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Abstract For full singular integro-differential equations with Gilbert kernel, the
collocation method is justified. The approximate solution is sought in the form of
Hermite–Fejer polynomial. The convergence of the method is proved and the rate of
convergence is estimated.

1 Introduction

Algebraic interpolation polynomials with multiple nodes, known as Hermite poly-
nomials, are well-investigated and are successfully used to solve a wide range of
application-oriented problems. Their trigonometric analogue is investigated much
less and many questions concerning the existence, uniqueness, and approximate
properties of such polynomials still remain open.

Early studies of trigonometric interpolation polynomials with multiple nodes
apparently began toward the 30th years of the 20th century. S. M. Lozinsky [1]
considered the approximation of the complex-variable functions regular in a single
circle, and continuous on its boundary, by the trigonometric interpolation polynomi-
als with multiple nodes located on a single circle’s border. He was the first to call
such polynomials Hermite–Fejer polynomials.

E. O. Zeel [2, 3], generalizing the results of the predecessors [4–7], proved
the existence of the trigonometrical interpolation polynomials of the arbitrary mul-
tiplicity w.r.t. the system of the equidistant nodes for the real-valued 2π - periodic
functions. Moreover, he showed the explicite form of the corresponding fundamental
polynomials and established the conditions of uniform convergence of such polymi-
als to the interpolated function depending on the parity of its multiplicity and the
smoothness of the interpolated function.

B. G. Gabdulkhayev [8] obtained in a convenient form the best, in the sense
of an order, estimates of the speed of convergence of trigonometrical interpolation
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polynomials of the first multiplicity to continuously differentiable functions. Also, in
thiswork he investigated the properties of the quadrature formulas forGilbert’s kernel
singular integrals based on such polynomials. Relying on the results of [3] and using
B. G. Gabdulkhayev [8] technique Yu. Soliyev [9, 10] investigated systematically
quadrature formulas based on the interpolation polynomials of different multiplicity
for singular integrals with Cauchy and Gilbert kernels.

In this paper the calculation scheme of the collocation method based on trigono-
metric interpolation polynomials with themultiple nodes for the full singular integro-
differential equation in periodic case is constructed and justified. Convergence of the
method is proved, and the errors of the approximate solution are estimated.

2 Statement of the Problem

Consider the singular integro-differential equation

1∑

ν=0

(aν(t)x
(ν)(t) + bν(t)(J x

(ν))(t) + (J0hνx
(ν))(t)) = y(t), t ∈ [0, 2π ], (1)

where x is a required function, aν , bν , hν (by both variables), ν = 0, 1, and y are
known 2π -periodic functions, singular integrals

(J x (ν))(t) = 1

2π

∫ 2π

0
x (ν)(τ ) cot

τ − t

2
dτ, ν = 0, 1, t ∈ [0, 2π ],

are to be interpreted as the Cauchy–Lebesgues principal value, and

(J0hνx
(ν))(t) = 1

2π

∫ 2π

0
hν(t, τ )x (ν)(τ )dτ, ν = 0, 1, t ∈ [0, 2π ],

are regular integrals.

3 Calculation Scheme

Let’s denote N the set of natural numbers, N0 the set of natural numbers with zero
added, R the set of real numbers C the set of complex numbers.

Let’s fix the natural number n ∈ N. An approximate solution of the Eq. (1) we
seek as a Hermite–Fejer polynomial
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xn(t) = 1

n2

n−1∑

k=0

(x2k + x ′
2k sin(t − t2k))

sin2
n

2
(t − t2k)

sin2
t − t2k

2

, t ∈ [0, 2π ], (2)

here t2k , k = 0, 1..., n − 1, are even numbered nodes of the mesh

tk = πk

n
, k = 0, 1, ..., 2n − 1. (3)

Unknown coefficients x2k , x ′
2k , k = 0, 1..., n − 1, of the polynomial (2) we find out

as a solution of the system of the algebraic equations

1∑

ν=0

(aν(tk)x
(ν)
n (tk) + bν(tk)(J x

(ν)
n )(tk) + (J0P

τ
2n(hνx

(ν)
n ))(tk)) = (4)

= y(tk), k = 0, 1, ..., 2n − 1,

where

Pτ
2n(hνx

(ν)
n )(t, τ ) = 1

2n

2n−1∑

k=0

hν(t, tk)x
(ν)
n (tk)

sin n(τ − tk) cos
τ − tk
2

sin
τ − tk
2

,

ν = 0, 1, t, τ ∈ [0, 2π ],

is a Lagrange interpolation operator w.r.t. the nodes (3) applied by the variable τ to
the functions hνx (ν)

n , ν = 0, 1, and

(J xn)(tk) = 1

n

n−1∑

j=0

(α0
0,k−2 j x2 j + α1

0,k−2 j x
′
2 j ), k = 0, 1, ..., 2n − 1,

α0
0,r = {− cot

rπ

2n
for r �= 0, 0 for r = 0},

α1
0,r = {−1

n
for r �= 0, 2 − 1

n
for r = 0};

(J x ′
n)(t2k) = 1

n

n−1∑

j=0

(α0
1,2k−2 j x2 j + α1

1,2k−2 j x
′
2 j ), k = 0, 1, ..., n − 1,

(J x ′
n)(t2k+1) = 1

n

n−1∑

j=0

α0
1,2k−2 j+1x2 j , k = 0, 1, ..., n − 1,
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α0
1,r = {csc2 rπ

2n
for r �= 0, −n2 − 1

3
for r = 0},

α1
1,r = {(−1)r csc

rπ

2n
for r �= 0, 0 for r = 0};

(J 0Pτ
2n(hνx

(ν)
n ))(tk) = 1

2n

2n−1∑

j=0

hν(tk, t j )x
(ν)
n (t j ), ν = 0, 1, k = 0, 1, ..., 2n − 1,

are the quadrature formulae.

4 Some Preliminaries

Let’s denote C the space of continuous 2π -periodic functions with usual norm

‖ f ‖C = sup
t∈R

| f (t) |, f ∈ C.

For the fixed m ∈ N0 denote Cm ⊂ C the set of the functions on R with continuous
derivatives of order m (C0 = C). The norm on Cm we define as follows:

‖ f ‖Cm = max
0≤ν≤m

‖ f (ν)‖C, f ∈ Cm .

Let’s denoteHα the set ofHölder continuous functions of orderα ∈ R, 0 < α ≤ 1.
For the function f of this set let’s denote

H( f ;α) = sup
t �=τ

t,τ∈R

| f (t) − f (τ ) |
| t − τ |α ,

the smallest constant of Hölder condition of the function f . With the help of this
constant we can now define the norm on the set Hα , namely,

‖ f ‖Hα
= max{‖ f ‖C, H( f ;α)}.

From the set Cm , for the fixed α ∈ R, 0 < α ≤ 1, we can select the set of the
functions Hm

α with derivatives of order m satisfying Hölder condition

| f (m)(t) − f (m)(τ ) |≤ H( f (m);α) | t − τ |α, t, τ ∈ R.

The norm on the set Hm
α (H0

α = Hα) we define as follows:

‖ f ‖Hm
α

= max{‖ f ‖Cm , H( f (m);α)}.
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DenoteTn the set of all trigonometric polynomials of order not higher than n. For
the follows we need 2 lemmas from the paper [11].

Lemma 1 Let the numbers α, β ∈ R, 0 < α ≤ 1, 0 < β ≤ 1, m, r ∈ N0, m ≤ r , are
such that m + β ≤ r + α. Then for any n ∈ N and any function x ∈ Hr

α the following
estimate is valid 1:

‖x − Tn‖Hm
β

≤ cnm−r−α+βH(x (r);α),

where Tn ∈ Tn is a polynomial of the best approximation of the function x.

Lemma 2 For any n ∈ N, β ∈ R, 0 < β ≤ 1 and arbitrary trigonomentric polyno-
mial Tn ∈ Tn the following estimate is valid:

‖Tn‖Hβ
≤ (1 + 21−βnβ)‖Tn‖C.

An operator P2n is exact for any polynomial of order n − 1 and, as it is shown in
[12, 13], has the following properties:

‖P2n‖Hm
β →Hm

β
≤ c‖P2n‖C→C ≤ c ln n (5)

for any n ∈ N, n ≥ 2, β ∈ R, 0 < β ≤ 1, and arbitrary fixed number m ∈ N.

5 Justification

Theorem 1 Let the Eq. (1) and the calculation scheme (2)–(4) of the method satisfy
the following conditions:

A1 functions aν , bν , ν = 0, 1, and y belong to Hα for some α ∈ R, 0 < α ≤ 1;
functions hν , ν = 0, 1, belong to Hα with the same α for each variable uniformly
w.r.t. other variable,

A2 a21(t) + b21(t) �= 0, t ∈ [0, 2π ],
A3 κ = ind(a1 + ib1) = 0,
A4 an Eq. (1) has a unique solution x∗ ∈ H1

β for each right-hand side y ∈ Hβ ,
0 < β < α ≤ 1.

Then for n large enough the system of equations (4) is uniquely solvable and
approximate solutions x∗

n converge to the exact solution x
∗ of the Eq. (1) by the norm

of the space H1
β

‖x∗ − x∗
n‖H1

β
≤ cn−α+β ln n, 0 < β < α ≤ 1.

Proof Let’s show first that the assumption A4 of the Theorem 1 is not empty in the
sense that there exist the equations of the class considered satisfying A4.

1Here and further c denotes generic real positive constants, independent from n.
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In fact, consider an equation

a1(t)(x
′(t) + x(t)) + b1(t)((J x

′)(t) + (J x)(t)) = y(t), t ∈ [0, 2π ]. (6)

It is known [14], that the characteristic operator

Bx ≡ a1(t)x(t) + b1(t)(J x)(t), B : Hβ → Hβ,

of the Eq. (6) is invertable, and an inverse operator B−1 : Hβ → Hβ could be written
explicitly. Now apply the operator B−1 to both sides of the Eq. (6). Then we’ll get
an equivalent equation

x ′(t) + x(t) = (B−1y)(t), t ∈ [0, 2π ]. (7)

In the couple of the spaces (H 1
β , Hβ), an Eq. (7) is a Fredholm equation. Homoge-

neous equation
x ′(t) + x(t) = 0, t ∈ [0, 2π ],

in the space of the real-valued functions has a solution x(t) = ce−t , t ∈ [0, 2π ].
However, this solution is not periodic for c �= 0, so the only suitable value is c = 0.
It means that in the space of the periodic functions H 1

β the homogeneous equation has
the only zero solution x(t) = 0, t ∈ [0, 2π ], and it means that the Eq. (7), and thus
the Eq. (6), are uniquely solvable for any right-hand side y ∈ Hβ , 0 < β < α ≤ 1.

For the following part of the proof of theTheorem1we’ll use themethod described
in [15, 16].

Let’s fix β ∈ R, 0 < β < α ≤ 1, and let X = H1
β , Y = Hβ . Then the Eq. (1) can

be rewritten as an operator equation

Qx = y, Q : X → Y. (8)

For each function x ∈ X we’ll match the Cauchy integral

Φ(z) = Φ(x; z) = 1

2π

2π∫

0

x(τ )dτ

1 − z exp(−iτ)
, z ∈ C.

Denote x+(t) x−(t) the limit values of the function Φ(z) as z trends to exp(i t) by
any ways inside and outside unit circle correspondently. For the functions x+ and
x− the following Sokhotsky’s formulae are valid means identical operator.

x±(t) = 1

2
((±I − i J )x)(t) + 1

2
J0x, t ∈ R. (9)

Differentiating (9) and using known formulae
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(x ′(t))± = (x±(t))′, (J x)′(t) = (J x ′)(t),

we’ll obtain

x ′(t) = x ′+(t) − x ′−(t), (J x ′)(t) = i(x ′+(t) + x ′−(t)). (10)

From the conditions A2, A3, according to [17] it follows

a1 − ib1
a1 + ib1

= ψ+

ψ− ,

where

ψ(z) = eθ(z), θ(z) = Φ(u; z), u = ln
a1 − ib1
a1 + ib1

, z ∈ C.

Then, using (10), the characteristic operator of the Eq. (1) can be rewritten [14, 17]
as

a1(t)x
′(t) + b1(t)(J x

′)(t) = (a1(t) + ib1(t))

ψ−(t)
(ψ−(t)x ′+(t) − ψ+(t)x ′−(t)).

The Eq. (1) or, in other notation, the Eq. (8) we rewrite as an equivalent operator
equation

Kx ≡ Ux + V x = f, K : X → Y, (11)

where
Ux = ψ−x ′+ − ψ+x ′−, V x = Ax + Bx + Wx,

Ax = v−1a0x, Bx = v−1b0 J x, Wx = v−1
1∑

ν=0

J 0hνx
(ν),

f = v−1y, v = a1 + ib1
ψ− ,

and according the condition A2 of the Theorem 1, v(t) �= 0, t ∈ [0, 2π ]. An equiv-
alence here means that the Eqs. (1) and (11) are both solvable or not solvable simul-
taneously and, if they are solvable, their solutions coincide.

Let Xn ⊂ Tn be the set of trigonometrical polynomials of the form (2), and Yn =
P2nY ⊂ Tn . Then the system of equations (4) is equivalent to the operator equation

Knxn ≡ Unxn + Vnxn = fn, Kn : Xn → Yn, (12)



100 A. Fedotov

where
Un = P2nU, Vnxn = P2n Axn + P2n Bxn + Wnxn,

Wnxn = P2n

1∑

ν=0

J0(P
τ
2n(hνx

(ν)
n )), fn = P2n f.

Here an equivalence means that if the system of equations (4) has a solution x∗
2k, x

′∗
2k,

k = 0, 1, ..., n − 1, then the Eq. (12) will also has a solution which coincide with the
polynomial

x∗
n (t) = 1

n2

n−1∑

k=0

(x∗
2k + x ′∗

2k sin(t − t2k))
sin2

n

2
(t − t2k)

sin2
t − t2k

2

, t ∈ R.

Let’s prove now that the operators K and Kn are close to each other on Xn .
For any xn ∈ Xn , using the polynomial of the best approximation Tn−1 ∈ Tn−1

for the function Axn , we’ll have

‖Axn − P2n Axn‖Y ≤ (1 + ‖P2n‖Y→Y)‖Axn − Tn−1‖Y. (13)

Now, taking into account the structural qualities of the function Axn , we can estimate

H(Axn;α) ≤ c(‖xn‖C + ‖x ′
n‖C) ≤ c‖xn‖X. (14)

From (13), using Lemma1, an estimation (5), and in view of (14) we have

‖Axn − P2n Axn‖Y ≤ c(n−α+β ln n)‖xn‖X. (15)

In the same way, we obtain

‖Bxn − P2n Bxn‖Y ≤ c(n−α+β ln n)‖xn‖X. (16)

Considering the trigonometrical degree of accuracy of the quadrature formulae
for the regular integrals used in (4) we can write

‖Wxn − Wnxn‖Y ≤ ‖
1∑

ν=0

J 0hνx
(ν)
n − P2n

1∑

ν=0

J 0Pτ
2n(hνx

(ν)
n )‖Y ≤ (17)

≤ ‖
1∑

ν=0

J 0hνx
(ν)
n − P2n

1∑

ν=0

J 0(hνx
(ν)
n )‖Y + ‖P2n

1∑

ν=0

J 0(x (ν)
n (hν − Pτ

2nhν))‖Y.
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Now, using the polynomial of the best uniform approximation Tn−1 ∈ Tn−1 for the

function
1∑

ν=0
J 0hνx (ν)

n , we get

‖
1∑

ν=0

J0(hνx
(ν)
n ) − P2n

1∑

ν=0

J0(hνx
(ν)
n )‖Y ≤ (1 + ‖P2n‖Y→Y)‖

1∑

ν=0

J0hν x
(ν)
n − Tn−1‖Y.

(18)

Considering the structural qualities of the function hν(t, τ ) by the variable t , it is
easy to show that

H(

1∑

ν=0

J 0(hνx
(ν)
n );α) ≤ c

1∑

ν=0

‖x (ν)
n ‖C ≤ c‖xn‖X. (19)

From (18) and (19), using Lemma1 and an estimation (5), we get

‖
1∑

ν=0

J 0hνx
(ν)
n − P2n

1∑

ν=0

J 0hνx
(ν)
n ‖Y ≤ c(n−α+β ln n)‖xn‖X. (20)

Further, taking into account the structural qualities of the functions hν(t, τ ) by the
variable τ , error estimations of the quadrature formulae, and Lemma2, for the second
summand of the right-hand side of the estimate (17) we get

‖P2n
1∑

ν=0

J 0(x (ν)
n (hν − Pτ

2nhν))‖Y ≤ (21)

≤ c(nβ ln n)‖
1∑

ν=0

J 0(x (ν)
n (hν − Pτ

2nhν))‖C ≤ c(n−α+β ln n)‖xn‖X.

Finally, using the estimate (17), (20), and (21), we get

‖Wxn − Wnxn‖Y ≤ c(n−α+β ln n)‖xn‖X. (22)

Let’s denote ψn−1(t) ∈ Tn−1 the polynomial of the best uniform approximation
of the function ψ(t). Using an auxiliary operator

Ūn : Xn → Yn, Ūnxn = ψ−
n−1x

′+
n − ψ+

n−1x
′−
n ,

we get
‖Uxn −Unxn‖Y ≤ (1 + ‖P2n‖Y→Y)‖Uxn − Ūnxn‖Y. (23)
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Futher, we have

‖Uxn − Ūnxn‖Y ≤ ‖(ψ− − ψ−
n−1)x

′+
n ‖Y + ‖(ψ+ − ψ+

n−1)x
′−
n ‖Y. (24)

Each summand of the right-hand side of (24) we estimate, using Lemma1 as follows:

‖(ψ∓ − ψ∓
n−1)x

′±
n ‖Y ≤ ‖ψ∓ − ψ∓

n−1‖Y‖x ′±
n ‖Y ≤ cn−α+β‖xn‖X. (25)

Now by using (24), (25), and (5) we can rewrite inequality (23) as

‖Uxn −Unxn‖Y ≤ c(n−α+β ln n)‖xn‖X. (26)

And finally, using estimations (15), (16), (22), and (26), we get

‖K − Kn‖Xn→Y ≤ cn−α+β ln n.

As the operators Q and K are both invertable and the inverse operator Q−1 is
bounded, then

‖K−1‖Y→X ≤ ‖v‖Y‖Q−1‖Y→X ≤ c. (27)

So there exists n0 ∈ N such that for all n ∈ N, n ≥ n0,

‖K−1‖Y→X‖K − Kn‖Xn→Y ≤ cn−α+β ln n ≤ 1

2
.

For such n according to the Theorem 1.1 of the paper [16] there exist the operators
K−1

n : Yn → Xn , and they are bounded. Moreover, for the right-hand sides of the
Eqs. (11), (12), using the condition A1 of the Theorem1, Lemma1 and estimation
(5), we have

‖y − yn‖Y = ‖y − P2n y‖Y ≤ cn−α+β ln n. (28)

Now, using the corollary of the Theorem 1.2 [16], for the solutions x∗ and x∗
n of

the Eqs. (11), (12), taking into account (27), (28), we’ll find

‖x∗ − x∗
n‖X ≤ cn−α+β ln n.

The Theorem1 is proved. �

Corollary 1 If, in the conditions of the Theorem1, the functions aν , bν , hν (by both
variables), ν = 0, 1, and y belong to Hr

α , r ∈ N. Then the approximate solutions x∗
n

converge to the exact solution x∗ of the Eq. (1) as n → ∞ by the norm of the space
H1

β as follows:

‖x∗ − x∗
n‖H1

β
≤ cn−r−α+β ln n, r + α > β. (29)
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Proof Using the Theorem 6 from [15], we can write

‖x∗ − x∗
n‖X ≤ (1 + ‖K−1

n P2nK‖)‖x∗ − x̄n‖X + ‖K−1
n ‖‖Knx̄n − P2nK x̄n‖Y,

(30)

where x̄n is an arbitrary element of the space Xn . Under corollary 1 conditions the
solution x∗ of the Eq. (1) is so, that x∗′ ∈ Hr

α for 0 < α < 1 and x∗(r+1) ∈ Z for
α = 1 (Z means Zigmund class of the functions). Then, taking for the x̄n ∈ Tn the
polynomial of the best uniformapproximation for the function x∗ andusingLemma1,
for the first summand of the right-hand side of (30) we’ll obtain

(1 + ‖K−1
n P2nK‖)‖x∗ − x̄n‖X ≤ cn−r−α+β ln n. (31)

Taking into account the structural qualities of the functions hν(t, τ ), ν = 0, 1, by
the variable τ , the error estimation of the quadrature formulae, using Lemma2 and
estimation (5) for the second summand of the right-hand side of the inequality (30),
we get

‖Knx̄n − P2nK x̄n‖Y = ‖Wnx̄n − P2nW x̄n‖Y ≤ (32)

≤ ‖P2n
1∑

ν=0

J0(x̄
(ν)
n (hν − Pτ

2nhν))‖Y ≤

≤ c(nβ ln n)‖
1∑

ν=0

J0(x̄
(ν)
n (hν − Pτ

2nhν))‖C ≤ c(n−r−α+β) ln n‖x̄n‖X.

Now, substituting estimations (31) and (32) in (30), and taking into account, that

‖x̄n‖X ≤ ‖x∗‖X + ‖x∗ − x̄n‖X ≤ ‖x∗‖X + cn−r−α+β,

we get an estimation (29). Corollary1 is proved. �
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