the Decaps algorithm and gives the obtained symmetric key k to FileCrypt.
Applying the data encapsulation mechanism’s Decrypt algorithm to k and CT k

received from the cloud’s storage yields the plaintext data File that is given to
the user.

4.2 Cloud Design for ACE

As described in Sect. 2, our architecture for access control in the cloud aims at
realizing strong security as if access control and decryption were performed at
the user while leveraging the cloud’s computational resources for those tasks. In
order to achieve this goal, our cloud model must reflect the security requirements
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Fig. 4. The components of our cloud and their relation to ACE.

imposed by the sub-services of ACE. Figure 4a presents our cloud model. The
design considers storage and computational resources of the public cloud and
complements them with a trusted cloud, which consists of two components, a
TC server and a TC-HSM.

A TC server is a server with dedicated technical and organizational mea-
sures like remote attestation and memory encryption to protect the integrity of
executed software and to protect the confidentiality of processed data. A TC-
HSM is a tamper-resistant Hardware Security Module (HSM) that provides a
restricted and well-defined Application Programming Interface (API). An HSM
protects integrity and confidentiality of stored data also against attackers with
physical access to the device. Furthermore, the TC-HSM API supports run-time
initialization with user keys.

On the one hand, the TC server provides high computational power and is
able to dynamically assign its resources to executed services based on their work-
load. On the other hand, the TC server is unable to protect the confidentiality
of data against adversaries with physical access. This protection is provided by
a TC-HSM at the cost of restricted flexibility and power. In consequence, the
components of our trusted cloud achieve security by different means and thus
establish different levels of security. Both the TC-HSM and the TC server are
secure. However, its stronger guarantees make the TC-HSM fit to serve as a trust
anchor for our cloud.

4.3 Security, Execution of Services

Our division of ABE-OS-KEM’s algorithms into services reflects the security
levels required by the algorithms based on the threat that exposing their key
inputs poses. Thus, the assignment of services to the components of our cloud
model must also reflect the expected levels of security. As a result, we map our
ACE sub-services, which implement the ABE-OS-KEM, to the components of
our cloud as shown in Fig. 4b.
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As discussed in Sect. 4.2, the TC-HSM provides the highest level of security.
It is thus fit to run the session service that works on security critical user spe-
cific secrets. The TC server provides a level of security that is sufficient to run
the FileCrypt service that operates on file-specific secrets. The public cloud’s
compute servers provide no security guarantees, so they may only operate on
non-critical keys. The transformation service can be run on such servers. For
this assignment, the security needed by the three categories of ABE-OS-KEM
keys, and thus our services, match the three levels of security provided by the
components of our cloud model.

4.4 Elasticity

The partitioning of our ACE service into sub-services does not only reflect the
sensitivity of keys. It also supports elasticity because each sub-service can be
scaled individually. This provides four dimensions of elasticity: elasticity with
respect to data storage, simultaneous access to multiple files, the complexity of
access policies, and the number of active users.

Data is always stored encrypted at the storage server in the public cloud.
Hence, storage can be dynamically (de-)provisioned based on the needed amount,
the expected reliability, and the acceptable latency.

For simultaneous processing of multiple files, we distinguish between encryp-
tion (write access) and decryption (read access). Encryption of data does not
involve user keys and is performed on the TC server by the FileCrypt service.
Depending on the number of files to encrypt, the TC server provisions resources
for the FileCrypt service based on standard load balancing mechanisms. Decryp-
tion of files additionally involves the transformation service and the session ser-
vice. The transformation service is hosted in the public cloud with high elastic-
ity. The session service is executed on the TC-HSM with limited resources, but
due to the initialization (see Sect. 4.1), additional TC-HSMs can temporarily be
initialized.

For decrypting files with complex access policies, we benefit from the ABE-
OS-KEM with a separated transformation and decapsulation step. The complex-
ity of Decaps at the constrained TC-HSM is independent of the policy. Hence,
additional resources for complex policies only need to be provisioned for Trans-
form that is executed in the public cloud.

Finally, the number of active users determines the amount of provisioned
HSMs for executing the session service. Resources for the FileCrypt and trans-
formation service are provisioned during active encryption or decryption and are
freed while no data is being accessed.

5 Infrastructure for Identity and Key Management

In this section, we describe identity management, rights management, and
key management for our ABE-based ACE service. Identity management pro-
vides entities like users or hardware components with an identity and revokes
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identities. Rights management is the assignment of access rights, respectively
attributes, to identities according to their roles. Key management is the tech-
nical task of enforcing those rights using ABE and includes key generation, key
storage, and key revocation.

5.1 Tasks

Identity and rights management. As a building block, our system uses a classical
Public Key Infrastructure (PKI) with a root certificate and a corresponding
Certification Authority (CA). In a technical sense, an identity ID is a public
key with a certificate. The CA provides an entity with an identity by issuing
a certificate for the entity’s public key. Standard mechanisms like revocation
lists (see [10, Chap. 13]) are used to revoke an identity. An entity can prove its
identity or establish a secure channel with another entity based on its certificate.

An identity possesses a set of rights according to its role. In our case, these
rights correspond to a set of ABE-attributes (see Sect. 3). We encode these
attributes into the certificate of the identity during certificate generation. This
allows entities to check the rights of an identity.

ABE key storage. For our system, we apply client-side key management to put
the individual organizations in control of decryption keys (see [4]). Therefore, in
our system, each organization operates a dedicated service for ABE key storage.
The ABE decryption key skABE,ID of the user with identity ID is then stored
at the key storage of the user’s organization.

Based on the key storage, we modify the initialization of our ACE service
from Sect. 4.1 (see Fig. 5, compare Fig. 2). No user can have direct access to her
key. Instead, the user with identity ID authenticates at the key storage to obtain
a ticket for her key. The ticket is only granted to the user if she has not been
revoked by the CA. The user forwards the ticket to the session service, who, via
an authenticated channel, presents the ticket to the key store and obtains the
user’s key skABE,ID in return.

ABE key generation. For the generation of ABE user keys, we operate a global
key generation service that has access to the ABE master secret key. Take note
that the creation of user secret keys via algorithm KeyGen is independent of any
user identifier. Thus, organizations can request user keys from the key generation
service without providing user identifiers. Organizations can store the obtained
user secret keys in their respective key storages and bind the keys to users later
on. Note that the key generation service itself is beyond our considerations.

Our system explicitly supports sharing of data between identities of different
organizations. Therefore, the ABE master secret key mskABE and the corre-
sponding public parameters pubABE (see Definitions 1 and 2) are used globally
for all participating organizations.
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Fig. 5. ACE initialization with key storage: The user ID uses her credentials (e.g. pass-
word) to log in at the key storage, which checks the user’s revocation status. If the user
is not revoked, she is given a ticket ticket ID that she presents to the ACE session service.
The session service uses the ticket to obtain the user’s ABE key from the key store.

5.2 Discussion

Our system is dynamic, i.e. it is possible to add and revoke entities, as well
as changing entities’ access rights. Our system also provides separation of duties
among multiple parties. It distinguishes the technical aspects of key management
from the administrative task of rights management, and it splits responsibilities
between participating organizations.

Dynamic. To add users to the system, we generate an identity ID consisting of
a public/private key pair with a PKI-based certificate. New identities are pro-
vided with secret ABE decryption keys according to their role and corresponding
attributes. To revoke/remove users from the system we revoke their ID based
on classical revocation mechanisms of the PKI. This effectively revokes the user
from the ACE service because it prevents access to the user’s secret key skABE,ID

at the key storage. Hence, we implicitly add a key revocation mechanism to ABE
by combining ABE with classical PKI and a dedicated ABE key storage. Chang-
ing the access rights of an entity can be realized by first revoking its identity
and then providing it with a new certificate that reflects the updated rights.

Separation of duties. Our setup supports distinguishing administrative from tech-
nical duties by providing distinct services for identity and rights management
on the one side, and key storage and ABE key generation on the other side. To
separate responsibilities between organizations, each organization implements its
own identity management and operates its own service for key storage. Never-
theless, an organization could operate the key management service at a trusted
third party or in the cloud.

The CA and the ABE key generation service are operated by a trusted global
provider. To split responsibilities between organizations, we propose a hierarchi-
cal PKI with an inter-organizational master CA and additional organization-
specific CAs. ABE key generation with access to the master secret key mskABE

is a single point of attack. To mitigate this risk, we propose to apply techniques
for distributing mskABE as in [6].
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6 Proofs of Concept—ABE-OS-KEM and Infrastructure

In this section we present proofs of concept for our definition of ABE-OS-KEM
and our cloud architecture. Particularly, we provide a description of an ABE-
OS-KEM and complement it a description of how to implement our cloud archi-
tecture using cloud technology.

6.1 Our Construction of RCCA Secure ABE-OS-KEM

Our ABE-OS-KEM applies the ideas of outsourced decryption from [7] to the
Rouselakis/Waters ciphertext-policy ABE scheme [11]. As in [7], we achieve secu-
rity against replayable chosen-ciphertext attacks (RCCA, [7]) via the Fujisaki-
Okamoto transform [5]. Our architecture from Sect. 4.1, and especially the sep-
aration between the session and FileCrypt services relies on the properties of a
key encapsulation mechanism. Therefore, we have modified the original encryp-
tion scheme [7] to adhere to the definition of a key encapsulation mechanism.
Furthermore, we explicitly describe our scheme in the efficient type-III setting
of bilinear groups [3].

For convenience, we assume the data encapsulation mechanism used in con-
junction with our ABE-OS-KEM to use keys from {0, 1}Λ. The scheme is defined
as follows:

Setup(1Λ): compute RW master secret mskRW
ABE = α and public parameters

pubRWABE = ((p,G1,G2,GT , e), {gi, ui, hi, vi, wi}i∈{1,2}, e(g1, g2)α), where p is
a Λ-bit prime, G1,G2,GT are groups of prime order p, e : G1 ×G2 → GT is a
non-degenerate bilinear map and generator g1 ∈ G1, generator g2 ∈ G2 and
α ∈ Zp are chosen uniformly at random. Parameters a, b, c, d ∈ Zp are chosen
uniformly at random and are used to compute ∀i ∈ {1, 2} : ui = ga

i , hi =
gb

i , vi = gc
i , wi = gd

i . Choose hash functions F : {0, 1}∗ → Zp, H1 : GT ×
{0, 1}Λ → Zp and H2 : GT → {0, 1}Λ. Output pubABE = (pubRWABE, F,H1,H2)
and mskABE = mskRW

ABE.
Keygen(pubABE,mskABE, AID): compute RW secret key for attribute set AID ,

i.e. pick rID , ra1 , . . . , ra|AID |
$← Zp. Let K0 = gα

1 wrID
1 , K1 = grID

1 , and for

all ai ∈ AID : Kai,2 = g
rai
1 ,Kai,3 =

(
u

F (ai)
1 h1

)rai

v−rID
1 . Output skABE,ID =

(K0,K1, {Kai,2,Kai,3}ai∈AID
).

Encaps(pubABE,A): parse A as (M,ρ) with M ∈ Z
�×n
p and row labelling ρ :

[�] → {0, 1}∗. Pick R
$← GT , k

$← {0, 1}Λ. Set s := H1(R, k) and r := H2(R).
Let C ′ = k ⊕ r. Pick y2, . . . , yn, t1, . . . , t�

$← Zp. Set λ := M · (s, y2, . . . , yn)�;
denote by λi the ith component of λ. Let C := R · e(g1, g2)αs, C0 := gs

2 and

for all i ∈ [�]: Ci,1 := wλi
2 vti

2 , Ci,2 :=
(
u

F (ρ(i))
2 h2

)−ti
, Ci,3 := gti

2 . Define
CTABE := ((M,ρ), C, C ′, C0, {Ci,1, Ci,2, Ci,3}i∈[�]). Output (k,CTABE).

Transkey(pubABE, skABE, ID): pick z
$← Zp and set skPK,ID := z and

tk ID := (K ′
0 = K

1/z
0 ,K ′

1 = K
1/z
1 , {(K ′

ai,2 = K
1/z
ai,2

,K ′
ai,3 = K

1/z
ai,3

)}).
Output (skPK,ID , tk ID).
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Transform(pubABE, tk ID , CTABE): if the ciphertext is malformed or tk ID does
not satisfy A = (M,ρ), output ⊥ and exit. Otherwise, let I ⊆ [�] be a
satisfying set of A with respect to tk ID , i.e. there are bi ∈ Zp such that∑

i∈I biMi = (1, 0, . . . , 0), where Mi denotes the ith row of M . Compute B′ :=
∏

i∈I

(
e(K ′

1, Ci,1)e(K ′
ρ(i),2, Ci,2)e(K ′

ρ(i),3, Ci,3)
)bi

and B := e(K ′
0, C0)/B′.

Output CTPK = (C,C ′, B).
Decaps(pubABE, skPK,ID , CTPK): parse CTPK = (T0, T1, T2) and compute

R := T0/T z
2 , k := T1 ⊕ H2(R) and s := H2(R, k). Check whether T0 =

R · e(g1, g2)αs. If the check fails, output ⊥, otherwise output k.

The scheme’s correctness and selective RCCA security follow from the respective
properties of RW ciphertext-policy ABE [11] and the Fujisaki-Okamoto transfor-
mation [5], after applying the obvious modifications required due to outsourced
decryption.

The major performance advantage of an ABE-OS-KEM in our architecture
results from splitting the Decaps algorithm of an ABE-KEM into two separate
Transform and Decaps steps (cf. Definitions 1 and 2). The complexity of Decaps
in the ABE-OS-KEM is now independent of skABE,ID and CTABE, and hence
independent of the user’s permissions and of the ciphertext’s policy. This allows
us to handle users with a large set of permissions and complex access policies in
our cloud scenario that involves resource constrained HSMs.

In concrete instantiations, arithmetic in G1 is much more efficient than in G2

[3]. In our setting, the resource constrained HSM performs TransKey, while the
TC server executes Encaps. Our ABE-OS-KEM accounts for this by placing user
secrets Ki,j as arguments of TransKey in group G1 and ciphertext components
of Ci,j as arguments of Encaps in G2.

6.2 Implementation

As a proof of concept, we have implemented our service architecture from Sect. 4
based on the following technologies:

Docker: We have implemented the sub-services of our ACE service as sepa-
rate Docker4-based micro services. This supports elasticity and multi-tenancy
because we can create and destroy service instances for each user, based on
the current load situation.

Kubernetes: We use Kubernetes5 for orchestrating, scheduling, and monitoring
the ACE sub-services. We operate a Kubernetes cluster that consists of four
nodes. Each node runs with an Intel Xeon E3 at 2.3 GHz and 8 GB RAM.

RabbitMQ: We have implemented a queue between the FileCrypt service and
the session service based on RabbitMQ.6 Then, our queuing mechanisms
allows us to dynamically assign TC-HSMs to active users.

4 https://docker.com.
5 https://kubernetes.io.
6 https://www.rabbitmq.com.

https://docker.com
https://kubernetes.io
https://www.rabbitmq.com
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Amazon S3: The FileCrypt service is compatible with the Amazon S37 inter-
face. Hence, we can use a commercial cloud storage provider to host the
encrypted files.

WebDAV: We have implemented a WebDAV service as the user front-end
to ACE, with the session service serving as its back-end. Our implemen-
tation extends the Go8 WebDAV implementation to support ABE policies.
The extension passes policies as so-called WebDAV dead properties to the
FileCrypt service. Since standard WebDAV clients do not support this mech-
anism, we have implemented a graphical user interface that allows us to define
policies for file upload (encryption).

Our implementation shows that it is practical to implement an ABE service with
modern cloud technology.

7 Future Work

As part of future research, we will enhance our design by various services. In
particular, we want to realize a service for searchable encryption as introduced
by Song et al. [13], granting authorized users the ability to efficiently search
encrypted data. Another line of future research aims at including the multi-
authority feature of Chase [2] into our cloud. The multi-authority feature allows
the cloud resources of to be pooled among multiple instantiations of the cloud,
while keeping everything beyond the hardware separate. This can help with
removing the single trusted global provider for key generation that we assume
in Sect. 5.1.
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Abstract. Decentralized online social networks (DOSNs) have adopted
quite coarse-grained policies for sharing messages with friends of friends
(i.e., resharing). They either forbid it completely or allow resharing of
messages only without any possibility to constrain their subsequent dis-
tribution. In this article, we present a novel enforcement mechanism
for securing resharing in DOSNs by relationship-based access control
and user-determined privacy policies. Our mechanism supports reshar-
ing and offers users control over their messages after resharing. More-
over, it addresses the fact that DOSNs are run by multiple providers and
honors users’ choices of which providers they trust. We clarify how our
mechanism can be effectively implemented by a prototype for the DOSN
Diaspora*. Our experimental evaluation shows that controlling privacy
with our prototype causes only a rather small performance overhead.

Keywords: Decentralized online social networks · Privacy
Access control

1 Introduction

Online social networks (OSNs) are web-based services that offer users the func-
tionality to share messages with other users. A decentralized online social net-
work (DOSN) [12] is an OSN that is supported by multiple service providers.
In a DOSN, a user can choose a provider whom she trusts most to store her
profile. Typical OSNs provide an author with means for sharing a message with
the set of users she categorized as ‘friends’, ‘colleagues’, etc. As of today, DOSNs
allow authors to share sensitive messages with selectable sets of users but forbid
resharing of sensitive messages entirely.1

1 Even the centralized OSN Facebook supports controlled resharing only with users
with whom the message had been already shared with. The alternative in Facebook is
uncontrolled sharing where users may arbitrarily reshare messages that they receive.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 18–34, 2018.
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A better support of controlled resharing in DOSNs would be beneficial. Con-
sider, for instance, a user who visits various US national parks. Before the trip,
she had informed her friends early that she will visit the US and later informed
them about the exact route and the dates of her visits. During the trip, she
enjoys the landscape and sharing pictures with her friends. For privacy reasons,
she wants to control spreading of this information: pictures should remain among
her direct friends and dates of her visit among her friends and her friends’ clos-
est friends. Her motivation for limiting spreading of the dates of her trip could
be to not provoke burglary [25]. She is less concerned about distributing the
mere fact that she is visiting US national parks. This information may be dis-
tributed further, but without becoming public. This scenario illustrates the need
for providing fine-grained control over sharing, resharing, and the distribution of
reshared messages. We refer to the combination of these three forms of controlled
information dissemination by the term controlled resharing.

In this article, we propose a privacy enforcement mechanism for controlled
resharing in DOSNs. Our mechanism enables users to specify by privacy policies
to which extent messages that they are sharing with others may be distributed
further. Our mechanism provides control over the dissemination of messages
inside a DOSN, ensuring that the privacy policies of all users are respected.

Conceptually, our enforcement of privacy policies is based on relationship-
based access control (ReBAC) [13,15]. When checking authorization, we take
the relationships of all users into account who were involved in delivering a
message to the user who wishes to distribute this message further. Technically,
we capture the relationship between users by trust values, where each user can
define her personal trust values for categories of users. The decision whether a
received message may be distributed to some category of users is made based on
the concept of trust concatenation [19].

We developed an implementation of our ReBAC mechanism2 for Diaspora*
[18], at the time of writing the most popular DOSN [28]. To accommodate the
distributed nature of DOSNs, our mechanism also has a distributed architecture.
We chose a design that supports making authorization decisions in a decentral-
ized fashion to avoid a single point of failure and performance bottlenecks. As
underlying technological platform, we chose the CliSeAu tool [16]. This combi-
nation of design decisions results in a solution for enforcing controlled resharing
in Diaspora* that is both, effective and efficient. In our performance evaluation,
we observed an overhead of less than 2% for resharing in the domain of the same
provider and of less than 4% when controlling resharing across providers.

2 Definition of Privacy Policies

After the author of a message m has shared m with a collection of categories
(such as ‘friends’, ‘family’, or ‘colleagues’), some users in these categories might
reshare m with others, some recipients of such a reshared message might reshare
m again, and so on. To capture how a message has been delivered from its author
2 Available at http://www.mais.informatik.tu-darmstadt.de/CReDiC.html.

http://www.mais.informatik.tu-darmstadt.de/CReDiC.html
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u1 to a set Cn of categories, we use lists of the form (u1,C1, . . . , un,Cn), which
we call reshare paths.

For instance, the reshare path (Alice, {Colleagues,Friends},Bob, {Family})
captures the sharing of a message by Alice with her friends and colleagues and
the subsequent resharing by recipient Bob with his family.

When resharing a message, the author risks that recipients might abuse sen-
sitive content. Hence, the distribution of sensitive messages needs to be limited
to receivers whom the author sufficiently trusts. The role of trust in making the
decision to share or not to share a message is well captured by the notion of
decision trust, “the extent to which one party is willing to depend on something
or somebody in a given situation with a feeling of relative security, even though
negative consequences are possible” [22].

We model the trust of a user u in her category c by a scalar trust value from
the interval [0, 1], where greater values mean greater trust. The maximal trust
value 1 means that u trusts users in c as much as herself wrt. the propagation of
her messages. The minimal trust value 0 means that u does not have any trust
in users in c wrt. propagation. We capture the trust values of a user, along with
the user’s categories and relationships to other users in the user’s privacy policy:

Definition 1. A privacy policy of a user u is a triple ppu = (CATu , relu , tvu),
where CATu is a set, relu ⊆ CATu × USER is a binary relation and
tvu : CATu → [0, 1] is a function. A privacy policy for a set of users U ⊆ USER
is a family (ppu)u∈U of privacy policies for each user in U .

In a privacy policy, CATu specifies all categories of u. The relation relu
captures which other users are in the categories of user u. For instance,
relAlice(Friends,Bob) captures that Bob is a member of Alice’s Friends category.
The function tvu captures the trust of user u in her categories. We impose no
further constraints on privacy policies. Hence, through relAlice(Colleagues,Alice)
and tvAlice(Colleagues) = 0.5, Alice could specify a medium trust in herself as
a colleague.

Intuitively, relu specifies which users from the universe USER of all users
may receive a message that u (re)shares with a particular category. That is, relu
captures an expectation of u about the visibility of messages that she shares with
her categories. The function tvu captures a complementary aspect, namely to
which extent u trusts users in her categories to propagate her sensitive messages.

Sensitivity of messages is not part of privacy profiles. We capture the sen-
sitivity of messages for authors by values in [0, 1] (greater values mean greater
sensitivity).

We denote the trust of a message’s author in a recipient u ′, who obtained a
message m via a reshare path π, under a privacy policy (ppu)u∈U for a set U
comprising all users in π by PT ((ppu)u∈U , π, u ′). We define PT ((ppu)u∈U , π, u ′)
recursively over the length of the reshare path:

PT ((ppu)u∈U , (u,C ), u ′) = max({tvu(c) | c ∈ C ∧ relu(c, u ′)} ∪ {0})
PT ((ppu)u∈U , π.(u,C ), u ′) = PT ((ppu)u∈U , π, u) · PT ((ppu)u∈U , (u,C ), u ′)
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That is, if a user u ′ received a message m from m’s author u directly, then the
trust of u in u ′ via (u,C ) equals u’s maximal trust value for a category of u
from C that u ′ is in. If there is no such category, then the trust of u in u ′ is 0.
If u ′ received m via a longer path π then the trust of m’s author in u ′ via π is
the product of the trust values for each (re)sharing of m by a user along π. We
discuss the choice in Sect. 6. The product of trust values ensures that prolonged
paths yield a decreased trust value.

We make the semantics of privacy policies and their impact on sharing and
resharing of messages more precise by the following definitions. As a prerequisite
for the definitions, we say that a reshare path (u,C ) (resp. π.(u,C )) is a reshare
path to user u ′ iff relu(c, u ′) holds for some category c ∈ C .

Definition 2. Sharing of a message m with sensitivity value s ∈ [0, 1] by a user
u with a set of categories C complies with a privacy policy (ppu)u∈U if and only
if s �= 1 holds, C ⊆ CATu holds, and (u,C ) is a reshare path to u ′ for all users
u ′ who receive m due to this sharing.

Definition 3. Let sc ∈ [0, 1] be arbitrary. Resharing of a message m with sen-
sitivity value s ∈ [0, 1] which had been received via a reshare path π, by a user u
with a set C of categories complies with a privacy policy (ppu)u∈U if and only
if s �= 1 holds; C ⊆ CATu holds; (u,C ) is a reshare path to u ′ for all users u ′

who receive m due to this sharing; and PT ((ppu)u∈U , π, u) ≥ sc
1−s .

The inequality condition introduced in Definition 3 establishes a lower bound on
the trust for resharing ( sc

1−s ) that the author of a message can raise through an
increased sensitivity value. Note that Definition 3 is parametric in sc ∈ [0, 1],
where higher values of sc are more restrictive. We refer to this parameter as
sensitivity coefficient. For instance, the sensitivity coefficient sc = 0.35 ensures
that resharing is completely forbidden along reshare paths π with low trust
(PT < 0.3), is allowed for low-sensitivity messages (s < 0.3) along reshare paths
π with medium trust (0.5 ≤ PT ≤ 0.6), and is completely forbidden for messages
with a sensitivity value above 0.65. Sensitivity coefficients have been used before
in the semantics of privacy policies for controlling the direct sharing of messages
between users. For instance, Kumari et al. [24] propose sensitivity coefficients
for different kinds of operations. Definition 3 transfers this concept to resharing.

Our privacy policies augment what can typically be found in OSNs, namely
categories of users, by trust and sensitivity. Based on these ingredients in pri-
vacy policies, we define when sharing and resharing are compliant. Since the pre-
sented semantics leaves underspecified how users’ privacy policies are obtained
for checking compliance, the semantics supports a decentralized storage of poli-
cies as well as dynamically changing policies.

3 The ReBAC Mechanism

We chose a distributed architecture for our mechanism to accommodate the
distributed nature of DOSNs. Each service provider of a protected DOSN is
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supervised by a separate controller. The controller at a provider ensures that
all sharing/resharing actions of users whose profiles the provider stores comply
with the privacy policies of all users, not only of users hosted at the provider.

In the design of our ReBAC mechanism, we assume that a user’s messages are
only distributed to service providers who are controlled by our mechanism and
who can be trusted to not circumvent our control. This could be achieved, e.g.,
by corresponding legal agreements between service providers: Service providers
who did not sign the agreement are excluded from receiving certain messages by
providers who signed the agreement.

Our mechanism provides no protection against communication outside the
DOSN. For instance, a user with whom a message has been shared or reshared
inside the DOSN might take this message and communicate it to others via email
or might use the browser to copy the message text and paste it, possibly with
modifications, into a new message in the DOSN. This risk cannot be completely
mitigated by technical means. Users should take this aspect into account when
specifying trust values and when admitting users to their categories. A user who
is distrusted should not be given a sensitive message in the first place.

Finally, we assume that the implementation of sharing/resharing with cate-
gories in the DOSN is sound in the sense that when a user shares or reshares a
message m with a category c then only users in c receive m.

3.1 Decentralized Control of Resharing

The purpose of our ReBAC mechanism is to ensure that privacy policies of all
users are obeyed when sharing and resharing messages inside a DOSN. Since
we assume the DOSN to soundly implement sharing and resharing of mes-
sages with categories, compliance of sharing is ensured by the DOSN (recall
Definition 2). Our controllers therefore do not control the sharing of a message
by a user. Compliance of resharing, however is only partially ensured by the
DOSN, leaving one crucial condition to be ensured by our controllers (recall
Definition 3). When a user u who obtained a message m via a reshare path π
attempts to reshare m with a set C of categories, our controller therefore checks:
Does PT ((ppu)u∈U , π, u) ≥ sc

1−s hold? (C)

Intuitively, the check (C) ensures that the trust of m’s author into u is suffi-
ciently high to reshare m with other users. The check involves the privacy policy
of (at least) all users in π, which are part of the users’ profiles and, hence, pos-
sibly stored at another service provider than u’s. For enabling the controllers
to perform the check, our controllers establish the availability of all relevant
information by coordination as follows.

Sharing m of sensitivity s by u at provider sp with categories C :
When this action is performed, the controller at sp disseminates the following
information to the controller of each service provider sp′ with a recipient of m:
the initial reshare path, the sensitivity s, and for each recipient u ′ the trust
value PT (ppu , (u,C ), u ′). Figure 1 (left) shows the dissemination procedure
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in pseudo-code. For the sharing, it is invoked with the empty path π and the
value pt = 1 representing the trust value for the empty path. Each recipient
stores the values for controlling future reshares.

Resharing m by user u at provider sp with categories C :
When this action is performed, the controller checks whether the action com-
plies with users’ privacy policies by performing check (C). If the check suc-
ceeds, then the controller disseminates the reshare path, sensitivity, and trust
values to all affected service providers, as in the case of sharing. Otherwise,
the controller disallows the resharing. Figure 1 (right) shows the procedure
in pseudo-code. For the check, the controller uses its local privacy policies
(ppu)sp(u) = sp as well as the value pt1 obtained when m was delivered to
the controller’s service provider. If m was never received from another service
provider (i.e., π1 is empty), then pt1 = 1.

The coordination among controllers follows the propagation of messages. When
a sharing/resharing causes a message to be delivered to another service provider,
the information exchanged by the controllers enables the receiving controllers to
perform check (C) for future reshares. No further communication among the con-
trollers is then required for this check. That is, all coordination is decentralized.

Fig. 1. Algorithms for decentralized coordination among controllers

3.2 Decentralized Control with Timely Policies

The approach presented in Sect. 3.1 has the virtue to require no coordination
among controllers for checking whether a reshare complies with users’ privacy
policies. This virtue comes with a drawback, which we address in this section:
When a controller checks whether a reshare of a message obtained from another
service provider is compliant, it might rely on outdated privacy policies underly-
ing the pt-value for π1 in Fig. 1. That is, once a message has been shared/reshared
with users at another provider, changes of privacy policies by users at the
author’s service provider cannot influence the further propagation of the message
anymore.
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We propose a decentralized approach for checking whether a reshare complies
with timely privacy policies of users. The key idea behind our approach is to
have the controllers perform a decentralized computation of the check (C) and
to refrain from any proactive distribution of privacy profile information. For the
decentralized computation, we transform the check (C) slightly to:

Does (1 − s) · PT ((ppu)u∈U , π, u) ≥ sc hold? (C’)

The left-hand side of (C’) contains all profile information (the privacy poli-
cies and the sensitivity value) and is the subject to the decentralized computa-
tion. Notably, in general none of s, (ppu)u∈U , and π is known to the controller
performing the check. Suppose a user u wants to reshare a message m. The
decentralized computation proceeds in four phases:

Phase 1: The controller at u’s service provider queries the user u ′ from which
u received m. The controller then delegates check (C’) to the controller at
the service provider of u ′. The latter controller queries the reshare path π =
(u1,C1, . . . , un,Cn) of m to u ′ = un.

Phase 2: The controller for un delegates the check to the controller for u1, along
with π. The controller for u1 queries the sensitivity value s for m and initializes
result R of the decentralized computation by assigning R ← 1−s.

Phase 3: The active controller (initially the controller for u1) takes the longest
prefix π1 of π such that all users in π1 have their profiles at the service
provider of the controller. The controller then updates the result by assigning
R ← R · PT ((ppu)u∈U , π1, u2), where U contains all users in π1 and where
u2 is the first user in the remaining suffix π2 of π. If π2 is non-empty, the
controller delegates the further computation, along with R for the result and
π2 for the reshare path, to the controller of u2, which then proceeds in Phase
3. If π2 is empty, then Phase 4 is entered.

Phase 4: The active controller (for un) checks whether R ≥ sc holds. Depending
on the result of the check, the controller sends the decision to allow or to
disallow the reshare to the controller of u. The controller for u implements
this decision and records π for future reshares.

In Phase 1, we exploit that the user u ′ who (re)shared message m is part
of m. Moreover, the controller at un knows π for m, as established inductively
over the length of the reshare path in Phase 4. In Phase 2, we exploit that the
sensitivity value s for m is stored at the service provider of u1.

Figure 2 visualizes the four phases for the case that all users on the reshare
path are at different service providers (SPi), each of which having its individ-
ual controller (con@SPi). The coordination is triggered by the controller at u’s
service provider. The four phases then sequentially activate the remaining con-
trollers in the ordering indicated by the arrows.

The computation we propose avoids to gather users’ privacy policies at a cen-
tral location. Only intermediate computation results are provided to the involved
controllers and are subsequently discarded again. The computation leads the
mechanism to effectively check (C) in a decentralized fashion based on timely
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Fig. 2. Coordination for decentralized control with timely policies

privacy policies of users. The coordination among controllers in the computa-
tion follows the ordering of service providers in π, which ensures that successively
involved providers are bound by contract.

3.3 Optimized Coordination

We propose two optimizations for reducing the amount of coordination in the
decentralized computation presented in Sect. 3.2.

The first optimization applies when a service provider occurs more than once
in a reshare path but other service providers occur in between. The optimization
augments Phase 1, in which the controller for un additionally computes the set
SP of all service providers in π and passes this set to the subsequent phases.
Phase 3 is replaced by the following:

Phase 3’: The controller computes R′ = R·
∏

ui∈U PT (ppui
, (ui,Ci), ui+1), where

U is the set of all users whose profile is stored at the service provider of the
controller and where un+1 = u. The controller then removes itself from SP . If
the resulting set is empty, then Phase 4 is entered. Otherwise, the controller
delegates the further computation, along with R′ for the result, the updated
SP , and with the unchanged reshare path π, to some controller in SP who
then proceeds in Phase 3’.

In Phase 3’, each controller is activated at most once. The optimization is sound
and precise due to the associativity and commutativity of multiplication. How-
ever, it does in general not preserve that service providers of successively involved
controllers are bound by contract.

The second optimization particularly affects long reshare paths and reshare
paths containing low trust values. It augments Phase 3 by the additional abort
condition Is R′ < sc? that triggers the transition to Phase 4. With this condi-
tion, the computation terminates once a sufficiently low intermediate result R is
encountered. The optimization is sound and precise because the product in the
definition of function PT is monotonically decreasing in further factors, as each
of the factors equals a trust value tvu(c) ∈ [0, 1]. Both optimizations can soundly
and precisely be combined, and each maintains a decentralized computation.
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4 A Prototype for Diaspora*

To demonstrate the feasibility of our ReBAC mechanism, we developed CReDiC,
short for Controlled Resharing in Diaspora* with CliSeAu. CReDiC implements
the mechanism for Diaspora*, the popular open-source DOSN. The implemen-
tation utilizes timely privacy policies (as described in Sect. 3.2) with optimized
coordination (as described in Sect. 3.3). Diaspora* is a suitable candidate for
CReDiC as its sharing and resharing with categories is sound. As the underlying
technological platform of CReDiC, we utilize CliSeAu [16].

4.1 CliSeAu for Ruby

CliSeAu is a tool for dynamic policy enforcement in distributed programs [16].
Previously, it supported enforcement for Java programs only. We developed an
extended variant of CliSeAu that supports enforcement for Ruby programs in
addition. This was necessary for building CReDiC on top of CliSeAu, as Dias-
pora* is implemented in Ruby. Our extension utilizes Aquarium [30] for instru-
menting Ruby programs. It consists of 244 lines of Java code and 38 lines of
Ruby code.

Our extension of CliSeAu retains the high-level architecture and the coor-
dination model used by CliSeAu for the mechanisms it generates. That is, the
mechanisms consist of (ECs), placed at the individual components of the dis-
tributed target program. At runtime, each EC intercepts policy-relevant events of
one component of the target, makes decisions for intercepted events, and enforces
the decisions made. The developer of an enforcement mechanism using CliSeAu
can specify the events to intercept, the decision-making, the enforcement, and
the coordination among multiple ECs.

4.2 Mapping Diaspora* on Our Trust Model

We instantiate the trust model introduced in Sect. 2 for Diaspora* as fol-
lows. Diaspora* supports that users organize their acquaintances into categories
(called “aspects” in Diaspora*) and that users can change the set of their cat-
egories from the default categories provided by Diaspora*. A user’s set of cate-
gories corresponds to the set CATu in our model. An acquaintance is either in a
category of a user or not, which is captured by the relations relu in our model.
When a user wants to share/reshare a message, she can select one or multiple
of her categories to share with. This corresponds to how we model sharing and
resharing with sets of categories.

Trust and sensitivity values are not supported by Diaspora*. We augment
Diaspora* by trust values for categories by suffixing the category names with
their trust value – e.g., “family (0.9)”. Our mechanism separates name and trust
value again to allow users to change trust by renaming the category. We simulate
the sensitivity value of a message by utilizing the least trust value among the
categories with which the message is shared.
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Diaspora* prohibits resharing of sensitive messages, i.e., of messages not clas-
sified as ‘public’. We enable our trust model for resharing by eliminating this
constraint. Since Diaspora* does not allow users to specify categories for reshar-
ing and rather delivers a reshared message to all users who are related to the
resharing user, we simulate the categories for a reshare by taking all categories
of the resharing user. Technically, we implemented this as a patch to Diaspora*
(version 0.5.3.1) consisting of 22 deleted and 20 inserted lines of code.

4.3 The Prototype

We implemented CReDiC as a policy for the CliSeAu tool. This policy specifies
one EC for each service provider (called “pod” in Diaspora*). The ECs run at the
respective providers and are responsible for controlling the reshares performed
by users at that provider. Notably, the ECs establish the same decentralized
architecture as the DOSN and neither introduce any centralized component nor
impose requirements on users’ client software.

For controlling reshares, CReDiC specifies one method of Diaspora* to be
intercepted. When a call to this method is intercepted by an EC at runtime,
this EC extracts, from the arguments passed to the method, the user u who
attempts to reshare a message as well as the message m to be reshared. With
this information, the EC cooperates with other ECs of the DOSN as described in
Sects. 3.2 and 3.3 for determining whether the attempted reshare complies with
the users’ privacy policies.

CReDiC obtains trust values by monitoring changes of category names in
profiles of users (recall that we encode the trust values in the names). It obtains
sensitivity values by monitoring newly shared messages. For this monitoring,
CReDiC intercepts four methods of the Diaspora* code. They allow CReDiC to
keep track of dynamically changing privacy policies at the respective EC and
take them into account for controlling resharing.

CReDiC is modular, consisting of eight individual components that we call
“micro-policies”. Four micro-policies handle changes of users’ privacy policies
and the storage of sensitivity values. The other four micro-policies handle the
four phases for resharing. This separation yielded a low code complexity (each
micro-policy is implemented in at most 41 lines of code). Figure 3 depicts the
micro-policies (shaded boxes), their triggers (white boxes with solid arrows), and
their temporal ordering (uncontinuous arrows). The trigger for a micro-policy is
either an event of a service provider or a delegation received from another EC.
The modularization allows a phase to take place at the same controller as the
previous phase (dotted arrows) or at a different one (dashed arrows). The figure
displays dash-dotted arrows where both cases are possible.

CReDiC globally fixes the sensitivity coefficient to sc = 0.35. Note that the
particular coordination model of CliSeAu based on delegation allows CReDiC to
control simultaneously occurring reshares in an interleaved fashion, without wait-
ing for the completion of all four phases for each individual reshare. For securing
the communication between the ECs, CReDiC utilizes CliSeAu’s SSL feature.
With this feature, a certificate infrastructure is automatically generated for the
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Fig. 3. Modular architecture of controllers based on eight micro-policies

individual ECs such that authenticity and confidentiality of the cooperation is
maintained in presence of a network attacker. Overall, the implementation of
CReDiC consists of 614 source lines of Java source code and additional 184 lines
of Ruby code that realizes the interface to the Diaspora* code.

4.4 Deployment and Usage

As the provider of a Diaspora* pod, one can deploy CReDiC in two steps.
First, one patches the code of the pod by applying the small patch described in
Sect. 4.2. This step can be performed automatically with the GNU patch tool.
Second, one instruments the code of the pod with CReDiC. This step is per-
formed automatically by invoking the extended version of CliSeAu, described in
Sect. 4.1, with CReDiC as a parameter.

Once CReDiC is deployed to a Diaspora* pod, controlled resharing is enabled
in the pod. Users specify their privacy policies via the accustomed Diaspora* web
interface. Concretely, a user specifies her set of categories and the users in these
categories as she would in normal Diaspora*. She can specify and update her
trust in categories by modifying the trust value contained in the category name
(as described in Sect. 4.2). In particular, users need not use further interfaces to
specify their privacy policies or benefit from CReDiC’s controlled resharing.

4.5 Analysis

We conducted several tests to verify the effectiveness of CReDiC. Concretely,
we verified CReDiC for three policy-compliant cases of resharing: resharing a
message from the pod on which it was initially shared, resharing from a dif-
ferent pod, and re-resharing a message involving three pods. We also verified
for corresponding non-compliant cases that CReDiC successfully prohibits the
resharing. That is, the tests confirmed that CReDiC effectively enforces users’
privacy policies. During the tests, the ECs of all pods involved in a reshare path
were online during the resharing. Since DOSN pods typically aim to be available
to their users, CReDiC does not implement a fallback strategy for offline pods.

Our ReBAC mechanism and our prototype scale as follows. The number
of controllers (ECs) is independent in the number of users in the DOSN and



ReBAC for Resharing in DOSNs 29

Fig. 4. Example scenario for the performance evaluation

grows linearly in the number of pods. The amount of network communication
performed for the reshare of a message grows linearly in the number of pods in
the reshare path of the message. This is due to our first optimization described
in Sect. 3.3. In particular, no network communication takes place between the
controllers when the reshare path involves only a single pod or when a user
changes her privacy policy. The computational complexity grows linearly in the
length of the reshare path: for each element of the path, one lookup of a trust
value and one multiplication. Because our prototype duplicates users’ privacy
policies in its own state and stores reshare paths, the memory required by each
EC grows linearly in the number of pod users’ categories and in their number of
shares and reshares.

5 Performance Evaluation

Being a mechanism that operates while the DOSN Diaspora* is running, CReDiC
necessarily introduces some overhead. We evaluate how much overhead is caused
with experiments in which we measure and compare the time taken by Diaspora*
for resharing with and without CReDiC.

For the performance evaluation, we used three machines with Intel
Quad-Core i5-4590 (3.3 GHz) CPUs and 32 GB RAM. The machines ran
Ubuntu 14.04.2 with 3.13.0 kernel. We ran three patched Diaspora* pods
(see Sect. 4.2) in production mode with Ruby 2.1.1, Apache 2.4.7, and a
MySQL 5.5.54 database. Four user profiles were hosted by the three pods. We
measured page fetch times using curl 7.52.1 on an Intel Quad-Core i7-6600U
(2.6 GHz) with 16 GB RAM. All four machines were connected in a 1 Gbps LAN.
We use a setup consisting of four users. Figure 4 displays the users (shaded boxes)
and their association with the pods (white boxes). Users’ privacy policies are
indicated by arrows: An arrow from user u to user u ′ labeled with category c
and trust value t represents that relu(c, u ′) holds and tvu(c) = t . That is, users’
trust in categories is repeated on all arrows with the same source and same
category label.

Table 1 shows our results. For each analyzed operation, the table contains a
separate row. The first column shows the names of the operations, the second and
third column show the durations of the operations in Diaspora* when CReDiC
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Table 1. Performance evaluation results

Operation Duration Overhead

CReDiC Diaspora* Absolute Relative

Share message 231.5 ms 230.3 ms 1.2 ms 0.52%

Reshare (intra) 294.6 ms 290.7 ms 3.9 ms 1.34%

Reshare (inter) 294.3 ms 281.8 ms 12.5 ms 4.44%

Change trust 36.0 ms 31.1 ms 4.9 ms 15.76%

is enabled and, respectively, disabled. The fourth and fifth column show the
absolute and relative overhead.

Sharing a message took 231.5 ms with CReDiC enabled, compared to 230.3 ms
with CReDiC disabled, which corresponds to an overhead of 1.2 ms (0.52%). For
resharing, we evaluated two cases: intra-provider resharing, where Alice reshares
a message by Dave with her friends and colleages, and inter-provider resharing,
where Bob reshares a message by Alice with his friends. For the two opera-
tions, the overhead of CReDiC ranges from 3.9 ms to 12.5 ms (1.34% to 4.44%).
CReDiC’s overhead on dynamically changing trust between users was 4.9 ms
(15.76%, due to the low baseline duration of 31.1 ms). Each duration value in
Table 1 reflects the mean of the lower 90th% of 1000 measurements [27].

Overall, CReDiC maintains a rather small performance overhead. An at first
sight counterintuitive result of the evaluation is that inter-provider resharing in
Diaspora* is faster than intra-provider resharing. However, Diaspora* notifies
remote users asynchronously about reshared messages while users at the same
pod are notified synchronously. In our scenario, inter-provider resharing notifies
both recipients (Alice and Charlie) asynchronously while intra-provider resharing
includes one synchronous update (Dave).

6 Related Work

Underlying our model of trust, presented in Sect. 2, are two main design deci-
sions. Firstly, we model trust as scalar values ranging from 0 to 1, which can
be found also elsewhere in the literature [4,17,23]. Alternatives found in the
literature are models of trust based on vectors of scalars (e.g., [21]). Through
vectors of scalars, individual aspects of trust such as belief and disbelief in users
[21] or ability, integrity, and benevolence of users [26] can be captured in a more
fine-grained fashion. We build our trust model on scalar trust values rather than
vectors to give users means for quantifying their relationships while taking into
account that specifying trust vectors might be a burden users refrain to take.

Secondly, our model utilizes a particular notion of trust concatenation (mul-
tiplication) and selects a single path (the reshare path) for capturing trust of
an author in a resharing user. Multiplication for concatenating scalar trust val-
ues has been proposed before [4,23]. Alternative models for scalar trust values
have been proposed as well. These models combine some form of multiplicative
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concatenation of trust with the aggregation of trust along multiple paths, for
instance via weighted sums of path trust [17] or maximal path trust [23]. Fur-
ther models for trust concatenation are based on trust vectors (e.g., [19]). In
defining compliance with users’ privacy policies based on the reshare path and
no further paths between users, we see two advantages: reduced complexity and
context-dependence. By context-dependence we mean that we consider the trust
along the list of users who have actually seen and reshared the message, rather
than users’ reputations. That is, our choice of trust value reflects the notion of
decision trust, which by definition is associated with a situational context. Fur-
ther validation of our model or comparison to other models, e.g., by means of
user studies, are beyond the scope of this article.

In our scenario, authors of messages are the sole owners of their messages.
Multiparty access control (e.g., [20]) is outside the scope of this article.

The desire to control sharing and resharing has lead to the proposal of several
centralized approaches. Fong et al. [6,13,14] propose a model of OSNs, a ReBAC
model, and a language for expressing ReBAC policies. Relationships between
users are modeled as binary relations on users. The policy language is a modal
logic on the relations of the OSN that allows specifying constraints on resharing
and subsequent distribution. The ReBAC mechanism for OSNs by Carminati et
al. [8] enforces privacy policies of authors that can specify the maximum length of
reshare paths, the minimal concatenated trust value, or relationship categories.
The access control is shared between the requesting user, who provides a proof of
being authorized to access the resource, and the resource provider, who checks
the proof. Virtual Private Social Networks [3,9] are social networks built on
centralized OSNs like Facebook but achieve privacy of user information at the
client-side via a browser extension. This line of work focuses on controlled sharing
of messages, not controlled resharing. SCUTA [24] is a usage control mechanism
for centralized control of sharing in OSNs. The mechanism controls users’ client-
side operations, such as viewing, saving, and printing content.

Mechanisms for DOSNs have also been proposed. Albertini et al. [1] propose
an access control mechanism for cloud-based OSNs. The proposed mechanism
supports resharing but introduces centralized components, KMS and RMS, for
storing keys and access rules. While the mechanism utilizes encryption for users’
keys and access rules transmitted to KMS and RMS, colluding KMS and RMS
could reveal the plain data. Bahri et al. [2] propose a mechanism for a-posteriori
access control in a DOSN, which also relies on a centralized component (called
TReMa). Our mechanism, in contrast, features a fully decentralized architec-
ture. Safebook [10,11] and PeerSoN [5,7] are DOSNs for protecting privacy of
user data. Both DOSNs include a mechanism for controlled sharing of messages.
Controlled resharing is beyond their scope. GEM [29] is a distributed goal evalu-
ation algorithm for datalog-like policies. The goal in our trust model (compliance
according to Definition 3) is of a simpler but quantitative nature that cannot be
specified as a goal for GEM. D-FOAF [23] is a distributed identity management
system on top of trust relationships between users in multiple OSNs. D-FOAF
computes the trust between two users by gathering trust values of all paths
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between requester and owner at one location. Our mechanism computes trust
between two users based on a single path (the reshare path) and computes path
trust in a distributed fashion to keep users’ privacy policies decentralized.

7 Conclusion

We presented a novel enforcement mechanism that supports more fine-grained
privacy policies for resharing of messages than popular OSNs like Facebook and
DOSNs like Diaspora*. Our ReBAC mechanism enables controlled sharing and
resharing of messages among users hosted at one service provider of a DOSN and
also among users hosted at different providers. The mechanism enforces personal
privacy policies of users inside a DOSN based on ReBAC. As usual for such
access control mechanisms, malicious communication outside the DOSN is not
prevented. We demonstrated that the mechanism can be effectively implemented
by a prototype for Diaspora* and showed that its performance overhead is small.

Our mechanism complements mechanisms for controlled sharing in OSNs by
which authors know and explicitly specify the supposed recipients of messages.

Enabling authors to better control how their messages spread after resharing
shall allow them to permit resharing more often, without uncontrollable dangers
to their privacy. Thus, users can securely increase their outreach in DOSNs like
Diaspora* and develop new personal connections with users who have received
their messages via trusted others.
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Abstract. This paper deals with the maintenance of PKI certificates
for Attribute Based Access Control (ABAC). We show, that the cur-
rent standard has several problems in different revocation and delega-
tion processes. This may lead to a security hole allowing usage of ABAC
certificates, when it was revoked or transferred. As a solution we sug-
gest architecture changes, that allow to perform revocation and transfer
checks in such cases, based on extensions of the validation process of
the ABAC certificates. We also discuss some privacy and performance
challenges that are raised as a result of our proposal.

1 Introduction

The authorization process is one of the most important issues of the access
control challenge. The classical approach of authorization is based on a concept
of identification. Identification is a process that defines uniquely the subject
that asks for permission, to the asset that provides it. Usually, the latter isn’t
defined specifically for a subject, but is bound to groups. The model of defining
those groups and managing the mapping of subjects and permissions to them is
usually referred to as RBAC - Role Based Access Control. RBAC is a De-Facto
standard of authorization, and has many important advantages. However, there
are some limitations in this approach, that make it hard to implement in certain
scenarios. The most important limitation is its binary approach - the subject
can only belong to, or not belong to a role. In scenarios where it is desired
to calculate permissions using some logic, this approach is hard to implement.
Another limitation of RBAC, is that a decision to add a subject to a role has
to be driven by the actual permissions of this role, and not intuitively bound to
the subject itself.

Another authorization approach, that is more flexible than RBAC, is ABAC
(Attribute Based Access Control). This approach, introduced in McCollum et al.
(1990), suggests that the permission decisions will be taken by the asset based
on the attributes’ values of the subject. Unlike roles, attributes do not grant per-
missions directly, but try to describe the subject itself. The permission decision
is based on two independent processes. The first is a description of a user by an
Attribute Authority (AA) using several attributes. The second is the calculation
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that the asset manager performs, based on those attributes, which results with
an access decision.

Figure 1 illustrates the basic authorization process of ABAC.

Fig. 1. Scheme of ABAC authorization

A subject asks the
AA to prove some of
its attributes. The AA
returns a ticket that proves
them. Now the subject can
use this ticket to prove
the attribute to the asset.
When the asset gets the
ticket’s attributes, it uses
the values as an input to
an internal set of rules,
which enable it to decide
whether the asked permis-
sion should be allowed.

An important advantage of ABAC, which is critical to distributed environ-
ments, is that there can be a number of different AAs providing attributes. An
asset can make decisions using reputation based calculations, such as introduced
in Xiong and Liu (2004). For example, an asset Bank wants to calculate a credit
rate of a subject User, who has asked for a loan. User will be asked to provide
attributes of AMaritalStatus, of AChildrenNumber, and of AAverageAccountSum with
value of daily average sum of money in the account belonging to the user. The
Bank can then assign importance of 5 to marital status, then to add to the
credit rate, a 1 for each child but not to more than for 3 children, and to define
thresholds for the average sum from −4 to 5. Final rank will be calculated by the
sum of the values. Such attributes based calculations are an essential property
of ABAC.

Modern ABAC environments also have the ability to provide the users with
delegation and transfer of attributes. Li et al. (2003) defines two delegation types,
which are important to a full usage of decentralized environment. The first is
the delegation of an attribute authority, i.e. trust of one entity on a judgment of
another. An example of such a delegation is a situation where medical qualifica-
tion of a doctor is proved to the patient by Ministry of Health of one country,
based on his certification done in Ministry of Health of another. The second type
of delegation, which extends the previous one, is attribute based delegation. This
means that some AA will trust the judgment of another AA, if the latter has
some attribute. An example of such a delegation is a situation where medical
qualification of a doctor is proved to the patient by Ministry of Health, based
on his certification done in any organization that has an attribute of Medical
School. Unlike the previous case, the MOH doesn’t necessarily trust the schools
specifically, but trusts their certification.

An important enabler of the ABAC approach, that actually allows its decen-
tralization, is the concept of Attribute Certificates (AC). The concept, firstly
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suggested in McCollum et al. (1990) and standardized in Housley et al. (1999),
combines ABAC with PKI. In classical PKI, we use digital signatures of CA
(Certificate Authority) on a certificate, as an identity proof of the certificate’s
holder. In ABAC PKI, we use the digital signature of the AA on a certificate
as a proof that the certificate holder has some attribute with a certain value.
In addition to that, Linn and Nystrom (1999) suggested the use of anonymous
certificates, i.e. ACs providing only the attributes themselves. This, in combina-
tion with a flexible protocol suggested in Blaze et al. (1998), allows ABAC to be
useful in scenarios where privacy is very important.

In the field of access control, permissions revocation is as important as per-
missions grant. ACs provide a simple ability to treat revocation process with
tools of PKI, and those tools were adopted by the AC’s standard Farrel et al.
(2010). One of the differences of the latter standard from the previous ones is
that it recommends not to use AC chains. Unfortunately, following this recom-
mendation will not allow delegation process. On the other hand, as we will show
in Sect. 3, when AC chains are in use, revocation mechanisms of AC standards
do not cover all cases in which the certificates shall be disabled. This includes
the case of cascading revocations while inference property was used and in some
cases of attribute transfer. Our paper will suggest ways to widen the revocation
model of ACs, so that revocation will effectively work also in those cases.

One of the strengths of decentralized ABAC approach is its ability to provide
good level of privacy. The AC contains only the information the asset needs to
make authorization decisions, so minimal personal data is exposed to the asset.
This data isn’t sent to the attributes’ provider when it is used by the asset,
so the usage is not exposed to the data provider. When we suggest to make
protocol changes in the AC standard it is important to us not to weaken this
ABAC property. In Sect. 5 we explore the issue and suggest different solutions
to this concern.

The main contribution of this paper is a solution proposal for the risks of
inconsistency of cascade revocation and cascade delegation of ACs, which can be
an enabler to secure usage of AC chains. In Sect. 2 we present related work and
discuss the current standards of AC. In Sect. 3 we discuss the security inconsis-
tencies of the revocation processes and suggest the infrastructure and protocol
changes to treat them. In Sect. 4 we present the needed algorithms’ changes to
support the model. In Sect. 5 we present some challenges of our proposal and
suggest approaches to solve them. We conclude in Sect. 6.

2 Related Work

Linn and Nystrom (1999) provides the basis of modern design for Attribute
Certificates. The main issue was the creation of certificates that prove some
attribute and not only user identity, so the authorization decisions could be based
on them. They also proposed a basic inheritance and revocation scheme, based on
the usage of classical PKI inheritance and revocation. That work also suggested
the use of anonymous certificates, i.e. a certificate that does not contain identity
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details, in order to improve the privacy of the holder. This approach was explored
further and created a framework such as U-prove (Paquin and Zaverucha 2011).

Farrel et al. (2010) is the current standard for use of attribute certificates
and it summarizes the work done in that field until 2010. It also deals with
revocation and delegation, and suggests the usage of classical PKI approach to
them including the use of CRLs (Certificate Revocation Lists). Due to the fact
that the administration of AC chains is complex, the standard recommends not
to use them. In our work we show one consequence of that complexity - the
current standard does not cover some possibilities of malicious use of ACs after
revocation or transfer. We also suggest a solution to that security hole.

A totally different approach to revocation, introduced by Rivest (1998), sug-
gested avoiding at all the usage of CRL. This is achieved by making the certificate
life period short enough. The idea wasn’t accepted in the classical PKI, but it
was adapted for ACs in Thompson et al. (2003). In our work we don’t rely on
that technique, since there are practical scenarios when long living certificates
are needed.

Ye et al. (2006) propose a model for delegation, based on attributes, which
is also important to our work. The model includes an attribute allowing to per-
form delegation of certain role and an attribute allowing to receive delegation of
certain role. Though the work deals with the RBAC model, the approach allows
decentralized delegation, based on the mentioned attributes, so the central man-
ager, in advance, determines delegation rules and any participant can perform
or receive delegation according to them. In ABAC this is a central idea.

Crampton and Khambhammettu (2008) defines several types of delegation,
including strong transfer where the delegator loses all its rights after the transfer.
We will show how strong transfer is incorporated in our model in the next section.

Earlier we mentioned that Linn and Nystrom (1999) proposed the usage of
anonymous certificates. Those certificates have the benefit of privacy but create
challenges in the revocation process, since the asset cannot connect a misbehavior
to a certain user. The problem of creation of a protocol, that suggests correct
balance between revocation efficiency and user privacy, is also a challenge in other
fields of security research. One solution was suggested in Lou and Ren (2009),
uses the idea of a Trusted Third Party (TTP), a proxy participant that masks
the usage from different participants of the authorization negotiation process.
Another approach is presented in Win et al. (2012). This work, that comes
from the field of Digital Rights Management, proposes a scheme for revocation
requests of assets, based on anonymous certificates. We will suggest to use both
approaches as solutions to privacy concerns, later in our work.

Revocation check demands performance costs from the subject, and can even
lead to Denial of Service attacks (Hinarejos et al. 2010). Improvements in effi-
ciency of that check was a subject to wide research. In our work we will suggest
to adopt ideas of CRL efficient structure of Naor and Nissim (2000), of PREON
algorithm of Hinarejos et al. (2010) and of CREV-1 algorithm of Yap (2011) to
make performance improvements of that process.
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There is also a non-CRL revocation approach proposed by Boneh et al.
(2001), which is based on key compromise solution of Rivest (1998). This app-
roach allows to minimize risks of DoS attacks and improve revocation perfor-
mance. We plan to incorporate some of these ideas in future work.

3 Revocation Issues

Revocation is one of the most important issues in the PKI model. It deals with
situations where the issuer decides that the certificate shall become not valid
before it reaches its validity date. That can happen when new information is
received about the subject or when his private key is lost or stolen.

In distributed environment the issuer has no way to know where the cer-
tificate could be used. That is why all PKI standards contain a way in which
the asset can check certificate’s revocation status. Usually, the check is based on
CRL - a list of all revoked certificates, that is published by the issuer, and can
be downloaded or checked on-line during login process. As we will show in this
section, in case of ACs there are revocation situations where the check cannot
be done. Therefore, there is a need to extend the classical CRL protocol to treat
ABAC properly.

3.1 Inference Cascade Revocation

Inference means the ability of one AA to sign an AC for a subject, based on
ACs it got from other AAs. The former AC is referred to as result certificate.
The latter as a reason certificate. The value of a specific field of the result AC
is calculated from values of the reason ACs. The process can be repeated. The
chain of ACs can be described as a reversed tree with current AC as a root,
vertexes as reason ACs, and arrows describing calculations.

Fig. 2. Tree of attribute value calculation.

In Fig. 2, we see
an example of such
a tree. Attp stands
for some attribute.
Att1 and Att2 are
two attributes who’s
values’ average is a
value of Attp. Att1
value is calculated as
sum of Att11 and
Att12 values. And
Att12 value is cal-
culated from Att121
value by some rule.
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Revocation is a challenge when inference is used. In case one of the reason
certificates is revoked and this certificate had proved some attribute that is crit-
ical to the issuance of the result AC, the result certificate shall also be revoked.
And if there is a path in an inference tree of critical reason certificates, we expect
that revocation of AC in the deepest level will lead to revocation of all the path.
Unfortunately, classical CRL protocols allow assets to check issuance chain but
not inference chain. AC format, described in Farrel et al. (2010) has no fields
that show the inference connection. This is why the authority which issued the
result certificate doesn’t necessarily know about the revocation of the reason
one, and therefore the derived certificates and all its descendants remain valid.

Problem Example: An attribute authority AAsch gives certificates allowing
work in schools to anyone who has B.Ed degree, proved by authority AAed, and
has no legal violations, proved by authority AApolice. Some person can get the
needed Aed and Apolice certificates, provide them to AAsch, and get certificate
A. According to current attribute certificate’s standard, this certificate has no
clear linkage to Aed and Apolice. It will be provided solely to assets (schools) as
a permission to work. In case the holder is convicted in some criminal activity,
his Apolice certificate will be revoked. But since A has no link to its ancestor, it
will remain valid.

One solution to the challenge, which follows the recommendation of Farrel
et al. (2010) not to use AC chains, is to put the revocation responsibility in such
case on the shoulders of AA. The AA can monitor revocation of each reason
certificates it ever used for its valid issuances, and when finding a revocation,
to revoke the result certificates. But because of the overhead it puts on the AA
and low effectiveness of the solution, we will suggest a different approach.

Our proposal to the issue is to add an extension to the current Attribute
Certificate standard and create an infrastructure to support it. This extension
is based on an idea that during the process of AC creation, an AA should define
which certificates were critical to the AC construction, and consequently, their
revocation shall lead to AC revocation. In our paper they will be referred to as
Mandatory Certificates - MC. And since dependency decisions are transitive, all
MCs of any Mandatory Certificate of a reason AC, shall also become MCs of the
AC itself, and so on, recursively.

The certificate extension will contain a list of certificates’ details. For each
certificate we will store its ID and link to CRL. Those fields allow an asset to
check the revocation of each Mandatory Certificate of the AC. Since the process
is done against each CRL server, the Certificate ID will be unique. Consequently,
the scenario of a user using a certificate that is based on the revoked one, will be
prevented. We will not save details of the certificate itself but only the required
meta-data, in order to keep better level of privacy.

3.2 Transfer Delegation Revocation

Delegation is one of the most important properties of ABAC, since it allows
decentralization of access control. Linn and Nystrom (1999) proposed a PKI
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implementation to the delegation process. In their suggestion, a delegator issues a
certificate to a delegatee. This certificate can contain partial or full attributes the
delegator has. When the delagatee uses this certificate to get authorization from
an asset, he should preserve not only his certificate, but also all the delegation
chain starting from some trusted AA. The PKI delegation is combined in Farrel
et al. (2010) with the idea of delegation attributes of Ye et al. (2006). When
the delegation process is allowed, the AA adds to the AC an attribute that
indicates that. It can also add a set of rules for delegation (for instance - maximal
number of allowed delegations or delegation type). When delegation happens,
the delegator shall fulfill the rules defined in his certificate, and add the same
or stricter delegation rules to the delegatee certificate. The asset that checks a
delegated attribute, also checks the legality of all the delegation path - signature
of each certificate by its parent, its revocation status and its legality against the
rules defined by the parent.

Transfer delegation. Crampton and Khambhammettu (2008) defines different
types of delegation, and specifically transfer delegation. In transfer delegation a
delegator loses the transfered attribute when the delegatee gets it. In centrally
managed environment it can be done easily by indication of central authorization
authority. But in PKI standards the transfer operation is not defined. AC dele-
gation, that is implemented via processes of certificate issuance and revocation,
actually allows the delegator to continue using his certificate after transfer or to
transfer it to more than one delegatee. Another problem can happen when the
AA wishes to demand strong transfer delegation. According to Crampton and
Khambhammettu (2008) when strong transfer occurs, all attributes that were
given because of the transfered attribute, will be revoked. The problem is similar
to the Inference cascading revocation issue: Since the asset doesn’t know that
the reason certificate was transferred, it accepts the result AC that should have
been revoked.

The easiest way to deal with transfer delegation problems is not to use AC
Transfer delegation. In real life this type of delegation is not used widely. How-
ever, we believe that transfer extension adds important advantages in attributes’
usage versatility and flexibility.

In order to solve the transfer delegation revocation issues we suggest to make
two extensions to the protocol.

The first one demands creation of a suitable infrastructure. We propose here
the concept of Certificate Transfer List(CTL), which is similar to Certificate
Revocation List of PKI. In our proposal each Attribute Authority that issues a
transferable certificate adds into it the field of CTL location. The owner of an
attribute certificate gets the permission (by its attribute certificate) to add the
transfer fact to the list or delete it when the transfer is stopped. The transfer
list also contains the field of ID and public key of a new certificate.

When the asset gets a certificate that can be transferred, it first checks
whether a transfer was already done. If yes, it checks in the CTL whether the
transfer was actually done, and whether it was done to this subject. If a chain
of transfers was performed, all the chain should be written to the CTL and all
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CTL locations of the chain must be the same. In that way, at any moment there
can be only one valid certificate with the given attribute. The transferrer can use
the attribute only before he writes it to the CTL, and the transferee can only
use it after. Issuance of more than one certificate can’t be done, as the transferee
certificate virtual identity is also part of the Transfer List.

In order to allow Strong Transfer and to allow transfer treatment in cascade
inference certificates, we propose to widen the Inference extension discussed ear-
lier. Unlike the case of regular certificates, transfered AC shall be treated as
chains. That means that mandatory certificate list shall contain, in addition to
regular certificates’ links discussed earlier, also members of type transfer certifi-
cate. This kind of member is built of the fields of common CTL, pairs of ID
and CRL, and a binary field denoting whether it is Strong Transfer. The asset
that checks a transfer certificate shall scan the CTL and check that all the chain
exists, all certificates are valid, and that the last ID wasn’t transfered.

-

Fig. 3. Table of mandatory certificates.

Figure 3 illustrates an
example of a table that can
be added to the AC accord-
ing to our proposal. The
treated scenario is of Repu-
tation AA that provides cer-
tificates of financial risk. In
this specific case, the central
parameters for risk calcula-
tion were person’s clearance
status (proved by AC from
Police Department AA in the
first row), his education level
(proved by AC from Ministry
of Education AA in the second row, that was given based on his degree proved
by AC from the Open University AA in the third row), real estate he owns
(proved by strong transferable AC from Land Authority AA in the fourth row),
the car he owns (proved by non-strong transferable AC from Ministry of Trans-
port AA that was issued to someone else and transfered to him in the fifth row),
and details of the bank account he uses (proved by strong transferable AC from
Free Bank AA, that was issued to one person, transfered to another and then
transfered to our subject). As we suggested, the rows have only IDs and links to
relevant lists, so no actual value of any attribute is exposed.

The proposed changes are incorporated in the algorithms which are described
and explained in the next section.

4 The New Algorithms

Our proposal leads to changes of four algorithms in the AC model.
Certificate creation should be changed to allow addition of mandatory cer-

tificates table to the AC. Certificate delegation process should be changed to
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include registration of transfer fact in the Transfer List. The delegation revo-
cation process should be changed to include transfer status change in the CTL.
AC validity check process should be changed to include checks of correctness
of all MCs. Regular certificate revocation process remains the same as in
classical AC protocol and therefore won’t be added here.

We assume here that all CTLs and CRLs are accessible. The other case shall
be treated according to asset policy and can vary in different cases.

Next we present the algorithms.

4.1 Certificate Creation

This algorithm is performed by the Attribute Authority. It doesn’t deal with pro-
cesses of attributes calculation and specific fields values (which is unique to each
AA and each type of certificate), but only with creation of fields needed for consis-
tency checks. The algorithm builds the MC table of a new certificate. Instruction
3.1 sets the validity of AC to be minimal of all its MCs. Instruction 3.2 adds the
MC table of each MC to the table of AC (so recursively all inference chains are
added). The table is built of MCs and of their MC tables’ members. For trans-
ferable certificates the CTL is added to the MC. Sections 3.4–3.5 treat transfer:
Signs whether the transfer is strong and add the transfer chain to the certificate.

1. Create all needed attributes
2. Define Mandatory Certificates
3. For each Certificate in Mandatory Certificates:
3.1 ValidUntil = min (ValidUntil, Certificate.ValidUntil)
3.2 For each Line in Certificate.MandatoryCertificatesTable

Add Line to MandatoryCertificatesTable
3.3 Add [Certificate.ID, Certificate.CRL]
to MandatoryCertificateTableLine
3.4 If Certificate isTransferable and TransferType = Strong
3.4.1 Add Certificate.CTL to CertificateLine.CTL
3.4.2 Add all certificates IDs in transfer chain
to CertificateLine.TransferChainList
3.4.3 CertificateLine.isStrongTransfer = TRUE
3.5 Else If Certificate is Transferred
3.5.1 Add Certificate.CTL to CertificateLine.CTL
3.5.2 Add all certificates IDs in transfer chain

to CertificateLine.TransferChainList
3.5.3 CertificateLine.isStrongTransfer = FALSE
3.6 Add CertificateLine to MandatoryCertificatesTable

Example: We will follow the example illustrated in Fig. 3. Instruction 3.2 is
relevant to AC given by Ministry of Education. Since this AC has MC table of
his own, with AC given by Open University there, this Open University line will
be copied to current MC table. Instruction 3.3 adds CRL locations of all ACs.
Instruction 3.4 is relevant to Land AC and Free Bank AC. For both the CTL
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and the sign of strong transfer are written via instruction 3.4.1. For Free Bank,
the attribute is itself transfered, and therefore instruction 3.4.2 copies the IDs of
its Attribute Transfer chain (8248216 that issued 546582 that issued the current
certificate 85426642) to the Transfer List field. Instruction 3.5 is relevant to
Transport certificate, which is transfered, though it isn’t strong. Instruction 3.5.1
saves its CTL, and 3.5.2 its PKI chain (9374903 that issued current 85236472).
See 4th line in the figure.

4.2 Certificate Delegation

This algorithm is performed by a delegator in order to make delegation. The
delegator creates and signs the delegatee certificate, and, in case of transfer del-
egation, adds the fact to the CTL. Re-delegation is treated in the same way.

1. Create delegateeCertificate
2. Add delegatorCertificate to delegateeCertificate.SignersChain
3. If delegation type = Transfer
3.1 If delegator already transfered certificate Return Error.
3.2 Else
3.2.1 delegateeCertificate.CTL = delegatorCertificate.CTL
3.2.2 Add [delegatorCertificate.ID, deleateeCertificate.ID,

delegateeCertificate.signature] to
TransferList -> delegatorTable

4. Sign delegateeCertificate

Example: We will follow the example of FreeBank AC illustrated in Fig. 3. Free
bank gave the AC of the account owning to ID 8248216. That owner transfered
it to 546582, and the latter to 85426642. Each delegator constructed and signed
the delegatee AC via instructions 1, 2. Since instruction 3 is relevant, instruction
3.2.1 adds link to CTL (https://FreeBank.com/accounts/ctl) to ACs of delega-
tees. After the two transfers, the FreeBank CTL will have the section for 8248216
transfers. Instruction 3.2.2 will add two lines: 8248216 − > 546582 and 546582
− > 85426642. see line 6 in the figure.

4.3 Delegation Revocation

This algorithm is performed by a delegator that wants to stop the delegation. The
revocation is done by deleting all transfers from the delegatee and later from the
CTL. This way each certificate transfered later will be considered invalid by the
CTL check.

1. Add delegatee.CertificateID to delegatee.CRL
2. If delegationType = Transfer
2.1 Delete all lines in TransferList
from delegatee and further down

Example: We will follow the above example of FreeBank AC illustrated in
Fig. 3. If 8248216 decides to stop the transfer, both CTL lines will be deleted.

https://FreeBank.com/accounts/ctl
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4.4 Certificate Validation During Access Check

This algorithm is part of access check algorithm. It is performed by the asset.
After it is finished correctly, the asset can use the values of the attributes signed
in the certificate, to calculate the subject’s permissions. The algorithm checks the
general certificate validity, and for certificates that were transfered to the subject,
it checks whether the transfer is still in the CTL, and for strong transferable
certificates, it checks in the CTL that they were not transfered elsewhere.

1. Make full X.509 validity checks. If failed return FALSE.
2. For each Certificate in Signers chain from current to root
2.1 If Parent.mode = Transfer
2.1.1 If Parent.Certificate.ID not in (Parent.Certificate.CTL)
return FALSE

2.2. For each CertificateID in Mandatory Certificate Table
2.2.1 If CertificateID in list CRLLocation return FALSE
2.2.2 If CTL exist
2.2.2.1 If the transfer order in CTL is NOT the same as in

TransferChainList return FALSE
2.2.2.2 If isStrongTransfer and
CertificateID in CTL and not last
return FALSE
3. Return TRUE

Example: We will follow the example illustrated in Fig. 3, with different revo-
cation scenarios. Let’s assume that reason AC of our Reputation AC, direct or
indirect, is revoked. Since all of them are in MC table constructed by algorithm
4.1, instruction 2.2 will check their CRL, and 2.2.1 return revocation error.

Let’s assume that the subject transfered his land ownership to somebody
else. Algorithm 4.2 will create line in Land Authority CTL for this transfer. If
he tries to use our Reputation AC, instruction 2.2.2 will check the CTL of Land
Authority, and instruction 2.2.2.2 will find out that current AC is a delegator,
so the algorithm will return revocation error.

Let’s assume that the owner of Free Bank account decides to stop its transfer.
He will change the CTL, as demonstrated in Sect. 4.3. If this happened before
Reputation AA started his work, instruction 2.1.1 will return validity error and
the AA won’t build the certificate. However, if reputation AC already exists, the
asset validity check will find the revocation via instruction 2.2.2.1.

5 Challenges and Solutions

In this section we show different challenges that are raised as a result of our
proposal and suggest solutions to them.
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5.1 Privacy and Confidentiality Challenge

As we’ve mentioned before, ABAC authorization process involves three actors:
the subject, the asset and the AA. Any actor is interested in minimal disclosure
of its personal data to others. The subject is interested in Privacy. Therefore,
it would like to prevent the asset from getting any of its attributes that are
not explicitly needed to authorization decisions, and to prevent the AA from
discovering the usage of the attributes it issued. The AA is interested in Con-
fidentiality. Therefore it would like to prevent the asset from discovering the
values’ calculation algorithm, and specifically, which attributes were used for
the calculation. The asset is interested in Confidentiality and Privacy. Therefore
it would like to prevent the AA from discovering which attributes were used and
why.

Metadata Challenge. Our suggestions contain additions to the AC format
that create a Privacy challenge. Unlike in a standard AC, our AC contains fields
that point to CRLs and CTLs of MCs, and this data is available to the asset.
As a result, there are a few scenarios that can lead to abuse, even if the AC is
anonymous:

First scenario is of a malicious asset, which can try to find more information
about a subject than required. A key to such an abuse is the fact that the link
to the CRL contains meaningful meta-data: Who certified the attribute. This
meta-data allows to discover authorities the AA relies on. In certain cases it is
easy to guess which attribute it can be, and respectively to see which attributes
the subject has. Moreover, a comparison of different ACs can help the asset to
guess how the inference attributes influence the result that the AA produces,
and to compromise the AA confidentiality.

Another scenario is of a malicious AA. When the AA gets a request for a CRL
check from the asset, it finds out what is the subject’s usage for the certificate
(whether direct or by inference), violating subject’s privacy. In addition, the AA
that is a part of an inference chain, and gets a CRL check from a latter AA in
the process of construction of the final AC, can easily use it to understand the
trust algorithm of the asset and of the different AAs.

Revocation Request Challenge. Win et al. (2012) exposed a built-in collision
between the demand to anonymity and the ability to make an efficient revocation.
In our work we assumed that the revocation situations were initiated by the AA
when it got some external information about a user. However, there are common
scenarios of revocation, which involve a report of some assets to the AA, that
certain subject has misused the credentials he got. The same is true in case of
delegation. Unfortunately, such a report can enable the AA or the delegator to
understand for which purposes the AC was used (or tried to be used). This can
violate the subject’s privacy and the asset confidentiality.
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5.2 Performance Challenge

Personal certificates have only little impact on performance problems, since they
are not used very often, and usually only during the login process. Attribute cer-
tificates are different - they can be used for any authorization demand. There-
fore, the performance of the certificate check process is important. Revocation
checks are time consuming, especially because of network problems. Our proposal
demands increase in time consumption in three ways.

The first is by the fact that MC table is added and should be treated in each
check. This increase is tiny, since it is treated entirely by and in the SP.

The second is in transfer revocation process, where in case of re-delegation
the full chain of transfer shall be deleted. This increase is also very small, since
it is treated entirely in the CTL, happens only once and adds only one network
connection.

The third and the most significant impact is caused by the CRL and CTL
check. Each row of MC table invokes such a check and demands separate network
connection. Although those connections can be treated parallely, we still add
some impact on the revocation process, and wait for the last answer.

In extreme cases, the check process can be even used as a mechanism for
a denial of service attacks. All CRL solutions are known for being sensitive to
such attacks, especially in case of a single publish server Adams and Zuccherato
(1998). In the AC case, as long as there are more validations than with regular
certificates, as they are more complicated (for CTL), and are done more often -
the danger of DoS is larger.

5.3 Challenges Solutions

In order to address the above challenges we suggest two different approaches.
One is based on Trusted Third Party and is more centralized, and another on
Semi-trusted Mediator and more connected to certificates solution. We will show
how they can solve the above issues and what are the advantages of each one.
However, the full comparison between them, and a detailed formalization of their
usage is beyond the scope of this work.

Trusted Third Party. TTP is a concept suggested by Lou and Ren (2009).
It means an external revocation proxy. Its idea is to prevent the case where
any single actor knows enough information to abuse it for additional knowledge
extraction. In our case, during AC creation, the AA writes the real MC table
to some proxy server, and put in the AC links to that server. When an asset
validates the AC, it will turn to the TTP, which will look for valid CRLs and
CTLs and return a result.

The TTP is also a good platform for misbehavior reports treatment. When
an asset suspects a problem with the AC, it can report it to the TTP. The
TTP shall save statistics of such reports, and report to the AA that created a
problematic AC, when their severity, number or any other metric reaches the
predefined threshold. The AA will get the suspicions but not the assets that
raised them.
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In order to solve the performance issues, the TTP can act as a cache proxy.
Unlike the regular proxy, the cache proxy contains not only links but also the
data itself. In our case the TTP will periodically sample each MC CRL and CTL
and save the general AC status. During the validation process the asset will have
to make only single and simple status checks against the TTP and not all the
checks against all MCs’ AAs.

Cache proxy has the risk of revocation time increase. Therefore it is important
to reduce it. We suggest a combination of two techniques. The first is a usage of
CREV-1 algorithm described in Yap (2011) to notify the TTPs with changes. The
other is a stateless subscription TTPs to CRL and CTL changes, as described
in Naor and Nissim (2000). If TTPs get revocation notifications, in both ways,
from the AAs and other TTPs, the risk becomes lower.

Semi-trusted Mediator. The SEM concept in classical PKI, suggested by
Boneh et al. (2001) is very different from the regular CRL. It suggests to prevent
the need in revocation publisher via the usage of dual-stage PKI scheme - half of
the keys is given to the user and half to an on-line semi-trusted server. Both halfs
are needed to encrypt or decrypt a message. When some certificate is revoked
all such servers are instructed not to cooperate with its holder anymore.

An adaptation to the AC case will demand an AC holder to get validity
tokens for the AC itself and for each MC. All those tokens will be given to the
asset during authorization process, as a validity proof. To allow that, the AA
will create another pair of keys for each AC and give them to SEM.

In our adaptation we would use the concept of accumulator. It was firstly
introduced by Benaloh and de Mare (1993), and adapted by Camenisch and
Lysyanskaya (2002) and Camenisch et al. (2009), to an efficient revocation tech-
nique for anonymous credentials. The model is based on Zero Knowledge proof
of a validity token (witness). In our case each SEM will provide accumulator
service, and the MCs of an AC will be treated similarly to credentials treatment
in the original model.

An important advantage of the concept is that most of the validity work is
done by the client. Consequently, performance issues of an asset are reduced sig-
nificantly and denial of service attacks are hard to implement. Another advantage
is the fact that there is no need to use the publish infrastructure. Note also that
though the performance concern is in general reduced, the SEM approach still
requires more computational overhead because of the cryptographic operations
during validity check.

The concept also helps to reduce privacy concerns, as there is no direct
connection between the assets and the AAs. Therefore scenarios of AAs that
understand the usage of ACs are prevented. In order to find a complete solution
to the meta-data concerns, we suggest a naming convention for semi-trusted
servers that doesn’t involve AA information and usage of the same SEM for
different AAs.

The issue of misbehavior report is not solved natively in this approach. In
order to treat it we suggest to send reports to the SEM server. We also propose
that during the creation of an AC, the AA shall instruct the SEM on which
misbehavior thresholds to stop cooperate with an AC.
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6 Summary and Future Work

ABAC certificates enable decentralized and flexible mechanism for treatment
of the authorization process. Currently their revocation and transfer processes
can lead to inconsistency, and therefore should be limited. Our proposal allows
to solve this inconsistency and provides a flexible protocol for revocation and
delegation. On the other hand, the proposal raises privacy and performance
concerns, and we presented some ideas for their treatment. It is also a base for
future work that can extend the current model to become a new full secure model
for ABAC certificates.

A basic further work on the suggested model is its extension to more com-
plicated cases of dependencies between certificates. Our current model treats a
basic case where any ancestor revocation shall lead to a descendant revocation.
However, it is not always the case, due to the fact that ABAC allows the AA to
make decisions based on a group of provided certificates. It is clear that a cor-
rect treatment of complicated dependencies will involve creation of an assertion
language that shall allow the AA to create description of checks to revocation.
This language will have all classical logical operators, such as OR, AND, One
Of, etc. In addition, further work shall explore an issue of a treatment that will
reduce the ability of a conspiracy between different actors in order to find more
information. Our model prevents an ability of a single actor to abuse the data
it gets, but it can and should be widened to enhance confidentiality and privacy
of all the actors when different participants collude to get extra information.

In general, we believe that our suggestions and their future extensions can
make AC usage more flexible and secure, and therefore allow ABAC approach
to be accepted in scenarios in which it is limited today.
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2 LORIA, Université de Lorraine, INRIA, CNRS, Nancy, France
jannik.dreier@loria.fr

Abstract. When trying to prove the security of a protocol, one usually
analyzes the protocol in isolation, i.e., in a network with no other proto-
cols. But in reality, there will be many protocols operating on the same
network, maybe even sharing data including keys, and an intruder may
use messages of one protocol to break another. We call that a multi-
protocol attack. In this paper, we try to find such attacks using the
Tamarin prover. We analyze both examples that were previously ana-
lyzed by hand or using other tools, and find novel attacks.

1 Introduction

When analyzing the security of protocols, one aims at proving specific security
properties. The most common types of properties are secrecy, meaning that an
intruder cannot know a secret value, and authentication, meaning that if A thinks
he is talking to B, then he is really talking to B. In our digitalized world there
are more and more cryptographic protocols everywhere, and we want to verify
them to ensure their security.

It is not realistic to assume that a protocol is running alone in the network,
and in the real world, an intruder can try to use messages of other protocols in
the network to break a protocol. That is what we call a multi-protocol attack.

More precisely, we study the following problem of multi-protocols attacks.
Given two protocols that ensure a certain security property in isolation, are
they still safe for this property if we put them together in the same network?
Unsurprisingly there exist many combinations of protocols where this is not the
case, i.e., where we can mount multi-protocols attacks.

There are a lot of tools for automatic analysis of security properties, like
ProVerif [3], AVISPA [2], Athena [27], Scyther [12], or Tamarin [23]. But they
are generally used to analyze the security of a protocol executed in isolation,
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meaning that each agent only executes the analyzed protocol. In this paper, our
aim is also to automatically find multi-protocols attacks using Tamarin.

Contributions: Several multi-protocols attacks have been found manually or
using other tools, our aim is to find them automatically using the Tamarin
prover [23]. Our contributions are the following:

– We automatically find all the manual attacks described in [22]. Moreover, we
find novel different attacks on the same properties, or unknown attacks on
different properties. This demonstrates the limitations of a manual approach
for finding attacks. It underlines that automatic verification is a very efficient
approach for analyzing the security of cryptographic protocols.

– We analyzed all the protocols given in [9], where the authors used Scyther, a
different protocol verification tool. We confirm the results from Scyther using
Tamarin.

– We developed an algorithm to simplify the process of creating the multi-
protocol specification file in Tamarin from the individual protocol specifica-
tions. The algorithm also automatically generates necessary helping lemmas
in Tamarin in order to verify the combination of the two protocols more effi-
ciently. The algorithm is implemented in Python, and available online [15].

Related work: The existence of multi-protocol attack have been introduced
by Kelsey, Schneier, and Wagner in [18]. In this paper the attacks were found
manually and the authors consider protocols crafted to break other protocols.

In [22], Mathuria, Raj Singh, Venkata Sharavan, and Kirtankar found six
multi-protocol attacks based on 13 protocols from literature: Denning-Sacco pro-
tocol [13], amended Woo-Lam protocol [5], ISO Five-Pass protocol [7], Abadi-
Needham protocol [1], six protocols from Perrig and Song using APG [26], and
three protocols from Zhou and Foley using ASPB [30]. In contrast to these works,
we use an automatic verification tool to find these attacks.

Cremers found many multi-protocol attacks in [9], using the tool Scyther,
with 30 protocols from literature including Needham Schroeder protocol [24],
Needham Schroeder symmetric key protocol [24], Needham Schroeder symmetric
key amended protocol [25], Lowe’s modified version of the Needham Schroeder
protocol [19], SPLICE/AS [29], Hwang and Chen’s version of SPLICE/AS [16],
Clark and Jacob’s version of SPLICE/AS [8], a basic SOPH example (Secret-Out
Public-Home), Woo Lam pi f [28], Kao Chow v.1, v.2 and v.3 [17], Yahalom’s
protocol [4], and Lowe’s version of Yahalom protocol [21]. Compared to this work
we use the Tamarin instead of Scyther.

There is also a considerable amount of work of preventing multi-protocol
attacks by construction using special composition frameworks. These frameworks
exist in the computational (e.g., Universal Composability [6]) and in the symbolic
setting (e.g., Protocol Composition Logic [14]).

Outline: The paper is structured as follows. In Sect. 2, we present the results
we obtain and we compare them with those obtained manually in [22] or using
Scyther [9]. Then, Sect. 3 discusses our workflow in Tamarin, and finally the last
section concludes the paper.



Formal Analysis of Combinations of Secure Protocols 55

2 Multi-protocol Attacks

First we define the properties that we want to verify for each protocol. We define
one property for secrecy and two authentication properties.

– Secrecy [10]: if A claims the secrecy of a variable NA at the end of the run of
the protocol, then an intruder cannot know this variable.

– Non-injective agreement [11]: if a protagonist A completes a run apparently
with B, then B has run the protocol with A and A agrees with all other
protagonist on all values. This is not exactly the same definition as in [20],
but we keep this definition because it is this one that is used by Scyther.

– Non-injective synchronisation [11]: if a protagonist A completes a run as the
initiator apparently with B as the responder, then B has run the protocol
as the responder with A, and all messages sent and received are exactly like
described in the specification of the protocol, in the same order.

We call a type-flaw attack an attack where the intruder uses data of a different
type than the data expected by the protocol. For example, in such an attack,
the intruder could use two nonces N1, N2 instead of another single nonce N
(N = (N1, N2)), or uses an ID as a nonce. We consider separately the case
where the intruder can make type-flaw attacks (such attacks are valid) and the
case where the intruder cannot (such attacks are not valid).

All our Tamarin files are available online [15].

2.1 Attacks by Cremers [9]

First we study the protocols analyzed in [9] using Scyther. We modeled all these
protocols individually in Tamarin. Figure 1 presents our results using Tamarin
for the properties described previously, and Fig. 2 presents our results for multi-
protocols using Tamarin, where we verify the properties for the first of the two
protocols. In these figures, ni-synch stands for non-injective synchronisation, sec
stands for secrecy and ni-agree stands for non-injective agreement. Moreover,
means that we did not find any attacks, and means there is at least one attack
for the property. A yellow box means that the first protocol (the one for which
we verify the security properties in the combination) is safe for this property in
isolation, and red box means that both protocols are safe for this property in
isolation. Empty box means that the property is not relevant for this protocol,
for example the key KAB does not exist in the protocol in the property secrecy
A KAB and secrecy B KAB , or a protagonist A never obtains a nonce NB in
the property secrecy A NB .

We find the same results with Tamarin as with Scyther. We do not consider
type-flaw attack for these protocols, because the number of combination with
multi-protocol attack is too large (more than 100 different combinations) to
model them all manually with Tamarin. All timings are calculated with 6 CPUs
of 2 GHz and 32 GB of memory.

We can see in Fig. 2 that even if two protocols are safe in isolation for a
property, it is not guaranteed that the combination of this two protocols is safe
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Fig. 1. Results found using Tamarin with NS = Needham Schroeder [24], NSS =
Needham Schroeder Symmetric Key [24], NSSA = Needham Schroeder Symmetric
Key Amended [25], NSL = Needham Schroeder Lowe [19], AS = SPLICE/AS [29],
AShc = Hwang and Chen version of SPLICE/AS [16], AScj = Clark and Jacob version
of SPLICE/AS [8], K = Kao Chow [17], K2 = Kao Chow v.2 [17], K3 = Kao Chow
v.3 [17], WLpif = Woo Lam pi f [28], Y = Yahalom [4], YL = Yahalom Lowe [21],
soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-
agree denotes non-injective agreement, and sec A NA denotes the fact that A claims
the secrecy of NA.

too if they share keys, and multi-protocol attacks are not only due to the other
protocol that is not safe for this property.

We would expect that Tamarin takes more time to analyze properties for
multi-protocols than for protocols in isolation, due to the increased number of
transitions and the larger number of traces with the new protocol.
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Fig. 2. Result found with Tamarin. NS = Needham Schroeder [24], NSS = Need-
ham Schroeder Symmetric Key [24], NSSA = Needham Schroeder Symmetric Key
Amended [25], NSL = Needham Schroeder Lowe [19], AS = SPLICE/AS [29], AShc =
Hwang and Chen’s version of SPLICE/AS [16], AScj = Clark and Jacob’s version of
SPLICE/AS [8], K = Kao Chow [17], K2 = Kao Chow v.2 [17], K3 = Kao Chow v.3 [17],
WLpif = Woo Lam pi f [28], Y = Yahalom [4], YL = Yahalom Lowe [21], soph = a
SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes
non-injective agreement, and sec A NA denotes fact that A claims the secrecy of NA.
* = the first protocol is safe in isolation, ** = both protocol are safe in isolation (Color
figure online)

But as we can see in Figs. 1 and 2, this is not always the case, like for example
for the property ni-synch A for Kao Chow (K) in Fig. 1, and for Kao Chow + Woo
Lam pi f (K + WLpif) in Fig. 2. This is generally due to the fact that Tamarin
finds an attack more rapidly than a proof as Tamarin stops after the first attack
it finds (it does not try to find all attacks).

It can also happen that Tamarin proves a property for the combination of
protocols more quickly than for the protocols in isolation, like for example Need-
ham Schroeder Lowe in Fig. 1 and Needham Schroeder Lowe + SPLICE/AS in
Fig. 2 for ni-synch A. This can occur for example if the precomputations are the
dominating part of the total runtime.
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2.2 Attacks by Mathuria et al. [22]

We try to find the attacks described in [22] using Tamarin, to see if we find the
same or different attacks if we use an automatic tool. The properties verified
are not clearly defined in [22], so we keep the properties as defined previously.
More precisely, we verified different authentication properties: non-injective syn-
chronization, non-injective agreement, and a weaker agreement property. The
property non-injective agreement as define previously is too strong to get com-
parable result with the paper, most of protocols of the paper are not safe for
this property even in isolation. So we consider a weaker authentication property
defined as follows:

– weaker agreement : if B thinks that a nonce NA is generated by A, then A
has generated NA and B authenticates A (called Aut A in Figs. 3 and 4).

Figure 3 summarizes results that we obtain with Tamarin in isolation on pro-
tocols from [22], and Fig. 4 summarizes results we obtain for the multi-protocols.
As previously, ni-synch stands for non-injective synchronization, sec stands for
secrecy and ni-agree stands for non-injective agreement. Moreover means that
we did not find any attacks, and means there is at least one attack for the
property. A yellow box means that the first protocol (the one for which we verify
security in the combination) is safe for this property in isolation, and red box
means that both protocols are safe for this property in isolation. An empty box
means that the property is not relevant for this protocol.

We can see in Fig. 3 in the case of APG.3 for non-injective synchronization
and non-injective agreement, all attacks which we found in isolation are type-
flaw attacks, and the protocol is safe if we do not consider type-flaw attacks. But
attacks we found for APG.3 with APG.2 are not type flaw attacks (see 2.2), so
we consider type-flaw attacks separately in this paper. But in the case of ZF.2,
we have a protocol that is not safe for any property, considering type-flaws or
not. So it is useless to see if ZF.2 can have a multi-protocol attack for a property
in combination with an other protocol, a point that the authors of the original
paper missed most likely since they searched for attacks manually.

The property weaker agreement seems to be closest to the property used
in [22], because we found the same attacks for some protocols. Thus, in rest of
the paper, we only present attacks on this property.

In comparison to the original paper we have found, using Tamarin, sometimes
different attacks, and sometimes new attacks on the authentication of other
protagonists in the same combination of protocols. This is likely due to the
fact that Mathuria et al. searched for attacks manually, and were thus probably
unable to analyze all combinations in detail or missed attacks in their analysis.

In all protocols, we have three participants, A the initiator, B the responder,
and S the trusted server. We use symmetric encryption, so S shares the key
KAS (respectively KBS) with A (respectively B). Moreover, KAB denotes the
session key between A and B, and NA (respectively NB) a nonce generated by
A (respectively B). Then {M}K denotes the cipher-text obtained by encrypting
a message M with the symmetric key K. As in the original paper, we assume
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Fig. 3. Results found with Tamarin with APG from [26], DS = Denning Sacco [13],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [7], AN = Abadi Needham [1],
ZF from [30], * = only type-flaw attacks.

that each participant shares the same key for both protocols. In the following,
when we talk about authentication, we mean non-injective agreement.

In the following we discuss our results in details. First we discuss attacks
that we found and that differ from those presented in [22], then we present new
attacks for properties that were not analyzed in [22].

Different Attacks

APG.4 with APG.6: The first attack is on the authentication of A. In this
attack, two protagonists A and A′ initiate the APG.6 [26] protocol with B, and
the intruder C pretends to be A in APG.4 [26]. In the protocol initiated by A′, C
learns (NA′ , N ′

B , A
′), used as a session key, and its ciphertext {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to B.
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Fig. 4. Results found with Tamarin with APG from [26], DS = Denning Sacco [13],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [7], AN = Abadi Needham [1],
ZF from [30], * = the first protocol is safe in isolation, ** = both protocols are safe in
isolation. (Color figure online)

In Fig. 5, steps on the left hand side are steps of APG.4, and steps on the right
hand side are steps from APG.6.

This attack is a type-flaw attack, because the intruder uses (NA′ , N ′
B , A

′)
as a session key. So we blocked type-flaw attacks in Tamarin to see if there are
other types of attacks, and we did not find other attacks on the authentication
of A.

Denning-Sacco with Amended Woo-Lam: This attack is on the authentication
of A. Again, it is a type-flaw attack, because the intruder uses (KAB , T ) as a
nonce. In this attack, the intruder C plays the role of A and S in both protocols.
First, B initiates a protocol Woo-Lam [5] with C who impersonates A. Then C
sends the ID of A and a fake session key and a timestamp as a nonce. B encrypts
that and C has now a valid message to send to B in Denning-Sacco [13]. This
attack is described in Fig. 6.

We did not find other types of attacks for this protocol when we blocked
type-flaw attacks in Tamarin using a modified model.
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Fig. 5. Representation of the attack on APG.4 with APG.6.

C B
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B BC

B

A, (NA = (KAB , T ))

{A, (NA = (KAB , T ))}KBS{A,KAB , T}KBS

Denning-Sacco Woo-Lam

Fig. 6. Representation of the attack on Denning-Sacco with Woo-Lam.

New Attacks

APG.1 with APG.2: The attack described in [22] is an attack on the authen-
tication of B, but we also found an attack on the authentication of A. In this
attack, the intruder C plays the role of A in both protocols. First, B runs the
APG.2 [26] protocol as the initiator and then the protocol APG.1 [26] as the
responder. C can pretend to be A in APG.1 and B will accept. In Fig. 7 steps
at the left are steps from APG.1, and the right part are steps from APG.2 .

APG.3 with APG.2: This attack is an attack on the authentication of B.
This attack is possible if A runs the APG.3 [26] protocol as the initiator, and
APG.2 [26] as the responder. In this attack, C plays the roles of B and S in
both protocols. Then C can pretend to be B in APG.3, and A will accept. In
Fig. 8 steps at the left are steps of APG.3, and at the right part are steps from
APG.2.
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Fig. 7. Representation of the attack on APG.1 with APG.2.
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Fig. 8. Representation of the attack on APG.3 with APG.2.
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Fig. 9. Representation of the attack on APG.3 with APG.2.

We also found an attack on the authentication of A. In this attack, the
intruder C plays the role of A in both protocols. B runs the APG.2 protocol as
the initiator, and APG.3 as the responder. C can pretend to be A, and B in
APG.3 will accept. In Fig. 9 steps at the left are steps from APG.3, and steps
at the right are steps from APG.2.

APG.4 with APG.6: We found an attack on the authentication of B. In this
attack, A initiates the protocol APG.3, then the intruder C will initiate APG.6
with B, using data sent by A in the other protocol. Finally, C sends the answer
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Fig. 10. Representation of the attack on APG.4 with APG.6.
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Fig. 11. Representation of the attack on APG.5 with APG.6.

of B to the server in APG.4, and lets the protocol run. In Fig. 10, steps on the
left hand side are steps from APG.4, and steps on the right hand side are steps
from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.4, so C can get a response from B, while B does not act in
APG.4.

APG.5 with APG.6: This attack is on the authentication of A. In this attack, two
protagonists A and A′ initiate the APG.6 [26] protocol with B, and the intruder
C pretends to be A in APG.5 [26]. In the protocol initiated by A′, C learns
(NA′ , N ′

B , A
′), used as a session key, and its encrypted version {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to
B. In Fig. 11, steps at the left part are steps of APG.5, and steps on the right
are steps from APG.6.
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APG.5 APG.6

Fig. 12. Representation of the attack on APG.5 with APG.6.

This attack is a type-flaw attack. So we changed our model to disable such
type-flaw attacks in Tamarin to see if there are other types of attacks, and we
did not find another attack on the authentication of A.

We also found an attack on the authentication of A where the intruder uses
(NA′ , N ′

B , A
′) as a session key. In this attack, A initiates the protocol APG.5,

then the intruder C will initiate APG.6 with B, using data sent by A in the
other protocol. Finally, C sends the answer of B to the server in APG.5, and lets
the protocol run. In Fig. 12, steps on the left hand side are steps from APG.5,
and on the right hand side are steps from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.5, so C can get a response from B, while B does not act in
APG.5.

3 Workflow in Tamarin

As we had to write many different combinations of multiple protocols to obtain
our results, we tried to simplify the process by adopting the following workflow
to combine to protocols:

1. Specify each protocol individually and check the properties in isolation using
Tamarin.

2. Generate the files for all the required combinations using the individual spec-
ifications.

3. Verify the combined protocols, and compare the results to known results.

To simplify the process of generating the combined specifications, we adopted
certain (mostly syntactic) conventions when specifying the protocols. These
mostly concern the common setup rules (key distribution etc.), the placement of
labels, and the uniqueness of labels to avoid conflicts.

These conventions allowed us to develop an algorithm that can generate
the input files of the composed protocols based on the individual specifications,
including intermediate lemmas that simplify the analysis for Tamarin by remov-
ing undesirable cases for the subsequent analysis. The generation of these lem-
mas goes beyond a pure syntactical merger of the individual files. The algorithm
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requires some interaction with Tamarin, but noticeably simplifies the following
analysis. The main idea is that if Tamarin finds an a problem in the merged
lemma, then we need to analyze the trace produced by the tool and to modify
the lemma. This procedure seems to be systematic for all the examples that we
have considered here.

This algorithm is implemented in Python, and works automatically on most
combinations from [9,22]. Only in a handful of cases we need to manually adapt
the produced output to obtain a valid lemma that removes all undesirable cases.
Note that even in these cases, the manual intervention was only necessary to
create the models, the following analysis was then automatic. For more infor-
mation about this algorithm, see the extended version of this paper [15]. The
implementation is also available on line [15].

4 Conclusion

In this paper, we perform an automated analysis of multi-protocols in Tamarin.
For this we have used the both protocols studied in [9] using Scyther and the pro-
tocol studied in [22] manually. In all cases where attacks were known previously,
we also find attacks. However, the tool sometimes finds different attacks than the
ones found manually or using Scyther. Moreover, we also find new and unknown
attacks, underlining the advantages of an automatic analysis. We also proposed
an algorithm to systematically merge two Tamarin files for our analysis.

Our future work is to see how we can integrate our algorithm for automat-
ically merging two Tamarin files into the tools in order to facilitate the life
of Tamarin users. Finally our experience also shows us that it might even be
possible to propose a similar heuristic to help Tamarin users by automatically
generating such helping intermediate lemmas.
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Abstract. This paper presents a formal analysis of FIDO, a proto-
col developed by the FIDO Alliance project, and which aims to pro-
vide either a passwordless experience or an extra security layer for user
authentication over the Internet. We model the protocol using the applied
pi-calculus and run our analysis using ProVerif. Our analysis shows that
ignoring some optional steps of the standard could lead to the imple-
mentation of a flawed authentication process. On the contrary, we prove
that these steps are sufficient to ensure the expected security properties.

1 Introduction

Authentication is a process arguably insecure under many forms. The most com-
mon one, password, has been criticized for years and many works have tried to
propose a workable replacement [BHVOS12]. It is now widely accepted that
relying on passwords only is insecure for sensitive applications.

The FIDO alliance [All] aims at establishing a standard for passwordless
experience and second factor authentication. FIDO has received support from
many companies around the world and has been integrated by various services
such as banks (e.g. Bank of America), e-mails (e.g. Gmail), social networks (e.g.
Facebook), etc. As those lines are written, the FIDO alliance claims to have
brought FIDO capabilities to more than 3 billions of user accounts worldwide.

The protocol is modular and allows companies to build components in an
inter-operable way. Their goal is to avoid the use of a server-side shared secret,
by leveraging cryptographic capabilities of an hardware token that the user must
own in order to obtain a successful authentication. The protocol works in a two-
phases scenario. In the first phase, the user must register his token on the desired
service. The registration process corresponds to the creation of a private/public
key pair for which the public key is transmitted to the services and all the private
keys are held in the hardware device. This first phase is performed for each of
the services that the user wants to access to, but it must be performed once.
The second phase is the authentication itself: it essentially consists in signing
random challenges generated by the service, after approval by the user.

In this paper, we propose a formal analysis of the authentication method-
ology provided by the specifications of the U2F standard, the “second factor
experience”, in which a FIDO token is used as a complement to a password on
web services. These specifications provide the description of the protocol and
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some optional features. We focused our analysis on one of these features and,
using the tool ProVerif [Bla01], we prove that without it, there exists an attack
where a web-server could impersonate a user to a third party service, under the
assumption of the use of weak passwords, which is precisely the issue that the
FIDO U2F protocol is expected to solve. We also provide a local test-bed attack
scenario to illustrate our finding. On the positive side, we prove that, if this
feature is properly implemented, then the expected security properties hold.

Roadmap. Sections 2 and 3 present the U2F protocol and the applied pi-calculus
used for our analysis. In Sect. 4, we define a model of the protocol and a definition
of the authentication property. In Sect. 5, we present and analyze our results.
Section 6 gives the related work.

2 The FIDO Protocol

The FIDO protocol aims to authenticate a user to a server, using a token (e.g.
smartcard, USB token, etc.), in such a way that is not possible to impersonate
a user without being in possession of his token, even if the username and the
password of that user have been compromised. The protocol runs between a user,
a Token, a FIDO Client embedded in the user’s web browser, and a server, after
the establishment of a secure TLS between the last two entities. As described
above, it is composed of two main phases: the registration and the authentication.

2.1 Registration Phase

The registration step is used to link a token to the account of a user. Figure 1
offers a high-level view of its behavior. (A full version can be found at [All].) The

Fig. 1. Simplified registration Step. S: Server, C: Client, T: Token, U: User
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first thing that happens when the FIDO Client is installed on a computer is the
generation of a random ASMTok, which is used to provide a link between the key
handle that will be created on the Token and the Client. The Token possesses
different items: its unique identifier, aaid, a counter cntr, which is incremented
each time it performs a signature for an authentication; and a certificate cert,
which is delivered by the manufacturer of the Token, corresponding to the master
key, which is used to sign the generated key pairs.

The registration then proceeds as follows: for a given User, identified by a
username, userN, the Server generates a challenge and sends it to the Client,
along with the username, and the appID identifying the server (e.g. its url). Then,
the Client computes two values, Tok and fc, the first one links the appID to the
secret token ASMTok, the second one links the appID to the challenge. Those
two values are given to the Token. The latter waits for the User the permission
to perform the registration step (e.g. the Client displays a message asking for
the User to push a button on the Token). Once the User approves, the Token
generates a key pair and stores the private key, with Tok, in a handle h. Using its
identifier aaid and a counter cntr, it creates a message and signs it before sending
it back to the Client, with the identifier of the handle h and the certificate cert.
The Client forwards everything to the Server, which checks the certificate and
the signature before adding the public key to the User’s information.

2.2 Authentication Phase

The authentication step (see Fig. 2) is quite similar to the registration one. Once
the User has provided his username and password, if the Server has a Token

Fig. 2. Simplified authentication step.
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registered to that account, it will generate a challenge and send it to the Client,
along with the handle h it got from the registration step. As during the regis-
tration step, the Client will create Tok and fc, and send it to the Token before
asking to the User to approve the authentication (e.g. by pushing the Token’s
button). Then, the Token checks if it possesses an entry h and whether its con-
tent match the Tok given by the Client. If it is, then the Token generates a nonce
n, increments its counter cntr and uses the secret key stored in the entry h to
sign a message. This message is passed to the Client, along with n, fc and cntr,
which transmits them to the Server. Using the public key it has registered with
the account, the Server will check whether the signature is correct or not, and
provide access in the former case.

3 Applied Pi-Calculus

This section briefly presents the notations of the applied pi-calculus, a process
algebra introduced by Abadi and Fournet [AF01], often used to model protocols
and security properties.

3.1 Terms

Messages are represented by terms built upon an infinite set of names N (for
communication channels or atomic data), a set of variables X and a signature Σ
consisting of a finite set of function symbols (to represent cryptographic prim-
itives). A function symbol f is assumed to be given with its arity ar(f). Then,
the set of terms T (Σ,X ,N ) is formally defined by the following grammar:

t, t1, t2, . . . ::=
x x ∈ X
n n ∈ N
f(t1, . . . , tn) f ∈ Σ, n = ar(f)

In order to represent the properties of the primitives, the signature Σ is equipped
with an equational theory E that is a set of equations which hold on terms built
from the signature. We denote by =E the smallest equivalence relation induced
by E, closed under application of function symbols, substitutions of terms for
variables and bijective renaming of names. We write M =E N when the equation
M = N holds in the theory E.

3.2 Processes

Processes and extended processes are defined in Fig. 3. The process 0 represents
the null process that does nothing. P | Q denotes the parallel composition of P
with Q while !P denotes the unbounded replication of P (i.e. the unbounded
parallel composition of P with itself). νn.P creates a fresh name n and then
behaves like P . The process if φ then P else Q behaves like P if φ holds and like
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P, Q, R processes(plain)=::
processnull0

P | Q parallel composition
!P replication
νn.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A, B, C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Fig. 3. Syntax for processes

Q otherwise. u(x).P inputs some message in the variable x on channel u and
then behaves like P while u〈M〉.P outputs M on channel u and then behaves
like P . We write νũ for the (possibly empty) series of pairwise-distinct binders
νu1. . . . .νun. The active substitution {M/x} can replace the variable x for the
term M in every process it comes into contact with and this behavior can be
controlled by restriction, in particular, the process νx

({M/x} | P
)

corresponds
exactly to let x = M in P .

As in [CS13], we slightly extend the applied pi-calculus by letting conditional
branches now depend on formulae defined by the following grammar:

φ, ψ ::= M = N | M �= N | φ ∧ ψ

If M and N are ground, we define �M = N� to be true if M =E N and false
otherwise. The semantics of � � is then extended to formulae as expected.

The scope of names and variables is delimited by binders u(x) and νu. Sets
of bound names, bound variables, free names and free variables are respectively
written bn(A), bv(A), fn(A) and fv(A). Occasionally, we write fn(M) (resp.
fv(M)) for the set of names (resp. variables) which appear in term M . An
extended process is closed if all its variables are either bound or defined by
an active substitution. A context C[ ] is an extended process with a hole instead
of an extended process. We obtain C[A] as the result of filling C[ ]’s hole with
the extended process A. An evaluation context is a context whose hole is not in
the scope of a replication, a conditional, an input or an output. A context C[ ]
closes A when C[A] is closed. A frame is an extended process built up from the
null process 0 and active substitutions composed by parallel composition and
restriction. The domain of a frame ϕ, denoted dom(ϕ) is the set of variables for
which ϕ contains an active substitution {M/x} such that x is not under restric-
tion. Every extended process A can be mapped to a frame ϕ(A) by replacing
every plain process in A with 0.
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3.3 Operational Semantics

The operational semantics of processes in the applied pi-calculus is defined by
three relations: structural equivalence (≡), internal reduction (→) and labelled
reduction ( α→).

Structural equivalence is defined in Fig. 4. It is closed by α-conversion of both
bound names and bound variables, and closed under application of evaluation
contexts. Structural equivalence corresponds to some structural rewriting that
does not change the semantics of a process. The internal reductions and labelled
reductions are defined in Fig. 5. They are closed under structural equivalence

Par − 0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P
New − 0 νn.0 ≡ 0
New-C νu.νw.A ≡ νw.νu.A
New-Par A | νu.B ≡ νu.(A | B) if u �∈ fv(A) ∪ fn(A)
Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N

Fig. 4. Structural equivalence.

(Comm) c〈M〉.P | c(x).Q −→ P | Q{M/x}
(Then) if φ then P else Q → P if φ = true

(Else) if φ then P else Q → Q otherwise

(In) c(x).P
c(M)−−−→ P{M/x}

(Out-Atom) c〈u〉.P c〈u〉−−−→ P

(Open-Atom)
A

c〈u〉−−−→ A′ u �= c

νu.A
νu.c〈u〉−−−−−→ A′

(Scope)
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

(Par)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B

α−→ A′ | B

(Struct)
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

where α is a label of the form c(M), c〈u〉, or νu.c〈u〉
such that u is either a channel name or a variable of base type.

Fig. 5. Semantics for processes
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and application of evaluation contexts. Internal reductions represent evaluation
of condition and internal communication between processes. Labelled reductions
represent communications with the environment.

4 Modeling FIDO

In this section, we present our model, in applied pi-calculus, of the FIDO pro-
tocol, and the definition of the authentication property it is aimed to achieve.

4.1 Settings

We focus our analysis on the FIDO protocol itself, and as such, our model
starts after the establishment of the TLS channel between the Client and the
Server. Thus, we consider a secure channel between these two. Although this
channel may be out of reach from an attacker in a fully honest setting, we will
consider different corruption scenarios that will grant the attacker access to it
and therefore will not limit our analysis.

We consider the following entities:

– User: represents the person that is willing to connect to the Server through
the Client, using the Token.

– Token: represents the device that stores and uses the different keys used for
authentication to the Server.

– Client: represents the embedded Client in the browser of the User, used to
established the connection to the Server.

– Server: represents the service the User wants to connect to, using the Client.

Let us define notations for the communication channels (see Fig. 6):

– cI is a secure channel between the Client and the Server. It models the TLS-
secured channel between the two entities.

– cT is the secure channel between the Client and the Token. Basically, it models
the USB (or NFC/Bluetooth) connection.

– cE is the channel between the Client and the User, i.e. the screen of the
computer where the Client may display information to the User.

– cF is the channel between the User and the Token. It is just modeling the
possibility, for the User, to push the Token’s button to allow authentication.

Fig. 6. Channels between the different players of the FIDO protocol.
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4.2 Threat Model

In our model, like in numerous formal analyses, we consider an attacker who
has control over the network. Therefore, he is able to intercept, forge, send mes-
sages. Restrictions are based on the nature of channels. An attacker can listen
to, but not send messages over authenticated channels. Public channels are, by
definition public, and everyone can listen to or send messages over them.

During this analysis, we consider two main scenarios:

– Everyone is honest. It is a classical scenario where the attacker only has access
to the network (and non-secure channels).

– Either the Server or the Client is dishonest.

Note that we cannot corrupt both the Client and the Server at the same time,
otherwise it would be impossible to guarantee anything. We also do not consider
cases where the User may be corrupted, because the User is just an entity trying
to connect to a service – which is meaningless to corrupt. The Token stores keys
and an attacker may want to try to break it, but if such a Token is corrupted
we can not guarantee any security on the second level authentication since the
attacker would have access to the keys used for authentication.

4.3 Authentication Property

The FIDO protocol aims to provide authentication to the user. Once registered
and linked to an account, the token is designed to be necessary in order to
perform an authentication on the server. The user should provide login and
password, as usual, but the server will also require a signature coming from the
token, which is given if the user pushes a button on the token itself. In our study,
we explore this authentication property, in order to see if there is any possibility
for an attacker to impersonate a user on a server.

Definition 1. Let us consider different predicates:

– LoggedIn(appID , username, pk) is issued by the server, identified by appID,
when he has accepted (by finishing the protocol) a connection with the user,
identified by username, and referenced under the public key pk.

– ExpConnection(appID , username, s) is issued by the user, secretly identified
by s, asserting that he expects a connection to appID, with his username.

– PushButton(s) is issued by the user when he pushes the button on the token.
– TokenSign(sk) is issued by the token when it signs using the secret key sk.

Using these predicates, we define the authentication property:

∀ appID , username, pk,
LoggedIn(appID , username, pk) =⇒ ∃ s, sk

TokenSign(sk) ∧ (pk = pk(sk)) ∧
PushButton(s) ∧
ExpConnection(appID , username, s)
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This property reflects that each time a server accepts a connection, then a
user first expected to initiate a connection to this server and pushed on the
button of the token, which generated the expected signature.

4.4 Modeling the Protocol

Since we are focusing on the authentication property, we model the authentica-
tion part of the protocol, assuming that all the needed registrations have been
already performed, with no interference of an attacker.

Server. After a registration, the Server knows, for each username registered:
the public key pk, the handle h pointing to the corresponding secret key inside
the Token, and the status of the counter scntr. During the authentication phase,
when the User has provided his username and password, the Server will generate
a new challenge ns and send its AppID, h and n to the Client. Then, it will wait
for a signature s before checking it. He also checks whether the counter sent
by the token is larger than the one stored. If the verifications succeed, then the
Servers accepts the login.

S(appID , username, pk, h, cntr) =
νns;
cI〈(appID , ns, h)〉;
cI((x));
let (x1, x2, x3, x4) = x in
if checksign((x1, x2, x3), x4, pk) = ok ∧ (x3 > cntr) then
LoggedIn(appID , username, pk)

Client. The Client waits for the inputs of the Server, then verifies that the
appID matches the one it is expecting (a). If the condition statement succeeds,
then the Client computes hashes that will be passed to the Token for the signa-
ture, using its secret value tc. The Client then prompts a message to the User,
asking for a confirmation to the Token, and waits for a response from the lat-
ter, before passing the signature to the Server. We also consider another Client
model (Cc) where the IF-condition is missing, since this step is optional in the
specification (see [All16b, Sect. 5.2.1] and our discussion in Sect. 5.2).

C(ac, tc) = Cc(tc) =
cI((x)); cI((x));
let (x1, x2, x3) = x in let (x1, x2, x3) = x in
if (x1 = a) then let KToken = hash((x1, tc)) in
cE〈go?〉; let fc = hash((x1, x2)) in
let KToken = hash((x1, tc)) in cE〈go?〉;
let fc = hash((x1, x2)) in cT 〈(x3,KToken, fc)〉;
cT 〈(x3,KToken, fc)〉; cT (y);
cT (y); cI〈y〉;
cI〈y〉;
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User. The User does not do much except for sending a go-message to the Token.
We introduce a secret sh, which captures the assumption than the button can
only be pressed by the User: no one can push the button on the Token, except
the User. During authentication, the User waits for the Client’s prompt, and
then, pushes the button of the Token to allow the authentication.

U(ExpAppID , username, sh) =
ExpConnection(appID , username, sh);
cE((x));
cF 〈(go!)〉;
PushButton(sh)

Token. During the registration step, the Token stored, under a handle h, the
secret key sk, and a token KToken generated by the Client. The Token itself
is identified by an aaid and updates a counter, cntr, which is used to avoid
replay attacks. During the authentication step, the Token waits for inputs from
the Client and the confirmation of the User (e.g. by pushing a button). It also
checks whether the handle and the token are valid and provides a signature using
the corresponding secret key if everything is in order.

T (aaid , cntr , h,KToken, sk) =
cT ((x));
let (x1, x2, x3) = x in
cF ((x));
if (x1, x2) = (h,KToken) then
νnt;
let st = sign((x3, nt, cntr), sk) in
TokenSign(sk);
cT 〈(x3, nt, cntr , st)〉

FIDO Protocol. The authentication part can now be modeled by placing all
processes in parallel, which is writen as follows:

Pa = νñ, a.! [S(a, pu, pku, h, c) | C(a, sc) | T (a, c, h, tok, ku) | U(a, pu, su) | Γ ] .

where ñ = a, ku, su, pu, h, c, sc, pku, tok are bound names which represent the
different items created during the registration phase that are used as arguments
for our processes, and Γ = {pk(ku)/pku

,hash((a,sc)) /tok} is a frame describing the
content of tok and pku.

We also model the case where the Client model does not verify the appID :

Pc = νñ.! [S(a, pu, pku, h, c) | Cc(sc) | T (a, c, h, tok, ku) | U(a, pu, su) | Γ ] .

5 ProVerif Results

In this section, we present our results, obtained using the ProVerif tool, studying
the authentication property of the FIDO protocol in various scenarios.
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5.1 Client Model with AppID Verification

To analyze the FIDO protocol with respect to the authentication property, we
choose to use the ProVerif tool, developed by Blanchet [Bla01], which is an
automated verifier that can achieve to prove injection properties (and more), for
protocols. It has been used for various examples (like [KR05],[KT08]) and also
has some limitations (e.g. [CW12]), especially when protocols get too compli-
cated (e.g., involving several cryptographic primitives), but the FIDO protocol
only involves signatures and hashes, and remains within ProVerif’s scope. Our
ProVerif files can be found at [WRP].

Results. Our results, obtained using ProVerif, are compiled in Table 1. We
show that even if we corrupt the Server, or the Client (but never both of them),
there is no possible attack. The server-in-the-middle case is more interesting: we
suppose that a user registered to two different servers and does not know that
one of them is corrupted. We also consider that one of them is corrupted and
knows the login and password of the user for the honest one. (e.g., it could be
possible that the user uses the same couple login/password for the two servers.)

5.2 Client Model Without AppID Verification

In the model above, we check if the appID provided by the server matches the
origin of the request. The appID verification is correctly implemented in the
Chrome FIDO Client but nothing prevents an other implementation to miss
this important step. Indeed, this is an ambiguous step in the FIDO specifica-
tions, where nothing is requested in the UAF protocol description. In particular,
we found the following recommendation: “The FIDO client should perform the
following steps: - Verify the application identity of the caller.” [All16b].

It is clearly stated as a recommendation but, for reasons that we will detail
later, we believe that this should be an assertion (MUST). The optional character
of this recommendation is indirectly confirmed in other official documents. For
instance, the overview [All] reads: “Say a user has correctly registered a U2F
device with an origin and later, a MITM on a different origin tries to intermediate
the authentication. In this case, the user’s U2F device won’t even respond, since
the MITM’s (different) origin name will not match the Key Handle that the
MITM is relaying from the actual origin.”

The above statement ignores a possible appID verification since if the device
does not respond, then, it must have seen the request despite the different origin.
Therefore, the verification is missing, otherwise the data would not have been
sent to the device. Moreover, since the token is never given the actual origin of
a request, it cannot perform such a verification.

Results. As we see in Table 1, ProVerif outputs that the authentication property
does not hold anymore. In practice, it corresponds to the following attack: when
the User authenticates on Server A (Server ITM), the Server initiates an authen-
tication towards Server B and forwards the challenge to the victim. Without the
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Table 1. ProVerif results on our authentication property.

Corrupted Without appID With appID

Players Verification Verification

None � �
Server � �
Client � �
Server + Client × ×
None + Server ITM × �

appID verification, the User provides a valid Server B authentication credential
that Server A can use to impersonate the User on Server B.

In practice, even if the cryptographic primitives are correctly implemented,
forgetting to verify the appID is enough to impersonate a User in a plausible
attack scenario. Moreover, if FIDO is used as a second factor authentication, the
Server ITM might already have access to the User password and login through
its own database, since the victim might use the same password across multiple
services, which is a scenario against which the Token should offer a protection.

As a result, we believe that our attack scenario violates at least the following
security goal stated in the specification [All16a]:

– SG-3 (credential disclosure resilience), in the sense that a loss of creden-
tials is sufficient to run the man-in-the-middle attack described above and
successfully bypass the two levels of authentication.

Corresponding Attack on the Real Token. We confirm the ProVerif’s
results in practice by providing a working java web server implementation [Roca]
that can run either as a honest server or as a corrupted server. We tested our
attack with Chrome 40 [Goo] packaged for Debian and with our modified FIDO
Client [Rocb]. We had to modify the FIDO Client provided by Google to remove
the appID verification that was hopefully correctly integrated. A tutorial is pro-
vided in Appendix A to reproduce the attack.

Lesson Learned. FIDO is secure if we assume both that the implementer
understood the importance of the appID verification despite its optional char-
acter in the specification. Moreover, we have also to assume that there is no
possibility to fool the origin verification in the browser. We recommend the spec-
ification to enforce the appID verification: among other changes, the appID ver-
ification must not be written as a recommendation (using a should) but instead
as an assertion (using a must). Also, these results suggest that current FIDO
existing Clients should be audited to check if the appID verification exists and
does not suffer from any weakness. Very few such clients are freely available,
though.
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6 Related Work

In 1996, Lowe [Low96] raised the interest in analysing authentication protocol
when he presented a MITM attack against Needham and Schroeder public key
protocol [NS78]. Later, the progress in web technologies drove a consortium of
internet companies to unite and design a user-friendly standard identity man-
agement and an authentication protocol. This initiative was called the Liberty
Alliance Project. A research group, led by Pfitzmann, laid the basis for for-
mal analysis of such web-based identity management protocol [GPS05,PW03].
They did not designed automated formal analysis tools but they discussed for-
mal descriptions of those protocols. Eventually, the Liberty Alliance produced
SAML 2.0, an open-standard data format to exchange information between par-
ties. These specifications lead to SSO protocols (Single-Sign-On) used for cross-
authentication. The SSO protocol implemented by Google got broken with auto-
mated formal analysis [ACC+08], where researcher found how to impersonate a
user when acting as a dishonest service, at another service provider. For years
now, browsers have gained cryptographic capabilities and many authentication
protocols appeared and gained in complexity. The need for mechanical analy-
sis got more evident, since modelling the protocol became the time-consuming
task and proofs were provided by the tool. In this line of work, Bortolozzo et
al. [BCFS10] designed a tool to audit PKCS#11 tokens and found weaknesses
on many of them. Some other tools have been designed to automate the pro-
cess of proving security properties, such as the one we use in this paper: ProVerif
[Bla01] but also APTE [Che14] and aKiss [CCK12]. Other hardware tokens, such
as Yubikeys doing one-time passwords, have been analysed with other automated
tools [KS12,KK16]. They are mostly chosen depending on the property we want
to prove. Some are easier to use in some circumstances.

7 Conclusion

We modeled the authentication phase of the FIDO protocol in Applied Pi Cal-
culus. We considered two different client models, based on the execution or not
of a verification step by the client, step that is left optional in the specification.

Our ProVerif analysis shows that, when the verification is performed, the
expected authentication properties are satisfied. However, when it is ignored, a
man-in-the-middle attack becomes possible, assuming compromised (or reused)
credentials, which definitely falls within the scope of the attacks that the use of
a FIDO token is expected to prevent.

As a result, we recommend making this verification step mandatory, and
that the authors of the 49 certified client implementations listed on the FIDO
Alliance website check whether this step is actually performed.

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able feedback. This work was partially supported by the Innoviris C-Cure project and
the Region Wallonne TrueDev project.
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A Attack on a Real FIDO Authentication

We detail the steps to test the attack from Sect. 5.2 in a local test-bed.

– Clone repositories [Roca,Rocb] and download chrome [Goo].
– From chrome tab extensions, activate the developer mode and load the

unpacked u2f-chrome-extension.
– Inside java-u2flib-server, do mvn clean install then cd inside u2f-server-demo

and configure two .yml files, one for the compromised server and one for the
honest server. Use the available model, you just need to provide a different
port number.

– Run:
• java -jar target/u2flib-server-demo.jar server [your consigDishonest

file.yml] localhost [port honest server] https://localhost:[port dishonest
server] &

• java -jar target/u2flib-server-demo.jar server [your consigHonest file.yml]
http://localhost:[port honest server] &

– Use chrome and your FIDO-compliant authenticator to register in both ser-
vices then try to authenticate.
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Abstract. Although an active area of research for years, formal ver-
ification has still not yet reached widespread deployment. We outline
the steps needed to move from low-assurance cryptography, as given by
libraries such as OpenSSL, to high assurance cryptography in deploy-
ment. In detail, we outline the need for a suite of high-assurance cryp-
tographic software with per-microarchitecture optimizations that main-
tain competitive speeds with existing hand-optimized assembly and the
bundling of these cryptographic primitives in a new API that prevents
common developer mistakes. A new unified API with both formally veri-
fied primitives and an easy-to-use interface is needed to replace OpenSSL
in future security-critical applications.

Keywords: High assurance cryptography · Formal verification
Primitives · Security API

1 Introduction

Our increasingly digital society critically relies on the security of software sys-
tems, ranging from small IoT devices, through personal computers and smart-
phones to cars and software in critical infrastructure. For each of those systems
we trust that they perform certain important tasks, but do not show malicious
or unpredictable behavior, even when under attack. Typically, the recommended
approach to building such trustworthy systems is the following:

1. first defining clear security goals;
2. then identifying the so-called trusted code base (TCB) i.e., the part of the

software system that is critical to achieving these goals;
3. isolating the TCB from the rest of the code, and implementing well-defined

interfaces between the TCB and the rest of the code; and
4. assuring that the code in the TCB (including the interfaces) achieves the

security goals.

Unfortunately, almost none of the above-listed trusted systems are systemat-
ically built according to this recipe; they are historically grown, without a clear
separation between TCB and “non-critical” code; often even without a clear
definition of security goals, and essentially everywhere without high-assurance
software in the TCB. As a consequence, we are realizing that our society has
trust in untrustworthy low-assurance software.
c© Springer International Publishing AG, part of Springer Nature 2018
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2 The Role of Cryptography

Cryptography takes a special role in building trustworthy software. While most
other parts of typical TCBs—e.g. operating-system kernels, hypervisors, or crit-
ical drivers—implement functionality that is not primarily aiming at security,
cryptographic software’s sole purpose is to achieve security goals that would not
be achievable without cryptography. This inherently places cryptographic code
inside the TCB and thus always requires high assurance of correctness and secu-
rity of cryptographic software, including interfaces (i.e. APIs) that cannot be
misused to violate the security goals.

Although there has been much academic work on the theoretical security of
cryptographic protocols, security proofs constructed by theoreticians rely crit-
ically on security and functionality assumptions for underlying primitives, i.e.,
they implicitly require the existence of interfaces to implementations of those
primitives that do not violate the assumptions in the proofs. Indeed, if these
mathematical assumptions do not match what is offered by real-world imple-
mentations, then the proofs do not apply. When this is the case, there are no
security guarantees for the software and catastrophe ensues.

Unfortunately, this happens in practice. Despite the high confidence that
society has in cryptography to maintain the security and privacy of their trans-
actions, every year we see devastating attacks against widely deployed crypto-
graphic software. Most of those attacks do not break the cryptographic protec-
tion in a mathematical sense, but instead exploit weaknesses in how these prim-
itives are used or implemented. Weaknesses in cryptographic software include
mistakes in the implementation of cryptographic primitives, and hard-to-detect
bugs in the underlying arithmetic, programming interfaces (APIs) that enable
(or even encourage) wrong use, subtle (and sometimes less subtle) flaws in the
protocol layer, and side-channel vulnerabilities, that allow an attacker to obtain
extra information about secret data through, for example, timing.

The most prominent example of an exploitable bug in an implementation
was probably the weakness enabling the Heartbleed attack [13], which allowed
a remote attacker to read memory content that in many cases contained secret
data. Yet even more common than bugs in cryptographic primitive implementa-
tions are the incorrect use of these primitives by developers: A recurring problem
is the unjustified trust placed by programmers on API developers to provide
good random generation routines and to preconfigure the various cryptographic
components with secure parameters by default, as seen in numerous examples
of security problems in Android applications due to the incorrect usage of cryp-
tography APIs are given in [11] that range from the usage of weak encryption
modes to the fixing of initialization vectors and salt parameters that should be
freshly sampled at random for each operation.

All these errors are no longer issues of obscure academic debate, but merit
front-page news across the globe as the sensitive data of billions of people can
be compromised by a single error in a cryptographic library, causing billions
in damages. How can we make sure that the software we trust for the security
of our digital society actually is trustworthy? Although testing is a relatively
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cheap way to eliminate many vulnerabilities, but it will never be able to guar-
antee the absence of vulnerabilities. In fact, the attacks listed earlier all affected
cryptographic software that did undergo serious testing before being deployed.
Auditing, the process of careful code review by independent experts, typically
reveals more vulnerabilities than automated testing but is much more expensive
than testing and therefore does not scale—and does not guarantee the absence
of vulnerabilities.

Formal verification is the only approach that can guarantee correctness and
security of cryptographic software and thus establish the confidence society needs
in cryptography. The idea of formally verifying cryptographic software has been
an active of research for years, but little of the software deployed on a wide scale
today comes with any guarantee of correctness or security. What is needed is a
comprehensive plan to aim at formally verify cryptographic software deployed in
the real-world with a plan to migrate real-world applications from current “low-
assurance” (or, in many cases, no-assurance) cryptography to high-assurance
cryptography that provides the guarantees provided by formal proofs of cor-
rectness and security of the needed cryptographic primitives but also provides
access to them in an “easy to use” API. In other words, the goal should be to
replace OpenSSL with formally verified cryptography.

3 Formally Verified and Optimized Cryptgraphic
Primitives

Currently, almost no primitives used in real-world deployed software are for-
mally verified due to the speed lost. Cryptographic software is one of the few
examples of software that is commonly hand-optimized at the assembly level.
The reason for this is that this approach is, at the same time, feasible and worth
the effort, because relatively small portions of code are used to encrypt huge
amounts of data, perform many key exchanges, compute many signatures, etc.
In particular, on busy servers or on battery-powered devices, even small improve-
ments in performance of some core cryptographic routine translate to noticeable
improvements in overall system performance or battery life. Consequently, a
very active area of research is devoted to optimizing cryptographic software and
essentially every serious cryptographic library (especially OpenSSL) contains
hand-optimized assembly routines for the most important primitives and target
(micro-)architectures. Yet there have been subtle bugs in low-level arithmetic
functions that attackers can exploit in this hand-optimized assembly, such as
the multiple carry bugs in big-integer arithmetic in OpenSSL [6]. Yet typically,
formally verified primitives are not used in real-world deployment because of
a performance penalty, as formal verification is done over models of the code
using specialized programming environments such as Coq that do not directly
translate into running code, and if so, the code is far too slow to be used.

The largest breakthrough so far has been the HACL* library for high
assurance cryptography,1 which was initially focused on Curve 25519 elliptic
1 https://github.com/mitls/hacl-star.

https://github.com/mitls/hacl-star
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curves [18]. The HACL* library is now expanding to include popular stream
ciphers (Chacha20, Salsa20, XSalsa20), MACs (Poly1305, HMAC), and more.
As it can be compiled in a verified manner down to C, allowing the real world
use of verified cryptography [16]. This work is fast enough for real world deploy-
ment, as shown by the use of HACL* by Mozilla in their NSS library.

The challenge is to provide at the same time high speed and high assurance.
Another example of software that comes reasonably close is the hand-optimized
assembly implementation of X25519 key exchange presented in [3,4] (after the
bug fix), which has been, to a large extent, proven correct [8]. The proof does not
cover the full implementation but only the core loop. More importantly, the proof
reveals the main issue with formally proving all widely deployed highly optimized
crypto software correct: like also many proofs of less optimized cryptographic
software, it required serious manual effort and expert knowledge about both the
optimization techniques and the tools used for verification. The amount of code
annotations needed for verification by far exceed the amount of actual code. This
amount of manual effort does not scale to a larger set of relevant primitives, or
to an ever-increasing amount of hand-optimized assembly implementations for
an ever-increasing set of microarchitectures.

To allow formally verified cryptography to be usable in practice, there is
the need for a verified “low level virtual machine” (LLVM) compiler that opti-
mizes code for micro-architectures in a fully-verified manner in order to permit
reaching the performance levels of hand-optimized assembly and obtaining for-
mally verified implementations. This includes the verification of the primitives
needed by almost all applications—symmetric encryption and authentication,
hash functions, key exchange, and digital signatures—while maintaining speed
comparable to hand-optimized assembly code for each primitive. This is not
impossible if a selected group of modern cryptographic primitives is chosen:
Many legacy primitives, such as the MD5 and SHA-1 hash functions, can be
broken; so there is no reason to create formally verified implementations of these
primitives. Further, although RSA-based cryptography is still widely deployed,
it is gradually being replaced by more efficient alternatives that are easier to
manage and implement, such as elliptic-curve cryptography (ECC). For example,
ECC-based key exchange and digital signatures combined with AES-GCM mode
are being adopted in many modern cryptographic deployments on the Internet;
this trend is led by large companies such as Amazon, Google, and Microsoft.
Curve25519 [2], which will be used for key exchange, encryption/decryption and
signature/verification, was recently standardized by the IETF and is used in new
versions of TLS and Signal.

The way forward for the formal verification community to accomplish these
research goals in terms of cryptographic primitives can be done two phases.
A first step towards this goal is to produce possibly slow but formally verified
reference implementations in the C programming language of a set of core primi-
tives that are used in state of the art protocols like TLS 1.3 or the Signal secure-
messaging protocol. The second step would be to move from C reference imple-
mentations to formally proven cryptographic software that is hand-optimized on
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the assembly level. In order to avoid the same issue of scalability that previous
efforts have been facing, this goal could be achieved producing tools that allow
cryptographic engineers to optimize software then obtain a “click-button” veri-
fication of correctness; integrated into typical software build environments. This
could be done by working with languages such as Jasmin,2 a formally verified
low-level programming language (largely inspired by the Qhasm programming
language by Bernstein [1], which is already today used to write highly opti-
mized cryptographic software). In addition to the efficient register allocator and
the instruction-by-instruction translation to assembly offered by Qhasm, Jas-
min features a formal specification of its semantics, which allows translation of
Jasmin code not only to assembly, and input into formal verification tools that
can be produce proofs of equivalence using tools such as GFVerif3 for elliptic
curve cryptography between an optimized Jamin implementation and a (verified)
CompCert C reference implementation. The tool will aim primarily at proving
equivalence of implementations of symmetric primitives such as permutations,
block ciphers, or compression functions. This will not come without work, the
programmer will be required to annotate code with statements about opera-
tions in the underlying finite field; something that sensible programmers already
include now as comments in their code.

4 A Developer-Resistant API

The fastest formally optimized cryptographic primitives will still lead to untrust-
worthy and broken security if they are incorrectly used. A cryptographic API
(Application Programming Interface) is used by programmers to access cryp-
tographic primitives and control cryptographic key material as needed in their
applications and higher level protocols. Since APIs usually sit between the prim-
itives themselves and their use in applications, secure API design is an impor-
tant aspect of secure software engineering. However, as shown by the analysis
of Android applications in [11], a huge percentage of applications (88%) tend
to have errors in their use of cryptographic APIs. Moreover, existing APIs of
libraries such as OpenSSL have been shown to be prone to errors,4 and these
errors can be propagated upwards.

Formal verification is just beginning to be applied to the standardization of
security API design, and ad-hoc design by committee should be replaced by a
design based on formal foundations. A security API consists of a set of functions
that are offered to some other program that uphold some security properties,
regardless of the functions called or the program calling them [5]. For example,
one would hope that an API like PKCS#11 that provides access to key material
in hardware tokens would prevent any private key material from being tampered
with, regardless of the application [10]. These kinds of security properties are
2 https://github.com/jasmin-lang/jasmin.
3 http://gfverif.cryptojedi.org/.
4 https://www.openssl.org/blog/blog/2016/03/01/an-openssl-users-guide-to-

drown/.
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particularly critical in many applications, and classically security APIs have
been studied in the realm of hardware security modules [5] and increasingly
in developer-facing APIs such as the W3C WebCrypto API for Javascript [7].
Most early work did not use generalizable formal techniques, but customized each
technique for the API at hand [5], although some work allowed the automatic
discovery of common errors in key management [15]. Formal modeling has also
been used to successfully reveal a number of API-based attacks on standards,
including the commercially available tamper-resistant hardware security tokens
PKCS#11 [10]. Although a single program may only use one (or a few) APIs,
complex systems such as banking operations consist of thousands of applications,
with even more calls to multiple APIs. Of these, although some APIs may be
standard, other APIs may be hand-crafted by amateurs, and basic errors such
as calling deterministic “random” number generators from the programming
language are common.

API design should not only be based on sound formal foundations, but also
from the concrete results from usability studies of APIs [17]. Almost all APIs
across programming languages allow users to make common errors, ranging from
nonce re-use to failure to randomize initialization vectors [12]. These account for
the vast majority of errors in code and the “top errors” in APIs that have
recently been collated by Google’s Project Wycheproof5. Key management is
often underspecified in APIs, and is a common source of errors in systems rely-
ing for example on PKCS#11 [10] and the WebCrypto API [7], and simply
putting the key material in “trusted hardware” such as hardware tokens may
end up having little effect, as shown by errors discovered via formal analysis
Yubico’s YubiHSM.6 APIs created by standards committees seem to fare no
better: implementations of standardized APIs such as PKCS#11 are often sus-
ceptible to multiple attacks.7 Even worse, when APIs such as PKCS#11 and
OpenSSL are used in hardware tokens, errors in the API can cause expensive
withdrawal of hardware tokens [14].

The API market today is fractured, with the vast majority of even commercial
software being bound to OpenSSL (including the embedding of OpenSSL even in
hardware tokens) or various programming-language specific cryptographic APIs.
Due to the number of bugs, a number of branches of OpenSSL have happened,
ranging from Google’s BoringSSL to WolfSSL for lightweight embedded systems.
However, none of these efforts have been formally verified, and all of them are
under the control of some external entity. IPSec libraries used in VPNs such as
OpenSwan and LibreSwan are similarly unverified. Naturally, few other compa-
nies want to be dependent on the commercial interests and whims of Google’s
strategy by becoming tied to BoringSSL.

What is lacking is a flexible API with safe defaults for developers that covers
core modern cryptographic primitives – cryptographic primitives that them-
selves are verified. In order to allow easy “drop-in” replacement of OpenSSL,

5 https://github.com/google/wycheproof.
6 https://www.yubico.com/wp-content/uploads/2012/10/Security-Advisory.pdf.
7 https://cryptosense.com/the-untold-story-of-pkcs11-hsm-vulnerabilities/.

https://github.com/google/wycheproof
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as much of the OpenSSL library should be mapped to the new API as possible
for upgrading legacy software. Still, access to these primitives by themselves,
even for well-known primitives such as AES-CBC, will almost certainly result
in developer errors. So for new software and as a recommended developer-facing
API, the API will provide “safe” defaults and layers of abstraction to defend the
programmer against their own errors, such as preventing the re-use of nonces and
randomly initializing initialization vectors. Furthermore, common errors involv-
ing key management, such as key generation, rotation, revocation, and wrapping,
can also all be dealt with on a level of abstraction that enforces usages bound-
aries and sensible “defaults” for best practices for key-handling. For example, if
a key is generated, the minimum size as recommended by the ECRYPT “Algo-
rithms, Key Size, and Parameters” report will be used.8 If there is only a limited
number of modern cryptographic primitives verified, then finding “safe” defaults
for those primitives and building in proper key-handling (for example, to pre-
vent the same keys for being used in signing and encryption) should be possible
in a new high-assurance API. In terms of deployment, a three-pronged strat-
egy is needed (1) The older unverified OpenSSL or other API bindings can be
removed and replaced with a high assurance API if the cryptographic primitive
is supported (2) Application developers that do not have much experience in
cryptography can also use a version with simplified primitives that will auto-
matically chose fast, verified algorithms with “safe defaults” for the developer
(3) Advanced developers should be able to override all defaults.

5 Conclusion

In order to make high assurance cryptography a reality, two steps need to be
taken. First, formally verified primitives must be comparable in speed to hand-
optimized assembly on a per-platform basis. This can be done through formally
verified C compilation (including C produced from higher-level verified specifica-
tions using languages), and per-architecture optimization using a LLVM that can
have equivalence proofs to the formally verified specifications. Second, deploy-
ing these primitives in actual applications will require an API that can replace
OpenSSL for modern applications, and be easier to use than OpenSSL with
safer defaults. Furthermore, as new privacy-preserving primitives such as alge-
braic MACs and post-quantum primitives reach maturity, these new primitives
can be formally verified and added to the API.

It should be noted that the task also extends beyond simply replacing the
cryptographic primitives, as the correct usage both OpenSSL and any verified
replacement requires the verified correct parsing of data formats, as exempli-
fied by the difficult work of “Project Everest” to parse X.509 certificates in its
complete reimplementation of TLS.9 Without at least one usable API featuring
formally verified primitives, there is a little chance of moving beyond OpenSSL.
8 https://www.cosic.esat.kuleuven.be/ecrypt/csa/documents/D5.2-AlgKeySizeProt-

1.0.pdf.
9 https://project-everest.github.io/.

https://www.cosic.esat.kuleuven.be/ecrypt/csa/documents/D5.2-AlgKeySizeProt-1.0.pdf
https://www.cosic.esat.kuleuven.be/ecrypt/csa/documents/D5.2-AlgKeySizeProt-1.0.pdf
https://project-everest.github.io/
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Another aspect that formal verification tools can help address is safe memory
management, but further work also needs to be done to ensure that sensitive data
such as keys are kept in memory for the minimal needed amount of time. Lastly,
we are assuming the processor has correctly implemented the LLVM model and
that the LLVM has no features outside the LLVM model capable of being used
in an attack, and thus more research needs to be done in formally verifying that
actual processors match their specifications [9].

The next step is to present the architecture of a library as sophisticated
as OpenSSL and for each building-block of the API explain the security goals
and how they can be addressed using formal methods, including the verifica-
tion of their non-trivial composition in higher-level protocol frameworks such as
the Noise framework.10 With such primitives easily usable by an API, formal
verification can serve as the foundation for high assurance cryptography.
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16. Protzenko, J., Zinzindohoué, J.-K., Rastogi, A., Ramananandro, T., Wang, P.,
Zanella-Béguelin, S., Delignat-Lavaud, A., Hriţcu, C., Bhargavan, K., Fournet, C.,
et al.: Verified low-level programming embedded in F. Proc. ACM Program. Lang.
1(ICFP), 17 (2017)

17. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: USENIX Security, vol. 1999 (1999)

18. Zinzindohoué, J.K., Bartzia, E.-I., Bhargavan, K.: A verified extensible library of
elliptic curves. In: 2016 IEEE 29th Computer Security Foundations Symposium
(CSF), pp. 296–309. IEEE (2016)

http://cryptojedi.org/papers/#verify25519
http://heartbleed.com
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38004-4_17


Privacy



Privacy-Preserving Equality Test
Towards Big Data

Tushar Kanti Saha1(B) and Takeshi Koshiba2

1 Division of Mathematics, Electronics, and Informatics,
Graduate School of Science and Engineering, Saitama University, Saitama, Japan

saha.t.k.512@ms.saitama-u.ac.jp
2 Faculty of Education and Integrated Arts and Sciences,

Waseda University, Tokyo, Japan
tkoshiba@waseda.jp

Abstract. In this paper, we review the problem of private batch equal-
ity test (PriBET) that was proposed by Saha and Koshiba (3rd APW-
ConCSE 2016). They described this problem to find the equality of an
integer within a set of integers between two parties who do not want
to reveal their information if they do not equal. For this purpose, they
proposed the PriBET protocol along with a packing method using the
binary encoding of data. Their protocol was secured by using ring-LWE
based somewhat homomorphic encryption (SwHE) in the semi-honest
model. But this protocol is not fast enough to address the big data prob-
lem in some practical applications. To solve this problem, we propose a
base-N fixed length encoding based PriBET protocol using SwHE in the
same semi-honest model. Here we did our experiments for finding the
equalities of 8–64-bit integers. Furthermore, our experiments show that
our protocol is able to evaluate more than one million (resp. 862 thou-
sand) of equality comparisons per minute for 8-bit (resp. 16-bit) integers
with an encoding size of base 256 (resp. 65536). Besides, our protocol
works more than 8–20 in magnitude than that of Saha and Koshiba.

Keywords: Private batch equality test · Base-N encoding
Homomorphic encryption · Packing method

1 Introduction

Since the establishment of Internet technology, data are increasing day by day
in an expeditious speed. Also, users are extensively using the computers, lap-
tops, tabs along with the Internet. Besides, smart-phones and Wi-Fi devices are
helping us to use the Internet even when we are mobile. So data are becom-
ing very big which are called big data. Managing and analyzing big data is a
big challenge for its user where new tools and techniques are indispensable. In
addition, local storage is not enough for the users to store their data. Recently,
banks, insurance companies, hospitals, research institutes, public service cen-
ters, and so on have come forward to store their customers’ data electronically
c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 95–110, 2018.
https://doi.org/10.1007/978-3-319-75650-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_7&domain=pdf
http://orcid.org/0000-0001-6757-7443
http://orcid.org/0000-0001-8994-729X


96 T. K. Saha and T. Koshiba

and maintain their databases. Besides, cloud computing has established itself
as a reliable service provider by giving remote on-line storage to its users at an
affordable price. Moreover, organizations are interested in outsourcing their data
to the cloud servers to access them anytime from versatile locations. Also, these
organizations want to provide security to their data. Here encryption is one of
the procedures to provide data security. In addition to this, the organizations
want to do their required operations on the encrypted data which is hard to per-
form before decryption. So homomorphic encryption [9] is a solution for them
which allows meaningful computations like additions and multiplications on the
encrypted data.

On the contrary, many research works in secure computation (for example,
[1,5,10,12,14]) have already been conducted using ring-LWE based homomor-
phic encryption after the breakthrough work of fully homomorphic encryption
(FHE) by Gentry [4] in 2009. However, fully homomorphic encryption allows any
number of additions and multiplications on the encrypted data which makes it
slower for practical use [10]. In 2011, Brakerski and Vaikuntanathan [1] pro-
posed one more somewhat homomorphic encryption (SwHE) using the concept
of ring-LWE which works little faster due to supporting many additions and few
multiplications. Thereafter it had been used in the literature [5,10,14] which
showed the practicality of SwHE. Now some organizations are needed to share
their data with other organizations for different purpose like private data min-
ing, machine learning, searching, information retrieval, and so on where private
equality test is important. But data protection regulation does not allow these
organizations to share their data with one another or even with the cloud. Here
PET protocol using SwHE can be used by these organizations which was pro-
posed by Saha and Koshiba [11]. They also proposed private batch equality test
(PriBET) protocol for finding the equality of an integer with a set of integers
using the batch technique. But their achieved performance is not good enough to
handle a large dataset of millions of integers. Furthermore, most of the organi-
zations deal with a large dataset which varies from several gigabytes to terabyte
where a faster performance is the prerequisite to search something within their
datasets.

1.1 Prior Works

The idea of secure computation was first introduced by Yao in 1980 [17]. In this
section, we review some papers on secure computation for the PriBET proto-
cols. To date, very few protocols have been proposed for the PriBET protocol.
In 2016, Couteau [3] proposed the PriBET protocol in the semi-honest model
that required 7 rounds communication between two-party to compare data size
of 16–128-bit. But they did not show any implementation. To understand the
practicality of the protocol, some implementations are indispensable. Recently,
Saha and Koshiba [11] proposed private batch equality test (PriBET) protocol
which shows some practicality of the protocol. Their protocol was able to do
about 140 thousand comparisons per minute for 8-bit data only. The perfor-
mance decreases if the data size is increased more. To date, existing equality
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protocols are not enough to handle a large database for many equality queries.
So new method is desirable which can be a big step towards big data processing.

1.2 Typical Applications

In 2016, Saha and Koshiba [11] showed some application areas of the PriBET pro-
tocols including on-line auction, genomic computation, machine learning, data
mining, and database query processing where batch equality protocol is required.
Besides, PriBET protocol is useful for private information retrieval [18]. Over
and above that, our protocol may be useful in some practical applications like
credit card number verification, criminal database searching using social security
number, insurance number verification, and so on.

1.3 Motivation

In 2016, Saha and Koshiba [11] proposed private batch equality test (PriBET)
protocol for comparing integers of 8–32 bits with a new packing method using
ring-LWE based SwHE. Here they achieved an acceptable performance for han-
dling private equality computation of a small dataset like several megabytes to
a gigabyte in size. But this performance is not enough for addressing big data
which refers several gigabytes to a terabyte. Saha and Koshiba performed equal-
ity computations on binary vectors which required a large lattice dimension to
process a kilobyte of data. For example, processing 1 MB data (223 bits) requires
a lattice dimension of 223 where they consider a lattice dimension of 212 to get
more efficiency. If we engage the protocol with a lattice dimension of 4096, then
it would require about 351 s to process 1 MB of data for equality which in turns
requires about 100 h to process 1 GB of data with a single machine. This perfor-
mance could be further improved by using some parallel processing techniques
or engaging many computers in a distributed computing environment. But this
performance is not enough for handling a large database. Furthermore, the pro-
cessing speed of this protocol is mostly dependent on lattice dimension where
they used binary encoding to find the equality. At this point, this protocol can
be improved further if we would have a method to reduce the lattice dimension.

1.4 Our Contribution

In this paper, we propose a base-N fixed length based PriBET protocol for
finding the equalities of some integers with 8–32 bits along with an efficient data
encoding technique to reduce the lattice dimension as well as processing time.
Theoretically, we achieve a reduction of the lattice dimension by a factor log2 (N)
than Saha and Koshiba protocol [11] due to using an efficient encoding technique
where N represents the encoding size. Also, our practical experiments show that
our protocol works more than 8 times faster than Saha and Koshiba protocol
[11]. In addition, we have been able to process more than 1 million comparisons
per minute for the 8-bit integers and 862 thousand comparisons per minute for
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the 16-bit integers with the encoding size of 28 and 216 respectively which could
be helpful to process a big database. Besides, in the PriBET protocol of Saha and
Koshiba Bob needed a decryption help from Alice to check a part of his result
for some decision making after his computation. In this case, he leaked some
additional information to Alice due to sending whole encrypted polynomial to
Alice. Here we minimize the information leakage problem through random masks
that occurred in [11]. Besides, we show the practical upper bound of the encoding
size of our protocol using ring-LWE SwHE.

Remark 1. Here we compare the performances of the both methods which are
implemented in a single PC environment configured with one 3.6 GHz Intel
core-i7 CPU and an 8 GB RAM in Linux environment.

2 Data Encoding Technique

In this section, we review the Saha and Koshiba data encoding technique [11]
and discuss our base-N data encoding technique. The base-N encoding was
also used by Yasuda et al. [16] to pack a large integer vector of 16–32-bit for
an efficient statistical analysis. But we use base-N fixed length encoding where
most significant digits (MSDs) are filled up by ‘0’ if it is empty in the encoded
number. The reasons for choosing the base-N encoding are described below.

Notations. In this paper, Z denotes the ring of integers. In addition, R denotes a
ring of integer of the form Z[x]/f(x) where f(x) denotes a cyclotomic polynomial
of degree n as f(x) = xn + 1 with a lattice dimension n. For a prime number q,
the ring of integer modulo q is denoted by Zq. The ciphertext space is denoted
by the ring Rq = R/qR = Zq[x]/f(x). For an integer t < q, the message space is
defined as Rt = Zt[x]/f(x). Besides, Z[x] denotes the ring of polynomials over
integers. For a vector A = (a0, a1, . . . , an−1), the maximum norm of ‖A‖∞ is
defined as max |ai|. Let 〈A,B〉 denote the inner product between two vectors
A and B. Moreover, the function Enc(m, pk) = ct(m) defines the encryption
of message m using the public key pk to produce the ciphertext ct. Also, l and
lN denote the length of an integer in binary and base-N fixed length encoding
respectively. Besides, γ and k represent the block size and the total number of
records respectively where a block is a collection of records.

In 2016, Saha and Koshiba [11] used binary encoding technique over the
alphabets {0, 1}l for their private batch equality protocol (PriBET) where they
got an acceptable performance for practical use for a batch data size k. But
the protocol is not fast enough for big data processing. From the Table 1 in
[11], we observed that the speed of the PET protocol mostly depends on the
lattice dimension. In the secure computation, they required three homomorphic
multiplications over a polynomial ring Rq. In the ring-LWE lattice-based homo-
morphic encryption scheme, a homomorphic multiplication requires doing a large
polynomial multiplication over a lattice dimension of at least n = 2048 to achieve
a security level over 128-bit [11]. Saha and Koshiba showed the private batch
equality tests for 8–32-bit integers within the lattice dimension of 2048–4096.
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Here we observed that the lattice dimension is increasing with the increase of
data size l and batch size k. For example, to process a 16-bit integers compari-
son, executing PriBET on the block size of 128 required a lattice dimension of
n = l · k = 16 · 128 = 2048. On the other hand, it required a lattice dimension
of n = l · k = 16 · 256 = 4096 for a batch size of 256. At this point, minimizing
the lattice dimension is indispensable to minimize the computation time of the
PriBET protocol. If we able to use an encoding technique other than binary,
then we can reduce the lattice dimension. Moreover, we call the used binary
encoding in [11] as base-2 encoding where alphabet set is {0, (2 − 1)}l = {0, 1}l.
In addition, a binary encoding is using alphabets ‘0’ and ‘1’ to convert any dec-
imal number z which requires l = �logN (z)�+1 digits where N = 2 in this case.
Saha and Koshiba used an l-bit binary conversion algorithm for any integer of
l = 8–32-bit. That means, if the required number of binary digit to represent any
integer is less than l then rest of the MSBs are filled up by zeros. If we can do
the encoding over a large alphabet set, then we can reduce the lattice dimension.

Data: z, N and l;
Result: base-N fixed length number;
Input z, N and l;
Set lN = l/ log2(N);
zbaseN = baseNConvert(z,N, lN );
Output zbaseN ;
Procedure: baseNConvert(z,N, lN )
forall the i ∈ lN do

set digit[i] = 0;
end
set ind = 0;
while (z �= 0) do

r = z mod N ;
z = z/N ;
digit[ind] = r;
ind + +;

end
return digit;

Algorithm 1. Base-N fixed length encoding algorithm

Now we show the mathematical structure how the base-N encoding can work
faster than base-2 encoding where N > 2. Here we are dealing with lattice-
based cryptography where the working speed mostly depends on the lattice
dimension n. To process k data of size l-bit using binary encoding, Saha and
Koshiba required a lattice dimension n′ of

n′ = k · l . (1)

On the contrary, to represent an l-bit integer in base-N encoding, we need a
vector of size of

lN = 	l/ log2(N)
 . (2)
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So using base-N encoding, the new lattice dimension n′′ can be determined from
batch size k and base-N vector size lN as

n′′ = k · lN . (3)

Now by dividing Eq. (1) by Eq. (3) and with the help of Eq. (2), the relation
between new lattice dimension n′′ and Saha and Koshiba lattice dimension n′

can be obtained as
n′/n′′ = l/lN = log2(N) . (4)

Here we get the lattice dimension reduction rate as a factor of log2(N). So we use
base-N fixed length encoding for any positive integer in Zt using the alphabet
set {0, 1, 2, . . . , N − 1}lN . Now we slightly modify the basic base-N conversion
algorithm to make it fixed length to get our algorithm for base-N encoding
as shown in Algorithm 1. From this algorithm, we get the base-N fixed length
encoding of an integer in Zt by putting ‘0’ in the MSDs if the actual length of the
base-N encoded vector is less than lN . From the above discussion, it is clear that
our encoding scheme also reduces the size of any integer vector from its binary
representation with the ratio of l : l/ log2(N). In addition, we believe that our
encoding technique can be used in other contexts where the length reduction of
binary encoded vectors and batch computation of the many Euclidean distances
are indispensable.

3 Our Protocol

Saha and Koshiba [11] proposed the PriBET protocol using SwHE with binary
encoding in the semi-honest model. Here we propose another protocol called
base-N PriBET protocol using base-N encoding described in Sect. 2 to increase
its efficiency that is described as follows.

Consider a bank (Alice) wants to sanction some home loans to its customers
who have good credit score and are paying their taxes regularly. Suppose that a
customer of the bank now applies for a new home loan who has good credit score
with the required information along with his tax certificate. Furthermore, the
bank (Alice) needs to verify the customer’s tax identification number (TIN) to
check his status while sanctioning a new loan. On the contrary, the national tax
department (Charlie) is maintaining the database of all its taxpayers. Now nei-
ther the bank can disclose its customer’s information to the national tax depart-
ment nor the national tax department can disclose it’s all customers’ information
to the bank. Here a third party like Bob in the cloud can solve this problem and
does the verification on behalf of them without knowing the actual tax number
from both parties. This is a problem of verifying the equality of a large integer
with a large set of integers.

From the above scenario, let Alice has an l-bit integer which can be rep-
resented by a base-N vector as α = (α1, . . . , αlN ) by using Algorithm 1. In
addition, the national tax department has k integers with the same size that can
be represented by the base-N integer vectors as βλ = (βλ,1, . . . , βλ,lN ) by apply-
ing same algorithm where 1 ≤ λ ≤ k. As we know from Saha and Koshiba [11],
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the Hamming distance between two l-bit integers can find out whether they are
equal or not. But the Hamming distance works for only binary vectors. Therefore,
we use the concept that two integers are equal when the square Euclidean dis-
tance (SED) between their vectors using base-N fixed length encoding will be 0.
Now the equality test for batch comparisons can be realized by the following
equation as

Eλ =
lN∑

i=1

(αi − βλ,i)2 (5)

where 1 ≤ λ ≤ k. Moreover, Eλ represents the square Euclidean distances
(SEDs) between two base-N vectors α and βλ. Moreover, if Eλ in Eq. (5) is
0 for some positions of λ then we can say that α = βλ; otherwise α �= βλ. In this
way, Alice securely verifies her customer with the help of Bob. Now we describe
our protocol by the following steps.

Inputs: α = (α1, . . . , αlN ) and {β1, β2, ..., βk}, where βλ = (βλ,1, . . . , βλ,lN ) for
each λ in {1, 2, ..., k}.
Output: ∃λ[α = βλ] or ∀λ[α �= βλ]
Base-N PriBET protocol:

1. By using SwHE, Alice constructs the public key and private key by herself
and sends the public key to Charlie through a secure channel.

2. Then Alice encrypts the customer’s TIN α = (α1, . . . , αlN ) using her public
key and sends it to Bob.

3. The national tax department (Charlie) also uses the public key given by Alice
to encrypt k TINs βλ = (βλ,1, . . . , βλ,lN ) where 1 ≤ λ ≤ k and sends the value
to Bob.

4. Bob does the computation in Eq. (5) on the encrypted TINs and sends the
encrypted result ct(Eλ) to Alice to verify whether at least one of Eλ is equal
to 0.

5. For 1 ≤ λ ≤ k, Alice decrypts ct(Eλ) using her secret key and checks each
value Eλ.

6. If Alice finds at least one of the Eλ = 0 then she decides the match; otherwise,
she decides no match.

Remark 2. Here our protocol provides the passive security under the assumption
that Bob is semi-honest. In other words, Bob follows the protocol but tries
to learn information from the protocol. Furthermore, we use the same ring-
LWE based SwHE scheme used in Saha and Koshiba [11] for the security of our
protocol. In this section, we skip its review due to page limitation. Besides, the
security assumption of the scheme is based on the ring-LWE assumption which is
reducible to the worst-case hardness of problems on ideal lattices that is believed
to be secure against the quantum computer as mentioned by Lyubashevsky
et al. [7].
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Remark 3. The goal of our protocol is to find α = βλ or α �= βλ for some
1 ≤ λ ≤ k. Now we also think about the security of index λ. In our base-N
PriBET protocol, Alice can know such index λ. Since such index is not actual
index that exists in the databases of the national tax department, so leakage of
such information to Alice does not harm the security of our protocol.

4 Packing Method

Packing method is the process of representing many data in a single polynomial.
We know from some existing literature [5,10,11,14] that packing method makes
many secure computations using ring-LWE SwHE more practical. Recently, Saha
and Koshiba [11] used binary vectors to address their packing. Here we consider
the same packing with base-N fixed length vectors. Now we review the packing
method of PriBET protocol in [11] for our protocol using our base-N encoding
by the following way.

4.1 Packing Method for Our Protocol

As mentioned in our protocol of Sect. 3, we need to compute the SEDs Eλ in
Eq. (5) using few polynomial additions and multiplications to reduce the
cost where 1 ≤ λ ≤ k. Let us construct a base-N integer vector A =
(α0, . . . , αlN−1) ∈ Rt from a base-N vector α = (α1, . . . , αlN ) of length lN . Fur-
thermore, let us consider another base-N integer vectors B which is constructed
by combining all base-N vectors in βλ = (βλ,1, . . . , βλ,lN ) as B = (β1,0, . . . ,
β1,lN−1, . . . , βk,0, . . . , βk,lN−1) ∈ Rt of length k · lN . Here we want to compute
many SEDs Eλ in one computation which can be done by measuring the SEDs
between the vector A and each sub-vector in B. Moreover, existing literature
showed [10,14] that the secure inner product 〈A,Bλ〉 helps to compute the SED
between A and Bλ. Hence, we pack these integer vectors by some polynomials
with the highest degree (x) = n in such a way so that inner product 〈A,Bλ〉
does not wrap-around a coefficient of x with any degrees. For the integer vectors
A and B with n ≥ k · lN and 1 ≤ λ ≤ k, the packing method of Saha and
Koshiba [11] in the same ring R = Z[x]/(xn + 1) is rewritten as

Poly1(A) =
lN−1∑

i=0

αix
i, Poly2(B) =

k∑

λ=1

lN−1∑

j=0

βλ,jx
lN ·λ−(j+1). (6)

Here the coefficients αi and βλ,j are in the alphabets {0, 1, 2, . . . , N−1}lN instead
of alphabets {0, 1}l as in [11]. If we multiply the above two polynomials, we
can get the inner product computations which in turn helps the many square
Euclidean distances computation between A and Bλ. Moreover, this multiplica-
tion will produce another big polynomial where each of the SEDs can be obtained
as a coefficient of x with different degrees. According to the SwHE described in
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Sect. 5 of [11], the packed ciphertexts for Polyi(A) ∈ R are defined for some
i = {1, 2} using the public key pk as

cti(A) = Enc(Polyi(A), pk) ∈ (Rq)2. (7)

To get the inner product of the vectors A and Bλ, we multiply the polynomials
Poly1(A) and Poly2(B) in the same base ring R as follows.

( lN−1∑
i=0

αix
i
)

×
( k∑

λ=1

lN−1∑
j=0

βλ,jxlN ·λ−(j+1)
)
=

k∑
λ=1

lN−1∑
i=0

lN−1∑
j=0

αiβλ,jxi+lN ·λ−(j+1)

=
k∑

λ=1

lN−1∑
i=0

αiβλ,ix
lN ·λ−1 +ToHD+ ToLD =

k∑
λ=1

〈A,Bλ〉xlN ·λ−1 + · · · (8)

Here A is the vector of length lN and Bλ is the λ-th sub-vector of B of the same
length with 1 ≤ λ ≤ k. Moreover, the ToHD (terms of higher degree) means
deg(x) > lN ·λ − 1 and the ToLD (terms of lower degrees) means deg(x) <
lN ·λ−1. The result in Eq. (8) shows that one polynomial multiplication includes
the many inner products of 〈A,Bλ〉. In addition, the following proposition is
needed to hold for computing the many inner products over packed ciphertexts.

Proposition 1. Let A = (α0, α1, . . . , αlN−1) ∈ Rt be an integer vector where
|A| = lN and B = (β1,0, . . . , β1,lN−1, . . . , βk,0, . . . , βk,lN−1) ∈ Rt be another
integer vector of length k · lN . For 1 ≤ λ ≤ k, the vector B includes k sub-
vectors where the length of each sub-vector is lN . If the ciphertext of A and B
can be represented as ct1(A) and ct2(B) respectively by Eq. (7) then under the
condition of Lemma 1 (See Sect. 5 in [11] for details), decryption of homomorphic
multiplication ct1(A) � ct2(B) ∈ (Rq)2 will produce a polynomial of Rt with
xlN ·λ−1 including coefficient 〈A,Bλ〉 =

∑lN−1
i=0 αiβλ,i mod t. Alternatively, we

can say that homomorphic multiplication of ct1(A) and ct2(B) simultaneously
computes the many inner products for 1 ≤ λ ≤ k and 0 ≤ i ≤ (lN − 1).

5 Secure Computation Using Euclidean Distance

We perform the computation of base-N PriBET protocol of Sect. 3 using the
SwHE scheme used in [11] and the packing method in Sect. 4.1. In addition,
according to Eq. (5), we need to find out the values of the many SEDs Eλ. Let us
consider two same base-N integers vectors A and B constructed by Algorithm 1
where Bλ = (βλ,0, . . . , βλ,lN−1) is the λ-th sub-vector of B with 1 ≤ λ ≤ k.
From these integer vectors, Eλ can be computed with the help of the arithmetic
computation between A and Bλ as

Eλ =
lN−1∑

i=0

(α2
i + β2

λ,i − 2αiβλ,i) . (9)
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Now we construct Poly1(A) and Poly1(A2) (resp., Poly2(B) and Poly2(B2))
from vector A (resp., B) using the packing method in Eq. (6). With the help of
inner product property in Eq. (8), now we compute ct(Eλ) of the Eq. (9) over
packed ciphertext ct1(A), ct1(A2), ct2(B), and ct2(B2) which are obtained from
Poly1(A), Poly1(A2), Poly2(B), and Poly2(B2)) respectively by the Eq. (7).
Moreover, we calculate ct(Eλ) from Proposition 1 and the packed ciphertext vec-
tor ct1(A) ∈ Rq, ct1(A2) ∈ Rq, ct1(B) ∈ Rq, and ct2(B2) ∈ Rq in three homo-
morphic multiplications and two homomorphic additions. Here ct(Eλ) equals

ct1(A2) � ct2(Vε) � ct2(B2) � ct1(VlN ) � (−2ct1(A) � ct2(B)) (10)

where Vε denotes an integer vector like (1, . . . , 1) of length k · lN and VlN

denotes another integer vector (1, . . . , 1) of length lN . In addition, � (resp. �)
stands for homomorphic addition (resp., multiplication). The above-encrypted
polynomial ct(Eλ) includes many SEDs as the coefficients of different degrees
of x. Bob sends ct(Eλ) to Alice for decryption. According to Proposition 1 and
our protocol, Alice decrypts ct(Eλ) in the ring Rq using her secret key and
extracts Eλ as a coefficient of xlN ·λ−1 from the plaintext of ct(Eλ). Then Alice
checks whether at least of one of the Eλ contains 0 or not to help Bob to decide
either equality or non-equality.

Concealing Extra Information from Leakage. In the PriBET protocol of
Saha and Koshiba [11], Bob in the cloud sent the whole encrypted polynomial
to Alice for decryption to decide something after the computation. Here Bob
could see every coefficient of the polynomial whereas she needs to check some
coefficients with a particular degree of x. For this reason, some extra information
leakage problem exists in the Saha and Koshiba protocol. To compute Eλ for our
protocol by Bob in the cloud, he also needs a decryption help from Alice for some
decision making since he does not have the secret key. From the above discussion
of secure computation, Alice needs to check only the coefficient of xlN ·λ−1 for the
large polynomial ct(Eλ) produced by Bob. Also, all other coefficients of our n
degree polynomial can be published to Alice if Bob does not conceal those coeffi-
cients. In our protocol, we conceal the extra information from leakage to Alice by
adding some random masks at the cloud (Bob) ends. We can conceal ct(Eλ) by
adding a random polynomial r in the base ring R as r =

∑n/lN
h=1

∑lN ·h−2
i=lN (h−1) rix

i .

Now Bob adds r to the ciphertext ct(Eλ) as ct(E′
λ) = ct(Eλ) � r. Besides, the

resulting ciphertext ct(E′
λ) contains all required information as a coefficient of

xlN ·λ−1 and conceals all other coefficients using the random masks. In this way,
we protect ct(Eλ) from leaking any information to Alice except the coefficient
of xlN ·λ−1.

6 Experimental Analysis

In this section, we show the parameter settings of our experiments along with
security level. We also show the selection process of our base-N encoding size
and the performance of our protocol towards big data.
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Table 1. Performance of base-N PriBET protocol for a data size of 16384

Data size

(bits)

Encoding

size (N)

Block size

(γ)

Plaintext

space (t)

Ciphertext

space (q)

Total

computation

time (ms)

Lattice

dimension (n)

Security

level

8 24 1024 211 61-bit 1469 2048 ≥140

16 512 2953

32 256 5860

8 28 4096 216 71-bit 875 4096

16 2048 217 73-bit 1454

32 1024 218 75-bit 2844

16 216 4096 232 103-bit 982

32 2048 233 105-bit 1718

64 1024 234 107-bit 3157

32 232 8192 264 167-bit 1312 8192

64 4096 265 169-bit 1937

6.1 Parameters Settings

As discussed in Sect. 5 of [11], we selected proper values of the parameters
(n, t, q, σ) of our used security scheme for successful decryption and to achieve a
certain security level. In addition, we need to select the appropriate value for our
encoding size N . The security analysis of this protocol is skipped due to page
limitation which can be addressed in the full version of the paper.

Correctness Side. Here we show the correctness of our protocol for computing
ct(Eλ) for different lattice dimensions. According to the Lemma 1 in [11], the
correctness of ciphertext ct(Eλ) holds if

||〈ct(Eλ), s〉|| ≤ q/2 . (11)

As mentioned in [14], we consider the upper bound Φ of ∞-norm size ‖〈ct, s〉‖∞
for any fresh ciphertext ct ∈ (Rq)2. In addition, the value of the upper bound Φ
is 2tσ2

√
n (see Theorem 3.3 in [5]). Here the ∞-norm size of ct(Eλ) in Eq. (10) is

defined by the inequality as ‖〈ct(Eλ), s〉‖∞ < 2nΦ2 + 2nΦ2 (see [14] for details).
Furthermore, we take the value of Φ as 2tσ2

√
n (see [5] for details). Now the

inequality in Eq. (11) can be represented as ‖〈ct(Eλ), s〉‖∞ < 2nΦ2 + 2nΦ2 ≈
8n2t2σ4. The correctness for the inequality in Eq. (11) for the ciphertext ct(Eλ)
can be found if it satisfies

16n2t2σ4 ≤ q . (12)

Chosen Parameters. Here we need the lattice dimension n to be greater than
k · lN for our protocol. Since we required to compute the SED between two
base-N integer vectors of length lN . Now the plaintext space t should satisfy the
relation

t ≥ lN · N2 . (13)

As shown in Table 1, we consider encoding size N = 24–232 for the lattice dimen-
sion 2048, 4096, and 8192 with the data size k = 16384. We also consider integer
data size l to be 8-bit, 16-bit, 32-bit, and 64-bit for comparison in the base-N
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PriBET protocol. Furthermore, we set t according to Eq. (13) for our plaintext
space Rt. According to the work in [5], we choose σ = 8 and the value of q must
be greater than 16n2p2σ4 for the ciphertext space Rq as in Eq. (12). Therefore,
we fix our parameters as (n, t, q, σ,N) as shown in Tables 1 and 2. We did a
block-wise computation to manage our dataset of 16384 integers within lattice
dimension of 2048, 4096, and 8192. We set the block size γ as 256, 512, 1024,
2048, 4096, and 8192 for the lattice dimension of 2048, 4096, and 8192.

Fig. 1. Comparative performances of our protocol for different encodings (base-16,
base-256, base-65536, and base-4294967296) using the lattice dimensions of 2048, 4096,
and 8192 with 8–64-bit integers.

Security Level. In our experiment, we consider the security of the encryp-
tion scheme against two attacks namely distinguishing attack [8] and decoding
attack [6]. According to the discussion of Lindner and Peikert [6], we consider
every parameter setting to provide more than 128-bit security level to secure our
protocol against the distinguishing attack and more powerful decoding attack
with the advantage ε = 2−64. In addition, a root Hermite factor δ < 1.0050 is
required to achieve an 80-bit security level that was shown by Chen and Nguyen
[2] in lattice-based cryptographic schemes. As discussed in [5], the running time
tadv is defined as lg(tadv) = 1.8/ lg(δ) − 110 where the root Hermite factor δ is
expressed as

c · q/σ = 22
√

n.·lg(q)·lg(δ) . (14)

As shown in Eqs. (12) and (13), both t and q should be increased with the
increase of the encoding size N . If we use a low lattice dimension for a high
encoding size, we will get security level less than 128-bit according to Eq. (14)
which is not desirable. As shown in Table 1, if the encoding size N is 16 and
lattice dimension is 2048 then we get a security level of 140. But if N = 256 and
n = 2048 again then we get a security level 104 which is not acceptable for our
case. So we increase the lattice dimension with the increase of encoding size to
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get a better security level. According to data of Table 2 in [15], our parameters
setting provides more than 140-bit security level to protect the security algorithm
from some distinguishing attacks as shown Table 1.

6.2 Implementation Details

We implemented both Saha and Koshiba [11] and our protocols in C program-
ming language with Pari C library (version 2.7.5) [13] and ran the programs
on a single machine configured with 3.6 GHz Intel core-i7 processor and 8 GB
RAM using Linux environment. Here we did two types of experiments. One is
for selection of encoding parameter and another for comparative analysis with
the existing method. To do these experiments we selected suitable values of our
parameters for our security scheme in [11] and encoding technique described in
Sect. 2 respectively. We considered maximum data size of 16384 with 8–64-bit
integers for our experiments.

Table 2. Parameter settings of Saha and Koshiba protocol [11] and our protocol

Integer

size (l)

Data size

(k)

Encoding size (N) Lattice dimension (n) Plaintext space (t) Ciphertext

space (q)

Saha

and

Koshiba

Our

method

Saha and

Koshiba

Our

method

Saha and

Koshiba

Our

method

Saha and

Koshiba

Our method

8 4096 2 28 32768 4096 2048 216 69 bits 73 bits

16 4096 216 65536 4096 232 71 bits 105 bits

32 2048 65536 4096 233 71 bits 107 bits

6.3 Selection of Encoding Size (N) and Performance Towards
Big Data

Table 1 shows the performance of our base-N PriBET protocol for the lattice
dimension of 2048, 4096, and 8192 with a data size of 16384. Here we did the
experiments for different values of our encoding size N(24–232). Furthermore,
we show a comparative performance of our different encoding size for the lat-
tice dimension of 2048, 4096, and 8192 as shown in Fig. 1. Also, we were able
to select the value of our encoding size N as low as 24 = 16 and as high as
232 = 4294967296. We tried to select the maximum value of encoding 264 where
the computation is out of the capacity our machine due to a buffer overflow.
It also happens due to increasing the value of plaintext space t and ciphertext
space q. From this figure, it is clear that batch equality comparison is faster
if data size and encoding size are same for most of the cases. In addition, we
achieved a good performance for the encoding size of 28 = 256 and 216 = 65536
with the data size of 8 and 16-bit respectively. So we chose two effective values
of base-N encoding size as 28 and 216.
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Moreover, our experiments also showed that our protocol was able to do
over 1.1 million and 862 thousand of equality comparisons per minute with the
encoding size of 28 = 256 and 216 = 65536 for a data size of 8-bit and 16-
bit respectively. Moreover, our protocol was able to compute more than 700
thousand (resp. 200 thousand) equality comparisons per minute for 32-bit (resp.
64-bit) data with an encoding size of 232.

Fig. 2. Performance comparison between Saha and Koshiba [11] and our method for
the data size 2048 and 4096 with length of 8–32–bit using base-256 and base-65536
encodings

6.4 Comparative Analysis

In this section, we show comparative performances of our protocol with respect to
Saha and Koshiba protocol [11] for batch comparison to find out the equalities of
an integer with a set of k integers. Saha and Koshiba used the Hamming distance
computation for their PriBET protocol over binary encoding because Hamming
distance computation works only for binary data. Here we used the base-N
encoding to minimize the cost of computation by reducing lattice dimension. As
mentioned in Sect. 2, we achieved the lattice dimension reduction by a factor
of log2 N than Saha and Koshiba which reflects in the parameter settings of
lattice dimension for both of the protocols as shown in Table 2. Due to using
base-N encoding, we use the SED computation to find the distance between a
given query and an existing dataset. According to Sect. 6.3, we used the two best
encoding size of 28 and 216 for getting the better performance. Table 2 shows
the used parameters settings for both of the protocols. Furthermore, we took
the integers set of 2048 and 4096 with a practical bit size of 8-bit, 16-bit, and
32-bit for the comparison. For the data size of 2048 and 4096 using base-256 and
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base-65536 encoding, the comparative performance of our protocol with respect
to Saha and Koshiba protocol is shown in Fig. 2 where timing was taken in
milliseconds. Our protocol showed the best performance than that of Saha and
Koshiba for 8-bit integer comparison with a data size of 4096 and a less good
performance for a 16-bit integer with the same data size. Overall, our protocol
performed more than 8–20 times as fast as Saha and Koshiba protocol for the
batch equality comparison. Besides, we achieved more than 140-bit security using
our parameter settings described in Sect. 6.1.

7 Conclusions

In this paper, we discussed an efficient base-N fixed length encoding based Pri-
BET protocol using ring-LWE based somewhat homomorphic encryption in the
semi-honest model. For this purpose, we have shown a base-N fixed length encod-
ing algorithm to reduce the cost of equality comparison. In addition, we experi-
mented our protocol using different encoding size to find out the best value of our
encoding size N . Our protocol was able to do more than 1.1 million (resp. 862
thousand) comparisons per minute for 8-bit (16-bit) integer batch comparison.
Also, we have been able to show that our protocol works more than 8–20 times
faster than the protocol of Saha and Koshiba. We also believe that this achieve-
ment of around a million of comparisons per minute is big a step towards big
data processing. We hope that our research will inspire future researches to use
base-N encoding rather than binary encoding for many computation purposes
because of reducing the lattice dimension by a factor of log2 (N).
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entific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.
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Abstract. We present the view that the method of multi-level access control,
often considered confined in the theory of mandatory access control, is in fact
necessary for data secrecy (i.e. confidentiality) and privacy. This is consequence
of a result in directed graph theory showing that there is a partial order of
components in any data flow graph. Then, given the data flow graph of any
access control system, it is in principle possible to determine which multi-level
access control system it implements. On the other hand, given any desired data
flow graph, it is possible to assign subjects and data objects to its different levels
and thus implement a multi-level access control system for secrecy and privacy.
As a consequence, we propose that the well-established lattice model of secure
information flow be replaced by a model based on partial orders of components.
Applications to Internet of Things and Cloud contexts are briefly mentioned.

Keywords: Security � Secrecy � Confidentiality � Privacy � Access control
Flow control � Mandatory access control � Multi-level security
Multi-layer security � Internet of things � Cloud

1 Introduction

We present the view that Multi-level (ML) access control methods, in the sense that
will be defined here, have fundamental importance for access control, data secrecy and
data privacy; in fact, any access control system that intends to provide secrecy and
privacy must implement such methods. By using a result in directed graph theory, we
show that data flow graphs representing data flow networks are partial orders of
maximal strongly connected components. By generating the data flow graphs of access
control systems, one can see what ML systems they implement. By appropriately
assigning data to the strongly connected components of data flow graphs, one can
implement ML data security and secrecy.

Note that our use of the term data privacy in this paper refers to accessibility of private
data only. Other research, such as in privacy by design, has much wider motivations and
requirements [4] and is usually concerned with making it impossible to identify personal
information in data sets. Note also that the term confidentiality is often considered to be a
synonym of secrecy. We subscribe to the view by which “the fundamental nature of a
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privacy violation is an improper information flow” [14] andwe propose new analysis and
designmethods to enable only proper flows. Data secrecy is a prerequisite to data privacy,
and the latter will be implied in the rest of this paper.

In Sect. 2, we present some established concepts on ML systems. In Sect. 3, we
present the mentioned result of directed graph theory. In Sect. 4 we show that it is
possible in principle to find the ML model implicit in any access control system that
can be represented by a data flow graph. In Sect. 5 we show how, given a desired data
flow graph, it is possible to populate it with subjects and objects thus realizing
secrecy-preserving data flows in concrete systems. In Sect. 6 we make a synthesis of
our results, with recommendations.

2 Data Flow Control and Multi-level Access Control Methods

The study of data flows in access control networks was addressed, directly or indirectly,
in many papers in the early years of research on access control methods [13]. Such
research was based on the following main ideas:

• Distinction between secure or legal and insecure or illegal flows.
• State-based: following the famous Bell-La Padula model (BLP) proposed in 1973

[2, 3], it was usually assumed that models for secure information flow could be
proved secure by reasoning in terms of state transitions, caused by reading and
writing operations.

• Lattice-based: following an equally famous 1976 paper byDenning [6], it was usually
accepted that secure data flows could be guaranteed by imposing a lattice-structure on
the data flow. Entities should be placed in the nodes of a lattice and data should flow
along the order relations of the lattice structure. So, much research was directed to
ensuring such lattice structuring in information systems [9, 19, 23].

This research introduced models that implement both access control and flow
control, with a single mechanism. These became known as the Mandatory access
control models (MAC) [22], and are usually considered to include the ML methods.
However MAC models seemed to be too restrictive for enterprise applications. Their
realm of application is often considered limited to the military or to operating systems,
and even there, with some relaxations. Subsequently, research moved on to flexible
models capable of implementing in practice the access control needs of organizations,
leading to the Role based access control model (RBAC) [8] and to the Attribute based
access control model (ABAC) [11]. Of these, many variants exist but they are mostly
conceived for access control and flow control requires further attention.

ML access control methods have been defined and used in the literature and
practice in different ways [22, 24]. One of the best-known early proposal for such
methods was the BLP access control model, whose goal is to ensure that in an orga-
nization data can move only upwards, from the less secret to the more secret levels.
Many variants and generalizations of this concept have been proposed.

In this work, we react to the limiting view of ML system by demonstrating the
opposite view that being ML is an intrinsic property of any data flow; so secrecy must
implemented according to this ML structure, failing which the system will not
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implement secrecy. That is, any data security system that is not designed according to
the intrinsic ML structure of its data flow cannot implement secrecy. This holds for
systems specified in RBAC or ABAC or other models. We will see that this view
implies a significant correction to the view of ML structures as lattices.

We review briefly here other well-known concepts that lead to our conclusions,
before presenting in the next section the graph-theoretical foundation for them.

In any data secrecy system, the following principles are generally accepted:

(1) there are at least two types of data: the data to be protected (let us call them secret)
and the rest (let us call them public); they are usually segregated to different
databases.

(2) there are at least two types of subjects: those that should be able to know secret
data, and the others.

This creates a two-level hierarchy of data and subjects. The extension to hierarchies
of n-levels is straightforward, and leads to the following well-known principles:

(3) no read up: subjects at a given level of the hierarchy should be able to read at their
own or lower levels only;

(4) no write down: subjects at a given level of the hierarchy should be able to write at
their own or higher levels only;

(5) databases containing high secrecy data can also contain low secrecy data, but not
vice-versa.

Further, the theory of non-interference [21] is also based on the existence of at least
two levels of data secrecy.

Finally, in many organizations data are routinely classified according to sensitivity
levels and personnel are classified according to clearance, with policies defining what
clearance is necessary to read or write which data, given their sensitivity levels.

Therefore, ML methods are necessary for data secrecy, and also relate closely to
practical needs.

The combination of state-based concepts and relational concepts (as in the lattice
model) leads to complex proofs. In this paper, as in [15, 16], we use relational concepts
only, while acknowledging that state-based concepts can be more expressive for
modeling attacks [12].

3 Data Flow Digraphs as Partial Orders of Components

We use data flow graphs for abstract, relational views of data flows in systems. Data
flow graphs are represented here as directed graphs, or digraphs. In our first presen-
tation of the theory, nodes in our data flow digraphs are entities that will represent in a
unified way the usual subjects and objects of access control systems. Edges between
two entities represent the fact that data can flow between the two entities, e.g. if entity
A is a subject and entity B is an object, then an edge from A to B means that A can write
on B, while an edge from B to A means that A can read from B. This simple view
enables us to present synthetically some results that can be adapted to several inter-
pretations and contexts. We also take a pessimistic assumption, common in security
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theory, by which, if any data at all can flow from A to B, then any other data of A can
also flow to B. This leads to assuming the transitivity of the data flow relationship, i.e.
if data can flow from A to B and also from B to C, then it can flow from A to C. The
transitivity of data flows is a property that cannot be postulated in general [21], but,
since it is based on the mentioned pessimistic assumption, cannot lead to systems that
are under-protected. Finally, it is reasonable to assume the reflexivity of data flows.

In Fig. 1(a), taken from [1] we represent an arbitrary digraph, where the arrows can
be interpreted to denote possible data flows among entities in a system, perhaps in an
Internet of Things context. This digraph does not represent a partial order (thus of
course not a lattice) because of the presence of symmetric relationships; however it is
easy to see that it defines a data flow where all data can end up in entities L, M, N.

We see that entities A and B can send or receive data from each other. We conclude
that A and B can share all data they have or, the data that one can originate or receive
the other can also receive, so they can be considered to be one entity for access control
purposes. We will speak of a strongly connected component {A, B}, which is also
maximal because it is not part of a larger strongly connected component. Henceforth,
for conciseness we will use the term component to denote a maximal strongly con-
nected component. By the same reasoning, entities F, G, H, I can receive data from
each others, and so they should be considered to form a component also. Proceeding in
this way for the whole digraph, we detect the components {C, D, E}, {L, M, N} and
{J, K}. Since we have assumed transitivity, all the edges in a component can be thought
of as bidirectional, and there is an implied bidirectional edge between F and H. Of
course, there can be singleton components consisting of only one node.

Using this information, we can derive the component digraph of Fig. 1(a), shown
in Fig. 1(b). We note that this second digraph preserves all the essential information of
the first, except for the fact that components have been condensed into one node:
symmetric relationships, which are equivalence relationships, have been encapsulated.
Elementary results of digraph theory [1, 10] inform us that:

1. this construction is always possible and will always lead to an acyclic digraph,
which represents a partial order because of the reflexivity and transitivity we have
assumed;

A B GI

F

H

D EC

M

N

L

J

K

C,D,E

L,M,N

A,B

J,KF,G,H,I

(a) (b)

Fig. 1. A digraph showing allowed data flows in a network and its component digraph [1]
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2. the component digraph has the same connectedness as the original one, in the sense
that there is a directed path from X to Y in the original digraph iff there is such a path
between components containing X and Y in the component digraph.

This leads us to conclude that any data flow digraph can be understood as a partial
order of components.

For access control systems and flow control systems this result is very useful
because the digraph of Fig. 1(b) shows more concisely the essential information in
Fig. 1a. We can also assume that each entity can have some data of its own (we say that
these data originate in the entity), which can be shared with other entities according to
the data flow relationships. The digraph of Fig. 2 shows concisely how data can
circulate in the original digraph. A comparison between Figs. 1(b) and 2 shows that the
greater entities in the partial order can have available more data, also that data origi-
nating higher in the partial order can be available to fewer entities.

The nodes in the partial order of Fig. 2 can be thought of as security levels in a ML
model.

We can use this information in several ways. For example, if entities in a node of
Fig. 2 represent databases, we know that they can contain the same data and thus could
perhaps be merged; if they represent subjects, then they can have the same role in an
RBAC system; if they represent roles, they can perhaps be merged. Merging decisions
however should be conditional to administrator’s approval because there may be rea-
sons not to implement them. Also, the condensed digraph of Fig. 1(b) shows us how to
reorganize the original digraph, see Fig. 3(a), where the original digraph is shown more
explicitly as a partial order of components, where each component can again be thought
of as a security level in a ML system. In Fig. 3(b) one further transformation has been
done: only one edge between any two components has been selected, also relationships
between components are implied when they can be derived by transitivity. This could
be useful in practice if it is desired to place protection mechanisms in the edges that run
between components. Note that there is some amount of arbitrariness in Fig. 3(b), for
example instead, or in addition to, the edge <A, I> we could have had any edge from
any of {A, B} to any of {F, G, H, I}. But the transitive closures of the digraphs of
Figs. 1(a) and 3, and of all possible digraphs similarly obtained, are the same, they all
represent the same data flows.

Each component in these figures represents a set of entities where there can be
complete data sharing, without any secrecy. But then data can also move to the next

All

C,D,E,J,K

C,D,EA,B

A,B,C,D,E
F,G,H,I

Fig. 2. The data flow digraph of the digraphs of Fig. 1.
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component up in the partial order, if there is one. Data cannot move down in the partial
order, and this implements secrecy. This is the way data circulates in ML networks, and
so we define ML networks as partial orders of components, leading to the conclusion
that any data flow digraph can be understood as a ML network.

Generic entities or subjects and objects can be associated with the nodes of Fig. 3
just as they were assumed to be in Fig. 1. The access control systems for these digraphs
can be constructed in the following way:

(1) data flow is permitted between any two elements of a component;
(2) data flow is permitted between two elements of different components according to

the partial order relationships represented by the paths in the original or derived
digraphs, for example data can flow, directly or indirectly, from B to N.

Access control matrices will have to be constructed or roles with permission lists, or
other policies. If the digraph must be implemented as a distributed network, then
routing lists will have to be constructed. Encryption mechanisms can also be used to
establish different data flows. Depending on the method used, the reduced number of
edges in Fig. 3(b) might make the task easier. These are the same things that should be
done to construct the access control system for the digraph of Fig. 1(a), however our
construction has made it possible to see clearly the underlying partial order logic.

There are efficient algorithms to obtain component digraphs. For example, the time
complexity of the well-known algorithm reported in [26] is linear on the number of
edges plus the number of nodes.

It is interesting to observe that similar methods have a history of being used for data
flow analysis in programs, where one of the main concerns is to identify the main
components in the data flows [18].

4 Finding Levels in Existing Access Control Systems

Table 1 gives the permissions for a network with five subjects S1 to S5 and five objects
O1 to O5, using the notations CR for can read, and CW for can write [15, 16]. This an
arbitrarily constructed network, and not one constructed to prove our conclusions.
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(a) (b)

Fig. 3. The digraph of Fig. 1 reorganized and then simplified
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Diagrams like this can be obtained for access control systems specified by means of
access control matrices, RBAC permissions [20], etc.

Figure 4 gives a digraph representation of this network, using ovals for subjects and
rectangles for objects.

For uniformity and to justify transitivity, we can think that all edges represent a
single transitive relationship can flow [20] rather than two distinct relationships as
presented in Table 1. It remains that, in conformity with the concepts of access control,
this is a bipartite digraph of subjects and objects.

By using the principles we have presented, the digraph of Fig. 4 can be shown as in
Fig. 5(a). In Fig. 5(b) we see clearly the partial order of components implicit in Fig. 4.
Using the terminology of [15, 16], from Fig. 5(a) it is clear that databases O3 and O4
can store the same data, thus possibly they can be merged. Subjects S3 and S4 also can
know the same data, and so it is possible to give them the same role. Thus this view has
implications for role engineering, but we will leave such considerations to future work.

Assuming that all data are in the objects or databases O1–O5, we show where the
data of each of these databases can possibly be found in the network, by using the
terminology ‘Area of’. We see that the data of O1 can be available anywhere in the
network, while the most secret data are the ones originating in objects O3, O4 and O5,
which can be known or stored in the most internal (or topmost) areas only. This may
not be intended by the designers of the system of Table 1 or Fig. 4 but is a necessary
consequence of the structure of the data flow.

Table 1. Read-write relationships for the network of Fig. 4

CR(S1, O1) CW(S1, O2)
CR(S2, O2) CW(S2, O3)
CR(S3, O4) CW(S3, O3)
CR(S4, O3) CW(S4, O3)
CR(S5, O2) CW(S4, O4)
CR(S5, O5) CW(S5, O5)

S1

S2

S5

S3

S4

O1

O2

O3

O4

O5

Fig. 4. An access control network
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Because of the efficient algoritms we have mentioned, this analysis can be done in
practice on systems of moderate size. Reference [25] presents this fact, analytically and
by simulation.

5 Constructing Multi-level Systems

The previous discussion has not been helpful from the design point of view. In the
example of the previous section, we have made some observations about the secrecy
status of some data, but this was an observation on a randomly generated network of
entities, it was not the result of design decisions. The initial representation of the
system of Fig. 4 did not show clearly that the data in O3, O4 or O5 have the least
visibility, thus are the most secret.

Once again, we will proceed by example. We wish to design an access control
network for the following application, possibly in a Cloud context. We have two banks
in conflict of interest, Bank1 and Bank 2. Bank1 has only one category of data, called
B1, which it wishes to keep private. However Bank 2 has public data labelled B2P that
can be available to anyone, and secret data B2S that should be available only to its own
employees. There is also a Company 1 that collaborates with Bank 2 and so shares all
its data C1 with Bank 2. However Bank 2 does not want its secret data B2S to be known
to Company 1, nor to Bank 1 of course. Note that here we have added another type of
entity, which we can call organization, and which will turn out to be a set of subjects
and objects. Note also that we have expressed both need to know and conflict
requirements. A Boolean analysis of these requirements leads to the data flow diagram
shown in Fig. 6.

S1

O1

O2

S2 S5 O5

O3

O4

S3S4

Area of O1

Area of O2 Area of O5

Area of O3,O4

O1,O2,
O3,O4

O1, O2

O1,O2,O5

O1

S3, S4

S5

S2,S3,S4,S5

All Subjects

(a) (b)

Fig. 5. Components and data flow for the example of Fig. 4
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We now populate this data flow with subjects and objects, or employees and
databases. This can be done in different ways. We will use a very simple structure with
one database for each possible data contents and one employee for each database. We
use the following notation: Bob:{B1, B2P} means that employee Bob has clearance
only to read the data of the types indicated, and similarly Bk1:{B1, B2P} means that
database Bk1 can store only data of the types indicated. Taking Bob as an employee of
Bank 1, in charge of the bank’s database; Alice as an employee of Bank 2 in charge of
making available public data for Bank 2 from a database that she administers for this
purpose; Carla as an employee of Company 1 and Dave as an employee of Bank 2, the
populated diagram is shown in Fig. 7.

Arrows that can be inferred by transitivity are not shown in Fig. 7, i.e. we can
imagine that Alice is also authorized to write directly on Bk2S. This simplification can
be considered to be inadequate from the security point of view, since in Fig. 7 the
transfer of data from Alice to Bk2S depends on decisions by Carla. We have mentioned
that transitivity cannot be given for granted in data flow systems. However our data
flow diagrams show only the possibility of data flows, based on our pessimistic
hypothesis.

B2P, C1

B2S, B2P, 
C1

B1,B2P

B2P

Bank2

Bank1

All orgs

Bank2,
Company 1

Fig. 6. Data flow in a hypothetical network

Bk1:{B1,B2P}Bob:{B1,B2P}

Carla:{B2P, C1} Co1:{B2P,C1}

Dave:{B2S,B2P,C1} Bk2S:{B2S,B2P,C1}

Alice:{B2P} Bk2P:{B2P}

Bank 2

Company 1
Bank 1

Bank 2

Fig. 7. A network of entities and organizations for the data flow of Fig. 6
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Many other realizations of the original requirements are of course feasible, e.g.
Bank 1 may wish to keep separate B1 and B2P data.

The classical BLP model can be obtained, in its essential aspects. as a special case
of our construction. If we wish a BLP system with three levels: Public, Confidential
and Secret, then the necessary labels are: {Public}, {Public, Confidential}, {Public,
Confidential, Secret}.

This mechanism of constructing data flows by using label sets is powerful. We have
seen above how it can be used to express conflicts. It can be used to express other types
of constraints, but this is left to future papers.

6 Synthesis and Conclusions

In conclusion, using a basic result of digraph theory, we have established intuitively the
following facts for access control and data flow systems that can be described as
transitive, directed graphs:

• They define partial orders of components.
• These directed graphs and partial orders can be obtained efficiently from access

control policies in some practical cases.
• No data secrecy is possible within a single component, since in each component, all

entities can have available the same data.
• Data available in one component can also be available in the greater components in

the partial order; data originating in one component cannot be available in lower
components.

• As we move up in the partial order, the amount of data that can be available there
will monotonically increase; also the number of entities that can have available data
originating there will monotonically decrease.

• In order to have data secrecy, a system must have at least two components.
• Data secrecy can then be defined in terms of data being available only in some

components.
• For data secrecy, data must be distributed among the components according to the

desired levels of secrecy, with the most secret data in the top components of the
partial order (from where they cannot move down). This will allow, all and only,
legal or secure data flows.

While the sufficiency of some of these facts as principles for the design of data
security systems has been understood for a long time, their necessity has been over-
looked (except for the acceptance in theory of the lattice model, to be further discussed
below). Any system that intends to protect data secrecy in this sense must implement
appropriate partial orders of components; this is done by construction in strict BLP
systems and similar ones, but must also be implemented in systems using other access
control methods, such as RBAC or ABAC. Implementation can be done by using
appropriate role assignments [19], policies, access control matrices, encryption or, in
truly distributed systems, by using data forwarding policies.
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As shown, these principles can be used not only for data protection within an
organization, but also for networks of organizations (Sect. 4), in the Internet of Things
and in Cloud environments where data of different ownerships coexist.

Some difficulties present themselves, of course.
A common objection against ML methods is that the constraint of allowing data

flow in one direction only is impractical. However we have shown that all directed
graphs describe unidirectional flows in their partial orders, and that this is necessary for
secrecy. But this was based on the pessimistic assumption that when a flow is allowed
between two entities, all data can move from one to the other by reading and writing
operations. This view can be refined by distinguishing among types of data, limiting the
operations to specific types of data and constructing different data flow digraphs, which
means different partial orders, for different types of data. For example, in an organi-
zation we could have tables showing salaries with names, and tables showing salary
statistics without names. Allowed data flows will normally be different for the two
types of data. In the process called sanitization sensitive data can be transformed into
less sensitive ones and declassified, with different data flow requirements [17]. Typi-
cally, salary tables with names could arrive at an office at the top of one partial order,
and this office could produce statistics available for everyone, placing itself at the
bottom of another partial order. Ideally, the office should be certified to produce such
sanitization and declassification, or simply it should be an office that can be trusted not
to divulge the secret data it might receive. Different data flow relationships for different
types of data can be specified with any access control method if one supposes that
different types of data are put in different objects. Access control systems with data
labeling offer more flexibility [5, 17].

Another major difficulty is the fact that many modern access control systems do not
define fixed data flows. These can change by administrative changes or environmental
changes, leading to changes in the values of Boolean conditions. Graphs that describe
such flows can be complex, with edges labelled by conditions. Changes must be
conceived in a way that they do not modify essential partial order relationships. How to
achieve this appears to be an interesting research topic.

Established theory considers lattices as the basic structuring model for secure data
flows [6, 9, 23], however it seems that this view must be corrected. Lattices are
restrictive, in the sense that they require the presence of joins and meets. Partial orders
can be extended to lattices but in order to do so, unnecessary entities may have to be
introduced. For example, to extend the partial order of Fig. 6 into a lattice, it is
necessary to add a node containing both B1 and B2S, contradicting the requirements
without any advantage; such a node must be excluded from the solution of Fig. 7.
Further, to extend the partial orders of Fig. 1(b) (or Fig. 5(b)) to lattices it is necessary
to add superfluous empty components that do not correspond to any entities. Lattices
are also restrictive in the sense that they forbid symmetric relationships, which in our
model are encapsulated in components. In [6] it is assumed that equivalent nodes can
be merged, but in practice this may not be possible. In contrast, partial orders of
components always exist in data flows that can be represented as digraphs, without any
extensions.

Therefore, the ML model as outlined here should be seen as the obligatory design
pattern [7] for systems intended to enforce strict data secrecy.
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Finally, it should be mentioned that data flow theory has many aspects, by which
our definitions can be considered to be very simplified. Still, this simplified view has
led to results of practical significance for the analysis and synthesis of secrecy systems,
as shown by our examples.

We have remained on an intuitive level, to avoid tying our discussion to a specific
formalism. We are continuing work towards a suitable formalism to reason about
secrecy properties [16], for which a first version was presented in [15].
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Abstract. In the context of security, risk analyzes are widely recog-
nized as essential. However, such analyzes need to be replayed frequently
to take into account new vulnerabilities, new protections, etc. As exploits
can now easily be found on internet, allowing a wide range of possible
intruders with various capacities, motivations and resources. In partic-
ular in the case of industrial control systems (also called SCADA) that
interact with the physical world, any breach can lead to disasters for
humans and the environment. Alongside of classical security properties
such as secrecy or authentication, SCADA must ensure safety properties
relative to the industrial process they control. In this paper, we propose
an approach to assess the security of industrial systems. This approach
aims to find applicative attacks taking into account various parameters
such as the behavior of the process, the safety properties that must be
ensured. We also model the possible positions and capacities of attackers
allowing a precise control of these attackers. We instrument our app-
roach using the well known model-checker UPPAAL, we apply it on a
case study and show how variations of properties, network topologies,
and attacker models can drastically change the obtained results.

1 Introduction

In the context of security, risk analyzes are widely recognized as essential. How-
ever, due to the extremely fast evolution of the state of the art of attacks, they
need to be replayed frequently to take into account new vulnerabilities, new
protections, etc. It is also often required for auditors to be able to replay risk
analyses made by vendors in a certification process. Moreover, the increasing
number of updates to apply encourages to replay both security and safety tests
to ensure that new updates do not break the system. Thus, we need tools able to
quantify the robustness of applications or to find attack scenarios. Furthermore,
as a whole ecosystem is emerging around vulnerabilities and attacks, exploits
can easily be found on internet, allowing a wide range of possible intruders
from script-kiddies to governments including hacktivists, mafias, or terrorists
organizations. Those attackers can present various capacities, motivations and
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resources and can even collude together. Such differences must be taken into
account when assessing the security of a system.

In this paper, we focus on industrial systems. Generally called SCADA, they
control industrial processes such as electricity production, water treatment or
transportation. Since those processes are usually critical, any incident can poten-
tially harm humans and the environment. One of the most advertised attack
was Stuxnet in 2010 [1] where a worm managed to sabotage a nuclear facility
in Iran. This attack made people realize that a computer attack can have dis-
astrous effects in the physical world. More recent attacks against these systems
have been revealed in the past few years. For instance in 2014 against a German
steel mill [2] where attackers managed to take control of a blast furnace or in
2015 in Ukraine [3] causing a massive power outage in winter.

Industrial systems are specific in various ways. First they want to ensure
mainly availability and integrity while traditional IT systems often focus on
confidentiality and authentication. Also the lifetime of their devices can vary
between 20 to 40 years and they are really difficult to be updated in case of
vulnerabilities. Industrial systems communicate over particular protocols which
where not designed with security in mind. For example, MODBUS and DNP3
do not provide any security at all while a more recent communication protocol
named OPC-UA includes the use of cryptography and has been show secure [4,5]
(but currently rarely used in practice).

Related Work. Verifying the security of industrial systems have keep gaining
in interest and various approaches were proposed since Byres et al. in 2004 [6].
In 2015, Cherdantseva et al. [7] performed a survey of 24 methods published
between 2004 and 2014. They base their list on criteria such as the domain
of application, the use of probabilities or not, the presence of case studies or
if the method is implemented. Similar surveys have been released in 2012 by
Piètre-Cambacédès and Bouissou [8], and in 2015 by Kriaa et al. [9]. We briefly
summarize some of the works listed in these surveys either for their notoriety
or for their closeness to our approach. In 2004, Byres et al. [6] propose a qual-
itative approach relying on attack trees to evaluate the security of industrial
systems. Their approach is focused on systems communicating over MODBUS
and targeting the electrical domain. In 2012, Kriaa et al. [10] present a method
based on fault trees combined with Markov processes to model attacks on indus-
trial systems. They implement this approach with the KB3 [11] tool and apply
it to the Stuxnet attack. In 2015, they publish S-CUBE [12], an implementa-
tion of the former approach in the Figaro language. This approach takes into
account the applicative logic of the process. In 2017, Rocchetto and Tippen-
hauer [13] present a method based on the cryptographic protocol verification tool
CL-Atse [14]. They use the ASLAN++ language to model the industrial system
and its applicative logic alongside with an augmented Dolev-Yao intruder, able
to physically interact with the process [15].

Contributions. In this context, we propose an approach to assess the security of
industrial systems. This approach aims to find what we call applicative attacks.
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That is, considering an attacker that already exploited some security breaches
to gain access to the system, we focus on finding what actions can he actually
perform and what are the consequences on the industrial process. To find such
attacks, we take into account various parameters such as the behavior of the
process, the safety properties that must be ensured. We also model the possi-
ble positions and capacities of attackers allowing a precise and flexible control
of these attackers. We implement our approach within the UPPAAL model-
checker [16] to automate the discovery of attacks scenarios.

Outline. We first describe our global approach in Sect. 2. Then in Sect. 3 we
detail how we instrument it using the UPPAAL model-checker. In Sect. 4, we
apply the resulting framework on a concrete industrial example.

2 Context

In this section, we first detail how the analysis presented in this paper is included
in a larger approach. Then we propose a case study and detail the parameters
we will take into account.

2.1 The A2SPICS Approach

Our goal is to create a framework to detect applicative attacks against industrial
systems. In this framework, industrial systems are modeled along with safety
properties that they must ensure (e.g.: A furnace should not be started if its
door is open). Then using formal methods such as model-checking, the model is
analyzed in presence of intruders. In a later stage, found attacks could then be
concretized into real networks packets that can be sent to a testbed representing
the modeled system. Benefits are two-fold: besides being able to find applicative
attacks, we can check if they are feasible and quantify their plausibility on the
testbed.

In Fig. 1, we present the A2SPICS approach for Applicative Attack Scenarios
Production for Industrial Control Systems. We focus on systems that respect
safety properties in absence of attackers. In this context, we consider two phases
of analysis. In the first phase (depicted in blue), we perform what we call an
attack vector analysis [17]. It is a risk analysis in terms of security aiming to
model attackers. It differs from well-known risk analysis methods such as EBIOS
or MEHARI [18,19] since they are focused on the assets to protect and the
threats they face. Our risk analysis method relies on the topology of the system
and the security features of communication protocols and produces what we
call attacker models. Such models consists in placing possible attackers in the
topology alongside as their capacities. For instance, if a protocol between two
devices is considered secure, then no attacker is placed on this network channel.
Similarly, if the protocol provides authentication but neither confidentiality nor
freshness of messages, then we can place an attacker that can listen and replay
messages. This first analysis thus allows us to place attackers in the network and
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Fig. 1. The A2SPICS approach (Color figure online)

choose their capacities according to their objectives and the security features
of the communication protocols. In a second phase (depicted in green), we take
advantage of the fact that industrial systems are usually well analyzed in terms
of safety. Thus, we consider as attacker goals the negation of a subset of the
properties that the system has to ensure, resulting of these safety risk analyses.
Then, based on the nominal behavior of the system, we are able to conclude if
the safety properties can be jeopardized by the attackers. This second phase is
the one presented in this paper.

2.2 Case Study

To illustrate our approach and show its validity, we will apply it on a case
study along this paper. We choose as example a bottle filling factory taken
from the VirtualPlant simulator1. This simulator, designed by Jan Seidl, aims
at providing a process simulator for experimentations. Empty bottles are carried
by a conveyor belt. A sensor tells when a bottle is positioned under a nozzle
which then pours liquid into the bottle. A second sensor detects when the bottle
is full and then tells the nozzle to close and the conveyor belt to move until the
next bottle is in place. Finally, a client can start and stop the whole process.
Regardless of the communication protocol used, messages sent by the clients to
the servers are read or write requests followed by read or write responses from
the server of the form:

C → S : READ, variableToRead
S → C : READ, variableToRead, valueRead

1 https://github.com/jseidl/virtuaplant.

https://github.com/jseidl/virtuaplant
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Fig. 2. VirtualPlant simulator

And respectively for write requests and responses:

C → S : WRITE, variableToWrite, newV alue
S → C : WRITE, variableToWrite, writeSuccessOrNot

Figure 2 shows a synoptic view of the bottle factory process from the Vir-
tualPlant process simulator. Although this example is quite simple, it allows
a wide variety of instantiations. First, several properties to guarantee can be
expressed: (i) bottles must leave the factory full, (ii) liquid should not be spilled
out of bottles, (iii) the conveyor belt should start when a bottle is full, etc.
Different topologies of the network controlling the process can also be studied.
We can consider the conveyor belt and the nozzle as two distinct components.
They could both be controlled by a single server (as shown in Fig. 3) or they can
each be controlled by a individual server. Moreover, the communication proto-
cols used in the network can present different levels of security allowing more or
less powerful attackers. Even the positions of attackers can be considered. It can
for instance be positioned on a network channel as a Man-In-The-Middle or as
a corrupted client or server (e.g.: a legitimate device infected by a virus).

Client

Attacker

MODBUS Server

Conveyor Belt
Bottle Captor
On/Off Switch

Nozzle
Level Captor

Fig. 3. Example of topology
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2.3 Parameters of the Model

Our model is composed of various parameters including different entities com-
municating together:

Process. The process is the industrial application controlled by the system. It can
for instance describe electricity production, liquid treatment or transportation.
It is composed of a set of variables VP linked together by an automaton BP . We
denote this automaton as the behavior of the process.

Clients. The clients C are used to send commands to monitor and modify the
process. They manage a set of variable Vc ⊆ VP ,∀c ∈ C and a behavior Bc,∀c ∈ C
determining which command they send and how they react to responses sent by
the servers.

Servers. The servers are receiving commands sent by clients and applying them
to the process. The security of the communication channel they use is determined
by the protocol they implement (e.g.: MODBUS or OPC-UA). They also manage
a set of variables Vs ⊆ VP ,∀s ∈ S.

Properties. The safety properties Φ to check on the system in presence of possibly
active intruders are logical predicates (e.g.: CTL [20] temporal logic properties)
on variables from VP .

Attackers. The attackers A are possibly active intruders aiming to violate the
safety properties from Φ. Their position in the network determines the clients
and servers they will be able to communicate with while their capacities deter-
mine what type of action they will be able to perform (e.g.: intercept a message,
encrypt a message, etc.). Depending on their capacities, attackers can also pos-
sess their own knowledge.

Topologies. We denote as components all clients, servers and attackers. We also
denote the network channels linking these components as network topology of
the system.

3 Implementation in UPPAAL

In this section, we describe how we deploy our approach in the UPPAAL model-
checker [16]. We first show how to model the system. Then we detail the attackers
we consider and finally the specifications of the safety properties.

3.1 Framework Architecture

Figure 4 depicts the overall architecture of our framework. It contains three
components: (i) the system’s model, (ii) the attacker models, and (iii) the
specification of the the safety properties. Several models are already predefined as
templates in a library we provide to the user (including clients, servers, attackers,
security primitives, etc.). Thus, the user is only required to provide the topol-
ogy of the system using templates from the library and behaviors of clients and
servers.
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Fig. 4. Framework architecture

3.2 The System’s Model

In UPPAAL, we model the components interacting with attackers as a composi-
tion of timed automata. Clients can create, send requests and receive responses
while the server can receive requests, send responses and execute actions accord-
ing to the clients’ requests. Attacker act as Man-In-The-Middle intruders and
have different capacities depending on the configuration. Among those capaci-
ties, they can listen to the network, stop, forge, replay or modify some messages
according to its knowledge.

In our framework, we model six automata named: Client, BehaviorClient,
Server, BehaviorServer, SecureData and Attacker. They access global variables
such as cryptographic keys, messages exchanged over channels2, as well as the
system variables VP . According to Sect. 2.2, commands are formatted using the
data structure 〈cmdType, variable, value〉 where:

– cmdType is a constant that expresses the purpose of the command (e.g.: read
or write);

– variable is a constant denoting the different variables of the system;
– value is a the value of variable when needed by the command (for instance

the new value of the variable in a write request or the value read in a read
response).

To send a message, the Client automaton first asks the BehaviorClient
automaton to obtain the applicative content he will send. Then, in the case of
a client with using a secure communication protocol, the message will by signed

2 In UPPAAL, messages are not exchanged directly on channels. Instead signals are
sent telling processes to access messages as global variables.



134 M. Puys et al.

and/or encrypted using the SecureData automaton. Concerning the Server
automaton, it waits for a message sent by the Client automaton. When received,
if the server implements a secure protocol, it decrypts the message and/or checks
the message signature. Then, depending on the type of message (read/write), it
either writes the new value of the variable addressed or reads its current value.
Either way, the server creates and sends a response to the client according to
the security of the request.

The SecureData automaton is used to manage security operations (encryp-
tion, decryption, signature, verification, etc.) according to cryptographic keys
known by each component (including attackers).

3.3 Attackers

We consider four attackers with different capacities, each modeled as an automa-
ton. Attacker A1 (shown in Fig. 5a), based on the Dolev-Yao model [21], can
listen to the network, stop, forge, replay or modify messages according to its
knowledge. Such attacker is often considered as extremely powerful [22] making
him really suited to prove absence of attacks but less realistic when considered
within a vulnerability analysis. In Fig. 5a, the execution of the state diagram of
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the attacker begins in state A1 where the attacker can choose the action it can
execute where:

– Intercept allows the attacker to intercept a message msg sent by a client or
a server on some channel chan;

– Send allows the attacker to send a message msg to a client or a server on
some channel chan;

– Copy allows the attacker to memorize a message msg into its knowledge KA1 ;
– Keys allows the attacker to retrieve cryptographic keys from its knowl-

edge KA1 ;
– Secure allows the attacker to perform cryptographic operations according to

its knowledge on the keys;
– Forge allows the attacker to create a new message msg from its knowl-

edge KA1 ;
– Modify allows the intruder to modify an intercepted message msg according

to its knowledge KA1 ;
– Replay allows the attacker to replay a message msg from its knowledge KA1 .

Capacities Modify and Replay could be seen as special cases of Forge in
the sense that modifying a message is the action of forging a message at the
time where a legitimate message is intercepted rather than sending a message at
any time. Similarly, replaying a message can occur at any time but restricts the
set of possible messages to the one previously memorized. Attacker A2 (shown
in Fig. 5b) is a subset of A1 which can only to modify messages or parts of
messages. To be more realistic, it can for example be limited to only modify the
variable and value fields in order to not transform a read message into a write
and vice versa. Such attacker would represent an attacker that want to avoid
coarse attacks to be discrete. Attacker A3 (shown in Fig. 5c) is a subset of A1

which can only to forge new messages according to its knowledge. Thus it can
be used to model a blind attacker that is not able to wiretap communications.
Finally attacker A4 (shown in Fig. 5d) is a subset of A1 which can only to replay
messages after memorizing them in its knowledge.

3.4 Safety Properties

To specify the properties, UPPAAL uses a simplified version of CTL that is
expressed by the following syntax.

Φ ::= A�Φ|E � Φ|E�Φ|A � Φ|Φ → Φ|¬Φ

A�Φ means that Φ should be true on all paths in all reachable states. A � Φ
means that Φ should be eventually true on all paths. E�Φ means that there exists
a path where Φ is true in all reachable states. E�Φ means that there exists a path
where Φ is eventually true. Symbols → and ¬ denote the implication and the
negation propositional logic operators, respectively. To model safety properties
we will only rely on A�Φ.
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4 Case Study

In this section, we illustrate our approach with the example described in Sect. 2.2.
We show how we implemented it in the UPPAAL model-checker and we discuss
the results we obtained by composing various attackers and topologies.

4.1 Behaviors

As described in Sect. 2.2, our case study is a bottle filling factory. Empty bottles
are carried by a conveyor belt. A sensor tells when a bottle is positioned under
a nozzle which then pours liquid into the bottle. A second sensor detects when
the bottle is full and then tells the nozzle to close and the conveyor belt to move
until the next bottle is in place. A client can start and stop the whole process.
In this example, the process is composed of five boolean variables:

VP = {motor, nozzle, levelHit, bottleInP lace, processRun}
They respectively denote the conveyor belt (motor), the nozzle (nozzle), the
liquid level sensor (levelHit), the conveyor belt sensor (bottleInP lace) and the
process on/off switch (processRun). Figure 6a shows an automaton describing
the behavior of the process while Fig. 6b details the transitions of the automaton.
Three states are considered: Idle means that the process is stopped, Moving
that the conveyor belt is moving to position the next bottle and Pouring that
the nozzle is filling a bottle. Each transition is labeled with two predicates: the
guard and the output. The client will only start and stop the whole process
when it wants3. Thus the variables that can be accessed by the client are Vc =
{processRun}.
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(a) Process’ behavior automaton

Current state Next state Guard Actions

Idle Moving
processRun = true∧
bottleInP lace = false

motor := true

Idle Pouring processRun = true∧
bottleInP lace = true

nozzle := true

Moving Pouring bottleInP lace = true
motor := false∧
nozzle := true

Pouring Moving levelHit = true
motor := true∧
nozzle := false

Moving Idle processRun = false
motor := false∧
nozzle := false

Pouring Idle processRun = false
motor := false∧
nozzle := false

(b) Details of the transitions

Fig. 6. Behaviors considered

The safety properties we want the process to guarantee would be a subset of
properties considered as critical, resulting from a risk analysis in safety. For this
case study, we exhibit the following properties, expressed as CTL formulas.
3 This models the actual behavior of the client in VirtualPlant and is not a limitation

of our approach.
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Φ1: The nozzle opens only when a bottle is in position (i.e.: at all time and on
all possible execution traces, nozzle is never true if bottleInP lace is false).
A�¬(nozzle = true ∧ bottleInP lace = false)

Φ2: The motor starts only when a bottle is full (i.e.: at all time and on all
possible execution traces, motor is never true if levelHit is false).
A�¬(motor = true ∧ levelHit = false)

Φ3: The nozzle opens only when the motor stops (i.e.: at all time and on all
possible execution traces, nozzle is never true if motor is true).
A�¬(nozzle = true ∧ motor = true)

4.2 Network Topologies

We consider two network topologies T1 and T2. In topology T1, a single server
sMODBUS using the MODBUS protocol controls both the conveyor belt and the
nozzle. A single client c communicates with sMODBUS . The MODBUS protocol
is among the most used in industrial communications and does not provide any
security at all. This topology is presented in Fig. 7a with:

– Set of servers S = {sMODBUS} with:
• Variables VsMODBUS

= VP
– Set of clients C = {c} with:

• Variables Vc = {processRun}

Client
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MODBUS Server
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Bottle Captor
On/Off Switch
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Level Captor

(a) Topology 1
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MODBUS Server OPC-UA Server

Conveyor Belt
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On/Off Switch

Nozzle
Level Captor

(b) Topology 2

Fig. 7. Topologies considered

In topology T2, the conveyor belt and the nozzle are each be controlled by a
individual server. The first server sMODBUS communicates using MODBUS and
controls the conveyor belt, the position sensor, and the on/off switch. The sec-
ond server sOPC−UA communicates using OPC-UA and controls the nozzle and
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the level sensor. OPC-UA provides three security modes: None, Sign and Sig-
nEncrypt. Security mode None does not provide any security. According to Puys
et al. [4], security mode Sign adds cryptographic signatures and provides authen-
tication, integrity and freshness of communications and mode SignEncrypt also
adds encryption providing confidentiality. We suppose that security mode Sig-
nEncrypt is used in our second topology, thus the attacker is not able to interfere
with the channel between the client c and the OPC-UA server sOPC−UA. This
topology is presented in Fig. 7b with:

– Set of servers S = {sMODBUS , sOPC−UA}
• Variables VsMODBUS

= {processRun,motor, bottleInP lace}
• Variables VsOPC−UA

= {nozzle, levelHit}
– Set of clients C = {c}

• Variables Vc = {processRun}

4.3 Attackers

To demonstrate the modularity of our framework, we test both topologies against
the four attackers proposed in Sect. 3.3. We recall the capacities of each attacker
in Table 1 where ✓ means that the attacker has the capacity.

Table 1. Summary of capacities for each attacker

Attacker Modify Forge Replay

A1 ✓ ✓ ✓

A2 ✓ ✗ ✗

A3 ✗ ✓ ✗

A4 ✗ ✗ ✓

4.4 Results Obtained Using UPPAAL

After experimenting different settings in UPPAAL, we chose to apply Breadth
first search algorithm and to represent the states as DBM (Difference Bounded
Matrices). The results are summarized in Table 2 where ✓ means an attack has
been found and ✗ means that the property is safe as well ◆ means that UPPAAL
could not conclude. This happened because the tool was requesting more memory
than available. Our experiments were run on a Intel(R) Core(TM) i5-4590 CPU
@ 3.30 GHz with 16 GB of RAM. Times of analysis can be found and discussed
in Sect. 5.1.

In theory, none of the four attackers can violate property Φ1 in topology T2.
The reason is that the OPC-UA server controls the nozzle variable, preventing
any attack on this variable. Even with the MODBUS server controlling the
bottleInP lace variable, if bottleInP lace is forced to false by an attacker while
nozzle is true, then nozzle will automatically switch to false due to the process
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Table 2. Results obtained

A1 A2 A3 A4

T1 Φ1 ✓ ✓ ✓ ✗

Φ2 ✓ ✓ ✓ ✗

Φ3 ✓ ✓ ✓ ✗

T2 Φ1 ◆ ◆ ✗ ✗

Φ2 ✓ ✓ ✓ ✗

Φ3 ✓ ✓ ✓ ✗

behavior (and vice versa). Thus, the only way to break Φ1 that is to force opening
the nozzle which is not possible in topology 2 (as we can see with attackers A3

and A4). Similarly, attacker A4 cannot violate any property, since the messages
transmitted between the client and the server are only relative to start or stop
the process.

Figure 8 shows the attack scenario found by UPPAAL with attacker A2

against Φ2 in topology T2. The client sends a message to the MODBUS server to
start the process, the motor starts and the bottles advance on the conveyor belt.
After some time, the client sends a message to stop the process. The attacker
intercepts the message and modifies both the variable targeted by the write
request and the new value to force the motor to start. This experimentation
shows that we do not need the whole power of Dolev-Yao to find attacks. It also
helps to find which are the capacities needed bye an attacker to perform attacks.
Thus, it allows tailored proofs of robustness resulting of a risk analysis.

Client A2 OPC-UA MODBUS

write(run=1)

done

...
write(run=0)

write(motor=true)

Fig. 8. Attack scenario with A2 against Φ2 in topology T2

5 Discussions

In this section, we discuss the times taken for each analysis. We then compare
our approach to related works presented in Sect. 1 and address some limitations
and hypotheses we made.
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5.1 Discussion of Analysis Timings

According to Tables 2 and 3, attacker A2 obtains the same results as A1 (Dolev-
Yao) in shorter time. Attacker A3 takes a bit longer but is able to conclude on
property Φ1 in topology 2 while attackers A1 and A2 cannot due to the system
being out of memory.

These results show that really powerful intruders such as Dolev-Yao are often
too complex and only parts of them are sufficient to find attacks. Such intruders
are however preferred when trying to prove the absence of attacks. On the other
hand, attacker A4 obtains larger times which can be surprising since it is the
simplest of our attackers. A likely explanation is that since all of his results are
absence of attacks, UPPAAL must explore every possible state which can take
way longer that finding a counter example.

Table 3. Verification times

A1 A2 A3 A4

T1 Φ1 0.43 s 0.07 s 1.05 s 0.84 s

Φ2 0.52 s 0.10 s 0.69 s 0.35 s

Φ3 0.47 s 0.04 s 0.37 s 0.42 s

T2 Φ1 Out of memory 601 s 31.55 s

Φ2 0.66 s 0.23 s 2.17 s 35.20 s

Φ3 0.78 s 0.21 s 2.35 s 34.85 s

5.2 Comparing to State-of-the-Art

Our approach differs from most of the works presented in [7–9] that look more
like risk analysis methods such as EBIOS [18,19] for security or FMEA [23] for
safety. It is typically the case of Byres et al. [6] who quantifies criteria such
as likelihood or severity on a scale of four values. Moreover, 18 out of the 23
approaches listed in Cherdantseva et al. [7] are quantitative (i.e.: probabilistic)
and thus require an initial distribution of probabilities to work. Nevertheless, a
lot of these approaches give very few details on the source of these probabilities
and their trustworthiness. It is also hard to evaluate the impact of variations of
these probabilities. These approaches have however the advantage to quantify
the likelihood and severity of resulting attacks. In [12], Kriaa et al. define four
criteria to classify approaches combining security and safety:

1. analyzing formal models;
2. being both qualitative and quantitative;
3. being automated;
4. being adaptable to different assumptions.
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Kriaa et al. also list some related works and conclude that none validate the
automation criterion. In our case, the A2SPICS approach respects criteria 1, 3
and 4 (relying on a formal and automated verification tool, UPPAAL and allow-
ing to simply change attacker’s positions and capacities as well as behaviors).
To the best of our knowledge, the closest related work to the A2SPICS app-
roach from Rocchetto and Tippenhauer [13] which also seem validates criteria
1, 3 and 4. Our approach shows nevertheless key differences with it, particularly
in terms of considered attackers. Using cryptographic protocol verification tools
such as CL-Atse allows to not require to model the attacker which is hardcoded
in the tool making the Dolev-Yao attacker difficult to restrict. In their work,
Rocchetto and Tippenhauer strengthen it by adding equational theories (allow-
ing to handle physical interactions with the process [15]). We aim to focus on
attackers resulting of a risk analysis which are often less powerful than Dolev-
Yao. Moreover, to the best of our knowledge, Rocchetto and Tippenhauer do not
take into account the network topology of the system, although it seems possi-
ble in ASLAN++. It means in their case that all agents (or multiple groups of
agents) communicate over one unique channel accessible to the attacker, which
is again not very realistic.

5.3 Discussion of Limitations and Hypotheses

Similarly to [13], we consider that time is discretized (i.e.: expressed as steps of
execution). The state of the process is also discretized (e.g.: the bottle is either
empty or full). Moreover, due to the complexity of attackers A1, A2, and A3,
we have to bound the number of actions they can perform in an attack. This
limit of the number of action being configurable. This is a classical limitation
of model-checking approaches that will not terminate if the model can loop
infinitely. Moreover, an under-approximation of the approach can lead to some
attacks not being found and robustness not being established. In the results
showed in Table 2, we pointed that property Φ1 was never violated. This is due
to the fact that two states of the system can be considered: (i) the real state
(i.e.: if a bottle is physically present or not), and (ii) the logical state (i.e.: if the
variable bottleInP lace is set to true). It appears that when a captor is modified
by the intruder, then a decorrelation is introduced between these two state (in
logical state, a bottle could be present while it is not the case in reality). However,
properties are checked by UPPAAL on the logical state meaning possibly missing
attacks (in particular for property Φ1). This is a classical limitation due to
the fact that we model the system without taking into account the physical
environment.

6 Conclusion

We provided a modular approach to assess the security of industrial control
systems. This approach aims to find applicative attacks taking into account dif-
ferent parameters such as the behavior of the process, the properties that an
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attacker can aim to jeopardize, as well as the possible positions and capacities of
attackers. We show how this approach can be implemented using the UPPAAL
model-checker. We apply it on an example and show how variation of properties,
network topologies, and attackers can change the obtained results. We also dis-
cuss key difference with approaches relying on protocol verification tools. Even
when considering all possible variations of our example, it remains very simple.
Still, the timing results we obtained encourage us to address the question of
scalability. In the future, we would be interested into studying how to address
the limitation pointed in Sect. 5.3. It would be useful to apply our approach to
the case study proposed by Rocchetto and Tippenhauer to obtain a concrete
comparison of the two approaches. We are also interested into modeling possi-
ble collusions between intruders so they can share knowledge and synchronize
during attacks. Finally, we aim to generalize the implementation and build an
open-source tool to automatically generate UPPAAL models and interpret the
results.
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d’attaques contre des systèmes industriels. In: Approches Formelles dans
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Abstract. The advent of massive and highly heterogeneous informa-
tion systems poses major challenges to professionals responsible for IT
security. The huge amount of monitoring data currently being generated
means that no human being or group of human beings can cope with
their analysis. Furthermore, fully automated tools still lack the ability
to track the associated events in a fine-grained and reliable way. Here,
we propose the HuMa framework for detailed and reliable analysis of
large amounts of data for security purposes. HuMa uses a multi-analysis
approach to study complex security events in a large set of logs. It is orga-
nized around three layers: the event layer, the context and attack pattern
layer, and the assessment layer. We describe the framework components
and the set of complementary algorithms for security assessment. We
also provide an evaluation of the contribution of the context and attack
pattern layer to security investigation.

Keywords: Security knowledge · Cognitive computing
Cybersecurity · Log analysis

This work was partially supported by the French Banque Publique d’Investissement
(BPI) under program FUI-AAP-19 in the frame of the HuMa project.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 144–159, 2018.
https://doi.org/10.1007/978-3-319-75650-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_10&domain=pdf


HuMa: A Multi-layer Framework for Threat Analysis 145

1 Introduction

Security analysis is a rigorous process encompassing several phases described in
ISO 27043. It is conducted by security analysts having expertise in the identi-
fication and understanding of indicators of potential threats in logs (computer
system traces). They achieve this using business rules mainly based on their
past experience and the technical documentation of devices in the network. The
continuous growth of the volume of logs to be analyzed, as well as their hetero-
geneity, make the task of the analyst increasingly difficult and error-prone even
with current support tools. Since no automated method exists that integrates
human level complex reasoning, the support tools generate confusing results
and a multitude of false positives and false negatives. The situation is further
complicated by the advent of more complex and hard to find attacks, such as
Advanced Persistent Threats (APTs). As a result, new tools capable of address-
ing the challenge of identifying threats in massive log repositories are needed. A
broad distinction can be made between simple attacks, which can be analyzed
from individual events, and the more complex or targeted ones, including the
APTs, which affect more than one asset and require an in-depth investigation.
The more complex attacks can be thought of as being composed of different
steps that are spatially and temporally spanned.

Taken individually, the multiple steps composing an APT are not necessarily
illegal. Furthermore, since they are spatially and temporally spanned, they may
seem to be unrelated. Nevertheless, as a whole, they constitute a single powerful
attack. Therefore, in order to detect and predict such threats, it is necessary to
collect, analyze and correlate various sources of data and to create summarized
views that are exploitable by security analysts. Most systems save the actions
related to them in lines of text called logs. Then, a security investigation is
usually based on manual analysis of these logs [4]. Applications that collect
logs are known as SIEM (Security of Information and Event Management) in
industry. They include correlation methods for the automatic search of attack
evidence. However, in the current context of big data and the huge amount of
logs generated in a network makes the analysis difficult, if not impossible.

To address this challenge, we propose HuMa, a multi-layer framework for the
analysis of complex security threats. It brings together the individual contribu-
tions made by the authors under the label of the HuMa project. The frame-
work is composed of three layers: the event layer, responsible for the representa-
tion of individual traces of malicious activities; the context and attack pattern
layer, responsible for gathering information about technical requirements of the
attacks; and the assessment layer, responsible for extracting attack informa-
tion from massive logs. The event layer is typically based on monolithic rules.
The attack pattern layer, is constructed from databases, such as the CVE and
CAPEC repositories. The context layer includes information about the system
that we aim to defend. The assessment layer represents complex attacks as attack
graphs, and searches for matches between the graphs and the actual traffic in the
Information System under supervision. Apart from the architecture of the frame-
work, another contribution of this work is a set of complementary approaches for
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the assessment layer. Two kinds of dependencies between events are considered:
temporal and spatial dependencies. The analysis is performed either through a
root-cause approach, or through graph matching using dynamic weighted graphs.
This latter approach is implemented in Morwilog, which is an application of the
Ant-Colony algorithm to security investigation in logs. An evaluation of the
framework is performed by assessing the contribution of the context and attack
pattern layer for such investigation.

This work is organized as follows. Section 2 presents the state of the art on
Advanced Persistent Threat analysis. Section 3 defines the multi-layer investi-
gation framework. Section 4 focuses on the assessment layer and introduces key
algorithms to address the investigation challenge. Section 5 discusses the evalu-
ation of the framework and provides further insight into its application scope.
Section 6 concludes this work.

2 State of the Art

In this section we present a brief summary of the state of the art in the detection
and analysis of Advanced Persistent Threats.

2.1 Modelling and Analysis of APTs

APTs [7,30] are one of the most serious information threats that enterprises and
government agencies are faced with today. Examples include Stuxnet [8] and
Carbanak1. Although individual APTs vary considerably, they are customized
to the target system, and they all share the same 6 phases: reconnaissance,
delivery, exploitation, operation, data collection and exfiltration [7].

Some work has been done to model APTs [5,10,15]. For instance, APTs
can be described using low-level details, such as monitoring events, vulnerability
descriptions and exploit information. Others use a top-down approach with high-
level abstractions, based on attack trees or graphs. The most widely used model
for APTs is the attack tree [29], where leaves or branches are linked by AND or
OR gates. An improved attack tree is described in [5], where an O-AND gate
and some extra attributes are added. Similar work is described in [3], where
a SEQ gate and probability distributions are added to the leaves of the tree.
However, attack trees are not the most suitable models for such threats [12],
because they lack technical details, and providing them would make the trees
too complex and difficult to read. A new conceptual attack model, the attack
pyramid, is proposed in [14], which shows that an attack path may go across
different environments of the organization. Cui et al. [10] focus on identification
of attacks at early stages and prediction of their evolution using Hidden Markov
Models (HMMs). Abraham and Nair [1] predict changes over time by capturing
interrelations of vulnerabilities using attack graphs. They propose a three-layer
architecture: layer 1 contains the attack graph model, whose vulnerabilities are
quantified in layer 2. Layer 3 describes attacks by applying stochastic processes
over the attack graph.
1 https://securelist.com/files/2015/02/Carbanak APT eng.pdf.

https://securelist.com/files/2015/02/Carbanak_APT_eng.pdf
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2.2 Automatic Analysis of APT Scenarios

Although HuMa still considers the human analyst as a key player in the identi-
fication of attack scenarios, automatic methods for finding links between events
are used to facilitate the expert analysis. The methods for identifying APT sce-
narios found in the literature work to a large extent on alerts generated by an
Intrusion Detection System (IDS). An example method that uses this approach
is AEC, or Active Event Correlation [6], applied on top of a Bro IDS. This
allows it to interact with network traffic. Marchetti et al. [22] use alert graphs
in a pseudo-Bayesian algorithm with the previous alert history as a reference. In
other systems, such as RIAC [34], attacks are deduced from manually described
prerequisites and consequences of individual alerts. However, in [32] the knowl-
edge base of alerts is already contained in the system but the casual relationships
are automatically extracted. Unsupervised methods have also been developed,
such as the one in [31], based on the aggregation of similar alerts from the same
time period in possible attack scenarios. Other approaches exist that do not
work only with IDS alerts. Mathew et al. [23], for example, propose an anomaly
detection method on a heterogeneous dataset using Principal Component Anal-
ysis (PCA). Another example is described in [13], where hypothesis and rules
are deduced from a dataset of logs without attacks.

2.3 Correlation Between Vulnerabilities and Attack Patterns

Discovered vulnerabilities in information systems are in general publicly dis-
closed by means of the CVE (Common Vulnerabilities and Exposures) format,
an open industrial standard widely adopted by many organizations. Each CVE
document has an identifier and mainly provides a textual description of a secu-
rity vulnerability or exposure. The documents are publicly available through
multiple databases2. In addition to CVE, CAPEC (Common Attack Pattern
Enumeration and Classification)3 patterns are distributed by MITRE in XML
format. They also provide a textual description of an attack, its prerequisites,
its steps, severity and the attack methods used.

Several papers have studied the known vulnerabilities in order to predict their
exploitation. In [33], the authors apply several machine learning algorithms on
the National Vulnerability Database (NVD), with the goal of predicting undis-
covered vulnerabilities. An interesting work regarding how vulnerabilities are
exploited by attackers is described in [2]. The authors found that only a small
subset of vulnerabilities in the NVD and Exploit-DB are found in exploit kits
in the wild. However, little work has addressed the correlation between security
alerts, CVE and CAPEC documents. In [28], the authors use data mining tech-
niques to map CAPEC patterns to security logs. The obtained representations
are then matched using a K-nearest-neighbour algorithm to obtain the closest

2 https://nvd.nist.gov, http://cve.mitre.org, http://www.cvedetails.com.
3 http://capec.mitre.org.

https://nvd.nist.gov
http://cve.mitre.org
http://www.cvedetails.com
http://capec.mitre.org
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events to an attack pattern. In [16], CAPEC and CVE patterns are used to
generate attack graphs and then match security events against them to identify
running attack scenarios.

3 The Security Multi-layer Framework

In this section, we discuss how HuMa uses the idea of classical SIEMs to create
a cognitive platform where the human being is a key player. Thanks to novel
representations of logs and attacks, HuMa combines the power of several analysis
algorithms, whose results are continuously improved by feedback from the human
expert.

3.1 Handling Security Knowledge

One of the key challenges of HuMa is to capitalize on the complex reasoning of
security analysts. It aims to help experts in their decision making by providing
them with a guiding tool. The tool should allow them to react on the fly to
threats even in an environment where the logs are massive and heterogeneous
and where malicious tactics are continuously evolving. The analysis is made more
efficient as the focus is placed on the most noteworthy events.

To incorporate guidance, the proposed tool must integrate all the useful
knowledge on the security analysis business. This knowledge can be represented
using a domain ontology. Given the heterogeneity of the logs, in order to facilitate
the correlation between them, we need to define a unique vocabulary of concepts
to represent them. The domain ontology must contain this vocabulary and all
other knowledge related to the security analysis.

3.2 Representation of Logs

We have developed a new representation of logs suitable for both machines and
humans. The HuMa analysis process is based on concepts for representing logs,
that are able to extract the relevant information about a security incident. Logs
are big data streams, so they inherit the 4 properties of big data, called ‘the
4 V’s’: volume, velocity, veracity and variety. The concepts aim to reduce one
dimension of the heterogeneity present in logs, i.e. the variability in expressing
similar pieces of information. For instance, a ‘login failure’ event can be rep-
resented in a totally different way by a SQL server or by a router, although
they have similar meanings and thus share some concepts. An extractor module
automatically extracts concepts from the original logs (raw logs), guided by a
knowledge representation model and without human intervention.

In addition, HuMa provides vulnerability analysis based on the concepts that
have been developed by the MITRE in the CVE documents and CVSS scores.
Each CVE identifier includes a unique identifier number, references about its
vulnerability and a description of the vulnerability or exposure. This description
contains information about the weakness of the affected asset and the outcome
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and consequences of exploiting it. The CVSS associated with each CVE takes
into account the information from the description. The CVE description and
the assigned CVSS include knowledge provided by the security community that
maintains the database, so each CVE identifier benefits from the knowledge of
security experts on each of the vulnerabilities.

Thanks to machine learning tools, expert knowledge can contribute to reduce
error in the process of concept extraction. The concept extraction module auto-
matically generates pertinent questions that are then presented to the analyst
in order to improve its internal knowledge database.

Concepts also allow to unify the way logs express information, beyond pre-
processing relevant data. This guarantees that the analysis processes have a
direct access to the information, regardless of the device or service implementa-
tion that generates it. Moreover, our use of concepts leads to a direct reduction
in the complexity of the logs, compared to the information extracted by Splunk4

from raw logs. For instance, in a test involving a log dataset of 600000 entries
from 6 different devices, the number of attributes is reduced from 62 to 16 and
the number of values is reduced from 518 to 72. The concepts enrich the raw
log such that the data added is compatible with existent technologies, while pre-
serving the original log. The dataset composed of the raw log and its enriched
data is processed by the rest of the HuMa platform.

Fig. 1. Modelling elements and their relations for the Carbanak attack

3.3 Representation of Attacks

An important question in HuMa is to find the best way to represent event scenar-
ios that may pose a threat to the system. The representation should be common
to all the methods integrated in the framework. To introduce our approach, we
use the Carbanak cyberattack as an example. It is possible to describe this attack
through the context in which it takes place, the collected events and known
attack patterns (Fig. 1). For Carbanak to operate, the presence of Microsoft
Office 2003, 2007 or 2010 (context) is required since the .doc file received via
e-mail (event) has to be opened (event). The malware installed by this action
creates a .bin file (event) in a folder created by Mozilla Firefox (context), which
therefore needs to be installed as well. The reception of the .doc file via e-mail
and the following double click on it are also related to the attack pattern of
spear phishing (attack pattern). HuMa incorporates a multi-layer approach that

4 https://www.splunk.com.

https://www.splunk.com
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identifies the links between the elements characterizing an APT like Carbanak:
known attack models, detected events and knowledge of the system. Most of the
work mentioned in Sect. 2 focuses on modelling already known attacks [5,15,30],
whereas we focus on predictive modelling of an APT. Our work relies on a multi-
layer modelling technique whose schema is shown in Fig. 2. The first layer consists
of normal actions and alarms generated by security systems. These events are
correlated and matched to the context (i.e. the configuration of the system),
and to already known attack patterns. Context and well-known attack patterns
form the second layer. The assessment layer contains the model for a possible
attack scenario, created from the link between elements of the other layers. The
linking process considers elements as the time-to-live of each step, the time in
which each step takes place, the probability of success, shared context or users
in common.

As shown in Fig. 2, each level is connected to the one above and below it. The
collected events contribute to the selection of known attack patterns, and are
then matched to them. Vice versa, the selected set of attack patterns helps to
direct the search for events in the system. For example, in the Carbanak attack,
if the spear phishing attack pattern is included in the selection, a search for
the “reception of e-mails with attachments” event is performed. Similarly, the
events help to define the context, which in turn guides the search for events.
For instance, if the received attachment is a .doc file, HuMa checks whether
Microsoft Office is installed in the system. Similar connections also exist between
the selected attack patterns and the system context, and the assessment model.
These layers work together to select attack models and to identify which part of
the context needs to be investigated. For this task, we rely on the CAPEC and
CVE databases and the help of security analysts (see Sect. 4.2).

Fig. 2. Proposed approach for predictive APT modelling

4 Analysis Engines in HuMa

The analysis of APTs in HuMa involves several bricks that work together to
return a combined result in the same dashboard.
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4.1 Dependencies

Temporal dependencies. An attack usually involves periodic changes in
behaviour over time. We can find clear examples in denial of service attacks
or port scans. Although the time lapse between two requests may vary, there is
a certain periodicity that can be identified by studying the shift in the process
state of the communication with a target machine. The difficulty of this task is
related to the fact that changes are not necessarily explicit and can be mixed
with other types of events. HuMa includes a method to find temporal depen-
dencies between logs ordered in time. It is based on data mining techniques
and the representation of logs by the high-level semantic concepts introduced in
Sect. 3.2. The goal is to discover temporal dependencies via frequent and periodic
patterns of logs ordered in time. The method automatically returns unexpected
temporal changes, as well as the context in which these changes take place.
Figure 3 presents the results of mining with fixed slice-window periods. Patterns
are represented on the Y-axis and time windows on the X-axis. The attributes
in the patterns refer to those in Snort5. Each cell represents a pattern frequency.
Darker cells represent frequent patterns and lighter cells, infrequent ones. This
approach reduces the number of patterns to be analyzed and guarantees the
temporal consistency of conceptualized logs. More details can be found in [17].

Fig. 3. Overview of frequent and periodic patterns.

Spatial dependencies. In HuMa, we also exploit spatial dependence discovery
techniques to find correlations or similarities among events in order to build clus-
ters. Indeed, rather than analyzing a single event, a human expert can benefit
from clusters in order to understand a group behaviour and speed up the anal-
ysis. Relevant methods can be found in the area of data mining with clustering
approaches. There are numerous options available, but a major bottleneck of
many of them is their computational complexity as they require pair-wise com-
parisons between initial data points, i.e. events or concepts in our case. We thus
propose to use TDA (Topological Data Analysis) [25]. Which reduces the high
dimensionality of the data through a simpler representation that can be searched
for invariants. Such invariants can then be considered as significant patterns of

5 https://www.snort.org/.

https://www.snort.org/


152 J. Navarro et al.

the underlying data. To achieve our goal, i.e., the Mapper [26] algorithm from
TDA is integrated in HuMA. Rapidly, the algorithm works as follows:

1. The original highly dimensional space is decomposed as overlapped
hypercubes.

2. In each hypercube, a clustering algorithm is applied.
3. A graph over all data points is created, where a vertex represents a cluster

in a hypercube. An edge between two vertices exists if and only if the two
underlying clusters share at least one original data point, which is possible
due to the overlapping of hypercubes.

There are therefore three major parameters: (1) the resolution, representing
the number of hypercubes (the smaller, the greater the amount of hypercubes);
(2) the overlap between hypercubes, and (3) the clustering algorithm. In our
case, DBSCAN is used. It is a density-based clustering algorithm that does not
require an a priori estimate of the number of clusters. However, it induces two
other parameters to be set, namely the minimum number of neighbours at a given
maximal distance for each clustered point. This technique has been successfully
applied to Darknet analysis in our prior work [9] and it has been fine-tuned with
respect to the HuMa cognitive framework for the analysis of concepts extracted
from logs as a first step.

HMMs applied to logs of scanning activities. During the reconnaissance
phase of APTs [7], powerful scanning tools are used by attackers. The avail-
ability of models describing various aspects of these scanning activities can help
security experts to predict whether an attack is underway. In HuMa, we model
intensity, spatial and temporal movements of scanning techniques using mixture
distribution models and HMMs, based on logs extracted from a /20 darknet. A
combination of mixture distribution models and HMMs are used since logs may
be divided into unobserved clusters. First, mixture distribution models provide
the probability of the clusters. Second, the corresponding HMM, whose states
are the distributions of the mixture, provides the transition probabilities between
clusters. The obtained models are presented in the dashboard of HuMa, so that
the security analyst can determine whether there is a scanning activity and pre-
pare for a security attack. So far, this engine has been applied to logs in the
reconnaissance phase of an APT, but we are currently working on its applica-
tion in all phases. A more detailed description of the method has been published
in [11].

Dependency analysis. The conceptualization of the heterogeneous logs in
HuMa implies that abnormal behaviour mining techniques can be used efficiently.
These approaches aim to find the dependencies of abnormal behaviour. Given a
set of conceptualized log sequences, the problem is both to identify the abnormal
behaviours and the set of dependencies able to guide the analyst. Figure 4 shows
an abnormal behaviour graph extracted from a set of logs. The graph represents
the activity of an IP address 81.89.X.X targeting a web server. The red and blue
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boxes represent the start and end of the graphs, respectively. This graph helps
the analyst to understand an abnormal behaviour which may be a potential
threat and localize it within a time window. Indeed, this graph was confirmed
as a representation of a real attack performed from the IP address.

Fig. 4. Abnormal behaviour graph. (Color figure online)

4.2 Root Cause Analysis

A root cause analysis (RCA) is a specific description of an attacker’s procedure
that identifies all the requirements and causes that led to an incident [19,20]. A
RCA is particularly useful for producing an analysis and incident report. The
description of a RCA is different from that of dependencies as it provides an
explanation about the incident and details about what happened. The descrip-
tion includes the conditions required for executing the described actions as states
of the system. They may also include a description of vulnerabilities. The MITRE
database is an extremely rich public database, containing more than 80000 CVE
identifiers. Each CVE identifier contains specific details of the affected system.
The exploitation of a vulnerability is generally crucial in the execution of an
APT. For instance, one of the steps of Carbanak is the exploitation of CVE-
2015-5262, related to an incorrect configuration of the ‘keepalive’.

Matching vulnerabilities and attack patterns. Our approach for match-
ing security events to CVE and CAPEC documents is close to that of [28], since
we share the same goal. However, we apply a recent machine learning technique,
doc2vec [18], in order to learn from the textual descriptions of CVE and CAPEC
documents. We used the cosine similarity metric to mutually match the embed-
ding vectors obtained from the text, and evaluate their correlation. We applied
this technique to the available set of 510 CAPEC patterns and a set of 91405
CVE documents available from the MITRE web site. In both cases, we compute
the respective embedding vectors using the gensim [27] doc2vec python library.
Then, for each CVE and CAPEC document, we compute the 10 most similar
documents using the learned vectors, that results on 10 similarity values ranging
between 0 and 1.
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Fig. 5. Distribution of best matching scores using doc2vec algorithm.

Evaluation. In this section, we present the experiments performed on the mod-
ule matching vulnerabilities and attack patterns, which were not published pre-
viously. In a first step, we analyzed the distributions of the similarity scores
obtained by matching CAPEC and CVE documents. Figure 5 shows the his-
tograms of these scores for the most similar document only. As shown in Fig. 5a,
when matching CAPEC to CAPEC documents, we observe that for a similarity
value about 0.3 we obtain the most matched documents, around 56, or 10% of
the documents. However, when matching CVE to CVE documents, as shown in
Fig. 5c, we found that 11458 documents are similar with a score up to 1, repre-
senting 12.5% of the analyzed documents. When matching CAPEC with CVE
documents, we found that 33 CAPEC documents match CVE documents with
a score around 0.28, representing 6.4% of the CAPEC documents, as shown in
Fig. 5b. When matching CVE with CAPEC documents, as shown in Fig. 5d, we
found 6895 CVE documents match CAPECs with a score around 0.25, repre-
senting 7% of the analysed CVE documents. We thus observe better matches
between CVE documents with a score up to 1 for 12.5% of the analyzed doc-
uments. For the other matching scenarios, the results are close with similarity
scores between 0.25 and 0.3.

In a second step, we calculated the similarity scores for a sample of 10000
conceptualized logs coming from the test environment of a security company
and compared them with CAPEC and CVE documents. The results are shown
in Fig. 6. As shown in Fig. 6a, we observe that log-log matches obtain high simi-
larity scores. The scores are mostly between 0.8 and 1, which means that multiple
logs are similar and could be easily aggregated before being presented to a
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Fig. 6. Distribution of similarity scores using doc2vec algorithm.

human analyst. Matching the logs with CVE documents, as shown in Fig. 6b,
produces similarity scores normally distributed around 0.3, with 613 logs achiev-
ing this score. When matching logs with CAPEC documents, as shown in Fig. 6c,
we observe a maximum number of 907 log documents that match CAPECs with a
similarity score around 0.22. Using the doc2vec technique, we are able to match
logs with their respective most similar CAPEC and CVE documents, which
means that we can associate them to vulnerabilities and attack patterns. These
associations help security analysts to better understand what is happening in
the system.

4.3 Searching for Paths in Event Graphs with Morwilog

Once a database of event graphs is generated, we need to know which paths may
be of special interest to the analyst. Paths may also exist that are erroneous or
that no longer pose a threat. To address this in the context of HuMa, we devel-
oped an algorithm called Morwilog based on Ant Colony Optimization (ACO),
a metaheuristic to solve discrete optimization problems. ACO is inspired by the
behaviour of a colony of foraging ants when they leave the anthill in the search
of food. In this process, ants depose pheromones so that other ants can follow
the traces to the food source. This results in the formation of well-ordered trails
from the anthill to the food source. After some time, almost every ant follows
the shortest path, where pheromones are deposited at a higher rate. In ACO, a
set of artificial ants is generated to find the shortest path in a graph.

Artificial ants in Morwilog are called morwis, and their generation is asso-
ciated with the arrival of a log. When a suspicious log arrives at Morwilog, a
morwi is generated and it proceeds through the event graph whose root node cor-
responds to this log. Event graphs are deployed here as trees, with deeper levels
corresponding to logs arriving later in time. The morwi chooses a path to follow
according to the level of pheromones on it. A path with a higher pheromone
level has a higher probability of being chosen. At each node, the morwi waits
a certain time for the arrival of logs in the following level. Figure 7 shows an
event tree with the path followed by a morwi. The sequence of logs found is
returned as an alert. After human validation, the level of pheromones in that
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Fig. 7. Tree of log sequences

path is incremented if the sequence corresponds to a threat, and decremented
otherwise. More details about the algorithm can be found in [24].

5 Discussion

5.1 Innovation in Log Analysis

In classical SIEMs, correlation is based on rules composed of text strings, which
are searched as patterns in the logs in a linear way. If a log matches a rule, it
becomes a possible candidate to be part of an attack scenario. Each rule matches
one of the steps in the attack. An alert is generated when the whole scenario or
part of it is detected. One of the disadvantages of rule-based analysis engines is
the description of the rule sets. They are manually written by analysts, so it is
easy to find errors. In addition, the volume of rules that must be created is too
high to be managed by a human analyst, as the number of technologies used in
an organization continually increases. In the cognitive framework developed for
HuMa, there are no predefined and static rules. In contrast to classic correlations
where the human analyst is situated at the end of the linear process chain, the
objective in HuMa is to place the analyst at the core of the analysis process.
This means that the analyst can intervene at any point of the process. The
interface with the human operator is a key component in the conception of
HuMa. The learning loop, which allows the system to automatically learn new
links between the logs, turns the system into an extension of the analyst’s way of
thinking. Besides, HuMa is not intended as a substitute for classical SIEMs, but
to complement them. Rule-based systems are necessary for detecting well-known
threats. We can obtain signatures directly from security vendors, whose research
teams identify and analyze attacks from all over the world.

5.2 Innovation in the Representation of Logs and Attacks

HuMa also proposes an innovative approach to processing and representing infor-
mation. SIEMs are generally based on a broad classification of logs, and not much
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work has been done on the development of well defined ontologies. In HuMa, we
incorporated the work on log concepts developed by Legrand [21], who applies
an ontology based on security indicators. The transformation of raw logs into
sets of concepts allows the preservation of the original information, which is
enriched with underlying meaning provided by security analysts. The automatic
semantic analysis is crucial in HuMa, resulting in more enriched logs that allow
security analysis methods to work in a more efficient way. Moreover, these con-
cepts are better understood by humans than raw log text, so they are also useful
to the security analyst during an investigation. The multi-step nature of APTs
necessitate an innovative way of representing attacks. In the context of HuMa,
we propose a novel approach to model APTs that integrates low-level events
with attack patterns to identify relations between them. The model relies on
three layers: one for events, one for context and known attack patterns, and the
assessment layer where the model of the advanced persistent threat is stored.
Existing approaches focus on handling of events [14], or rely on existing attack
patterns to be matched with detected events [10]. Our approach combines both
of these. This representation of attacks is at the core of the set of security analy-
sis algorithms developed for HuMa. Having a common format eases the exchange
of information between algorithms. The analyst can thus obtain a single result,
which is the combined outcome of the set of methods.

6 Conclusions and Perspectives

In this work, we introduce, implement and evaluate a complete multi-layer inves-
tigation framework to address the challenge of Advanced Persistent Threats.
This framework is organized into three layers: the assessment layer, the context
and attack pattern layer, and the event layer. We propose and evaluate a set of
algorithms for the assessment layer, including temporal and spatial dependen-
cies, root cause analysis, and ant-colony based analysis. A qualitative application
of the framework to the Carbanak attack is presented. The investigation pro-
cess for the assessment layer algorithm is defined. A quantitative evaluation
of the contribution of the context and attack pattern layer to the investiga-
tion performance is given. This highlights how the integration of insights from
CVE and CAPEC resources improves the ability to identify complex attacks
such as APTs in massive logs. This work represents a first step in the defini-
tion of a comprehensive framework for the investigation of APTs. HuMa still
needs to be complemented with more features for the integration of the human
expert, who, beyond being a simple observer, also has the knowledge required to
enrich the preliminary analyses proposed by the framework. Assisted learning is
likely to become a major topic of interest for security investigation in the near
future.
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Abstract. Runtime enforcement is an effective method to ensure the
compliance of program with user-defined security policies. In this paper
we show how the stream event processor tool BeepBeep can be used to
monitor the security properties of Java programs. The proposed approach
relies on AspectJ to generate a trace capturing the program’s runtime
behavior. This trace is then processed by BeepBeep, a complex event
processing tool that allows complex data-driven policies to be stated
and verified with ease. Depending on the result returned by BeepBeep,
AspectJ can then be used to halt the execution or take other corrective
action. The proposed method offers multiple advantages, notable flexi-
bility in devising and stating expressive user-defined security policies.

1 Introduction

Mobile code has emerged as an effective solution to the challenges of computing
in distributed systems. Nonetheless, security concerns remain omnipresent, and
may act as a break to the adoption of this technology, in part because of the
need for each user to tailor the security policy governing his system to his own
need.

In this paper, we show how BeepBeep [5], a complex event processor can be
used as a runtime monitor for enforcing a wide array of user-defined security
policies. This study also serves to illustrate BeepBeep’s capabilities of as a log
trace analyzer. BeepBeep takes as input a data stream, in this case an execu-
tion trace capturing the method calls and parameters values. This information
can be generated using any number of mechanism. BeepBeep has the capacity
to efficiently analyse this information in real-time to determine if it conforms
with a user defined specification. BeepBeep can also generate useful diagnostic
information about the program’s runtime behavior, which can in turn be used
for further security analysis or debugging.

We rely upon AspectJ [7] to generate the input trace which allows BeepBeep
to perform the enforcement. However, the monitoring using BeepBeep is agnostic
of the mechanism used to generate the traces, and while AspectJ also exhibits
some capabilities to operate as a security policies enforcement mechanism on
its own, that is not necessarily the case for other tracers. The use of BeepBeep
allows the security enforcement mechanism to be independent from the tracer.
c© Springer International Publishing AG, part of Springer Nature 2018
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Like other runtime security enforcement mechanism, the approach presented
in this paper is precise, in the sense that it reject only those executions that
violate the security policy, permitting safe executions of the program to proceed,
and it results in no false-positives or false-negatives. It is late, in the sense that
the execution is not halted until a violation is about to occur, thus allowing as
much of the execution to take place as is permissible given the security policy
in place. The main advantage of the proposed approach over other monitoring
tools is the flexibility and expressivity of the policy specification language.

The remainder of this paper is organised as follows. Section 2 surveys related
works. In Sect. 3, we give an overview of the architecture of the security enforce-
ment mechanism proposed in this paper. Section 4 describes some of the security
properties we can enforce and Sect. 5 presents experimental results. Concluding
remarks are given in Sect. 6.

2 Related Work

The Naccio project [4] provides a library of Java security policies that are
enforced at runtime. Each policy replaces certain Java Virtual Machine (JVM)
classes as needed to allow enforcement, and the JVM must be modified to
ensure that the correct (security policy specific) class is used. Any policy part of
Naccio’s library, as well as a multitude of policies unavailable on that platform,
can easily be stated and enforced using BeepBeep.

Several tools leverages machine learning techniques and static analysis to
categorize Android applications (written in Java) as either malicious or benign.
The tool ANDRANA [3] relies on static analysis of the applications’s code to
create a vector of features for each application. Classification is then performed
to determine if the observed features a typical to those previously observed
in malware. Other classifier rely upon the app’s manifest file [9], it’s service life
cycle [6], API calls [1] or a combination of API calls and other statically detected
features [2]. Like other methods based on static analysis, these exhibits a risk of
false-positive and false-negatives, and are vulnerable to obfuscation.

Another countermeasure in the face of malicious mobile code is the reliance
upon of code certification. Code signing utilizes cryptographic keys to guarantee
the authorship of code. While a useful security tool, code signing only serves to
authenticate the author of a given code, but provides no guarantees as to its
actual behavior. The author may be wrongly trusted by a user, and even code
from reputable sources can exhibit an exploitable vulnerability.

The approach proposed in this paper is precise and thus risks neither false-
positives nor false-negatives. It can be applied to code of unknown origin, and
allows the user to easily customize the security policy to his needs. Indeed, as we
will show in the next section, it can be used not only to enforce a wide variety
of security policies but also to ensure the respect of resource-usage constraints
or to generate diagnostic reports about the program’s runtime behavior.
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3 Architecture

The trace is generated using AspectJ, a tool that allows adding executable blocks
to the source code without explicitly changing it. AspectJ allows programmers
to set points in the source, known as pointcuts, to where the execution is to
temporarily halt and while the newly added code blocks are executed. In our
case, we used AspectJ to insert code before and after every method call to record
the information needed to perform monitoring. As mentioned above, this is only
one of several methods that could be used to generate the trace.

Figure 1 shows a sample of the trace of a simple Java tutorial program. Each
line correspond to either a single method call or method return. The former
begin with the keyword the keyword ‘call’ contains the following information:
the method return type, the method’s containing class, the method’s name, each
of the methods parameters type and value, and finally the method’s call level
on the stack. The later begin with the keyword ‘Return’ and contain the return
value. Values of literals, string and elementary types are provided explicitly but
those of objets are provided by references. Arrays are prefixed with ‘[’.

Fig. 1. A fragment of a trace

BeepBeep [5] is a complex event processing tool that can perform complex
manipulations on large data streams efficiently. Internally, BeepBeep decomposes
the desired data-processing task into a number of atomic processors, each of
which takes as input one (or more) event streams, and in turn, outputs one or
more event streams. These processor are chained together with the output of one
(or more) processor being piped to the input of the next one in such a manner
that, feeding BeepBeep’s input stream through this chain produces the desired
computation. Part of the contribution of this paper is to show how complex,
data-driven security properties of programs can be stated in terms of a small
number of BeepBeep processors.

A benefit of the approach under consideration is the ease with which the
desired security property can be stated. Each BeepBeep processors consists in
an average 20 lines of Java code, contained in a single class. Users can reuse these
elementary blocs, chaining them together to easily compose complex policies.

4 Security Properties

We began by replicating several of the security properties present in Naccio’s
library. Most of these are safety policies and can be enforced with as little as
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one or two BeepBeep Processors. Such properties include: NoExec, NoJavaClass-
Loader, NoNetReceiveing, NoNetSending, NoPrinting, NoReadingFiles, NoList-
ingFiles LimitBytesWritten and LimitBytesRead, LimitCreatedFiles, LimitO-
bservedFile. The first 7 of these properties simply halt the execution upon
encountering a specific forbidden method call. The latter 4 are only slightly
more involved. LimitBytesWritten and LimitBytesRead limit to total number of
bytes that are written (resp. read) to files or to the network. LimitCreatedFiles
and LimitObservedFile limit the number of files that can be created (resp. read).

Figure 2 gives an example of the BeepBeep processors for the property Lim-
itBytesWritten. It consists of only 3 processors: the first extracts from the trace
those method calls that perform write operation and passes those method calls
to the second processor. The second extracts number of bytes written by from
these method calls, and again passes this information on to the next processors.
The final processor computes the sum of the values it receives as input and
aborts the execution (through AspectJ) if this sum surpasses a customizable
value recorded in the property.

Fig. 2. The BeepBeep processors for property LimitBytesWritten

Schneider introduced the property [10] ‘no send after read’ as a typical exam-
ple of a safety property. This property states that after having read from a pro-
tected file, the program is no longer allowed to access the network. This property
is also part of the Naccio library.

The expressiveness of the approach under consideration is illustrated by the
following pair of properties: the property ‘a is a key’, states that a given piece
of information provided in the trace, such a parameter to a specific method or
its return value, never take the same value twice. Conversely, it’s negation, the
property’a is not a key’ requires that this value be unique. These properties are
interesting since, as observed by Segoufin [11], several widely used data models
can express one of these properties, but not the other, and neither of these
properties is part of the Naccio library. Both can be stated using relatively simple
processors, that stores the values that have appeared so far in the execution in
a list, and consult this list before allowing the execution to proceed.

Deserialization attacks [8] have recently emerged as important vector of
attack against Java programs. Any program that relies upon serialized objects to
exchange information with a distant party may be susceptible to a serialization
attack, even if the data is validated after having been received. The attack can be
performed in any one of several ways, notably by sending data of an unexpected
type, by sending an object of the correct type but with a high order nested
structure, leading to resource exhaustion when it is deserialized or by sending
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an object whose fields values are not consistent with the normal execution of
the program. BeepBeep processors offer a simple and effective counter-measure
in all cases. Since the trace contains return values and their type, validation
can be performed with a processor similar to the ones described above. To pro-
tect against a deserialization bomb, we developed a processor that bounds the
number of consecutive nested calls of the "readObject()" method. BeepBeep
can also ensure important data secrecy properties by preventing data read in
sensitive files from being included in the serialized object.

BeepBeep allows us to state more complex policies that relate the values
present in different parts of the trace to one another. For example:

– The parameter values of a given function are always increasing/decreasing in
consecutive calls. This property ensures the correctness of recursive function.

– After being created, a given data object is not modified (data integrity).
– No thread is frozen for more than 100 ms before resuming its execution (star-

vation freedom).
– Whether two specific methods work on the same object, or alternatively pro-

vide a list of objects that are manipulated by both of these methods.

Since the output of a processor can be of any format, BeepBeep can also pro-
vide profiling information about the ongoing execution, such as maximal, mini-
mal and average stacks depth, the number of objects created for each object type,
etc. We present two final processors that illustrate this capability of BeepBeep:
processor "CallSequenceProfiling" lists, for each method call in the trace, the
number of times it directly calls every other method. This information is pro-
vided in the form of a directed weighed graph, in which each vertex is labelled
with a method name, and a vertex of weight c is present between vertexes v1
and v2 iff method v1 calls method v2 c times in the trace. We give a schematic
representation of this processor in Fig. 3. The processor "BytesWrittenGraph"
provides a list of every method that manipulates each data object. Recall that
data objects are identified by reference in the trace. These two processors, while
not security property enforcers, provide crucial information on data flow analysis
that is essential to debugging and to the enforcement of data flow policies.

Fig. 3. The BeepBeep processor chain for property CallSequenceProfiling
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Figure 3 shows the chain of processors required to compute the call graph
from an execution trace. The core of this chain is the Stack processor, depicted
as number 8 in the figure. It takes two event streams as its input: the first (left-
hand side) is a stream of events of an arbitrary type; the second (top side) is a
stream of Boolean values. This processor internally maintains a stack of received
events. To this end, the Boolean stream acts as a push flag. When an event e
and a Boolean value b arrive at the processor’s inputs, two situations may occur.
If b = �, the top of the stack (if not empty) is output but not removed, and e
is then pushed onto the internal stack if b = �. If b = ⊥, e is ignored, and the
element at the top of the internal stack is popped and discarded.

The original stream of method events is first split in three (1); one of these
copies is given as the input to the Stack processor (8), while another is sent to
a Function processor (2). This processor evaluates the function that compares
the action field of the method event with the constant call; the result is a
stream of Boolean values, indicating whether the incoming event is a method
call (�) or a method return (⊥). This stream itself is split in three (7), and one
of these copies is given as the push flag of the Stack processor. The stack is
hence instructed to push an incoming event when it is a method call, and to
pop the top of the stack when it is a method return. As a result, the output of
the Stack processor is the method event corresponding to the current method
in the program’s execution.

A third copy of the original stream of events is sent to a Filter processor
(3). This processor receives two inputs: an arbitrary event e and a Boolean value
b called the filter flag. Event e is output if b = �, otherwise e is discarded. The
filter flag, in this case, is the result of applying the function action = call,
which returns a Boolean value; in other words, the processor keeps only method
call events, and filters out method returns. The same filtering condition is applied
to the output of the Stack processor (9).

The end result of this first part of the chain is that processors 3 and 9
synchronously output method call events; events at matching positions in the
streams represent the caller of a method (9) and the method being called (3).
From this point on, the rest of the processing is straightforward. Both events
are processed so that only the value of their name field is kept (4, 10); these two
values are then joined in a tuple (5), and these tuples are then accumulated into
a multiset using a CumulativeProcessor (6).

The output stream resulting from 6 is a sequence of multisets, each of the
form {(m0, n0), . . . , (mk, nk)}; each tuple (mi, ni) is a caller-callee pair of method
names. The number of times each distinct pair occurs in the multiset corresponds
to the number of times ni was called from mi in the trace. From then on, it is
easy to take the multiset of tuples and covert it into a directed graph that shows
the weighted dependencies between methods in the observed execution.

It is worth mentioning that, in this whole graph, only the action function (used
in processors 2, 4 and 10) and Stack processor (8) are specific to our use case. This
amounts to 35 lines of custom code. All the remaining processors and functions are
generic, and already come in BeepBeep’s core or one of its existing palettes.
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Fig. 4. The BeepBeep processor chain for property BytesWrittenGraph

Figure 4 shows a more informative variant of the LimitBytesWritten prop-
erty. It computes the number of bytes written by each function that does so, and
expresses this information in the form of a plot. The processor chain begins by
extracting from the trace the methods that perform write operations, discarding
all other lines and pairs containing the method name and the number of bytes
written are joined in a tuple (processor 6). Processor 7 splits its input stream
into multiple distinct streams, each of which contains tuples originating from a
single method. This allows the computation of the number of bytes written to be
aggregated separately for each method (processors 9 and 10). The remainder of
the processor chain aggregates this information with a timestamp, and updates
a hash table accordingly. This hash table can then serve as the basis of a plot
generated on demand.

5 Experimental Results

We tested this method on traces of length 1,000,000, generated in the manner
described above on a Java calculator. Figure 5 plots the execution times (in ms.)
for four representative processor chains, namely NoExec, LimitBytesWritten,
CallSequenceProfiling and isAKey. As can be seen in these results, execution
times are largely proportional to the number of processors in each processor
chain. Since most security properties require only linear sequencing of processors,
their operation can easily be streamlined by merging the operations of multiple
monitor in a single class.

Table 1 details the number of processors, number of custom lines of code (not
counting code already present in BeepBeep’s template library) and execution
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Fig. 5. Experimental Results

time several of the processors mentioned in this paper. This table illustrates the
ease with with BeepBeep processors can be composed, often necessitating only a
minimal amount of custom code. Once these processor chains are implemented,
they can in turn be included as components of processor chains for more complex
properties with the addition of a single line of code.

The only processor chain whose execution time is not inconsiderable is
BytesWrittenGraph, described in the previous section. Much of its execution
time is incurred in the final processor, which updates a hash table linking each
method to the number of bytes that have been written by that method during
the program’s current execution. Since a BeepBeep processor chain manipulates
events sequentially, and each processor feeds its output to a successor, the final
processor of the BytesWrittenGraph processor chain performs the update by
copying the current hash table before updating it with the information it has
received in its last input event. However, since in our particular case, the hash
table update is performed in the final processor of the processor chain. As a

Table 1. Description of tested Monitors

Property No. of processors Size (lines) Exec. time (ms)

NoExec 2 6 1590

NoClassLoader 2 6 1636

NoNetwork 2 6 1654

NoReadingFiles 2 6 1699

IsKey 2 8 1883

LimitBytesWritten 3 11 1900

CallSequenceProfiling 8 35 3701

BytesWrittenGraph 13 53 14633
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result, it is possible to edit this processor so that is simply updates the hash
table, without making a copy. This revision brings BytesWrittenGraph’s execu-
tion time in line with that of other monitors of its size.

6 Conclusion

In this paper, we showed how the event processor BeepBeep can be used for
runtime enforcement. The approach is agnostic to the tracer used to generate
the trac and itself by the ease by which properties can be stated using BeepBeep’s
processor chain structure. BeepBeep is useful not only for stating and enforcing
security properties, but also to generate useful diagnostic information about
the trace, as we also illustrated using examples. One avenue of further research
which we are currently exploring is to draw on BeepBeep’s capabilities to allow
us to express a more informative verdict that simply a Boolean indication of
the respect\violation of the security property. For instance, the monitor could
provide indications as to which parts of the trace caused the violations, rate
its severity, and suggest weaker properties that are respected. This information
could, in turn, serve as the basis for a more corrective reaction to a potential
violation than simply aborting the execution.
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Abstract. 802.15.4 security protects against the replay, injection, and
eavesdropping of 802.15.4 frames. A core concept of 802.15.4 security
is the use of frame counters for both nonce generation and anti-replay
protection. While being functional, frame counters (i) cause an increased
energy consumption as they incur a per-frame overhead of 4 bytes and (ii)
only provide sequential freshness. The Last Bits (LB) optimization does
reduce the per-frame overhead of frame counters, yet at the cost of an
increased RAM consumption and occasional energy- and time-consuming
resynchronization actions. Alternatively, the timeslotted channel hopping
(TSCH) media access control (MAC) protocol of 802.15.4 avoids the
drawbacks of frame counters by replacing them with timeslot indices,
but findings of Yang et al. question the security of TSCH in general. In
this paper, we assume the use of ContikiMAC, which is a popular asyn-
chronous MAC protocol for 802.15.4 networks. Under this assumption,
we propose an Intra-Layer Optimization for 802.15.4 Security (ILOS),
which intertwines 802.15.4 security and ContikiMAC. In effect, ILOS
reduces the security-related per-frame overhead even more than the LB
optimization, as well as achieves strong freshness. Furthermore, unlike
the LB optimization, ILOS neither incurs an increased RAM consump-
tion nor requires resynchronization actions. Beyond that, ILOS integrates
with and advances other security supplements to ContikiMAC. We imple-
mented ILOS using OpenMotes and the Contiki operating system.

1 Introduction

The major features of the 802.15.4 radio standard are low energy consumption,
cheap transceivers, sub-GHz and 2.4-GHz support, and reliable communication
thanks to meshing [1]. These features are suitable for implementing wireless
sensor and actuator networks. Furthermore, with the advent of 6LoWPAN, an
adaption layer for conveying IPv6 packets over 802.15.4 links [14], 802.15.4 is
becoming a main choice for implementing Internet of things (IoT) applications.

As for wireless security, many 802.15.4 networks make use of 802.15.4 security.
Essentially, 802.15.4 security filters out injected and replayed 802.15.4 frames,
c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 173–188, 2018.
https://doi.org/10.1007/978-3-319-75650-9_12
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and optionally encrypts the payload of 802.15.4 frames. Specifically, to filter out
injected 802.15.4 frames, 802.15.4 security ensures that incoming 802.15.4 frames
contain authentic message integrity code (MICs). Both, for generating MICs and
for encrypting payloads, 802.15.4 security employs a tweaked version of Counter
with CBC-MAC [23]. CCM, in turn, requires a nonce for generating a MIC and
encrypting data. 802.15.4 security generates CCM nonces based on incrementing
4-byte frame counters, which 802.15.4 security adds to 802.15.4 frames. Besides,
to filter out replayed 802.15.4 frames, 802.15.4 security ascertains that the frame
counter of an incoming 802.15.4 frame is greater than that of the last authentic
802.15.4 frame from the sender, thereby providing sequential freshness [20].

Yet, the use of frame counters in 802.15.4 security ensues two drawbacks.
First, as a frame counter is added to each 802.15.4 frame, frame transmissions
and receptions become more energy consuming as a result. Moreover, since frame
counters cut down the maximum payload of 802.15.4 frames, IPv6 packets need
to be fragmented at the 6LoWPAN adaption layer more often, thus necessitating
additional frame transmissions and receptions. Altogether, frame counters reduce
the lifetime of battery-powered 802.15.4 nodes. Second, while frame counters
provide sequential freshness, upper layers may require strong freshness. Strong
freshness is provided if a receiver can ensure that an incoming 802.15.4 frame
was sent within a limited time span prior to its reception [20]. This is particularly
desirable if readings from sensors or commands to actuators lose their meaning
when being delayed and hence should not be considered fresh.

In order to reduce the per-frame overhead of frame counters, Krentz et al.
tailored the Last Bits (LB) optimization to 802.15.4 security [10,15,18]. In their
version, senders only add the 8 least significant bits (LSBs) of frame counters
to outgoing 802.15.4 frames. Nevertheless, receivers can restore higher-order bits
using their anti-replay data. On the other hand, to enable receivers to restore
higher order bits, each node needs to use a separate frame counter for broadcast
frames, as well as separate frame counters for unicast frames for each of its neigh-
bors. Also, every node has to keep track of both the unicast and broadcast frame
counter of each of its neighbors. Hence, the LB optimization consumes more
RAM than the original anti-replay protection of 802.15.4 security. Moreover, if a
node A misses 28 unicast or broadcast frames in a row from a neighbor B,A can
no longer restore B’s unicast or broadcast frame counters, respectively. To this
end, Krentz et al. propose an “UPDATE-UPDATEACK exchange” for resynchronizing
frame counters. Unfortunately, this exchange entails sending two unicast frames
and is not triggered immediately upon desynchronization, but only delayed.

A seemingly better solution appeared as part of timeslotted channel hopping
(TSCH) media access control (MAC) protocol of 802.15.4 [1]. TSCH nodes wake
up in certain timeslots so as to receive or transmit data on a certain channel as
governed by a schedule. Consequently, TSCH requires network-wide time syn-
chronization. Further, since TSCH requires network-wide time synchronization
anyway, TSCH uses implicitly known timeslot indices in lieu of frame counters.
This elegantly avoids both mentioned drawbacks with frame counters through
an intra-layer optimization. However, Yang et al. outlined various attacks on
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TSCH’s mechanisms for time synchronization [25], thus questioning the security
of TSCH in general. After all, TSCH’s intra-layer optimization is inapplicable to
asynchronous MAC protocols, which work without network-wide time synchro-
nization [13]. A popular asynchronous MAC protocol is, e.g., ContikiMAC [6].

This paper’s main contribution is an Intra-Layer Optimization for 802.15.4
Security (ILOS). ILOS solves both mentioned drawbacks with frame counters
by intertwining 802.15.4 security and ContikiMAC. In fact, ILOS reduces the
security-related per-frame overhead even more than the LB optimization, as
well as achieves strong freshness. Furthermore, unlike the LB optimization, ILOS
neither consumes more RAM nor needs resynchronization actions. Beyond that,
ILOS integrates with and advances other security supplements to ContikiMAC,
namely Krentz et al.’s Adaptive Key Establishment Scheme (AKES) [15], as well
as their Practical On-The-fly Rejection (POTR) [17].

The rest of this paper is structured as follows. Section 2 introduces Contiki-
MAC, as well as security supplements to it. Section 3 specifies the design of ILOS.
Section 4 outlines our implementation of ILOS. Section 5 gives an evaluation of
ILOS. Lastly, Sect. 6 concludes and suggests topics for future research.

2 Background and Related Work

In ContikiMAC, receivers wake up periodically and perform two clear channel
assessments (CCAs). If one of these CCAs indicates a busy channel, receivers stay
in receive mode until a frame is received or a timeout occurs, whatever comes
first. Senders, on the other hand, repeatedly transmit each frame for a whole
wake-up interval, plus once to cover corner cases. This behavior is often called
strobing. In the case of unicast frames, senders may stop strobing prematurely
if an acknowledgement frame is received in between two consecutive unicast
frame transmissions, as shown in Fig. 1. Additionally, to further reduce the time
that senders spend in transmit mode, ContikiMAC’s phase-lock optimization
schedules the start of a strobe of unicast frames right before the intended receiver
wakes up. For this, ContikiMAC’s phase-lock optimization exploits that if an
acknowledgement frame is received, the next to last strobed unicast frame must
have been transmitted while the receiver woke up. Hence, the time when the
transmission of the next to last acknowledged unicast frame began can serve to
estimate when the receiver will wake up next. Furthermore, once the wake-up
time of a receiver is known, ContikiMAC’s phase-lock optimization no longer
strobes unicast frames to that receiver for a whole wake-up interval plus once if
no acknowledgement frame returns, but only for a shorter time span plus once.
Yet, to account for clock drift, ContikiMAC’s phase-lock optimization relearns
the wake-up time of a receiver if unicast transmissions to the receiver tend to
fail. This fallback mechanism renders ContikiMAC’s phase-lock optimization
susceptible to collision attacks, which provoke longer strobes via jamming [16].

Since its publication, ContikiMAC was improved to support opportunistic
routing [7], burst forwarding [8], and channel hopping [2]. In the following, we will
however restrict ourselves to introducing security supplements to ContikiMAC
since they are fundamental to ILOS [15–17].
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Fig. 1. Operation of a unicast transmission in ContikiMAC

An essential security supplement to ContikiMAC is AKES, which establishes
group or pairwise session keys for use in 802.15.4 security [15]. Figure 2 shows the
operation of AKES when configured to establish group session keys. A node A
initiates session key establishment by broadcasting a HELLO, containing a crypto-
graphic random number RA. Any receiver B that has not yet established session
keys with A also generates a cryptographic random number RB and, after a
random back off period, replies with a HELLOACK. The HELLOACK carries RB , B’s
group session key KB,∗ encrypted, as well as a MIC. For encrypting KB,∗ and
generating the MIC, B derives a temporary pairwise key K ′

A,B from a predis-
tributed shared secret KA,B between A and B, as well as the two cryptographic
random numbers RA and RB . Upon receipt of B’s HELLOACK, A decrypts KB,∗
and checks the MIC by deriving K ′

A,B analogously. If successful, A acknowledges
with an ACK, which includes A’s group session key KA,∗ encrypted and a MIC.
Again, the temporary pairwise key K ′

A,B serves to generate the ACK’s MIC, as
well as to encrypt A’s group session key.

Apart from establishing session keys, AKES also deletes neighbors that got
out of range. Concretely, if a neighbor sent no fresh authentic frame for a critical
period of time, AKES checks if the neighbor is still in range by sending an
UPDATE to him, as shown in Fig. 2. If no fresh authentic UPDATEACK returns
after a configurable number of retransmissions, AKES deletes that neighbor.
Otherwise, if an UPDATEACK returns, AKES extends that neighbor’s expiration
time. In this regard, ILOS obviates the need for sending UPDATEACKs, which saves
energy. Furthermore, thanks to ILOS, AKES no longer needs to keep track of
the expiration times of neighboring nodes, which saves RAM.

Despite AKES, 802.15.4 security remains incomplete in the sense that Con-
tikiMAC stays vulnerable to many ding-dong ditching attacks. Ding-dong ditch-
ing attacks belong to the larger group of denial-of-sleep attacks, which gen-
erally cause an increased energy consumption on victim nodes [4]. Ding-dong
ditching attacks, in particular, mislead ContikiMAC nodes into staying more
time in receive mode [16]. For example, broadcast and unicast attacks are ding-
dong ditching attacks, where an attacker injects or replays broadcast and uni-
cast frames, respectively [4,16]. Though 802.15.4 security rejects injected and
replayed frames, they are still fully received before being rejected, which con-
sumes much energy. As another example of a ding-dong ditching attack, droplet
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Fig. 2. Adaptive Key Establishment Scheme (AKES) and adaptations to it

attacks exploit that it suffices to transmit an 802.15.4-compliant synchronization
header (SHR) plus a few header bytes to keep victim nodes in receive mode for
long [11].

A countermeasure against unicast, broadcast, as well as droplet attacks is
Krentz et al.’s POTR [17]. The approach of POTR is to cancel the reception of
injected and replayed frames early on, similar to what was proposed in related
efforts [3,5,9,11,12,24]. For this, POTR adapts the headers of 802.15.4 frames
like shown in Fig. 3. The Frame Type field encodes the frame’s type. Possi-
ble frame types are listed in Table 1. Then, the Source Address field states
the sender’s address. Thereafter, the Frame Counter field includes the sender’s
4-byte frame counter. Acknowledgement frames, on the other hand, always just
include the 8 LSBs of the frame counter of the frame whose receipt is being
acknowledged. Above all, the OTP field contains a one-time password (OTP).
POTR validates OTPs during reception by (i) parsing the Frame Type, Source
Address, and Frame Counter fields, (ii) deriving an OTP therefrom, and (iii)
checking if the derived OTP matches the received one. If they do not match,
POTR usually disables the receive mode immediately, which greatly reduces the
time that victim nodes stay in receive mode under unicast, broadcast, as well as
droplet attacks. Finally, the purpose of the Sequence Number field is to avoid
accepting retransmitted frames twice, as we will elaborate on in Sect. 3.4.

Fig. 3. 802.15.4 frame format as adapted by POTR, SPLO, and ILOS
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Table 1. POTR’s frame types and fields present therein

Frame type Source
address

Frame counter OTP Strobe
index

Δ Sequence
number

Unicast data
√ √

(× if using ILOS)
√ √ × √

Broadcast data
√ √

(× if using ILOS)
√ × × ×

Acknowledgement × √
(× if using SPLO or ILOS) × × √ ×

HELLO
√ √

(× if using ILOS)
√ × × ×

HELLOACK
√ √

(× if using ILOS)
√ √ × ×

ACK
√ √

(× if using ILOS)
√ √ × ×

Unicast command
√ √

(× if using ILOS)
√ √ × √

Broadcast command
√ √

(× if using ILOS)
√ × × ×

To shorten POTR’s Frame Counter field and to accelerate POTR’s rejection
speed, Krentz et al. suggested using the LB optimization [17]. The LB optimiza-
tion accelerates POTR’s rejection speed because if the Frame Counter field gets
shorter, receivers can validate OTPs earlier. However, as mentioned already, if a
node misses a lot of frames, it needs to perform an UPDATE-UPDATEACK exchange.
Moreover, in POTR, if a node loses track of the unicast frame counter of a
neighbor, both nodes have to establish new session keys with each other for
subtle reasons [17]. Such resynchronization actions may also become necessary
if an attacker guesses an OTP right, irrespective of using the LB optimization
or not [17]. By contrast, ILOS never needs resynchronization actions, even if an
attacker guesses an OTP right. Beyond that, ILOS accelerates POTR’s rejection
speed slightly more than the LB optimization, as we will show in Sect. 5.

Lastly, the Secure Phase-Lock Optimization (SPLO) protects ContikiMAC’s
phase-lock optimization from pulse-delay and collision attacks [16]. Both of
these attacks are denial-of-sleep attacks that mislead ContikiMAC’s phase-lock
optimization into staying more time in transmit mode. To resist pulse-delay
attacks, SPLO ensures the authenticity and timeliness of acknowledgement
frames, mainly by adding MICs to acknowledgement frames. This involves insert-
ing the Strobe Index field into unicast frames like shown in Fig. 3. This field indi-
cates how often ContikiMAC strobed a unicast frame already and is incorporated
into the CCM nonce of unicast frames, as well as into the CCM nonce of their cor-
responding acknowledgement frames. To mitigate collision attacks, on the other
hand, SPLO limits the maximum duration of a strobe of unicast frames accord-
ing to the current uncertainty about the wake-up time of the intended receiver.
Crucially, unlike ContikiMAC’s original phase-lock optimization, SPLO does not
relearn the wake-up time of a receiver if unicast transmissions to the receiver
tend to fail. Furthermore, to keep the maximum duration of a strobe of unicast
frames below a configurable threshold, SPLO instructs AKES to send an UPDATE
to a neighbor that sent no fresh authentic acknowledgement frame for a criti-
cal period of time, as well as to delete that neighbor if no UPDATEACK returns.
Also, to obtain more precise estimations of wake-up times, SPLO piggybacks
Δ on acknowledgement frames. Δ is calculated like shown in Fig. 1 and enables
senders of unicast frames to calculate the last wake-up time t∗ of a receiver [19].
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3 ILOS: Intra-Layer Optimization for 802.15.4 Security

The main idea of ILOS is to replace frame counters with what we call wake-up
counters. This necessitates changes to (i) the generation of CCM nonces, (ii)
POTR, (iii) anti-replay protection, and (iv) AKES. In the following, we will
specify each of these changes. Throughout, we focus on the case of using group
session keys, rather than pairwise session keys.

3.1 Notations

Let A and B be adjacent nodes. We denote by:

– tw ContikiMAC’s wake-up interval, as shown in Fig. 1.
– ωA the wake-up counter of A - A increments ωA at the rate of tw in lockstep

with ContikiMAC’s two regular CCAs. If A skips over doing two CCAs, e.g.,
due to sending at that time, A must increment ωA anyway.

– t∗A,B what A stores as the last wake-up time of B - SPLO initializes t∗A,B in
parallel to establishing group session keys and updates t∗A,B upon receipt of
a timely authentic acknowledgement frame from B.

– ω∗
A,B the wake-up counter of B at time t∗A,B - Likewise, ILOS initializes ω∗

A,B

in the course of establishing session keys and updates t∗A,B upon receipt of a
timely authentic acknowledgement frame from B.

– IDA A’s MAC address.
– KA,∗ A’s group session key.
– α a field in the CCM nonces generated by ILOS.
– λA A’s current strobe index - each time a unicast frame is transmitted or

retransmitted, λA starts over from zero.
– KDF a key derivation function.
– Kn a predistributed network-wide key for use by POTR.

3.2 Adapting CCM Nonces

In order for CCM nonces to be secure, they must never reoccur in conjunction
with the same key. ILOS achieves this via two complementary techniques. On the
one hand, ILOS uses a common base format and the field α to avoid collisions
among CCM nonces of different types of frames. On the other hand, ILOS uses
wake-up counters and MAC addresses to avoid collisions among CCM nonces
of the same frame type. Concretely, ILOS derives CCM nonces from wake-up
counters like shown in Table 2.

Unicast Frames. As for a HELLOACK or ACK from a node A to a node B, ILOS
generates the CCM nonce by concatenating IDA, α = 0, λA, and ωA, where
ωA is the wake-up counter of A as A begins to strobe the HELLOACK or ACK.
Thus, B needs ωA to restore the CCM nonce of the HELLOACK or ACK. Therefore,
ILOS adds ωA to the payload of the HELLOACK or ACK, as shown in Fig. 2. It
will become apparent that adding wake-up counters to frames is only required
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Table 2. CCM inputs as per ILOS

Frame types CCM nonce Key

HELLOACK or ACK from A to B IDA‖α‖λA‖ωA K′
A,B

Unicast data or command frame
from A to B

IDA‖α‖λA‖ωB KB,∗

Acknowledgement frame from B

to A

Same as the corresponding

unicast frame except that

α = 2

Same as the corresponding

unicast frame

Broadcast data, broadcast

command, or HELLO frame from A

IDA‖α‖0‖ωA + 1 KA,∗

during session key establishment. The LB optimization is no different in this
respect as it requires exchanging certain frame counters in full during session
key establishment, too [15]. We also note that ILOS depends on that the back-
off period for retransmissions is greater or equal than tw so that ωA increments
in the meantime. Otherwise, such CCM nonces may reoccur.

As for a unicast data or command frame from a node A to a node B, ILOS
generates the CCM nonce by concatenating IDA, α = 1, λA, and ωB , where
ωB is B’s wake-up counter as B receives the unicast frame. Thus, A needs ωB .
However, using t∗A,B and ω∗

A,B , A can predict ωB as ω∗
A,B +

⌈
tsched−t∗

A,B

tw

⌉
, where

tsched is the time when SPLO schedules the transmission of the unicast frame.
This prediction is correct if SPLO keeps the absolute uncertainty about the
wake-up time of B below tw

2 , which SPLO achieves by default.

Acknowledgement Frames. An acknowledgement frame uses the same CCM
nonce as the unicast frame whose receipt is being acknowledged except that α
is set to 2.

Broadcast Frames. The CCM nonce of a broadcast frame from a node A is
generated by concatenating IDA, α = 3, 0, and ωA +1. Here, ωA is A’s wake-up
counter as A begins to strobe. To aid receivers in restoring ωA +1, ωA +1 needs
to be even and A must begin to strobe at t − tw

2 , where t is when A increments
ωA next. Thus, A may need to defer the transmission of the broadcast frame
until both conditions are met. Yet, this way, a receiver B can restore ωA + 1 by
rounding ω∗

B,A+ tawoke−t∗
B,A

tw
to the next even value, where tawoke is when B awoke

for doing ContikiMAC’s two CCAs that led to receiving the broadcast frame.
This restoration of ωA + 1 is correct (i) if SPLO keeps the absolute uncertainty
about the wake-up time of A below tw

2 and (ii) if B wakes up during the interval
[t − tw

2 , t + tw
2 ]. As a side effect of delaying consecutive broadcast transmissions

by at least 2tw, CCM nonces of broadcast frames can not coincide.

3.3 Adapting the Practical On-the-Fly Rejection (POTR)

As POTR derives OTPs of HELLOACKs and ACKs without frame counters already,
ILOS leaves these OTPs unchanged. By contrast, POTR derives the OTPs of
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data, command, and HELLO frames from Kn, the sender’s group session key, the
receiver’s address, and the sender’s frame counter. To avoid frame counters there
too, ILOS calculates the OTP of a unicast data or command frame from A to B
as KDF(Kn ⊕ KB,∗, IDA‖α‖ωB), where α = 1 and ωB is B’s wake-up counter
when receiving the frame. The purpose of XORing Kn and KB,∗ is to prevent
related-key attacks [17]. Likewise, ILOS calculates the OTP of a broadcast data,
broadcast command, or HELLO frame from A as KDF(Kn⊕KA,∗, IDA‖α‖ωA+1),
where α = 3 and ωA is A’s wake-up counter as A begins to strobe. As the inputs
to KDF resemble the CCM nonces of ILOS, the same methods for predicting,
or rather restoring wake-up counters apply.

3.4 Adapting Anti-replay Protection

ILOS provides anti-replay protection as follows.

Unicast Frames. To filter out replayed HELLAOCKs and ACKs, ILOS retains
POTR’s methods [17].

As for unicast data and command frames, anti-replay protection comes
almost as a side effect of generating CCM nonces like ILOS does. This is because
a receiver B increments ωB when waking up. Thus, if B receives a replayed uni-
cast frame, B will assume a CCM nonce that differs from the CCM nonce that
was used to secure the replayed unicast frame. Hence, B will reject the replayed
unicast frame due to an invalid OTP during reception. Also, even if the OTP of
a replayed unicast frame is valid by chance, B will eventually reject the replayed
unicast frame due to an inauthentic MIC. However, a subtlety is that the sender
A of a unicast data or command frame may miss an acknowledgement frame.
In this case, A may retransmit and hence, the receiver B, may accept the same
frame twice. This issue also arises in TSCH and POTR, where it may be solved
by adding 8-bit sequence numbers to frames [1]. ILOS adopts this solution and
adds sequence numbers to unicast data and command frames, as shown in Fig. 3.
These sequence numbers are incremented on a per neighbor basis. B discards
a unicast data or command frame from A if the contained sequence number
matches the one of the previously accepted unicast data or command frame
from A. However, although duplicated unicast data and command frames could
already be discarded during reception, we opted to fully receive and acknowledge
them so as to avoid self-imposed collision attacks.

Acknowledgement Frames. As for acknowledgement frames, anti-replay pro-
tection comes indeed by itself. If a sender A receives a replayed acknowledge-
ment frame, A will use a different CCM nonce to check if the MIC of the
replayed acknowledgement frame is authentic. Consequently, A will consider the
MIC of the replayed acknowledgement frame inauthentic and reject the replayed
acknowledgement frame.

Broadcast Frames. As for broadcast frames, anti-replay protection does not
come automatically in two occasions. First, it may happen that a receiver B
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receives a broadcast frame from a sender A and, during the next wake up of
B, an attacker replays that same broadcast frame. In this case, B may assume
the same CCM nonce, thus causing B to consider both the OTP and the MIC
of the replayed broadcast frame valid. Only if there is one wake up in between,
B will definitely assume a different CCM nonce and hence reject the replayed
broadcast frame due to an invalid OTP or an inauthentic MIC. This also holds
true if B updates t∗B,A and ω∗

B,A in between since, in this case, ω∗
B,A is raised,

which causes B to restore a different CCM nonce, too. Altogether, ILOS merely
needs to take care of not accepting a broadcast frame if, during the last wake
up, a broadcast frame from the same sender was accepted already. Like POTR,
ILOS does so already during reception to counter ding-dong ditching. Second,
when a sender retransmits a broadcast frame because of collision avoidance (CA),
a receiver may receive that frame twice. This issue is specific to ContikiMAC
since, in TSCH, CA is only done before transmitting, whereas ContikiMAC also
does CA in between strobed frames. Neither does this issue arise in POTR
since POTR simply does not increment the frame counter when retransmitting
broadcast frames, causing duplicated frames to be considered as replayed and
hence rejected. To solve this issue, ILOS requires ContikiMAC to only do CA
before strobing a broadcast frame. While this only offers intra-network CA, it
has the security benefit that jamming during broadcast transmissions no longer
induces retransmissions, fixing an open denial-of-sleep vulnerability.

3.5 Adapting the Adaptive Key Establishment Scheme (AKES)

Let A and B be adjacent nodes. To initialize ω∗
B,A and ω∗

A,B while A and B
establish session keys, ILOS adds additional data to ACKs, as well as to acknowl-
edgement frames that are sent in response to ACKs, as shown in Fig. 2. Specifically,
to initialize ω∗

B,A, A reports back on its wake-up counter at time of receiving B’s
HELLOACK since SPLO initializes t∗B,A to the time when A woke up for receiving
B’s HELLOACK. Likewise, B reports back on its wake-up counter when receiving
A’s ACK since SPLO initializes t∗A,B to when B woke up for receiving A’s ACK.

In addition, ILOS applies two tweaks to AKES’ transmission of UPDATEs.
First, rather than sending dedicated UPDATEACKs, ILOS relies on SPLO’s authen-
ticated acknowledgement frames, which are sent in response to UPDATEs anyway.
Second, it is also somewhat redundant that SPLO stores the last known wake-
up time of each neighboring node while AKES additionally keeps track of each
neighbor’s expiration time. Hence, ILOS solely relies on SPLO to schedule the
transmission of UPDATEs, thereby freeing AKES from storing expiration times.

4 Implementation

Our implementation of ILOS advances Krentz et al.’s implementation of 802.15.4
security, AKES, POTR, ContikiMAC, as well as SPLO for the Contiki operat-
ing system [15–17]. We preserved their design and inserted the changes of ILOS
surrounded by conditional preprocessor directives. This enables us to switch
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between frame counters and wake-up counters at compilation time. Within our
conditional code, we only let information flow downwards, following the termi-
nology introduced in [21]. That is, upper layers retrieve additional information,
such as the current wake-up counter, from lower layers. Nevertheless, ILOS is
not a real cross-layer optimization because ILOS only affects the MAC layer.

5 Evaluation

Below, we (i) argue that ILOS achieves strong freshness, (ii) quantify the reduc-
tion of the security-related per-frame overhead due to ILOS, (iii) demonstrate
the resulting reduction in energy consumption, (iv) show that ILOS accelerates
POTR’s rejection speed, and (v) give insight to the RAM footprint of ILOS.

5.1 Freshness Guarantees

Recall that strong freshness is provided if a receiver can ensure that an incoming
802.15.4 frame was sent within a limited time span prior to its reception [20].
In the case of unicast data and command frames, an upper bound that ILOS
achieves is tw. This is because, if a unicast data or command frame is delayed by
≥tw, receivers will use a different CCM nonce to verify its MIC, which results
in the rejection of the frame. In the case of acknowledgement frames, this upper
bound is even lower because an acknowledgement frame is only considered timely
if it belongs to the unicast frame that was just strobed. Additionally, SPLO only
accepts acknowledgement frames within a short window after sending a unicast
frame. This way, SPLO ensures that acknowledgement frames are not delayed
by more than 0.122 ms by default [16]. In the case of broadcast frames, ILOS
achieves an upper bound of 2tw since receivers will definitely assume a different
CCM nonce when a broadcast frame is delayed by ≥2tw. On the other hand,
delayed HELLOACKs and ACKs get accepted, but session key establishment ulti-
mately fails as a result since SPLO aborts session key establishment if HELLOACKs
and ACKs are not being acknowledged in a timely manner [16].

5.2 Security-Related Per-Frame Overhead

Table 3 compares the security-related per-frame overhead of various frame for-
mats. According to the original frame format of 802.15.4, a secured 802.15.4
frame comprises a 1-byte Security Control field, a 4-byte Frame Counter field,
an optional 1-byte Key Index field, an optional Key Source field of up to 8 bytes,
as well as an m-bit CCM-MIC [1]. In TSCH networks, the Frame Counter field
becomes unnecessary, as described in the introduction [1]. In ContikiMAC net-
works, using AKES obviates the need for the Key Index, as well as the Key
Source field [15]. In addition, the LB optimization reduces the overhead of frame
counters to 1 byte. On the other hand, POTR requires adding an l-bit OTP
field to non-acknowledgement frames and a 1-byte sequence number to unicast
frames. Moreover, SPLO requires adding the 1-byte Strobe Index field to unicast
frames. ILOS reduces the security-related per-frame overhead again by dispens-
ing with frame counters altogether.
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Table 3. Security-related per-frame overhead

Frame format Overhead (in bytes)

802.15.4 [1] [5, 13] + m
8

TSCH [1] [1, 9] + m
8

802.15.4 + AKES+ LB [15] 1 + m
8

POTR+ AKES [17] [4, 5] + l+m
8

POTR+ AKES + LB [17] [1, 2] + l+m
8

POTR+ AKES + SPLO+ LB [16] [1, 3] + l+m
8

POTR+ AKES + SPLO+ ILOS [0, 2] + l+m
8

5.3 Energy Efficiency

To demonstrate that ILOS reduces the energy consumption of sending unicast
data frames, the following experiment was conducted. An OpenMote A sent
a unicast data frame with 50 bytes of payload to another OpenMote B [22].
A and B were recently synchronized so that A only strobed twice. While A
strobed and subsequently received B’s acknowledgement frame, the current draw
of A was measured by connecting A, a μCurrent Gold, and a Rigol DS1000E
oscilloscope in series, as is further detailed in [22]. The current draw over time
was then converted into the actual energy consumption under the assumption
of a constant supply voltage of 3 V. This was repeated using three different
configurations, namely (i) with the LB optimization, as well as ILOS disabled,
(ii) with the LB optimization enabled, and (iii) with ILOS enabled. For each of
the three configurations, 100 samples were obtained. POTR, SPLO, and 8-byte
addresses were used throughout.

Figure 4a depicts the results as boxplots. Expectably, the most energy-
consuming configuration is to use neither the LB optimization nor ILOS. This
is because, in this configuration, frame counters are transmitted uncompressed.
Enabling the LB optimization saves energy since the security-related per-frame
overhead decreases by 3 bytes. Another byte can be saved by enabling ILOS
instead, yielding a slightly lower energy consumption compared to using the LB
optimization.

To also demonstrate that ILOS reduces the energy consumption of receiv-
ing unicast data frames, the above experiment was repeated with two differ-
ences. First, B’s energy consumption while receiving A’s unicast data frames
and acknowledging them was measured. Second, to avoid bias, B woke up at
randomized times. Throughout, the dozing optimization for ContikiMAC was
switched on [16].

Figure 4b shows the results. This time, the variation in the data is much
higher because the energy consumption per frame reception highly depends on
how long a receiver waits until the next unicast frame is being strobed. Apart
from that, the results are similar. While ILOS constitutes the most energy-
efficient configuration, using neither the LB optimization nor ILOS constitutes
the least energy-efficient configuration.
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Fig. 4. Energy consumption per (a) transmission and (b) reception of a unicast data
frame with 50 bytes of payload

The above results apply to unicast command and data frames alike since they
are treated equally. Broadcast receptions should also consume less energy when
using the LB optimization or ILOS. Broadcast transmissions, by contrast, will
not become more energy efficient since ContikiMAC strobes broadcast frames
for a whole wake-up interval anyway. Additionally, we note that ILOS may also
reduce the frequency of fragmentation, which then saves further energy.

5.4 Rejection Speed

To compare the rejection speed of POTR in different configurations, the fol-
lowing experiment was conducted. An OpenMote A sent a unicast data frame
with an invalid OTP to another OpenMote B [22]. Upon receipt, B stopped the
time between detecting the frame’s SHR and the rejection of the frame. This
was repeated using three different configurations, namely (i) with the LB opti-
mization, as well as ILOS disabled, (ii) with the LB optimization enabled, and
(iii) with ILOS enabled. For each of the three configurations, 100 samples were
obtained. Throughout, 8-byte addresses were used.

Figure 5 shows that the LB optimization accelerates POTR’s rejection speed
noticeably. This was expected, as explained in Sect. 2. ILOS, by comparison,

with ILOS

with the LB optimization

without both

rejection speed (in ms)

0.0 0.2 0.4 0.6 0.8 1.0

0.474

0.491

0.58

Fig. 5. Mean rejection speed of POTR
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accelerates POTR’s rejection speed a bit more since the validation of OTP begins
even earlier. In effect, ILOS further reduces the time spent in receive mode under
ding-dong ditching.

5.5 RAM Footprint

To measure the RAM footprint, the tool arm-none-eabi-size was used. As
a baseline for comparison, the RAM footprint when disabling 802.15.4 security
altogether was measured. Based on this measure, the overhead in RAM was then
determined when (i) using neither the LB optimization nor ILOS, (ii) enabling
the LB optimization, and (iii) enabling ILOS. Also, the RAM footprint was
determined when configuring the Contiki operating system to use 0, 5, 10, 15,
20, or 25 neighbor slots.
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Fig. 6. RAM footprint

Figure 6 shows the results. Surprisingly, ILOS consumes even less RAM than
if using neither the LB optimization nor ILOS. There are two main reasons for
this. First, ILOS reuses the wake-up times that are stored by SPLO anyway.
Second, ILOS frees AKES from storing expiration times. Conversely, the LB
optimization incurs a high RAM overhead, as conjectured in the introduction.
This is problematic since 802.15.4 nodes usually have just a few kilobytes of
RAM.

6 Conclusions and Future Work

Using frame counters incurs drawbacks in terms of energy efficiency and fresh-
ness guarantees. TSCH avoids these drawbacks by replacing frame counters
with timeslot indices. However, TSCH’s mechanisms for time synchronization
are vulnerable to a range of attacks. ContikiMAC, on the other hand, avoids
many of TSCH’s vulnerabilities in the first place since ContikiMAC works asyn-
chronously. Yet, as far as ContikiMAC is concerned, only the LB optimization is
currently available for alleviating the drawbacks of frame counters. To address
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the limitations of the LB optimization, we have proposed ILOS. According to our
evaluation, ILOS outperforms the LB optimization in terms of security-related
per-frame overhead, energy efficiency, rejection speed, as well as RAM footprint.
Additionally, ILOS has three major advantages over the LB optimization. First,
ILOS achieves strong freshness. Second, ILOS avoids resynchronization actions.
Third, ILOS simplifies AKES. The only drawback of ILOS seems to be that
ILOS intertwines ContikiMAC and 802.15.4 security. From a software engineer’s
perspective, we would actually like to decouple the implementation of 802.15.4
security and ContikiMAC so that we can change one without affecting the other.
Future work may generalize ILOS to other MAC protocols or formally assess the
correctness of ILOS, e.g., with a protocol verification tool.
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Abstract. Searchable encryption allows users to execute encrypted
queries over encrypted databases. Several encryption schemes have been
proposed in the literature but they leak sensitive information that could
lead to inference attacks. We propose ObliviousDB, a searchable encryp-
tion scheme for an outsourced database that limits information leak-
age. Moreover, our scheme allows users to execute SQL-like queries on
encrypted data and efficiently supports multi-user access without requir-
ing key sharing. We have implemented ObliviousDB and show its prac-
tical efficiency.

1 Introduction

Cloud computing is a successful paradigm offering companies virtually unlim-
ited data storage and computational power at very attractive costs. Despite its
benefits, cloud computing raises new challenges for protecting data.

Motivation. Once the data is outsourced to the cloud environment, the data
owner lacks a valid mechanism for protecting the data from unauthorised access.
This poses serious confidentiality and privacy concerns to the outsourced data.
To mitigate this problem, the hybrid cloud computing approach is getting more
popular among large enterprises [1,2]. In a hybrid cloud approach, the organi-
sation maintains sensitive data and services within their infrastructure and out-
sources the rest to a public cloud. However, identifying sensitive assets is not an
easy task and once the data and services leave the internal infrastructure, there
is a risk of compromising the confidentiality of the assets if no proper security
mechanisms have been put in place.

Problem. In recent years, Searchable Encryption (SE) schemes have been pro-
posed to partially overcome the confidentiality issue in cloud computing. These
schemes allow the cloud to perform encrypted search operations on encrypted
data. Most of them focus on improving the search efficiency and functionality.
A thorough survey with a comparative analysis of existing SE schemes can be
found in our recent work [3].

c© Springer International Publishing AG, part of Springer Nature 2018
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Unfortunately, researchers have paid little attention to the information the
cloud provider can learn during search and match operations even if performed
on encrypted data. Some recent works [4–6] have shown that even a minor leakage
can be exploited to learn sensitive information and break the scheme.

In [5], Naveed et al. recover a vast majority of data in CryptDB [7] by using
frequency analysis. Zhang et al. [6] further investigate the consequences of leak-
age by injecting chosen files or records into the encrypted database. Based on
the information learned by looking at which encrypted data is accessed by a
given query, referred to as access pattern leakage, they could recover a very high
fraction of the searched keywords by injecting a small number of known files or
records into the database. The cloud provider can also infer if two or more queries
are equivalent or not, referred to as search pattern leakage. A recent study by
Cash et al. [4] also shows that given small leakage a determined attacker (includ-
ing a malicious cloud provider) could break the encryption scheme.

Matters are even worse for dynamic SE schemes where insert and delete
operations are also supported. Most of the dynamic SE schemes do not sup-
port forward privacy and backward privacy properties. Lacking forward privacy
means that the cloud provider can learn if newly inserted data or updated data
matches previously executed queries; lack of support for backward privacy means
that the cloud provider can learn if deleted data matches new queries. Basically
without forward and backward privacy, a cloud provider executing a dynamic
SE scheme is able to learn the evolution of the data over time. Only a few of the
existing dynamic schemes [8–10] support forward privacy, but no scheme is able
to support both properties simultaneously.

A possible solution could be to employ Oblivious Random Access Mem-
ory (ORAM) or Private Information Retrieval (PIR) schemes. However, current
ORAM and PIR schemes are prohibitively costly and impractical.

Our Solution. In this paper, we present ObliviousDB, an SE scheme for
databases for hybrid cloud environments, that is able to overcome all the issues
discussed above.

Based on proxy-encryption given in [11], ObliviousDB is an encrypted search
scheme that supports the full-fledged multiple user management. Moreover,
ObliviousDB exploits the hybrid cloud computing approach and minimises infor-
mation leakage. In our approach, the organisation is not required to make deci-
sions on how to split its data between the private and public infrastructure. The
public infrastructure is used for storing all the data while the private infras-
tructure is used mainly for running our Oblivious Proxy Service (OPS), a proxy
service for maintaining metadata information about the data stored in the public
infrastructure.

The OPS plays a major role in ensuring the confidentiality of the data and
manages the data structures for achieving search efficiency. In terms of its func-
tionality, the OPS is similar to the proxy server used in CryptDB [7]. However,
unlike CryptDB, we have designed the OPS to be robust against attacks i.e., a
compromised OPS will not reveal sensitive data to adversaries.
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Contributions. This paper makes the following novel contributions:

1. ObliviousDB minimises the information leaked to the cloud provider when
executing queries by (i) dynamically re-randomising the encrypted data, (ii)
shuffling the locations of records within the database, and (iii) introducing
and varying a random number of dummy records, necessary for achieving
search and access pattern privacy.

2. To achieve operation pattern privacy, where the cloud server is not able to dis-
tinguish between select, insert, delete and update queries, the OPS obfuscates
the actual operations executed by the users by inserting additional queries
and combining queries into the shuffle operation.

3. ObliviousDB supports both forward and backward privacy by randomising
data and query through the use of fresh nonces. In this way, even if the cloud
provider stores a search query, it cannot be matched with new data. Likewise,
new queries cannot be executed over deleted records.

To show the feasibility of our approach, we have implemented ObliviousDB
and measured its performance.

2 Overview of ObliviousDB

In the remainder of the paper, we set the context and informally describe the
properties used in our categorisation. Search Pattern Privacy (SPP) refers to
the property where the cloud provider is not able to distinguish if two (or more)
queries are the same or not. Access Pattern Privacy (APP) means the cloud
provider is unable to infer if two (or more) result sets contain the same records
or not. Size Pattern Privacy (SzPP) is achieved if the cloud provider is
unable to learn the size of returned (real) records. Operation Pattern Privacy
(OPP) is achieved if the cloud provider is unable to discover if the issued query
is select, insert, delete or update. Forward Privacy means the cloud provider
does not learn if a new or updated record matches a query executed in the past.
Backward Privacy means the cloud provider is unable to executed queries on
records that have been deleted or modified.

2.1 System Model

The system involves five main entities shown in Fig. 1:

• Database Administrator (DBA): A DBA is responsible for management
of the database, its users and access control policies for regulating access to
tables.

• Database User (DBU): It represents an authorised user who can execute
select, insert, update and delete queries over encrypted data. After executing
encrypted queries, a DBU can retrieve the result set, if any, and decrypt it.
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Fig. 1. Overview of ObliviousDB: A DBA is responsible for running setup (Step I then
Step II). A DBU can insert, delete and update the data (Step 1a) or execute a select
query (Step 1b) to receive matching records (Step 4b). Regardless of the query type,
to control information disclosure, the OPS transforms the query (Step 2) to perform
the search (Step 3) followed by an oblivious algorithm (Step 5).

• Oblivious Proxy Server (OPS): It provides greater security and search
efficiency. It serves as a proxy between DBUs and the cloud server. In order
to hide sensitive information about queries, it pre-processes the queries sub-
mitted by the DBU. It also filters out dummy records from the result set
returned to the DBU. To improve performance, it manages some index-
ing information. Technically, the OPS is part of the private cloud in the
hybrid cloud environment, which is linked with a more powerful public cloud
infrastructure.

• Key Management Authority (KMA): This entity is responsible for gen-
erating keying material once a new DBU joins the system. Furthermore, the
KMA removes the DBU, when she is compromised or no longer part of the
database.

• Cloud Server (CS): A CS is part of the public cloud infrastructure provided
by a cloud service provider. It stores the encrypted data and access control
policies and enforces those policies to regulate access to the data.

Threat Model. We assume that the KMA is fully trusted. The KMA does
not need to be online all the times. In particular, it has to be online only when
the system is initialised, a new DBU is created or an existing one is removed
from the system. In this way, the organisation can easily secure the KMA from
external attacks. DBUs are only considered to keep their keys (and decrypted
data) securely.

We consider that the CS is honest-but-curious. More specifically, the CS
would honestly perform the operations requested by the DBA and DBUs accord-
ing to the designated protocol specification; however, it is curious to analyse the
stored and exchanged data so as to learn additional information. We assume
that the CS will not mount active attacks, such as modifying the message flow
or denying access to the database.

The OPS is deployed in the private cloud, which is owned by the organisation.
Hence, we assume the OPS is trusted. However, it is responsible for communi-
cating with the external world. Thus, it could be the target of attackers and
get compromised, which means the data stored on the OPS could possibly be
exposed to attackers.
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In this work, we assume that there are mechanisms in place for data integrity
and availability. Last but not least, access policy specification is out of the
scope of this paper, but the approach introduced in [11,12] can be utilised in
ObliviousDB.

3 Solution Details

3.1 Data Representation

Table 1 illustrates an example of how we represent and store the data on the
OPS and CS. Let us assume that we have a table Staff (Table 1(a)) containing
Name and Age fields. The CS stores an encrypted version of this, which is
EDB and illustrated in Table 1(c), where each data element is encrypted under
Data Encryption (DE) and Searchable Encryption (SE), where DE ensures the
confidentiality of the retrievable data, and SE makes the data searchable (the
implementation details are given in Algorithm 1). Similarly, we encrypt each
value in the table.

To improve search efficiency and reduce the communication overhead, we
support indexing. Technically, we divide the data into groups and build an index
for each group maintained by the OPS. When a query is received, the OPS sends
to the CS the corresponding list of indices to be searched. Table 1(b), called
GDB, shows an example of the group information. Note that each field of the
database corresponds to a different group, so that in a complex query the OPS
would identify all the groups corresponding to fields in the query and send to the
CS the union or intersection of the indices (depending on whether the query is
a disjunction or conjunction). The group identifiers are concealed with GE (the
detail is given in Algorithm 1, Sect. 3.3). The secret key for GE is only known to
DBUs. This means that if the OPS gets compromised then an attacker is unable
to learn the actual data items that correspond to a group.

SE and DE representations do not leak information about encrypted values.
However, the CS can easily learn the number of matching records during the
search process. In ObliviousDB, the OPS adds dummy records. Note that the

Table 1. Data representation on each entity.

(a) Staff
Name Age
Alice 25
Anna 30
Bob 27

(b) GDB
GID Nonce Index List
g1 n20 {1,3,4}
g2 n30 {2}
g3 na {1,2,4}
g4 nb {3}

(c) EDB
ID {Name}SE {Name}DE {Age}SE {Age}DE
1 SEna (Alice) DE(Alice) SEn20 (25) DE(25)
2 SEna (Anna) DE(Anna) SEn30 (30) DE(30)
3 SEnb

(Bob) DE(Bob) SEn20 (27) DE(27)
4 SEna (Alice) DE(xyz) SEn20 (25) DE(13)

Table (a) is a sample table viewed by DBUs. Table (b) is the group information stored on the OPS. We have
g1 = GE(25) = GE(27), g2 = GE(30), g3 = GE(Alice) = GE(Anna) and g4 = GE(Bob). The group ID is encrypted, since

the OPS could be compromised. Each group has a nonce to ensure forward and backward privacy and a list of IDs
indicating the records in the group. The CS stores Table (c), where each value is encrypted with SE and DE for data search
and retrieval, respectively. Each SE value is bound with the nonce of its group. The last record, consisting of normal SE and

fake DE parts, is dummy.
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CS is not able to distinguish between a dummy and a real record. To make sure
that the dummy records match with the queries generated by DBUs, the OPS
generates dummy records such that the SE fields correspond to real data values.
Specifically, the OPS generates dummy records by sampling SE terms from the
set of real records in the corresponding group. The OPS also maintains a list of
indices that contain dummy records (not shown in Table 1(b)); this could be an
N-bit string flags, where N is the total size of the database on the CS. We have
flags[id] = 0 or 1 if the record is a dummy or real record, respectively.

To ensure that dummy records are not delivered to the DBU, the OPS filters
them out from the search result. A large number of dummy records can ensure
a high level of privacy but at the cost of poor performance since the CS has
to search over more records and the OPS has to filter out more dummy records
before returning the result to the DBU. For controlling dummy records, the DBA
sets a threshold t at the initialisation time, which is the ratio between dummy
and real records. In reality, the value of t can be set according to the practical
requirements for security and performance, and depending on the type of data
being stored in the database. For example, in a different context, Cash et al.
[4] suggested taking t = 0.6 to resist against size pattern based attacks on the
Enron emails dataset.

ObliviousDB achieves both forward and backward privacy. That is, even if the
CS holds old queries, they cannot be matched with new records. Similarly, if the
CS holds deleted records, they cannot be matched with new queries. To achieve
both properties, the OPS re-encrypts each record and query with nonces. Nonces
are generated and maintained on groups, meaning all the records with the same
group are under the same nonce. When a query is executed over a given group,
the OPS will generate a new nonce and the data will be updated accordingly.
The nonces are not revealed to the CS. The OPS maintains the information
between groups and nonces using the GDB table, as shown in Table 1(b).

3.2 Setup

The system is set up by the KMA by taking as input a security parameter λ. The
output is a prime number p, three multiplicative cyclic groups G1, G2 and GT of
order p, such that there is a “Type 3” bilinear map [13] e : G1×G2 → GT , which
has the properties of bilinearity, computability and non-degeneracy, but there is
no symmetric bilinear map defined on G1 alone or G2 alone. Let g1 and g2 be
the generators of G1 and G2, respectively. The KMA chooses a random x from
Zp and returns h = gx

1 . Next, it chooses a collision-resistant keyed hash function
H, a pseudorandom functions f and a random key s for f . It also initialises the
key store managed by the CS. That is, KS ← φ. Finally, it publishes the public
parameters Params = (e,G1,G2,GT , p, g1, g2, h,H, f) and keeps securely the
master secret key MSK = (x, s).

Building on top of proxy encryption [11,14], ObliviousDB supports multi-
user access with efficient DBU registration and revocation. Specifically, when
the DBU i joining the system, the KMA splits MSK into two values xi1 and
xi2, where x = xi1 + xi2 mod p and xi1, xi2 ∈ Zp. Then, the KMA transmits
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KUi
= (xi1, s) and KSi

= (i, xi2) securely to the DBU i and the CS, respectively.
The CS adds KSi

to its key store: KS ← KS ∪ KSi
. With KUi

, DBU i could
issue a query. For revoking a DBU, we just need to remove KSi

on the CS.

Algorithm 1 Query(Q)

1: DBUi(Q):
2: for each data element d in Query Q do
3: ← fs(d)
4: GE(d)← LSBk( ){the least significant k bits of }

5: r ← Z∗
p,SE(d) ← (c1 = gr1,c2 = g r

1 )
6: r ← Z∗

p,DE(d) ← (e1 = gr2,e2 = hrd)
7: for each keyword k in WHERE-clause of Q do
8: ← fs(k)
9: GE(k) ← LSBk( )
10: r ← Z∗

p,SE(k) ← (t1 = gr2, t2 = g r
2 )

11: Send the encrypted query EQ = (SE(Q),DE(Q)) and
its group information GQ= GE(Q) to the OPS

12: OPS(EQ,GQ):
13: IL ←
14: Cache a copy of EQ
15: if EQ is an insert query then
16: Generate a fake select query as EQ
17: if EQ is a delete or update query then
18: Change the type of EQ into select
19: for each GE(k) ∈ GQ and SE(k) ∈ EQ do
20: (n, il) ← GDB(GE(k))

21: IL ← IL� il, where � is the conjunction in GQ
22: SEn(k) ← (t1 ← tn1 = grn2 , t2)
23: Send (IL,SEn(Q), i) to the CS, where i is the identifier

of the DBU

24: CS(IL,SEn(Q), i):
25: SR ←
26: for each id ∈ IL do
27: ifMatch(EDB(id),SEn(Q))=true then
28: Add all the required DE(d) in EDB(id) into SR
29: for each DE(d) = (e1 = gr1,e2 = hrd)inSR do
30: DE ′(d) ← (e1,e′

2 = e2 ∗ e−x2
1 = g

x−x2
1 d = g

x1r
1 d),

where x2 is the CS side key for DBUi

31: Send SR to the OPS

32: OPS(SR):
33: Remove all dummy records from SR by checking flags
34: Send SR to the DBU

35: DBUi(SR):
36: for each DE ′(d) = (e1 = gr1,e

′
2 = g

x1r
1 d) ∈ SR do

37: d ← e′
2 ∗ e−x1

1 = g
x1r
1 d ∗g−x1r

1

3.3 Query Execution

ObliviousDB supports SQL-like queries consisting of a set of equalities and
inequalities, which are connected with conjunctions (i.e., and) and disjunctions
(i.e., or), such as ‘select * from staff where name = Alice and age > 30’. To sup-
port range queries, we use the same approach presented in [11].

Every query executed in ObliviousDB is performed with the cooperation of
the DBU, the OPS and the CS. The details of the steps performed by each entity
are described in Algorithm 1.

The DBU encrypts the query with key KUi
(Lines 1–11, Algorithm 1). For

an insert or update query, each data element d is encrypted under GE, SE and
DE. For a select query, a keyword k in the WHERE-clause is encrypted only
under GE and SE. The encrypted query EQ and group information GQ are sent
to the OPS. Both DE and SE are semantically secure because of the random
numbers r, which prevents the CS to infer the search pattern from EQ, or learn
any frequency information in EDB.

Algorithm 2Match(rcd,SEn(Q)

1: for each SEn(k) = (t1, t2) ∈ SEn(Q) do
2: Get SEn(d) in the same field from rcd
3: if e(c1, t2) �= (c2, t1) and ∗ = ‘and′ then
4: return false

5: if e(c1t2) = e(c2, t1) and (*=‘or’) or k
is the last keyword then

6: return true
7: return false
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On the OPS, the original query EQ is cached temporarily (Line 14), and
the real insert, delete and update operations will be performed by the oblivi-
ous algorithm later. To hide the operation pattern, the OPS always sends an
encrypted select query to the CS. So, the OPS first transforms EQ into a select
query (Lines 15–17). Specifically, if EQ is update or delete query, the OPS just
changes the terms ‘delete’ and ‘update’ into ‘select *’. If EQ is insert, a random
number of values in SE(Q) are used to assemble the WHERE-clause of the fake
select query.

Second, to improve search efficiency, the OPS gets the search range IL for the
CS, which is populated by merging the index lists of involved groups according
to the conjunctions and disjunctions in GQ (Lines 19–21). Meanwhile, to ensure
forward and backward privacy, each SE in EDB is bound to the nonce of this
group (Line 22). Only the query bound with the same nonce could match the
record. Both the index list IL and the transformed query SEn(Q) are sent to
the CS.

Finally, the CS checks each record in IL with SEn(Q) by performing the
pairing map operation (Lines 26–28). The match operation is described in detail
in Algorithm 2. Assume the searched data element is SEn(d) = (c1 = gr′n′

1 , c2 =
gσ′r′
1 ) and the encrypted keyword in SEn(Q) is SEn(k) = (t1 = grn

2 , t2 = gσr
2 ).

The equality check between them is performed by checking whether e(c1, t2) =
e(c2, t1). Note that

e(c1, t2) = e(c2, t1) ⇐⇒ e(gr′n′
1 , grσ

2 ) = e(gr′σ′
1 , grn

2 )

⇐⇒ e(g1, g2)r′n′rσ = e(g1, g2)rnr′σ′

and so if σ = σ′ and n = n′ then equality holds, while inequality holds with
negligible probability if σ �= σ′ and n �= n′ That is, the record matches the query
only when k = d and they are bound to the same nonce. Finally, the search result
SR is sent to the OPS. Yang et al. introduce a similar method to perform the
equality check for SE schemes in [15]. However, their method leaks the search
pattern and frequency information of records to the CS, since the pairing map
they use is symmetric. That is, the CS could still infer if they are the same or
not by running the bilinear map operation between two records or two queries,
although they are encrypted with a probabilistic algorithm.

The search result is recovered in two rounds of decryption (Lines 29–37,
Algorithm 1). Before sending SR to the OPS, the CS first pre-decrypts the DE
parts of each matched record with DBUi’s CS side key x2 (Lines 29–30), and
sends the pre-decrypted SR to the OPS. Next, the OPS filters the dummy records
out (Lines 33–35). Finally, with the pre-decrypted real search result get from the
OPS, the DBU can recover the plaintext with its DBU side key x1 (Lines 36–37).
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Algorithm 3 Oblivious(EQ,GQ, t)

1: Rcds
2: for each GE(k) ∈ GQ do
3: (n, il) ← GDB(GE(k))
4: rcds ← EDB(il) {Get from CS all the records in-

dexed by il}
5: n ← nn′, where n′ $← Z∗

p

6: for each record rcd ∈ rcds do
7: SEn(d) = (c1 ← cn

′
1 ,c2) {d is in the same field as

k}
8: for each (SEn(d),DE(d)) pair in rcd do

9: r
$← Zp,SEn(d) = (c1 ← cr1,c2 ← cr2)

10: r
$← Zp,DE(d) = (e1 ← er1,e2 ← er2)

11: for each dummy record rcd ∈ rcds do
12: if du/re > t then
13: delete it, du−−
14: else
15: SE(d′) = (c1,c2)

$← rcds

16: SEn(d) ← (crn1 ,cr2), r
$← Z∗

p {d is in the
same field as k}

17: Rcds ← Rcds∪ rcds
18: for each matched real record rcd ∈ Rcds do
19: if EQ is an update query then
20: for each SE(d) ∈ SE(Q) do
21: SEn(d) ← (cn1,c2), n ← GDB(GE(d))
22: Update rcd with SEn(Q) and DE(Q)
23: if EQ is a delete query then
24: Invert its flag

25: du++, re−−
26: if EQ is an insert query then
27: Assign an id to the new record
28: for each SE(d) ∈ SE(Q) do
29: if ← GDB(GE(d)) then

30: n
$← Z∗

p

31: GDB(GE(d)) ← (n, id)
32: else
33: (n, il) ← GDB(GE(d))
34: il ← il∪ id
35: SEn(d) ← (c1 ← cn1,c2)
36: Rcds ← Rcds∪ (SEn(Q),DE(Q))
37: re++
38: f lags[id] = 1
39: else
40: Assign the id to a new dummy record
41: for each field in rcd do
42: SE(d′) = (c1,c2)

$← Rcds

43: r
$← Zp, n ← GDB(g), SEn(d) ← (cnr1 ,cr2)

44: e1,e2
$← G1, DE(d) ← (e1,e2)

45: il′ ← GDB(GE(d′))
46: il′ ← il′ ∪ id
47: Rcds ← Rcds∪ rcd
48: du++
49: f lags[id] = 0
50: Shuffle Rcds and upload to CS
51: Update the index list in GDB and update f lags

←

3.4 Oblivious Algorithm

To hide the access, size and operation patterns and ensure forward and backward
privacy, in the oblivious algorithm, the OPS shuffles and re-randomises all the
records included in the searched the groups every time a query is executed.

To ensure a high level of security, it is possible to shuffle all the records in the
database. However, this degrades the system performance. The more records are
shuffled, the more difficult it is for the CSPs to infer the access pattern, but it is
worse in terms of the system performance. In this work, we shuffle all the records
in the searched groups. In this case, the CS can only recognise if two queries are
performed within the same group or not. In practice, the number of records to
be shuffled can be set according to the performance and security requirements.
Note that, at this stage, the user has already obtained the search results from
the CS and does not need to wait for the shuffle operation to be completed.

There are four main steps in the oblivious algorithm. In the first step (Lines
3–10, Algorithm 3), for each group involved in the query, the OPS updates its
nonce and re-encrypts the associated SE parts of the records in this group with
the new nonce (Line 7). Consequently, the queries bound to previous nonces
cannot match the re-encrypted records, as illustrated in (Sect. 3.3). Similarly, a
new query bound to the latest nonce can not match stale records. That is, both
forward and backward privacy are ensured. Meanwhile, the OPS re-randomises
both the SE and DE parts of all the records to be shuffled to make them untrace-
able (Lines 8–10).
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In the second step (Lines 11–16), all the dummy records in each searched
group are updated. The OPS controls the number of dummy records to ensure
the performance of the system (Lines 12–13). To this end, the OPS counts the
total number of real records re in the index list IL and the total number of
dummy records du in IL. When the ratio of dummy records exceeds the threshold
t, some of them are deleted. The OPS updates the SE parts of the remained
dummy records (Lines 14–16). Although the dummy record protects the real
size pattern, if the fake size pattern for the same query never changes, the CS
could make some assumptions on whether two queries are equivalent or not
by checking the number of the records in the result set. To protect the search
pattern, it is necessary to make the size pattern for all queries variable. Note that
considering the correctness of the system it is impossible to change the number of
matched real records when there is no insert, delete or update operation. In our
work, the OPS replaces the SE parts of dummy records with randomly chosen
ones from non-dummy records in the group (lines 15–16).

Recall that to protect the operation pattern the OPS only sends select queries
to the CS. The real insert, update and delete operations are executed in the third
step (Lines 18–48). If the type of the original query is update (Lines 19–22), the
OPS re-encrypts the cached SE parts with the latest nonce stored in GDB, and
replaces both the SE and DE parts of the matched records with new values.
If the type of the original query is delete (Lines 23–25), in order to protect
the operation pattern, the OPS converts them into dummy records by inverting
the flag into dummy instead of deleting them directly. In this way, no matter
what type the original query is, the number of records returned by the oblivious
algorithm is only affected by de, re and t. On the contrary, if we delete them,
fewer records will be sent to the CS. For other types of queries, a number of
dummy records are probably deleted. However, the CS could learn the type of
the original query must not be delete when it gets more records or the same
number of records after the oblivious algorithm. If the type of the original query
is insert (Lines 26–38), the OPS re-encrypts the cached SE parts with the latest
nonces and adds it to the records set. In case if the original query is not insert,
the OPS generates a dummy record (Lines 39–49) by re-randomising the SE
parts that picked from Rcds randomly. Otherwise, the CS could infer the type
of the original query must be insert when receiving one more record after the
oblivious algorithm.

Finally, the OPS shuffles all the updated records set and sends them to the
CS (Line 50). Note that their flags and ids stored in the index list are updated at
the same time. Because of the shuffling and re-randomising, if the same query is
executed again, the search result will be totally different from the previous ones
in terms of the store locations on the CS, size and appearance, which means the
CS is unable to infer if different search results contain the same records or not.
That is, the access pattern is protected.
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4 Security Analysis

In this section, we formally define and prove SPP, APP, SzPP, OPP, forward
and backward.

Leakage. ObliviousDB aims at minimising information leakage. At the same
time, we require ObliviousDB to be efficient. To meet these two conflicting
requirements, we consider a trade-off between security and performance. In this
work, we achieve SPP and APP for those queries involved in the same groups.
To optimise the performance of the system, we divide the data into groups and
only perform the search and oblivious operations within groups. Consequently,
the CS could learn if some records and interested keywords are in the same
groups or not. Second, considering we do not encrypt the conjunctions between
predicates, the CS could learn the number of predicates and their conjunctions
in complex queries. In addition, the CS could learn if two queries are searched
over the same fields or not, since we do not re-randomise the field names and
shuffle the columns. Given these leakages, we formalise our security definition
below.

Definition. In our security definition, we only consider the queries with the
same structure. Any two queries Q0 and Q1 have the ‘same structure’ if they
satisfy the following criteria:

• Both SQL queries have the same logical structure (all WHERE-clauses are
the same equalities and inequalities with respect to the same data fields,
and the sentences are formed from the clauses using the same conjunctions
or disjunctions in the same order). This can be achieved by padding and
reordering the WHERE clause. Note that the queries could be insert, select,
update or delete.

• The groups involved by each equality/inequality in Q0 should be same to the
one involved in the corresponding equality/inequality in Q1. This will ensure
that both index lists are the same, i.e., IL0 = IL1.

• The number of matched real records |RR| for each equality/inequality in
Q0 and Q1 should be similar in size, namely ||RR0| − |RR1|| ≤ θ ∗
min{|RR0|, |RR1|}, where θ is a parameter specified when the scheme is set
up.

The CS is modelled as the Probabilistic Polynomial-Time (PPT) adversary
A , which means A honestly follows the protocols and gets all the messages the
CS sees.

The scheme is considered to be secure if an adversary could break it with not
more than a negligible probability. Formally, it could be defined as follows:

Definition 1 (Negligible Function). A function f is negligible if for every
polynomial p(.) there exits an N such that for all integers n > N it holds that
f(n) < 1

p(n) .
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Definition 2. Let
∏

=(Setup, Query, Oblivious) be ObliviousDB, λ be the
security parameter, and t be the threshold indicating the ratio between dummy
and real records. A is a PPT adversary, and C is a challenger. The game between
A and C in

∏
is described as below:

• Setup. The challenger C first initialises the system by generating Params
and MSK. Then, she generates the secret key pair (KU ,KS). The adversary
A is given Params and KS.

• Bootstrap. A submits a database Δ1. Assume Δ contains n records with a
certain number of fields. C encrypts Δ and divides the data in each field into
groups. Moreover, C generates a number of dummy records for each group,
such that the total number of dummy records is t · n. The encrypted database
EDB is sent to A . The encrypted groups information GDB is securely kept
by C .

• Phase 1. A can make polynomially many SQL queries Q in plaintext. All the
queries are in the same structure but could be of different types. C encrypts
and transforms each query Q to SEn(Q), and generates the index list IL, as
would be done by the DBU and the OPS. With SEn(Q) and IL, A searches
over EDB to get the search result SR. After that, C and A engage in the
oblivious algorithm to update EDB. So, for each query, A sees SEn(Q), IL,
SR and the records set Rcds returned by the oblivious algorithm. Note that,
the A could cache SEn(Q) and execute it again independently at any time.

• Challenge. A sends two queries Q0 and Q1 to C that have the same struc-
ture, which can be those already issued in phase 1. Note that if Q0 or Q1 is
insert or update query, the data elements included in them should already exist
in Δ. C responds the request as follows: it chooses a random bit b ∈ {0, 1}
and transforms query Qb, as done by the DBU and OPS, to SEn(Q) and IL.
Then, C and A perform the full protocol, so that A learns SR and Rcds.

• Phase 2. A continues to adaptively request polynomially many queries,
which could include the challenged queries Q0 and Q1.

• Guess. A submits her guess b′.

The advantage of A in this game is defined as:

AdvA ,
∏(1λ) = Pr[b′ = b] − 1

2
.

We say ObliviousDB achieves SPP, APP, SzPP, OPP, forward and backward
privacy, if all PPT adversaries have negligible advantage in the above game.

In this game, A is very powerful. She knows the plaintext of all the real
records and queries, could arbitrarily generate and issue any kind of queries
as long as they are in the same structure, and has the full access to EDB.
That is, she could learn the real search result of all the issued queries, and

1 For simplicity, we assume there is only a single table in Δ and regard Δ as a table.
Without loss of generality, our proofs will hold for a database containing a set of
tables.
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could adaptively run the encrypted queries over EDB to get the encrypted
search results at any time. If one of the search, access, size, operation patterns
and forward and backward privacy is not protected, A could infer b easily. For
example, if the search pattern is not protected (i.e., A can learn if the terms
involved in two queries are the same or not), she could select one of the queries
issued in phrase 1 as either Q0 or Q1 and win the game by checking if SEn(Q) is
same to one of those get in phase 1; if the size pattern is not protected (i.e., A
can learn the number of real records in SR), she could win the game by setting
Q0 and Q1 with different numbers of matched records; if the operation pattern is
not protected (i.e., A can learn the type of Qb), she could set two different types
of query as Q0 and Q1 and win the game from the type of SEn(Q). In other
words, if with these abilities, A still can not win the game with non-negligible
advantage, it means ObliviousDB achieves all the properties.

Theorem 1. Let the SE and DE schemes have semantic security. Let t (the
proportion of dummy records) be chosen sufficiently large relative to θ. If the
SE and DE schemes have semantic security, ObliviousDB achieves SPP, APP,
OPP, SzPP, forward and backward privacy.

Proof (Sketch). We show that the bit b chosen by C is information-theoretically
hidden from the view of A , assuming that both SE and DE are semantically
secure.

Consider the view of A in the game. A chooses an arbitrary database Δ and
uploads this to C . In Phase 1, A makes queries that are answered correctly by
C by following the protocols.

In the challenge round, A sends two queries Q0 and Q1. A receives a list of
SEn(k) terms corresponding to the literals in the predicate defining the query. By
definition, the two queries have the same structure. Hence, the same number of
literals, each of the same type, will be received by A for either query. Since SE is
semantically secure, A cannot distinguish the query terms given the ciphertexts
SEn(k).

A also receives a list IL of database indexes to be searched by the CS, and
by definition, this is the same list for all queries. Hence, no information about
the queries can be leaked by IL.

Each group involved in IL is accompanied by a nonce n. With overwhelming
probability, these nonces are distinct and unrelated to the values used in pre-
vious queries. Previously encrypted search keywords can no longer be used to
query these indexes, and SEn(Q) can not be executed over stale records, since
the nonces do not match. Hence, there is no way to link information from pre-
vious search queries to these records, indicating forward and backward privacy
is achieved.

The adversary A may try to guess b from the search result SR. Although
the numbers of real records matched with Q0 and Q1 are known to A since all
the queries and real records in plaintext are set by her, a number of dummy
records are inserted into EDB in order to hide the number of real records that
are matched. Since SE and DE are semantically secure, the dummy records
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are indistinguishable from the real ones, if t is sufficiently large compared to
θ then the probability distributions of the result set sizes |SR0| and |SR1| are
statistically close and A cannot distinguish them from a single query. Therefore,
the CS is unable to distinguish the two queries from the size of SR, indicating
SzPP is achieved.

Even if the queries Q0 and/or Q1 have previously been executed by A , the
refreshing of dummy records, together with the shuffling and re-randomising
performed in the oblivious algorithm, imply that A cannot distinguish the
two queries by comparing SR with previous search results, indicating APP is
achieved.

Finally, A gets Rcds from the oblivious algorithm. Some records in Rcds may
be updated with new values or turned into dummy records, and one of them is
newly added. Due to the semantic security of SE and DE, Rcds leaks nothing
to A , indicating the operation pattern is concealed, i.e., OPP is achieved.

The game continues in Phase 2. A may repeat Q0 and/or Q1. If Q0 and
Q1 are different types of queries, e.g., insert and delete. A may run a related
select query to test the search result. Again, due to the refreshing of dummy
records, the shuffling and re-randomising operations, the number, the ciphertext
and store locations of matched records for Q0 and/or Q1 will be different from
SR. Similarly, the nonce updating does not allow records to be linked to records
found in previous search queries. Hence, the future state of the database and the
queries in Phase 2 are independent of the query made in the challenge round.

Since A has no information to distinguish the bit b, the scheme satisfies the
definition. �

5 Performance Analysis

We implemented the scheme in C using the MIRACL 7.0.0 library, necessary for
cryptographic primitives. The implementation of the overall system including
the functions on the DBU, the OPS and the CS was tested on a single machine
with 64 Intel i5 3.3 GHz processor and 8 GB RAM running Ubuntu 14.08 Linux
system. In our testing scenario, we ignored network latency that could occur in
a real deployment. In the following, all the results are averaged over 10 trials.

The tested database contains one table with 3 fields. Considering the search
operation can be performed in each field, we encrypted each field with SE sep-
arately. However, each record was encrypted by DE as a whole since we only
tested ‘select *’ queries. In the following, we tested how the three controllable
parameters namely the number of dummy records, the number of groups and
the number of shuffled records, affect the performance of the system.

We first present the results of end-to-end latency measured at the DBU when
performing a search operation on a database consisting of 100, 000 real records
with a result set of 1, 000 real records. Note that, in the DBU latency experi-
ment, we did not measure the time the OPS spends in executing the oblivious
algorithm. The reason is that the OPS will forward to the DBU the result sets
before initiating the oblivious algorithm.
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Fig. 2. End-to-end latency on the DBU for get-
ting 1, 000 real records from the database con-
sisting of 100, 000 real records. The database size
goes up to 300, 000 with the increase of t, the ratio
between dummy and real records.
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Fig. 3. Oblivious latency with
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The graphs in Fig. 2 illustrate latency in seconds. In particular, Fig. 2(a)
shows the results for a simple select query. Figure 2(b) reports latency for per-
forming a range query on a numerical field. In both graphs, the X-axis shows the
number of groups: that is, we change the granularity of the indexing going from
no indexing (where all the records are part of one group) to a more fine-grained
indexing. For a given number of groups, the same experiment was executed 5
times, each time changing the ratio t, represented by different lines in both
graphs.

As we expected, for both queries, increasing the number of groups reduces
the DBU latency. For a given size of a database, more groups mean fewer records
within a given group. This reduces searching time on the CS and in turn reduces
latency on the DBU.

On the other hand, increasing the value of t degrades the performance. For
both queries, for a given group size, there is a slight latency increase when
we go from t = 0 dummy records (i.e., only real records) to a ratio of t = 2
(i.e., 2 times dummy records of real ones). This is explained mainly by two
facts: (a) with more dummy records, the CS has to retrieve more records (both
real and dummy ones), and (b) the OPS needs to filter out the dummy records
before sending the real records to the DBU: the higher the percentage of dummy
records, the longer it takes for the OPS to remove them from the result set (to
be returned to the DBU). Recall that t = 0.6 is the minimum value to ensure
security reported by Cash et al.

Second, we measured the effect on the oblivious algorithm when varying the
number of records to be shuffled. As shown in Fig. 3, the latency of the oblivious
algorithm goes up linearly with the increase in result size, which affects the size
of shuffled records in the test setting. Fortunately, the oblivious algorithm can
be executed in parallel with decryption operations since they are independently
executed by different entities. From Fig. 3, we can observe that, if we shuffle
the search result with the unmatched records (where the number of unmatched
records is same as the number of records in the search result), the latency of
the oblivious algorithm is close to the decryption time, indicating the oblivious
algorithm does not severely degrade the throughput of ObliviousDB.
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(a) t=0 (b) t=0.6 (c) t=1

Fig. 4. Latency on the DBU, the OPS and the CS for executing ‘select ∗ from staff
where name = Alice’ with three different ratios of dummy records.

Next, we want to provide some details on the time each entity, namely the
DBU, the OPS and the CS, spends for executing a query. Figure 4 shows the
graphs for the execution of the select query (same as the one for the graph in
Fig. 2(a)). In this experiment, for each graph, we shuffled all the records in the
searched group and kept the ratio constant while we changed only the number
of groups (shown on the X-axis). As we can see, the more groups we introduce,
the better performance we achieve on the CS (while for the DBU and the OPS,
there is no big variation). Increasing the ratio between dummy and real records
slightly increases latency on the OPS and the CS.

From our experiments, we can see that latency, although substantially higher
than a less secure scheme like CryptDB, for DBUs using ObliviousDB is still
usable especially when introducing more groups. Also, by comparing Figs. 2(a)
and (b), we can see that the performance of numerical range queries is not much
different from simpler single keyword queries.

At the same time, to ensure data confidentiality, it is necessary to maintain
some dummy records in the data set. However, our experiments show that the
burden of maintaining dummy records does not impact latency on the DBU,
in particular when a large number of groups are used. The cost of maintaining
the dummy records is offloaded to the OPS and the CS, which are likely to be
deployed on more powerful machines than the one used by the DBU.

6 Conclusions and Future Work

In this work, we propose ObliviousDB, a searchable scheme for hybrid outsourced
databases. ObliviousDB is the first full-fledged multi-user scheme that does not
leak information about search pattern, access pattern, size pattern and operation
pattern. It is also the first scheme that achieves both forward and backward pri-
vacy, where the CS cannot reuse cached queries for checking if new records have
been inserted or if records have been deleted. We have implemented ObliviousDB
and shown that it is capable of performing numerical range queries with 1000
results on a database of 200, 000 records in around 4 s.

As future work, we plan to carry out a thorough security analysis for identify-
ing a right balance between real and dummy records for achieving a sustainable
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level of security without degrading performance. Another area we want to explore
is to investigate sub-linear data structure to achieve more efficiency.
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Abstract. Ethereum is a major blockchain-based platform for smart
contracts – Turing complete programs that are executed in a decentral-
ized network and usually manipulate digital units of value. A peer-to-peer
network of mutually distrusting nodes maintains a common view of the
global state and executes code upon request. The stated is stored in a
blockchain secured by a proof-of-work consensus mechanism similar to
that in Bitcoin. The core value proposition of Ethereum is a full-featured
programming language suitable for implementing complex business logic.

Decentralized applications without a trusted third party are appealing
in areas like crowdfunding, financial services, identity management, and
gambling. Smart contracts are a challenging research topic that spans
over areas ranging from cryptography, consensus algorithms, and pro-
gramming languages to governance, finance, and law.

This paper summarizes the state of knowledge in this field. We pro-
vide a technical overview of Ethereum, outline open challenges, and
review proposed solutions. We also mention alternative smart contract
blockchains.

Keywords: Blockchain · Ethereum · Smart contracts
State of knowledge

1 Introduction

Bitcoin [Nak08] is the first fully decentralized digital currency introduced in 2008
and launched in 2009. It innovatively combines cryptographic techniques with
economic incentives to make rational participants likely to play by the rules.
Bitcoin gained significant traction, reaching $80 billion market capitalization
in September 2017. Hundreds of alternative cryptocurrencies based on similar
general design have appeared since Bitcoin’s launch. Programming languages in
early blockchains, e.g., the Bitcoin scripting language, were deliberately limited
to reduce complexity for the sake of security.

Ethereum [VB+14,Woo14], announced in 2014 and launched in 2015, aims
at creating a universal blockchain-based application platform. It incorporates a
Turing complete language, making it theoretically possible to express all practi-
cal computations in smart contracts – pieces of code permanently stored on the
c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 206–221, 2018.
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blockchain and capable of responding to users’ requests. This enhanced function-
ality introduces new security challenges related to language design and secure
programming practices.

Ethereum is not the only smart contract blockchain system [BP17]. Ethereum
Classic [Eth17c] is an alternative blockchain originating from a controversial
Ethereum update. Rootstock [Roo17] and Qtum [Qtu17] aim at implementing
smart contracts in combination with the Bitcoin blockchain. Chain [Cha17a],
Corda [Cor17], and Hyperledger [Hyp17] propose permissioned (i.e., with a fixed
set of approved participants) smart contract blockchains, designed to simplify
transactions between corporate entities.

This paper focuses on Ethereum as the most mature open blockchain with
Turing complete programming capabilities. We summarize the state of knowl-
edge and outline the research perspectives in this rapidly developing field. We
assume familiarity with the basic blockchain concepts; [BMC+15,TS15] provide
the necessary background.

2 Technical Overview

2.1 State and Accounts

Ethereum can be thought of as a state machine. Nodes of the Ethereum peer-
to-peer network maintain a shared view of the global state. A user interacts
with the network by issuing a transaction representing a valid state transition.
Nodes pick transactions from the mempool (the set of unconfirmed transactions),
verify their validity, perform the corresponding computation (possibly changing
ownership of units of the Ethereum native cryptocurrency ether), and update the
state. There are two types of accounts in Ethereum: externally owned accounts
and contract accounts controlled by a private key or by a smart contract – a
piece of code deployed on the blockchain – respectively.

The account state consists of the following fields:

– nonce – the number of transactions sent by this account (for externally con-
trolled accounts) or the number of contract creations made by this account
(for contract accounts);

– balance – the number of wei1 owned by this account;
– storageRoot – Merkle Patricia tree root of this account’s storage;
– codeHash – hash of this account’s contract bytecode.

Accounts’ 160-bit addresses2 are derived from its public key or, in case of con-
tract accounts, from the address of the contract’s creator and its nonce [eth16].
The global state maps addresses to account states. The primary data structure
in Ethereum is the Merkle Patricia tree – a radix tree optimized for key-value
mappings with 256 bit keys [VBR+17,Buc14]. The root hash authenticates the
whole data structure. Values pairs are editable in logarithmic time.
1 Smallest denomination of ether: 1 ether = 1018 wei.
2 Addresses are usually written in hex with a 0x prefix.
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The Ethereum state model (accounts and states) differs from than in Bitcoin.
The Bitcoin blockchain stores unspent transaction output (UTXO); balances of
addresses are calculated off-chain by wallet software.

2.2 Transactions and Gas

The halting problem – determining if a given program will ever halt – is
unsolvable in the general case [Chu36]. This poses a challenge: nodes running
the Ethereum virtual machine (EVM) cannot foresee the amount of resources
required for validating a transaction, which enables denial-of-service attacks.

To overcome the issue, the Ethereum protocol incorporates a pricing mecha-
nism. It makes resource-intensive computations in smart contracts economically
infeasible. Every computational step in EVM is priced in units of gas. EVM
opcodes and their gas costs are defined in the Yellow paper [Woo14]. The price
of a gas unit in ether is determined by the market. For every transaction, the
sender specifies the maximum amount of gas that the intended computation is
expected to consume (the gas limit) and the price the user wishes to pay per
unit of gas (the gas price). The transaction fee equals the gas limit multiplied
by the gas price. If the execution is successful, the remaining ether is refunded.
If an error occurs, the transaction has no effect on the state, but all provided gas
is consumed. Miners can vote to gradually change the limit on the total amount
of gas consumed in a block [jnn15].

A transaction is a signed data structure comprising a set of instructions to
be atomically executed by the EVM. It consists of the following fields:

– nonce – the number of transactions sent by the sender;
– gasPrice – the number of wei per gas unit that the sender is paying;
– gasLimit – the maximum amount of gas to be spent during execution;
– to – the destination address (0x0 for contract creation transactions);
– value – the number of wei transferred along with the transaction;
– v, r, s – signature data.

There are two types of transactions in Ethereum. A contract creation trans-
action is used to deploy a new contract. It contains an additional init field that
specifies the EVM code to be run on contract creation, as well as the EVM code
of the new contract. A message call transaction is used to execute a function of
an existing contract (with arguments specified by the an optional data field) or
to transfer ether.

2.3 Block Structure and Mining

Ethereum uses proof-of-work (PoW): nodes compete to find a partial collision of
a cryptographic hash function and produce the next block3. Both Bitcoin [Wui17]
and Ethereum [Joh17] chose the heaviest chain as a valid one in case of forks,
where a chain’s weight is defined as the sum of its blocks’ difficulties.
3 See [ato16] for a visual interpretation of the block structure in Ethereum.
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Good connectivity is crucial for Bitcoin mining operation: the resources spent
mining on a block other than the latest one are essentially wasted. Good con-
nectivity puts big pools at an advantage, while blocks from worse connected
miners propagate slowly and increase the orphan rate. Thus Bitcoin mining is
prone to centralization. To be able to operate with block times much shorter
than Bitcoin’s 10 min (about 30 s in September 2017), Ethereum uses a mining
protocol [doc17] similar to GHOST [SZ13]. Ethereum considers uncles – valid
orphan blocks that are ancestors of the current block (no more than 6 generations
deep). For each block, the miner receives a static reward of 5 ether, payments
for the gas consumed by transactions in the block, and 1/32 of the static reward
(0.15625 ether) per uncle, whose hash is included in the block header (no more
than 2 uncles per block). Miners of uncles whose headers get included in the
main chain receive 7/8 of the static reward (4.375 ether). Due to uncles, the
energy spent on orphan blocks contributes to security, increasing the amount of
work required for a double-spend.

Contrary to Bitcoin, where coins are issued on a diminishing rate with a total
cap of 21 million, Ethereum issues ethers at a constant rate with no total cap.
Ethereum’s issuance parameters may change after switching to proof-of-stake
(see Sect. 3.1).

Bitcoin PoW uses a general purpose cryptographic hash function SHA-256,
which can be efficiently implemented in hardware. Specialized mining equipment
(application-specific integrated circuits, ASIC) is orders of magnitude more effi-
cient than commodity hardware, which puts small miners at a disadvantage.
Ethereum uses a memory hard hash function Ethash and targets GPUs as the
primary mining equipment. It helps prevent mining centralization akin to Bit-
coin’s and throttles CPU mining (botnets or cloud VM instances can be rented
for a short time to perform an attack).

Table 1 compares some properties of Bitcoin and Ethereum. Note that the
practical requirements regarding the disk space for an Ethereum node can be
greatly reduced due to the explicit storage of account balances and data as
opposed to Bitcoin’s UTXO [Dom17].

Table 1. Bitcoin and Ethereum, September 2017 [Eth17d,Bit17c,Eth17e,Bit17b,
Coi17a]

Metric Bitcoin Ethereum

Number of nodes 9428 22007

Blockchain size 158 GB 52 GB

Transactions per hour 8509 12406

Market capitalization ($ million) 62812 27200

Daily trading volume ($ million) 997 420

2.4 Smart Contract Programming

EVM bytecode is a low-level Turing complete stack-based language operating
on 256-bit words designed to be simple compared to general purpose VMs
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like JVM, execute deterministically, and natively support cryptographic primi-
tives [But17b]. Developers usually write contracts in high-level languages target-
ing EVM, the most popular one being Solidity [Sol17] – a statically typed lan-
guage with a Javascript-like syntax. Others include Serpent [Ser17] (deprecated
in 2017 [Cas17]) and LLL [Ell17] (Python- and Lisp-like syntax respectively).

1 pragma solidity 0.4.17;

2 contract StringStorageContract {

3 string private str = "Hello , world!";

4 function getString () public constant returns (string) {

5 return str;

6 }

7 function setString(string _str) public {

8 str = _str;

9 }

10 }

Listing 1.1. A simple contract in Solidity

2.5 Applications

Among many potential applications of smart contracts [McA17], crowdfunding
is arguably the first widely successful one. The first wide-scale Ethereum-based
crowdfunding project was a decentralized investment fund called The DAO,
launched on 30 April 20164. In 2017, the amount of money collected during
so-called initial coin offerings (ICO) skyrocketed, reaching $1.8 bn [Coi17b] and
surpassing early stage venture capital funding [Sun17]. ICO is usually based
around a token – a smart contract that maintains a list of users’ balances and
allows them to transfer tokens or buy and sell them for ether. Tokens are usually
implemented with respect to the API defined in the ERC20 standard [Vog17].
The ICO organizers often promise that the tokens will be required to use the
to-be developed product or service. Prominent Ethereum applications include
decentralized file storage [Fil17,Sia17,Sto17] and computation [Gol17,Son17],
name systems [ENS17], and prediction markets [Aug17,Gno17].

3 Open Problems

3.1 Core Protocol

Cryptographic Primitives. Ethereum uses ECDSA for signatures5, Kec-
cack256 for generating unique identifiers6, and Ethash [Eth17a] for proof-of-work.

4 In June 2016, an unknown hacker exploited a vulnerability in the DAO code and
withdrew around $50 million, leading to a controversial [ETC16] hard fork.

5 See [May16] for a study of ECDSA security in Bitcoin and Ethereum.
6 Though Keccak256 is the winning proposal in the SHA3 competition, it differs from

the officially standardized SHA3. SHA3 in the Ethereum documentation and source
code refers to Keccak256.
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Based on Dagger [But13] and Hashimoto [Dry14], Ethash is a memory intensive,
GPU-friendly and ASIC-resistant hash function7.

The algorithm is composed of four steps. In the first step, a seed is created
from the blockchain by hashing the headers of each block together with the
current epoch using Keccak. An epoch consists of 30 thousand blocks. In the
second step, a 16 MB pseudorandom cache is generated from the seed using a
memory-hard hash function. In the third step, done once per epoch, a linearly
growing dataset (approximately 2 GB in 2017 [DAG17]) consisting of 64 byte
elements is generated from the cache using a non-cryptographic hash function
Fowler-Noll-Vo [Nol17]. In the fourth step, the dataset, a header, and a nonce
are repeatedly hashed until the result satisfies the difficulty target.

Both Dagger and Hashimoto, in contrast to standardization attempts like the
SHA-3 competition [SHA17] or the Password hashing competition [PHC15], were
announced shortly before the Ethereum launch and did not undergo significant
cryptanalysis in the academic community. The Ethash design rationale [Eth17b]
lacks details on why established and well-tested memory-hard hash functions
do not serve the purpose. [Ler14] claims that an earlier version of Dagger (as
of 2014) was flawed. Rigorous cryptanalysis of Ethereum’s underlying crypto-
graphic primitives is required to guarantee its long-term security.

Consensus Mechanism. Though some argue that PoW is the only viable
blockchain consensus mechanism [And14,Szt15], Ethereum is planning to switch
from proof-of-work to proof-of-stake (PoS) [Her17]. As of September 2017, the
first step of a two-stage process is due October 2017, transitioning Ethereum to
a hybrid PoW-PoS consensus mechanism. The second step will make Ethereum
fully PoS. PoS aims to address the drawbacks of PoW:

– energy consumption comparable to a mid-sized country as of 2017 [Dig17];
– centralization risks: miners are incentivized to invest in specialized hardware,

which pushes up the entry cost of participating and puts big miners at an
advantage due to economies of scale;

– game-theoretic attacks like selfish mining [ES13].

PoS can be described as “virtual mining”: a miner purchases coins instead
of hardware and electricity. The consensus mechanism distributes power propor-
tionally to the amount of coins miners hold (stake), not computing power (see
[BGM16] for a review of cryptocurrencies without PoW). Known issues with
naive PoS implementations include:

– Nothing-at-stake. As producing new blocks incurs only a negligible cost, a
rational PoS validator extends all known chains to get a reward regardless of
which one wins. This opens the door to attacks that require far less than 51%

7 Ethash is also referred to as Dagger-Hashimoto. Official documentation [Eth17a]
states that Ethash “is the latest version of Dagger-Hashimoto, although it can no
longer appropriately be called that since many of the original features of both algo-
rithms have been drastically changed”.
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of the stake8: the attacker’s chain wins if the attacker supports it exclusively,
whereas other validators behave rationally and support all chains.

– Randomly choosing validators. Using randomness from the blockchain itself
(i.e., previous block hash) to determine the next validator is insecure, as it
is determined by validators in previous rounds. A possible solution is to use
verifiable secret sharing for randomness generation.

– Transaction finality. In PoW, a block header which has a hash less than the
target simultaneously represents the choice of the next validator and the very
act of validating the block. PoS separates choosing the next validators and
producing the block. A PoS validator may create its own chain, plug in a
constant instead of a pseudo-random number generator (PRNG) output, and
produce blocks despite owning an arbitrarily small stake.
A rule of thumb in Bitcoin considers transactions older than six blocks final,
as the chance of a minority attacker overtaking the main chain becomes negli-
gible. By contrast, as PoS blocks cost nearly nothing to produce, an attacker
can secretly create an alternative chain starting from the genesis block. To
prevent this, a PoS blockchain must provide finality – i.e., guarantee that
after a fixed number of blocks old transaction can not be reversed9.

The central concept of the proposed Ethereum PoS algorithm Casper
[But16a] is “consensus by bet”: validators bet on the future blockchain
state [PoS16,But17c]. Casper addresses the nothing-at-stake problem by intro-
ducing validator punishments for incorrect behavior, e.g., extending multiple
chains, in addition to rewards, which makes the game-theoretic analysis of the
protocol more complex. Long range attacks are addressed with the concept of
finality [But17a].

Recent PoS designs also include 2-hop blockchain [DFZ16], Algorand [Mic16],
Ouroboros [KRDO16], SnowWhite [DPS16], Proof of luck [MHWK17].
Blockchain networks Ripple [SYB14] and Stellar [Maz14] use consensus mecha-
nisms inspired by Byzantine fault tolerant consensus protocols like PBFT [CL02].
Developing an efficient, secure and incentive compatible PoS algorithm is an
important task in blockchain research.

Scalability. Open blockchains deliberately sacrifice performance for what a
smart contracts pioneer Nick Szabo describes as social scalability [Sza17] –
“the ability of an institution [...] to overcome shortcomings in human minds
[...] that limit who or how many can successfully participate”. Both Bitcoin
and Ethereum have been facing scalability problems [Sil16,Bit17a]. Improv-
ing blockchain scalability while minimally sacrificing security is an important
research direction. Blockchain scalability can be defined as two goals: increasing

8 A commonly used term “51% attack” is not precisely correct: “51%” here means
“strictly greater than 50%”.

9 Interestingly, the reference Bitcoin implementation uses checkpoints to skip valida-
tion of very old blocks for efficiency, effectively providing finality for transactions
older than the latest checkpoint [Bit16].
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transaction throughput and decreasing the requirements on bandwidth, storage,
and processing power for nodes (thus preserving decentralization).

The first goal can be addressed by payment channel networks and sharding.
A bidirectional payment channel is a protocol that lets users exchange signed
transactions before publishing of them on-chain as settlement. A network of
payment channels is a protocol that finds a sequence of payment channels across
the network, a mechanism similar to the IP packet routing [McC15]. Payment
channel networks for Bitcoin [Lig16] and Ethereum [Rai17] are in development.

In open blockchains, every node is usually required to process every trans-
action. This provides strong security, but severely limits scalability. Sharding
[GvRS16,LNZ+16] might alleviate this problem by spreading transactions across
groups of nodes (shards), which should be large enough to provide a sufficient
level of security and a significantly better throughput [Sha16].

The second goal can be addressed by skipping the validation of old
blocks [Jun17] or by additionally providing new nodes with full snapshots of
a previous state [Par17].

Privacy. Most open blockchains10, including Ethereum, guarantee integrity and
availability, but provide little to no privacy. All transactions are broadcast in
plaintext and can be intercepted (or later obtained from the blockchain) and
analyzed. Deanonymization of blockchain transactions is an active business area
with start-ups (e.g., [Cha17b]) offering blockchain analysis tools, which is in line
with government demands of KYC/AML compliance for financial services.

A common but only partially efficient privacy preserving practice in Bitcoin,
which takes advantage of the UTXO structure of its state, is to use a new address
for every transaction. This technique is not applicable in Ethereum, because it
uses addresses for authentication and explicitly maps them to accounts states.
For instance, if a user purchases tokens using a particular address, they have to
use the same address to redeem them.

An additional privacy challenge comes from the requirement to hide business
logic behind smart contract code. Though Ethereum only stores bytecode, users
are reluctant to trust contracts without published source code. Moreover, byte-
code analysis11 tools are already available [NPS+17,Sui17]. Possible research
directions in the privacy domain include privacy preserving smart contracts
with zero-knowledge proofs [KMS+15] (support for zero-knowledge proofs in
Ethereum was first tested in September 2017 [O’L17]), mixing, computations on
encrypted data, and code obfuscation.

10 Except those using dedicated privacy-preserving cryptographic techniques, e.g., Dash,
Monero, Zcash.

11 Decompiling bytecode to source code is hardly possible as the information about
function and variable names is lost during compilation; nevertheless it is possible
to display bytecode as a sequence of mnemonics or convert it into an intermediate
higher-level representation suitable for analysis.
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3.2 Smart Contract Programming

Programming Languages. Security is of paramount importance in smart
contract programming [ABC17,DAK+15]. Contrary to traditional software,
smart contracts can not be patched, which brings new challenges to blockchain
programming [PPMT17]. Multiple approaches exist to contract program-
ming [STM16]. Areas of research in this domain include systematizing good and
bad programming practices [Con16,CLLZ17], designing general-purpose [Hir17a,
But17d,PE16] as well as domain-specific [BKT17,EMEHR17] smart contract
programming languages, and developing tools for automated security analy-
sis [LCO+16,Sec17] and formal verification [BDLF+16] of smart contract source
code, EVM bytecode, and the EVM itself [Hir17b].

Secure Contract Programming. An important challenge is to describe smart
contracts’ execution model (possibly drawing parallels from concurrent program-
ming on a multi-threaded processor [SH17]) and to develop a usable and formally
verifiable high-level language reflecting this model. Some argue that Solidity
inclines programmers towards unsafe development practices [ydt16]. Typical vul-
nerabilities and issues in Solidity might include:

1. Re-entrancy. Contracts can call each other. Malicious external contracts
can call the caller back. If the victim contract does its internal bookkeeping
after returning from an external call, its integrity can be compromised12.

2. Miner’s influence. Miners can to some extend influence execution (front-
running, censorship, or altering environmental variables, e.g., timestamp).

3. Out-of-gas exceptions. Computation in Ethereum is many orders of magni-
tude more expensive than with centrally managed cloud computing services.
Developers who do not take it into account may implement functions that
require too much gas to fit in the block gas limit and thus always fail.

Trusted Data Sources. Many smart contract applications (financial deriva-
tives, insurance, prediction markets) depend on real-world data. Ethereum is iso-
lated from the broader Internet to guarantee consistent execution across nodes.
A popular approach to providing data to contracts in a trust-minimizing way is
an oracle – a specialized data provider, possibly with a dedicated cryptographic
protocol to guarantee integrity [Ora17]. A recent development is TownCrier – an
oracle built with trusted hardware [ZCC+16].

3.3 Higher Level Issues

Governance. In June 2016, a massive Ethereum-based crowdfunding project –
The DAO – ended in a disaster: an unknown hacker exploited a bug in the smart
contract and obtained around $50 million out of $150 million collected [Sir16].

12 This bug led to the DAO hack of 2016.
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Despite the fact that the Ethereum protocol correctly executed the smart con-
tract code, the Ethereum developers implemented a hard fork that allowed stake-
holders to withdraw their deposits. This event raised concerns about Ethereum’s
governance, as the fork violated the premise of decentralized applications running
“exactly as programmed” and lead to the creation of Ethereum Classic [Eth17c].
Governance mechanisms should provide certainty over how updates (potentially
breaking compatibility) are introduced.

Though the gas price in ether is determined by the market, the relative gas
costs of EVM bytecodes are constant. In September 2016, an attacker exploited
a weakness in gas pricing and organized a DoS attack on the network, taking
advantage of the fact that certain operations were under-priced [But16b]. The
problem was ultimately fixed with a hard fork. Research is needed to propose
more flexible mechanisms for determining relative prices of EVM operations.

Incentives. Open blockchains rely on the participants’ rationality [CXS+17]
and must maintain incentive compatibility, so that rational behavior leads to the
overall benefit for the network [LTKS15]. This introduces a new field of study
dubbed cryptoeconomics – the study of incentives in cryptographic systems.
The trustless nature of smart contracts might be used for benign (managing
mining pools [LVTS17]) as well as for malicious (providing automatic rewards for
attacking mining pools [VTL17]) purposes. Rigorous research should guarantee
the proper functioning of the blockchain networks and applications based on a
definition of rational behavior.

Usability. Considering the influx of new people into the blockchain space,
usable yet secure lightweight blockchain software is needed. From the human-
computer interaction (HCI) perspective, a challenging task would be to help
users grasp the smart contracts fundamentals without going into technicalities.
Research shows that cryptographically sound systems may fail to gain traction
due to usability issues [RAZS15]. HCI research is needed to make blockchains
and smart contracts usable by general public.

Ethical and Legal Issues. Information security researchers usually adhere to
the “responsible disclosure” policy: they report a bug privately to the vendor
and give developers time to fix it before publishing the information in the open.
Though some oppose this practice [Sch07], it is assumed to decrease the proba-
bility of an attack on the live system (unless the attackers discover the same bug
independently before a patch is applied). Ethereum introduces a new dimension
to the responsible disclosure debate, as smart contracts can not be patched. It
is unclear whether it is ethical to fully disclose a vulnerability discovered in a
smart contract, if developers can not fix it anyway13.
13 A technical response to this issue could be updateable contracts: users communicate

with a proxy contract, which redirects their transactions to the latest version of the
main contract. Such scheme assumes that the developers are honest and competent
so that the latest update does not run away with everyone’s money.
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A whole separate range of topics, which is outside the scope of this paper,
is how (and if at all) smart contracts fit into existing legal frameworks. For
instance, BitLicense [ofs15] – a controversial [Act15] piece of regulation that came
into force in New York in 2015 – prompted many cryptocurrency businesses to
withdraw their services from the residents of this US state [Rob15]. In July 2017,
the US Securities and Exchange Commission stated that issuers of digital assets
may be subject to requirements of the US law [SC17].

4 Conclusion

Ethereum is a fascinating research area at the intersection of multiple fields:
cryptography and distributed systems, programming languages and formal ver-
ification, economics and game theory, human-computer interaction, finance and
law. The promise of smart contracts is not limited to making existing processes
more efficient by putting parts of their logic onto a very inefficient, yet very secure
decentralized network. This new way of handling value without a trusted third
party opens up whole new classes of previously impossible use cases. Thorough
research is needed to realize this vision.
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Abstract. In contrast to classical signature schemes, such as RSA or
ECDSA signatures, the lattice-based signature scheme ring-TESLA is
expected to be resistant even against quantum adversaries. Due to a
recent key recovery from a lattice-based implementation, it becomes clear
that cache side channels are a serious threat for lattice-based implemen-
tations. In this article, we analyze an existing implementation of ring-
TESLA against cache side channels. To reduce the effort for manual code
inspection, we selectively employ automated program analysis. The leak-
age bounds we compute with program analysis are sound overapproxi-
mations of cache-side-channel leakage. We detect four cache-side-channel
vulnerabilities in the implementation of ring-TESLA. Since two vulnera-
bilities occur in implementations of techniques common to lattice-based
schemes, they are also interesting beyond ring-TESLA. Finally, we show
how the detected vulnerabilities can be mitigated effectively.

1 Introduction

The threat posed by quantum computers to current public-key cryptography is
known since Shor presented a quantum algorithm to solve the factorization and
the discrete logarithm problem in polynomial time [1]. How serious this threat
is taken became clear, e.g., when NIST announced to start a standardization
process for quantum-resistant schemes beginning in fall 2017 [2].

A promising quantum-resistant, also called post-quantum, candidate to
substitute current public-key cryptography is lattice-based cryptography that
enjoys, among other things, strong security guarantees. However, security guar-
antees can be undermined by side-channel vulnerabilities at the implementation
level. So far, this has happened mostly for implementations of classical cryptogra-
phy, e.g., [3–6]. However, first approaches to analyze lattice-based cryptography
with respect to side-channel attacks are already made, e.g., [7–10]. Recently,
Groot Bruinderink et al. presented the first attack against a lattice-based sig-
nature scheme and broke the scheme BLISS [11] using cache side channels of
the Gaussian sampling during the signature generation [12]. Although none of
c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 225–241, 2018.
https://doi.org/10.1007/978-3-319-75650-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75650-9_15&domain=pdf


226 N. Bindel et al.

the existing lattice-based signature schemes (or their implementations) claim
to be secure against side channels, the attack in [12] raises the question how
lattice-based signature schemes can be implemented without cache-side-channel
leakage. Furthermore, in the light of NIST’s standardization process, it is impor-
tant to analyze lattice-based implementations against cache side channels. The
scheme ring-TESLA [13], which is one of the most efficient lattice-based signa-
ture schemes, seems to be a good candidate to be implemented without cache
side channels: During signature generation, ring-TESLA does not use Gaussian
sampling, the sampling method that was exploited in the attack on BLISS in [12].

In this work, we use program analysis to compute upper bounds on the
cache-side-channel leakage of lattice-based implementations at the example of the
signature generation in ring-TESLA1. More concretely, we follow an approach
based on information theory and reachability analysis, which is implemented in
CacheAudit [16]. Variants of CacheAudit were used to analyze multiple cryp-
tographic implementations. CacheAudit 0.2 [16] was used to analyze PolarSSL
AES and the eSTREAM Profile 1 portfolio (HC-128, Rabbit, Salsa20, and Sose-
manuk). CacheAudit 0.2b was used in a systematic study of AES implementa-
tions [17]. Another extension of CacheAudit 0.2 was used on modular exponen-
tiation from the libraries libgcrypt and OpenSSL [18]. In this article, we extend
CacheAudit 0.2b to CacheAudit 0.2c and apply it to ring-TESLA. This is the
first analysis of a post-quantum scheme using CacheAudit.

With CacheAudit 0.2c, we determine upper bounds on the leakage of a
ring-TESLA implementation for four attacker models. The bounds are sound,
i.e., conservative with respect to the attacker models. We obtain upper bounds
between 2.6 bit and 51.6 bit of potential cache-side-channel leakage. By inspect-
ing the code manually, we then identify vulnerable subroutines. We implement
countermeasures in the vulnerable subroutines to mitigate the cache-side-channel
leakage. Finally, we argue for the effectiveness of the mitigations. For two sub-
routines, the argument is completely automated by an analysis with CacheAudit
0.2c that reports 0 bit leakage. According to our code inspection, a potential for
leakage in the signature computation remains, which is intrinsic to a method
called rejection sampling. Rejection sampling is used by design in the most effi-
cient lattice-based signature schemes, such as [11,13,15,19]. We argue that the
attacker cannot exploit this potential leakage to get information about the secret
key. Therefore, we consider our resulting implementation of ring-TESLA to be
resistant to the four types of cache-side-channel attacks we consider.

In summary, the contributions of this article are the following.

– We detect four cache-side-channel vulnerabilities in an existing implementa-
tion of ring-TESLA by code inspection, selectively supported by automatic
program analysis.

1 We analyze an implementation of ring-TESLA despite an error that was detected
in its security reduction, since we expect that reductions given for its predecessor
TESLA [14,15] will be applicable to ring-TESLA as well. Hence, we consider it to be
a good candidate for practical applications that require post-quantum signatures.
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– To mitigate the detected vulnerabilities, we augment the ring-TESLA imple-
mentation by side-channel countermeasures. We argue for the effectiveness of
the countermeasures, again supported by selective program analysis.

– To automate parts of our analysis of the unmitigated and mitigated ring-
TESLA implementation, we extend the analysis tool CacheAudit 0.2b to
CacheAudit 0.2c. More concretely, we implement support for ten additional
x86 instructions. The support can be used to analyze occurrences of these
instructions in x86 binaries and is not limited to ring-TESLA.

The detection and mitigation of vulnerabilities not only hardens the ring-TESLA
implementation against side-channel attacks. Multiple lattice-based primitives,
such as key exchange protocols, encryption, and signature schemes, use tech-
niques similar to the ones we analyze in ring-TESLA. In particular, rejection
sampling and sparse multiplication, where we find two of the potential vulnera-
bilities, occur in ring-TESLA, as well as in other lattice-based primitives. Hence,
our results also pave the way to make other lattice-based implementations more
trustworthy using program analysis.

2 Preliminaries

2.1 Notation

For an integer n ∈ N, we define q ∈ N to be a prime with q = 1 (mod 2n). We
denote the finite field Z/qZ with representatives in [−q/2, q/2]∩Z by Zq. Further-
more, we define Rq = Zq[x]/〈xn+1〉 and Rq,[B] = {∑n−1

i=0 aix
i | ai ∈ [−B,B]∩Z}

for B ∈ [0, q/2] ∩ Z and Bn,ω = {∑n−1
i=0 aix

i | ai ∈ {−1, 0, 1},
∑n−1

i=0 |ai| = ω} for
ω ∈ [0, n] ∩Z. All logarithms are in base 2. Let σ ∈ R>0. Let v be a polynomial,
then v ←σ R means sampling each coefficient of v with discrete Gaussian distri-
bution with standard deviation σ and mean 0 over Z. For a finite set S, we write
s ←$ S to indicate that an element s is sampled uniformly at random from S.

2.2 Description of Ring-TESLA

The signature scheme ring-TESLA is parametrized by n, ω, d, B, q, U , L, κ, σ,
by the hash function H : {0, 1}∗ → {0, 1}κ, and by the encoding function F :
{0, 1}κ → Bn,ω, see Fig. 1. For detailed information about the system parameters
and the encoding function F , we refer to the original work [13]. For c ∈ Z, we
denote by [c]L the unique representative of c in (−2d−1, 2d−1] ∩ Z such that
c = [c]L modulo 2d and define [·]M : Z → Z, c �→ (c − [c]L)/2d. The operators
[·]L and [·]M correspond to the least or most significant bits, respectively. We
extend the definitions to polynomials by applying [·]L and [·]M to each coefficient.

The secret key sk is a tuple of three polynomials s, e1, e2 ←σ R, where the
entries of e1 and e2 have to be small enough for the scheme to be correct; the
public key pk consists of the polynomials a1, a2 ←$ Rq, b1 = a1s + e1 (mod q),
and b2 = a2s + e2 (mod q). We depict the algorithm to generate a signature
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Fig. 1. Specification of the scheme ring-TESLA [13].

(c′, z) for message μ in Fig. 1. For verification of the signature (c′, z), it is checked
that z ∈ Rq,[B−U ] and that c′ equals H([a1z − b1c]M , [a2z − b2c]M , μ), with
c = F (c′). The parameters proposed for ring-TESLA [13] are currently not
supported by a security reduction, since in November 2016 an error was detected
in the existing reduction. However, we expect that existing security reductions
for ring-TESLA’s predecessor TESLA [14,15] are applicable to ring-TESLA as
well2. Our modifications described in Sects. 3.1 and 4 do not depend on the
values of the parameters. Hence, our results can be applied to other parameter
sets of ring-TESLA as long as all values can be represented by the data type int.

2.3 Cache Side Channels

A cache is a small piece of memory that stores selected entries from main
memory for quick access by the Central Processing Unit (CPU). If the CPU
accesses a memory entry, the access can lead to a cache hit (if the entry is
stored in the cache) or to a cache miss (if the entry is not stored in the cache).
Inside the cache, the memory entries are stored in sections called cache lines.
The sequence of cache lines in a cache is partitioned into cache sets. In a k-way
set-associative cache, each cache set consists of k cache lines. A cache has a
strategy for replacing entries if the cache is full. A popular strategy is to replace
the least recently used entry (LRU strategy). Variants of LRU are used, e.g., in
Intel processors [20].

A cache-side-channel vulnerability exists if the interaction between a program
and the cache depends on secret information, e.g., on a cryptographic key. In
this case, an attacker, observing aspects of this interaction, might learn secret
information. Attacks on cryptographic implementations have exploited secret-
dependence in the trace of cache hits and misses [4], the time taken for cache
hits and misses [6], and the final cache state of an execution [5].

2 Security properties of schemes over standard lattices (like TESLA) often hold for cor-
responding schemes over ideal lattices (like ring-TESLA), e.g., the security reduction
from [11] holds for the standard-lattice variant and for the ideal-lattice variant.
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2.4 Leakage Bounds on Cache Side Channels

In this article, we follow an approach based on information theory and reachabil-
ity analysis to compute upper bounds on the cache-side-channel leakage of ring-
TESLA (compiled to an x86 binary). Let Obsa be the set of possible observations
an attacker a can make about a single run of an x86 binary. Then log2 |Obsa| is
an upper bound on the leakage of the binary with respect to min-entropy [21]
and Shannon entropy [22] by [23, Theorem 1] and [24, Theorem 5.3].

We consider the following attacker models a ∈ {acc, accd, trace, time} [16]:

accd generalizes techniques like Evict+Time and Prime+Probe [5]. More
concretely, it captures attackers who can determine the number of memory
blocks in each cache set in the final cache state after a program execution.

acc captures attackers who can determine the position of each memory block in
the final cache state, inspired by techniques like Flush+Reload [25].

trace captures trace-based attackers who can determine the trace of cache hits
and misses that occur during one program execution. For instance, the trace-
based attack in [4] uses such traces of hits and misses.

time models time-based attackers who can observe the running time of one
program execution. Actual running times, as used in attacks like [6], are
modeled by the amount of cache hits and cache misses that occur.

The possible observations under an attacker model can be computed by reach-
ability analysis [16]. Let D be the set of the possible states during an execution
and let updD : D → D model the concrete semantics of x86 instructions, i.e.,
how the execution of instructions updates the state. The possible attacker obser-
vations depend on the states that an execution can reach according to updD.

Instead of implementing a reachability analysis from scratch, we extend the
existing tool CacheAudit 0.2b [17] – a version of CacheAudit [16]. CacheAudit
performs a reachability analysis using abstract interpretation [26].

For an abstract reachability analysis, an abstract domain D is defined, which
abstracts from details of the concrete execution that are not relevant for the
analysis. An abstraction function and a concretization function are defined to
convert states between D and D. To represent executions in the abstract domain
D, an abstract semantics updD : D → D is defined. To allow a transfer of analysis
results from the abstract domain to the concrete domain, the abstract semantics
updD should be sound with respect to the concrete semantics updD, i.e., it should
overapproximate the set of reachable states in an execution.

CacheAudit uses multiple abstract domains [16]. The position of a memory
block in the cache is abstracted by a set of possible positions. The values of
registers and memory entries are abstracted by sets of possible values.

3 Enabling the Automatic Analysis of Ring-TESLA

3.1 Integer Implementation of Ring-TESLA

We obtained the implementation of ring-TESLA [13] from the authors. The orig-
inal implementation makes use of floating point operations. CacheAudit 0.2b,
however, cannot analyze floating point operations and can therefore not be used
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Listing 3.1. Signature generation in crypto_sign

1 [...]
2 while (1) {
3 sample_y(vec_y);
4 poly_mul_fixed(vec_v1 , vec_y , poly_a1);
5 poly_mul_fixed(vec_v2 , vec_y , poly_a2);
6 random_oracle(c, vec_v1 , vec_v2 , m, mlen);
7 generate_c(pos_list , c);
8
9 computeEc(E1c , sk+sizeof(int)*PARAM_N , pos_list);

10 poly_sub(vec_v1 ,vec_v1 , E1c);
11 if (test_w(vec_v1) != 0){ continue; }
12
13 computeEc(E2c , sk+sizeof(int)*PARAM_N*2, pos_list);
14 poly_sub(vec_v2 ,vec_v2 , E2c);
15 if (test_w(vec_v2) != 0){ continue; }
16
17 computeEc(Sc, sk, pos_list);
18 poly_add(vec_y , vec_y , Sc);
19 if (test_rejection(vec_y) != 0){ continue; }
20
21 for(i=0; i<mlen; i++){ sm[i]=m[i]; }
22 *smlen = CRYPTO_BYTES + mlen;
23 compress_sig(sm+mlen , c, vec_y);
24 return 0; }

to analyze the original implementation directly. An extension of CacheAudit 0.2b
to support floating point instructions is out of scope for this article. Changing
from floating point to integer operations does not affect the security of the sig-
nature scheme, since all operations during the signature generation (cf. Fig. 1)
are over Zq. Moreover, it is a step towards a ring-TESLA implementation for
devices without floating point unit, e.g., embedded devices. We replaced all float-
ing point instructions by integer instructions. The resulting implementation can
be analyzed with CacheAudit 0.2c (our extension of CacheAudit 0.2b).

Listing 3.1 shows the parts of the signature generation function crypto_sign
that are most important for our analysis, leaving out variable declarations.

3.2 Extension of CacheAudit 0.2b

The implementation of the scheme ring-TESLA is the first implementation of
post-quantum cryptography (and of lattice-based cryptography) that is analyzed
with CacheAudit. The implementation of ring-TESLA contains x86 instructions
that are not supported by CacheAudit 0.2b. We extended CacheAudit 0.2b to
CacheAudit 0.2c by adding support for these instructions.

To add support for additional x86 instructions to CacheAudit 0.2b, the under-
lying abstract semantics updD must be extended. We implemented abstract
semantics for the instructions in the ring-TESLA binary that are unsupported in
CacheAudit 0.2b. Table 1 lists the opcodes (unique identifiers) and mnemonics
(human-readable descriptions) of the instructions that we added.3

3 The instructions 0xF7/3 and 0x99 were integrated independently but concurrently
into a different version of CacheAudit by Doychev [27].
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Table 1. Additional instructions for ring-TESLA in CacheAudit 0.2c

Type Opcodes (and mnemonics) of additional instructions

Arithmetic 13 (Adc), 1B (Sbb), 6B (Imul), F7/3 (Neg), F7/4 (Mul), F7/5 (Imul)

Bit string 0FBD (Bsr), 99 (Cdq)

Move 0F9C (Setl), 0F9F (Setg)

We illustrate the process of extending updD at the example of the instruction
Bsr (Bit scan reverse), which takes the operands dst and src. The concrete
semantics updD of Bsr dst src is to compute the index of the most significant
bit that is set, i.e., non-zero, in src [28]. If such a bit exists in src, its index is
written to dst and the zero flag is set to 0. Otherwise, the zero flag is set to 1.

To support Bsr, we extended the parser, the internal instruction represen-
tation, and the abstract semantics in CacheAudit 0.2b. We extended the parser
to create a Bsr instruction in the internal representation when it encounters the
opcode 0FBD. We implemented the abstract semantics of Bsr by a function bsr
in the module valAD. The function consists of roughly 100 lines of OCaml code.

The function bsr operates on sets of potential values for dst and src and
returns a map from possible resulting status flag combinations to the resulting
values of registers and memory entries, for which the flag combinations can occur.
For each possible value of src, we proceed according to the formalization of Bsr
by Degenbaev [28]. We check whether the value consists only of zeros. In this
case, we add a binding (mapping a flag combination to register and memory
values) to the resulting map, in which the zero flag is 1 and the value of dst is
unchanged. Otherwise, we first compute the number of leading zeros by divide
and conquer, where we check recursively whether the first half of each non-zero
prefix contains bits that are set to 1. The index of the most significant set bit
is 64 minus the number of leading zeros. In this case, we add a binding to the
resulting map, in which the zero flag is 0 and dst contains the computed index.

Our implementation for the other instructions follows the same pattern of
parsing and abstract semantics, reusing existing support for similar instructions
(e.g., with the same mnemonic) in CacheAudit 0.2b when possible.

4 Detection of Potential Leakage

We use CacheAudit 0.2c to analyze the signature generation in ring-TESLA for
potential leakage of the secret key. We assume that the random number generator
is secure and analyze the remaining computation with a few adaptations that
allow a meaningful analysis with CacheAudit 0.2c. In the following, we provide
details on the configurations of CacheAudit and ring-TESLA, details of our
adaptations, and the results of our analysis.

Configuration of CacheAudit. We configure CacheAudit to use a 32 kByte,
8-way set-associative data cache with a cache line size of 64 Byte. This cache
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Listing 4.1. Code of the subroutine generate_c

1 void generate_c(uint32_t *pos_list , unsigned char *c_bin){
2 int32_t c[PARAM_N ]; int cnt =0; int pos; [...]
3 crypto_stream(r, R_LENGTH , nonce , c_bin);
4
5 for(i=0; i<PARAM_N; i++){ c[i] = 0;}
6 i=0;
7 while(i<PARAM_W){
8 pos = 0;
9 pos = (r[cnt]<<8) | (r[cnt +1]);

10 pos &= PARAM_N -1;
11 cnt += 2;

12 if (c[pos] == 0) { pos_list[i] = pos; c[pos]=1; i++; cnt++; } } }

configuration is, e.g., used in the first level cache of the Intel Skylake architec-
ture [29]. As the replacement strategy, we fix LRU.4

Configuration of ring-TESLA. We set the parameters of the ring-TESLA
scheme to PARAM_N = n = 512, PARAM_SIGMA = σ = 48, PARAM_Q = q =
33550337, PARAM_B = B = 4194303, PARAM_W = ω = 19, PARAM_D = d = 23,
and PARAM_U = U = 2848. We analyze the function crypto_sign from the file
sign.c in a 32-bit x86 binary of the ring-TESLA implementation. To this end,
we use a wrapper function that calls crypto_sign with an uninitialized secret
key, uninitialized message, uninitialized signature buffer, the message size 59 (as
in the ring-TESLA test suite), and a pointer to smlen to store the length of the
signed message including the signature. By leaving the secret key and message
uninitialized, we treat them as secret input in our analysis.5

We compiled the ring-TESLA sources and our wrapper with gcc version 4.8.4,
using -static for static linking, -m32 to target an Intel i386 CPU architecture,
and -fno-stack-protector to avoid insertion of code for overflow protection.

Adaptation of ring-TESLA. CacheAudit 0.2c does not support memory accesses
that could refer to any possible address, e.g., in the analysis of loop counters that
are advanced only under certain conditions and used to index array accesses. This
occurs in the ring-TESLA routines generate_c and sample_y.

Listing 4.1 shows the implementation of the function generate_c. It uses
rejection sampling to generate random values for the parameter array pos_list.
The loop counter is only increased if the generated value is not rejected. To allow
a meaningful analysis, we remove the check that rejects if the same value would
occur twice in pos_list (highlighted in gray). That is, we overapproximate the
possible values of pos_list. This manual overapproximation of the semantics

4 We also investigated FIFO (first in first out) replacement. The leakage bounds (on
the unmitigated implementation) are less than 10 bit lower than under LRU.

5 Treating the message as secret is overly conservative in a signature scenario. We
investigated the effect of fixing the message to all ‘0’s and obtained the same leakage
bounds as for an uninitialized message in the unmitigated implementation.
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Listing 4.2. Implementation of sample_y

1 // original

2 do {[...] if(val <0 x7fffff) mat_y[i++] = val -PARAM_B; [...]} while(i<PARAM_N);

3

4 // adapted

5 for (i = 0; i < PARAM_N; ++i) { mat_y[i] = *(int *)(0x4) - PARAM_B; }

Table 2. Upper bounds on the leakage of the signature generation

Attacker model acc accd trace time

Leakage in bit 12.9 2.6 51.6 9.5

preserves the validity of analysis results because it cannot decrease the number
of possible attacker observations.

Listing 4.2 shows our adaptation of a loop in sample_y. Again, the loop
counter advances only if the random number generated in the current iteration
satisfies certain criteria. To allow a meaningful analysis with CacheAudit 0.2c,
we remove the check of the random number and assign an uninitialized value that
overapproximates the possible range to each entry in mat_y. With this adapta-
tion, our analysis uses a safe overapproximation of the values that sample_y can
return, but assumes that sample_y itself, i.e., the random number generator,
does not have any cache-side-channel leakage.

The function crypto_sign contains a potentially infinite while loop, on which
CacheAudit 0.2b does not terminate within reasonable time. To make the analy-
sis of this loop feasible, we fix the number of iterations while keeping the source
code in the loop body unchanged. More concretely, we fixed the number of iter-
ations to two to account for the effect of more than one iteration.

Note that we use the modifications described in this section only for the
initial automatic analysis of ring-TESLA. In the detailed manual inspection in
Sect. 5, we use the unmodified integer implementation.

Analysis Results. We obtain the leakage bounds listed in Table 2.6 The bounds
lie between 2.6 bit and 51.6 bit for the different attacker models. One run of the
adapted ring-TESLA leaks at most 2.6 bit to attackers under accd, at most 9.5 bit
to attackers under time, at most 12.9 bit to attackers under acc, and at most
51.6 bit to attackers under trace. In the remainder of this article we investigate
whether these non-zero leakage bounds are substantiated by concrete threats
and how the leakage bounds can be reduced by mitigating concrete threats.

6 Throughout the article, we round bounds up to one decimal place and truncate the
bounds to 3 ∗ PARAM N ∗ 32bit = 49152bit, i.e., the maximum size of the key.
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5 Manual Analysis of the Potential Leakage

We manually analyze the signature generation crypto_sign to check if the
potential leakage detected by program analysis corresponds to an actual con-
cern. We identify substantiated threats of leakage to cache side channels (CSCs)
in the routines generate_c, test_w, test_rejection, and computeEc.7. The
following variables have to be kept secret during the execution of crypto_sign:
the secret key sk, the randomness vec_y, the polynomials vec_v1 and vec_v2
to compute the hash value, and the polynomials E1c, E2c, and Sc. Furthermore,
the hash value c and the representation of the corresponding encoded polyno-
mial pos_list have to be kept secret until line 19 in Listing 3.1. In line 19,
it is decided whether the potential signature (computed in line 18) and c are
returned and, hence, whether c and pos_list become public information (via the
encoding function F , the values can be computed from each other), or whether
all computed values are discarded. An attacker should not learn the values of
the discarded polynomials, e.g., c or pos_list. If the attacker learns values of
pos_list or c, there exists a potential attack as described below.

Analysis of the subroutine compute_Ec. The implementation of the subroutine
compute_Ec is given in Listing 5.1. The values that have to be kept secret dur-
ing this computation are sk, e, pos_list, and pos. Most loops and branchings
do not depend on any of the secret values. However, there might be a possi-
ble leakage of pos (and hence of the values in the secret pos_list) because
of the cache hits/misses depending on e. In both loop bodies values are read
from e (namely, either e[j+PARAM_N-pos] or e[j-pos]) such that in both loops
together all entries of e are read. However, leakage arises from the chronolog-
ical order of cache hits and misses. We illustrate the leakage using an exam-
ple: The array e consists of PARAM_N many entries of type int, i.e., each entry
of e is represented in 32 bit. Since one cache line is 64Byte (cf. Section 4), 16
entries (depending on the alignment in the memory) of e fit into one cache
line. Let pos=14. Then, under the trace-driven attacker model, an attacker sees
one cache miss (on element e[PARAM_N-14]) and 13 cache hits (on elements
e[PARAM_N-13],..., e[PARAM_N-1]) during the loop in line 9.8 However, two more
entries of e are also already loaded in the cache, namely e[PARAM_N-16] and
e[PARAM_N-15]. Thus, in the second loop in line 10, the attacker sees cache hits
on those two elements. He might, hence, be able to determine the value of pos
from the distribution of the hits for the considered cache line over the loops.

Analysis of the subroutine test_rejection. The implementation of the subrou-
tine test_rejection is given in Listing 5.2. The variable poly_z in Listing 5.2
has to be kept secret. The subroutine test_rejection consists of a for-loop that
loops independently of the secret over i=0,...,PARAM_N. Within the for-loop,
there is a secret-dependent if-condition. This leads to a CSC vulnerability.
7 The analysis of the other subroutines of crypto_sign can be found in the corre-

sponding technical report under http://eprint.iacr.org/2017/951.
8 To simplify our explanation we assume that the corresponding cache line starts with
e[PARAM_N-16] and ends with e[PARAM_N-1].

http://eprint.iacr.org/2017/951
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Listing 5.1. Code of the subroutine computeEc

1 static void computeEc(poly Ec, const unsigned char *sk, const
2 uint32_t pos_list[PARAM_W ]) {
3 int i,j, pos , * e;
4 e = (int*)sk;
5 for(i=0;i<PARAM_N;i++){ Ec[i] = 0;}
6
7 for(i=0;i<PARAM_W;i++){
8 pos = pos_list[i];
9 for(j=0;j<pos;j++){ Ec[j] += e[j+PARAM_N - pos];}

10 for(j=pos;j<PARAM_N;j++){ Ec[j] -= e[j-pos];} } }

Listing 5.2. Code of the subroutine test_rejection

1 static int test_rejection(poly poly_z) {

2 int i;

3 for(i=0; i<PARAM_N; i++){

4 if(poly_z[i]<-(PARAM_B -PARAM_U)|| poly_z[i]>(PARAM_B -PARAM_U)){return 1;}}

5 return 0; }

Assume a strong trace-driven attacker model, i.e., the attacker has a sequence
of occurred cache hits and misses. Assume furthermore that poly_z is already
loaded in the cache before the if-condition is evaluated.9 When the if-condition
in line 4, Listing 5.2, is never true, then the value 0 is returned and the attacker
gets a sequence of PARAM_N (or 2 · PARAM_N — depending on the compilation)
hits. This essentially means that all coefficients of poly_z are in the interval
[−B + U,B − U ] and, hence, the corresponding signature is compressed and
returned (cf. Listing 3.1). Next, we consider the other case, i.e., the absolute value
of at least one of the coefficients of poly_z is larger than B−U . That means that
the if-condition in Listing 5.2 holds true for some i ∈ {0, ..., PARAM_N}. Hence, 1 is
returned in the i-th iteration and the attacker gets a sequence of only PARAM_N-i
hits. Hence, the attacker knows the exact index of the coefficient that violated the
if-condition. Assume the attacker also knows the values in the array pos_list
(which corresponds to the polynomial c = F (H ([v1]M , [v2]M , μ)) in Fig. 1) from
another cache-side-channel vulnerability. Then the attacker might know which
coefficients of the secret s contributed to the i-th, large coefficient of poly_z.
If an attacker learns the exact position i and the corresponding pos_list for
many different values to the same secret key s then the attacker might receive
enough information about the size of the entries in s to successfully break the
scheme via a learning-the-parallelepiped-attack [30,31].

Analysis of the subroutine test_w. The implementation of the routine test_w is
given in Listing 5.3. The values poly_w, val, and left in Listing 5.3 have to be
kept secret. The CSC vulnerability is similar to the channel described previously
for test_rejection. In the subroutine test_w, the CSC vulnerability comes

9 Our arguments hold also true if we assume that poly_z is not loaded in the cache.
In the ring-TESLA implementation, it is already loaded in line 18 in Listing 3.1.
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Listing 5.3. Code of the subroutine test_w

1 static int test_w(poly poly_w)
2 { int i; int64_t left , right , val;
3 for(i=0; i<PARAM_N; i++){
4 val = (int64_t) poly_w[i];
5 val = val % PARAM_Q;
6 if (val < 0){ val = val + PARAM_Q ;}
7 left = val;
8 left = left % (1<<(PARAM_D));
9 left -= (1<<PARAM_D)/2;

10 left ++;
11 right = (1<<(PARAM_D -1))-PARAM_REJECTION;
12 if (abs(left) > right){ return -1; } }
13 return 0; }

from the early abortion depending on left in line 12 of Listing 5.3. When the
if-condition in line 12 holds for some i and the corresponding abs(left), -1 is
immediately returned and a trace-driven attacker might learn the exact index i.

Analysis of the subroutine generate_c. The implementation of the subroutine
generate_c is given in Listing 4.1. The values pos_list, c, and pos in Listing 4.1
have to be kept secret. There are no branchings or loops depending on the secret
value, except for one if-condition on c[pos] in line 12 of Listing 4.1. If a cache
with no-write-allocate policy is used, the values c[i] are not cached in line 5.
Hence, an attacker might be able to find out which elements c[i] are cached
in line 12 and to learn information about the values of pos. Together with the
vulnerability in test_rejection, an attacker might be able to successfully break
the scheme via a learning-the-parallelepiped-attack [30,31].

Combined analysis of the overall signature generation. The most important parts
of the implementation of crypto_sign are depicted in Listing 3.1. In the signa-
ture generation, most operations, branchings, or loops are independent of the
value of the secret. Exceptions are the branchings in lines 11, 15, and 19 in List-
ing 3.1: They depend on secret values and, hence, the length of the observed trace
of cache hits and misses depends on the branches that are taken. What does this
mean from a cryptographic viewpoint? Assuming the subroutine test_w does
not leak any bit, then the attacker does not learn more information about the
secret if he knows whether or not the condition in line 11 holds. The attacker
would just learn that vec_v1 does not fulfill the conditions needed for a valid
signature. However, the attacker does not learn why exactly the condition was
not fulfilled (the attacker does not learn the index on which the if-condition
failed). Furthermore, since the value vec_v1 depends on vec_y and the value
vec_y is discarded if the if-condition in line 11 does not hold, the attacker does
not get any additional information about the secret he did not know before. The
same explanation also holds for the branchings in line 15 and line 19.

In summary, this means that there exists a potential leakage that we probably
cannot get rid of, but it does not affect the security of the signature scheme as
long as we do not have leakages in test_w and test_rejection or generate_c.
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6 Mitigation of the Vulnerabilities

6.1 Adaptation of Vulnerable Routines

In Sect. 5, we identified substantiated threats of CSC leakage in the routines
test_w, test_rejection, computeEc, and generate_c. Since the leakage in
generate_c is only a concern in combination with the leakage in test_w and
test_rejection, it suffices to analyze and mitigate the leakage in test_w,
test_rejection, and computeEc. We analyze test_w, test_rejection, and
computeEc individually with CacheAudit 0.2c to obtain leakage bounds on the
unmitigated implementations. The leakage bounds are listed in Table 3. There
are, indeed, non-zero bounds for all three unmitigated routines.

Table 3. Leakage bounds [bit]

Unmitigated routines Mitigated routines

acc accd trace time acc accd trace time

test_w 31 31 49152 19.3 0 0 0 0

test_rejection 31 31 10.1 10.1 0 0 0 0

computeEc 0 0 20 5.9 0 0 19 4.4

crypto_sign 12.9 2.6 51.6 9.5 8.1 1.6 48.6 9.0

1 int test_rejection(poly poly_z) {
2 int i; int res; res = 0;
3 for(i=0; i<PARAM_N; i++){

4 res |= (poly z[i] < -(PARAM B-PARAM U));

5 res |= (poly z[i] > (PARAM B-PARAM U)); }

6 return res; }
7
8 int test_w(poly poly_w) { [...]
9 for(i=0; i<PARAM_N; i++) {

10 val = poly_w[i]; val = val % PARAM_Q;

11 val += (((unsigned int)val & 0x80000000) >> 31)*PARAM Q;

12 left = val; left = left % (1<<(PARAM_D));
13 left -= (1<<PARAM_D)/2; left ++;
14 right = (1<<(PARAM_D -1))-PARAM_REJECTION;

15 res |= (abs(left) - right > 0); }

16 return -res; }
17
18 void computeEc ([...]) { [...]
19 for(i=0;i<PARAM_N;i++) Ec[i] = 0;

20 for(i=0;i<PARAM N;i++) tmp = e[i];

21 for(i=0;i<PARAM_W;i++) {
22 pos = pos_list[i];
23 for(j=0;j<pos;j++) { Ec[j] += e[j+PARAM_N - pos]; }
24 for(j=pos;j<PARAM_N;j++) { Ec[j] -= e[j-pos]; } } }
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We adapt the routines, as shown in the above listing, to mitigate the leakage.
In test_rejection, we collect the result, i.e., whether 0 or 1 is returned, in an
auxiliary variable res and return it after PARAM_N iterations, instead of returning
early in case of a failed test. In test_w, we also collect the result, i.e., whether
0 or 1 is returned, in an auxiliary variable res, instead of returning early in
case of failure. Furthermore, we replace the branching on val by an assignment
that masks the value by the branching condition. The idea to mask assignments
by branching conditions comes from conditional assignment [32] - a program
transformation to mitigate timing side channels, which performs rather well in
practical evaluation [33]. In computeEc, we add preloading of the variable e to
ensure that the sequence of cache hits and misses does not depend on the secret-
dependent order of accesses (under the assumption that no process interferes
with the cache during the ring-TESLA execution).

By code inspection, the modifications should remove the CSC leakage in the
three routines. In the following, we investigate this with CacheAudit.

6.2 Analysis of the Effectiveness of the Mitigations

We analyze the mitigated routines test_w, test_rejection, and computeEc
using CacheAudit 0.2c and obtain the leakage bounds listed in Table 3. For
test_w and test_rejection, we obtain the leakage bound 0 bit for all attacker
models. Thus, we effectively removed the potential leakage. For computeEc, we
obtain 0 bit leakage bounds for acc and accd and non-zero leakage bounds,
namely 19 bit and 4.4 bit, for trace and time, respectively. The bounds com-
puted with CacheAudit are provable upper bounds, but not necessarily tight.
The preloading of e should remove the leakage from computeEc, because it makes
the caching of e independent of secrets. Since CacheAudit was able to recognize
preloading as effective in other cases [16,17], it is interesting why CacheAudit
0.2c does not yield a 0 bit leakage bound in this case. The investigation and
fine-tuning of the analysis precision is an interesting direction for future work.

Table 3 lists also the leakage bounds we obtain on crypto_sign with and
without our countermeasures. All four leakage bounds are reduced by our coun-
termeasures. The highest reduction is achieved for the acc leakage bound. The
acc leakage bound is reduced by 4.8 bit to 8.1 bit.

Based on our manual inspection of the individual routines in ring-TESLA,
there are two possible sources for the remaining potential leakage reported by
CacheAudit 0.2c. One source is generate_c, where, as discussed above, the
remaining leakage is harmless. The second source is the rejection sampling in
crypto_sign. This matches the fact that the leakage bounds are non-zero. Note
that, since we compute upper bounds on the leakage based on overapproxima-
tion, the actual leakage of the implementation could be even lower than the
reported leakage bounds. We expect in particular the leakage bounds for trace
and time to be quite conservative because CacheAudit 0.2c was not able to recog-
nize the preloading countermeasure in the implementation of computeEc and the
results of computeEc are propagated further through the implementation. Nev-
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ertheless, the bounds show that the CSC leakage of ring-TESLA to acc, accd,
trace, and time is rather low. For acc, accd, and time, it even lies below 10 bit.

Note that, the leakage bounds refer to information about the secret key, i.e.,
about the three polynomials that all together are saved in roughly 38,400 bit.
By construction of the learning with errors problem (LWE)—the underlying
hardness assumption of ring-TESLA—the potential leakage of at most 49 bit of
the secret key does not immediately translate to the bit-hardness of LWE (resp.,
the bit-security of ring-TESLA).

7 Conclusion

In this article, we analyzed an implementation of the lattice-based signature
scheme ring-TESLA for cache-side-channel vulnerabilities. We identified four
routines in the implementation that are vulnerable through cache side channels.
Two of these routines, a rejection sampling and a signature validity check, use
a secret-dependent number of iterations. One routine is a sparse polynomial
multiplication that traverses one polynomial in a secret-dependent order. We
modified these functions to ensure a constant number of iterations and secret-
independent caching of the polynomial. By modifying these functions, we also
eliminated the possibility to exploit the fourth vulnerability. For the modified
ring-TESLA implementation, we obtained low upper bounds on the leakage to
four attacker models, using program analysis.

Our results show that implementations of rejection sampling and sparse mul-
tiplication should be inspected for side channels with particular care. While
these techniques are not very common in classical cryptography like RSA, they
play a significant role in post-quantum cryptography. Rejection sampling occurs,
for instance, in multiple lattice-based signature schemes [11,15,19] and in key
exchange protocols [34]. Sparse multiplication also occurs in many lattice-based
schemes [11,19,35]. Overall, the implementation and analysis of post-quantum
cryptography poses additional challenges compared to classical cryptography.
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Abstract. Mobile ransomware is on the rise and effective defense from
it is of utmost importance to guarantee security of mobile users’ data.
Current solutions provided by antimalware vendors are signature-based
and thus ineffective in removing ransomware and restoring the infected
devices and files. Also, current state-of-the art literature offers very few
solutions to effectively detecting and blocking mobile ransomware. Start-
ing from these considerations, we propose a hybrid method able to effec-
tively counter ransomware. The proposed method first examines applica-
tions to be used on a device prior to their installation (static approach)
and then observes their behavior at runtime and identifies if the system
is under attack (dynamic approach). To detect ransomware, the static
detection method uses the frequency of opcodes while the dynamic detec-
tion method considers CPU usage, memory usage, network usage and
system call statistics. We evaluate the performance of our hybrid detec-
tion method on a dataset that contains both ransomware and legitimate
applications. Additionally, we evaluate the performance of the static and
dynamic stand-alone methods for comparison. Our results show that
although both static and dynamic detection methods perform well in
detecting ransomware, their combination in a form of a hybrid method
performs best, being able to detect ransomware with 100% precision and
having a false positive rate of less than 4%.

Keywords: Ransomware · Malware · Hybrid detection
Machine learning · Android · Security

1 Introduction

Ransomware is such a relevant security problem that law enforcement agencies
from all around Europe teamed up with antimalware and other IT security com-
panies to form the No More Ransom! project1. According to [8], 2016 might be
1 https://www.nomoreransom.org.
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remembered as “the year of ransomware,” confirming the predictions of exponen-
tial growth of these kinds of attacks from previous years [7]. Recent events, such
as the WannaCry ransomware attack in May 2017, in which over 200,000 comput-
ers in more than 150 countries were rendered unusable with ransom demands2,
demonstrated that these predictions might be beaten in 2017. Ransomware not
only targets PCs and servers but also mobile devices. In particular, in the realm
of mobile devices, as opposed to other threats that silently try to get into pos-
session of data by copying them and leaking through the network, ransomware
denies access to data by encryption or simply by locking the device and scar-
ing users (i.e., users are made believe that data are encrypted even if they are
not). In some cases even paying the requested ransom does not guarantee that
the access to data is restored. Having in mind that data are one of users’ most
valuable assets, a mechanism that can detect ransomware at installation time
of applications or during their execution is highly desirable. However, although
mobile ransomware threats are on the rise, we have found only a small num-
ber of related works in literature addressing the problem of mobile ransomware
detection.

We propose to use a hybrid detection method that is composed of a static
method, to be used when applications are installed and/or updated, and a
dynamic method, to be used at runtime. Static methods detect ransomware by
considering features that can be obtained without running the applications (e.g.,
frequency of op-codes). Dynamic methods, instead, are based on features that
can only be observed at runtime and that represent the behavior of applications
(memory, CPU, network and statistics on system calls). Static approaches are
less computationally intense than dynamic methods as they do not need appli-
cations to be run for identifying malware [10], but they are typically ineffective
with obfuscated code as well as with run-time infections. On the other hand,
dynamic methods are effective in identifying new threats, outperforming static
methods, but they need applications to be run to identify malicious behaviour,
potentially infecting the device [9]. In addition dynamic methods are able to dis-
criminate malware even when its code is obfuscated [15]. The main idea behind
using a hybrid approach is to have the advantages of both static and dynamic
methods while reducing or masking their disadvantages.

Having this in mind, the main contributions of this paper are as follows:

1. Evaluation of the effectiveness of a static approach, based on the frequency
of op-codes, in detection of mobile ransomware (Sect. 4.1).

2. Evaluation of the effectiveness of a dynamic approach, based on the monitor-
ing of memory, CPU, network and statistics on system calls, in detection of
mobile ransomware (Sect. 4.2).

3. Evaluation of the effectiveness of a hybrid, combined static and dynamic,
approach in detection of mobile ransomware (Sect. 4.3).

2 http://wapo.st/2pKyXum?tid=ss tw&utm term=.6887a06778fa.

http://wapo.st/2pKyXum?tid=ss_tw&utm_term=.6887a06778fa
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2 Hybrid Detection Method

Hybrid detection employs both static and dynamic detection. Figure 1 depicts
the high-level workflow of the proposed approach: we first use a static detection
method when applications are installed, updated, or during periodic checks (e.g.,
every week). Applications identified as malware are denied running on the device.
All the other applications are instead allowed to run, but subject to dynamic
detection while they are executed. In this way we are able to complement the
coverage of static detection with the one of dynamic detection.

Next, we describe the two methods, static and dynamic, that compose our
hybrid method. Additionally, we discuss the steps required to develop and use
them – pre-processing, learning, and classification – as well as the system fea-
tures, both static and dynamic, that are considered.

Fig. 1. High-level workflow of the proposed approach. The static analysis consists of a
classification based on features obtained from the executable of the application under
analysis, while the dynamic one is based on a feature set obtained when the application
is running.

2.1 Static Analysis

Structural code analysis has been identified by the research community as effec-
tive and highly accurate in static detection methods. For instance, in [3,4], the
opcode occurrences are considered as main features for detecting malware, with
precision equal to 0.9. Additionally, the method proposed in [2] demonstrated
that the sequences of opcodes are very effective in detecting Android malware,
providing an accuracy of 96.88%. In this approach, the authors considered a
binary classification problem in which an input application a has to be clas-
sified as malware or trusted using the occurrences of two opcodes as features
(i.e., 2-grams). n-grams with n = 2 demonstrated to provide the best possible
performance in identifying Android malware in comparison to other values of n
[3,4,12].

Other approaches, such as the ones based on features derived from the permis-
sions required by the applications and/or system call occurrences provide good
detection performance, but not as good as the previously described methods.

Thus, we adopt an approach similar to [2] for detecting ransomware. In our
approach each application is pre-processed in order to obtain the numeric values
of frequencies of opcode sequences that are suitable to be processed by the clas-
sifier. After pre-processing, the classifier undergoes the learning phase in which
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it is trained by using a labelled dataset. After the learning phase, the classifier
can be used for the actual classification of the applications as ransomware or
trusted.

Let a be the Android application under analysis. In the pre-processing phase,
we first use the apktool3 tool in order to extract the Smali classes of the appli-
cation under analysis, thus being able to obtain a unique file containing the
full set of opcodes (without the relative argument and parameters) of all the a
application classes.

We then compute the frequency of 2-grams opcodes as follows: let O be the
set of possible opcodes, and let O =

⋃i=n
i=1 Oi the set of n-grams (i.e., sequences

of opcodes whose length is up to n, we consider n = 2). We denote with f(a, o)
the frequency of the n-gram o ∈ O in the application a: f(a, o) is hence the
number of occurrences of o divided by the total length of the opcode sequences
in a. Finally, we set the feature vector f(a) ∈ [0, 1]|O| corresponding to a to
f(a) = (f(a, o1), f(a, o2), . . . ) with oi ∈ O. Additionally, we split the application
code into chunks corresponding to class methods.

In the next phase, called learning, we train a binary classifier C from two sets
AM , AT of ransom and trusted applications (the learning sets), respectively. The
learning phase is divided into a feature selection phase and the actual classifier
training phase. The aim of the feature selection phase is twofold: on the one
hand, we want to reduce the dimension of the input since with n = 2 the size
|O| of each feature vector f can be up to ≈1012. On the other hand, we want to
retain only the more informative n-grams, with respect to the output label.

At first, the average frequencies f̄M (o) and f̄T (o) are computed for each
2-gram o ∈ O on the ransomware and trusted samples. Then, the relative differ-
ence d(o) between the two average values is computed. This relative difference is
high if the 2-gram o is frequent among ransomware applications and infrequent
among trusted applications (and vice versa). Then, we build the set O′ ⊂ O of
n-grams composed of the h n-grams with the highest values of d(o), where h is a
parameter of our method. We do not include in O′ the n-grams for which d(o) = 1
(i.e., we purposely do not consider those 2-grams which occur in only one subset
of applications in the learning set): this way, we strive to avoid building a clas-
sifier which works well on seen applications but fails to generalize. Finally, we
retain in O′ only the remaining 2-grams with the greatest value. Accordingly,
we set the reduced feature vector f ′(a) corresponding to a using only the fre-
quencies of the 2-grams in O′, i.e., f ′(a) = (f(a, o1), f(a, o2), . . . ) with oi ∈ O′.
We consider as reduced feature vector the 50 2-grams with the greatest value,
i.e. the most frequent 2-grams. In fact, we have determined experimentally that
performance decays when than 50 2-grams are considered. The second step of
the learning phase consists of training the actual classifier C using the reduced
feature vectors obtained from the applications in the learning sets and the cor-
responding labels. In this work, we experimented with the J48, NaiveBayes, and
Logistic Regression classification algorithms.

3 https://ibotpeaches.github.io/Apktool.

https://ibotpeaches.github.io/Apktool
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In the last phase, named classification, we determine if an application a
is labelled as ransomware or trusted, according to the learned classifier C.
To this end, we pre-process a as previously explained in order to obtain the
reduced feature vector f ′(a). Then, we input f ′(a) to C and classify a into
{ransomware, trusted}. In a real system, this step is run every time a new appli-
cation is installed or updated. Additionally, it can be run periodically to check
all the applications installed on the mobile device.

2.2 Dynamic Analysis

In order to perform dynamic detection of ransomware, an effective method based
on the observation of system behavior has to be used. Since this method needs
is used at runtime on mobile devices, it also needs to be lightweight on compu-
tational and energy resources. For this purpose, as the most suitable candidate
we identified MalAware, the approach proposed in [13], that uses only six mem-
ory and one CPU related features in order to perform on-device detection at
runtime, and that is based on a two-step detection system of low complexity
that first classifies execution records, and then complete applications by relying
on the past classifications of execution records. Thus, we use a similar two-step
detection approach, but in addition to memory and CPU usage we also consider
features representing network usage and statistics on system calls. Similarly to
static detection, the development of the dynamic detection method undergoes
the two phases of pre-processing and learning, with the classification phase used
at runtime to actually detect malware.

The pre-processing phase is necessary to extract features from the execution
logs of the considered applications. As explained in Sect. 3, execution logs are
obtained by running the considered applications in an instrumented environ-
ment.

In the learning phase, we first train a classifier to recognize execution records
associated with malicious behavior, similarly to the work presented in [14]. The
training of classifiers is performed by using the same training set used for the
development of static detection as well as the same classifiers of low complexity,
suitable for on device, runtime detection: Naive Bayes, Decision Trees (J48),
and Logistic Regression. The results of classification are then used as input for
a sliding-window based mechanism that considers the history of past execu-
tion records to classify the applications. Namely, considering a sliding window of
length n, the percentage of records classified as ransomware in the last n instants
of time is used to determine whether an application is ransomware or not. To
make the mechanism more robust, multiple results, obtained in disjointed slid-
ing windows, are considered: when w windows are marked as ransomware, the
application is classified as ransomware. In the training phase we also choose the
most suitable parameters for the sliding window mechanism, namely window
size, threshold, and number of checks. The choice is done by exploring different
combinations of parameters and by studying the obtained results as discussed
in Sect. 4.
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In the classification phase, the application classifier obtained in the training
phase is used at runtime to detect ransomware. The full detection system is
composed of three main parts: a feature monitoring block, the record-level clas-
sifier, and the applications-level classifier. The first block monitors and extracts
features periodically and sends them to the record-level classifier which, in turn,
sends its classification results to the application-level classifier. This last classifier
is the one that can mark an application as ransomware and raise an alarm.

3 Experimental Setup

In this section, we first describe our dataset, followed by the setup of the exper-
imental environment and the description of collected features.

3.1 Dataset

We have based our experiments on a dataset containing 3,058 mobile appli-
cations: 2,386 Android trusted applications downloaded from the Google Play
Store4 and 672 applications containing ransomware taken from the freely avail-
able HelDroid dataset5. These ransomware samples appeared from December
2014 to June 2015. Following, we list the malware families to which these sam-
ples belong [1]:

– Ransomware applications in the Locker family block the screen of infected
devices and request a ransom for unlocking it; no file is actually encrypted.

– The Koler payload is downloaded by exploiting site redirection; the screen is
then occupied by the ransom browser page that cannot be dismissed if not
for very short periods of time.

– Ransomware in the Svpeng family is based on an overlay attack: legitimate
applications launched by the user are overlayed with fake windows imitating
the legitimate applications and thus fooling the victim. Additionally, users
receive a message, pretending to be sent by FBI and claiming that the device
has been locked due to access to child pornography websites. To unlock the
phone, a ransom needs to be paid.

– Samples in the ScarePakage ransomware family masquerade as well-known
applications, such as Adobe Flash or antimalware applications, and, when
launched, they pretend to scan your phone. After completing the fake scan,
the device is locked and after a reboot a fake FBI message is shown. A ransom
is requested to bring back the device to normal.

– Ransomware applications in the SimpleLocker family scan the SD card for
images, documents and videos and encrypt them by using the AES encryption
algorithm; a message notifying the user and asking for a ransom is shown on
the display. This is the only family in our dataset that actually encrypts data
on the device and it was the first one discovered for Android.

4 https://play.google.com/store.
5 http://ransom.mobi.

https://play.google.com/store
http://ransom.mobi
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In order to download trusted applications we crawled the Google Play Store
by using the Python Android Market Library open-source crawler6. The crawler
is configured to download trusted applications equally distributed in all the
different categories of the market.

All the applications were checked by means of VirusTotal7, a service that runs
57 different antimalware on the submitted applications. The analysis confirmed
that our trusted samples did not contain any known malicious payload, while
the malicious samples contained ransomware specific payloads.

For developing and validating the proposed approach, we have separated the
collected applications into a training and a test dataset. The training dataset
contains two thirds of the available trusted applications and two thirds of the
available application for each of the ransomware family. The testing dataset
contains the remaining applications.

3.2 Experimental Environment for Dynamic Analysis

Dynamic analysis relies on runtime observation of memory usage, CPU usage,
network behavior, as well as statistics on system calls. Therefore, execution traces
containing this information need to be collected by executing the applications
in a controlled environment. These traces have been recorded by running the
applications, one at a time, on the Android emulator. Monitoring scripts, with a
monitoring interval of two seconds have been used. The procedure of executing
the applications was automated by means of a Linux shell script, which has been
run on a Linux PC and made use of Android Debug Bridge (adb)8, a command
line tool that allows the PC to communicate with an emulator instance or with
an Android device. To collect system calls we used strace9, a tool for tracing
system calls. Network log files were collected by capturing the network traffic
of the emulator. Network statistics have been obtained by logging all network
traffic of the emulator and by successively running the tcpstat tool, set to sample
the features at 2 s intervals. Log files for CPU, memory, and network are later
unified by using timestamps recorded at execution time.

For applying stimuli to applications, the Monkey application exerciser10 has
been used in the script. It is a command-line tool that sends a pseudo-random
stream of user events into the system, which acts as a stress test on the applica-
tion software. One of the main problems of dynamic detection methods is in the
execution of samples during the development phase. In fact, there is currently no
method to verify automatically that malicious payloads are activated correctly.
Due to the high number of samples that need to be used to obtain good qual-
ity classifiers, it is not even possible to perform this verification manually. This
introduces some additional uncertainty in dynamic detection methods. In this

6 https://github.com/liato/android-market-api-py.
7 https://www.virustotal.com/.
8 http://developer.android.com/tools/help/adb.html.
9 http://linux.die.net/man/1/strace.

10 http://developer.android.com/tools/help/monkey.html.

https://github.com/liato/android-market-api-py
https://www.virustotal.com/
http://developer.android.com/tools/help/adb.html
http://linux.die.net/man/1/strace
http://developer.android.com/tools/help/monkey.html
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work, we have tried to minimize the number of non-activated malicious payloads
by providing a high number of stimuli (20, 000, with a limit on execution time
of 15 min) to each application (both malware and benign). It is our belief that
the duration that we have chosen is a good tradeoff between time when most
of the ransomware samples expose their malicious intentions and duration of
the overall experimentation. The Android emulator of choice is the one included
in the Android Software Development Kit11 release 20140702, running Android
4.0, that was one of the most popular versions of Android in period from when
ransomware samples originate. The reason why an Android emulator has been
chosen instead of real devices is that this solution provides the ability to run
a large number of applications, making the obtained dataset more significant.
The Android operating system has been re-initialized each time before running
each application, to avoid possible interferences (e.g., changed settings, running
processes, and modifications of the operating system files) from previously run
samples.

In total, 87 features could be extracted from the execution traces, all referred
to single applications resource usage. All the features considered are listed in
Table 1. Out of the considered features, 59 are related to different aspects of
memory usage. Five are related to CPU: three to CPU usage, and two to virtual
memory exceptions (major and minor faults), 15 are related to network traffic
and five represent statistics on system calls.

4 Experimental Results

In this section, we report the results obtained when considering static detection
alone, dynamic detection alone, and the hybrid method. In order to evaluate the
detection performance of the proposed method, we report four metrics: preci-
sion, recall, F-Measure, and Receiver Operating Characteristics (ROC) curve.
F-Measure represents a weighted average of precision and recall, while the ROC
Area is defined as the probability that a randomly chosen positive instance is
incorrectly classified as a negative instance; ROC Area is a suggested metric to
represent detection performance when the considered datasets are unbalanced,
as it is in our case, and in malware detection in general [5].

4.1 Static Detection

We first discuss the results obtained by using the static detection method
described in Sect. 2.1. As mentioned in Sect. 2.1 we have experimented with
three different classifiers, namely J48, Naive Bayes, and Logistic Regression as
well as with n equal to 2. In feature selection, we use, as mentioned earlier,
h = 50. After the learning phase, performed by using the training set described
in Sect. 3, we applied the classifier C to each application of the test set and we
measured precision, recall, F-Measure and ROC Area.

11 https://developer.android.com/sdk/index.htm.

https://developer.android.com/sdk/index.htm
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Table 1. List of all the considered features; totals are related only to single applications;
unless differently specified, all numbers are related to the considered monitoring period.

Category Feature names

CPU CPU Usage Total CPU Usage, User CPU Usage, Kernel CPU Usage

Virtual Memory Page Minor Faults, Page Major Faults

Memory Native memory Native Pss, Native Shared Dirty, Native Private Dirty,

Native Heap Size, Native Heap Alloc, Native Heap Free

Dalvik memory Dalvik Pss, Dalvik Shared Dirty, Dalvik Private Dirty,

Dalvik Heap Size, Dalvik Heap Alloc, Dalvik Heap Free,

Cursor Pss

Cursor memory Cursor Shared Dirty, Cursor Private Dirty

Android shared memory Ashmem Pss, Ashmem Shared Dirty, Ashmem Private

Dirty

Memory-mapped native

code

.so mmap Pss, .so mmap Shared Dirty, .so mmap

Private Dirty

Memory mapped Dalvik

code

.dex mmap Pss, .dex mmap Shared Dirty, .dex mmap

Private Dirty

Memory-mapped fonts .ttf mmap Pss, .ttf mmap Shared Dirty, .ttf mmap

Private Dirty

Other memory-mapped

files and devices

.jar mmap Pss, .jar mmap Shared Dirty, .jar mmap

Private Dirty, .apk mmap Pss, .apk mmap Shared Dirty,

.apk mmap Private Dirty, Other mmap Pss, Other

mmap Shared Dirty, Other mmap Private Dirty

Non-classified memory

allocations

Unknown Pss, Unknown Shared Dirty, Unknown Private

Dirty, Other dev Pss, Other dev Shared Dirty, Other

dev Private Dirty

Memory Totals TOTAL Pss, TOTAL Shared Dirty, TOTAL Private

Dirty, TOTAL Heap Size, TOTAL Heap Alloc, TOTAL

Heap Free

Objects Views, ViewRootImpl, AppContexts, Activities, Assets,

AssetManagers, Local Binders, Proxy Binders, Death

Recipients, OpenSSL Sockets

SQL heap, MEMORY USED, PAGECACHE OVERFLOW,

MALLOC SIZE

Network Link layer networking Number of ARP packets, AVG. PKT Size bytes, bps,

Number of ICMP packets, Size in byte standard

deviation

Internet layer networking Number of IPv4 packets, Network load over last minute,

Maximum packet size in bytes, Minimum packet size in

bytes, Number of bytes, Number of packets, Number of

packets per second, Number of IPv6 packets

Transport layer networking Number of TCP packets, Number of UDP packets

Statistics on system calls Number of Syscalls, No. of different syscalls, Average

no. of calls per syscall, No. of calls occurring once, No.

of calls occurring multiple times

The obtained results are shown in Table 2. With the three different classifi-
cation algorithms considered in the study, we have obtained a precision ranging
from 0.968 to 0.998 and a recall ranging between 0.988 and 0.997. The obtained
F-measure is between 0.980 and 0.998 and the ROC area is ranging from 0.998
to 1.000. The classifier with best performance is J48.
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Table 2. Classification results for ransomware and benign applications when features
extracted by static analysis are considered using the J48, NB (Naive Bayes) and LP
(Logistic Regression) classifiers.

Algorithm Precision Recall F-Measure ROC Area

Ransom Trusted Ransom Trusted Ransom Trusted Ransom Trusted

J48 0.998 1.000 0.997 1.000 0.998 1.000 0.998 0.998

NB 0.968 1.000 0.992 0.998 0.980 0.999 0.999 0.999

LR 0.994 0.999 0.988 1.000 0.991 0.999 1.000 1.000

Table 3. Classification results for ransomware and benign applications when features
extracted by dynamic analysis are considered using the J48, NB (Naive Bayes) and LP
(Logistic Regression) classifiers.

Algorithm Precision Recall F-Measure ROC Area

Ransom Trusted Ransom Trusted Ransom Trusted Ransom Trusted

J48 0.988 0.994 0.976 0.997 0.982 0.995 0.998 0.998

NB 0.382 0.975 0.940 0.605 0.543 0.747 0.922 0.943

LR 0.933 0.973 0.894 0.983 0.913 0.978 0.986 0.986

The static method classifies correctly all the benign applications (i.e., no
benign applications are marked as ransomware), but nine ransomware appli-
cations are misclassified as benign. In other words, the static method has no
false positive, but it has nine false negatives. False negatives are represented
by three malware samples from the Simple Locker family and six samples from
Koler family; all the samples from the other families are classified correctly as
malware.

4.2 Dynamic Detection

As described in Sect. 2.2, the applied dynamic detection method identifies ran-
somware applications as such by first detecting potentially malicious execution
records, and then, based on the classification of records, by classifying complete
applications. In Table 3 we enclose the classification results obtained by using
the classification algorithms for the detection of malicious records. While Naive
Bayes provides lower detection accuracy, both Logistic Regression and J48 per-
form well as shown by all considered metrics. Both of these methods are of
low complexity, and, thus, suitable for on-device detection. Due to its ability to
assign a probability of being malicious to a record, instead of just providing a
binary decision, we opted for the Logistic Regression classifier.

The output of record-level classification is, in all effects, a labelling of the
execution records in the execution traces as malicious or not. This piece of infor-
mation is used by the sliding windows mechanism to classify the applications as
ransomware or not. In order to find the most suitable parameters of the sliding
window mechanism for our scenario, we have explored different combinations
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Table 4. Dynamic detection sliding window parameters used in the training phase.

Parameter Values

Sliding window length 1, 3, 5, 7, 9, 10, 11, 12, 13, 15

Threshold (%) 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80

Checks (no.) 1, 2, 3, 4, 5

Table 5. Dynamic detection best results obtained in the training phase with respect
to the observed metrics. Detection time is measured from the first record identified as
malicious.

Configuration Window

length

Threshold

(%)

Checks Detection

rate (%)

False positive

rate (%)

F-Measure Detection

time (s)

Highest F-Measure 9 78 1 90.82 3.46 0.85 20.46

Highest detection rate/

lowest detection time

1 60 1 96.33 19.84 0.58 0

Lowest false positives 10 70 2 80.27 2.92 0.80 60.84

of parameters, depicted in Table 4, by running a batch of experiments on the
training data set. These sets of parameters were determined by running some
preliminary experiments. Based on these results, we have selected the configu-
rations that provide highest F-Measure, highest detection accuracy with false
positives below 20%, lowest false positives with accuracy higher than 80%, and
lowest detection time. These configurations are considered for different possible
application scenarios (those in which detection accuracy would have the highest
priority, those where the lowest false positives would have the highest prior-
ity, and those in which balance of both of them would be preferred). The best
configurations according to the aforementioned metrics are shown, along with
the corresponding detection performance, in Table 5. In these results, detection
time is measured from the first execution record marked as malicious. This is
done to represent the fact that the malicious behavior does not always start at
the beginning of the execution of the applications containing ransomware, even
though, according to our results, for most applications the first malicious record
is identified within the first few seconds of execution. The best trade-off between
these requirements is represented by highest F-Measure that in our case is 0.85;
this configuration provides high accuracy, with a low number of false positives
and a short detection time.

After selecting these optimal parameters on the training set, we tested them
on the test set; the results obtained are shown in Table 6. As expected, detection
performance decreases with respect to the training set, but it remains high. For
example, when the parameters for highest F-measure are selected, the detection
rate decreases from 90% to 85%. The case of the parameters chosen for lowest
false positive rate provides best performance on the test set, with an increase of
the detection rate and a slight increase of the false positive rate.

Considering the fact that execution traces in the test set correspond to ran-
somware samples that were not used during training (even though other samples
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Table 6. Results obtained for dynamic detection in the testing phase with the best
parameters obtained in the training phase. Detection time is measured from the first
record identified as malicious.

Configuration Window

length

Threshold

(%)

Checks Detection

rate (%)

False positive

rate (%)

F-Measure Detection

time (s)

Highest F-Measure 9 78 1 85.61 5.31 0.88 24.24

Highest detection rate/

lowest detection time

1 60 1 93.03 25.06 0.79 0

Lowest false positives 10 70 2 84.68 3.81 0.89 44.72

belonging to the same families were) and, therefore, they are unknown to the
classifiers, we find the obtained detection performance very promising. In fact, in
real life, a mix of both known and unknown malware samples would be analyzed
by the ransomware detection mechanism and this should, in our opinion, further
increase the obtained detection performance.

When best F-measure parameters are considered, 62 ransomware samples
go undetected. By relying on Virustotal, we have classified these samples in
categories. We have taken as a reference F-secure that provides descriptive ran-
somware definitions. Most of the ransomware samples that are not identified
by our dynamic malware detection method belong to the Simplelocker (61%)
and to the Koler (19%) families. The remaining samples were not identified as
ransomware by F-secure, even though other antiviruses identified them as such.
Similarly to static detection, and although providing promising results, dynamic
detection alone cannot detect all the observed ransomware samples.

4.3 Hybrid Detection

To evaluate the effectiveness of the hybrid approach, we have considered the
list of ransomware applications in the test set that are not detected by our
static method, and we have checked whether dynamic detection could correctly
detect them as ransomware. All the nine applications that are not detected
by our static method are correctly identified as ransomware by our dynamic
method, with all the three sets of optimal parameters. Therefore, we have verified
our initial assumption that by using a hybrid method we could increase the
coverage of ransomware detection. In fact, starting from a detection rate of
99.8% for static detection and of 85.61% (paramters optimized for F-measure)
for dynamic detection, we obtain a 100% detection rate for hybrid detection.
While the static method has no false positives, the dynamic method has some,
as shown in Table 6. Considering the extremely good detection performance, we
can choose to optimize the dynamic method for detection speed or for the lowest
number of false positives, choosing the corresponding parameters of Table 5. In
summary, the results show that using the hybrid method is the way to go in order
to provide effective protection against ransomware not only for its increased
coverage, but also to unite the accuracy of static detection with the possibility
of detecting ransomware at runtime of dynamic detection.
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Finally, while our method provides 100% detection of ransomware, we need
to point out that static and dynamic detection are different in what they offer. In
fact, static detection is able to detect ransomware before the application contain-
ing it is executed, thereby preventing the malicious payload from executing and,
thus, preventing any harm to the system. Dynamic detection, instead, detects
malware while applications are being executed and, thus, when some harm to
the system might have been already caused. As previously discussed, our detec-
tion method is relatively fast in detecting malicious behavior, but still it leaves
open the possibility of harming the system. On the other hand, dynamic detec-
tion is able to capture ransomware at runtime, thus offering protection against
dynamically installed code, which cannot be detected by static methods since
they normally run with much lower periodicity, and against malicious actions
hidden in obfuscated code.

5 Related Work

The main difference between ransomware and other widespread mobile malware
types is in their behaviour: as demonstrated in [18], Android malware generally
focuses on remaining hidden while gathering and sending to the attackers user
sensitive and private information. Ransomware, instead, leverages the knowl-
edge of its presence by users to obtain the payment of a ransom. Due to this,
current methods proposed by the research community for the identification of
malware are not necessarily effective in detecting ransomware, as the recent rise
in ransomware attacks demonstrates. As also stated in [1], this ineffectiveness
of traditional methods, when used alone, exposes more than a billion users to
this threat. Effective solutions for detection of ransomware on mobile devices are
needed, but up to date, there are only a few works addressing this issue in the
literature. Here, we first discuss them in detail and then, we compare current
literature with the approach that we propose.

The first method that introduced ransomware detection for Android is Hel-
Droid [1]. This tool includes a text classifier based on NLP features, a lightweight
smali emulation technique to detect locking strategies, and the application for
detecting file-encrypting flows. The main weakness of HelDroid is that it strongly
depends on a text classifier: as a matter of fact, the authors trained it on generic
threatening phrases, similar to those that typically appear in ransomware or
scareware. This strategy can be easily thwarted by means of techniques such as
string encryption and data ciphering [15]. Furthermore, the proposed method
strongly depends on language dictionaries; this is the reason why, as stated by
the authors, when the analyzed ransomware is targeting non-English speakers,
the dictionary must be switched to a different language. In addition, this method
can be evaded by altering the occurrences of such words. From the performance
point of view, they identify rightly 375 Android ransomware on a dataset com-
posed of 443 samples: 11 ransomware were not detected due to unsupported
language (e.g., Spanish, Russian) with 9 out of 12,842 false positives.

In [17], the authors propose a performance tool in order to help to under-
stand what can be done to cope with Android ransomware detection. This tool
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provides the ability to dump the log of system messages, including stack traces.
However, this method remained at the level of a proposal, with no implementa-
tion. Therefore, there are no results that can prove its effectiveness.

Song et al. [16] designed an approach with the aim of identifying mobile
ransomware by using process monitoring. They consider features representing
the I/O rate as well as the CPU and memory usage. They evaluate the proposed
method with only one ransomware sample developed by the authors. This sample
has the ability to encrypt the file by using AES.

An approach based on formal methods that is able to detect Android
ransomware and to identify the malicious sections in the application code is
described in [11]. The authors evaluate a dataset composed of 2,477 samples
with real-world ransomware and trusted applications. Starting from the payload
behaviour definition, the authors formulate logic rules that are later applied to
detect ransomware. The main weakness of the proposed method is represented
by the human analyst effort required to build the logic rules. As a matter of fact
the proposed method foresees the payload identification but the process rule
building has to be done by hand, and as such, is a time consuming task.

A hybrid static-dynamic approach is proposed in [6]. In that work, appli-
cations are first scanned by using a static approach and marked as Benign,
Suspicious, or Malware; only the applications marked as suspicious are then
examined by using a dynamic approach. The static approach is based on text
and image classification as well as on API calls and application permissions. The
dynamic approach is based on sequences of API calls that are compared, with a
periodicity of five minutes, against malicious sequences identified for each mal-
ware family. While global performance of the method is not clearly reported, it
can be derived that the authors can obtain a recall of 98% with a number of
false positives below 1.5%. While applying dynamic detection only on applica-
tions marked as Suspicious provides the ability to reduce the system overhead,
it leaves the possibility of having malware not recognized as such (e.g., due to
obfuscation) by static detection running on the system. Dynamic detection takes
a minimum of five minutes to identify a ransomware sample.

Table 7 shows a comparison between the state-of-the-art methods for mobile
ransomware detection. The only methods, as depicted in Table 7, that are able
to discriminate automatically between ransomware and trusted applications are
the ones proposed in [1] and in [6]. The former has the limitation that if the
ransomware applications are translated into different languages than the original
ones, their detector is not able to identify the threat unless re-trained. The latter,
is a hybrid approach that has very good detection performance, but it applies
dynamic detection only to a subset of applications that are not identified as
ransomware and it takes up to five minutes to detect malware by using the
dynamic method. On the other hand, the approach proposed by Mercaldo et al.
in [11] is able also to localize the malicious behaviour and to obtain a precision
equal to 1 with a recall equal to 0.99 but it requires the formulation of logical
rules that require human intervention.
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Table 7. Current literature comparison in mobile ransomware detection.

Authors Approach Weaknesses

Andronio et al. [1] Text-based classification Natural language dependent

Yang et al. [17] High-level design No implementation

Song et al. [16] Process monitoring Evaluation on one
self-developed sample

Mercaldo et al. [11] Formal methods Requires human intervention
for rules building

Gharib and Ghorbani [6] Hybrid detection Dynamic detection is applied
only on Suspicious
applications

The approach that we propose is different than all the others proposed in the
current literature, since it is first, independent from the language application (for
instance, we consider for the static analysis features derived from the structural
characteristics of the code) and second, the considered extracted features (for
both dynamic and static analysis) are fully automated and do not require the
security analyst intervention. Additionally, our approach considers as target for
dynamic detection all the running applications. In this way, also ransomware
that is able to evade static detection, (e.g., by means of code obfuscation) can be
identified. While our method requires continuous monitoring of the applications,
it uses features and methods that are not as demanding as sequences of API
calls and it can detect ransomware, on average in 20–60 s, depending on the
configuration chosen. The main weakness of the method proposed by Song et al.
[16] is that the authors use only one ransomware sample, developed by them,
to evaluate their solution. This makes any comparison with other methods, in
terms of detection performance, impossible. Considering that approach proposed
in [17] is only a high-level design with no implementation and validation about
its effectiveness, it is not possible to perform a comparison between our proposal
and the considered approach.

6 Conclusions

Mobile ransomware attacks are on the rise and pose threat not only to companies
and governmental institutions but to the entire society. Both static and dynamic
methods commonly used for ransomware detection offer good performance alone,
but, according to our results, none of them can detect all different ransomware
samples. Also other state-of-the-art methods do not provide effective solution.

In this paper, we propose a hybrid approach to ransomware detection that
has a 100% detection rate coupled with a false positive rate below 4%, even
when analyzing previously unseen applications. This performance was achieved
using dynamic method to complement the static one, thus increasing coverage
and allowing us to combine the advantages of both methods. Finally, given high



Extinguishing Ransomware - A Hybrid Approach 257

achieved detection accuracy on one hand and the detection methods of low com-
plexity used for on-device dynamic detection on the other, we are convinced that
such hybrid method can be used to detect ransomware not only in mobile phones
but also in other IoT devices.
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Abstract. Deception systems have produced promising results in pro-
tecting networks from recent attack campaigns. Their development and
operation, however, is regulated by technical and legal circumstances.
There are several aspects to be considered when operating a deception
system, such as privacy, entrapment and liability. In addition to these
general aspects, domain specific law that, for example, applies to research
or government, needs to be accounted for. In this work German and
European law was investigated with respect to deception systems focus-
ing on the aspects listed above and others. The findings are applied to
the design, operation of a Honeypot, as well as the generation and publi-
cation of information. We found that it is not forbidden to use deception
systems in general but several facets have to be considered in the tech-
nical implementation.

Keywords: Information security · Privacy · Deception · Honeypots
European law · German law

1 Introduction

Deception technology and especially Honeypots are an advanced IT-security
mechanism to oppose cyber crime. This technology relies on purposely providing
false or delayed information, hiding information and misleading ongoing attack
campaigns into a course controlled by the operator of the deception systems.
Usually the parried attacks are monitored and analyzed to gain further insight
of the adversaries intentions and approaches. Questions about privacy, copyright
and other legal interests are thrown up by this process. Furthermore, devices con-
nected to the Internet can be reached globally. Still domestic law of every partic-
ipating party applies which leads to legal uncertainty, especially since the origin
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of an attacker is not known beforehand. In this work the legal concerns when
employing such technology are investigated. Related work is listed in Sect. 2.
We first introduce technical aspects and major peculiarities in Sect. 3. In Sect. 4
we introduce relevant parts of German, European and international law. These
laws are refined by domain specific law in some cases. In some cases, such as
governmental or research applications, domain specific law has to be applied in
addition to the general law. Examples of relevant domain specific laws are given
in Sect. 5. In Sect. 6, the application of the findings are mapped towards real-
world Honeypots and the publication of data. It is motivated by previous works
of the authors that faced the legal considerations described in this paper. The
findings are concluded in Sect. 7.

2 Related Research

Previous work is mostly focused on American law. Legal concerns in all of the
reviewed publications are: Liability, entrapment and privacy [9,11,12]. To the
best of our knowledge, there is only one work where the concept of Honeypots
is investigated in the light of European law [13]. The law of a specific European
country has not been analysed with respect to deception systems yet.

3 Technological Aspects

In this section, the technical intricacies of deception systems are introduced that
impact the legal evaluation. Honeypots are the most common kind of deception
system. They can be distinguished by their type, the deployment strategy, the
level of interaction and the counter attack strategy.

3.1 Honeypot Types

Common types are server-side, client-side and token Honeypots. Server-side Hon-
eypots are considered passive in their context. They wait for incoming connection
and respond as a genuine server would. In contrast to that, client-side Honeypots
actively connect to servers and pretend to be a genuine client system. Honeyto-
kens, such as Honeyfiles and Honeylinks, are data or information embedded in a
context like a HTML-document or database. Like server-side Honeypots, tokens
are passive and wait for an attacker to illicitly access or misuse them otherwise.
In this work, we focus on server-side Honeypots, as there is a broad amount
of deception technologies that can hardly be considered in full in one scientific
work.

3.2 Deployment and Intention

The deployment is only relevant to server and token Honeypots. Research and
production deployment modes are distinguished. Research mode is employed to
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enable a broad amount of attacks. A common research mode deployment is con-
necting a Honeypot directly to the Internet and making it addressable with a
public IP address. These systems are employed to investigate large scale cam-
paigns such as botnets and common exploitation techniques to access restricted
resources from an external context. On the other hand production mode deploy-
ment is a strategy where the Honeypot is within a non public context. Interaction
on these Honeypots always indicates breaches in the perimeter thus revealing
compromises in early stages.

3.3 Level of Interaction

Honeypots may differ in the depth of emulation of the resource they mimic. Tel-
net servers, for example, typically prompt for an authentication when connected.
A system only registering the connection or emulating the login prompt would be
considered as a low-interaction system. More advanced systems grant access and
provide the full functionality of the given operating system. These systems are
considered as high-interaction systems. In literature, medium-interaction system
are not consistently defined but commonly placed between the functional scope
of low- and high-interaction systems.

3.4 Counter Measures and Aggressive Honeypots

Recently, more aggressive counter measures such as hacking back the attackers
are discussed in the context of self defence [8]. From a technical perspective
counter attacks can be classified in the same taxonomies as the initial offensive.
They extend from denial of service or resource exhaustion techniques to more
specific attacks such as dictionary or brute force attacks against the maintenance
protocol (most likely Secure Shell) of the attacking server. Mirroring of the
attacking technique is promising, particularly against propagating malware or
botnets since the system was most likely compromised originally by the applied
technique.

4 Legal Concerns with Deception Systems

In this section the impact of German and European law on the above introduced
technical intricacies is discussed. We identified five legal key aspects that need
to be taken into consideration when operating a deception system. A simplified
relation of German national and European law is shown in Fig. 1.

The Basic Constitutional Law of the Federal Republic of Germany (GG)
is derived from the German constitution. All domain specific laws have to be
compatible to the basic law as well as the constitution. More than that there are
two kinds of European legislation: Directives and regulations. Regulations are
directly applied in each member country, while directives need to be adapted into
national law first. The application of law in Germany therefore consists of the
Basic Law, the domain specific laws that derive from the German constitution
as well as European directives and European regulations.
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Fig. 1. Application of law

4.1 Privacy

In this section, European regulations and German laws are discussed in the
context of privacy. A major task of deception systems is the collection of threat
intelligence. The basis of threat intelligence is information collected from the
interaction with deception systems. Deception operators need to consider the
amount of data they intend to collect with respect to the regulations and laws.
§8 of the European Convention of Human Rights provides a right to respect
for private and family life in home and correspondence. This convention was
published in 1950 and is the foundation of all European and national regulations
and laws. It states that persons working with technologies that are capable of
collecting or processing personal data where a specific person may be identified
are responsible to prevent corresponding violations of privacy.

Fundamental European Rights. In 1981, the first appearance of European
law containing regulations for the processing of personal data has been published
as the European treaty series No. 108 (Convention for the Protection of Indi-
viduals with regard to Automatic Processing of Personal Data). This convention
specifies a right of privacy for individuals, with regard to autonomic processing
of corresponding personal data. In §5 it is clarified that personal data has to
be obtained and processed “fairly and lawfully”, stored only for specified and
legitimate purposes and no longer than required. §5 is only applied to data, that
enables identification of a data subject. As a consequence, it is legitimate to store
collected data if it is impossible to identify the corresponding person. In §5 an
exception for the processing of data in deception systems for scientific research
or statistical purposes as well as for law enforcement is given, with respect to the
binding to their purpose. The exception requires, that there is no obvious risk of
a violation of privacy. However, in §8 every person is granted the right to assert
the existence as well as main purpose of collected personal data and the identity
of the data controller. Additionally, every data subject is able to demand the
deletion of all relevant data, if the criteria for collection are not fulfilled.
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European Directives. In 1995, the European Union published the directive
95/46/EC that focuses on the protection of individuals with regard to the pro-
cessing of personal data and on the free movement of such data. This directive
establishes the fundamental rights in regulations all member states need to reg-
ulate in national law. In Art. 7, criteria for the legitimate processing of personal
data are named. According to this paragraph, data can only be processed if
processing is necessary for

– the data subject unambiguously given consent,
– the performance of a contract,
– compliance with a legal obligation,
– the performance of a task carried out in public interests or vital interests of

the data subject or
– legitimate interests as long as they do not interfere with fundamental rights

of the data subject.

A person whose data has been collected has the rights to get all relevant infor-
mation about the data and the data controller and has to be notified if someone
obtains personal data that has not been directly obtained from that person.
According to §17, the controller has the duty to take care of an up-to-date secu-
rity to protect the data and the processing of the data from accidental or unlawful
usage or destruction. EU Directive 2002/58/EC is an addition to 95/46/EC and
focuses on the processing of personal data and the protection of privacy in the
sector of public electronic communications. §5 of this directive contains regula-
tions about the confidentiality of the communication. Communication networks
and services shall prevent all kinds of tapping, interception or surveillance of
communications without consent. The directive distinguishes data in traffic and
location data. Traffic data is used for the transmission of messages and has to
be deleted or anonymized when it is no longer required for the purpose of trans-
mission. Traffic data can legally been processed for billing of subscribers and
location data only within the necessary duration for transmission or if they are
anonymized.

General Data Protection Regulation. EU directives 95/47/EC as well as
2002/58/EC are the two important directives in the context of collecting data
with deception systems. However, due to the fast technical progress the direc-
tives are obsolescent and hardly cope with modern communication. The Euro-
pean Union published two new regulations, that are coming into force on May
25th in 2018. EU regulation 2016/679/EC General Data Protection Regulation
(GDPR) annuls directive 95/46/EC and 2017/0003/EC (e-Privacy) will annul
the prior directive 2002/58/EC. Both regulate the same domain as their pre-
decessor but cover more details with respect to new processing techniques. In
2016/679/EC, it is described that a data controller needs to inform a person at
the time of collection but not in case of getting data otherwise and for the pur-
pose of scientific research. Personal data controller have more obligations such
as
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– securing the data,
– keeping a register about all data and processing steps and
– informing the supervisory authority if processing may violate the privacy of

certain persons.

Researchers can process data if they guarantee to respect all rights of privacy
and only use a “minimal amount of data”. If possible the data needs to be
anonymous. Otherwise, it needs to be pseudonymous.

German Law. The foundation for domain specific law is composed by the GG.
It establishes several fundamental rights with respect to privacy such as:

– Human Dignity (Art. 1 GG),
– Personal Freedoms (Art. 2 GG),
– Privacy of correspondence, post and telecommunications (Art. 10 GG) and

Article 10 regulates the inviolable privacy of correspondence, mail and telecom-
munication. However, Sect. 2 state the inviolability as restricted pursuant to
other law. Please note, that fundamental rights do not directly apply between
natural persons. The Federal Data Protection Act (BDSG) is the most important
law for privacy in Germany and is currently adapted to the GDPR. It focuses on
the rights of a person about processing personal data and privacy, thus realizes
EU directive 95/46/EC. Both state that personal data is only collected for a
“limited duration of time” and only if “required to provide services” or if the
user gave his permission to do so. The BDSG, however, allows several excep-
tions. §4a dictates that the permission has to be given in written form except
for valid scientific purposes. Additionally, §4d commits data processing organi-
zations to report to supervisory authorities about automated data processing
techniques. German law differentiates between collecting, processing and using
data. Collecting data for scientific purposes is not explicitly allowed without the
permission of the user, but the processing of received data is allowed. According
to §40, personal data, that was collected for scientific purposes can only be used
for those purposes and has to be anonymized as soon as possible. The German
Telemedia Act (TMG) describes the rights and obligations for all electrical infor-
mation and communication services. The §15 TMG state that personal data can
only be collected if it is necessary to provide the service or for billing. As in
95/46/EC the provider has to inform the user about collection and purpose of
data and the user has to give his permission. §13 also declares that the data has
to be deleted right after the end of the service. The TMG is very restrictive,
deception systems with extensive data collection may be illegal in the context of
the TMG. However, the term electrical information and communication service
is defined in §1 of the TMG and a deception system may not pose a service
as required to apply the TMG. §13 sec. 7 states that the provider ensures the
security of the service and the data. This clause may allow the collection of data
of potential threats to the service.
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Court Judgments. Due to the lack of detail about the content of personal data,
there have been several trials. Those trials were mainly about the legitimacy of
the collection of personal data and special types of data such as IP addresses.
In Germany, the Higher Regional Court of Cologne dealt with those questions
in the case 12U16/13 in December 2015. In this case, they had to decide if it
is legitimate to hold information about dynamic IP addresses for 4 days. The
defendant, a small size service provider, collected data to protect the system
from disruptions. From the courts point of view, Denial-of-Service attacks, spam
mails and malware can result in disruptions. Therefore, it is allowed to collect
and process relevant data as long as needed to get important information about
potential disturbances. This case affects provides of communication services but
not provides of media services. In October 2016, the European Court of Justice
dealt with a case about a litigation between the federal public of Germany and
Mr. Breyer that was initialized in October 2014. Breyer stated that it is illegal to
collect information about user containing time data and dynamic IP addresses
for provider of online media services. The court decided that this data is personal
if the provider has the legal means to get the identity of the person behind the
address. Furthermore, it is not allowed to store this information for a longer
duration than necessary to provide the requested service. Due to this judgment,
the German Federal Supreme Court of Justice had to form an opinion about the
original case. In May 2017 an announcement was made that no final consideration
could be made.

4.2 Entrapment and Accessoryship

Entrapment is not regulated by European law. Members of the European Union
are self dependent in this domain. In Germany entrapment is covered by §26
and §30 Penal Code (StGB). However, the requirement of both is to dictate
somebody to commit a crime. A criminal abusing a honeypot had the crimi-
nal intention before. The criminal actively searched for vulnerable systems and
exploited the identified vulnerability to take advantage of the honeypot. Even
if a client side honeypot is considered, the attacker did set up a server with
offensive abilities before. She also implemented a trigger to employ the offen-
sive capacities against a connecting system. Honeypots do not dictate criminal
activities to intruders. A conviction for entrapment is unlikely. §27 StGB covers
accessoryship: “Intentionally rendering aid to another in intentional commission
of an unlawful act”. This could be the case if a deception system is used to
perform attack against third parties. In this case the operator of said deception
system could be considered an accessory, since she aids the attacker by implicitly
providing resources.

4.3 Liability and Other Claims

Any operator of a service can be liable for damage caused by this service. Liability
is specifically affecting honeypots as the operator is liable for damage occurring
from the honeypot operation as well. As Honeypots are intended to be exploited,
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the risk of an attack propagating because of misconfiguration is high compared
to well maintained systems. Liability is not regulated in the European Law. In
German Law liability is regulated in §823 Civil Code (BGB). Liability needs to
be considered in several cases:

– Damage of third parties due to an intruders interaction with the honeypot,
– Damage due to information published that was collected with the honeypot.

To palliate the probability for a conviction, technical measures need to ensure
a proper policy enforcement. Policies need to be defined to mitigate pivoting
attempts. Additionally, the collected data needs to be handled with a state of
the art security level and publications need to fulfill the requirements of privacy.
With adequate technical measures, a reduction of the risk of being held liable
to the level of a common service can be achieved. Honeypots do not expose the
operator to significant juridical consequences any more than other systems. In
addition to liability, it may happen that a honeypot collects personal data from
third parties. According to Art. 5, 2016/679/EC, this kind of collection is illegal
as it is not related to a valid cause. Violating the 2016/679/EC can result in
claims against the operators.

4.4 Copyright

High-interaction deception systems enable extensive monitoring of intrusion
campaigns. These systems may be able to obtain malicious programs from
attackers and botnets. Malicious programs can be obtained in the form of com-
piled binaries or a sequence of commands. Any person has the rights on her
intellectual property, no matter how the program is used. In European law, the
directive 2004/48/EC focuses on the enforcement of intellectual rights. §5 of
this directive states that the author of literature or art is determined by a name,
indicating the works author. Additionally, in directive 2009/24/EC on the legal
protection of computer programs §1 claims that computer programs are pro-
tected by copyright as pieces of literature. In German law, the Act on Copyright
and Related Rights (UrhG) regulates intellectual rights. This act has the same
formulations with regard to computer programs as the European law. According
to §§15-22, the author has the right to choose about publication, duplication,
spreading and exhibition. If a work is free to use it can be taken as basis to cre-
ate a new product without notifying the author of the original work. In §§97-99
UrhG, the author of any kind of written work can insist on stopping the usage
of his intellectual property. After this warning, proceedings against the usage
can be initiated to compensatory damages. However, in case of an attacker who
creates malicious software it is very unlikely that she will claim damages because
she usually has created the software to do illegal actions she can be condemned
for.

4.5 Self-defence

Self-defence, for example hackback, in the context of cyber crime, describes
counter measures against intruders or intrusion attempts. These counter
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measures can be criminal acts by §202a-d StGB, §206 StGB, §263a StGB or
§303a-b StGB depending on the technical design of the counter measure. How-
ever, the German law allows active counter measures, such as hackback, under
specific circumstances. There are two different cases: Self-defence and necessity.
Self-defence is “any defensive action to advert an imminent unlawful attack on
oneself or another”. It requires that the attacking system is juristic property of
the attacker. This cannot be ensured as most attacks stem from infected sys-
tems. More than that self-defence also requires the attack to be ongoing. From
a technical perspective honeypots are able to trigger instant counter attacks.
This requirement can therefore be fulfilled, if the technical implementation is
adequate. However, self-defence salvages the risk of a conviction if a third party
system is attacked. Necessity means the aversion of an imminent danger, such
as a cyber attack, upon a legal interest with any means necessary, given they
are proportional and given the legal interest outweighs the effect of the counter
measure. In case of necessity, third party actors are also allowed to be attacked.
Preventative counter measures are also allowed if a threat is present. Defence
motivated by necessity needs to be adequate with respect to the opposed threat.
This implies that the kind of attack needs to considered for the counter measure.
For example port scans may not legitimate distributed denial of service attacks
as response. Counter measures are a legitimate option against attackers. How-
ever, the context is significant. Adjacent to the discussed situations, the operator
is a major factor. State involved counter attacks may pertain international or
martial law.

5 Domain Specific Law

In this section we discuss specific domains in which general regulations are sup-
plemented, as, for example, the StGB does for criminal law. Table 1 gives an
overview of the investigated domains and the corresponding codes of law. The
domains law enforcement, research, federal law & public sector and telecom-
munication providers are the four domains that were identified as relevant for
application in the area of deception systems.

Table 1. Domains and corresponding laws

Domain Corresponding law

Law enforcement §100g StPO, §7 BKAG

Research §28 S2 no.3 BDSG, §40 BDSG

Federal law & public sector §§13,14 BDSG

Telecommunication providers §96 TKG, §100 TKG

Subsequently an overview of different cases/institutions with specific laws
that are able to extend general laws is given.
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5.1 Law Enforcement

In order to protect personal data in the purpose of the prevention, investiga-
tion, detection or prosecution of crime or the execution of criminal penalties,
respectively, there is the directive 2016/680 EC, wherein the fundamental right
and freedom of natural persons and their right to the protection of personal
data is fixed. As all European directives it needs to be transferred in national
law, which is currently in process in Germany. There still exist some sections in
German law that allow to collect personal data for law enforcement. In Ger-
man law there is a fundamental understanding of the commensurability of a
governmental intervention. In this context the

– suitability,
– necessity,
– reasonability and appropriateness

of the intervention must be given. Beyond that, as already mentioned above,
any legal foundation is required for every intervention. For instance conditions
regarding the interception of telecommunication are defined in §100a Criminal
Procedure (StPO). It is allowed to intercept and record telecommunication, also
without the knowledge of the concerned person, if certain facts give rise to the
suspicion that a person focuses a serious crime or, in cases where there is criminal
liability for attempt, has attempted to commit such a crime or has prepared such
a crime.

Due to §100g StPO it is also allowed to collect communication traffic data,
in terms of §96 TKG, if certain facts give rise to the suspicion that a person
has committed a crime, in cases where there is criminal liability for attempt,
has attempted to commit such a crime or has prepared such a crime or has
committed a crime by the means of telecommunication.

Extended permissions are also given to governmental authorities such as the
Federal Criminal Police Office. According to §7 Federal Police Law (BKAG) they
are allowed to collect, process and use privacy data, as well as, for example, time
and scene of a crime (§8 BKAG), if this is necessary in compliance to their task
as central office of law enforcement. Furthermore they are allowed to impose and
store other privacy data.

5.2 Research

The German law is very detailed in the context of data security. According to §28
Sentence 2 no. 3 BDSG the collection and storage of data shall be admissible,
if it is necessary in the interest of a research institute for conducting scientific
research. Sentence 6 no. 4 of the same section, extends these permissions in a way
that not only the collection but also the processing and the use of special types
of personal data is allowed, if necessary, for the purposes of scientific research.
But there are also some restrictions, there is a specific section within the BDSG
especially for research institutes. §40 defines that collected and stored personal
data may processed or used only for scientific research purposes. Due to sentence
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2 it is also necessary to anonymize personal data if this is possible. Sentence 3
states that a publication of personal data is only allowed if the data subject has
consented or if the data is indispensable for the presentation of research findings
on contemporary events. Researchers intending to publish results, coercively
need to anonymize these.

In European jurisdiction there is a restriction for the storage of privacy data
for the purpose of research. According to §6 Sect. 1e 2000/31 EC, data shall not
be stored longer as necessary for the purpose and it shall not be possible to
identify participating entities.

5.3 Federal Law and Public Sector

Public bodies of the Federation are regulated in a specific section within the
BDSG. In the sections §§12 – 14 BDSG it is defined which actions are explicitly
authorized. The collection of personal data shall be admissible if the knowledge
of them is needed to perform the duties of the bodies collecting them (Sect. 13
sentence 1 BDSG). If it is necessary for the performance of the duties of the
controller of the filing system and if it serves the purpose for which the data was
collected, it is allowed to store, modify or use personal data (Sect. 14 sentence 1
BDSG).

The German Federal Office for Information Security is responsible for the
security within information technology. In order to defend against risks for crit-
ical infrastructure, they are empowered to collect and evaluate data, especially
information about security vulnerabilities, malware, happened or attempted
attacks aligned on information security and also the exact proceeding of the
attackers (§8b S.2 Nr. 1 - BSIG).

5.4 Telecommunication Providers

Service providers are committed to safeguard the secrecy of telecommunication
according to §88 Telecommunications Act (TKG). Furthermore they are obli-
gated to protect the personal data of communication participants (§91 ff. TKG).
If there is any justifying purpose, however, they are granted certain permissions,
like collecting communication traffic data, especially phone numbers, and con-
nection meta data, such as time and duration (§96 TKG). In case of disturbance
of their infrastructure, they are allowed, according to §100 TKG, to collect addi-
tional data. To define the case of disturbance there is a legal decision of the
Higher Regional Court of Cologne (I-12 U 16/13 OLG Koeln) in which cyber
attacks are defined as such a disturbance. According to §98 TKG, they are also
allowed to collect location data if they provide additional services relying on
this data, which however needs to be anonymised. A specific restriction for the
storage of this data is the duration. Service providers need to retain data only
for a period of ten weeks, location data only for four weeks (§113b TKG).



270 D. Fraunholz et al.

6 Honeypot Design and Threat Intelligence

In this section, we apply the findings from the previous sections to the design and
threat intelligence of Honeypot systems. Regulations that restrict the collection
and usage of data are considered, as well as possibilities to still gather and
publish information. Furthermore, lessons learned during the research for this
work and the operation of Honeypots are explained.

6.1 Application

The design, operation and threat intelligence can be split into four categories.
First, in the deployment, the kind of Honeypot to operate is chosen. After that,
the possible operation modes are introduced. The data processing is evaluated
after that. Finally, the possibilities for publishing information and insights are
discussed.

Deployment. Due to the specific nature of production Honeypots they need to
follow significantly less restrictions than research Honeypots. As they are placed
within the perimeter an attacker has to have breached the network security, hav-
ing committed a crime already. The authors conclude that entrapment is not an
issues. As the operator is always liable, measures have to be taken to ensure the
attacker does not influence third party systems. This can be achieved firewall
rules and policy enforcement. A best practice is to block or limit outgoing traffic
[4]. Blocking can be problematic as no interaction is possible, for example with
the Command and Control (C&C )- or download-server, hindering further ana-
lytics. Sometimes, the inability to create outbound traffic leads to the deletion or
abort of infection routine of the malware, a common anti-forensics mechanism [3].
In contrast to research Honeypots, production Honeypots are usually placed in
productive environments. If activity can be detected, an attacker has obviously
gained access to this environment, potentially endangering the production facil-
ity. Counter measures as means of defending the production infrastructure can
therefore be considered as self-defence.

Research honeypots, on the other hand, are usually publicly accessible and
not connected to productive systems. Therefore, any client can access them and
no damage to one entity’s assets is imminent. This makes entrapment possible, as
it offers obvious vulnerabilities. Entrapment, according to German and European
law, requires more than just offering an opportunity, however. It is necessary
to actively try to get a victim to perform an illegal action, which cannot be
seen here, neither for client-side, nor for server-side Honeypots, according to
the authors. Liability lies with the operator, as she has to make sure that no
outbound traffic can harm any third-party system. The best practices are the
same as described above.

The authors operate several research Honeypots, whose deployment has been
described in previous works [5]. As no outbound traffic is possible on our systems,
we take no risk of liability for damage on third-party systems. It is, however, not



Deception in IT-Sec: Legal Considerations 271

inconceivable that an attacker compromises the underlying operating system,
for example via a previously unknown vulnerability, to execute attacks against
third parties. In this case, liability seems improbable, as the code was created
according to best practices for secure programming.

Operation. Honeypots can be operated in different fashions. One of the most
important distinguishing feature is their ability to counterattack. Especially since
malware usually runs on host systems that are not owned by malicious adver-
saries, hackbacks can only be executed under certain conditions, as described
in Sect. 4. To verify these conditions beforehand is infeasible, making hackbacks
risky. On the other hand, many botnets have only been defeated by law agen-
cies because traffic was infiltrated into C&C communication [1]. The authors
conclude, that law enforcement agencies have a higher tolerance for actively
counterattacking malicious adversaries than research institutes. The Honeynet
we previously introduced [5] is not capable of hacking back.

Data Processing. Honeypots are created and operated to gather data. Typi-
cal kinds of collected data are IP -addresses, timestamp, location of the attacker
and payload, such as credentials or command sequences. IP addresses will sup-
posedly be considered personal data according to German and European law
[2,6]. Timestamp, location and other metadata can be personal data if they are
able to identify an individual. If the conjunction of different kinds of data with
metadata allows someone to identify an individual, metadata is classified as per-
sonal data. The collection of metadata therefore poses a threat to the operator
of Honeypots, since it can be personal data to which strict regulations apply.
Payloads of attacks can be copyright protected data, especially if an attacker
exploits a vulnerability that was unknown beforehand. Such exploits are sold for
sums of several thousand dollars up to $1.5 million [15]. The simple collection
of copyright protected data, however, does not pose a problem to the operator
of the Honeypot.

According to German and European law, personal data has to be deleted
as soon as it is no longer required for technical reasons, for example offering
web services. The purposes of research and law enforcement create exceptions.
Law enforcement agencies are allowed to store personal data as long as the
investigation is ongoing and it is allowed by a judge. Research institutes are
allowed to store personal data for the duration of their research. It needs to
be noted that all assessments in this section only account for storing data, not
distributing or utilising it. The author’s Honeypots store all this information in
a secure way to comply with German privacy protection regulations.

Publication. Publication and distribution of collected data is desirable for
different reasons.

Law enforcement agencies exchange data in the context of cross-border pros-
ecution of crime. Internet architecture makes it easy for an attacker to avoid
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the jurisdiction of the country she is attacking in by originating her attack in a
different country. This needs for international cooperation in crime fighting.

Research institutes publish scientific results and findings. The publication of
personal data, however, is strictly forbidden, unless it is necessary to describe
the situation or unless it is a person of public interest. That means personal data
has to be anonymised to avoid legal consequences. Another possibility of making
use of the data and publishing results is statistical analysis and release of the
findings. This allows for full usage of the data without compromising personal
data and has, among others, been employed by the authors in previous works [5].
Another common practice, as practiced by Google Analytics [7] for example, is
deleting one octet of an IP address. This way, some information, such as local
area, can be obtained without disclosing identities.

Telecommunication provider. Usually, personal data, such as IP and access times,
are stored by the telecommunication providers only for a short duration of several
days. This data can be shared with law enforcement agencies for prosecution of
crimes, as well as with other providers for misuse prevention.

Copyright protected data, as described in Sect. 6.1, must not be distributed
or copied in an unauthorized manner. However, since the creator of this data has
to claim his rights, she will inevitably admit for having commited cyber crimes.
This makes in unlikely for the operator of a Honeypot to be held accountable for
distribution of copyright protected data, even though she is technically trans-
gressing the law.

6.2 Lessons Learned

During the operation of our Honeynet, we found that the legal foundations can
change in a way that influences our research. This leads to the insight that
constant evaluation of the legal landscape is necessary for operators of deception
systems in order to prevent being prosecuted. Sometimes, the laws change for the
better from a research institutes perspective, as with the General Data Protection
Regulation, presented in Sect. 4. It explicitly states exceptions for storage of
personal data for research institutes. Beforehand, this was tolerated but not
regulated by German law. Despite the release of laws, a factor of uncertainty
always lies in the jurisdiction. The relatively new topic of cyber crime and its
defence has not often been dealt with in court, making the outcome uncertain
as there are not many test cases. Furthermore, a challenge lies in the origin of
attacks. According to common law, the jurisdiction of the country of origin is
applied, making it infeasible for the operator of a Honeypot to check all possible
laws. The authors of this work alone have monitored attacks from 174 countries
in 222 days and analysed access from 95 countries monitored during 111 days in
previous works [5].

In previous works, we published statistical analysis of the attacks to avoid
legal issues. The published data is not suitable to identify an individual. For
research projects the authors are currently working on, the generation of attack
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signatures is required. This could create a conflict due to the implicit publica-
tion of copyright protected content and needs to be checked thoroughly. German
institutes, such as the Deutsche Telekom AG with their DTAG Honeynet [14],
only publish the country of origin, the timestamp and the content of any attack.
This information without an IP -address is not able to identify individuals. Amer-
ican institutes, such as the Norse Corp. with their NorseMap [10], publish the
IP addresses as well. This is due to the significantly different laws on personal
data in the United States of America. These were out of scope in this work, but
highlight the drastic differences in jurisdiction between different countries.

Art. 5, 2016/679/EC demands several conditions to be fulfilled for processing
of data to be legal. Many of them, for example the right of deletion of data
or the necessity of a valid cause are inherently incompatible with the idea of
deception systems. A legally sound implementation is a challenging task, as
many restrictions on anonymisation are to be met. This will be discussed in
future works.

7 Conclusion

There are several European directives that take all relevant aspects of the legiti-
macy of deception systems into consideration, as well as regulations, such as the
GDPR and the e-Privacy regulation, that will be applied by national jurisdic-
tion. They contain regulations on privacy, entrapment, liability, copyright and
self-defence. Additionally, most of them distinguish between domains such as law
enforcement, research, public sector and telecommunication providers. European
directives have to be implemented into acts by every member state. Therefore,
operators of honeypots have to consider which domain they represent and which
law is relevant for them. Especially in case of collecting and processing personal
data for research purposes, there are restrictive regulations regarding privacy
implemented in European law. For further processing and publishing results,
personal data has at least to be pseudomised or anonymised so that it is not
possible to identify a certain individual. Several research and Honeypot projects
show that it is possible to operate a Honeypot and publish the results in a legally
conform way.
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Abstract. The paper presents a new defense against adversarial attacks
for deep neural networks. We demonstrate the effectiveness of our
approach against the popular adversarial image generation method
DeepFool. Our approach uses Wald’s Sequential Probability Ratio Test
to sufficiently sample a carefully chosen neighborhood around an input
image to determine the correct label of the image. On a benchmark of
50,000 randomly chosen adversarial images generated by DeepFool we
demonstrate that our method SAT YA is able to recover the correct
labels for 95.76% of the images for CaffeNet and 97.43% of the correct
label for GoogLeNet.

1 Introduction

Over the last few years, it has been shown that small perturbations to an
input can cause machine learning algorithms to produce incorrect answers [5,
12,16,18]. In particular, computer implementations of vision algorithms includ-
ing approaches based on deep learning have been shown to be vulnerable to
such adversarial attacks. These attack approaches cover a broad spectrum from
random sampling of images to the framing of an optimization problem often
solved using variants of stochastic gradient descent. This knowledge of adversar-
ial synthesis can be leveraged by an attacker to generate unwanted or malicious
output from machine learning systems. Tampering with machine learning sys-
tems using adversarial attacks that are directly interacting with humans such as
autonomous driving can lead to immediate catastrophic results [17]. As the adop-
tion of machine learning systems is increasing rapidly the security and robustness
of these systems gain even more importance. Given the ease with which adver-
sarial inputs can be generated for deep learning algorithms, two questions are of
natural interest:

1. Can we detect the adversarial nature of the input to a neural net?
2. Can we recover the correct results even when deep neural networks are

exposed to adversarial inputs?
c© Springer International Publishing AG, part of Springer Nature 2018
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Table 1. SAT YA correctly identifies 95.76% of adversarial images generated by Deep-
Fool against the Caffe deep learning framework for 50,000 random images. The accuracy
is 97.43% for adversarial versions of 50,000 randomly selected images for GoogLeNet.
The accuracy for original images is within 2% of the DNN classification accuracy.

DNN DNN accuracy on
original image

SAT YA accuracy on
original image

SAT YA accuracy on
adversarial image

CaffeNet 73.76% 71.99% 95.76%

GoogLeNet 78.19% 77.97% 97.43%

In this paper, we make progress towards answering both these questions
for image classification using deep neural networks. We show that the sam-
pling of a suitably-selected neighborhood of the input image that spans two or
more classes can be used to correctly classify the input image with high prob-
ability. The Sequential Probability Ratio Test (SPRT) allows our approach to
adaptively sample this carefully-crafted neighborhood of the input image and
decide the label of a (possibly adversarial) image in a computationally efficient
manner [23]. In our experimental studies, SAT YA is able to correctly classify
95.76% of adversarial images generated by the DeepFool system for the Caf-
feNet [22] deep learning framework. We are also able to correctly classify 97.43%
of the adversarial images generated from the GoogLeNet [8] deep learning frame-
work. For comparison the method shown in [7] detects DeepFool adversarial
images with only 85–90% accuracy. This method detects 50% of the original
non-adversarial image as adversarial. In comparison, our method detects less
than 2% of non-adversarial images as adversarial. To the best of our knowledge,
SAT YA’s accuracy on adversarial images synthesized by DeepFool [12] is the
highest reported in the literature so far.

The idea that sampling can act as a defense against adversarial attacks is
simple and intuitive, though no concrete result of detecting adversarial examples
using sampling around the space of input image has been shown in literature. In
this paper, we show that simply sampling around the input image is enough to
get good results. We show that SAT YA gives us an improvement of more than
1% over this simple sampling approach. We also show that SAT YA is more
resilient to variations in the location of adversarial image.

2 Related Work

A variety of machine learning approaches, including deep learning [5] and human-
crafted vision algorithms [18] such as histogram-of-gradients, have been shown
to be susceptible to adversarial inputs. Small but carefully crafted perturbations
in an input can cause a machine learning algorithm to produce an incorrect
output. In fact, it has been observed that adversarial examples designed for one
deep learning classifier can transfer to another unrelated deep learning classifier
and produce incorrect results even in the second classifier [15].
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2.1 Adversarial Networks

The design of algorithms for generating adversarial images has received signifi-
cant attention in the machine learning [9,14] and in software security [16] com-
munities. A framework for generating adversarial nets using backpropagation for
multiplayer perceptrons was proposed in [4], and the approach was illustrated
on multiple datasets including MNIST, TFD and CIFAR-10. The approach was
extended in [10] to conditional generative adversarial nets and experimental
results on both MNIST and MIT Flickr 25,000 dataset have been reported.
A pyramidal hierarchy of generative adversarial nets have also been used to
create image models that are confused to be natural by human evaluators [1].

An interesting white-box approach to adversarial attack [20] relies on explor-
ing the internal layers of the deep neural network representation of an image
and making minimal possible perturbation to the image so that its internal
representation matches a completely different natural image – thereby leading
to incorrect classification of the image. This approach has the ability to trick a
deep neural network to confound any image with any other chosen image through
cleverly chosen perturbations, and can generate multiple adversarial examples.

Our experimental studies use the state-of-the-art DeepFool [12] algorithm
to generate adversarial examples. The DeepFool algorithm is known to compute
perturbations that efficiently create adversarial images for deep neural networks.
To the best of our knowledge, SAT YA’s ability to defend against adversarial
perturbations generated by DeepFool with more than 95% probability is new
and has not been reported before in the literature.

2.2 Defense Against Adversarial Attacks

Virtual adversarial training [11] uses a KL-divergence based robustness metric of
a model against local perturbation around a datapoint to regularize the model.
This approach has been reported to work better than ordinary adversarial train-
ing on several benchmarks, including MNIST, SVHN and NORB.

Adversarial attacks have theoretically been shown to be more powerful that
random noise perturbations [2,3] specifically in the context of linear classifiers.
The observation of adversarial attacks in the context of high-dimensional data
has been explained by a formal proof demonstrating that robustness to random
noise is

√
d times more than that to adversarial perturbations. Our work is

motivated by this observation. Instead of feeding a single adversarial image as an
input to a deep neural network, we sample a carefully-constructed neighborhood
of the adversarial image and hence avoid making a decision on a single image.

Robust optimization has been used to increase the local stability of artificial
neural networks [21], thereby making it harder to generate adversarial exam-
ples for such robust networks. They report upto 79.96% accuracy on adversarial
images generated from the MNIST benchmark and about 65.01% accuracy on
adversarial images generated from the CIFAR-10 benchmark. Our work is differ-
ent from their approach as we do not seek to optimize the training of the network
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itself but instead seek to query enough samples so as to prevent an adversar-
ial attack on a pre-trained classifier like GoogLeNet or CaffeNet. Of course, our
approach also happens to produce better experimental results with accuracies as
high as 95.76% on adversarial examples for CaffeNet and 97.43% on adversarial
examples for GoogLeNet.

A statistical method to detect adversarial examples has been proposed in [6],
this method has been shown to work on MNIST, DREBIN and MicroRNA data
with attack vectors chosen using FGSM, JSMA, SVM and DT attacks. Impres-
sive performance of about 100% detection in certain tests have been reported.
Though no method to recover the original label of the image has been shown,
one thing to note is that the data sets used in this method are significantly less
complex than ImageNet data set that we are using for our method. Another
method for detecting adversarial perturbations has been presented in [7]. This
method has been shown to work on ImageNet datasets against DeepFool pertur-
bations. The detection probability for adversarial images has been shown to be
around 85–90% for DeepFool perturbed images, though the false positive rate of
identifying normal images as adversarial is around 50%. In comparison SAT YA,
has a false positive rate of less than 2%.

3 The SAT YA Algorithm: Defending Against
Adversarial Attacks

Our approach to detecting and recovering from adversarial inputs is based on
the SPRT-driven sampling of a carefully-crafted neighborhood around a (possi-
bly adversarial) input image. In Sect. 3.1, we first present an intuitive method
of sampling the neighborhood of input image. In Sect. 3.2, we improve upon the
intuitive method to sample in a carefully crafted subspace and discuss its advan-
tage over Sect. 3.1. The use of Wald’s sequential probability ratio test to drive an
efficient exploration of this neighborhood is discussed in Sect. 3.3. An overview
of the full method is presented in Algorithm 1.

3.1 Sampling as a Defense Against Adversarial Images

A very intuitive approach for developing a defense against adversarial images
would be to sample the neighborhood of adversarial images. The underlying
idea is simple: If the adversarial image happens to be adversarial only because
it is carefully crafted, its neighbors may still be correctly classified by a deep
neural network and hence may help void the adversarial nature of the input.
We show the arrangement of adversarial space in Fig. 1. One important point
to keep in mind is the dimensionality of the input image; even though we have
shown a two-dimensional space in Fig. 1, the search space of images has very high
dimensionality. The number of dimensions d for an input image to CaffeNet is
227× 227× 3, where 227 is the input dimension and 3 is the number of channels
corresponding to RGB values of the input image.
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Fig. 1. The correct non-adversarial label space is shown in green, while the adversarial
space is shown in blue. The adversarial images I1, I2 and I3 are located at different
locations inside the adversarial space. The dotted lines denote hypherspheres with
varying radii drawn with the image I2 as the center. Sampling on a hyphersphere of
radius R1 will give incorrect results while sampling on a hypherphere of radius R4 will
give correct results. (Color figure online)

For a simple sampling approach, we sample on the surface of the hyper-
sphere centered around the input image. We use the sampling method described
in [13] to generate uniformly distributed points on the surface of a d-dimensional
hyphersphere. To generate a random point Pi, we generate d random numbers
ri0, ri1 . . . rid from d independent standard normal distribution with μ = 0, σ =
1 and d = x × y × c, where x and y are the dimensions of the image and c is the
number of channels in the image. Let Gi = [ri0 ri1 . . . rid], then the random
point Pi on the surface of d-dimensional hyphersphere with radius R is given by
Eq. 1. This equation is implemented by the function N in Algorithm 1.

Pi =
R

‖Gi‖
GT

i (1)

If an adversarial image is deep inside the adversarial space, sampling on low
radius hypherspheres will only give adversarial samples as shown by R1 and
R2 in Fig. 1. An image like I3 that is further inside the adversarial space will
require a larger hyphersphere radius to give correct samples when compared to
the image I1. We test the accuracy of detection at various radii for 1000 sample
images for both CaffeNet and GoogLeNet; we show the results in Table 2. The
performance of CaffeNet is optimal for a radius of 500 units where it reaches the
peak accuracy of 92.6%. The performance of GoogLeNet is optimal at 1000 units
where the accuracy is 97.0%. We suspect that this difference in peak accuracy
at different radii is due to the generally different performance of DeepFool on
these two different networks. In the case of CaffeNet, DeepFool might be creating
adversarial images closer to the boundary of the adversarial space whereas for
GoogLeNet the adversarial image might be further inside the adversarial space.
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Table 2. Sampling the neighborhood of images at varying sampling radii. Third and
fourth columns show the percentage of image correctly classified by CaffeNet and
GoogleNet. Fifth and sixth column show the average number of different labels on
the hyphersphere.

Index Hyperhsphere
radius

Correct
percentage
CaffeNet

Correct
percentage
GoogLeNet

Average number
of labels CaffeNet

Average number
of labels
GoogLeNet

1 50 5.7% 6.7% 1.94 1.91

2 100 21.9% 8.0% 1.80 1.71

3 200 58.3% 33.2% 1.60 1.48

4 500 92.6% 94.0% 1.43 1.31

5 1000 90.8% 97.0% 1.36 1.27

6 1500 89.2% 96.3% 1.38 1.29

7 2000 86.4% 94.5% 1.45 1.34

8 3000 79.2% 91.0% 1.65 1.49

9 5000 64.1% 83.7% 2.31 2.06

Fig. 2. Sampling around the image I. A low radius R1 will give correct results, while
a very high radius R2 is likely to give incorrect results.

One trend that we observe in Table 2 is the decline in accuracy as the radius
of the hypersphere increases beyond 1500 units. Hypherspheres with higher radii
have larger volume and can accommodate samples of multiple labels as shown in
Fig. 2. Multiple labels on the hyphersphere can decrease the chance of the correct
label having the maximum number of samples. This hypothesis is confirmed by
the fact that we observe an increase in the average number of labels on the
hyphersphere as the radius increases from 1500 units. One natural conclusion
from these experimental observations is that an algorithmic approach to defend
against adversarial attacks should construct a consistent search space unaffected
by the position of the adversarial image inside the adversarial space.
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3.2 Constructing a Suitable Sample Space

One suitable candidate for a consistent sampling space is the neighborhood of
an image that is on the boundary between the correct non-adversarial space and
the adversarial space. This image is shown as Imid in Fig. 3. The location of
Imid reduces the need for finding the optimal hyphersphere radius for sampling.
We present the procedure to calculate the image Imid in this section. We iterate
that the figures shown here are a simplification of the more complicated high
dimensional space.

Fig. 3. Sampling around the image Imid at the border of the space of correct non-
adversarial label and adversarial label. Sampling on most hyphersphere radii will give
correct results.

Given an input image I and a deep neural network (DNN) classifier C,
SAT YA first calculates the best classification label l1 for the image I. It also
computes the second-best classification label l2 for the same image. For an adver-
sarial image generate by DeepFool, the second label l2 is the correct label. Sim-
ilarly for the non adversarial image, the label l2 is the incorrect label and is
the label of the adversarial space. We generate the image Imid using the gradi-
ent generated by the backpropagation function of the DNN. The error function
E(I, l) of the classifier C gives the backpropagated error at the input layer with
the input image I and the correct label l. At each step j of the iteration, for
an input image Ij the error E(Ij , l2) of the input layer of DNN is generated
by assuming l2 as the correct label of the image. The new image Ij+1 is gener-
ated using the update Ij+1 = Ij + E(Ij , l2). Each iteration generates an image
with higher confidence of l2. We continue adding E(Ij , l2) until at iteration k,
l2 is the highest confidence label of the image. The image Ik has the label l2
and the image Ik−1 has the label l1. The image Imid is calculated by doing a
binary search between the images Ik and Ik−1 to get an image on the separating
boundary of the two labels l1 and l2. The algorithm then samples images on the
surface of an n-dimensional hypersphere of a fixed radius around Imid using the
method shown in Sect. 3.1.
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The results of sampling with various radii for 1000 images is shown in Table 3.
For both CaffeNet and GoogLeNet, good accuracy is obtained at the smallest
sampled radius of 50 units. We note that the accuracy of SAT YA is better than
simple sampling around the adversarial image. We revisit this comparison with
higher number of samples in the experimental section. We can also note that
there is less variation between the accuracy at different hyphersphere radii for
SAT YA. In Table 2 the standard deviation for CaffeNet is 29.98 whereas the
standard deviation in Table 3 is 10.16. Similarly for GoogLeNet, the standard
deviation in Table 2 is 37.05 where as it is 4.34 for Table 3. This simple metric
shows us that the results obtained from SAT YA is more resilient to variations
in the location of the adversarial image.

Algorithm 1. SAT YA adversarial image classification
Input: Image I, Set of labels L, Deep Neural Network Classifier C, Input layer
error function of classifier E , Type I/II error e, Maximum number of samples N ,
Indifference region [p0, p1], Maximum number of iterations for searching middle image
M , Sampling radius R
Output: Classification label for image I
l1 = arg max

l∈L
C(I, l) �Find best label for image I

l2 = arg max
l∈{L\l1}

C(I, l) �Find second-best label for I

lc = l1, I1 = I, I2 = I, m = 0, n = 0, s = 0
while lc �= l2 do

I1 = I2
I2 = I2 + E(l2)
lc = C(I2)

end while
�Perform binary search to compute the boundary between l1 and l2

Imid = B(I1, I2)
�Compute SPRT stopping criteria for Type I/II error

Smin = log( e
1−e

) , Smax = log( 1−e
e

)
repeat

n = n + 1 �Increment total number of samples
J = sample i.i.d. from N (Imid, R)
if C(J) = l2 then

s = s + 1 �Increment no. of successful samples
end if

�Update Sequential Probability Ratio

S = log

(
ps
1(1 − p1)

n−s

ps
0(1 − p0)n−s

)

until S < Smin or S > Smax or n ≥ N
if s > n − s then

print Class label: l2
else

print Class label: l1
end if



SAT YA: Defending Against Adversarial Attacks 285

In our current implementation, we have only considered the top-2 labels
l1 and l2 for deciding the correct label of the image. The limitation of top-2
labels works in the case of DeepFool as the adversarial attack algorithm works
gradually towards an adversarial label and the algorithm terminates at the first
instance of a wrong label thus leaving the correct label as l2. For implementing
a top-n variant of this algorithm, a competition between the top-n labels can be
organized and the winner declared as the current label.

Table 3. Sampling the neighborhood of images at varying sampling radii and percent-
age of those images classified correctly for 1000 images.

Index Hypersphere
radius

Correct
prediction
CaffeNet

Correct
percentage
CaffeNet

Correct
prediction
GoogLeNet

Correct
percentage
GoogLeNet

1 50 974 97.4% 970 97.0%

2 100 963 96.3% 973 97.3%

3 200 952 95.2% 974 97.4%

4 500 926 92.6% 977 97.7%

5 1000 896 89.6% 963 96.3%

6 1500 886 88.6% 956 95.6%

7 2000 858 85.8% 941 94.1%

8 3000 783 78.3% 915 91.5%

9 5000 635 63.5% 834 83.4%

3.3 Statistical Hypothesis Testing

The sampling neighborhood around the transition image Imid constructed in
the previous subsection is quantitatively different for different input images. For
adversarial images generated from images that were correctly recognized by the
DNN classifier C with high-confidence, we find that the sampling neighborhood
contains an overwhelming majority of images that are correctly labeled by the
DNN classifier C. On the other hand, the sampling neighborhood only contains a
thin majority of images correctly labeled by the DNN classifier C if the original
image was correctly classified by the classifier with a very low confidence.

SAT YA uses the Sequential Probability Ratio Test (SPRT) to adaptively
sample the neighborhood constructed in the previous subsection [23]. The test
rejects one of the following two hypotheses:

Null Hypothesis: C assigns the label l2 to images in the neighborhood of Imid

with probability more than p1.
Alternate Hypothesis: C assigns the label l2 to images in the neighborhood of

Imid with probability less than p0.
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The user specifies an indifference region [p0, p1], Type I/II error e and the
maximum number of samples to be obtained N . SPRT then samples the neigh-
borhood recording the total number of images sampled (n) and the number of
images (s) labeled by the classifier as l2. Using these inputs, SPRT computes
the likelihood ratio:

ps1(1 − p1)n−s

ps0(1 − p0)n−s

If the likelihood ratio falls below a threshold derived from the Type I/II error,
SPRT rejects the null hypothesis. If the likelihood ratio exceeds a threshold,
SPRT rejects the alternate hypothesis.

If the probability of sampling an image with the label l2 is more than p1,
the algorithm will produce this label with probability 1 − e. For example, if
p1 = 0.51 and e = 0.01, our algorithm produces this label with 99% accuracy if
the sampling neighborhood has at least 51% correctly labeled images. Of course,
greater accuracy can be achieved by reducing the Type I/II error and by setting
the value of p1 to 0.5 + ε for a small ε > 0. However, this comes at the expense
of a larger number of samples needed to reach a conclusion.

In Figs. 6 and 7, we show how the number of samples required by our statis-
tical hypothesis testing algorithm can vary widely among different input images.
In particular, adversarial images that are generated from images for which the
DNN classifier C was making a correct but low-confidence prediction tend to
require larger number of samples. Figure 8 shows that the number of samples
required to disambiguate an adversarial image generated from an original image
classified with confidence between 0.4 and 0.6 is more than 5 times the num-
ber of samples required for a high-confidence (0.8–1.0) prediction. Thus, the
SPRT-driven adaptive sampling is critical to ensure an efficient performance of
SAT YA.

4 Experimental Results

We evaluated SAT YA on 50,000 images from the ILSVRC2013 training
dataset [19] for both the CaffeNet [22] and the GoogLeNet [8] deep learn-
ing frameworks. Adversarial versions of these images were created using the
state-of-the-art DeepFool [12] adversarial attack system. In our experiments,
we have used the following parameters for the SAT YA algorithm: Type I/II
error e = 0.000001, maximum number of samples N = 2000, indifference regions
p0 = 0.47 and p1 = 0.53, maximum number of iterations for searching the tran-
sition image Imid M = 500 and hyphersphere radius for sampling R = 200
units. Our experiments were carried on a 16 GB Intel(R) Core(TM) i7-4770K
CPU @ 3.50 GHz workstation with an NVIDIA GeForce GTX 780 GPU. Our
experimental evaluation has four goals:

1. How well does SAT YA perform on the adversarial images generated by the
DeepFool algorithm working with CaffeNet and on adversarial images gener-
ated for GoogLeNet?
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2. What is the impact of SAT YA on original non-adversarial benchmarks?
3. How is the runtime performance of SAT YA?
4. Does the runtime of our approach vary significantly depending on the image

being investigated?

4.1 Accuracy on Adversarial Images

SAT YA correctly identifies more than 95% of all the adversarial images gener-
ated for both the CaffeNet deep neural network and the GoogLeNet deep learning
framework. The results for the execution on 50,000 ILSVRC images is shown in
Table 1. The hyphersphere radius for sampling was taken to be 200 units for
both CaffeNet and GoogLeNet. The accuracy of detection of the correct label
was 95.76% for CaffeNet and 97.43% for googleNet.

To compare SAT YA with simple sampling approach around input adver-
sarial image we ran the benchmark on the same set of 10,000 random ILSVRC
images. The hyphersphere radius for best accuracy was 500 units for CaffeNet
and 1000 units for GoogLeNet. We show the experimental results in Table 4. We
can see that an accuracy gain of 2.12% for CaffeNet and 1.14% for googleNet
was achieved using SAT YA.

Table 4. Accuracy of SAT YA compared to simple sampling approach for a sample
set of 10,000 ILSVRC images. The hypersphere radius for CaffeNet was taken to be
500 units and for googleNet it was taken to be 1000 units.

Benchmark Simple sampling SAT YA Accuracy gain

CaffeNet 93.40% 95.52% 2.12%

GoogLeNet 96.55% 97.69% 1.14%

4.2 Accuracy on Original Unperturbed Images

While SAT YA’s performance on adversarial images is very good, it would not
be a useful algorithm if its performance on non-adversarial images turned out to
be poor. SAT YA performs very well even on original non-adversarial images.
The accuracy of CaffeNet on the original non-adversarial image is 73.76% while
the accuracy of SAT YA on CaffeNet is 71.99%. The accuracy of GoogLeNet on
the original non-adversarial image is 78.19% while the accuracy of SAT YA on
original image is 77.54%. We can see that the underlying detection algorithms
perform only slightly better than SAT YA. The breakup for images correctly and
incorrectly classified by CaffeNet is given in Table 5. We can see that SAT YA
correctly classifies 7.53% of image originally incorrectly classified by CaffeNet
and 2.45% of image originally incorrectly classified by GoogLeNet.
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Table 5. SAT YA correctly identifies 95.10% of the 36882 original images correctly
recognized by the Caffe deep learning framework (called CaffeNet+ here) and recognizes
7.53% of the 13118 original images not correctly recognized by Caffe (called CaffeNet−
here). The accuracy is 98.62% for original versions of 39093 correctly recognized images
and 2.45% for original version of 10907 images not correctly recognized by GoogLeNet.
Here, the two classes are referred as GoogLeNet+ and GoogLeNet− respectively.

Benchmark Prediction Correct

Wrong Correct Percentage

CaffeNet+ 1808 35074 95.10%

CaffeNet− 12199 919 7.53%

GoogLeNet+ 540 38553 98.62%

GoogLeNet− 10646 261 2.45%

4.3 Runtime Performance

The time required by SAT YA to analyze both original and adversarial images
for CaffeNet is shown in Fig. 4 and for GoogLeNet is shown in Fig. 5. The run-
time performance of SAT YA is acceptable for high-fidelity applications like
cyber-physical systems. An overwhelming majority of the images were analyzed
by SAT YA within 4 s. We should note that the availability of enough parallel
computational resource can be used to speed up SAT YA to match the runtime
performance of the underlying classifier by using massively parallel calls from
SAT YA to the underlying classifier such as CaffeNet or GoogLeNet.
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Fig. 4. Time taken by SAT YA for predicting the label of adversarial and ordinary
images used in CaffeNet.

SAT YA correctly recognizes about 91% of the adversarial images and 70%
of the original images within 4 s on our single GPU machine with only sequential
calls to the DNN CaffeNet classifier. The worst case runtime of our approach on
adversarial images is 22 s for the CaffeNet deep neural network.

The performance of SAT YA on images from the GoogLeNet is qualitatively
similar to the results on CaffeNet. About 98% of the adversarial images and
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75% of the original images can be analyzed within 4 s. The worst case runtime
of SAT YA on adversarial images is 27 s for GoogLeNet.
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Fig. 5. Time taken by SAT YA in calculating the label for images used in GoogLeNet.
The performance of both adversarial and original images have been analyzed.

4.4 Dependence of Performance on the Confidence of Classification

The performance of SAT YA depends upon the number of images sampled by
the sequential probability ratio test. In Fig. 6, we illustrate the number of sam-
ples required by SAT YA while analyzing original and adversarial images for
CaffeNet. About 50% of the adversarial images can be analyzed by studying
only 200 samples. Similarly, about 55% of the original images can be classified
by analyzing only 200 samples. Only a small fraction of images require more
than 1, 000 samples.
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Fig. 6. Number of samples tested to determine the label of an original as well as an
adversarial image for CaffeNet.

Figure 7 shows the number of samples required by original and adversarial
images for the GoogLeNet deep learning framework. About 80% of the perturbed
images and more than 75% of the original images were analyzed by sampling
fewer than 200 samples. In the light of this variation in number of samples for
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a small fraction of the images, a natural question that arises is the source of
this variability. Using Fig. 8 we establish an empirical relationship between the
number of samples required to disambiguate an image and the confidence with
which the classifier assigns a label to the image. If CaffeNet is able to correctly
label an image with a confidence of 0.6 or more, SAT YA only needs 500 or
fewer samples to assign a label to an adversarial input created using this image.
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Fig. 7. Number of samples tested to determine the label of an original as well as an
adversarial image for GoogLeNet.
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Fig. 8. The average number of samples needed to classify an image increases as the
classifier’s confidence in the label of the image decreases.

We observed qualitatively similar results for adversarial images generated
for the GoogLeNet deep learning classifier. Adversarial inputs generated using
images that were assigned high-confidence labels by GoogLeNet (0.6 or more)
were easily labeled by SAT YA using fewer than 300 samples. The fact that
SAT YA is able to recover the labels of adversarial inputs generated from high-
confidence images is extremely desirable. Such a performance behavior implies
that high-confidence predictions from a classifier may be difficult to distort in a
manner where they cannot be readily recovered by SAT YA and other defensive
approaches.
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5 Conclusion and Future Work

SAT YA provides a highly effective defense against adversarial attacks. In our
experimental evaluation, more than 95% of adversarial images generated by
DeepFool against CaffeNet deep neural network and against GoogLeNet deep
leaning framework are correctly recognized by our approach. SAT YA also per-
forms comparably to the underlying image detection system for non-adversarial
images. When compared to simple sampling approach, SAT YA gives better
accuracy and it more resilient to variations in the position of the adversarial
input image.

Several natural avenues for future research are open. A theoretical explana-
tion of the success of our approach perhaps using manifolds will help clarify the
interaction of deep neural networks and high-dimensional big data. Practical
efforts towards parallelizing SAT YA would help make the tool deployable in
real-time settings.
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Abstract. We propose a mitigation model that evaluates individual
and combined countermeasures against multi-step cyber-attack scenar-
ios. The goal is to anticipate the actions of an attacker that wants to
disrupt a given system (e.g., an information system). The process is
driven by an attack graph formalism, enforced with a stateful return on
response investment metric that optimally evaluates, ranks and selects
appropriate countermeasures to handle ongoing and potential attacks.

1 Introduction

Network attacks are frequently represented as attack graphs, in order to identify
the paths taken by an attacker in the exploitation of a given series of vulnerabili-
ties, as well as to analyze all possible countermeasures that could be implemented
to mitigate the attack [1,12]. To compute exhaustive lists of possible attack sce-
narios, and to select the most effective countermeasures, attack graphs must rely
on quantitative metrics that may base their analysis in cost-sensitive parameters.

With the above challenge in mind, we present the integration of a stateful
return on response investment metric to the attack graph formalism presented
in [2,7]. The resulting combination allows to evaluate, rank and select optimal
countermeasures based on complementary assessment functions (e.g., from both
financial and security dimensions). The new metric is evaluated at each state of
the system while considering the already deployed countermeasures and effects of
adding or suppressing other security actions. Our contributions can be summa-
rized as follows. We provide a network security model that evaluates individual
and combined countermeasures against complex attack scenarios, in order to antic-
ipate the actions of an attacker that wants to disrupt the security of a given sys-
tem. The same process dynamically evaluates multiple countermeasure candidates
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while considering restrictions and inter-dependency among them. As a result, the
optimal set of countermeasures is proposed and enforced over the system.

Paper Organization – Sect. 2 provides related work. Section 3 presents our
construction. Section 4 concludes the paper.

2 Related Work

Kheir et al. [6] propose a process for the selection of security countermeasures
by combining a service dependency framework and a cost-sensitive metric. The
solution provides a systematic solution to applying policy rules while minimiz-
ing configuration changes and reducing resource consumption. Samarji et al. [11]
combines a graph theoretic-solution and situation calculus to automatically gen-
erate mitigation graphs. Lippmann et al. [8] and Poolsappasit [10] use attack
graph formalism to implement preventive and reactive countermeasures against
vulnerability exploitation, accordingly. Martinelli and Santini [9] suggest the use
argumentation logic to automate response reasoning under system attacks. The
use of argumentation logic adapts well to problems where multiple causes for
a specific anomalous behavior are possible, and multiple countermeasures can
be taken to mitigate the problem. The manipulation of this reasoning process
comes with a cost in terms of the chosen metrics.

With regard to the aforementioned contributions, the approach presented in
this paper may estimate the risk of simultaneous attacks against the system, and
compute the cost of the final decisions by acting on the decision process itself,
as well as, evaluate the impact of combined responses over dependent services.
It builds over the attack graph formalism presented by Doynikova and Kotenko
in [2,7], complemented with a cost-sensitive metric that extends the work by
Gonzalez et al. in [4,5]. The resulting formalism is used as an automated response
selection mechanism, that anticipates forecasted steps of an attacker that aims at
disrupting the security of a given system. The cost-sensitive metric builds upon
the Return on Response Investment (RORI) index, initially proposed by Kheir et
al. [6] as an extension of the Return On Security Investment (ROSI) index [13].
The metric provides a common reference to compare different countermeasures.
Precise information about the computation of each specific parameter of the
RORI index can be found in [4,5].

3 Our Construction

We present a countermeasure selection formalism that connects attack actions
on the basis of pre and post conditions w.r.t. vulnerability exploitations and
Bayesian probabilities. It extends previous contributions presented in [2,4,7]. Its
distinctive features are as follows: an opportunity of automated attack graph
generation using network configuration and publicly available indexes for vul-
nerabilities; joint consideration of the attack probabilities and attack impact for
the system assets; consideration of the attacker profile; connection with security
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events; preventive and reactive countermeasure selection. The goal is to repre-
sent, anticipate and handle attack actions performed by an attacker targeting a
given system. We start with the core definitions. Then, we move to presenting
the operation modes (e.g., preventive and reactive selection of countermeasures).

Definition 1 (Attack Graph). A graph G = (S,L, τ, Pc) where S contains
the nodes of the graph (i.e., the set of attack actions), L represents the set of
links between actions (s.t. L ⊆ S ×S), τ the relation between attack actions, and
Pc the discrete local conditional probability distributions.

Definition 2 (Attack Action). A 5-tuple S = (H,V, Sc, St, Pr), where H
identifies the attacked host, V the exploited vulnerability, Sc the process used
by the attacker to get information about the host, and Pr the probability that the
attack action is in state St (Pr ∈ [0, 1]).

3.1 Preventive Mode, Prior Mapping of System Attacks

By combining Definitions 1 and 2, we can now represent all the possible attack
actions (e.g., vulnerability exploitations and information gathering) and tran-
sitions between the actions of a multi-step attack scenario [1,12]. In addition,
stateful information is represented under the action states in St. This enables
the use of a preventive mode, prior detecting precise attack instances, to already
evaluate both local and global levels of risk in the system. The goal is to apply
an initial set of preventive countermeasures to reduce the global level of risk in
the system. Further countermeasures, selected under a reactive mode, e.g., once
precise attacks have been detected and mapped to the attack graph, are pre-
sented later in Sect. 3.2. Next, we provide definitions and processes used under
the preventive mode.

Definition 3 (Preventive Risk Calculation). Under the preventive mode,
a precise level of risk is associated to each node of the attack graph. It
relies on a product combination of two main parameters: AttackImpact ×
AttackPotentiality.

The value of the AttackImpact parameter (cf. Eq. 1) is a linear combination of
potential damages in terms of confidentiality, integrity and availability (denoted
in Eq. 1 as cImpact, iImpact, aImpact) of the asset in case of exploitation of
vulnerabilities considering CVSS indexes [3]; as well as the criticality of such
assets in terms of confidentiality, integrity and availability (denoted as cCrit,
iCrit, aCrit in Eq. 1).

AttackImpact = (cCrit × cImpact) + (iCrit × iImpact) + (aCrit × aImpact) (1)

The AttackPotentiality parameter refers to the vulnerability probability asso-
ciated to each node of the graph. It is computed by using a total probability
formula, considering both a local vulnerability probability p, and a conditional
probability Pc that considers all the possible states of its ancestors Pa. If com-
promising a node requires to compromise all the parent nodes, then Pc is set
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to zero when it exists an Si in Pa whose exploitation state is marked as False;
otherwise, Pc equals p. If compromising a node requires to compromise at least
one parent node, then Pc is set to zero when ∀Si ∈ Pa the exploitation state is
marked as False; otherwise, Pc equals p. The value of p is computed as follows:

p =

{
2×AccessVector×AccessComplexity ×Authentication (root nodes)
2×AccessComplexity ×Authentication (other nodes)

(2)

where AccessVector, AccessComplexity, and Authentication are extracted from
the CVSS indexes [3] associated to the list of vulnerabilities defined for each
node, and normalized between 0 and 1, using the 2 factor in Eq. 2. The global
estimation of the risk level of an attack sequence is defined as the combination
of the minimum probability of the attack nodes and the maximum impact.

Based on the combination of AttackImpact and AttackPotentiality, we can
now conduct a selection of countermeasures for those nodes of the graph with a
risk level that exceeds a predefined threshold. The process is conducted by using
a countermeasure selection index in terms of Efficiency, Cost and Collateral
Damages associated with each countermeasure (or combination of countermea-
sures). The value of such an index can directly be obtained by using the RORI
metric (cf. Refs. [4,5]).

The process (summarized in Fig. 1) aims at maximizing the countermeasure
selection index for each node of the graph. In turn, this leads to maximizing the
reduction of risk as a whole. First, the countermeasures with zero-cost expenses
are implemented (Step 1). A determination is made on whether or not there are
still uncovered nodes (Step 2), so that countermeasures that impact over all the
security properties are sorted according to their impact area (Step 2a) and a
countermeasure selection index is calculated accordingly (Step 3). The measure
that affects the largest number of the graph nodes and properties is selected,
the next countermeasures are selected according to the largest mismatch of the
covered nodes. If there are countermeasures that affect the same number of
nodes, then multiple lists are generated (Step 2a) and the following steps are
performed for all lists (the list with maximum countermeasure selection index is
selected). If there are countermeasures that affect the same nodes, then multiple
countermeasures are added on the same level of the list. Countermeasures that
maximize the selection index are selected from the list of countermeasures that
impact all the security properties on each level (i.e., confidentiality, integrity and
availability).

If there are still uncovered nodes (Step 4), then countermeasures that impact
two or less security properties are sorted similarly to the first list, starting from
the measure that impacts the largest number of the not covered nodes (Step 4a).
Similar rationale as in the first case is considered to compute the countermeasure
selection index (Step 3). That is, if there are still nodes under risk (Step 4a),
then countermeasures that impact separate vulnerabilities are selected (Step 5).
In the end, the list with the maximum countermeasure selection index is selected
and enforced, to conclude the process (Step 6).
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Fig. 1. Workflow of the preventing countermeasure selection process

3.2 Reactive Mode, Posteriori to the Mapping of System Attacks

Under the reactive mode, new countermeasures are selected and activated to stop
the propagation of ongoing attacks. On the basis of real instances of detected
security violations, a priori and a posteriori steps of an attacker are mapped, and
the level of risks of the attack-graph nodes is updated. The process undertakes
the phases defined below.

Definition 4 (Attack Mapping). It follows an event model Ei to process
security incidents and responses under the reactive mode, such that Ei is a
3-tuple (Ti, Hi, Tei), where Ti is the event fixing time; Hi is the event fixing
host; and Tei is the event type. Events are mapped on the attack graph consid-
ering the event fixing host Hi. Graph nodes that correspond to the compromised
host Hi are outlined. Then, considering event type Tei (e.g., security properties
violation or illegitimate access) attack graph nodes that have appropriate post-
conditions are selected.

Definition 5 (Risk Update). Mapping the security event on the attack graph
results in recalculation of the risk levels for the attack sequences that go through
the compromised node, considering new attack probability values. The probability
for the previous nodes is recalculated using Bayes theorem, whereas for the next
nodes we use the formula of total probability considering that the state of the
compromised node is changed to True. The previous attacker steps are defined
on the basis of the maximum probability change for the previous graph nodes. The
attacker skill level is defined according to the maximum CVSS access complexity
of these steps. The attacker skill level asl is used for the recalculation of the local
probability for the next graph nodes as depicted in the following equation

p =
{

2 × AccessVector × AccessComplexity+asl
2 × Authentication (root nodes)

2 × AccessComplexity+asl
2 × Authentication (other nodes)

where the 2 and 1
2 factors are used in the above equations in order to get medium

values from access complexity and attacker skills, which results into a probability
value from 0 to 1.
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Based on the aforementioned mapping and risk update processes, a reac-
tive selection of countermeasures can now be conducted, whenever an attack
reported by the system increases the accepted level of risk for some nodes. The
main difference between the preventive and reactive mode relies on the mapping
of real instances of attacks identified in the system. Some countermeasures may
be selected during the preventive phase, but only enforced during the reactive
phase (e.g., software tokens that can be used to enable multi-factor authentica-
tion). This parameter and some others (i.e., affected vulnerability, impact area,
impact type, affected security properties) are specified in the countermeasure
model. The set of the available countermeasures is added to the database before
the countermeasure selection process. The set of the available countermeasures
in the reactive mode depends on the countermeasures set selected during the
preventive mode. To conduct the reactive countermeasure selection process, the
RORI metric proposed in [4,5] is extended towards a new Stateful Return On
Response Investment Metric (hereinafter denoted as StRORI), presented in the
sequel.

3.3 Stateful Return on Response Investment (StRORI)

We propose an improvement in the computation of the parameters compos-
ing the formula in [4,5], so that the new metric considers the state at which
the RORI evaluation is performed. We assume a dynamic security monitoring
process, where detection tools are permanently inspecting system and network
events, in order to identify attack instances. To ease the presentation of the
StRORI metric, we assume a discrete monitoring system that based on tempo-
ral snapshots. Each snapshot provides a list with the different nodes affected
in the attack scenario, as well as all the remainder security parameters. The
evaluation process is assumed to be unique for each evaluation run.

Figure 2 depicts a simple case with two transitions (i.e., from T0 to T1, and
from T1 to T2). In the initial state of the system (T0) we assume that no coun-
termeasure from the authorized mitigation action list has been deployed. At T0

we perform the RORI evaluation with two candidates (e.g., C1, C2) and we have
three possible lists of countermeasures: (i) add C1 (i.e., L01 = {+C1}); (ii) add
C1 and C2 (i.e., L02 = {+C1 + C2}); (iii) No operation, meaning that no mit-
igation action must be implemented (i.e., L03 = {}). In case the RORI index
indicates the best action is to implement L01, we implement C1 and the state
changes to T1.

T0 T1 T2

C1,C2

L02:{+C1+C2}
L12:{-C1+C2}

C1,C2

C1

L03:{}

L01:{+C1}
L11:{}

L13:{+C2}

C2

L13:{-C1}

Fig. 2. Transition process in the stateful RORI evaluation
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At T1, we perform a new snapshot of the system that considers the number
of active nodes and updates the system’s configuration (e.g., consider previously
implemented countermeasures). The RORI index is performed at this state by
evaluating all authorized mitigation actions (even those already implemented in
the system) to find the best list of countermeasures. Assuming that we evaluate
C1 and C2, we will have four possible lists: (i) add C1, meaning that no action
must be performed since C1 is already implemented (i.e., L11 = {}); (ii) add
C2, meaning that C1 must be uninstalled in order to install C2 (i.e., L12 =
{−C1 + C2}); (iii) add C1 and C2, meaning that only C2 will be added since
C1 is already implemented (i.e., L13 = {+C2}); and (iv) no operation, meaning
that C1 must be uninstalled since no mitigation action must be implemented
(i.e., L13 = {−C1}). In case the RORI index at T1 indicates the best action is
to implement L12, we must uninstall C1 and install C2 and the state changes
to T2. The process is repeated for a new snapshot of the system. A complete
methodology for computing each parameter of the RORI metric, and related
processes, is available in [4].

3.4 Validation of the Approach

The countermeasure selection process discussed in Sect. 3.3 allows extending
the graph-driven selection process previously presented in [2,7] by using the
new countermeasure coverage areas provided by the StRORI metric. Such areas
shall be computed for all the available countermeasures as soon as new attack
instances are identified. Each state of the attack graph after a new attack event
is processed leads to the transition state depicted in Fig. 2. Countermeasure
coverage is used to update those attack graph nodes whose risk level exceeds a
predefined threshold.

Figure 3 shows a sample attack graph generated by our proposal. Sam-
ple attack graph representation generated by a proof-of-concept prototype.
Low risk nodes are depicted in gray, medium risk nodes are depicted in yel-
low. High and critical risk level nodes that require preventive countermea-
sures are represented with orange and red colors, accordingly. The first secu-
rity incident is generated as a result of the detection of a web-server vul-
nerability exploitation. After the processing of the security incident the next
nodes are included to the list for the countermeasure selection as soon as
risk levels for these nodes exceed the threshold: nodes that correspond to
the Web server 1; nodes that correspond to the Web server 2; and nodes
that correspond to the DB Server (Fig. 3). For example we review the next
countermeasures: shutdown service/host (EF = 10%, COV = 1, ALE = 3000,
ARC = 80, AIV = 30000); enable/disable additional firewall rules (EF = 80%,
COV = 0, 7, ALE = 3000, ARC = 200, AIV = 30000); block suspicious connec-
tion (EF = 80%, COV = 1, ALE = 3000, ARC = 0, AIV= 30000); block ports/IP
addresses (EF = 80%, COV = 1, ALE = 3000, ARC = 80, AIV = 30000). Resulted
StRORI index for the countermeasures: StRORI (shutdown service/host) = 0.7;
StRORI (enable/disable additional firewall rules) = 4.9; StRORI (block suspi-
cious connection) = 8; StRORI (block ports/IP addresses)= 7.7. The selected
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countermeasures considering the maximum StRORI index: block suspicious con-
nection. Further details and views of the attack graphs are available on-line at
http://j.mp/stRORI.

(a) Preventive Mode (b) Reactive Mode

Fig. 3. Sample attack graph representation generated by our proof-of-concept proto-
type. Low risk nodes are depicted in gray, medium risk nodes are depicted in yellow.
High and critical risk level nodes that require preventive countermeasures are repre-
sented with orange and red colors, accordingly. Further details and views of the attack
graphs are available on-line at http://j.mp/stRORI (Color figure online)

3.5 Discussion

The main advantages of our ongoing construction are the following. We use
a cost-sensitive metric to evaluate response goodness of single and combined
actions against individual and multiple attack scenarios. The approach allows
to rank and select the most suitable countermeasure or group of them against
a given attack in a particular state of the system. The approach provides a
response relative to the size of the infrastructure, which allows to compare the
evaluation results of different systems regardless of their size. The model allows
to handle the case of selecting no countermeasure, which results into a value of
zero, meaning that no gain is expected if no solution is implemented. It also con-
siders restrictions and conflicts among countermeasures (e.g., mutually exclusive,
partially or totally restrictive countermeasures).

In addition, the proposed approach considers interdependence among coun-
termeasures (i.e., how the application of a countermeasure affects the effective-
ness of others). We, therefore, consider the impact of adding, modifying and/or
suppressing a series of countermeasures previously deployed or enabled in differ-
ent parts of the system.

In terms of limitations, we can observe that a great level of accuracy is
required in the estimation of the different parameters of our construction. This
is overcome by the use of a risk assessment methodology that considers relative
values on all the elements composing the StRORI index.

http://j.mp/stRORI
http://j.mp/stRORI
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4 Conclusion

We have proposed a mitigation security model that evaluates individual and
combined countermeasures against multi-step attack scenarios. The process is
driven by an attack graph formalism, enforced with a stateful return on response
investment metric. The resulting construction optimally evaluates, ranks and
selects appropriate countermeasures to handle the evolution of system risks. The
approach provides preventive mitigation, prior identification of system attacks;
and reactive mitigation, once attacks instances have been mapped to the attack
graph. Future work will concentrate on a more thorough analysis of the approach
presented in this paper towards near-continuous time dimensional domains.
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Abstract. Many systems provide anonymity for their users, and most
of these systems work on the separation between the users’ identity and
the final destination. The level of anonymity these services provide is
affected by several factors, some of which are related to the design of
the anonymity service itself. Others are related to how the system is
used or the user’s application/purpose in using the anonymity service.
In this paper we: (i) propose five factors that aim to measure anonymity
level from the user’s perspective; (ii) evaluate these factors for three
anonymity services, namely Tor, JonDonym, and I2P as case studies;
and (iii) present a mechanism to evaluate anonymity services based on
the proposed factors and measure their levels of anonymity.

Keywords: Anonymity factors · Metrics · Tor · Jondonym · I2P

1 Introduction

There are many tools, applications, and websites on the Internet claiming to
protect the privacy of their users. The levels of privacy protection provided by
these services are different based on the way they work. For example, VPN (Vir-
tual Private Network), which can be provided either as a free or a paid service,
hides the user’s identity while surfing the Internet anonymously. However, the
VPN service provider has access to the user’s identity and his/her activity on
the Internet. Some of these service providers also keep the logs of their users.
This is also the case with free proxy websites, which claim that they protect the
user’s identity.

Tor, JonDonym, and I2P are popular anonymity services. They provide
anonymity to their users to hide their identity from Internet web servers and
hide the websites they have accessed. These systems prevent not only the web
servers from revealing users’ identities, but also the operators of the systems
themselves from identifying the users. However, there are many details behind
this kind of anonymity that might not be clear or obvious to the user.

Therefore, the anonymity level of the users is not the same, even when using
an anonymizing tool. The reason behind using an anonymity service varies from
one user to another. This could affect the anonymity level and the choice of the

c© Springer International Publishing AG, part of Springer Nature 2018
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 303–318, 2018.
https://doi.org/10.1007/978-3-319-75650-9_20
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right anonymity service. The design of the anonymity tools varies based on: (i)
Which services such a tool offers to users, and (ii) How the user decides or mea-
sures anonymity level, given all the different anonymity services. In this paper,
we present a method of calculating and comparing user anonymity levels that
takes into consideration the different needs of different users to answer the afore-
mentioned questions. Therefore, we aim to assist the user in choosing the most
suitable anonymity service for their needs. The proposed method depends on
evaluating anonymity systems based on five factors. To measure the anonymity
level using this method, the factors are converted to numeric values in order to
assign weights and scores. In addition, each factor is compared with the others
according to the goal or purpose of anonymity. Therefore, the relative weights
(importance) of the factors are determined based on who is using the anonymity
service and why. In doing so, our objective is to provide a comprehensive mea-
surement technique that could be used to evaluate the level of anonymity based
on the environment in which the anonymity service is used.

The rest of this paper is organized as follows. The related literature is
reviewed in Sect. 2. The Tor network, the JonDonym network, and the I2P net-
work are discussed in Sect. 3. Section 4 presents and discusses the five factors
regarding the level of privacy in anonymity services studied in this work, and
Sect. 5 evaluates these anonymity factors. Finally, conclusions are drawn and
potential future work is discussed in Sect. 6.

2 Related Literature

Measuring the anonymity level is a challenge for a number of reasons. One is the
difference in the design and the goal of the anonymity systems (networks). On
the other hand, there is no single way to measure anonymity levels on different
anonymity networks. In addition, anonymity level is not directly quantifiable
as compared to other network traffic measurements such as delay, bandwidth,
volume, etc. In [13], Ries et al. evaluated five anonymization tools with regard to
performance, usability, anonymity, network reliability, and cost. The evaluated
tools were Tor, I2P, JonDonym, Perfect Privacy and Free proxies. Performance
factors used to evaluate and rank these tools were Round Trip Time (RTT),
Inter-Packet Delay Variation (IPDV), and throughput. Additionally, they used
installation, configuration, and verification of the anonymization connection as
factors to define the usability of these tools.

Dhiah el Diehn et al. examined the usability of four anonymity tools (Tor,
JonDo, I2P, and Quicksilver) during the installation phase [1]. They detailed
the installation process of these tools, applying four tasks to test the instal-
lation phase: success of installation, success of configuration, confirmation of
anonymization, and ability to disable anonymization. To test the usability of
these tools, they used eight guidelines from [3], which focused on the user’s
ability to perform the four tasks mentioned above.

Wendolsky et al. compared Tor and AN.ON (JonDonym) from the user’s per-
spective, based on performance and number of users [18]. Latency and bandwidth
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were used to measure performance, and the results showed that Tor performs
unpredictably based on time of day.

The above studies focused mainly on evaluating anonymity services based
on their performance or usability, where anonymity was not the focus of the
evaluation. On the other hand, there are studies where measuring anonymity
was the main goal. In these cases, the idea of measuring anonymity is about
minimizing the ability of an attacker to correlate the sender and the receiver,
even if they communicate over a channel observed by the attacker. To anonymize
against such a threat model, Chaum [2] presented the concept of the “anonymity
set”, in which the set is the total number of participants in the anonymity service
that may include the sender. When the size of the set is increased, the anonymity
level is considered to increase as well.

Serjantov and Danezis [14] developed the concept of the anonymity set by
using the information-theoretic metric based on anonymity probability distri-
bution. Diaz et al. [4] also used an information-theoretic model to evaluate the
anonymity level of a system in a particular attack scenario.

Murdoch [12] surveyed studies performed on measuring anonymity for low-
latency anonymous networks and high-latency email anonymous networks and
discussed the development of the techniques used for measuring anonymity.

Even though the above studies have been important in measuring anonymity
levels, the “anonymity” of the anonymity services is affected by other factors, too,
such as the users’ behaviors and browsers settings. Therefore, in this research, we
present a method to measure the level of anonymity by analyzing the anonymity
service from different perspectives and propose metrics (factors) that enable us to
measure the anonymity of such services. The anonymity set which is presented
by Chaum [2] is a way to measure the level of anonymity on the multilayer-
encryption anonymity networks. It presents the number of possible choices to
which a message on the anonymity network belongs for a specific user. The
higher the value of the anonymity set, the better the anonymity becomes. This
way of measuring the anonymity level focusses on the probability of linking
the message to the user. However, the level of anonymity could be affected by
other factors, too. Therefore, in this research, weighted factors for measuring
anonymity services are presented as another way to measure and quantify the
anonymity level. The method takes into consideration multiple factors: quanti-
fying, comparing and applying them to evaluate the anonymity level of different
use cases.

3 Anonymity Systems Studied

Multilayer-encryption anonymity networks share the goal of providing anony-
mous services to their users. The anonymity services vary in terms of design,
performance, delay, and provided services. The following introduces the most
popular multilayer-encryption anonymity networks: Tor, JonDoNym, and I2P.
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3.1 Tor Network

The Tor network is based on volunteers to run their machines as Tor relays (also
called routers or nodes). Tor provides anonymity to its users by hiding the IP
addresses of the users and by hiding the content of the users’ traffic, as long as
that traffic is still on the Tor network. The IP addresses of the users are hidden
by relaying all the users’ requests through the Tor network. The users’ traffic is
hidden by dividing the packets into smaller fixed-size encrypted cells. Tor also
provides a service called Hidden Services that hides the IP address of a web
server for users who want to keep their identities hidden.

There are three types of nodes on the Tor network: entry node, middle node
and exit node. The entry node is the first node that the user communicates with
when trying to establish a circuit to carry their traffic. The middle node is an
intermediate node that lies between the entry node and the exit node, and the
exit node is the node used to relay the user’s request to the web server. Since all
three types of nodes are run by volunteers, running an exit node is an optional
choice available while configuring the node to run in the Tor network. The exit
node has the option to be configured for allowing certain types of traffic based
on the port number. This enables the volunteered user who runs the exit node
to determine the type of traffic to block/pass through the exit node.

Whenever the user sends his/her traffic through Tor, a virtual circuit is used
to relay the user’s traffic. The virtual circuit consists of a connection of the three
types of nodes (entry, middle, and exit nodes). The user starts by establishing
a TLS (Transport Layer Security) connection with the first node. After the
connection is made with the first node, the user requests that the entry node
extend the connection to the middle node. Finally, the connection is extended
again to the exit node. The Tor browser is responsible for translating all the
user’s requests to the virtual circuit. This includes hiding the IP address of
the user, dividing the packets into smaller cell(s), encrypting the traffic with
three layers of encryption, receiving the data from the web server that comes in
encrypted cells and decrypting the received cells.

3.2 JonDoNym

JonDonym is a network of mix cascades, providing anonymity to the users based
on multilayer encryption. The cascade consists of two (free) or three (paid) mix
servers. The user starts the connection to the JonDonym network by selecting
the mix cascade. Currently there are five free cascades and eleven paid cascades
the user can choose from.

Only one active connection to one cascade is possible during the user’s con-
nection to the JonDonym network. Each HTTP request will create a connection
from the browser (JonDoFox) with the client software JonDo. The JonDoFox
browser can generate multiple connections with the JonDo. All these connec-
tions are multiplexed into one connection to the first mix server, which receives
connections from multiple users. All the users’ connections are then multiplexed
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into one TCP/IP connection to the second mix, or to the last in case of only
two mixes in the cascade.

The information about the available cascades, the number of users, the loads,
and the mix status are stored in the InfoService [9]. The user gets the informa-
tion about the cascades from the InfoService, and the last mix sends the users’
requests to cache proxies. Multilayered encryption is used during the commu-
nication between the user and the last mix, which ensures that even the mixes
cannot access the user’s data. The path that the user’s data takes is fixed based
on the chosen cascade. To choose another path (cascade), the user has to start
a new connection to the JonDonym. The user can only have one connection to
one cascade at any given time.

3.3 I2P

I2P network is a decentralized anonymous network with no central database or
server that contains the network database. The network database (netDb) is
distributed by using the Kademlia algorithm [10], which is used in many appli-
cations where peer-to-peer (P2P) communication is needed in a decentralized
network. The information that the user gets from the netDb enables the user
to build tunnels. Communications over I2P require inbound and outbound tun-
nels, which are unidirectional. The netDb contains the leaseSet of the tunnels
and routers. LeaseSet shows the routers involved in a tunnel. RouterInfo in the
netDb shows how to contact a specific router. The user has the option to modify
the number of routers in the outbound tunnel. I2P uses the concept of gar-
lic routing [5], where layered encryption is implemented in addition to binding
multiple messages together. The messages within the I2P network are encrypted
end-to-end as long as the two communication parties are within the I2P network.
However, when the user communicates with an end-system that is outside of the
I2P network using an outproxy, then the encryption is not end-to-end.

By default, the user within the network transfers their data and that of other
users where the user’s machine functions as a resource for the network. The user
can change the amount of bandwidth dedicated to the network from the console.
The users’ contributions in relaying the network data are restricted by relaying
the data only within the I2P network. A different configuration is required when
a user wants to relay the I2P traffic to an end-system outside of the I2P network
(outproxy). The number of outproxies in the I2P network is limited.

One of the major differences between I2P and other anonymity networks
such as Tor and JonDonym is that I2P is designed as a private network. The
users mainly communicate within the network. The user builds two tunnels:
inbound and outbound. The inbound tunnels are used to receive messages, and
the outbound tunnels are used to send messages.

4 Proposed Factors

This section presents the five proposed factors to analyze the anonymity level of
the aforementioned anonymity systems (Tor, JonDonym, and I2P).
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4.1 The Level of Information Available for the Service Provider

When a Tor user connects to the Tor network, a virtual circuit is created. The
circuit consists of three nodes; the first node has the actual IP address of the
user, and therefore his identity, but it does not have knowledge of his Internet
activity. This information could be used to perform attacks that depend on the
correlation between the duration, data, and the server. The exit nodes, through
which all the requests of the users are relayed, have a considerable amount of
information, as they are the links between the Internet and the Tor users. The
operator of the exit node has the ability to know and statistically evaluate the
user’s activities on the Tor network [11]. Another important fact about the exit
node that might not be clear for non-technical users is that the encryption of
the requests through the exit node are all based on the encryption of the original
requests and has nothing to do with the three levels of encryption on the Tor
Network. Therefore, the exit node alone can breach the anonymity of the users if
they use their login information to access their email or any web server without
sending an encrypted request.

Furthermore, JonDonym works in a similar fashion to Tor. The first point
on the JonDonym network (First Mix) receives the connection request from the
user, which has the information about the connection duration and the user’s
identity. The last point (Last Mix) does not know the user’s identity, but it
has the activities or the websites that the users request. The encryption layers
used by JonDonym and Tor overlay networks protect the data, even from the
operators; an exception is when the data sent by the user to the webserver is
not encrypted; then, the last node/mix has the ability to access the data sent by
the user. The anonymity mechanism in Tor/JonDonym depends on relaying the
user data through multiple points (Node/Mix). Each node/mix only knows part
of the connection information, not the whole information required to connect
the user to the request.

On the other hand, what if all the nodes/mixes on the path between the
user and the server are compromised or attacked? On the Tor network, the three
nodes in the circuit path are selected by using the path selection protocol, which
specifies the three nodes the user will use to relay the data in conjunction with
the policy that the exit node operator defines. In addition, the user has the
ability to override the path selection protocol and to choose a specific exit/entry
node. This flexibility and randomness in node selection makes it harder for an
attacker to target a specific user by trying to compromise the three nodes that
the user selects. Moreover, running and compromising three nodes do not mean
that these three nodes will be selected by the path selection protocol.

On the JonDonym network, this type of attack is also possible; the difference
lies in the operation of the mixes. The number of mixes on the JonDonym is
fewer than the number of nodes on the Tor network. But, the operators of the
mixes are registered with their identities. They also sign an agreement with
JonDonym not to exchange information between operators of the mixes and not
to save user data. One of the differences between Tor and JonDonym is that
JonDonym mixes do not change, and the path is always the same. In the case
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of cooperation between all the mixes, it is possible to breach user anonymity on
the JonDonym network.

Last but not the least, the goal of the I2P network is different than Tor
and JonDonym. I2P is designed to provide anonymity for the users within the
I2P network; However, that does not mean that I2P services are limited by
the network boundaries. Browsing webpages outside the I2P network requires
configuring the user’s machine to use an outproxy. In this case, the information
available to the outproxy is similar to Tor’s exit router or JonDonym’s last
mix. The outproxy has access to all traffic passing through; if the traffic is not
encrypted, the outproxy can see sensitive information.

The common point between the three anonymity services is that at any point,
part of the network has some user information. This information could be the IP
address of the user that is available at the first point on the anonymity network
that connects the user to the network. Or, it could be the amount of traffic that
the last point can see when sending traffic to its final destination. Thus, the
difference in the design of the anonymity services regarding how to relay the
traffic does affect the difficulty (anonymity) of correlating the user with their
traffic.

4.2 Blocking Anonymity and Obfuscation Options

The anonymity systems can hide user activity on the Internet, but could not
always hide the fact that such a system is in use. Sometimes, using anonymity
systems might raise questions about why such a system is in use. In some coun-
tries, the IP addresses of the hosts running such systems are blocked, so obfusca-
tion systems are used to evade these. Furthermore, Pluggable Transports (PT)
[17] (obfuscation for Tor) work as an interface between the Tor user and the Tor
network. The user connects to a pluggable transport, which sends the connection
request to the Tor network on behalf of the user in order to hide the connection
between the user and the Tor network. These tools work differently, using differ-
ent techniques to resist different blocking methods. For example, Obfs3 [16] is one
of the PT that obfuscate the Tor TLS to look like random strings, using another
layer of encryption to wrap the TLS handshake used by Tor. Scramblesuit [19]
is another PT designed to prevent active probing attacks.

JonDonym has two options for bypassing blocking of the service. The first
one is using TCP/IP forward method, in which the user will use an encrypted
connection to another user who has unblocked access to the JonDonym network.
The second method is using Skype to tunnel the blockage of the JonDonym
service, which is more reliable than using the TCP/IP forward method.

On the I2P network, there are no obfuscation options similar to Tor plug-
gable transports, and it is thus possible for an observer to collect the routers’ IP
addresses with a harvesting attack [6]. However, the I2P network implemented
other improvements in the design of the transport layer to obscure the identi-
fication of the I2P network traffic. In addition, several obfuscation options are
still considered by the developers of the I2P network, including using padding
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techniques at the transport layer to achieve random length, studying the signa-
ture of the packet size distribution, and studying the technique used to block Tor.

In short, an observer, who wants to de-anonymize the user, needs to deter-
mine that the user is connecting to the anonymity service in the first place.
Therefore, the existence of obfuscation options is a factor that should be taken
into consideration to measure the level of anonymity.

4.3 Application and Anonymity

The common way to use an anonymity service is to use the default browser
of the aforementioned services to browse the web. However, these anonymity
services can be used with other applications in addition to web browsing. This
requires the user to configure the application and the anonymity service to work
together. The configuration for these applications is not that simple for non-
technical users. When configuring any application to work with an anonymity
service, it is important to fully understand how this application works to ensure
that the user information is not leaked.

The configuration of the application and how the user sets the applica-
tion on the anonymity network is an important issue. For example, the web
browser contains many details other than what anonymity system the user is
using. The anonymity tools aim to make their browsers undistinguishable to
raise the anonymity level. Tor browser is a modified version of Firefox based
on Mozilla’s Extended Support Release (ESR) Firefox branch [15]. It includes
HTTPS-Everywhere [7], NoScript, modifying some of the default Firefox set-
tings, and the default extension settings. JonDoFox is the browser of JonDonym
and is a modified version of Firefox [8].

Even when using the default browser for anonymity services, the correct
configuration for the browser is important to ensure the safety of the user against
many Internet websites that track their visitors. Moreover, some of the tools
used by web sites could also identify the user or their behavior for the purpose
of advertisements, collecting data for different types of studies, or building a
database about the visitors of the website. Thus, the question to consider is:
how such tools address the trade-off between browsing the websites with full
offered services and preserving the anonymity of the users.

4.4 Authority and Logs

No doubt that the policy of the anonymity services about the cooperation with
the authority (operator or regulator) and keeping logs affects the level of privacy.
For example, JonDonym’s agreement with the operators requires keeping no logs
and not exchanging information between operators of the mixes. The reason
behind this policy is that the identities of the operators are known, and they work
according to the regulations in their own countries. Therefore, in JonDonym,
there are several points that must be taken into consideration when evaluating
the anonymity of such a system:
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– The mixes that construct the path are fixed. That means knowing that the
user employs one of these mixes, e.g., the last mix, implies knowing the first
and the second mix.

– The number of mixes on the JonDonym network is very limited compared to
the Tor network. On the JonDonym network, there are only nine cascades;
six are operated by companies and three by individuals.

– The operators of these mixes are known and registered. They work according
to the regulations of the authorities in their countries.

On the other hand, on the Tor network:
– The nodes that construct the user’s path are not fixed. The user connects

to three nodes that change periodically. Therefore, knowing that the user
connects to a specific exit node does not necessarily imply knowing the first
or the middle node.

– The number of Tor nodes is around 8000, which makes it relatively harder to
get information about them.

– The operators of these nodes are not known. Tor does not require their users to
identify themselves when offering to run a node. This might help to protect
the operators’ identities, but it does not guarantee that the operators are
trusted.

– The nodes on the Tor network are supposed to be online as much as possi-
ble. However, there is no guarantee because most of these nodes are run by
volunteers.

Furthermore, on the I2P network:
– The I2P user has the option to modify the number of routers used when

exchanging messages. In addition, end-to-end encryption is used. The concept
of garlic routing is also used when exchanging messages. This way, messages
that pass through the routers are not distinctive, which means the purpose
or the content of the messages cannot be extracted or inferred easily. For
example, information such as whether the messages form an extension to the
number of routers in the tunnel or if they contain data would not be extracted
from the messages.

– The I2P network is decentralized, so there is no single point that is responsible
for or represents the network.

– The user does not need to know all the routers in the network to be able to
use that network’s resources.

– I2P network’s design is different from Tor and JonDonym; it is basically
designed to provide a private network within the Internet. The number of
outproxies is very limited. This also makes the browsing outside the network
low compared to Tor and JonDonym. Therefore, the possibility that the user
will frequently use the same exit point is high. This does not mean that it is a
threat, but increases the probability of correlating the user with their traffic
based on factors such as access time, duration, and the amount of data used.

Based on the above, what information the service provider (operator) has
about the user and the operator’s willingness to provide this information when
asked to do so is also important in measuring the level of anonymity.
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4.5 Threat Models

The anonymity services are built based on the separation between the user iden-
tity and the data sent or received by the user. One of the threats that such
services face is somehow correlating the user data with the final destination
data. Hypothetically, this may be possible by monitoring the first point in the
anonymity network and the last point that connects the user with the final desti-
nation through data analysis. For example, the path on the JonDonym network
is known, and if the attacker has the ability to monitor the traffic from the first
mix and the last mix (out of the last mix), then connecting the users of this
cascade and the amount of sent and received data may be possible. The path on
the Tor network is not fixed, but the correlation is also a possible threat. To this
end, there are studies on using marking techniques to trace user activities, but
they are often limited to a specific user, a specific webserver, or even a specific
exit node. The attacker could compromise both an entry node and an exit node,
in which case the traffic out of the entry node is marked. The attacker then
watches for the mark to appear at the exit node. On the other hand, the design
of I2P network makes this kind of correlation a low threat. The path is not fixed
or specified; users build inbound and outbound tunnels that do not count on the
type of the router. All routers on the networks can be part of any path. The
encryption mechanism provides for the confidentiality and the integrity of the
messages. However, if the attacker has the resources to monitor all routers, then
they may have enough data to discover paths.

As for the JonDonym network, this type of attack can target a mix server.
A mix server has a limit on the number of users it can serve. The attacker could
use this limit to break the anonymity of the mix server. If the attacker connects
to a mix server to fill its capacity (n) to the point (n− 1) when the user connects
to the only space left in the mix server, the attacker could then isolate and detect
the user’s traffic.

The threat models are not the same for all anonymity services; what is con-
sidered a threat to one service may not be applied to another anonymity service.
Even when they share the same threat to a certain saturation point, the level
of the risk is not always the same. Therefore, to measure the anonymity of any
anonymity service, the threat model should be taken into consideration, based
on the environment or the purpose for which the anonymity service is used.

In summary, evaluating the level of anonymity should be done in a com-
prehensive way that takes into consideration the purpose, the design, and the
environment. Thus, these five factors: the level of information available to the
service provider, the obfuscation options, application anonymity, the authority
and the logs, and the threat models are used in this research to measure the
effectiveness of any anonymity service.

5 Evaluation

This section discusses how the aforementioned factors can be used to measure
the anonymity of Tor, JonDonym, and I2P.
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5.1 Factor Calculation

As a first step, we quantify these factors, so they are grouped into three cate-
gories, Table 1. These categories (High, Mid, and Low) are converted into numer-
ical values as 100, 67 and 33, respectively. These numbers are chosen to simplify
the representation of the three categories into three intervals. The High range is
between 68–100 and represented by 100. The Mid range is between 34–67 and
represented by 67, and so on. The exception is for the obfuscation, where it is
labeled as “Yes” or “No”, depending on it is used or not. The reason is that
some of the anonymity systems involve obfuscation techniques, and others do
not. Therefore, the value is set to 100 (No) and 0 (Yes). The higher the values
for these factors, the lower the anonymity level of the system. For example, a
100 in the Threat model factor is applied whenever the threat in the case under
study is very strong (i.e., highly probable). The three categories are represented
by 100, 67, and 33 as an approximation for High, Mid, and Low ranges. It is
possible to expand this step to improve the accuracy of quantification of the
factors by: (1) Instead of using three levels; the factors could be evaluated as a
scale, for example, from 10 to 100, (2) Furthermore, each value on the scale could
represent the level of the anonymity of the factor in a predefined way. This way,
the value of the factors is determined more accurately. For example, if we apply
the extended scale to the “Threat Models” factor, then the values will include
more intervals from 10 to 100 instead of 33, 67, and 100. The threats or attacks
on the anonymity systems should be ordered to match the scale from 10 to 100.
This requires the study and evaluation of all possible threats on the anonymity
systems and their applicability. This way, the scale has predefined values for
every possible threat against the anonymity systems in the threat models factor.
The same step could be used for the other factors.

Table 1. Proposed anonymity factors

Level of information High Mid Low

100 67 33

Obfuscation Yes No

0 100

Authority and log High Mid Low

100 67 33

Application
configuration

Low security
configuration

Mid security
configuration

High security
configuration

100 67 33

Threat model Low cost Mid cost High cost

100 67 33

5.2 Weight Calculation

Given that the weights of the factors may vary from one evaluation environment
to another, quantifying these factors to measure anonymity is necessary but
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insufficient by itself. Also, the weights of the factors have to be considered.
Therefore, the “Pairwise Comparison” technique is employed to evaluate the
weight of these factors. Each one of the factors is compared with all other factors;
then, the weight for the factor is calculated based on these comparisons. The
higher the weight of a factor, the more important it becomes for the anonymity
of a given service. Calculating the weights is performed until all factors are
evaluated comparatively, as shown in Table 2.

Table 2. Calculating the weights

The first column in the table represents the five factors. The first factor “level
of information available to the service provider” is presented by γ1. The second
factor is presented by γ2 and so on. The second column shows the importance
of γ1 compared to all the other factors. The third column shows the importance
of γ2 compared to all other factors except γ1, this is because the comparison
between γ2 and γ1 already done in the second column. The comparison contin-
ues till all the factors compared with each others. Each cell starting from the
second column shows the result of the comparison between two factors; the most
important factor is shown in the cell, however if both have similar importance
then both appear in the cell.

Table 3 shows the weights of the five factors after the comparison and their
total value. Based on the weights value, the level of information, the appli-
cation configuration, and the authority and log factors have the same weights
(importance). The obfuscation has the lowest importance, compared to the other
factors. The weights represent the importance of each factor compared to the
other factors. Using the pairwise comparison helps in deciding how to rank or
weight the factors compared to others.

Table 3. Final weights of the factors after pairwise comparison

γ 1 γ 2 γ 3 γ 4 γ 5 Total

4 1 4 4 3 16

5.3 Weighted Anonymity Factor

Equations 1 and 3 are applied after calculating the values of the factors and
weights. Equation 2 is the total of the weights of the factors. WF in Eq. 1 is the
Weighted Anonymity Factor, (f) represents the value of a factor and γ represents
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the weight. n in Eq. 2 represents the number of factors. Tγ in Eq. 3 is the total
weight.

WF = γ1f1 + γ2f2 + γ3f3 + γ4f4 + γ5f5 (1)

=
n∑

i=1

γi fi (2)

(Tγ) =
n∑

i=1

γi (3)

The measurements may vary from one environment to another, where differ-
ent factors are applied or when the numerical conversion is different than what
is used in Table 1. To generalize measurements, Eq. 4 shows converting the cal-
culated values of the weighted factors (WF) from Eq. 1 to a percentage by using
the minimum and maximum value.

WF (%) = (1 − WF − Min(WF )
Max(WF ) − Min(WF )

) ∗ 100 (4)

Equation 4 can be rewritten after calculating the weights to the form in Eq. 5.

WF (%) = (1 − WF − 495
1600 − 495

) ∗ 100 (5)

5.4 Evaluation Case Study

In this case study, three users participate to compare the levels of anonymity.
It is important to note that the evaluation does not aim to identify the best
anonymity service; it aims to evaluate the level of anonymity according to the
environment in which these users use the anonymity services.

The first user (A) uses standalone Tor to browse Internet websites. She con-
figures Chrome browser to work with Tor by setting the browser to access Tor
via Socket. To increase the anonymity level, she adds Scramblesuit as an obfus-
cation option to her “torrc” file to access Tor via a bridge. She browses websites
on the Internet which include a compromised web server by an attacker. The
web server injects a code to force the browser to request images from another
website that belongs to the attacker. The attacker aims to identify the user by
forcing the browser to send requests without using the Tor network.

User (B) chooses to use JonDonym as an anonymity service. He does not have
a technical background. All the settings are left as default. The only addition
to the default setting is that he chooses to use the TCP/IP forwarder. The user
(B) wants all the activities that he performs on the Internet to be anonymous.
Therefore, he uses JonDoFox to browse all the Internet websites. He usually visits
web sites such as news, videos, email, Internet shopping, and his bank account.

User (C) lives in a country where the Internet is censored and some web-
sites are blocked. Therefore, he uses Tor to gain access to the blocked Internet
blogs. The user (C) browses these blogs and participates on them via Tor. He
is concerned about hiding his identity, so he uses the Internet via the company
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network where he works. It seems that he is the only person who is using Tor
in this company. The user organizes his time so that he only accesses Tor at the
end of the day between 5–6 pm on weekdays.

Table 4. Evaluated factors for users (A), (B) and (C)

Level of
information

Obfuscation Authority
and log

Application
configuration

Threat
model

A 33 0 33 100 67

B 100 0 67 33 100

C 67 100 100 33 67

Table 4 shows how these scenarios are converted to measurable numeric val-
ues, using the proposed factors. Table 4 is calculated based on the given infor-
mation about the scenarios above and how the users (A), (B) and (C) are using
these anonymity services. For example, the user (C) did not include an obfusca-
tion option when using the anonymity service; therefore, the obfuscation value
is measured as 100. The user (A) prefers to use his favorite browsers instead
of using the default Tor browser. Therefore, the possibility of a DNS leak is
higher, especially when accessing suspicious websites or when using any appli-
cation other than browsing. Based on that, user (A) gets 100 on the application
configuration. Even though the user (B) uses some sort of obfuscation, he misses
the fact that browsing any website already linked to his real identity such as his
email or bank account, even while using an anonymity service, does not mean
that he is anonymous. Furthermore, the information available to the exit node
in this case is high, even if the information does not contain passwords. So, the
level of information is evaluated as 100 in this case. The same applies to the user
(C); he uses Tor at the same time daily from the same place where no one else is
using Tor. Using Table 4 and Eq. 1, the weighted factors are calculated as follows:

WF = γ1f1 + γ2f2 + γ3f3 + γ4f4 + γ5f5

WF = 4f1 + f2 + 4f3 + 4f4 + 3f5

WFA = 4 ∗ 33 + 0 + 4 ∗ 33 + 4 ∗ 100 + 3 ∗ 67
= 865

WFA(%) = (1 − 865 − 495
1600 − 495

)

= 66.5%

WFB = 4 ∗ 100 + 0 + 4 ∗ 67 + 4 ∗ 33 + 3 ∗ 100
= 1100

WFB(%) = (1 − 1100 − 495
1600 − 495

)

= 45.2%
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WFC = 4 ∗ 67 + 100 + 4 ∗ 100 + 4 ∗ 33 + 3 ∗ 67
= 1101

WFC(%) = (1 − 1101 − 495
1600 − 495

)

= 45.16%

Based on the above calculations, user (A) has a higher level of anonymity
than either of users (B) or (C). The level of anonymity of user (A), (B) and (C)
may change based on the anonymity services they use or even their behavior.
The weighted factor method is designed to take into consideration the users’
environment when evaluating the anonymity level. The factors themselves are
parameters that could be adjusted based on the scenario for which an anonymity
system is used.

6 Conclusion

In this paper, we propose and evaluate five factors that affect the level of privacy
in anonymity services. Understanding these factors and knowing how to address
them is an important step in improving users’ privacy. To this end, three popular
anonymity systems, namely Tor, JonDonym, and I2P, were used as case studies
to analyze these factors. Our analysis showed that even though these systems
aim to provide anonymity to their users, user information is visible to the oper-
ators of the services. Furthermore, the infrastructure and the browser settings
vary from one system to another. The setting is configured based on the devel-
opers’/administrators’ evaluation of possible threats. The same threat might be
considered high in one system but low in another. We applied a measurable
mechanism to evaluate the anonymity of a given situation based on the factors
we proposed. This evaluation could be used on any anonymity system using
different scenarios. Future research will continue to analyze other anonymity
systems based on the proposed five factors and will evaluate them using the
proposed approach under other adversarial conditions.
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