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Abstract In this work, turbulent flows through porous media are considered. We
begin by making a historical review of the equations governing laminar flows in
porous media, from Darcy’s law to Darcy–Brinkman–Forchheimer’s more general
model. Using the double averaging concept (in time and in space) we explain how
to obtain the more general system of equations that governs turbulent flows through
porous media. For the one-equation turbulent problem in the steady-state we show
that the known existence results can be generalized to any space dimension d ≥ 2
and for a more general function of turbulence production.
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1 Turbulent Flows Through Porous Media

Fluid flows through porousmedia are usually described byDarcy’s law [1], an empir-
ical flow model that represents a simple linear relationship between flow rate and the
pressure drop in a porous media. Today, Darcy’s law reads

u = −K
μ

∇p ⇔ 0 = −K∇p − μu , (1)

where u is the fluid velocity field, p is the pressure and μ is the fluid (dynamic)
viscosity that was only observed and included in Darcy’s law later on by Hazen [2].
The tensor K, called permeability, is independent of the nature of the fluid but it
depends on the pore size, the porosity, and also on the geometry of the medium. In
particular,K reduces to a scalar K if the medium is isotropic. The Darcy law assumes
no effect of boundaries and the fluid velocity inDarcy’s equation is determined by the
permeability of thematrix. If the boundary is impermeable, then the usual assumption
is that the normal component of the velocity must vanish: u · n = 0 on the solid-fluid
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interface, where n is the unit normal. At a solid wall boundary, the fluid velocity will
not reduce to the no-slip condition when the Darcy law is enforced. In this situation,
the Brinkman law [3] may be employed, which is an extension of the Darcy law and
facilitates the matching of boundary conditions,

∇p = − μ

K
u + μe�u ⇔ 0 = −∇p − μ

K
u + μe�u , (2)

where μe is the effective fluid viscosity, a function of the fluid viscosity and of the
geometry of the medium. Equations (1) and (2) describe well porous media flows
at sufficiently small velocities. But, for larger values of u there is a breakdown in
the linearity of these equations which is owing to the fact that the form-drag due
to solid obstacles is now comparable with the surface drag due to friction. In this
case, Dupuit–Forchheimer’s law [4, 5] remedies the situation by stating that the
relationship between the flow rate and pressure gradient is nonlinear at sufficiently
high velocity and that this nonlinearity increases with the flow rate. According to
many authors (see e.g. Joseph et al. [6]), the appropriate modification of Darcy’s
law, to take into account high flow rates, is to replace (1) by the following Dupuit-
Forchheimer equation,

∇p = ρg − μ

K
u − cFρ√

K
|u|u ⇔ 0 = ρg − ∇p − μ

K
u − cFρ√

K
|u|u , (3)

where ρ is the fluid density and cF is a dimensionless form-drag constant. Several
authors (see e.g. Nakayama [7] and Kuznetsov [8]) have added, in their studies, a
diffusion term to (3) in order to form a Brinkman–Dupuit–Forchheimer model,

∇p = − μ

K
u − cFρ√

K
|u|u + μe�u ⇔ 0 = −∇p − μ

K
u − cFρ√

K
|u|u + μe�u.

(4)

Drawing a parallel between Eqs. (2) and (4) and the Navier–Stokes equations for
creep flow may led to misleading interpretations. For instance, the pressure in Eqs.
(2) and (4) represents a force per unit of permeable area, including solid and fluid,
while the pressure in the Navier–Stokes equations is a force per unit area of fluid
only – the same is true also for the fluid velocities. However, if we confine ourselves
to the pore scale (microscopic scale), the flow quantities can be determined by the
incompressible Navier–Stokes equations (for homogeneous fluids)

div u = 0, (5)

∂u
∂t

+ (u · ∇)u = g − 1

ρ
∇p + νdiv(D(u)) , D(u) = 1

2

(∇u + ∇uT
)
, (6)

where ν is the kinematic viscosity and g is the gravity forces field. If the boundary
is impermeable, then, as we already have seen, u · n = 0 on the solid-fluid interface.
But, contrary to the Darcy flow model (the maximum velocity occurs at the imper-
meable surface), the no-slip boundary condition can be used in this case: u · τ = 0
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on the solid-fluid interface, where τ is the unit tangent. The problem of considering
(5)–(6) is that, due to the complexity of internal geometries and interfacial structures,
it is impractical to solve the microscopic Eqs. (5)–(6) inside the pores. A common
approach is to average the microscopic equations inside porous medium over a rep-
resentative elementary volume (REV). REV is the smallest volume over which a
measurement can be made that will yield a value representative of the whole domain
(including fluid and solid). The volumetric average of the microscopic Eqs. (5)–(6),
under the assumption of a rigid, isotropic and fixed porous matrix, results (cf. Hsu
and Cheng [9]) on the following macroscopic equations,

divu f = 0; (7)

∂u f

∂t
+ div

(
1

φ
u f ⊗ u f

)
= g f − 1

ρ f
∇p f + μ f

ρ f
div

(
D

(
u f

)) + 1

ρ f
(H + R)s,

(8)

where u f = φ 〈u〉i , p f = φ 〈p〉i , g f = φ 〈g〉i , ρ f = φ 〈ρ〉i and μ f = φ 〈μ〉i are
(fluid) phase averages and φ = V f

V is the local medium porosity. For instance,
〈u〉i := 1

V f

∫
V f

u dV is the intrinsic (fluid) average of the fluid phase velocity u over
the fluid domain V f contained in the representative elementary volume V . Fluid
velocities u and 〈u〉i are related through u = 〈u〉i +i u, where iu is the spatial devi-
ation of u with respect to 〈u〉i . In the momentum equation (8), H and R represent,
respectively, the hydrodynamic dispersion due to spatial deviations and the total drag
force per unit volume due to the presence of the porous matrix,

H = −div
(
φ

〈
iu ⊗i u

〉i)
, R = −μ f

K
u f − cF√

K
ρ f |u f |u f .

In the applications, the choice of the flow equations to model porous media flows,
within similar flow conditions, is usually based on the pore Reynolds number
Rep := ρ qD

μ
, where q is the specific discharge and D is some representative (micro-

scopic) diameter characterizing the void space (see e.g. Dybbs and Edwards [10]). In
particular, Rep ≤ 1 holds when u is sufficiently small and therefore the flow equation
is linear in the velocity. In this case, the flow is well described by one of the Eq. (1) or
(2) and the dominated flow regime is called Darcy or viscous-drag. As u increases,
the transition to nonlinear drag is quite smooth as long as 1 < Rep ≤ 10 and the
breakdown in the linearity of u occurs when Rep > 10. If 1 ∼ 10 < Rep < 150,
the dominated flow regime is called Forchheimer or form-drag and the flow can
be described by one of the models (3) or (4). By using the local volume averaging,
some authors (e.g. Vafai and Kim [11]) have added to the Eq. (4) the advective inertia
terms of the Navier–Stokes equations to model some situations of form-drag flows.
For Rep > 150, the flow regime is called post-Forchheimer and almost works in the
literature consider, in this case, the local volume average of the Navier–Stokes equa-
tions to form what is now known as the Brinkman–Forchheimer-extended Darcy
model (or generalized model). In particular, if 150 < Rep < 300 the flow regime
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is still laminar but unsteady and the time inertia terms need to be considered. If
Rep > 300, the flow becomes fully turbulent and therefore turbulence modelling is
required. With this regard, it should be mentioned that two main differences exist
between turbulent flow through porous media and turbulent flow in the absence of
a porous matrix. By one hand, the size of the turbulent eddies within the pores
is limited by the pore size. On the other, the presence of a porous matrix induces
additional drag while preventing motion of larger size eddies. To model turbulent
flows through porous media, it is usually considered the turbulent k−epsilon model
which is obtained by time-averaging the incompressible Navier–Stokes equations
(5) and (6),

div u = 0, (9)
∂u
∂t

+ div(u ⊗ u) = g − 1

ρ
∇ p + div ((ν + νT (k, ε))D(u)) , (10)

∂ k

∂ t
+ u · ∇k = div (νD(k, ε)∇k) + νT (k, ε)|D(u)|2 − ε, (11)

∂ε

∂t
+ u · ∇ε = div (νD(k, ε)∇ε) + C1k|D(u)|2 + C2

ε2

k
. (12)

Here, u, p and g denote the time averaged velocity, pressure and external forces,
whereas k is the turbulent kinetic energy and ε expresses the turbulent dissipation.
The averaged quantities result from their Reynolds decomposition, for instance u =
u + u′, where u = 1

�t

∫ t+�t
t u dt is the time averaged velocity, being �t small when

compared with the magnitude of fluctuations u′ of u. The functions νT and νD = νT
σk

in (9)–(12) account for the turbulent viscosity and turbulent diffusivity, where σk is
the Schmidt-Prandtl number, andC1,C2 are positive constants that can be determined
from the experiments. The consideration of one-equation models is acceptable in the
sense that the equation for ε may be discarded by prescribing an appropriate length
scale l,

div u = 0, (13)
∂u
∂t

+ div(u ⊗ u) = g − 1

ρ
∇ p + div ((ν + νT (k)D)(u)) , (14)

∂ k

∂ t
+ u · ∇k = div (νD(k)∇k) + νT (k)|D(u)|2 − ε(k), ε(k) = CD

l
k

3
2 .

(15)

See e.g. Chacón-Rebollo and Lewandowski [12] and Lemos [13] for the derivation
of the turbulent k-epsilon model (see also Oliveira and Paiva [14]). From a broad per-
spective, for high pore Reynolds number (Rep > 300), turbulent models presented
in the literature follow two different approaches. In both developments, the porous
medium is considered to be rigid, fixed, isotropic and saturated by an incompressible
fluid, and both techniques aim to derive suitable macroscopic transport equations.
The first method (see Getachewa et al. [15] and the references cited therein), starts
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with the volume average of the microscopic equations and then the macroscopic
equations are averaged in time. However, some works (see e.g. Antohe and Lage
[16]) have concluded that turbulent models derived directly from the general macro-
scopic equations do not accurately characterize turbulence induced by the porous
matrix. The second approach (see Nakayama and Kuwahara [17] and the references
cited therein), makes use, first, of the time averaged equations, and then proceeds
with volume averaging. In this case, the governing equations are obtained by volume
averaging the microscopic Reynolds-averaged equations (13)–(15),

div 〈u〉i = 0, (16)

∂ 〈u〉i
∂t

+ div
(〈u〉i ⊗ 〈u〉i) = 〈g〉i − 1

ρ f
∇π + div

[(
ν f + νT

)
D

(〈u〉i)] + R,

(17)

∂ 〈k〉i
∂t

+ 〈u〉i · ∇〈k〉i = div
[(

ν f + νD
)∇〈k〉i] + 2νT

∣∣D
(〈u〉i)∣∣2− 〈ε〉i + P.

(18)

Here,π = 〈p〉i + 2
3ρ f 〈k〉i ,ν f = μ f

ρ f
,R represents the timeaveraged total drag forces

and P accounts for the production of turbulence due to solid obstacles inside the
porous domain. The main features of Nakayama and Kuwahara’s model are that the
hydrodynamic dispersion was incorporated in the drag forces and the additional term
P appearing in the governing equation for 〈k〉i (and also in the equation for 〈ε〉i ), is
determined by using two unknown model constants,

R = −φ

(
ν f

K
〈u〉i − cF√

K
φ| 〈u〉i | 〈u〉i

)
, P = 39φ2 5

√
(1 − φ)2

d
|〈u〉i |3.

Following a slight different approach, Pedras and Lemos [18] obtained

div 〈u〉i = 0, (19)

∂ 〈u〉i
∂t

+ div
(〈u〉i ⊗ 〈u〉i) = 〈g〉i − 1

ρ f
∇π + div

[(
ν f + νTφ

)
D

(〈u〉i)] + R,

(20)

∂ 〈k〉i
∂t

+ 〈u〉i · ∇〈k〉i = div
[(
ν f + νDφ

)∇〈k〉i] + 2νT
∣∣D

(〈u〉i)∣∣2 − 〈ε〉i + P .

(21)

In this case, the total drag term R is only closed after all the equations are obtained
and the additional term that is included in the equation for 〈k〉i to account for the
porous structure is defined through

P = ckφ3

√
K

〈k〉i | 〈u〉i |.
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Moreover, to model the Reynolds stresses it is proposed a macroscopic Boussi-
nesq assumption:

〈
u′ ⊗ u′〉

i = 2
3 〈k〉i I − νTφ

〈D (u)〉i , where νTφ
and νDφ

denote the
macroscopic turbulent viscosity and the macroscopic turbulent diffusivity, which
satisfy to νTφ

D
(〈u〉i) = 〈νTD (u)〉i and νDφ

= νTφ
σk
. From the mathematical point of

view, the main difference between systems (16)–(18) and (19)–(21) relies on the
production of turbulence term, denoted by P at Eqs. (18) and (21). This term, that
appears as an output of the averaging process, is a production term of turbulent kinetic
energy and gives account of the solids inside the fluid. Note that different approaches
or distinct assumptions led to different diffusivity functions between Eqs. (18), (21)
and (15).

2 The Problem Under Consideration

Motivated by the systems of equations (16)–(18) and (19)–(21), we study, in this
work, a one-equation turbulent model for the description of incompressible flu-
ids within a fluid-saturated and rigid porous medium, which for simplicity is also
assumed to befixed,with a constant porosity functionφ, and isotropic. The problem is
assumed to be governed by the following general set of equations in the steady-state,

div u = 0 in Ω, (22)

(u · ∇)u = g − f(u) − ∇p + div ((ν + νT (k))D(u)) in Ω, (23)

u · ∇k = div ((ν + νD(k))∇k) + νT (k)|D(u)|2 + P(u, k) − ε(k) in Ω .

(24)

Here,Ω denotes the porous domain in consideration and the velocity field u, the pres-
sure p and the external forces field g are, in fact, averages that result by the application
of the averaging procedures that lead us to (16)–(18) and (19)–(21). The feedback
terms f(u) and P(u, k) (up to the minus sign in the first case) represent the total drag
R and the turbulence production considered in these systems: f(u) = CDu + CF |u|u
and P(u, k) = C1|u|3 in (16)–(18), or P(u, k) = C2|u|k in (19)–(21),whereCD ,CF ,
C1 and C2 are the correspondingly multiplicative constants in the mentioned turbu-
lent models. We supplement Eqs. (22)–(24) with Dirichlet homogeneous boundary
conditions,

u = 0 and k = 0 on ∂Ω, (25)

where ∂Ω denotes the rigid boundary of the porous domain Ω . Problems (22)–
(25) with the smaller difference of the term div ((ν + νD(k))∇k) replaced by
div (νD(k)∇k), was considered by Oliveira and Paiva [19, 20], where it was proved
the existence and uniqueness of weak solutions in the dimensions of physics interest
d = 2, 3 and also for d = 4. Due to the mathematical interest, we shall consider now
the problems (22)–(25) in a general dimension d, i.e. we assume that Ω is a bounded
subdomain of Rd for a general d ≥ 2. Our aim in the rest of the paper, is to show
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that the existence results of [19] can be suitable adapted to hold for any dimension
d ≥ 2. In the mathematical treatment of the turbulence problems (22)–(25), there is
a set of usual assumptions that although do not follow from the real situation they
are physically admissible,

f : Ω × Rd → Rd , ε, νT , νD : Ω × R → R, P : Ω × Rd × R → R (26)

are Carathéodory functions. Observe that we are considering the possibility that all
the functions f , P , ε, νT and νD may also depend on the space variable. In particu-
lar, assumption (26) fits with turbulent dissipation, turbulent viscosity and turbulent
diffusion functions involved in realistic models (see e.g. [12]). There is another set
of assumptions that impose some restrictions on the physics of the problem, but are
mathematically needed. We assume the existence of positive constants CT and CD

such that

0 ≤ νT (k) ≤ CT , 0 ≤ νD(k) ≤ CD for all k ∈ R and a.e. in Ω. (27)

Definition 1 Let the conditions (26) and (27) be fulfilled and assume that g ∈ V′.
We say a pair (u, k) is a weak solution to the problems (22)–(25), if: (1) u ∈ V and
for every v ∈ V ∩ Ld(Ω) there hold f(u) · v ∈ L1(Ω) and

∫

Ω

(u · ∇)u · v dx +
∫

Ω

(ν + νT (k))D(u) : ∇v dx +
∫

Ω

f(u) · v dx =
∫

Ω

g · v dx; (28)

(2) k ∈ W1,q
0 (Ω), with 2d

d+2 ≤ q < d ′, and for every ϕ ∈ W1,q ′
0 (Ω) there hold ε(k),

ϕ, P(u, k) ϕ ∈ L1(Ω) and

∫

Ω

(u · ∇k)ϕ dx +
∫

Ω

(ν + νD(k))∇k · ∇ϕ dx +
∫

Ω

ε(k) ϕ dx =
∫

Ω

νT (k)|D(u)|2ϕ dx +
∫

Ω

P(u, k) ϕ dx;
(29)

(3) k ≥ 0 and ε(k) ≥ 0 a.e. in Ω .

The notation and the function spaces we use in this work are well known (see
e.g. Galdi [21]). In particular, V := {V ∈ C∞

0 (Ω) : div v = 0},H := closure of V in
L2(Ω),V := closure of V inH1(Ω),V′ denotes the dual space ofV and v := closure
of C∞

0 (Ω) in H1(Ω). Observe that, in the case of d ≤ 4, the Sobolev imbedding
H1

0(Ω) ↪→ Ld(Ω) holds and therefore it is only needed to require the test func-
tions of (28) are in the function space V. In this case (d ≤ 4), it were proved, in
[19, 20], existence results to the problems (22)–(25) under different conditions on the
feedback functions f(u), ε(k) and P(u, k). However, in the case of d > 4, requiring
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the test functions are also inLd(Ω)will cause the conditions to prove these existence
results to be improved. In this section, we assume for any space dimension d ≥ 2
the existence of nonnegative constants C f and Cε such that the following growth
conditions are satisfied a.e. in Ω ,

|f(u)| ≤ C f |u|α for 0 ≤ α ≤ max

{
d + 2

d − 2
,
2d − 2

d − 2

}
if d �= 2, or α ≥ 0 if d = 2,

(30)

|ε(k)| ≤ Cε|k|θ for 0 ≤ θ <
d

d − 2
if d �= 2, or θ ≥ 0 if d = 2. (31)

On the production term P(u, k), we assume the existence of a positive constant CP

such that
|P(u, k)| ≤ CP |u|β |k|ϑ a.e. inΩ (32)

for

ϑ = 0 and β ≤ d + 2

d − 2
, or

0 < ϑ ≤ 1 and β + ϑ ≤ d + 2

d − 2
and β + 2ϑ <

2d

d − 2

⎫
⎪⎬

⎪⎭
if d �= 2,

or β ∈ [0,∞), ϑ ∈ [0, 1] if d = 2.

(33)

In the sequel we shall consider our analysis only for the cases d �= 2, because for
d = 2 the reasoning is easier. In this case, observe that d+2

d−2 ≥ 2d−2
d−2 holds in (30) as

long as d ≤ 4. Taking this into account, we note that in the particular case of d ≤ 4
and of only ϑ = 0 or ϑ = 1, we fall in the exact growth conditions of the existence
result established in [19, Thorem 3.1]. Additionally to the growth conditions (30)–
(33), we assume the following sign conditions,

f(u) · u ≥ 0 and ε(k) k ≥ 0 a.e. inΩ (34)

for all u ∈ R
d and all k ∈ R, respectively. We consider, in this work, that our general

turbulent dissipation function can be written in such a way that

ε(k) = ke(k) where e : Ω × R → R0 is a Carathéeodory function. (35)

Gathering the information of (34) and (35) it follows immediately that e(k) ≥ 0 for
all k ∈ R and a.e. in Ω . To avoid the trivial solution k = 0, we shall assume in the
sequel, and in addition to (27), that νT (k) �= 0 when k = 0.
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3 Existence

Theorem 1 Let Ω be a bounded domain of Rd , d ≥ 2, with a Lipschitz-continuous
boundary ∂Ω . Assume all the conditions (26), (27), (30), (31), (34) and (35) hold. If

g ∈ L2(Ω), (36)

and if (32) and (33) hold but, in the case of 0 < ϑ ≤ 1, with the extra assumption
that

ν > C‖g‖
β

1+β

L2(Ω)
, withC defined at (48), (37)

then there exists, at least, a weak solution to the problems(22)–(25).

The rest of the section is devoted to prove Theorems1. We start by considering, for
each n ∈ N, the following regularized problem

div u = 0 in Ω, (38)

(u · ∇)u = g − f(u) − ∇p + div ((ν + νT (k))D(u)) in Ω, (39)

u · ∇k = div ((ν + νD(k))∇k) + νT (k)Rn
(|D(u)|2) + P(u, k) − ε(k) in Ω,

(40)

u = 0 and k = 0 on ∂Ω, (41)

where Rn
(|D(u)|2) := |D(u)|2

1+ 1
n |D(u)|2 . Under the assumptions of Definition1, we say

a pair (u, k) is a weak solution to the regularized problem (38)–(41) if, for each
n ∈ N, (1) and (3) of Definition1 hold, and: (2’) k ∈ H1

0(Ω) and for every ϕ ∈
H1

0(Ω) ∩ Ld(Ω) there holds (29’), i.e. (29) withRn
(|D(u)|2) in the place of |D(u)|2.

Observe again that, as we have mentioned for the test functions in (28), due to
the Sobolev imbedding H1

0(Ω) ↪→ Ld(Ω) it would only be needed to require the
test functions of (29’) are in the function space H1

0(Ω) in the case of d ≤ 4. The
existence of a weak solution to the problem (38)–(41) is established in the following
proposition.

Proposition 1 Let the conditions of Theorem1 be fulfilled. Then (for each n ∈ N)
there exists, at least, a weak solution to the problems(38)–(41).

Proof For each j ∈ N, we search for the Galerkin approximations u j = ∑ j
i=1 ci jvi

and k j = ∑ j
i=1 di jυi , solutions to the system formed by (28) and of (29’), where

ci j , di j ∈ R, vi ∈ V j , υi ∈ V j , and V j , V j are j-dimensional subspaces of Vs :=
closure ofV inWs,2(Ω) andofV r := closure ofC∞

0 (Ω) inWr,2(Ω), being s and r the
smallest integers such that s, r ≥ d

2 . Note that in the case of d ≤ 4, wemay let r, s =
1 and replaceVs and V r by the function spacesV and V defined above. Functions u j

and k j are found by solving the following system of 2 j nonlinear algebraic equations,
with respect to the 2 j unknowns c1 j , c2 j , . . . , c j j and d1 j , d2 j , . . . , d j j ,
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∫

Ω

((u j · ∇)u j ) · vi dx +
∫

Ω

(ν + νT (k j ))D(u j ) : ∇vi dx +
∫

Ω

f(u j ) · vi dx =
∫

Ω

g · vi dx,
(42)

∫

Ω

(u j · ∇k j )υi dx +
∫

Ω

(ν + νD(k j ))∇k j · ∇υi dx +
∫

Ω

ε(k j )υi dx =
∫

Ω

νT (k j )Rn
(|D(u j )|2

)
υi dx +

∫

Ω

P(u j , k j ) υi dx, (43)

for i = 1, . . . , j . To prove the existence of, at least, a solution to the system (42)
and (43), we consider a function P , from V j × V j into itself defined in such a way
that

P(v, υ) · (v, υ) = I1 + · · · − I4 + · · · − I8 − I9 :=
∫

Ω

((v · ∇)v) · v dx+
∫

Ω

(ν + νT (υ))D(v) : ∇v dx +
∫

Ω

f(v) · v dx −
∫

Ω

g · v dx +
∫

Ω

(v · ∇υ)υ dx+
∫

Ω

(ν + νD(υ))|∇υ|2 dx +
∫

Ω

ε(υ)υ dx −
∫

Ω

νT (υ)Rn

(
|D(v)|2

)
υ dx −

∫

Ω

P(v, υ) υ dx

for all (v, υ) ∈ V j × V j and where the scalar product is induced by V × V .
Reasoning as we did in the proof of [19, Theorem 3.1], it can be proved that
I1 = 0 and I5 = 0, I2 ≥ ν C2

K‖∇v‖2L2(Ω)
, I3, I7 ≥ 0 and I6 ≥ ν‖∇υ‖2L2(Ω)

, I4 ≤
ΛP(d)‖g‖L2(Ω)‖∇v‖L2(Ω) and I8 ≤ CT n

√
Ld(Ω)λ(2, d)‖∇υ‖L2(Ω), where CK is

the Korn’s inequality constant, λ(2, d) andΛP(d) are the best constants of the scalar
and vectorial Sobolev inequalities. For the term I9, we argue similarly as in the
previous reference, to show that

I9 ≤ CP λ(2, d)1+ϑΛ(2, d)β‖∇v‖β

L2(Ω)
‖∇υ‖1+ϑ

L2(Ω)
, β + ϑ ≤ d + 2

d − 2
. (44)

Then, gathering the information of the estimates of I1, . . . , I9, it can be proved that
P(v, υ) · (v, υ) > 0 for ‖v‖V = ρ and ‖υ‖V = ς , and ρ and ς suitably chosen (see
again the aforementioned reference). Due to this and to assumptions (27), (34) and
(36), we can use a variant of Brower’s theorem to prove the existence of a solution
(c j ,d j ), with c j := (c1 j , c2 j , . . . , c j j ) and d j := (d1 j , d2 j , . . . , d j j ) to the system
(42) and (43).

Arguing as we did in [19], we can also prove that

‖∇u j‖L2(Ω) ≤ ΛP(d)

νC2
K

‖g‖L2(Ω). (45)

Consequently, we have (up to some subsequences) that u j → u weakly in H1
0(Ω),

u j → u strongly in Lγ (Ω) for γ ∈ [
1, 2d

d−2

)
, and u j → u a.e. in Ω , all as j → ∞.

Proceeding again as we did in [19], we have
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∫

Ω

(ν + νD(k j ))|∇k j |2 dx ≤
∫

Ω

νT (k j )Rn
(|D(u j )|2

)
k j dx +

∫

Ω

P(u j , k j )k j dx.

If 0 = ϑ < 1, we can argue as we did for I6, I8 above and, in particular for (44), to
prove that

‖∇k j‖2L2(Ω) ≤ C for β + ϑ ≤ d + 2

d − 2
, (46)

for some positive constant C not depending on j . In the case of ϑ = 1, we argue as
we did for (46) to obtain

‖∇k j‖L2(Ω) ≤ CT n
√
Ld(Ω)λ(2, d)

ν − CP λ(2, d)2Λ(2, d)β
(

ΛP (d)

νC2
K

)β ‖g‖β

L2(Ω)

, β ≤ 4

d − 2
. (47)

By using assumption (37), with C defined by

C :=
(
CP λ(2, d)2Λ(2, d)βC−2β

K ΛP(d)β
) 1

1+β

, (48)

we can readily see that the right-hand side of (47) is a positive constant independent
of j . Then by a usual reasoning, we have (up to some subsequences) that k j → k
weakly in H1

0(Ω), k j → k strongly in Lγ (Ω) for γ ∈ [
1, 2d

d−2

)
, and k j → k a.e. in

Ω , all as j → ∞.
Now we pass to the limit j → ∞ the integral equality (42). The convergence of

the last term of (42) follows from the weak convergence of u j and assumption (36).
The convergence of the first and third terms of (42) follows a reasoning a little bit
different from the one used in [19], because now d ≥ 4. For the convergence of the
third, we observe that since f is continuous on u (see (26)), we have by virtue of the
a.e. convergence of u j ,

f(u j ) → f(u) a.e. inΩ, as j → ∞. (49)

On the other hand, using Sobolev’s inequality together with (30) and (45), it can be
proved that

‖f(u j )‖Lγ (Ω) ≤ C for γ = 2d

d + 2
and α ≤ d + 2

d − 2
, or γ = d ′ and α ≤ 2d − 2

d − 2
,

(50)

for some positive constant C independent of j . Note that conditions on α given by
(50) are responsible for the assumption (30). Owing to (49) and (50), f(u j ) → f(u)

weakly in Lγ (Ω), as j → ∞. As a consequence,
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∫

Ω

f(u j ) · vi →
∫

Ω

f(u) · vi , as j → ∞, for all i ≥ 1.

Note that in the case of γ = 2d
d+2 , we may use the fact that vi ∈ H1

0(Ω) ↪→ L
2d
d−2 (Ω).

For the first term of (42), we observe that, due to (22) and (25), we can write

∫

Ω

((u j · ∇)u j ) · vi dx = −
∫

Ω

u j ⊗ u j : ∇vi dx.

From (45), this used together with the Sobolev imbeddingH1
0(Ω) ↪→ L

2d
d−2 (Ω), and

with the a.e. convergence of u j , we have

‖u j ⊗ u j‖L d
d−2 (Ω)

≤ C and u j ⊗ u j → u ⊗ u a.e. inΩ, as j → ∞, (51)

where C is a positive constant not depending on j . Consequently, (51) yields

u j ⊗ u j → u ⊗ u weakly in L
d

d−2 (Ω), as j → ∞. (52)

Then, since, by the Sobolev imbedding, ∇vi ∈ Hs−1(Ω) ↪→ L
d
2 (Ω) for s ≥ d

2 − 1,
which is guaranteed by the choice of s ≥ d

2 , we have, by virtue of (52) and once that(
d

d−2

)−1 + (
d
2

)−1 = 1,

∫

Ω

u j ⊗ u j : ∇vi dx →
∫

Ω

u ⊗ u : ∇vi dx, as j → ∞, for all i ≥ 1. (53)

Let us now show the convergence of the second termof (42).Wefirst observe that (26)
and (27) and the a.e. convergence of k j imply

∣∣(ν + νT (k j ))∇vi
∣∣ ≤ (ν + CT )|∇vi |

and (ν + νT (k j ))∇vi → (ν + νT (k))∇vi a.e. inΩ, as j → ∞. Then, since, by the
Sobolev imbedding,∇vi ∈ Hs−1(Ω) ↪→ L2(Ω) for s ≥ 1,which again is guaranteed
by the choice of s ≥ d

2 , we have, by Lebesgue’s dominated convergence theorem,

(ν + νT (k j ))∇vi → (ν + νT (k))∇vi strongly inL2(Ω), as j → ∞. (54)

Then, from the weak convergence of u j and (54), we can prove that

∫

Ω

(ν + νT (k j ))D(u j ) : ∇vi dx →
∫

Ω

(ν + νT (k))D(u) : ∇vi dx, as j → ∞,

(55)

for all i ≥ 1. The convergence of third and last terms of (42) (see [19]) together with
(53) and (55) imply that we can pass to the limit j → ∞ in the approximate system
(42) and thus we obtain
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∫

Ω
((u · ∇)u) · vi dx +

∫

Ω
(ν + νT (k))D(u) : ∇vi dx +

∫

Ω
f(u) · vi dx =

∫

Ω
g · vi dx

(56)

for all i ≥ 1. Using the linearity of (56) in vi and the density of the finite linear
combinations of the system {vi }∞i=1 in V ∩ Ld(Ω), we deduce that (56) holds true in
the whole space V, that is

∫

Ω
((u · ∇)u) · v dx +

∫

Ω
(ν + νT (k))D(u) : ∇v dx +

∫

Ω
f(u) · v dx =

∫

Ω
g · v dx (57)

for all v ∈ v ∩ Ld(Ω). This allows us to take v = u as a test function in (57), which
yields ∫

Ω

(ν + νT (k))|D(u)|2 dx +
∫

Ω

f(u) · u dx =
∫

Ω

g · u dx.

Taking vi = u j in (42), we also have the equality
∫

Ω

(ν + νT (k j ))|D(u j )|2 dx +
∫

Ω

f(u j ) · u j dx =
∫

Ω

g · u j dx.

Then, proceeding as in [19], we obtain (eventually up to some subsequence) that

D(u j ) → D(u) strongly inL2(Ω) and D(u j ) → D(u) a.e. inΩ, (58)

as j → ∞. We will now pass to the limit j → ∞ the integral equality (43). To pass
the first term of this equality to the limit, we can argue as we did for the convective
term of the Navier–Stokes equations (see (53)). The convergence of the second and
third terms of (43) follows as in the proof of [19, Theorem 3.1]. Due to assumption
(26) and to the a.e. convergence of k j , we have

ε(k j ) → ε(k) a.e. inΩ, as j → ∞. (59)

Using Sobolev’s inequality together with (31) and (46), it can be proved that

‖ε(k j )‖Lγ (Ω) ≤ C for γ = 2d

d + 2
and θ ≤ d + 2

d − 2
, or γ = d ′ and θ ≤ 2d − 2

d − 2
,

(60)

for some positive constant C not depending on j . Owing to (59) and (60), ε(k j ) →
ε(k) weakly in Lγ (Ω), as j → ∞. Thus

∫

Ω

ε(k j )υi dx →
∫

Ω

ε(k)υi dx, as j → ∞, for all i ≥ 1. (61)
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Note that in the case of γ = 2d
d+2 , we use the fact that υi ∈ H1

0(Ω) ↪→ L
2d
d−2 (Ω). Let

us now focus our attention on the last term of (43). Here, we first observe that (26)
together with the a.e. convergence of u j and k j imply that

P(u j , k j ) → P(u, k) a.e. inΩ, as j → ∞. (62)

By using assumption (32), Hölder’s inequality (in the case of ϑ �= 0) and Sobolev’s
inequality together with (45) and (46), or (47), it can be proved that

‖P(u j , k j )‖Lγ ≤ C for γ = 2d

d + 2
and β + ϑ ≤ d + 2

d − 2
, or γ = d ′ and β + ϑ ≤ 2d − 2

d − 2
,

(63)

for some positive constant C not depending on j . Thus, (62) and (63) imply that
P(u j , k j ) → P(u, k) weakly in Lγ (Ω), as j → ∞, and consequently, as we did for
(61), we obtain

∫

Ω

P(u j , k j )υi dx →
∫

Ω

P(u, k)υi dx, as j → ∞, for all i ≥ 1. (64)

The convergence of the first four terms of (43) together with (64), assure us that we
can pass to the limit j → ∞ in the approximate system (43) to obtain

∫

Ω

(u · ∇k)υi dx +
∫

Ω

(ν + νD(k))∇k · ∇υi dx +
∫

Ω

ε(k)υi dx

=
∫

Ω

νT (k)Rn
(|D(u)|2) υi dx +

∫

Ω

P(u, k) υi dx for all i ≥ 1.

We have thus proved that, for each n ∈ N, there exists a weak solution (un, kn) ∈
V × H1

0(Ω) to the problems (38)–(41) and such that

∫

Ω
(un · ∇)un · v dx +

∫

Ω
(ν + νT (kn))D(un) : ∇v dx +

∫

Ω
f(un) · v dx =

∫

Ω
g · v dx,

(65)
∫

Ω

(un · ∇kn)v dx +
∫

Ω

(ν + νD(kn))∇kn · ∇v dx +
∫

Ω

ε(kn)v dx

=
∫

Ω

νT (kn)Rn
(|D(un)|2

)
v dx +

∫

Ω

P(un, kn) v dx
(66)

hold for all (v, v) ∈ V j × V j and all j ≥ 1. By linearity and density these rela-
tions hold for all (v, v) ∈ Vs × Vr , and by continuity they hold for all (v, v) ∈
(V ∩ Ld(Ω)) × (H1

0(Ω) ∩ Ld(Ω)) due to the ranges of α, θ , β and ϑ set forth at
(30)–(32).
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The proof that k ≥ 0 and ε(k) ≥ 0 a.e. in Ω follows as in the proof of
[19, Theorem 3.1], in particular by using (35) for the expression of the turbulent
dissipation function. The proof of Proposition1 is now concluded. �

From Proposition1, we know that, for each n ∈ N, there exists a weak solution
(un, kn) ∈ V × H1

0(Ω) to the problems (38)–(41) and such that (65) and (66) hold.
Arguing as in [19], it can be proved that

‖∇un‖L2(Ω) ≤ ΛP(d)

νC2
K

‖g‖L2(Ω). (67)

As a consequence, it follows (up to some subsequences) that un → u weakly in
H1

0(Ω), un → u strongly in Lγ (Ω) for γ ∈ [
1, 2d

d−2

)
, and un → u a.e. in Ω , all as

n → ∞. To achieve an a priori estimate for kn , independent of n, we consider the
special test function ϕ(kn) := 1 − 1

(1+kn)δ
, where δ is a positive constant such that

ϕ ∈ W1,q ′
(Ω) ↪→ C0,δ(Ω). Taking v = ϕ(kn) in (66) and proceeding as we did in

[19], we have

δ

∫

Ω

(ν + νD(kn))
|∇kn|2

(1 + kn)1+δ
dx ≤

∫

Ω

νT (kn) |D(un)|2 dx +
∫

Ω

|P(un, kn)| dx.
(68)

With respect to the last term of (68), we firstly observe that, since q < d ′, by the
Sobolev imbedding we have W1,q

0 (Ω) ↪→ Lγ (Ω) for γ < d
d−2 . Therefore, in view

of (32) and (33),

∫

Ω

|P(un, kn)| dx ≤
{
C1‖∇un‖β

L2(Ω)
for β ≤ 2d

d−2 if ϑ = 0, or

C2‖∇un‖β

L2(Ω)
‖∇kn‖ϑ

Lq (Ω) for β + 2ϑ < 2d
d−2 if ϑ > 0,

(69)

whereC1 andC2 are independent of n positive constants. Then, using the assumption
(27) together with (69), and arguing as in [19], we can prove, in the most difficult
case of ϑ �= 0,

∫

Ω

|∇kn |q dx ≤ C1

δ
‖∇un‖2L2(Ω)

+ C2

δ
‖∇un‖β

L2(Ω)
‖∇kn‖ϑ

Lq (Ω) + C3‖∇kn‖
(1+δ)q

2
Lq (Ω) + C4,

(70)

where C1, C2, C3 and C4 are positive constants not depending on n. In this case, we
need also to apply Young’s inequality to the third term of (70) which is possible as
long as ϑ < 2d

d+2 , condition that is satisfied due to (32) and (33). The case ϑ = 0 is
easier. All this reasoning together with (67) and assumption (36), yield

∫

Ω

|∇kn|q dx ≤ C, C = C(ν, β,CT ,CP , d, q,Ω, ‖g‖L2(Ω)), (71)
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where C is a positive constant not depending on n. Then, in view of (71) and up to
some subsequences,wehave kn → kweakly inW1,q

0 (Ω) forq < d ′, kn → k strongly
in Lγ (Ω) for all γ ∈ [1, q∗) and kn → k a.e. in Ω , all as n → ∞. Now, we can pass
to the limit n → ∞ all the integral terms of (65) by arguing analogously as we
did in the proof of Proposition 1. With respect to the convergence of the integral
terms of (66), we first observe that since q < d ′, we have W1,q ′

0 (Ω) ↪→ C0,δ(Ω̄) for

δ = 1 − d
q ′ . As a consequence v ∈ W1,q ′

0 (Ω) implies that v ∈ Lγ ′
(Ω) for any γ ′ ≥ 1.

With minor modifications, the convergence of all the integral terms of (66) follows
as in the proof of Proposition 1, with the exception of the one involvingRn , because
we do not know whether if this term remains bounded as n → ∞. The convergence
of the third and fifth terms of (66) needs also some comments. Due to assumption
(26) and to the a.e. convergence of un and kn , we have

ε(kn) → ε(k) and P(un, kn) → P(u, k) a.e. inΩ, as n → ∞. (72)

Since k ∈ W1,q
0 (Ω) for q < d ′, we have, by virtue of (67) and (71), and for any

γ ≥ 1,

‖ε(kn)‖Lγ (Ω) ≤ C1 for θ <
d

d − 2
, (73)

‖P(un, kn)‖Lγ ≤ C2 for β ≤ 2d

d − 2
if ϑ = 0, or β + 2ϑ <

2d

d − 2
if ϑ > 0.

(74)

for some positive constants C1 and C2 not depending on n. Note that the conjunction
of conditions on θ given by (60) and (73) are responsible for the assumption (31).
On the other hand, the conjunction of all the conditions on β and ϑ given by (44),
(63), (69) and (74) are responsible for the assumptions (32) and (33). Then, owing
to (72), (73) and (74), ε(kn) → ε(k) and P(un, kn) → P(u, k) weakly in Lγ (Ω), as
n → ∞ and for possible distinct γ . Thus, the convergence of the correspondingly
integral terms follows. Let us now look to the fourth term of (66). Firs we observe
that we can readily justify that

∫

Ω

∣∣(νT (kn)Rn
(|D(un)|2

) − νT (k)|D(u)|2) v∣∣ dx

≤
∫

Ω

∣
∣νT (kn)|D(un)|2 − νT (k)|D(u)|2∣∣ |v| dx +

∫

Ω

1

n

νT (k)|D(u)|2|D(un)|2
1 + 1

n |D(un)|2
|v| dx.

(75)
Then, we observe that, by reasoning similarly as we did to prove (58), we also have

D(un) → D(u) strongly inL2(Ω) and D(un) → D(u) a.e. inΩ, (76)

as n → ∞. Thus, the last integral of (75) converges to zero by the application of
Lebesgue’s dominated convergence theorem, due to (76) and to assumption (27).
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With respect to the first of the two last integrals, we can argue as in [19] to prove that

νT (kn)|D(un)|2 → νT (k)|D(u)|2 strongly inL1(Ω), asm → ∞

and, consequently, that the first integral of the right-hand side of (75) also converges
to zero. Finally, we can pass to the limit n → ∞ the equations (65) and (66) to
obtain (28) and (29) for any (v, ϕ) ∈ V × W1,q ′

0 (Ω). The proof of Theorem1 is now
concluded.

Remark 1 The existence result established in [20, Theorem 3.1] for the case of
considering strong nonlinear functions f(u) and ε(k), i.e. when no upper restrictions
on the growth of these functions with respect to u and k are required, can also be
generalized to any space dimension d ≥ 2 and for a general function of turbulence
production. In this case, besides the sign conditions (34), we just need to assume that
(32) and (33) hold together with

∃ τ > 0 : |angle(f(u),u)| /∈
(π

2
− τ,

π

2
+ τ

)
∀ u : |u| ≥ L , ∀ L > 0,

HL ∈ L1(Ω), GM ∈ L1(Ω) ∀ L , M > 0, HL := sup
|u|≤L

|f(u)|, GM := sup
|k|≤M

|ε(k)|.

References

1. Darcy, H.P.C.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris (1856)
2. Hazen, A.: Some physical properties of sand and gravels with special reference to their use in

filtration, p. 541. Twenty-fourth Annual Report, Massachusetts State Board of Health (1893)
3. Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on a dense swarm

of particles. Appl. Sci. Res. A1, 27–34 (1947)
4. Dupuit, J.: Etudes théoriques et pratiques sur lemouvement des eaux dans les canaux découverts

et à travers les terrains perméables, 2nd edn. Dunod, Paris (1863)
5. Forchheimer, P.:Über die Ergiebigkeit vonBrunnen-Anlagen undSickerschlitzen, Z.Architekt.

Ing.-Ver. Hannover 32, 539–563 (1886)
6. Joseph, D.D., Nield, D.A., Papanicolaou, G.: Nonlinear equation governing ow in a saturated

porous medium. Water Resources Research 18, 1049–1052 (1982); 19: 591
7. Nakayama, A.: Non-Darcy Couette flow in a porous medium filled with an inelastic non-

Newtonian fluid. Trans. ASME J. Fluids Eng. 114, 642–647 (1992)
8. Kuznetsov, A.V.: Analytical investigation of heat transfer in Couette flow through a porous

medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mechanica 129,
13–24 (1998)

9. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33,
1587–1597 (1990)

10. Dybbs, A., Edwards, R.V.: A new look at porous media fluid Mechanics - Darcy to turbulent.
In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media,
pp. 199–254. Martinus Nijhof, Boston (1984)

11. Vafai, K., Kim, S.: Fluid mechanics of the interface region between a porous medium and a
fluid layer - an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

12. Chacón-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbu-
lence Models and Applications. Springer, New York (2014)



38 H. Borges de Oliveira

13. de Lemos, M.J.S.: Turbulence in Porous Media, 2nd edn, p. 2012. Elsevier, Waltham (2012)
14. de Oliveira, H.B., Paiva, A.: On a one equation turbulent model with feedbacks. In: Pinelas,

S., et al. (eds.) Differential and difference equations with applications, vol. 164, pp. 51–61.
Springer Proceedings in Mathematics and Statistics (2016)

15. Getachewa, D., Minkowycz, W.J., Lage, J.L.: A modified form of the k−epsilon model for
turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transf. 43, 2909–
2915 (2000)

16. Antohe, B.V., Lage, J.L.: A general two-equation macroscopic turbulence model for incom-
pressible flow in porous media. Int. J. Heat Mass Transf. 40, 3013–3024 (1997)

17. Nakayama, A., Kuwahara, F.: A macroscopic turbulence model for flow in a porous medium.
ASME J. Fluids Eng. 121, 427–433 (1999)

18. Pedras, M.H.J.: On the definition of turbulent kinetic energy for flow in porous media. Int.
Commun. Heat Mass Transf. 27(2), 211–220 (2000)

19. de Oliveira, H.B., Paiva, A.: A stationary one-equation turbulent model with applications in
porous media. J. Math. Fluid Mech. (2017). Online First: 12 May 2017

20. de Oliveira, H.B., Paiva, A.: Existence for a one-equation turbulent model with strong nonlin-
earities. J. Elliptic Parabol. Equ. 3(1–2), 65–91 (2017)

21. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations.
Steady-state problems, p. 2011. Springer, New York (2011)


	A Note on the Existence for a Model of Turbulent Flows Through Porous Media
	1 Turbulent Flows Through Porous Media
	2 The Problem Under Consideration
	3 Existence
	References




