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Abstract In this paper, we investigate the generalized partial difference operator
and propose a model of it in discrete heat equation with several parameters and shift
values. The diffusion of heat is studied by the application of Fourier’s law of heat
conduction in dimensions up to three and several solutions are postulated for the
same. Through numerical simulations using MATLAB, solutions are validated and
applications are derived.
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1 Introduction

In 1984, Jerzy Popenda [6] introduced the difference operator Δ
α
defined on u(k) as

Δ
α
u(k) = u(k + 1) − αu(k). In 1989, Miller and Rose [9] introduced the discrete

analogue of the Riemann-Liouville fractional derivative and proved some proper-
ties of the inverse fractional difference operator Δ

−1
� ([3, 4]). Several formula on

higher order partial sums on arithmetic, geometric progressions and products of n-
consecutive terms of arithmetic progression have been derived in [10].
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In 2011, M. Maria Susai Manuel, et al. [8], extended the definition of Δα to Δ
α(�)

defined as Δ
α(�)

v(k) = v(k + �) − αv(k) for the real valued function v(k), � > 0. In

2014, the authors in [2], have applied q-difference operator defined as Δq v(k) =
v(qk) − v(k) and obtained finite series formula for logarithmic function. The differ-
ence operator Δ

k(l)
with variable coefficients defined as Δ

k(�)
v(k) = v(k + �) − kv(k)

is established in [2].

The theory of difference and generalized difference equations using the forward
difference operator Δ and generalized difference operators Δ

�
,Δ

α
, Δ

α(�)
,Δ
L
, Δ
q(�)

are

developed in [1, 2, 4, 7, 8, 10]. Partial difference and differential equations play a
vital role in heat equations [1, 3, 5, 6]. Generalized difference operator with n-shift
values � = (�1, �2, ..., �n) �= 0 on a real valued function v(k) : Rn → R is defined
as

Δ
(�)

v(k) = v(k1 + �1, k2 + �2, ..., kn + �n) − v(k1, k2, ..., kn). (1)

This operator Δ
(�)

becomes generalized partial difference operator if some �i = 0. In

this paper, we formulate the heat equation for medium in R3 and obtain the solution
using the operator defined in (1).

2 Preliminaries

Consider the difference operator defined in (1). Equations involving Δ
(�)

with atleast

one �i = 0 is called generalized partial difference equation. A linear generalized
partial difference equation is of the form,

Δ
(�)

v(k) = u(k), (2)

where Δ
(�)

is as given in (1), �i = 0 for some i and u(k) : Rn → R is a given function.

A function v(k) : Rn → R satisfying (2) is called a solution of the Eq. (2). The
Eq. (2) has a numerical solution of the form,

v(k) − v(k − m�) =
m∑

r=1

u(k − r�) = −1
Δ
(�)

u(k)|kk−m�, (3)

where k − r� = (k1 − r�1, k2 − r�2, ..., kn − r�n), m is any positive integer. Rela-
tion (3) is the basic inverse principle with respect to Δ

(�)
[2, 8, 10].
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For example, the basic inverse principle with respect to Δ
(0,�2)

is given by

v(k1, k2) − v(k1, k2 − m�2) =
m∑

r=1

u(k1, k2 − r�2) = −1
Δ

(0,�2)
u(k)|kk−m�, (4)

where v(k1, k2) = Δ−1

(0,�2)
u(k1, k2). From the theory of generalized difference equation,

we have two types of solutions to (2), namely closed form and summation form
solutions [2, 8, 10]. Similarly, the partial difference equation (2) has two types
of solutions. Here we form partial difference equation for the heat flow and apply
Fourier cooling law and obtain solution of heat equation with several variables and
shift values.

3 Heat Equation for Medium, When γ is Constant

Consider homogeneous diffusion medium in �3. Let γ be heat diffusion constant
and v(k1, k2, k3, k4, k5) be the temperature at position (k1, k2, k3), at time k4 with
density (or pressure) k5. The proportional amount of heat flows from left to right at
(k1, k2, k3, k4, k5) is Δ

(−�1,0,0)
v(k), right to left Δ

(�1,0,0)
v(k), top to bottom Δ

(0,�2,0)
v(k),

bottom to top Δ
(0,−�2,0)

v(k), front to rear Δ
(0,0,�3)

v(k), rear to front Δ
(0,0,−�3)

v(k). By the

Fourier law of cooling, the heat equation for medium in �3 is

Δ
(�4,�5)

v(k) = γ Δ±�(1,2,3)

v(k), (5)

where Δ±�(1,2,3)

= Δ
(�1)

+ Δ
(−�1)

+ Δ
(�2)

+ Δ
(−�2)

+ Δ
(�3)

+ Δ
(−�3)

and k = (k1, k2, k3, k4, k5).

Theorem 1 Assume that v(k1, k2, k3, k4 − m�4, k4 − m�5) and the partial differ-
ences Δ±�(1,2,3)

v(k) = u
±�(1,2,3)

(k) are known functions. Then the heat equation (5) has

a solution of the form

v(k) = v(k1, k2, k3, k4 − m�4, k5 − m�5) + γ

m∑

r=1

u±�(1,2,3)
(k1, k2, k3, k4 − r�4, k5 − m�5).

(6)

Proof Taking Δ±�(1,2,3)

v(k) = u
±�(1,2,3)

(k) in (5), we get

v(k) = γ Δ−1

(�4,�5)
u

(±�(1,2,3))
(k). (7)
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The proof follows by applying inverse principle (4) in (7).

In the following theorem, we use the following notations:

v(k(1,2,3) ± �(1,2,3), ∗, ∗) = v(k1 + �1, k2, k3, ∗, ∗) + v(k1 − �1, k2, k3, ∗, ∗)

+ v(k1, k2 + �2, k3, ∗, ∗) + v(k1, k2 − �2, k3, ∗, ∗)

+ v(k1, k2, k3 + �3, ∗, ∗) + v(k1, k2, k3 − �3, ∗, ∗).

v(∗, k(2,3) ± �(2,3), ∗, ∗) = v(∗, k2 + �2, k3, ∗, ∗) + v(∗, k2 − �2, k3, ∗, ∗)

+ v(∗, k2, k3 + �3, ∗, ∗) + v(∗, k2, k3 − �3, ∗, ∗).

Theorem 2 If v(k) is a solution of the Eq. (5) and m is apositive integer then the
following relations are equivalent:

(a) v(k) =(1 − 6γ )mv(k1, k2, k3, k4 − m�4, k5 − m�5)

+
m−1∑

r=0

γ (1 − 6γ )r
[
v(k(1,2,3) ± �(1,2,3), k4 − (r + 1)�4, k5 − (r + 1)�5)

]
, (8)

(b)

v(k) = 1

(1 − 6γ )m
v(k1, k2, k3, k4 + m�4, k5 + m�5)

−
m∑

r=1

γ

(1 − 6γ )r

[
v(k(1,2,3) ± l(1,2,3), k4 + (r − 1)�4, k5 + (r − 1)�5)

]
, (9)

(c)

v(k) = 1

γm
v(k1 − m�1, k2, k3, k4 + m�4, k5 + m�5)

−
m∑

r=1

1 − 6γ

γ r
v(k1 − r�1, k2, k3, k4 + (r − 1)�4, k5 + (r − 1)�5)

−
m−1∑

r=0

1

γ r
v(k1 − (r + 1)�1, k(2,3) ± �(2,3), k4 + r�4, k5 + r�5), (10)

(d)

v(k) = 1

γm v(k1 + m�1, k2, k3, k4 + m�4, k5 + m�5)

−
m∑

r=1

1 − 6γ

γ r v(k1 + r�1, k2, k3, k4 + (r − 1)�4, k5 + (r − 1)�5)

−
m−1∑

r=0

1

γ r v(k1 + (r + 1)�1, k(2,3) ± �(2,3), k4 + r�4, k5 + r�5). (11)
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Proof From (5) and (1), we arrive

(i)

v(k) = (1 − 6γ )v(k1, k2, k3, k4 − �4, k5 − �5)+
γ [v(k(1,2,3) ± �(1,2,3), k4 − �4, k5 − �5),

(ii)

v(k) = 1

(1 − 6γ )
v(k1, k2, k3, k4 + �4, k5 + �5)

− γ

(1 − 6γ )
[v(k(1,2,3) ± �(1,2,3), k4, k5)],

(iii)

v(k) = 1

γ
v(k1 − �1, k2, k3, k4 + �4, k5 + �5) − 1 − 6γ

γ
v(k1 − �1, k2, k3, k4, k5)

− v(k1 − 2�1, k2, k3, k4, k5) − v(k1 − �1, k(2,3) ± �(2,3), k4, k5)and

(iv)

v(k) = 1

γ
v(k1 + �1, k2, k3, k4 + �4, k5 + �5) − 1 − 6γ

γ
v(k1 + �1, k2, k3, k4, k5)

− v(k1 + 2�1, k2, k3, k4, k5) − v(k1 + �1, k(2,3) ± �(2,3), k4, k5).

Now the proof of (a), (b), (c), (d) follows by replacing
k4 and k5 by k4 − �4, k4 − 2�4, ..., km − m�4, k5 − �5, k5 − 2�5, ..., km − m�5,
k4 and k5 by k4 + �4, k4 + 2�4, ..., km + m�4, k5 + �5, k5 + 2�5, ..., km − m�5,
k1 by k1 − �1, k1 − 2�1, ..., km − m�1, k4 by k4 + �4, k4 + 2�4, ..., km + m�4 and
k5 by k5 + �5, k5 + 2�5, ..., km − m�5,
k1 by k1 + �1, k1 + 2�1, ..., km + m�1, k4 by k4 + �4, k4 + 2�4, ..., km + m�4 and
k5 by k5 + �5, k5 + 2�5, ..., km − m�5 in (i), (ii), (iii) and (iv) respectively.

Example 1 The following example shows that the diffusion of medium in three
dimensional system can be identified if the solution v(k1, k2, k3, k4, k5) of (5) is
known and vice versa. Suppose that v(k1, k2, k3, k4, k5) = ek1+k2+k3+k4+k5 is a closed
form solution of (5), then we have the relation

Δ
(�4,�5)

ek1+k2+k3+k4+k5 = γ
[

Δ±�(1,2,3)

ek1+k2+k3+k4+k5], which yields

ek1+k2+k3+k4+k5(e�4+�5 − 1) =
γ
[
ek1+k2+k3+k4+k5(e�1 + e−�1 + e�2 + e−�2 + e�3 + e−�3 − 6

]
.

Cancelling ek1+k2+k3+k4+k5 on both sides derives
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γ = e�4+�5 − 1

e�1 + e−�1 + e�2 + e−�2 + e�3 + e−�3 − 6
. (12)

For numerical verification, ifwe assume that k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5,
�1 = 1, �2 = 2, �3 = 3, �4 = 4, �5 = 5,m = 1 then v(k1, k2, k3, k4, k5) = e15,

γ = e4+5 − 1

e1 + e−1 + e2 + e−2 + e3 + e−3 − 6
.

LHS and RHS of (a), (b) of Theorem 2 are given below respectively.
(a) 3269017.37 = (−1963.46857)403.42879 + 4061136.705.
(b) 3269017.37 = −13490909.90 + 16759999.00.

If we assume that k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5, �1 = 1, �2 = 2, �3 = 3,
�4 = 4, �5 = 5,m = 1 then v(k1, k2, k3, k4, k5) = e15,

γ = e1+2 − 1

e3 + e−3 + e4 + e−4 + e5 + e−5 − 6
.

LHS and RHS of (c), (d) of Theorem 2 are as similar as above (a), (b).
For MATLAB coding, if we assume that k1 = 1, k2 = 2, k3 = 3, k4 = 4, k5 = 5,
�1 = 1 and �2 = 2, �3 = 3, �4 = 4, �5 = 5, m = 5 then
exp(15) = (1 − 6. ∗ (327.4114733)). ∧ (5). ∗ exp(−30) + symsum
((327.4114733). ∗(1 − 6. ∗ (327.4114733)). ∧ r. ∗ ((exp(16 − (r + 1). ∗ 4 − (r +
1). ∗ 5)) + (exp(14 − (r + 1). ∗ 4 − (r + 1). ∗ 5)) + (exp(17 − (r + 1). ∗ 4 −
(r + 1). ∗ 5)) + (exp(13 − (r + 1). ∗ 4 − (r + 1). ∗ 5)) + (exp(18 − (r + 1). ∗
4 − (r + 1). ∗ 5)) + (exp(12 − (r + 1). ∗ 4 − (r + 1). ∗ 5))), r, 0, 4).

4 Conclusion

The study of partial difference operator has wide applications in discrete fields and
heat equation is one such. The nature of propagation of heat through materials of
dimensions(up to three) can be postulated.

The core Theorem 2 provides the possibility of predicting the temperature either
for the past or the future after getting to know the temperature at few finite points on
the material at the present time.
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