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Abstract In this article we present the Pontryagin maximum principle of a time-
optimal control problem for general form of functional-differential equations. The
obtained results are the direct generalization of the case for ordinary differential equa-
tions: if the delay disappear then the results turn into the classic Pontryaginmaximum
principle for finite dimensional systems. In this work we apply the methodology and
constructions of the i-Smooth analysis.
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1 Introduction

The delay phenomenon plays an important role in the study of processes arising in
natural science, technology and society. First of all, this is due to the fact that the
future development of many processes depends not only on their present state but is
essentially influenced by their previous history. Such processes can be described
mathematically using the functional-differential equations (hereinafter FDE). At
present FDE theory is the well developed branch of the differential equations and
offenly uses in description and modeling of automatic control processes with afteref-
fect, mechanics, technology, economics, medicine and other areas of human activity
[6, 10].

This work is devoted to establishing the necessary optimality conditions in the
form of Pontryagin’s maximum principle for general FDEs. The discovery of the

A. V. Kim (B) · V. M. Kormyshev · A. V. Ivanov
Ural Federal University, 620002 19 Mira Street, Ekaterinburg, Russia
e-mail: avkim@imm.uran.ru

V. M. Kormyshev
e-mail: vkormyshev@gmail.com

A. V. Ivanov
e-mail: avi@imm.uran.ru

© Springer International Publishing AG, part of Springer Nature 2018
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 230,
https://doi.org/10.1007/978-3-319-75647-9_17

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75647-9_17&domain=pdf


212 A.V. Kim et al.

famous Pontryagin maximum principle [12] started the development of the mathe-
matical theory of optimal processes. This classic fundamental book already included
a variant of the maximum principle for systems with discrete delays. The origin of
the development of the theory of delayed optimal processes goes back to [7], where
an analog of the Pontryaginmaximum principle was proved for optimal systemswith
constant delays in state coordinates. The maximum principle was later proved for
some classes of systems with distributed delays ([1, 2, 5, 11, 13]). However, there is
no principle maximum variant for general form FDE, that is systems without a priory
specification of delay types. In this work we apply i-Smooth analysis [8, 9] to obtain
the Pontryagin maximum principle for general form FDEs. i-Smooth analysis allows
to obtain results by using methods and arguments similar to ordinary differential
equations. In our article we apply an analog of the methodology developed in [3] for
deriving the Pontryagin maximum principle for finite-dimensional systems.

This article is organized as follows. In the second section, we obtain special
conditions of optimality in the form of the Bellman functional by applying the
i-smooth analysis. In the third section we use these relations to obtain the maxi-
mum principle for general form of FDEs.

2 Problem Statement and Preliminaries

In the article we consider a control system with delays

ẋ = f (x(t), x(t + s), u(t)), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn , x(t + ·) = {x(t + s),−τ ≤ s < 0},
f (x, y(·), u) : Rn × Q[−τ, 0) × P → Rn; Q[−τ, 0) is the space of piecewise con-
tinuous n-dimensional functions x(·) on [−τ, 0) (right continuous at points of dis-
continuity) with the norm ‖x(·)‖Q = sup−τ≤t<0 ‖x(t)‖, P ⊆ Rr is a control region;
h(x, y(·)) ∈ H = Rn × Q[−τ, 0), xt = {x(t), x(t + ·)} ∈ H .

The problem is to find a control which transfers the system (1) from a phase
(functional) state (position) h(x, y(·)) ∈ H into a given point x∗ ∈ Rn . Herewith as
an initial position h we will consider various points of the phase space H .

We assume that further the following condition is valid
Assumption 1. For every position h(x, y(·)) ∈ H there is the time-optimal tran-

sition process from the position h into the point x∗.
We denote by T [x, y(·)] the optimal transition time from the position h(x, y(·))

∈ H into a given point x∗. For the convenience we consider the functional

W [x, y(·)] = −T [h], (2)

which depends on 2n variables

W [x, y(·)] = W [x1, x2, . . . , xn, y1(·), y2(·), . . . , yn(·)].



On the Maximum Principle for Systems with Delays 213

We also assume that for the considered problem the following condition is also valid
Assumption 2. The functional W [x, y(·)] has the following partial and invariant

derivatives
∂W

∂x1
,
∂W

∂x2
, . . . ,

∂W

∂xn
, ∂Wy1 , ∂Wy2 , . . . , ∂Wyn .

which are invariantly continuous in domains.
Let h(x0, y0(·)) be an arbitrary point of the phase space H , and uo ∈ P is an

arbitrary point of the control region.
Consider a process which starts at a moment t0 from the position h0 under the con-

stant control u = u0. Therefore the phase trajectory of the process
x(t) = (x1(t), x2(t), . . . , xn(t)) satisfies the following functional differential equa-
tion

ẋ = f (x(t), x(t + ·), u0), for t > t0 (3)

and the initial condition
xt0 = h0. (4)

It takes time t − t0 tomove along this trajectory from the point x0 to the point x(t).
Applying from the moment t an optimal control we move from xt into the terminal
point x∗ during the time T [xt ].

Such movement from the point x0 into the terminal point x∗ takes
time (t − t0) + T [xt ]. Taking into account that optimal (minimal) time from the
position (point) h0(x0) is equal to T [h0] = T [xt0 ]we obtain the following inequality

T [xt0 ] ≤ (t − t0) + T [xt ],

from which (see (2)) we have

−W [xt0 ] ≤ (t − t0) − W [xt ].

Therefore
W [xt ] − W [xt0 ] ≤ t − t0,

W [xt ] − W [xt0 ]
t − t0

≤ 1.

Proceeding in the last inequality to limit as t → t0 we obtain

d

dt
W [xt ]|t=t0 ≤ 1. (5)

The left-hand side of the inequality (5) can be expressed in terms of the partial
and the invariant derivatives, then (5) can be presented in the form
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∂W [x0, y0(·)]
∂x

· f (x0, y0(·), u0) + ∂W [x0, y0(·)] ≤ 1.

h = {x0, y0} and u0 are arbitrary elements, therefore for any position h = {x0, y(·)} ∈
H and every point u ∈ P the following relation is valid

∂W [x, y(·)]
∂x

· f (x, y(·), u) + ∂W [x, y(·)] ≤ 1. (6)

Let {x(·), y(·)} be the time-optimal process of transferring the system from the
position h0 into the point x∗, and [t0, t1] is the corresponding time interval, therefore:
xt0 = h0, xt1 = x1 and t1 = t1 + T [h0].

The process satisfies the equation

ẋ(t) = f (xt , u(t)), t0 ≤ t ≤ t1. (7)

Movement along the optimal trajectory from the position h0(x0, y0(·)) to a point
x(t) takes t − t0, and from the point x(t) to the terminal point x∗ the system moves
during t1 − t , then T [h0] − (t − t0) is the minimal time of transferring the system
from the state xt into the point x∗, that is

T [xt ] = T [h0] − (t − t0).

By virtue of T [h] = −W [h] we obtain

W [xt ] = −W [h0] + (t − t0),

W [x(t), x(t + ·)] = −W [h0] + (t − t0).

Differentiating this equality by t we obtain

n∑

i=1

∂W [xt ]
∂xi

· ẋ i (t) + ∂y0W [x(t)] = 1.

Taking into account (7) we have

n∑

i=1

∂W [xt ]
∂xi

· f i (xt , u(t)) + ∂yW [x(t)] = 1, t0 ≤ t ≤ t1. (8)

Thus for every optimal process the equality (8) is valid during the process.
Consider the functional

B[x, y(·), u] =
n∑

i=1

∂W [h]
∂xi

· f i (h, u) (9)
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then relations (6), (8) can be presented in the following form

B[h, u] ≤ 1, for every h ∈ H and u ∈ P. (10)

B[h, u] = 1, along any optimal process (x(·), y(·)). (11)

Thus the following theorem is proved

Theorem 1 If the assumptions for the control system (1) and a fixed terminal point
x∗ are valid, then the relations (10) and (11) take place.

This theorem presents the essence of the dynamic programming method for sys-
tems with delays. Its main mathematical relation can be expressed in other form.

From (11) with t = t0 we have B[h0, u(t0)] = 1. Taking into account (10) we
obtain relation

max
u∈P

B[h, u] = 1, ∀h ∈ H,

or equivalently

max
u∈P

n∑

i=1

∂W [h]
∂xi

· f i (x, y(·), u) + ∂yW [x(t)] = 1, ∀h ∈ H. (12)

3 Maximum Principle

Further along with the assumptions 1,2 we suppose that the following conditions are
satisfied.

Assumption 1.

• The functional W [x, y(·)] has invariantly continuous derivatives with respect to
xi , i = 1, . . . , n, up to the second order, that is functionals

∂W [h]
∂xi

,
∂2W [h]
∂xi∂x j

, i, j = 1, . . . , n.

are invariantly continuous.
• Functionals f i (x, y(·), u), i = 1, . . . , n have invariantly continuous partial deriva-
tives

∂ f i (h, u)

∂x j
, i, j = 1, . . . , n.

Let (x(t), u(t)), t0 ≤ t ≤ t1 be the time-optimal process transferring the system
(1) from the position h0 into the terminal point x∗.

Fix a moment t ∈ [t0, t1) and consider the functional B(x, y(·), u(t)) of variables
x, y(·).
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From the definition of the functional B (see. 9) and the hypothesis 3 it follows
that the functional B(x, y(·), u(t)) has the invariantly continuous derivatives with
respect to variables x1, x2, . . . , xn :

∂B(x, y(·), u(t))

∂xk
=

n∑

i=1

∂2W [h]
∂xi∂xk

· f i (h, u(t)) +
n∑

i=1

∂W [h]
∂xi

· ∂ f i (x, y(·), u(t))

∂xk
, k = 1, . . . , n.

(13)

By virtue of (10), (11) we have

B[h, u(t)] ≤ 1, ∀h ∈ H ;

B[h, u(t)] = 1, ∀h = xt .

These two relationsmean that the functional achieves themaximum at the element
h = xt .

Therefore, if we fix x(t + ·) and u(t) in the functional B[x, x(t + ·), u(t)], and
consider it as the function of x , then this function has the maximum at the point
x = x(t). Hence its partial derivatives with respect to x1, x2, ldots, xn are equals to
zero at this point:

n∑

i=1

∂2W [xt ]
∂xi∂xk

· f i (h, u(t)) +
n∑

i=1

∂W [xt ]
∂xi

· ∂ f i (x, y(·), u(t))

∂xk
= 0, k = 1, . . . , n.

(14)
(see (13)).

Differentiating the function ∂W [xt ]
∂xk with respect to t and taking into account (7),

we find

d

dt

(
∂W [xt ]

∂x

)
=

n∑

i=1

∂W [xt ]
∂xk∂xi

ẋ i (t) =
n∑

i=1

∂W [xt ]
∂xk∂xi

f i (xt , u(t)), k = 1, . . . , n.

(15)
Then relation (15) can be presented in the following form:

d

dt

(
∂W [xt ]

∂x

)
=

n∑

i=1

∂W [xt ]
∂xk∂xi

ẋ i (t) =
n∑

i=1

∂W [xt ]
∂xk∂xi

f i (xt , u(t)), k = 1, . . . , n.

(16)
(note, that ∂2W

∂xk∂xi = ∂2W
∂xi ∂xk due to continuity of the second derivatives).

Formulas (10)–(12), and (16) do not include the functional W , but only its partial
derivatives with respect to x1, . . . , xn: ∂W

∂x1 , . . . ,
∂W
∂xn , so, for the convenience, we will

use the following notation:

∂W [xt ]
∂x1

= ψ1[t], ∂W [xt ]
∂x2

= ψ2[t], . . . , ∂W [xt ]
∂xn

= ψn[t]. (17)
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Then the functional B (see (9)) can be presented in the form:

B[xt , y(·), u(t)] =
n∑

i=1

ψi [t] · f i (xt , u(t))

and the relation (11) becomes

n∑

i=1

ψi [t] · f i (xt , u(t)) ≡ 1 for optimal process (x(t), u(t)), t0 ≤ t ≤ t1. (18)

Besides, according to (10)

n∑

i=1

ψi [t] · f i (xt , u(t)) ≤ 1 for every point u ∈ P and all t0 ≤ t ≤ t1. (19)

Finally, relations (15) can be presented in the following form:

ψ̇k[t] +
n∑

i=1

ψi [t] · f i (xt , u(t))

∂xk
= 0, k = 1, . . . , n. (20)

In summary, if (x(t), u(t)), t0 ≤ t ≤ t1 is the optimal process, then there exist
functionalsψ1[t], ψ2[t], . . . , ψn[t] (defined by (16)), such that the relations are valid.

The form of the left-hand sides of (17), (18) lead us to consideration of the
functional

H [ψ, x, y(·), u] =
n∑

i=1

ψi · f i (x, u) = ψ1 · f 1(x, u) + · · · + ψn f
n(x, u), (21)

depending on 2n + r variables ψ1, . . . , ψn , x1, . . . , xn , u1, . . . , ur . In terms of this
functional relations (17), (18) can be presented in the form of two following relations:

H [ψ[t], xt , y(·), u(t)] ≡ 1 for optimal process (x(t), u(t)), t0 ≤ t ≤ t1, (22)

where ψ[t] = (ψ1[t], . . . , ψn[t]) is defined by (16).

H [ψ[t], xt , y(·), u(t)] ≤ 1 for every point u ∈ P and all t0 ≤ t ≤ t1. (23)

Relations (22) and (23) can be unified in a compact form

max
u∈P

H [ψ[t], x(t), u(t)] = H [ψ[t], xt , u(t)], t0 ≤ t ≤ t1. (24)

Additionally, the relation (19) can be presented in the form:
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ψ̇k[t] = −∂H [ψ[t], xt , y(·), u(t)]
∂xk

, k = 1, . . . , n. (25)

Thus, if (x(t), u(t)), t0 ≤ t ≤ t1 is the optimal process, then a function ψ[t] =
(ψ1[t], . . . , ψn[t]) exists and the relations (22), (24), (25) are valid, in which the
functional H is defined by (21).

Formulas (21), (22), (24), (25) do not contain explicitly the functionalW [x, y(·)],
so equalities (17), representing the functions ψ1[t], . . . , ψn[t] by the functional W ,
do not give us additional information and will be out of our consideration. Relation
(25) is the system of equations which satisfy these functions. Note that the functions
ψ1[t], . . . , ψn[t] are nontrivial solutions of this system (that is the functions do not
equal to zero at the same time); indeed, if at some moment t we have ψ1[t] =
. . . = ψn[t] = 0, then from (21) we obtain H [ψ[t], xt , u(t)] = 0 that contradicts to
equality (22). Thus we obtain the following theorem in the form of the maximum
principle.

Theorem 2 Let for the control system

ẋ(t) = f (x(t), x(t + s), u(t)), u ∈ P, (26)

and a terminal point x∗, assumptions 1, 2 and 3 are valid, and let (x(t), u(t)),
t0 ≤ t ≤ t1 be a process transferring the system from an initial state h0 ∈ H into the
final point x1. Consider a functional depending on variables x1, . . . , xn, u1, . . . , ur

and auxiliary variables ψ1, . . . , ψn (cf. (21)):

H [ψ, x, y(·), u] =
n∑

i=1

ψi f
i (x, y(·), u). (27)

Consider for the auxiliary variables the system of differential equations

ψ̇k[t] = −∂H [ψ[t], xt , u(t)]
∂xk

, k = 1, . . . , n, (28)

where (x(t), u(t)) is the process under consideration (cf. (25)). Then, if (x(t), u(t)),
t0 ≤ t ≤ t1 is the time-optimal process, then there exists nontrivial solution
ψ1[t], . . . , ψn[t], t0 ≤ t ≤ t1 of the system (28) such that for every moment t0 ≤
t ≤ t1 the following maximum condition

H [ψ[t], xt , u(t)] = max
u∈P

H [ψ[t], x(t), y(·), u]. (29)
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(cf. (24)) and the equality (cf. (22)

H [ψ[t], xt , u(t)] = 1

are valid.

The Theorem 2 presents necessary conditions for optimality of systems with
delays in the form of the maximum principle.
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