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Preface

For the five days 5-9 June 2017, more than 230 mathematicians from 52 countries
attended the 3rd International Conference on Differential & Difference Equations
and Applications, held at the Military Academy, Amadora, Portugal.

The scientific aim of this conference was to bring together mathematicians
working in various disciplines of differential and difference equations and their
applications. There were 12 plenary lectures, 14 main lectures and 175 commu-
nications about the current research in this field. This volume contains 50 selected
original papers which are connected to research lectures given at the conference.
Each paper has been carefully reviewed.

We take this opportunity to thank all the participants of the conference and the
contributors to these proceedings. Our special thanks belong to the Military
Academy for the sincere hospitality. We are also grateful to the Scientific and
Organizing Committees for all the effort in the preparation of the conference.

The conference was dedicated at memory of Prof. Ondiej Dosly (1956-2016).
Professor Ondiej Dosly had been invited to the ICDDEA 2011 as a plenary speaker,
to the ICDDEA 2015 as Scientific Committee and main speaker and to the
ICDDEA 2017 plenary speaker, but was unable to come and died shortly
afterwards.

We hope that this volume will serve researchers in all fields of differential and
difference equations.

Amadora, Portugal Sandra Pinelas
Sevilla, Spain Tomas Caraballo
Wuhan, China Peter Kloeden

Chattanooga, USA John R. Graef
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On Asymptotic Behavior of Blow-Up )
Solutions to Higher-Order Differential oo
Equations with General Nonlinearity

Irina V. Astashova

Abstract New results are proved on the asymptotic behavior of blow-up solutions
to a higher-order equation with general potential are proved. Several author’s results
are presented concerning both positive and oscillatory solutions to equations with
regular and singular nonlinearities. Some applications of the results obtained are
proposed.

Keywords Nonlinear equations *+ Blow-up + Asymptotic behavior * Oscillatory
solutions

1 Introduction

Consider the equation

Y =Py, Y, Ly M

where |y|% denotes |y[*sgn y, n > 2, k € (0, 1) U (1, 00), P is a continuous and
Lipschitz continuous in the last n variables function satisfying the inequalities

0< P, <P <P 2)
Consider also a special case of (1), namely

y™ = polyl 3)
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with pg > 0, k # 1. Hereafter, we put

“4)

The main purpose of this article is to collect together and to present recent and
new author’s results on asymptotic properties of solutions to Eq. (1).

Equation (1) has been investigated by a lot of mathematicians from different points
of view because itis a generalization of the well-known Emden—Fowler equation (see,
for example, [1, 2]). The first asymptotic classification of solutions to the Emden—
Fowler equation of the second order appears in [3]. Asymptotic classification of
solutions to Eq.(1) in the case P = P(x), n = 2 is presented in [4]. Higher order
generalizations of the equation were investigated later in [4, 5] (see also references
in these books) and in a great number of articles of different authors. In particular,
sufficient conditions are given for the existence of some special types of solutions to
these equations (see, for example, [4-10, 13, 19]).

In this article some new results on asymptotic behavior of “blow-up” solution and
results on the existence of oscillatory quasi-periodic solutions are formulated and
the methods of proof are done (see also [23]).

Qualitative properties of solutions to third- and fourth-order equations of this
type were investigated in [10—17]. In [25] an asymptotic classification of solutions to
Eq. (3)is given in the cases of regular (k > 1) and singular (0 < k& < 1) nonlinearities
for n = 3, 4. Proofs for different cases see in [22, 24, 29]. A more precise result
for the behavior of oscillatory solutions to Eq.(3) for n = 3 is presented in [31].
The results on the behavior of oscillatory solutions to higher-order equations see
in [20, 28].

2 Asymptotic Behavior of Blow-Up Solutions

Definition 1 A solution y(x) of Eq.(1) is said to be n-positive if it is maximally
extended in both directions and eventually satisfies the inequalities

y(x) >0, y(x)>0,..., y" Px)>0.

Note that if the above inequalities are satisfied by a solution to (1) at some point
Xo, then they are also satisfied at any point x > X in the domain of the solution.
Moreover, such a solution to (1) with (2), if maximally extended, must be a so-called
blow-up solution, i.e. must have a vertical asymptote at the right endpoint of its
domain.

Immediate calculations show that Eq. (3) has n-positive solutions with the exact
power-law behavior, namely

yx)=C@Hx*—x)™ ®)
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defined on (—oo0, x*) with

1

_<a(a+1)...(a+n_1)>“
B Po

(6)

and arbitrary x* € R.

For n =1 all n-positive solutions to (3) are defined by (5). For n € {2, 3,4} it
is known that any n-positive solution to (3) and even to more general Eq. (1) under
some assumptions is asymptotically equivalent, near the right endpoint of its domain,
to the solution defined by (5) with appropriate x*:

yx) =Cux* —x)"*(1 +o(1)), x —> x* =0, 7N

where C is defined by (6) with py equal, in the case of Eq.(1), to the limit of
P(x, yo, ..., yu_1)asx = x*—0,yp = 00, ..., yp_1 —> 00. See [4] forn = 2,
and [5, 11, 14], forn € {3, 4}.

For Eq. (1) with some additional assumptions on the function P the existence of
solutions with power-law asymptotic behavior (7) is proved in [5, 11]. For 5 <n <
11, the existence of an (n — 1)-parametrical family of such solutions is obtained (see
[5, 11]).

2.1 Existence of Positive Solutions with Non-power-law
Asymptotic Behavior

In [4], Problem 16.4, the question was posed whether (7) is satisfied for all positive
blow-up solutions to (1) with the vertical asymptote x = x*. The natural hypothesis
that they all satisfy (7) for any n > 4 appears to be wrong even for Eq. (3). It was
proved [18] that for any N and K > 1 there exist an integer n > N and a real number
k € (1, K) such that Eq. (3) has a solution of the form

v = Py T (" — 1) h(log (x* — x)), ®)

where & is a positive periodic non-constant function on R.
Some informations on possible values of n for such solutions is given by the
following

Theorem 1 ([21]) If 12 < n < 14, then there exists k > 1 such that Eq.(3) has a
solution y(x) with

YV @) = py Tt =) hy(log(x" — X)),

where h; are periodic positive non-constant functions on R.
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Sketch of the proof of Theorem 1. For investigation of blow-up solutions to Eq.(3)
having the vertical asymptote x = x*, the substitutions

x—x=e', y=(CH+v)e" 9

with C defined by (6) transform equation (3) with pg = 1 to another one, which can
be reduced to the first-order system

av
o AV + Fo(V), (10)

where A, is aconstant n x n matrix with eigenvalues satisfying the equation

n—1 n—1
[[o+e+p=[]a+a+) (11)

j=0 j=0

and F, is a mapping from R” to R” satisfying ||F,(V)|| = O (||V||2) and || F,
WMII=o0ViDasV — 0.

The Hopf Bifurcation theorem [27] provides the existence, for some «, of a peri-
odic non-constant solution to system (10), which can be transformed to the solution
needed in Theorem 1.

To apply the Hopf Bifurcation theorem, we need to proof the existence of the
family A\, of complex simple roots of Eq. (11) such that for some & we have Re Az = 0
and

Re d—/\“ (@) £ 0. (12)
do

All roots of Eq. (11) are simple, which can be proved for any n > 1.

The existence of pure imaginary roots for some & can be proved for any n > 11.
To do this, consider the positive C'-functions p,(«) and o, («) defined for all o > 0
via the equations

n—l n—1
[T(on@?+ @+ ) =[]0 +a+))?
j=0 j=0
and
n—1
Zarg(an(a)i +a+j)=2m
=0

supposing arg z € [0, 27) for all z € C\ {0}.
One can show that p, (o) /oo — 0as @ — +o0, while 0, () /oo — tan 27 /n > 0,
whence for sufficiently large oo we have p, () < 0, ().
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For sufficiently small o > 0, one can prove that 1,(a) < 2 < p12(a) and, for
any a > 0, that p,11(a) > p,(a) and 0,41 (@) < 0, ().

So, forany n > 12 there exists & > 0 such that p, (&) = o, (&) producing the pure
imaginary root A\ = p,(&)i of Eq.(11).

As for inequality (12), it was successfully proved only for n € {12, 13, 14}, and
the greater is n, the more cumbersome the proof turns out.

2.2 On Power-Law Asymptotic Behavior of Solutions to
Weakly Super-Linear Emden—Fowler Type Equations
with General Nonlinearity

It appears that a weaker version of the I.T. Kiguradze’s hypothesis about power-law
asymptotic behavior of blow-up solutions for higher-order equations (3) is correct.

Theorem 2 ([30]) Foranyintegern > 4there exists K > 1 suchthat foranyrealk €
(1, K), all n-positive solutions to Eq.(3) have the power-law asymptotic behavior
(7) near the right endpoint of their domains.

More general result concerning (1) is following:

Theorem 3 Suppose n >4, P € CR"™™) (M Lipy, . . ,(R"), P— py>0 as
X = X%, y9 = 00, ..., Yyu—1 — 00, and satisfies (2). Then there exists K > 1 such
that for any real k € (1, K), any solution to Eq. (1) tending to +00 as x — x* — 0
has the power-law asymptotic behavior given by (7) with C defined by (6).

Proof As well as in the proof of Theorem 2 (see [30]) we put

1 k—1
m=n—1, y=—= (13)
« n

and consider an auxiliary y-parameterized dynamical system on the m-dimensional
sphere S™. This sphere is considered as the quotient space of R \ {0} with respect
to the equivalence relation

(Z0y e o vs Zm) ~ (AZ0y - oo s AZm), A > 0.

The equivalence class of the point (zg, ..., z,) € R" \ {0} is denoted by

(ot :zm).

Any non-trivial solution y(x) to Eq. (3) with py = 1 generates a curve in $” consist-
ing of the points

(y(X) :

Y@ |H w

. y(j)(x)
: a,

L
e ‘ y™ (x)
a”’l

), x € domy,

+ + +
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m 71/n
a = (]‘[(1 +vl)> : (14)
=1

J
ajpr = +y)aa;=al " [JA+9D, jell,....m—1}.
=1

This curve locally parameterized with

_— / V() de

0

can be described within the chart that covers the part S7' with all positive z; and has

2\ i

the coordinate functions v; : (zg : -+ : 2y) F> (%) , j €1,..,m,asfollows:
dUl 2
i (I +79) (v2 —vy),
dl)j . .
E=(1+7])(Uj+1—vlvj), jef2,...,m—1}, (15)
dv,,
T - (I +ym) (1 — vivy).

Any such trajectory, if entered S, newer leaves it. The only equilibrium pointin S’,
which has all v; coordinates equal to 1,is denoted by v*. Similar formulas describe the
curve in other charts covering the whole sphere. Different variables parameterizing
the curve in different charts can be combined into a single one by using a partition
of unity. Thus we obtain a global y-parameterized dynamical system & in the whole
S,
In [30] the following lemma is proved.

Lemma 1 There exist v, > 0 and an open neighborhood U of the point v* such
that for any positive y < 7, any trajectory of the global dynamical system passing

through the closure U tends to v*. If such a trajectory does not coincide with v*,
then it passes transversally, at some time, through the boundary OU.

Now consider a solution y(x) to Eq.(1) assuming P — 1 as x — x*, yp —

0, ..., Yu—1 — 00. This solution generates in S a curve described in the same
chart by
W (1) 2 — D)
— = vy — vy),
dr R !
dl)j . .
EZ(l—i-Wj)(ij—ij), jef2,...,m—1}, (16)
dv,,

= (1 4+ ym) (g(1) — vivy),
-
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here g (7) is obtained by the related substitution to the function P and tends to 1 as
T — 0.

Lemma 2 The set of all w-limit points of the trajectory described by (16) with q(T)
tending to 1 as T — 00 is the union of some whole trajectories of the system S.

Proof of this lemma is similar to that of Lemma5.6 in [5].

Since the sphere S™ is compact, any trajectory s (7) onithas at least one limit point.
If this limit point is unique then it is the limit of the trajectory, so if the trajectory does
not tend to v*, then it must have at least one w-limit point w # v*. If the trajectory
s(7) generated by a solution to Eq. (1) tending to +00 as x — x* — 0, then we may
assume that w € S”'. According to Lemmal, the trajectory s;(7) of the system &
passes transversally through QU whenever v € (0, 7,). When the function ¢ (7) is
sufficiently close to 1, then the trajectory s(7) also passes transversally through OU .
In this case it can enter U and cannot leave it. Hence the points of s;(7) which
are outside of U cannot be w-limit points of s(7). This contradiction with Lemma2
shows that s(7) — v* as 7 — oo. In particular,

) 1+
v=|— — 1 as 7 — oo.
20

This yields that the related solution y(x) to Eq. (1) satisfies
m—)l aS.x-).x*_O,
whence
y ~a y™ as x - x* =0,
and 1 1
y~(ay) 7 (F=x)77,
hence, by (13) and (14) we obtain
y~(oz(a+1)...(a+n—1))ﬁ(x*—x)7a,x—)x*—O. a7

This completes the proof of Theorem 3 with py = 1.
If y(x) is a solution of (1) with P tending to arbitrary py, then y poﬁ is a solution
to (1) with a similar function P tending to 1. Hence y pok%l satisfies (17) whence

y_(a(a+1)...(a+n—1)

>k_l x*—=x)"*(1 +o0(1)) as x — x* = 0.
Po

Theorem 3 is proved.
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3 Asymptotic Behavior of Oscillatory Solutions

This section is devoted to the existence of oscillatory quasi-periodic in some sense
solutions to a higher-order Emden—Fowler type differential equation

¥y + polylh =0, po # 0. (18)

withn > 2 and k € (0, 1) U (1, 00).

Theorem 4 For any integer n > 2 and real k > 1 there exists a periodic oscillatory
function h on R such that for any py > 0 and x* € R the function

y(x) = py (" = x)"" h(log(x™ — x)) (19)
is a solution to Eq.(18) on (—oo, x*).
Definition 2 A solution having the form (19) is called quasi-periodic.

Sketch of the proof of Theorem 4. For 0 < j < n put

k 1
n+jk—1) B;j
For any g = (qo, ..., g,—1) € R" let y,(x) be the maximally extended solution
to the equation
YO ) + Iy =0 (20)

with the initial data y“)(0) = ¢;, 0 < j < n.
Consider also the function N : R” — R and the mapping N : R" \ {0} — R"\
{0} defined by

n—1
N =Y ]a". N@;=N@ g
=0

and satisfying N (N(q)) — 1 forall g € R"\ {0}.
Next, consider the subset @ C R” consistingofallg € R” satisfying the following
conditions:

(1) go =0,
(2) g; =0, 0<j<n,
(3) N(g)=1.

The restriction of the projection

(qos -+ qn-1) = (q1, -+, qn-2)
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to the set Q is a homeomorphism of Q onto the convex compact subset of R"~2

consisting of all its points with non-negative coordinates satisfying the inequality
n—2

Z|q1|7<1

Lemma 3 Forany q € Q thereexists a, > 0satisfying y,(ay) = 0 and y,gj )(aq) <
0 for0<j<n.

Note that a, is not only the first positive zero of y,(x), but the only positive one.

To continue the proof of Theorem4, consider the function & : ¢ — a, taking
each g € Q to the first positive zero of the function y,. Due to the implicit function
theorem, the function & is continuous.

Consider the C! “solution” mapping

§:(g,x) == (yg(0), y, (0, ..., 30 V()

defined on a domain including R" x {0} and the continuous mapping S : g
N (=S (g, £(q))) , which maps Q into itself.

By the Brouwer fixed-point theorem, there exists § € Q such that S (c}) =4q.In
other words, there exists a non-negative solution y(x) = ¥4 (x) to Eq. (20) defined on
a segment [0, a;] with a; = a;, positive on the open interval (0, a;), and such that

A5 (@) = —390), 0<j<n, 1)

with

n—1

A=N(5(4.£@)) Z]ﬂ%mn

Since y(x) is non-negative, it is also a solution to the equation
k
YO ) + ly@)IL = 0.

Due to property (21), the solution y(x) can be smoothly extended onto some
segment [a;, a;], then onto [as, a3], etc., as well as in the opposite direction, with
the following relation between the lengths of the neighboring segments and the values
of y(x) at their points:

as —dg_1 k=1

g1 — Ay
y(x) = —=b"y (b(x — a5) +as—1),

where x € [ay, ag41], b(x —a,) +a,-1 € [a,-1, as).

o0
It can be proved that b > 1 whenever k > 1, which yields a* = ) < oo, and
s=0
that the function
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h(t) =€ (a* —e')
is just a periodic function needed for Theorem4.

Corollary 1 Forany integern > 2 and real k > 1 there exists a periodic oscillatory
Sfunction h on R such that for any py € R satisfying (—1)"pg > 0 and any x* € R
the function

() = |pol F (x — x) " hlog(x — x*))
is a solution to Eq.(18) on (x*, 00).

Theorem 5 Foranyintegern > 2 andreal positive k < 1 there exists a non-constant
oscillatory periodic function h such that for any po with (—1)" po > 0 and any real
x* the function

y(x) = [pol 77 (" — )hlog(x* — x)),
is a solution to Eq.(18) on (—oo, x*).

Part of these results are included in [23], its application can be found in [26].

4 Some Applications of These Results

Equation (3) it is a model of nonlinear equations. Methods developed for its research
can be applied to study of more complex non-linear equations of the form (1). (See [4,
5]). The equation of type (1) also appears in investigation of some spectral problems
(see [5] IV).

5 Open Problems Connected with Equation (3)

1. Does positive blow-up solution with non-power law asymptotic behavior exist
for5 <n <11 and n > 157 2. Does positive blow-up solutions with different from
power-law (7) and non-power law (8) behavior existforn > 4?3. Whatis the meaning
of K in Theorems?2 and 3?
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G. Britto Antony Xavier, S. John Borg and M. Meganathan

Abstract In this paper, we investigate the generalized partial difference operator
and propose a model of it in discrete heat equation with several parameters and shift
values. The diffusion of heat is studied by the application of Fourier’s law of heat
conduction in dimensions up to three and several solutions are postulated for the
same. Through numerical simulations using MATLAB, solutions are validated and
applications are derived.

Keywords Generalized partial difference equation - Partial difference operator
and discrete heat equation.

Mathematics Subject Classication (2010) 35KO05 - 39A10 - 39A14 - 58J35

1 Introduction

In 1984, Jerzy Popenda [6] introduced the difference operator Adefined on u (k) as
Auk) =ulk + 1) — au(k). In 1989, Miller and Rose [9] introduced the discrete

analogue of the Riemann-Liouville fractional derivative and proved some proper-
ties of the inverse fractional difference operator A[l ([3, 4]). Several formula on
higher order partial sums on arithmetic, geometric progressions and products of n-
consecutive terms of arithmetic progression have been derived in [10].
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In 2011, M. Maria Susai Manuel, et al. [8], extended the definition of A, to A
a(l)

defined as A v(k) = v(k + £) — av(k) for the real valued function v(k), £ > 0. In
a(l)

2014, the authors in [2], have applied g-difference operator defined as A, v(k) =
v(gk) — v(k) and obtained finite series formula for logarithmic function. The differ-

ence operator A with variable coefficients defined as A v(k) = v(k + £) — kv(k)
k() k(6)

is established in [2].

The theory of difference and generalized difference equations using the forward

difference operator A and generalized difference operators A, A, A, A, A are
t o al®) L q)

developed in [1, 2, 4, 7, 8, 10]. Partial difference and differential equations play a
vital role in heat equations [1, 3, 5, 6]. Generalized difference operator with n-shift
values £ = (¢4, €3, ..., £,) 7% 0 on a real valued function v(k) : R" — R is defined
as

@V(k) =v(ki + L1, ko + Lo, oo, ky + £,) — vk, ko, s k). (D

This operator A becomes generalized partial difference operator if some ¢; = 0. In
©

this paper, we formulate the heat equation for medium in R*® and obtain the solution
using the operator defined in (1).

2 Preliminaries

Consider the difference operator defined in (1). Equations involving A with atleast
)
one ¢; = 0 is called generalized partial difference equation. A linear generalized

partial difference equation is of the form,

Av(k) = u(k), )
@)

where A is as givenin (1), £; = 0 for someiand u(k) : R" — R is a given function.
0)

A function v(k) : R" — R satisfying (2) is called a solution of the Eq.(2). The
Eq. (2) has a numerical solution of the form,

m

v(k) = vk —mb) = Y ulk —re) = %u(knﬁ_me, 3)

r=1

where k —rl = (ky —réy, ko — rls, ..., k, — rf,), m is any positive integer. Rela-
tion (3) is the basic inverse principle with respect to A [2, 8, 10].
0)
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For example, the basic inverse principle with respectto A is given by
0.£2)

m

-1
vk, ko) — viki, ko — mby) = E u(ky, kpy —rty) = (OAK)M(k)li,mg, “4)
212

r=1

where v(k;, k) = (%;1) u(ky, k). From the theory of generalized difference equation,
22

we have two types of solutions to (2), namely closed form and summation form
solutions [2, 8, 10]. Similarly, the partial difference equation (2) has two types
of solutions. Here we form partial difference equation for the heat flow and apply
Fourier cooling law and obtain solution of heat equation with several variables and
shift values.

3 Heat Equation for Medium, When p is Constant

Consider homogeneous diffusion medium in %3, Let y be heat diffusion constant

and v(ky, ka, k3, ka, ks) be the temperature at position (ky, k, k3), at time k4 with

density (or pressure) ks. The proportional amount of heat flows from left to right at

(ki, ko, k3, kg, ks)is A v(k),righttoleft A v(k),toptobottom A v(k),
0,0) (€1,0,0) 0,£,,0)

—t1,Y, 1,Y,

bottomtotop A v(k),fronttorear A v(k),reartofront A v(k). By the
(0,—£,,0) (0,0,¢3) (0,0,—¢3)

Fourier law of cooling, the heat equation for medium in % is

A vk)=y A vk, (5)
(€4,€5) +a1.23)

where A = A4+ A + A4+ A + A+ A andk = (kyi, ko, k3, ky, ks).
1,23 ) (=) () (&) () (=)
Theorem 1 Assume that v(ky, k, k3, kg — mly, ky — mls) and the partial differ-

ences A v(k)= u__ (k) are known functions. Then the heat equation (5) has
a2 +€(1,2,3)

a solution of the form

m

v(k) =v(ky, ky, k3, kg —mly, ks —mls) +y Z i u (ki  kp, k3, kg —réq, ks —mls).
r=1

(1,2,3)
(6)
Proof Taking A v(k)= u (k)in(5), we get
+l123) +L31,2,3)
viky=y A7V u o (k). (7)

(La,€5) (£L(12,3)
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The proof follows by applying inverse principle (4) in (7).
In the following theorem, we use the following notations:
vikao3) £La23), % %) =viki + L1, ko, k3, *, %) +v(ky — €1, ko, k3, *, %)

+ v(kls k2 + EZs k39 *, *) + V(kl, k2 - 621 k37 *, *)
4+ v(ky, ko, ks + €3, %, %) + v(ky, ko, k3 — €3, *, *).

vk, ko3 £ L3y, %, %) = V0, kyp + Lo, k3, %, %) + vk, ky — €2, k3, *, %)
+ V(*? k2’ k3 + £33 *, *) + V(*, k27 k3 - £3’ *, *)

Theorem 2 If v(k) is a solution of the Eq.(5) and m is apositive integer then the
following relations are equivalent:

@ k) =(1 = 6y)"v(ky. k. ks, ks — mly, ks — mEs)

m—1

+ Z y(1 —6y)" [V(k(1,2,3) +€1,2,3), kg — (r + Dy, ks — (r + 1)55)], (8)
r=0
(b)
1
v(k) = WVU{I ko, k3, kg +mly, ks + mls)
m
Z 6 "G I:V(k(l‘Z,S) + l(l’z’g), ka+ (r — 1)y, ks + (r — 1)65)} )
1
(©
v(k) =Lmv(k1 —mly, ko, k3, kg +mly, ks + mls)
14
2 1—6y
-3 viki —re1, ka, k3, kg + (r — Dl ks + (r — 1))
r=1
1
_ Z FV(k] —(r+ Dy, k(2’3) + @(2,3), kg +rly, ks +ris), (10)
(d

1
v(k) —v(kl +mly, ky, k3, kg +mly, ks + mls)

v(k] rly, ko, k3, ka + (r — 1)la, ks + (r — 1)¢s)

m—1
1
-y Fv(kl + 0+ Dy k@,3) £€02,3). ka +rts, ks + rits). (11)
r=0
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Proof From (5) and (1), we arrive

()]
v(k) = (1 = 6y)v(ky, ko, k3, ks — €4, ks — €5)+
vIvikaoz £L0.2,3), ka — La, ks — £s),
(i)
1
v(k) = ————v(ky, ko, k3, k4 + L4, ks + £5)
(I -6y)
14
— ———[v(kqa,2,3) £ £1,2,3), k4, ks)],
16y ka2y a2y
(iif)
1 1—-6y
v(k) = ;V(kl — Ly, ko, k3, ka + L4, ks + {5) — v(ky — €1, ko, k3, ka, ks)
— vk — 201, ka, k3, kg, ks) —v(ky — L1, k2, 3) = £(23), k4, ks)and
(iv)

1—-6y

1
v(k) = ;V(kl + 01, ky, k3, kg + L4, ks + €5) — v(ky + L1, ko, k3, kg, ks)

— vk + 281, kp, k3, ka, ks) — v(k1 + €1, k@2,3) = €2,3), k4, ks).

Now the proof of (a), (b), (c), (d) follows by replacing
k4 and k5 by k4 — K4, k4 — 2(4, veey km — m€4, k5 — €5, k5 — 235, veey km — mEs,
ky and ks by kg + €4, kg 4 244, ..., ky + mly, ks + L5, ks + 245, ..., k,, — mds,
kibyky — €, ki —28y, ...,k —mly, kg by kg + 4, kg + 244, ..., k,, +mly and
k5 by k5 + 65, k5 + 255, ceey km — mzs,
k1 by k1 + gl, k] + 2£1, veey km + le, k4 by k4 + 64, k4 + 2ﬁ4, ceey km + mﬁ4 and
ks by ks + €s, ks + 245, ..., k,, — m{s in (i), (ii), (iii) and (iv) respectively.

Example 1 The following example shows that the diffusion of medium in three
dimensional system can be identified if the solution v(ky, k», k3, k4, k5) of (5) is
known and vice versa. Suppose that v(ky, ka, k3, ks, ks) = ek1Hkethsthkitks i5 3 closed
form solution of (5), then we have the relation

ek1+k2+k3+k4+k5 — V[ A ek1+k2+k3+k4+k5], which ylelds
(€4,05) 3,23

ek1+kz+k3+k4+k5 (6(344—25 -1 =

y[efthththaths (el o7l 4 ef2 e 4o 475 —6].

Cancelling ek ththatkiths on both sides derives
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e£4+55 -1

14 (12)

el pelrfe o fels ol — 6

For numerical verification, if we assumethatk; = 1, ky =2, k3 =3, ks =4, ks =5,
b=1,0,=2,35=3,0,=4,05 =5,m = 1thenv(ky, ko, k3, ks, k5) = 615,

et —1

V= t+el+e2 e+ +e3 -6
LHS and RHS of (a), (b) of Theorem 2 are given below respectively.
(a) 3269017.37 = (—1963.46857)403.42879 + 4061136.705.
(b) 3269017.37 = —13490909.90 + 16759999.00.
If we assume that ky =1,k =2, k3 =3, ks =4, ks =501 =1,0, =2,45 =3,
£4 = 4, ZS = 5, m = 1 then V(k], k2, k3, k4, k5) = 615,

el+2 -1

V= S tedfettet 4SS feS—6

LHS and RHS of (c), (d) of Theorem 2 are as similar as above (a), (b).

For MATLAB coding, if we assume that k; =1, ky =2, ks =3, ks =4, ks =5,
li=1land ¥, =2,03=3,04=4,05=5,m =5 then

exp(15) = (1 — 6. % (327.4114733)). A (5). * exp(—30) + symsum
((327.4114733). (1 — 6. % (327.4114733)). Ar. % ((exp(16 — (r +1). x4 — (r +
D.*%5) 4+ (exp(l4d—(r+1). x4 —(r+1).%x5) + (exp(17— (r +1). x4 —
r+1.%x5)+(xp(I3—=F+1).x4—(r+1).%5) + (exp(18 — (r +1). *
4—(r+1).%x5)+ (exp(12 —(r+1). x4 —(r+1).%5))),r,0,4).

4 Conclusion

The study of partial difference operator has wide applications in discrete fields and
heat equation is one such. The nature of propagation of heat through materials of
dimensions(up to three) can be postulated.

The core Theorem 2 provides the possibility of predicting the temperature either
for the past or the future after getting to know the temperature at few finite points on
the material at the present time.
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A Note on the Existence for a Model of m
Turbulent Flows Through Porous Media L

Hermenegildo Borges de Oliveira

Abstract In this work, turbulent flows through porous media are considered. We
begin by making a historical review of the equations governing laminar flows in
porous media, from Darcy’s law to Darcy—Brinkman—Forchheimer’s more general
model. Using the double averaging concept (in time and in space) we explain how
to obtain the more general system of equations that governs turbulent flows through
porous media. For the one-equation turbulent problem in the steady-state we show
that the known existence results can be generalized to any space dimension d > 2
and for a more general function of turbulence production.

Keywords Turbulence - k—epsilon modelling + Porous media + General existence

1 Turbulent Flows Through Porous Media

Fluid flows through porous media are usually described by Darcy’s law [1], an empir-
ical flow model that represents a simple linear relationship between flow rate and the
pressure drop in a porous media. Today, Darcy’s law reads

K
u=-——Vp & 0=-KVp-—puu, (D
n

where u is the fluid velocity field, p is the pressure and w is the fluid (dynamic)
viscosity that was only observed and included in Darcy’s law later on by Hazen [2].
The tensor K, called permeability, is independent of the nature of the fluid but it
depends on the pore size, the porosity, and also on the geometry of the medium. In
particular, K reduces to a scalar K if the medium is isotropic. The Darcy law assumes
no effect of boundaries and the fluid velocity in Darcy’s equation is determined by the
permeability of the matrix. If the boundary is impermeable, then the usual assumption
is that the normal component of the velocity must vanish: u - n = 0 on the solid-fluid

H. Borges de Oliveira ()
FCT - Universidade de Agarve, Faro, Portugal
e-mail: holivei @ualg.pt

© Springer International Publishing AG, part of Springer Nature 2018 21
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,

Springer Proceedings in Mathematics & Statistics 230,
https://doi.org/10.1007/978-3-319-75647-9_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75647-9_3&domain=pdf

22 H. Borges de Oliveira

interface, where n is the unit normal. At a solid wall boundary, the fluid velocity will
not reduce to the no-slip condition when the Darcy law is enforced. In this situation,
the Brinkman law [3] may be employed, which is an extension of the Darcy law and
facilitates the matching of boundary conditions,

Vp=—%u+ueAu & 0=—Vp—%u+ueAu, 2

where 1, is the effective fluid viscosity, a function of the fluid viscosity and of the
geometry of the medium. Equations (1) and (2) describe well porous media flows
at sufficiently small velocities. But, for larger values of u there is a breakdown in
the linearity of these equations which is owing to the fact that the form-drag due
to solid obstacles is now comparable with the surface drag due to friction. In this
case, Dupuit—Forchheimer’s law [4, 5] remedies the situation by stating that the
relationship between the flow rate and pressure gradient is nonlinear at sufficiently
high velocity and that this nonlinearity increases with the flow rate. According to
many authors (see e.g. Joseph et al. [6]), the appropriate modification of Darcy’s
law, to take into account high flow rates, is to replace (1) by the following Dupuit-
Forchheimer equation,

w CFpP W CFp
Vp=pg—-u—-—fuu & 0=pg—Vp——u———fuju, @3

KUK KUK

where p is the fluid density and cy is a dimensionless form-drag constant. Several
authors (see e.g. Nakayama [7] and Kuznetsov [8]) have added, in their studies, a
diffusion term to (3) in order to form a Brinkman—Dupuit-Forchheimer model,

C C
? —Lpllllll-l—MeAll & 0=—Vp—ﬁu—Lp|u|u+,ueAu.

k' UK K" UK
@)

Drawing a parallel between Eqgs.(2) and (4) and the Navier—Stokes equations for
creep flow may led to misleading interpretations. For instance, the pressure in Egs.
(2) and (4) represents a force per unit of permeable area, including solid and fluid,
while the pressure in the Navier—Stokes equations is a force per unit area of fluid
only — the same is true also for the fluid velocities. However, if we confine ourselves
to the pore scale (microscopic scale), the flow quantities can be determined by the
incompressible Navier—Stokes equations (for homogeneous fluids)

Vp=-

diva =0, &)
ou

oy (Va+vu'), (6

+@-Viu=g- %VP +vdiv(D(w)), D(u) =

N =

where v is the kinematic viscosity and g is the gravity forces field. If the boundary
is impermeable, then, as we already have seen, u - n = 0 on the solid-fluid interface.
But, contrary to the Darcy flow model (the maximum velocity occurs at the imper-
meable surface), the no-slip boundary condition can be used in this case: u-t = 0
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on the solid-fluid interface, where t is the unit tangent. The problem of considering
(5)-(6) is that, due to the complexity of internal geometries and interfacial structures,
it is impractical to solve the microscopic Egs. (5)—(6) inside the pores. A common
approach is to average the microscopic equations inside porous medium over a rep-
resentative elementary volume (REV). REV is the smallest volume over which a
measurement can be made that will yield a value representative of the whole domain
(including fluid and solid). The volumetric average of the microscopic Egs. (5)—(6),
under the assumption of a rigid, isotropic and fixed porous matrix, results (cf. Hsu
and Cheng [9]) on the following macroscopic equations,

divu; = 0; (7N
duy + diV(lUf ®uf) =g — inf + £ giv (D (uy)) + L(H +R)s,
ot ¢ oo Ty ‘ of
®)

where uy = ¢ (), pr=¢(p), gr =9 (@), py=¢(p) and u; = ¢ (u)" are

(fluid) phase averages and ¢ = % is the local medium porosity. For instance,

(u)f = V_I, f y,u dV is the intrinsic (fluid) average of the fluid phase velocity u over
the fluid domain V; contained in the representative elementary volume V. Fluid
velocities u and (u)’ are related through u = (u)’ +' u, where "u is the spatial devi-
ation of u with respect to (u)’. In the momentum equation (8), H and R represent,
respectively, the hydrodynamic dispersion due to spatial deviations and the total drag
force per unit volume due to the presence of the porous matrix,

. i i\ Hr CF
H= —d‘V(‘f’( u® u) ) . R= _?f“f - ﬁpﬂuﬂuﬂ

In the applications, the choice of the flow equations to model porous media flows,
within similar flow conditions, is usually based on the pore Reynolds number
Re, := %, where ¢ is the specific discharge and D is some representative (micro-
scopic) diameter characterizing the void space (see e.g. Dybbs and Edwards [10]). In
particular, Re, < 1holds when u s sufficiently small and therefore the flow equation
is linear in the velocity. In this case, the flow is well described by one of the Eq. (1) or
(2) and the dominated flow regime is called Darcy or viscous-drag. As u increases,
the transition to nonlinear drag is quite smooth as long as 1 < Re, < 10 and the
breakdown in the linearity of u occurs when Re, > 10. If 1 ~ 10 < Re,, < 150,
the dominated flow regime is called Forchheimer or form-drag and the flow can
be described by one of the models (3) or (4). By using the local volume averaging,
some authors (e.g. Vafai and Kim [11]) have added to the Eq. (4) the advective inertia
terms of the Navier—Stokes equations to model some situations of form-drag flows.
For Re,, > 150, the flow regime is called post-Forchheimer and almost works in the
literature consider, in this case, the local volume average of the Navier—Stokes equa-
tions to form what is now known as the Brinkman—Forchheimer-extended Darcy
model (or generalized model). In particular, if 150 < Re, < 300 the flow regime
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is still laminar but unsteady and the time inertia terms need to be considered. If
Re, > 300, the flow becomes fully turbulent and therefore turbulence modelling is
required. With this regard, it should be mentioned that two main differences exist
between turbulent flow through porous media and turbulent flow in the absence of
a porous matrix. By one hand, the size of the turbulent eddies within the pores
is limited by the pore size. On the other, the presence of a porous matrix induces
additional drag while preventing motion of larger size eddies. To model turbulent
flows through porous media, it is usually considered the turbulent k—epsilon model
which is obtained by time-averaging the incompressible Navier—Stokes equations
(5) and (6),

diva =0, )
P 1

a—'; HAVEOW =g~ VP -+ div (v 4 vr (k. )D@) (10)
ok

S+ Vk = div(up(k, ©)VA) + vr (k, ) D@ —e. (11
de . . g2

E+u-V£ =div (vp(k, &)Ve) + C1k|D(0)| +C2;. (12)

Here, u, p and g denote the time averaged velocity, pressure and external forces,
whereas k is the turbulent kinetic energy and & expresses the turbulent dissipation.
The averaged quantities result from their Reynolds decomposition, for instance u =

1 t+At

u+u',whereu = 4, J; u dt is the time averaged velocity, being At small when

compared with the magnitude of fluctuations u’ of u. The functions vy and vp = ("T—:
in (9)—(12) account for the turbulent viscosity and turbulent diffusivity, where oy is
the Schmidt-Prandtl number, and C,, C; are positive constants that can be determined
from the experiments. The consideration of one-equation models is acceptable in the
sense that the equation for ¢ may be discarded by prescribing an appropriate length

scale [,

diva =0, (13)
ou 1

m +divu@u) =g — ;Vﬁ +div ((v + vy (k)D)(w)) , (14)
dk

o7 - Vk = div (up (0) VK) + vr()D@? — ek), k) = %k%.
(15)

See e.g. Chacén-Rebollo and Lewandowski [12] and Lemos [13] for the derivation
of the turbulent k-epsilon model (see also Oliveira and Paiva [14]). From a broad per-
spective, for high pore Reynolds number (Re, > 300), turbulent models presented
in the literature follow two different approaches. In both developments, the porous
medium is considered to be rigid, fixed, isotropic and saturated by an incompressible
fluid, and both techniques aim to derive suitable macroscopic transport equations.
The first method (see Getachewa et al. [15] and the references cited therein), starts



A Note on the Existence for a Model of Turbulent Flows Through Porous Media 25

with the volume average of the microscopic equations and then the macroscopic
equations are averaged in time. However, some works (see e.g. Antohe and Lage
[16]) have concluded that turbulent models derived directly from the general macro-
scopic equations do not accurately characterize turbulence induced by the porous
matrix. The second approach (see Nakayama and Kuwahara [17] and the references
cited therein), makes use, first, of the time averaged equations, and then proceeds
with volume averaging. In this case, the governing equations are obtained by volume
averaging the microscopic Reynolds-averaged equations (13)—(15),

div (@) =0, 1o
9 g:) +aiv(@ © @) = @ - pifvﬁJr div[ (v +vr) D (@)] +R,

' 17)
3 (k)

T @ V&) =div (v +vp) Vik)] + 207 |D (@) = () + P.
(18)

Here, 7 = (p)' + % pr k), vy = Z—;,ﬁrepresents the time averaged total drag forces
and P accounts for the production of turbulence due to solid obstacles inside the
porous domain. The main features of Nakayama and Kuwahara’s model are that the
hydrodynamic dispersion was incorporated in the drag forces and the additional term
P appearing in the governing equation for (k) (and also in the equation for (g)"), is
determined by using two unknown model constants,

25, _ 2 )
R=—¢ (”;f @) — j—%m @ | <ﬁ>"> L p=20VU N VS"”Mﬁ)’P.

Following a slight different approach, Pedras and Lemos [18] obtained

div (@)’ =0, (19)
YW div(@ © @) = @ - inﬁ +div[(v/ +vr,) D (@)] + R,
f

(20
9 k)" + @' - V() =div [(v; + vp,)V(k)'] + 2vr|D ((ﬁ)")|2 — (&) +P.
21

In this case, the total drag term R is only closed after all the equations are obtained
and the additional term that is included in the equation for (k)' to account for the
porous structure is defined through

3
P =22 @

N
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Moreover, to model the Reynolds stresses it is proposed a macroscopic Boussi-
nesq assumption: (1_1’ ® u’)i = % (k); I — v, (D (w));, where vy, and vp, denote the
macroscopic turbulent viscosity and the macroscopic turbulent diffusivity, which
satisfy to vz, D ((@)') = (7D (@)’ and vp, = 7¢ From the mathematical point of
view, the main difference between systems (16)—(18) and (19)—(21) relies on the
production of turbulence term, denoted by P at Egs.(18) and (21). This term, that
appears as an output of the averaging process, is a production term of turbulent kinetic
energy and gives account of the solids inside the fluid. Note that different approaches
or distinct assumptions led to different diffusivity functions between Egs. (18), (21)
and (15).

2 The Problem Under Consideration

Motivated by the systems of equations (16)—(18) and (19)—(21), we study, in this
work, a one-equation turbulent model for the description of incompressible flu-
ids within a fluid-saturated and rigid porous medium, which for simplicity is also
assumed to be fixed, with a constant porosity function ¢, and isotropic. The problemis
assumed to be governed by the following general set of equations in the steady-state,

divu=0 in 2, (22)

(u-Vyiu=g—f@u) — Vp+div((v + vr(k)) D(uw)) in 2, (23)

u-Vk =div((v 4 vp (k) Vk) + vr (k) D@)|> + P(u, k) — (k) in £2.
(24)

Here, £2 denotes the porous domain in consideration and the velocity field u, the pres-
sure p and the external forces field g are, in fact, averages that result by the application
of the averaging procedures that lead us to (16)—(18) and (19)—(21). The feedback
terms f(u) and P (u, k) (up to the minus sign in the first case) represent the total drag
R and the turbulence production considered in these systems: f(u) = Cpu + Cr|uju
and P(u, k) = C;|ul?in (16)—(18), or P (u, k) = C,|ulkin (19)—=(21), where Cp, CF,
Cj and C; are the correspondingly multiplicative constants in the mentioned turbu-
lent models. We supplement Egs. (22)-(24) with Dirichlet homogeneous boundary
conditions,

u=0 and k=0 onods2, (25)

where 0§2 denotes the rigid boundary of the porous domain §2. Problems (22)—
(25) with the smaller difference of the term div ((v + vp(k))Vk) replaced by
div (vp (k) Vk), was considered by Oliveira and Paiva [19, 20], where it was proved
the existence and uniqueness of weak solutions in the dimensions of physics interest
d = 2, 3 and also for d = 4. Due to the mathematical interest, we shall consider now
the problems (22)—(25) in a general dimension d, i.e. we assume that £2 is a bounded
subdomain of R? for a general d > 2. Our aim in the rest of the paper, is to show
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that the existence results of [19] can be suitable adapted to hold for any dimension
d > 2. In the mathematical treatment of the turbulence problems (22)—(25), there is
a set of usual assumptions that although do not follow from the real situation they
are physically admissible,

f:2 xR > RY, &, vr, Vp: 2 xR —> R, P:2xR'xR—R (26)

are Carathéodory functions. Observe that we are considering the possibility that all
the functions f, P, ¢, vy and vp may also depend on the space variable. In particu-
lar, assumption (26) fits with turbulent dissipation, turbulent viscosity and turbulent
diffusion functions involved in realistic models (see e.g. [12]). There is another set
of assumptions that impose some restrictions on the physics of the problem, but are
mathematically needed. We assume the existence of positive constants Cr and Cp
such that

O0<vrk) <Cr, 0<vpk) <Cp forallk € Randa.e.in $2. 27

Definition 1 Let the conditions (26) and (27) be fulfilled and assume that g € V'.
We say a pair (u, k) is a weak solution to the problems (22)—(25), if: (1) u € V and
for every v € VN L4 (£2) there hold f(u) - v € L!(£2) and

/(u-V)u~vdx+/ (v—i—vr(k))D(u):Vvdx—i—/ f(u)vvdx=/ g-vdx; (28)
Q 2 2 Q

(2) k € Wy (2), with 24 < g < d’, and for every ¢ € Wy (£2) there hold e (k),

¢, P(u,k)p € L'(£2) and

/ (u-Vk)pdx + / (v +vpk))Vk - Vedx +/ ek)pdx =
2 Q o) (29)

/vT(k)lD(u)|2<pdx+f P(u, k) ¢ dx;
2 2

(3)k >0and e(k) > 0a.e.in £2.

The notation and the function spaces we use in this work are well known (see
e.g. Galdi [21]). In particular, V := {V € C5°(£2) : divv = 0}, H :=closure of VV in
L2(£2), V :=closure of Vin H' (£2), V' denotes the dual space of V and v := closure
of C§°(£2) in H'(£2). Observe that, in the case of d < 4, the Sobolev imbedding
Hé(.Q) > L4(£2) holds and therefore it is only needed to require the test func-
tions of (28) are in the function space V. In this case (d < 4), it were proved, in
[19, 20], existence results to the problems (22)—(25) under different conditions on the
feedback functions f(u), (k) and P (u, k). However, in the case of d > 4, requiring
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the test functions are also in L¥ (£2) will cause the conditions to prove these existence
results to be improved. In this section, we assume for any space dimension d > 2
the existence of nonnegative constants C; and C, such that the following growth
conditions are satisfied a.e. in 2,

d+2 2d—-2) . .
|f(u)|§Cf|u|°‘ for0 <o <max{——, —— ifd #2, ora>0ifd =2,
d—2 d-2
(30)
d
|e(k)|§C5|k|9 for0§9<d 2ifd7’:2, orf >0ifd =2. 31

On the production term P (u, k), we assume the existence of a positive constant Cp
such that

|P(u, k)| < CplulPlk|” ae.in$2 (32)
for
d+2
9 =0 and /3 < ﬁ, or

d+?2
0<® <1 and ﬂ+z9§d and ﬁ+2ﬁ<ﬁ

or B el0,00), ¥ €[0,1] ifd =2.

In the sequel we shall consider our analysis only for the cases d # 2, because for
d = 2 the reasoning is easier. In this case, observe that % > ZJIT’ZZ holds in (30) as
long as d < 4. Taking this into account, we note that in the particular case of d < 4
and of only % = 0 or ¥ = 1, we fall in the exact growth conditions of the existence
result established in [19, Thorem 3.1]. Additionally to the growth conditions (30)—
(33), we assume the following sign conditions,

f(u)c-u>0 and ek)k >0 a.e.in$2 (34)

forallu € RY and all k € R, respectively. We consider, in this work, that our general
turbulent dissipation function can be written in such a way that

e(k) = ke(k) where e: £ x R — Ry is a Carathéeodory function.  (35)
Gathering the information of (34) and (35) it follows immediately that e(k) > O for

all k € R and a.e. in §2. To avoid the trivial solution £ = 0, we shall assume in the
sequel, and in addition to (27), that vy (k) # O when k = 0.
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3 Existence

Theorem 1 Let §2 be a bounded domain of R4, d > 2, witha Lipschitz-continuous
boundary 952. Assume all the conditions (26), (27), (30), (31), (34) and (35) hold. If

g e L*(Q), (36)

and if (32) and (33) hold but, in the case of 0 < ¥ < 1, with the extra assumption

that
B

V> C||g||;7;9), with C defined at (48), (37)

then there exists, at least, a weak solution to the problems(22)—(25).

The rest of the section is devoted to prove Theorems 1. We start by considering, for
each n € N, the following regularized problem

divu=0 in £2, (38)

(u-Vyu=g—f(u) — Vp+div((v +vr(k)) D)) in £2, 39)
u- Vi =div((v + vp(k)Vk) + vr (k) R, (ID@)[*) + P(u, k) — e(k) in £2,

(40)

u=0 and k=0 onas2, 41

where Rn(|D(u)|2) = %. Under the assumptions of Definition 1, we say

a pair (u, k) is a weak solution to the regularized problem (38)—(41) if, for each
n € N, (1) and (3) of Definition1 hold, and: (2°) k € H(l)(.Q) and for every ¢ €
H{(£2) N L9 (£2) there holds (29°), i.e. (29) with R, (|D(w)|?) in the place of [D(w)|?.
Observe again that, as we have mentioned for the test functions in (28), due to
the Sobolev imbedding H(l)(.Q) < L4(£2) it would only be needed to require the
test functions of (29’) are in the function space H(l)(Q) in the case of d < 4. The
existence of a weak solution to the problem (38)—(41) is established in the following
proposition.

Proposition 1 Let the conditions of Theorem I be fulfilled. Then (for each n € IN)
there exists, at least, a weak solution to the problems (38)—(41).

Proof For each j € IN, we search for the Galerkin approximations u; = Zij=1 CijVi

and k; = Z{:l d;jv;, solutions to the system formed by (28) and of (29’), where
cij, dij € R, v; € V/, v; € VJ/, and V/, V/ are j-dimensional subspaces of V* :=
closure of Vin W*2(£2) and of V" := closure of C{°(£2) in W"?(£2), being s and r the
smallest integers such that s, r > % Note thatin the case of d < 4, wemay letr, s =
1 and replace V* and V" by the function spaces V and V defined above. Functions u;
and k; are found by solving the following system of 2 j nonlinear algebraic equations,

with respect to the 2j unknowns ¢, ¢z, ..., cjj anddy;, daj, ..., djj,
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/((“_i -V)uj) - v;dx +/(v +vr(k;)D(;) : Vv; dx +/ f(u;)-v;dx =/ g - v;dx,
2 Q 2 2

(42)
/ (llj . ij)U,' dx + / v+ VD(kj))ij - Vv dx + / 8(k_,~)vi dx =
o) 2 2
/ vr (kj) Ry (ID)1?) vy dx—i—/ P(uj, kj) v dx, (43)
2 2
fori =1, ..., j.To prove the existence of, at least, a solution to the system (42)

and (43), we consider a function P, from V/ x V/ into itself defined in such a way
that

PO (o) = D+ = Iy — o= [ (V) v

Q
f(v+vT(u))D(v):Vvdx+/ f(v)~vdxf/ g~vdx+/(v~Vv)vdx+
Q Q 2 Q

/(v+vD(v))|VU|2dx+/ s(v)vdx—/ vT(U)Rn(lD(v)lz)udx—/ P(v, v) vdx
2 2 2 2

for all (v,v) € V/ x V/ and where the scalar product is induced by V x V.
Reasoning as we did in the proof of [19, Theorem 3.1], it can be proved that

L=0and Is =0, L > vC¥|VVI2, 0. I3, I1 =0 and Is = v|[VU2, . Is <

Ap@)Igle VYl and Is < Cr ny/ L£4(82) A2, d)||VullLa(e), where Ck is
the Korn’s inequality constant, (2, d) and A p(d) are the best constants of the scalar
and vectorial Sobolev inequalities. For the term Iy, we argue similarly as in the
previous reference, to show that

d+2

Iy < Cp 22, )" AQ, Y| VVIIL o) IVUITEE,, B+ < T @
Then, gathering the information of the estimates of /;, ..., Io, it can be proved that

P(v,v) - (v,v) > 0for vy = pand |[v]ly = ¢,and p and ¢ suitably chosen (see
again the aforementioned reference). Due to this and to assumptions (27), (34) and
(36), we can use a variant of Brower’s theorem to prove the existence of a solution

(Cj, d.,'),Witth = (C]j, Cojy v v e ij) anddj = (dlj, dzj, e, djj)tothe system
(42) and (43).
Arguing as we did in [19], we can also prove that
d)
Va2 < C2 gl (o) (45)

Consequently, we have (up to some subsequences) that u; — u weakly in Hj(£2),
u; — ustrongly in L”(£2) for y € [1, dd2) andu; — wae.in £2,allas j — oo.
Proceeding again as we did in [19], we have
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/ (v +vp(k;)|Vk;[*dx < / vr(k;) Ra(ID(uj)|?) k; dx + / P(uj, k;)k; dx.
2 Q Q

If 0 =9 < 1, we can argue as we did for I, Ig above and, in particular for (44), to
prove that

d+2
IVkjlitz) = € for p+d < ——, (46)

for some positive constant C not depending on j. In the case of ¥ = 1, we argue as
we did for (46) to obtain

Crny/ LY2)A(2, d)

4
Vi@ < , ﬂSd . @7

B
V= CpAQ AR P (A22) gl g,

By using assumption (37), with C defined by

C = (Cp A2, dPAQ, d)ﬁC‘zf‘AP(d)ﬂ) m 48)

we can readily see that the right-hand side of (47) is a positive constant independent
of j. Then by a usual reasoning, we have (up to some subsequences) that k; — k
weakly in H}(£2), k; — k strongly in LY (£2) for y € [1, = 2) and k; — k a.e. in
£2,allas j — oo.

Now we pass to the limit j — oo the integral equality (42). The convergence of
the last term of (42) follows from the weak convergence of u; and assumption (36).
The convergence of the first and third terms of (42) follows a reasoning a little bit
different from the one used in [19], because now d > 4. For the convergence of the
third, we observe that since f is continuous on u (see (26)), we have by virtue of the
a.e. convergence of u;,

f(u;) > f(u) ae.inf2, asj— oo. 49)

On the other hand, using Sobolev’s inequality together with (30) and (45), it can be
proved that

||f( )|| <C f y = ando < —— =d da <
u; ory = na o ory = an
JIILY(2) = / ) =4 2, =4 ) )

for some positive constant C independent of j. Note that conditions on « given by
(50) are responsible for the assumption (30). Owing to (49) and (50), f(u;) — f(u)
weakly in LY (§2), as j — oo. As a consequence,
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/ f(u_j)~vi—>/ f(u)-v;,, asj— oo, foralli >1.
Q Q

Note that in the case of y = %, we may use the fact that v; € H(l)(.Q) < Liz (£2).
For the first term of (42), we observe that, due to (22) and (25), we can write

/((uj-V)uj)~v,-dx=—/ u; ®u; : Vv;dx.
2 2

From (45), this used together with the Sobolev imbedding Hé(.Q) < Liz (£2), and
with the a.e. convergence of u;, we have

||uj®uj||Ldgz(m§C and u; ®u; > u®u ae.inf2, asj— oo, (51)

where C is a positive constant not depending on j. Consequently, (51) yields
u; ®u; — u®u weakly in Li7 (), as j — oo. (52)

Then, since, by the Sobolev imbedding, Vv; € H () — L%(.Q) fors >4 —1,

2

which is guaranteed by the choice of s > %’, we have, by virtue of (52) and once that
d \—1 d\—1

(%) +(B) =1L

/uj®uj:Vvidx—>/u®u:Vv,-dx, asj — oo, foralli > 1. (53)
7} Q

Let us now show the convergence of the second term of (42). We first observe that (26)
and (27) and the a.e. convergence of k; imply \(v +vr (kj))Vvi| <+ Cp)|Vv;|
and (v +vr(k;))Vv; = (v +v7r(k))Vv; ae.in 2, as j — oo. Then, since, by the
Sobolevimbedding, Vv; € H*~!(£2) < L?(£2) fors > 1, whichagainis guaranteed

by the choice of s > %, we have, by Lebesgue’s dominated convergence theorem,

v +vrk;)Vv; — (v +vr(k))Vyv; strongly inL?*(2), asj— oco. (54)
Then, from the weak convergence of u; and (54), we can prove that

/ (v +vrk;)D@;) : Vv; dx — / w4+ vrk)D@) : Vv;dx, asj — oo,
o) I?)

(55)
for alli > 1. The convergence of third and last terms of (42) (see [19]) together with

(53) and (55) imply that we can pass to the limit j — oo in the approximate system
(42) and thus we obtain
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/ ((w-Vu) -v; dx—i—f w4+ vr(k))D() : Vv; dx—i—/ f(u) -v;dx = / g-v;dx
2 2 2 2
(56)

for all i > 1. Using the linearity of (56) in v; and the density of the finite linear
combinations of the system {v;}72,in VN L4(£2), we deduce that (56) holds true in
the whole space V, that is

/((u-V)u)-vdx—}-/ (v—}-vT(k))D(u):Vvdx—i-/ f(u)-vdx:/ g-vdx (57)
2 2 2 2

forall v e v N L7(£2). This allows us to take v = u as a test function in (57), which
yields

f v+ vT(k))|D(u)|2dx+/ f(u) - udx = / g - udx.
Q2 Q2 Q
Taking v; = u; in (42), we also have the equality
/ (v + vT(kj))|D(uJ-)|2dX + / f(u;) -u;dx = / g-u;dx.
Q 2 Q
Then, proceeding as in [19], we obtain (eventually up to some subsequence) that
D(u;) — D(u) stronglyinL*(£2) and D(u;) — D(u) ae.in£2, (58)

as j — 0o. We will now pass to the limit j — oo the integral equality (43). To pass
the first term of this equality to the limit, we can argue as we did for the convective
term of the Navier—Stokes equations (see (53)). The convergence of the second and
third terms of (43) follows as in the proof of [19, Theorem 3.1]. Due to assumption
(26) and to the a.e. convergence of k;, we have

e(kj) — e(k) ae.inf2, asj— oo. (59)

Using Sobolev’s inequality together with (31) and (46), it can be proved that

2d d+2 -2
letkj)ILr @) < C fory = 112 and 0 < d%, ory =d and 6 < PR
(60)

for some positive constant C not depending on j. Owing to (59) and (60), e(k;) —
e(k) weakly in LY (£2), as j — oo. Thus

/ e(kj)v; dx — / e(k)v;dx, asj — oo, foralli > 1. 61)
fo} Q2
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Note that in the case of y = %, we use the fact that v; € H(l)(Q) < L= (£2). Let
us now focus our attention on the last term of (43). Here, we first observe that (26)

together with the a.e. convergence of u; and k; imply that
P(uj,k;) — P(u, k) ae.in§2, asj— oo. (62)

By using assumption (32), Holder’s inequality (in the case of % # 0) and Sobolev’s
inequality together with (45) and (46), or (47), it can be proved that

2d d+2 2d -2
1P, k)l 5Cfory=d+2and/3+ﬁ§d—fz, ory=dandp+v < ——,
(63)

for some positive constant C not depending on j. Thus, (62) and (63) imply that
P(u;, k;) — P(u, k) weakly in L¥ (§2), as j — o0, and consequently, as we did for
(61), we obtain

f P(u;, kj)v; dx — / P(u, k)v;dx, asj— oo, foralli > 1. (64)
2 2

The convergence of the first four terms of (43) together with (64), assure us that we
can pass to the limit j — oo in the approximate system (43) to obtain

/(u-Vk)Uf dx+/(v+vD(k))Vk-Vvi dx+/ e(k)v; dx

o) 2 @

=/ v7 () Ry (IDW)]?) v; dx—i—f P(u, k)v;dx foralli > 1.
2 2

We have thus proved that, for each n € IN, there exists a weak solution (u,, k) €
V x Hé(.Q) to the problems (38)—(41) and such that

/ (un'V)un'vdx—f—/ (v—l—vT(kn))D(un):Vvdx—i—/ f(lln)‘VdXZ/ g - vdx,

/(un~an)vdx+/(v~|—vD(kn))Vk,,-Vvdx+/ e(k,)v dx
Q Q2 Q2 (66)
:/ vT(kn)Rn(|D(un)|2)vdx+/ P(u,, k,) vdx

2 2

hold for all (v,v) € V/ x V/ and all j > 1. By linearity and density these rela-
tions hold for all (v,v) € V° x V", and by continuity they hold for all (v,v) €
(VNLY(£)) x (H(l)(.Q) NL4(£2)) due to the ranges of a, 6, B and ¥ set forth at
(30)—(32).
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The proof that k > 0 and e(k) >0 ae. in §£2 follows as in the proof of
[19, Theorem 3.1], in particular by using (35) for the expression of the turbulent
dissipation function. The proof of Proposition 1 is now concluded. ]

From Proposition 1, we know that, for each n € IN, there exists a weak solution
(u,, k,) € Vx Hé(.Q) to the problems (38)—(41) and such that (65) and (66) hold.
Arguing as in [19], it can be proved that

d)
(IVu, 2o < gl (2)- (67)

C2
As a consequence, it follows (up to some subsequences) that u,, — u weakly in
H)(£2), u, — u strongly in LY () for y € [1, 2%), and u, — u a.e. in £, all as
n — oo. To achieve an a priori estimate for k,, independent of n, we consider the
special test function ¢(k,) := 1 — ﬁ where § is a positive constant such that
¢ € Wh'(2) — C%%(£2). Taking v = ¢(k,) in (66) and proceeding as we did in
[19], we have

|V, |?

) /-Q(V + VD(kn))m

dx (/wwﬂmmnﬁ+/ﬁmm¢Mﬁ.
68)

With respect to the last term of (68), we firstly observe that, since ¢ < d’, by the
Sobolev imbedding we have W(])‘q(.Q) — LY (£2) for y < dde. Therefore, in view
of (32) and (33),

Ci||[Vu,||? forp< 2L if9 =0, or
/wmwnw< e "
C2||Vu,,||L2(Q)||Vk,,||L,,(Q) for 8 +29 < 5 if ¥ > 06,9
(69)

where C| and C; are independent of n positive constants. Then, using the assumption
(27) together with (69), and arguing as in [19], we can prove, in the most difficult
case of ¥ # 0,

C +8)g
/ﬂ IVhal dx < V0 2, + nVunan(mnd Iac) + C3l1Vkallaig) + Cas

(70)
where Cy, C,, C3 and Cy are positive constants not depending on x. In this case, we
need also to apply Young’s inequality to the third term of (70) which is possible as

long as ¥ < d+2, condition that is satisfied due to (32) and (33). The case ¥} = 0 is
easier. All this reasoning together with (67) and assumption (36), yield

/ IVk,|?dx < C, C=C,B,Cr,Cp.d,q, 2, |glh22) (71)
2
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where C is a positive constant not depending on n. Then, in view of (71) and up to
some subsequences, we have k, — k weakly in W(l)’q (2)forqg < d’,k, — kstrongly
inLY(£2) forall y € [1, ¢g*) and k,, — k a.e.in £2, all as n — oco. Now, we can pass
to the limit n — oo all the integral terms of (65) by arguing analogously as we
did in the proof of Proposition 1. With respect to the convergence of the integral
terms of (66), we first observe that since g < d’, we have W(l)"”(.Q) < CO3(£2) for
§=1—< As aconsequence v € Wé'q,(.Q) implies that v € LY (£2) for any y’ > 1.
With minor modifications, the convergence of all the integral terms of (66) follows
as in the proof of Proposition 1, with the exception of the one involving R,,, because
we do not know whether if this term remains bounded as n — oo. The convergence
of the third and fifth terms of (66) needs also some comments. Due to assumption
(26) and to the a.e. convergence of u, and k,, we have

e(k,) —> e(k) and P(u,,k,) - P(u,k) ae.inf2, asn — o0. (72)

Since k € W(l)’q(.Q) for ¢ < d’, we have, by virtue of (67) and (71), and for any
y =1,

ns ™n v 5 19 > .
u, ) or 1 or 19 < 1

for some positive constants C and C; not depending on n. Note that the conjunction
of conditions on 6 given by (60) and (73) are responsible for the assumption (31).
On the other hand, the conjunction of all the conditions on 8 and ¥ given by (44),
(63), (69) and (74) are responsible for the assumptions (32) and (33). Then, owing
to (72), (73) and (74), e (k,) — e(k) and P (u,, k,) — P(u, k) weakly in L” (£2), as
n — oo and for possible distinct y. Thus, the convergence of the correspondingly
integral terms follows. Let us now look to the fourth term of (66). Firs we observe
that we can readily justify that

fg (v (k) R (1D ) — vr- () D)) v] dx

[v| dx

(75)
Then, we observe that, by reasoning similarly as we did to prove (58), we also have

1 vr (k) |D(w)[*|D(u,)?
k) D@, — vy () [D)|?| [v|d /fT
ffglvr( D@ = vr ®IDWF| dx+ [ - 1+ 'D ()2

D(u,) — D(u) strongly in L2(2) and D(u,) — D(u) ae.in$2, (76)

as n — oo. Thus, the last integral of (75) converges to zero by the application of
Lebesgue’s dominated convergence theorem, due to (76) and to assumption (27).
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With respect to the first of the two last integrals, we can argue as in [19] to prove that
vr (k) ID(u,) > — vr(k)D(w)|?> strongly inL'(£2), asm — oo

and, consequently, that the first integral of the right-hand side of (75) also converges
to zero. Finally, we can pass to the limit n — oo the equations (65) and (66) to

obtain (28) and (29) for any (v, ¢) € V x Wé’q’(.Q). The proof of Theorem 1 is now
concluded.

Remark 1 The existence result established in [20, Theorem 3.1] for the case of
considering strong nonlinear functions f (u) and e(k), i.e. when no upper restrictions
on the growth of these functions with respect to u and k are required, can also be
generalized to any space dimension d > 2 and for a general function of turbulence
production. In this case, besides the sign conditions (34), we just need to assume that
(32) and (33) hold together with

37 >0 [angle(f(u), u)| ¢ (% —r,%+r) Vu:lu/>L, YL>0,
Hp e LY (2), GyyeLY(2) VL, M >0, Hp:= sup [f)|, Gy := sup |e(k)|.
lul<L lk|<M
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Shapour Heidarkhani, Ghasem A. Afrouzi, Shahin Moradi
and Giuseppe Caristi

Abstract In this paper, using variational methods and critical point theory we dis-
cuss the existence of at least three solutions for nonlinear Kirchhoff-type difference
equations with Dirichlet boundary conditions. We also provide examples in order to
illustrate the main results.

Keywords Three solutions + Difference equation - Kirchhoff-type problem
Variational methods

1 Introduction

The aim of this paper is to establish the existence of at least three solutions for the
following Kirchhoff-type discrete boundary-value problem

T (w) = rf(k,uk)) + pgk, u(k)) + h(uk),  kel[l,T], )
u) =u(T +1)=0
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T+1
Tw =M( Y 1autk = DI” +qelu®)? ) ( = A@p(Autk = 1)) + qp @),
k=1

1 <p<+00,A>0,u>0,M:[0,400[— R is acontinuous function such that
there are two positive constants mo and m; with my < M(t) < m, for all t+ > 0,
Op(s) = |s|P~2s, T > 2 is a fixed integer, [1, T'] is the discrete interval {1, ..., T},
f,g:[1,T] x R — R are two continuous functions, 7 : R — R is a Lipschitz
continuous function of order p — 1 with Lipschitz constant L > 0 and 4(0) = 0,
Au(k) = u(k + 1) — u(k) is the forward difference operator and ¢, = g (k) € Rar
forall k € [1, T].

There is an increasing interest in the existence of solutions to boundary value
problems for finite difference equations with p-Laplacian operator. Their applica-
tions in many fields such as biological neural networks, economics, optimal control
and other areas of study have led to the rapid development of the theory of differ-
ence equations; see the monograph of Agarwal [1]. Recently, the study of discrete
problems subject to various boundary value conditions has been widely approached
by using different abstract methods as fixed point theory, lower and upper solutions
method, critical point theory, variational methods, Morse theory and the mountain-
pass theorem. For background and recent results, we refer the reader to [3, 4, 8-11,
13, 19, 21, 25, 26] and the references therein for details.

Problems like (1) are usually called nonlocal problem because of the presence of
the integral over the entire domain, and this implies that the first equation in (1) is
no longer a point-wise identity. In fact, such kind of problem can be traced back to
the work of Kirchhoff. In [22], Kirchhoff proposed the equation
3%u 00 E (% du 2 3%u
Lo <h+2L A 'ax|dx>ax2_0’ @
as an extension of the classical D’ Alembert’s wave equation for free vibrations of
elastic strings. The problem (1) is related to the stationary analogue of the problem
(2). Kirchhoff’s changes in length of the string produced by transverse vibrations.
Similar nonlocal problems also model several physical and biological systems where
u describes a process which depends on the average of itself, for example the popula-
tion density. Lion in [27] has proposed an abstract framework for the Kirchhoff-type
equations. After the work by Lions, various equations of Kirchhoff-type have been
studied extensively, for instance see [14, 28].

In recent years, the existence of solutions to discrete boundary value problems
of Kirchhoff-type have been studied in many papers and we refer the reader to the
papers [12, 16, 17, 23] and the references therein for details.

To the best of our knowledge, for discrete problems of Kirchhoff type, there has
so far been few papers concerning its existence of solutions.

Motivated by the above facts, in the present paper, using two kind of three critical
points theorems due to Bonanno and Candito [5, 6] which we recall in the next
section (Theorems 1 and 2), we establish the existence of at least three solutions for
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the problem parameters are involved. Precise estimates of these two parameters A and
wn will be given, see Theorems3 and 5. Theorem4 is a consequence of Theorem 3.
We present Examples 1 and 2 in which the hypotheses of Theorems4 and 5 are
fulfilled, respectively. As a special case of Theorem4, we obtain Theorem 6 which
under suitable conditions on f at zero and at infinity, ensures two positive solutions
for the autonomous case of the problem. Finally, we point out Theorem 7, a simple
consequence of Theorem 6.

2 Preliminaries

Inthe present paper X denotes a finite dimensional real Banach spaceand I, : X — R
is a functional satisfying the following structure hypothesis:
L,(u) :== @(u) — AW (u) for all u € X where @, ¥ : X — R are two functions of
class C! on X with @ coercive, i.e. limj, | oc @ (u) = 400, and A is a positive real
parameter.

In this framework a finite dimensional variant of Theorem 3.3 of [6] (see also
Corollary 3.1 and Remark 3.9 of [6]) is the following:

Let X be a nonempty set and @, ¥ : X — R be two functions. For all r, ry, ra,
with r, > ry and r, > infy @, and all r; > 0, we define

. (SUPyeqp-1 (oo ¥ () — W (1)
o(r) = inf
ue®-1(—oo0,r) r — d)(u)

’

()~ (1)

. Supue@’](—oo.r +r3)
B(ri,r2) = infuco-1(—co.r) SUPved1(r.m) o) —da > ¥ (120 73) = —

Y (u)
r3 ’

(X(r], r, }’3) = maX{gD(rl), ‘P(Vz)a '}/(Vz, }’3)}.

Theorem 1 ([6, Theorem 3.3]) Assume that
(ay) @ is convex and infy ® = @ (0) = ¥ (0) =0;
(az)  foreveryuy,uy € X such that W (u,) > 0 and ¥ (uy) > 0, one has

inf ¥(suy+ (1 —s)uz) >0.
s€(0,1]

Assume that there are three positive constants ry, ra, r3 with ry < ra, such that

(@) @) < B@r1,m2);
(as)  @@r2) < B(r1,12);
(as)  y(r2,r3) < B(ry,r).
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Then, for each A e]m, ' )[ the functional @ — A admits three distinct

a(ry,ra,rs
critical points uy, uy, us such that u, € ® (=00, r)), up € ®'[r1, ) and uz €
@71(—00, r + I‘3).

We refer the interested reader to the papers [7, 15, 18, 24] in which Theorem 1 has

been successfully employed to obtain the existence of at least three solutions for

(SUPy =1 (—oo.ry) ¥ (1)) =W (1)
r—®(u)

for all r > infy @, and A* = ——L—— where we read L = 400 if this case
inf,~inry 0 @1 (r) 0
occurs.

boundary value problems. Now, put ¢V (r) = inf ¢ (—oo.r)

Theorem 2 ([5, Theorem2.3]) Let X be a finite dimensional real Banach space.
Assume that for each ) €10, A*[ one has

(b)  limyy— 400 L () = —00.

Then, for each A €10, A*[ the functional I, admits at least three distinct critical
points.

Theorem 2 has been successfully used to ensure the existence of at least three solu-
tions for a discrete boundary value problem in [9].

Remark 1 Ttis worth noticing that whenever X is a finite dimensional Banach space,
a careful reading of the proofs of Theorems 1 and 2 shows that regarding to @ and
¥, it is enough to require only that @’ and ¥’ are two continuous functionals on X*.

Now, consider the T -dimensional Banach space X :={u : [0, T + 1] — R : u(0) =
u(T +1)=0} equipped with the norm [u| := ( HEH Aulke — 1)P +

1/p
qr |u(k)|”) . In the sequel, we will use the following inequality

(T 4+ D=b/p
max |u(k)| < —————|lull 3
kell,T] 2

for every u € X. The inequality immediately follows, for instance, from Lemma 2.2
of [20].

Let T > 2 be a fixed positive integer and & : R — R be a Lipschitz continu-
ous function of order p — 1 with Lipschitzian constant L > 0, i.e., |h(t;) — h(ty)| <
L|t; — t]P~ forevery t;, t, € R, and h(0) = 0. Suppose that the constant L > 0 sat-
isfies LT (T + 1)?~! < 2Pmq. Put F(k,t) := fot f(k, &)d& for all (k,t) € [1,T] x
R, G(k,1) := [3 g(k, £)d& for all (k, 1) € [1,T]1x R, M(t) = [y M(£)d¢ for all
t>0and H(1t) := fot h(&)dé& for all + € R. We state the following consequence of
the strong comparison principle [2, Lemma 2.3] (see also [4, Theorem 2.2]) which
we will use in the sequel in order to obtain positive solutions to the problem (1), i.e.
u(k) > 0 foreachk € [1, T].

Lemmal If 7 (u) >0, ke[1,T],u(0) >0, u(tk + 1) > 0, then either u is pos-
itive or u = 0.
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3 Main Results

In this section, we formulate our main results on the existence of at least three
solutions for the problem (1). For our convenience, set G? := Zszl maxg|<g G(k, &)
forall & > 0 and G, := T infy; 79xj0,y) G(k, t) for all n > 0. If g is sign-changing,
then clearly G? > 0 and G, < 0. Fixing four positive constants 6, 65, 3 and 1 put

T
w6l = 2p(T + 1P Y " F(k, 6)

P : 1 . k=1
8).¢ := min { S DT min [ el s

T T
06! — Ap(T + P! Z F(k,0;) «6!-60H—Ap(T + P! Z F(k, 03)
k=1 k=1 }

G% ’ G%
T T
Srerslian- (Y Fk,n) =Y F(k,6))
k:Gln_Gal k=1 } (4)

where k] = 2Pmo — LT(T + 1)?~" and ky = 2Pm, + LT (T + 1)P~ 1.

Theorem 3 Assume that there exist positive constants 01, 6>, 63 and n with 0; <
p=D/p L p=/p 1

TP Q4 Y g rn, B (2 @+ Y0 q0) 70 < Grand s < 63 such

that

(A1) f(k,1) =0 foreach (k,t) € [1,T] x [0, 65];

(A) max{z‘l‘ F6) ST, Fko) YT, F(k,&)} - a( XL, Foen-XI, Fk6))
2 O P(T+1)P~ 22 Q+ X qon”

Then, for every
QA+ Y a0’

re A= ( T 7 ,
Zk:] F(kv 77) - Zk:l F(k7 01)
K1 . { o7 6y 0y — 67 })
min , ,
p(T + 1)r-! S Fk,0) S i_ Fk,6)) Y[_ F(k,65)

and for every non-negative continuous function g : [1, T] x R — R, there exists
8).¢ > 0 given by (4) such that, for each n € [0, 6, ), the problem (1) has at
least three non-negative solutions ui, u and uz such that maXep,ry|ui (k)| <
01, maxgey,ry |u2(k)| < 0 and maxyep1, ) luz (k)| < 05.

Proof Our goal is to apply Theorem 1 to the problem (1). We consider the auxiliary
problem
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T () = 1f k. u(k) + pglk u®) +h@k).  kellLTL g
uO) =u(T+1)=0

where f :[1, T] x R — R is a continuous function defined putting

. f(k,0), ifé <0,
fk,§) =9 fk &), if0<§ =065,
f(k, 93), lfé > 93.

From (A;) owing to Lemma 1, any solution of the problem (5) is non-negative. In
addition, if it satisfies also the condition 0 < u(k) < 6, and for every k € [1, T'],
clearly it turns to be also a non-negative solution of (1). Therefore, for our goal,
it is enough to show that our conclusion bolds for (1). Let the functionals @, ¥
for every u € X, defined by @(u) = %M(||u||”) — ZZ:I Hu(k)) and ¥ (u) =
S [F(k, u(k)) + Gk, u(k))]. Let us prove that the functionals @ and ¥ sat-
isfy the required conditions in Theorem 1. It is well known that ¥ is a differentiable
functional whose differential at the point u € X is

T
V@) =Y [ k) = Sgleu) | vio
k=1

for every v € X, as well as is sequentially weakly upper semicontinuous. Recall-
ing (3), taking into account that % is a (p — 1)-Lipschitz continues function with
Lipschizian constant L > 0 and #(0) = 0, we have

K1 p K>
— < @) < —ull?, 6
—plull” = @) < lul (©)

which due to the condition LT (T + 1)?~! < 2Pmy, it follows that @ is coer-
cive. Moreover, @ is continuously differentiable whose differential at the point

we Xis® ) = M(Jul” ) (= i [A@p(Autk = 1) = quluth)lP~2uth)+

h(u(k))]v(k) ) for every v € X. Furthermore, @ is sequentially weakly lower semi-
continuous. Therefore, we observe that the regularity assumptions on @ and ¥,
as requested in Theorem I, are verified. Note that the critical points of the func-
tional @ — AV are the solutions of the problem (1). Define w by setting w(k) =

n, kell,T],

0, k=0, k=T +1.
using (6), we have (2 + Y, qu)n? < ®(w) < 252+ Y ;_, qu)n’. Choose
-

Clearly, w € X and one has |w[|” = 2+ Y[_, ¢)n”. By

07, ry = 0, and ry = —ts7 (07 — 6;). From the condi-

— K1 K1
L= 5@+ T p(T+1)r-1
. T4+1)P=b/p T 1 T+1)P=0/p T 1
tions 65 > 62, 6y < T 22+ Y g7 nand %(%Q + 31 q0)?
n < 6, we achieve r3 > 0 and r; < @ (w) < r,. From the definition of @ and (3),
the estimate @ (1) < r; implies that
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lu()? < |ullZ, < ®dw) <6F, Vkell, T

(T + 1)(17*1) < p(T + 1)(1)71)
2r - K1

From the definition of ry, it follows that @ ~!(—o0, 1) € {u € X: |u| < 6,}. Hence,
by using the assumption (A;), one has

sup ZF(k uk)) < Zmax Fk, 1) < ZF(k 0).

ued-1(— 00,71) j—1
In a similar way, We have SUP,co-i( oo Sonet Fk u(k)) < Y0_ F(k,6))

and  SUP,co-1(_oo.rytrs) S, Flk,u(k)) < Y°i_, F(k,03). Therefore, since 0 €
®~!(—o00, r;) and ®(0) = ¥ (0) = 0, one has

Z F(k,61) ,

SUP,cq-1 (—oor) U/(u) p(T + 1)1 ( nG )
r < D + -~ 0 )
v(n) = " =T . 0! % o7
sup lll(u) F(k, 6))
ued—1(—00,r2) p(T + 1)P~! Z w G
() < < ( S— __p>
rn K1 92 A 92
and
sup W) Z F(k, 63)
(s ry) < Moot P+ DT 1( Lr_G” )
2= s K1 or —or T nel—er)

On the other hand, for each u € @ ~'(—o00, r), one has
Yo Flm=Y i, FkO)+%(G,~G™)
ﬂ(rlv 7'2) - D(wW)—D(u)

Zl:] F(k, '7) Zk | Fk, 91)+ (Gv*Gﬁl)
o pzﬂ Q43 4=y gn? ’

\

Due to (A;) we get «(ry, 12, r3) < B(r1, r2). Therefore, (a;) and (a,) of Theorem 1
are verified. Finally, we verify that @ — AW satisfies the second assumption of
Theorem 1. Let u; and u, be two local minima for @ — AY¥. Then u; and u, are
critical points for @ — A, and so, they are solutions for the problem (1). Then,
due to Lemmal, we deduce u; and u, are non-negative. Thus, it follows that
suy 4+ (1 —s)uy > Oforalls € [0, 1], and that (Af 4+ ug)(k, su; + (1 — s)uy) > 0,
and consequently, ¥ (su; + (1 — s)uy) > 0, for every s € [0, 1]. Hence, Theorem 1
implies that for every
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K T
) ( pzpzm] 2+ Zk=1 qon?
Yl Fl,m) = Y4, Fk, 61)

Kl _ o7 6 or — o7
—7 in { T =y P T })
p(T + l)P Zk:l F(kv 91) Zk:l F(k’ 92) Zk:l F(k7 93)

and u € [0, 8, ), the functional @ — AY has three critical points ;, i = 1,2, 3, in
Xsuchthat @ (u;) < ry, @(u2) < roand @ (u3) < rp + r3,thatismaxepr 1 [u1 (k)| <
01, maxger, 7 [u2(k)| < 62 and maxgepi, 7y |u3(k)| < 63. Then, taking into account
the fact that the solutions of the problem (1) are exactly critical points of the functional
@ — AW we have the desired conclusion.

For positive constants 6, 64 and n, set

T
ao/— p(T + DP7'LY " F (k. 6))
. . . k=
8} ¢ = min {,;(T+l1)pl min { — 1 ,
T 1 T
» -1 . » -1
o~ 2p(T + 1P~ 1A ]; F(k, «'7594) ol —2p(T + 1P~ 1A k; F(k, 6,)
267" ’ 26 }’
T T
Sl iaom—A(Y_ Fk,m) =Y F(k, 6)
k=1 k=1 (7)
G,—G" :

Now, we deduce the following straightforward consequence of Theorem 3.

Theorem 4 Assume that there exist positive constants 0y, 64 and n with 0; <

. (p=1/ 1 1Y P=D/P (e, 1
min{n, T2+ 3 gy and LTI (24 Y q) T < 6
such that

(A3)  f(k,t) = 0foreach (k,t) € [1,T] x [0, 04];
{zL, F(k6:) 2% F(k,eu} - K1 i Flkn)
0; ’

A max .
(A4) oy (ar+p(T+1)P~" =2 2+ Ty qe)In?

Then, for every

(1 + p(T + D27 Q2+ 30 qo)n”
p(T + P13 Flk,n)

,\eA/::]

K1 . 67 0y
T +nr 1 5 ST I
p Su Flk,0) 230 F(k,64)
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and for every non-negative continuous function g : [1,T] x R — R, there exists
8,.c > 0 given by (7) such that, for each w €[0,8; ), the problem (1) has at
least three non-negative solutions uy, u and uz such that maxep1, 7 |u1(k)| < 6y,
maxger1, 7] [ua (k)| < (%94 and maxyep1, 1) [uz (k)| < 0O4.

Proof Choose 6, = %94 and 03 = 04. So, by using (A4), one has
Sict Pk 6) 230, Fk6a) k1 Yy F (k) ®)
07 B 0F 1+ p(T + P22+ Y q)n?
and
S F(k,65) _ 23 F(k,64) ki h_, Fk,n) )
0567 05 (e +p(T+1D)P~1 22 Q430 gn?

Moreover, taking into account that 6; < 5, by using (A4) we have

K1 IZ[:, F(k,m—TZ[:l F0) a__ Sr I;(k,n)
PAFDIE 5 Q4 qon” PTHDPT 22 YT qon?
_ K1 Zlﬁ:] E(k'el) K1 ZI::I F(k»ﬁ)
P ity T P 2 0y qom
_ < % Yo Fkm)
- T P
PT+D)P™ 55 Q43 k) (/(1+p(T+1)”*‘ &+, qk))nl’
_ K1 i Y Flen)
K p (T2 2+ Y0 q0) nr :

Hence, from (Ay), (8) and (9), it is easy to see that the assumption (A;) of Theorem 3
is satisfied, and since the critical points of the functional @ — AW are the solutions
of the problem (1) we have the conclusion.

We point out the following consequence of Theorem 2.

Theorem 5 Let p > 2 and f : [1, T] x R — R be a continuous function. Assume
that there exist four constants c, ¢y, s and p withc; > 0,5 > pand0 < B < s such
that

(B)  F(k,&) = c1l&|" — c2|€|P for every (k, &) € [1,T] x R.
Then, for every A €10, X[ where k = W SUPp- m
continuous function g : [1,T] x R — R, there exists &, , > 0 such that for each
u € [0, S)\,g), the problem (1) possesses at least three solutions.

, and for every

Proof Our aim is to apply Theorem 2. Fix A €]0, A[ and take @ and ¥ as in the proof
of Theorem 3, and put [, (u) = @ (u) — AW (u) forevery u € X. Then, thereis 6 > 0

K1 ar . -
such that A < P+ ST maxy g PO Setting r =

the proof of Theorem 3, one has

07 and arguing as in

JRS
p(T+1)P-1
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1 /4
= =g < el “
T+ 1P 'Y max <-Fk,t+ﬁG9_ 1
ey t 7 2 "'—gpf( )t < (10)
1

that is A < A*. Moreover, it is easy to show that there exist two positive constants ¢
and t, such that, foreach u € X, one has Zl{:l lu(k)]* > ¢}|lull® and Zl{:l lu(k)|? >
L§||M||ﬂ. Hence, from (B), for each u € X, we get

K>
1) = 5 ull” = xea ul* + ety lull? (11)

as ||u|| — 4oo. Therefore, since s > p and s > 8, the condition (b) is verified.
Hence, from Theorem 2 the functional 7, admits three critical points, which are three
solutions for (1) and the conclusion is proved.

Corollary 1 Let p > 2and f : [1,T] x R — R be a continuous function. Assume
that there exist four constants cy, ¢, s and B with ¢y > 0 and 0 < B < p such that

(B ) 21(7:1 maxj|<¢ F(k,t) 2”614’/{1 .
2 67 o (T+1HP=T°

(By)  F(k,&) = cil§° — calé|” for every (k, &) € [1,T] x R.

Ko K or
p2ren]”’ p(T+D)P~" YT maxy < F(k,1)
Sunction g : [1, T] x R — R, there exists 8, o > 0 such that for each i € [0, 6, ,),
the problem (1) possesses at least three solutions.

Then, for every X\ € ] [, and for every continuous

Proof Our claim is to prove that condition (b) of Theorem?2 holds for every A €
K K ar * . .

] PZ”il‘lp G >ty maxy<o F(k,1) [ ]0, A*[. Indeed, from (B,), arguing as in (10),

one has that A < A*. Moreover, by (B3), from (11) with s = p, for every u € X,

we have I, (u) < (z;% — Acltf)”unp + AC2L§||u||/3 where % — Acptf < 0, which

implies condition (b).

Remark 2 Tfin Theorems 3 and 5, either f (k, 0) # Oforsomek € [1, T]org(k, 0) #
0 for some k € [1, T'], or both hold true, then the ensured solutions are obviously
non-trivial.

We now present the following examples to illustrate Theorems 4 and 5, respectively.

Example 1 Consider the following problem

M(Shoy 18utk = DP +geluol ) (= As (Autk = 1) + s w(®))
=Af () + pg(w) +hw), kell,3], (12)
u)=u@) =0
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where M(t) =3 + ™22 for all +>0, q(k)=10"* for k=[1,3], f(t)=
{ 1741 ifr < 1,

— 11 _ :
17 1 and h(t) = 15z (1 — cos(z)) for every ¢ € R. By the expressions

T
17, ifr <1,
14+ 17In(@), ift > 1
every t € R. Choosing 6 =108 6,=10% and n=1, we clearly see
that all assumptions of Theorem4 are satisfied. Then, for every
$e ]8—%+(32+%§)(2+10‘3+10‘6+10‘9) 8- 1024

of f and h, we have F(t) = { and H(t) = #(t — sin(?)) for

100
144 > 48  6+102In(108

continuo_us function g : [1, T] x R — R, there exists SA,G > 0 such that, for each
€ [0, 8, ), the problem (12) has at least three non-negative solutions u;, u, and u3
such that maxye(; 31 |u1 (k)| < 1078, maxgeqr 3] [uz (k)| < % and maxye(; 3) |u3 (k)|
< 108,

5 [ and for every non-negative

Example 2 We consider the following problem

M0 1 Autk = DI+ qelut) ) (= A@a(Autk — 1) + qeds (k) )

= Af () + ugw), ke[l,4],

u@ =u®d)=0

(13)

where M(t) = 1 + O+ forall t > 0, g(k) = 1 + In(eX) for k = [1,4], f(t) =
61> + 413 + 2t + €* for each r € R and h(r) = 1]—2 sin(¢) for every t € R. By the
expression of f, we have F(t) = 1%+ t* + 1> + ¢* — 1 foreach ¢ € R. Direct cal-
culations give my =2 and L = #. By choosing s =6, 8=2,c; =1,¢; =2 and
6 = 1072, then all conditions in Theorem 5 are satisfied. Then, for every A € (0, %)
and for every continuous function g : R — R, there exists §, ¢ > 0 such that for each
w € [0, 8, ,), the problem (13) possesses at least three non-trivial solutions.

Now, we deduce the following straightforward consequence of Theorem4.
Theorem 6 Let f be a non-negative continuous and non-zero function such that

. t . t

lim & = lim & =0 (14)

>0+ P t——+oco tP—1

wi+p(T+D)P ™ 25 Q430 qn”
Tp(T+1)P~1F(n)

F() = fot f(&)dE forallt € R, the problem

for every A > A* where \* = inf{ n>0,F(n) > 0},

{ T () = rf k) + h(uk)), k €[1,T], (15)

u@@) =u(T +1)=0

has at least two distinct positive solutions.

Proof Fix A >A" and let n>0 such that F(n)>0 and
P +p(T+D)P " 22 41, qon?
= TP+ D7 TF ()

. From (14) there is #; > 0 such that 6; < min
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i, T 0 4 ST gi)rn) and E9 < < srocyer. and 6, > 0 such that

176 (p=D/p
AN (204 ST g)) P < Oy and B <
orem4 ensures the conclusion.

K1 _
TSI Therefore, The

Finally, we point out the following simple consequence of Theorem 6.

Theorem 7 Let f : R — R be a continuous function such that tf(t) > 0 for all
t #0 and lim,_, I’:Lf? = limy;» 400 t’%) = 0. Then, for every A > A where A =

+p(T+D)P 220+ a0 . P P
TP(TJ’FZI'),,,, == x max { inf,- %n); inf, o S22 F( 3 } the problem (15), i

the case h = 0 has at least four distinct non-trivial solutlons

. 0, iftr <0, 0, ifr <O,
Proof Putting f(t) = {f(t) ;ft i 0. and f>(¢t) = { ~ (=), 1“ i 0 and apply-

ing Theorem 6 to f; and f; the desired result follows.
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Continuous Selections of Solution Sets m
of a Second-Order Integro-Differential L
Inclusion

Aurelian Cernea

Abstract We study a Cauchy problem associated to a second-order integro-
differential inclusion. The general framework of evolution operators that define the
problem that we consider has been developed by Kozak and, afterwards, improved by
Henriquez. Our aim is to show the existence of mild solutions continuously depend-
ing on a parameter for the problem studied in the case when the set-valued map is
Lipschitz in state variables. Moreover, as a consequence, we deduce the existence
of a continuous selection of the set of all mild solutions of the problem considered.
The proof our main result is based on a result of Bressan and Colombo concerning
the existence of continuous selections of lower semicontinuous multifunctions with
decomposable values.

Keywords Measurable multifunction - Differential inclusion + Selection
Decomposable set

1 Introduction

In this paper we study the following problem
x" e Ax + F(t,x, V(x)(1), x(0)=xp, x'(0)=yo, (1)

where F : [0, T] x X x X — Z?(X) is a set-valued map, X is a separable Banach
space, xg, Yo € X, {A(#)},>0 is a family of linear closed operators from X into X that
genearates an evolution system of operators {% (¢, s)}; sej0.r) and V : C(I, X) —
C(1, X) is anonlinear Volterra integral operator. The general framework of evolution
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operators {A(t)},>0 that define problem (1) has been developed by Kozak [12] and
improved by Henriquez [10].

In the case when F does not depend on the last variable, i.e., without Volterra
integral operators existence results and qualitative properties of mild solutions for
problem (1) have been obtained by using fixed point techniques in several recent
papers [2-5, 10, 11] etc.

In the present paper we consider the more general problem (1) and our aim is
to study problem (1) when the set-valued map is Lipschitz in the second and third
variable. We show first that Filippov’s ideas [9] can be suitably adapted in order
to obtain the existence of mild solutions of problems (1). We recall that for a first
order differential inclusion defined by a lipschitzian set-valued map with nonconvex
values Filippov’s theorem [9] consists in proving the existence of o solution starting
from a given “quasi” solution. Moreover, the result provides an estimate between the
starting “quasi” solution and the solution of the differential inclusion. Afterwards,
we obtain a continuous variant of this result; namely, we show the existence of mild
solutions continuously depending on a parameter for problems (1), under Filippov
type hypotheses. The key tool in the proof of this theorem is a result of Bressan and
Colombo [4] concerning the existence of continuous selections of lower semicon-
tinuous multifunctions with decomposable values. As a consequence we deduce the
existence of a continuous selection of the set of all mild solutions of problem (1).

We note that similar results for other classes of differential inclusions may be
found in [7, 8, 13].

The paper is organized as follows: in Sect.2 we recall some preliminary results
that we use in the sequel, in Sect. 3 we obtain our Filippov type existence results and
in Sect.4 we treat the parameterized situation.

2 Preliminaries

Let denote by I the interval [0, T'], T > 0 and let X be a real separable Banach space
with the norm |.| and with the corresponding metric d(., .). As usual, we denote by
C (I, X) the Banach space of all continuous functions x(.) : I — X endowed with
the norm [x(.)|¢c = sup,.,|x(¢)| and by L'(1, X) the Banach space of all (Bochner)
integrable functions x(.) : I — X endowed with the norm |x(.)|; = fOT [x(¢)|dz.
With B(X) we denote the Banach space of linear nounded operators on X.

In the sequel V : C(I, X) — C(I, X) is a nonlinear Volterra integral operator
definedby V(x)(¢) = fot k(t,s, x(s))ds wherek(.,.,.): I x X x X — Xisagiven
function and F(.,.,.): I x X x X — Z(X) is a set-valued map.

In what follows {A(#)},>0 is a family of linear closed operators from X into X
that genearates an evolution system of operators {% (¢, s)};.se;. By hypothesis the
domain of A(t), D(A(¢)) is dense in X and is independent of 7.

Definition 1 ([10, 12]) A family of bounded linear operators % (¢,s) : X — X,
(t,s) € A:={(t,s) € I x I;s <t}iscalled an evolution operator of the equation
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X"t = A@®)x (@) 2)

if
(i) For any x € X, the map (¢, s) — % (¢, s)x is continuously differentiable and

(@)% (t,t)=0,tel.
b)Ifrel,x € X then 2 U (t,5)X]i=s =xand s U (1, 5)X]i=s = —X.

(1) If (¢, s) € A, then %%(t, s)x € D(A(t)), the map (t,s) — Z (¢, s)x is of class
C? and

(@) L% (t,5)x = A (1, $)x.

®) LU (1, 5)x = U (1, 5)At)x.

(©) 2 % (t, $)x] 1= = 0.

(iii) If (¢, s) € A, then there exist =5~ (¢, s)x, == (t, s)x and

dtzdv ’ dr26t

() ag—;s%(t,s)x = A2 % (t,s)x and the map (1,5) > A() L% (t,9)x is
continuous.

(b) 5o % (1, 5)x = LU (1, 5) As)x.

As an example for Eq. (2) one may consider the problem (e.g., [10])

o= L a0 Z o). 1 el0.T)r € [0, 21]
S\, T1)=5UT alt)—\(1, 1), 4, T , &0,
or? at? ot

0z 0z
2,0 =z, ) =0, —(,0)=_—27), t€l[0,T],
at ot

where a(.) : I — R is a continuous function. This problem is modeled in the space

X =L*R,C) of 2m-periodic 2-integrable functions from R to C, Az = di,zr(f )
with domain H?(R, C) the Sobolev space of 2 -periodic functions whose deriva-
tives belong to L2(R, C). It is well known that A, is the infinitesimal generator of
strongly continuous cosine functions C(z) on X. Moreover, Aj has discrete spec-
trum; namely the spectrum of A consists of eigenvalues —n>, n € Z with associated

eigenvectors z,(t) = me”” n € N. The set z,, n € N is an orthonormal basis of

X. In particular, Az = ZneZ —n? < z,2, > zZn, 2 € D(A}). The cosine function
is given by C(t)z = ZneZ cos(nt) < z,z, > z, with the associated sine function
Sz =1<2,20> 20+ P ez 2D < 7,2, > Z.

For t € I define the operator A,(f)z =a(t)% with domain D(A;(¢)) =
H'(R, C). Set A(t) = A + A>(¢). It has been proved in [10] that this family gen-
erates an evolution operator as in the above definition.

Definition 2 A continuous mapping x(.) € C(I, X) is called a mild solution of
problem (1) if there exists a (Bochner) integrable function f(.) € L'(I, X) such that
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f@) e F(t,x@), V(X)) a.e. (1), 3)
x(t) = _E)a_s%(t’ 0)xo + % (¢, 0)yo +f U(t,s)f(s)ds, t €1. %)
0

We shall call (x(.), f(.)) a trajectory-selection pair of (1) if f(.) verifies (3) and
x(.) is defined by (4).
We shall use the following notations for the solution sets of (1).

S (x0, yo) = {x(.); x(.) is a mild solution of (1)}. (@)

Finally, we recall several preliminary results we shall use in the sequel.

Lemma 1 Let X be a separable Banach space, let H : I — 22 (X) be a measurable
set-valued map with nonempty closed values and g, h : I — X, L : I — (0, 00)
measurable functions. Then one has.

(i) The function t — d(h(t), H(t) is measurable.
(ii) If H(t) N (g(t) + L(t)B) # @ a.e. (I) then the set-valued map t — H(t) N
(g(t) + L(t)B) has a measurable selection.

Its proof may be found in [1].

A subset D C L'(I, X) is said to be decomposable if for any u(-), v(-) € D and
any subset A € Z(I) one has uxs +vys € D, where B = I\ A. We denote by
2(I, X) the family of all decomposable closed subsets of L' (I, X).

Next (S, d) is a separable metric space; we recall that a set-valued map G () : S —
P (X) is said to be lower semicontinuous (1.s.c.) if for any closed subset C C X, the
subset {s € S; G(s) C C}is closed. The proof of the next two lemmas may be found
in [6].

Lemma2 Ler F*(.,.): I x § — P(X) be a closed-valued £ (1) ® B(S) mea-
surable set-valued map such that F*(t,.) is L.s.c. forany t € I.
Then the set-valued map G(.) : S — 21, X) defined by

Gis)={ve LI(I, X); v() e F*(t,s) a.e. (1)}

is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p() S = L'(I, X) such that

d(0, F*(t,s)) < p(s)(t) a.e. (I), Vs € S.
Lemma3 Let G(.): S — 21, X) be a l.s.c. set-valued map with closed decom-

posable values and let ¢(.) : S — L' (I, X), ¥(): 8 — L'(I,R) be continuous
such that the set-valued map H(.) : S — Z(I, X) defined by
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H(s) =clfv e G(s); [v(t) =)@ < ¥ ($)(1) a.e. (1)}

has nonempty values.
Then H has a continuous selection, i.e. there exists a continuous mapping h :
S — L'(I, X) such that h(s) € H(s) Vs € S.

3 A Filippov Type Result

In order to establish our existence result for problem (1) we need the following
hypotheses.

Hypothesis H1. (i) There exists an evolution operator {Z (¢, 5)}; se; associated to
the family {A(#)};>0.

(ii) There exist M, Mo > 0 such that |% (¢, s)|gx) < M, | 2% (t, s)| < My, for
all (¢,5) € A.

(i) F(.,., ) I x X x X — Z(X) has nonempty closed values and is .Z(I) ®
HB(X x X) measurable.

(iv) There exists L(.) € L'(I, R}) such that, for almost all € I, F(t, .,.) is
L(t)-Lipschitz in the sense that for almost r € 1

d(F(t,x1, y1), F(t, x2, y2)) < L(O)(Ix1 —x2| + [y1 — y2|) ¥V x1,x2, y1, 02 € X,
where d (A, B) is the Hausdorff distance
d(A, B) = max{d*(A, B),d*(B, A)}, d*(A, B) =sup{d(a, B);a € A}.

Wk(y., ) I x X x X — Xsatisfy:Vx € X, (t,5) > k(¢, s, x) ismeasurable
and |k(t,s,x) —k(t,s, V)| < L({t)|x —y| a.e(t,s) el x I, Vx,y € X.
We shall use next the following notations

x+D>-1

, e R.
2 X

m(t) =/ Lw)du, alx)=
0

In what follows we consider ug, vo € X, g(.) € L'(I, X) and y(.) € C(I, X) isa
mild solution of the Cauchy problem

Yi=AWMy+g@) y0) =uo, y'(0)=nw,
Hypothesis H2. (i) Hypothesis H1 is satisfied.
(i) The function ¢t — p(¢) := d(g(t), F(¢t, y(t), V(y)(¢)) is integrable on I.

Theorem 1 Consider § > 0 and assume that Hypothesis H2 is satisfied. Then
for any xo, yo € X with My|xg — uo| + M|yo — vo| < 8 and any ¢ > 0O there exists
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(x(.), f(.)) a trajectory-selection pair of (1) such that

x(@) —y®| =§@) Viel,
Lf (@) — g0l = L(t)(é(t)+/o Lw)§w)du) +y (1) +¢ a.e. (1),

where

t
E(t) = §eMam®) 4 / p(u)eMemO=m) gy 1 Mre.
0

Proof Lete > 0 and set xo(t) = y(¢), fo(t) = g(t),t € I and for n > 1 define

Y du + D) (Molxo — uo| + Mlyo — vol)-

t _ n—1 n—1
pn(t)Z/ p(u)(a(m(t) m(u)) (ae(m(1))

We claim that is enough to construct the sequences x,,(.) € C(I, X), f,(.) € L'(1, X),
n > 1 with the following properties

X, (1) = —;—s%(l‘, 0)xg + % (¢,0)yy + /0 U (t,s)fu(s)ds, Vtiel, (6)

|x1(t) —x0(t)| <8+ M(/ pw)du + ¢et) =: po(t) VYtel, (7)
0

[fi() — fo)| = p@) +¢e ae. (I), 3

Ja(®) € F(t,x,1(8), V(x,-1)(@) a.e.(I), n =1, )

| fue1(6) = £u()] < L)X (1) — X,-1 ()] + f L(u)|x, () — X1 (u)|du) ace.,
‘ (10)
1%, (£) — Xuo1 ()] < M" ' p,(t) Vel (11)

Indeed, from (11) {x,(.)} is a Cauchy sequence in the Banach space C(I, X).
Thus, from (10) for almost all # € I, the sequence { f,,(¢)} is Cauchy in X. Moreover,
from (7) and the last inequality we have

n—1 n—1

(D) = YOI < Y I () = (O < Y Mipi() £ (12)

i=0 i=0
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On the other hand, from (8), (10) and (11) we obtain for almost all ¢ € 1

|£u() = 8] < X2 1 fina () = O]+ 1) — g(0)] <

13
LOED + 3 L@du) + (1) +e. (1

Let x(.) € C(I, X) be the limit of the Cauchy sequence x,(.). From (13) the
sequence f,(.) is integrably bounded and we have already proved that for almost
all t € I, the sequence {f,(t)} is Cauchy in X. Take f(.) € L'(I, X) with f(t) =
limy oo f (1.

Passing to the limit in (9) and using the fact that the values of F are closed we get
(3); passing to the limit in (6) and using Lebesgue’s dominated convergence theorem
we get (4). Finally, passing to the limit in (12) and (13) we obtained the desired
estimations.

It remains to construct the sequences x,(.), f,(.) with the properties in (6)—(11).
The construction will be done by induction.

The set-valued map ¢+ — F (¢, y(t), V(y)(¢)) is measurable with closed values
and

F@, y@), V(@) Ni{g) + (p(t) +e)B} #¥ a.e. (I).

From Lemma 1 we find f;(.) a measurable selection of the set-valued map H,(¢) :=
F(t,y(@), V(y)@®) N{g() + (p() + ¢)B}. Obviously, fi(.) satisfy (8). Define
x1(.) as in (6) with n = 1. Therefore, we have

X1 (1) — y(O < | — 2 (t,0)(xo — uo)| + |% (£, 0) (yo — vo) |+
| fo % (t,5)(fi(s) — g(s)ds| <8+ M [, (p(s) + &)ds = po(t).

Assume that for some N > 1 we already constructed x,,(.) € C(I, X) and f,(.) €
L'(I,X),n =1,2, ...N satisfying (6)-(11). We define the set-valued map
Hyy1 (1) := F(t, xn (1), Vxn) (@) N {fn (@) + L@ (|xn (1) — xy-1(0)|+
Jo L@)lxy ) = xy—1w)lduB), 1€ 1.
The set-valued map t — F (¢, xy(¢), V(xx)(¢)) is measurable and from the lip-
schitzianity of F(¢,.,.) we have that for almost all € I Hyy(¢) # . We apply

Lemma 1 and find a measurable selection fy11(.) of F(., xy(.), V(xx)(.)) such that
for almost ¢ € 1

[fve1(t) — @O < L@ (xn (@) —xy-_1 ()] +/0 L) |xy @) — xy—1(u)|du).
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We define xy41(.) asin (6) withn = N + 1 and we get

lxnr1 () — xy @) < My [y | fy1 ) — fy@)ldu < My [ L) (lxy ) —
v @]+ [y L) |xn(s) — xy—1(s)lds)du < My [y LM~ py )+
Jo L(s)M ™ py(r)dr)du.

We shall prove next that

/0 L(M)(pn(u)+/0 L(r) pa(r)dr)du < ppy1(1) (14)

and therefore (11) holds true with n = N + 1 which completes the proof.
One has

/0 L(M)(Pn(u)+/0 L(r)pn(r)dr)du=/0 (I +m() — m(u))L(u) pp(u)du

t n—1
=/<mwmo—mw»umgﬂﬂﬂl—uo—mww+
0 (n—1)!

t u _ n—1
‘/a+marﬂmmnwx/pvfﬂmm MO grydu <
0 0 (n—1)!

! n—1
|xo — uol/ 14+m() — m(u))L(u)M+
0 (n—1)!

( (I +m(t) —m@))L(u))p(r)drdu.
, (n—1)!

/ff«wmm—mum"‘
0

According to the definition of «(.) we have

t n—1
du:/ @+ me) L) &,
) =1

a(m@)))" !

t
/0 (I +m(t) —m(@u))L(u) D)

n n—1 t n
(Ol(m’(t)) < (m(t) +2) (m(1)/2+1) / (m )"\ Luw)du — (a(m(1)))
n! (n—1)! 0 n!

_ @m@)"

n!
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As above we deduce that

/’ ((m@) —m(r))""! (a(m (@) —m(r)))"

and inequality (14) is proved.

4 Continuous Family of Solutions

In order to establish our continuous version of Filippov theorem for problem (1) we
need the following hypotheses.

Hypothesis H3. (i) S is a separable metric space and a(.), b(.) : S — X,c(.) : § —
(0, 00) are continuous mappings.

(ii) There exists the continuous mappings g(.) : S — L'(Z, X), p() : S — R,
y(.): S — C(I, X) such that

0N (@) = AD)y () (@) +8()() VseS, tel

and
d(g(s)(®), F(t,y(s), V(y(s)(@) < p(s)(t) a.e. (I), VseS.

Theorem 2 Assume that Hypotheses H2 and H3 are satisfied.

Then there exist the continuous mappings x(.):S — C(,X), f():S5 —
L'(I, X) such that for any s € S, (x(s)(.), £(5)(.)) is a trajectory-selection pair
of

x"e Ax + F(t, x, VX)), x(0) =a(s), x'(0)=b(s)

and
[x()(#) =y <E@)(0) V(E,s) €l xS,

[f(s)(®) —g()®)] = L)E()(@) + p(s)(t) +c(s) a.e. (), Vs €S,
where

£(5) (1) = MM Dte(s) + Mola(s) — y(s)(0)] + Mb(s) — (y(s))' (0)]]
+ [y p(s)()eMatm®=mn gy,

Proof Denote &,(s) = c(s)™5, n >0, d(s) = Mola(s) — y(s)(0)| + M|b(s) —
(¥(5))'(0)] and forn > 1

t _ n—1 n—1
pu(s) (1) = M'[ / pls)(uy LD =M )1+ ).
A n—1)! n—1)!
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Set also xo(s) (1) = y(s)(1), fo(s)(#) = g(s)(1), Vs € S.
We consider the set-valued maps G (.), Hy(.) defined, respectively, by

Go(s) ={ve L'(I,X); v(t) e F(t,y(s)®), Vy(s)(®) a.e. (D)},
Ho(s) =cl{v € Go(s); [v(t) — g(s)(@)] < p(s)(®) + eo(s)}.

Since d(g(s)(1), F(t, y(s)(1), V(y(s)(1)) < p(s)(1) < p(s)(t) + €o(s), according
with Lemma 1, the set Hy(s) is not empty.
Set Fj(t,s) = F(t, y(s)(t), V(y(s))(?)) and note that

d(0, F(t,9)) < 18()(®)| + p(s)(®) = p*(s)(2)

and p*(.) : S — L'(I, X) is continuous.
Applying now Lemmas 2 and 3 we obtain the existence of a continuous selection
fo of Hy, i.e. such that

Jo($)(@) € F(t, y(s)(©), V(y($)(®)) a.e.(I), Vs €,
[fo(s)(2) — g()(@)| = po(s)(2) = p(s)(t) +eo(s) Vs €S, 1€l

We define x;(s)(t) = —%@/(r, 0)a(s) + % (t,0)b(s) + fot U (t,u)fo(s)(u)du
and one has

X1 ()(1) — x0(s)(1)] < Mola(s) — y(s)(0)] + M|b(s) — (y(s))'(0)|+
M [y 1 fo(s)(w) — g()w)ldu < d(s) + M [y (p(s)(w) + eo(s))du = pi(s)(t).

We shall construct two sequences of approximations f;,(.) : S — L', X),x,()
S — C(I, X) with the following properties

@ fu():S— L', X), x,(.) : S — C(I, X) are continuous.

(b) fu(s)(@) € F(t, x,(s)(#), V(x,(5))(1)), ae. (I),s € S.

©) /(&) @®) = fa1 ()| < L) (pa(s)(D)+ fot L(u)pn(s)(u)du), a.e. (I), s€S.

(d) Xps1 () (@) = =L % (1, 0)als) + % (1,0)b(s) + fot U (t,u) f(s)(w)du, vt €
I,s €8§.

Suppose we have already constructed f;(.), x;(.), i = 1, ..., n satisfying (a)—(c)
and define x,4(.) as in (d). As in the proof of inequality (14) we have

c(s)(a(m()))"t

/0 L(u)(pn(s)(u) +/0 L@)pu(s)()dr)du < ppy1(s)(t) — ms)
(
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From (c) and (d) one has

Dn 1 (8) (1) = X () (O] < M [ 1 £ () @) = fuo1(8)@)]du <

; B} (16)
M [ L@)(pa(s) (@) + [ L) pa(s)(r)dr)du < pas1(s)(@).

Consider the following set-valued maps, for any s € S,

Guni(s) = {ve L', X); v(t) € F(t, %11 ()(®), V(xup1 () (@) a-e. (D},

Hy1(5) = clfy € Gup1(5); v(t) — fu($)(O] < L) (pn()(0) + [ L) pa(s)(w)du)
a.e.(I)}.

To prove that H,;(s) is nonempty we note first that the real function ¢ —

n+1 no, . ..
ra(s)(t) = c(s)%% is measurable and strictly positive for any s. From
(15) we get

d(fu()(@), F(t, xp11() (@), V(Xp41()) (1)) = LO(IxXn () (1) — xp41()(O)]+
Jo L) |xn () (@) = xp 1) @)|du) < LE)(pa($) (@) + [ L) pn(s)@)du) — ry (s)(0)

and therefore according to Lemma 1 there exists v(.) € L'(I, X) such that v(¢) €
F(t, xp11(5)(2), V(X541 () (7)) a.e. (I) and

(@) = fa@) O] < d(fu($)(@), F(t, Xp11(5)(@), V (X1 () (1)) + 1 (5) (1)

and hence H,,;(s) is not empty.
Set F,/ (¢,5) = F(t, xu11(5)(?), V(xn41(5)) (1)) and note that we may write

d(0, Ff, (2,9)) < | [ O]+ LE) (Pus1 (@) + [y L) py1 () w)du) =
Ppy1($)(@) a.e. (I)

and pi, () : S — L'(I, X) is continuous.
By Lemmas 2 and 3 there exists a continuous map f,4(.) : S — L'(I, X) such

that for any s € S

Jat1 () (1) € F(t, X011 () (1), V(xXp11()) (1)) a.e. (1),

| fat1() (@) = fu($) O] = L@)(Ppr1(s)(1) +/0 L) ppt1(s)(u)du) a.e. (I).
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From (16) and (d) we obtain

1)) = %2 () Ol < M1 (5)() = fuls)(O1 < a7
MeG I (M|p(s)()]1 + MTc(s) + d(s)).

Therefore f,(s)(.), x,(s)(.) are Cauchy sequences in the Banach space L'(I, X)
and C(I, X), respectively. Let f():S — L'(I,X), x(.): § — C(I, X) be their
limits. The functions — M|p(s)(.)|1 + MTc(s) + d(s) is continuous, hence locally
bounded. Therefore (17) implies that for every s’ € S the sequence f,,(s')(.) satisfies
the Cauchy condition uniformly with respect to s” on some neighborhood of s. Hence,
s — f(s)(.) is continuous from S into L'(I, X).

From (17), as before, x,,(s)(.) is Cauchy in C (I, X) locally uniformly with respect
to s. So, s — x(s)(.) is continuous from S into C (I, X). On the other hand, since
X, (s)(.) converges uniformly to x(s)(.) and

d(fu(s)(®), F(t, x(s)(@), V(x())(@)) < L@)(xn(s)(®) — x(s)(D)]|+
fot Lw)|x,(s)(u) — x(s)(u)|du) a.e.(I), Vs € S

passing to the limit along a subsequence of f;,(.) converging pointwise to f(.) we

obtain
f)() e F(t,x(s)(t), V(x(s))(t)) a.e.(I), Vs € S.

Passing to the limit in (d) we obtain
x(s)(t) = —aa—s%(t, 0)a(s) + % (¢,0)b(s) + / U (t,u)f(s)(u)du.
0

By adding inequalities (c) for all n and using the fact that ) i=1 Pi (s)() <&(s)(1)
we obtain

| 1) (@) = g() O] = Do | fis1 () @) — fils)@)| + [ fo(s)(1) — g(s)(D)] <

Ym0 LOpria(s)() 4+ p(s)(1) + eo(s) < LOE(s)(1) + p(s)(t) + c(s). .
(18)
Similarly, by adding (16) we get

X1 () () — y() ()| = ZPI(S)(I) = &()(®). 19)
1=0

By passing to the limit in (18) and (19) we obtain the estimates in the statement
of the theorem.

Theorem 2 allows to obtain the next corollary which is a general result concerning
continuous selections of the solution set of problem (1).
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Hypothesis H4. Hypothesis H1 is satisfied and there exists po(.) € L' (I, R;) such
that d(0, F(t,0, V(0)(?))) < po(t) a.e. (I).

Theorem 3 Assume that Hypothesis H4 is satisfied.
Then there exists a function x(.,.) : I X X? — X such that

(@) x(., (§,m) € L&, ), V(E, n) € X2
(b) (£, 1) — x(., (£, 1)) is continuous from X* into C(I, X).

Proof Wetake S=X x X,a&,n) =&, bE, n)=nVE, nNeX xX,c(): X x
X — (0, 00) an arbitrary continuous function, g(.) =0, y(.) =0, p(&, n)() =
po(t) V(&,n) € X x X, t € I and we apply Theorem 2 in order to obtain the con-
clusion of the theorem.
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Abstract This paper addresses an investigation on a factorization method for dif-
ference equations. It is proved that some classes of second order linear difference
operators, acting in Hilbert spaces, can be factorized using a pair of mutually adjoint
first order difference operators. These classes encompass equations of hypergeomet-
ric type describing classical orthogonal polynomials of a discrete variable.

Keywords Second order difference equations + Factorization method + Raising
and lowering operators * Discrete polynomials

1 Introduction

The description of many problems in physics and mathematics, especially in prob-
ability, gives rise to difference equations. Difference equations relate to differential
equations as discrete mathematics relates to continuous mathematics. The study of
differential equations shows that even supposedly elementary examples can be hard
to solve. By contrast, elementary difference equations are relatively easy to deal
with. In general, the interest in difference equations can be justified for a number of
reasons. Difference equations frequently arise when modelling real life situations.
Since difference equations are readily handled by numerical methods, a standard
approach to solving a nasty differential equation is to convert it to an approximately
equivalent difference equation.
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A peculiar question in the field of differential or difference equations then remains
to find appropriate analytical methods for their exact solvability. For differential
or difference equations having polynomial solutions, it is well known that their
solvability is closely related to the factorizability of their associated operators, (see
[3] and references therein).

In the last few decades it was given a more prominent place in the discussion
of operator factorization methods for solving second order differential or differ-
ence equations, the concept of which goes back to Darboux [6]. Later the method
was rediscovered many times, in particular by the founders of quantum mechanics,
(see Dirac [7], Schrodinger [25]), while solving the Schrodinger equation to study
the angular momentum or the harmonic oscillator. In the work [17], which is now
considered to be fundamental, Infeld and Hull summarized the quantum mechanical
applications of the method. Later this technique was extended, see [14, 19, 20]. Some
results were obtained also for g-difference and more general difference equations
[1, 2, 4, 5, 10-12, 16, 22, 23]. In addition, special cases such as the factorization
of Jacobi operators were also investigated [15]. If the operator in a second order
linear ordinary differential or difference equation can be factorized, the problem of
solving the equation is reduced to solving two first order linear equations; the latter
can readily be solved.

Therefore, a nodal point in the application of this method consists in the existence
of a pair of first order differential or difference operators, which the second order
differential or difference operator decomposes into as their product, (see (9) in this
work).

Using this method, we are here able to find the explicit solutions (18), via (17), to
the eigenvalue problem (14) in a simple way. For additional readings, see monographs
[13, 18, 21].

This work is an extension of a previous work [10]. Some results obtained in [1,
8, 9, 16] are used, and adapted to our context.

The paper is organized as follows. In Sect.2, a detailed investigation of the fac-
torization method applied to second order difference operators is given. In Sect. 3,
our main results are described. Under given assumptions, the problem of operator
factorization is solved.

2 Basic Tools

In this section, in the beginning, we introduce some notations and recall some basic
facts about the factorization method. Let ¢, (Z, R) and £, (Z, C), k € N U {0}, be the
sets of real-valued and complex-valued sequences {x (n)},cz, respectively. We define
the scalar product on ¢, (Z, C) as follows:

b
(xly) =Y x(m)y(m)pe(n), )

n=a
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where a, b € Z, (a < b), and p; is a weight function. We assume that the weight
sequence satisfies the Pearson difference equation

A (be(n) pr(n)) = (ck(n) — br(n)) pr(n), @)

and the recursion relation
Pr—1(n) = ¢ (n) pr(n), 3)

where {b; } and {c; } are some real-valued sequences. Moreover, the function py, fulfills
the boundary conditions

br(a)px(a) = br(b+ Dpe(b + 1) = 0. “4)
The forward and backward difference operators are defined by

Ax(n) = (SJr — l)x(n) =x(n+1)—xn), (@)
v x(n) = (1 - S_)x(n) =x(n)—x(n-—1), (6)

where the shift operators
Stx(n) :=x(n £ 1). (7)

‘We want to apply the factorization method to the second order difference operators
Hy : ¢,(Z,C) — £;(Z, C) given by

Hy = z:()S™ + wi(m)S™ + v (), 3
where {z;}, {wi} and {v;} are real-valued sequences, k € N U {0}. Introducing the
annihilation Ay : £, (Z, C) —> £;,_1(Z,C), and creation operators Aj : €;_
(Z,C) — £4(Z, C) (also called lowering and raising operators, respectively), we
rewrite the above operators Hy in the form

Hy := AfAx + ap = Ax 1Ay + 0yt 9
where oy are real constants. We construct the annihilation operator as

Ak = A+ filn) =ST + fun) — 1, (10)

where { fi} € € (Z, R).
We seek the adjoint operator A; of Ak, obeying:

(ARXe—1 1Y)k = (Xk—1|AkYi)k—1. (1D

A simple computation using (11) yields
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b
(X1 AV )k—1 = Zxk—l(n))’k(n + Dpr—1(n)

n=a

b
+ ) X1 (fi(n) — Dy per (n)

n=a
b+1

= Z bk(n)xk,l(n - 1))%(”)/%(”)

n=a+1

b
+ Z(fk(n) — D) xp—1(n) yi(n) pi(n)

n=a

= {(xm)S™ + (fitn) — 1) cx () X1 yi)is (12)

where we applied the formulas (2)—(4). Finally, we obtain the explicit expression for
the adjoint operator (also called creation operator)

Ay = —bi(n) v +br(n) + (fi(n) — 1) cx(n)
= bi(M)S™ + (fi(n) — 1) ¢ (n). (13)
This type of factorization was presented in detail in papers [8, 11, 16] for t—, g—and
(g, h)—cases, respectively. Moreover, different cases, when the sequence b; does not
depend on parameter k, were considered in [10].
The operator Hy = A Ay + «y is selfadjoint on £, (Z, C). Its eigenvalue equation

reads:
Hyx, (n) = Axi(n). (14)

It is well known that the factorization gives us the eigenfunctions and correspond-
ing eigenvalues. Indeed, the eigenvalue problem for the chain of operators (9) is

equivalent to the two following equations:

A]’iAkx,Z((n) = (Ai - ak) x,i(n), (15)
Akp1Ag X (n) = (A — ) (). (16)

Solving the first order homogeneous linear equation
Axx{(n) =0, (17)
we observe that (15), (16) and (17) imply that the functions

X ) = ALAL - AL X0 (n) (18)

are solutions of the eigenvalue problem (14) for the eigenvalues )\ifp = ap.
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3 Factorization of Operators

In this section, we solve the factorization problem (9) under some assumptions.
Finding a general solution remains a cumbersome task.

Comparing the coefficients of S7, ST and 1 on both sides of the expression (9),
we obtain the necessary and sufficient conditions for the existence of a factorizing
pair of first order difference operators, (Aj, Ak), as follows:

b
fim—1= 29—, (19)
bit1(n)
b
oot (n) = EQE;?)(*(” _ ), 20)
b
Be(m) =i (n + 1) =ass —ax -2 (= 1) = Do — 1)
bes1(n)
— (fe(n) — D¥cx(n). 1)

The conditions (19) and (20) give us the transformation formulas for the sequences
{f¢} and {c;} as below:

k

Y b=+ D) o
ﬁqulmiﬂm_HJKﬁm B-1)+1 22)
and .
1y bk—inin =i+ 1) _
am =]] T =P (23)

i=1

3.1 Example 1

We assume that by (n) = br(n) =: bo(n), i.e. the sequence {b;} does not depend on
parameters k, see [10]. We show that, under this assumption, we can find a general
solution to the factorization problem (9), i.e. we can solve the conditions (19)—(21).

We have: o) = £l 1)
k+1\n) = Jr(n —
{qﬂw=qm—n &9

yielding
Je(n) = foln — k)
25
Lmozmm—m. =
Now, let us solve the third condition. The requirement (21), using the substitution
Gi(n) = (fr(n) — D2 ci(n) — bo(n + 1), is equivalent to the equation
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Gi(n) = Gr(n — 1) + agq1 — ag. (26)

By iterating we find
Gi(n) = Gr(0) +n (opq1 — ) - 27)

This gives us a formula for the sequence {by}:
b(n+1) = (foln —k) — 1> co(n — k) — G1(0) — n (otyp1 — o). (28)

But the left-hand side of the expression (28) does not depend on the parameter k.
Then, we obtain the following sequence of conditions on the sequences { fp} and

{co}:

(fo(n) = D*co(n) — Go(0) — n (a1 — &) = (fo(n — k) — 1)* co(n — k)
— Gr(0) —n (s — o), (29)

for all k € N. By introducing F(n) = (fo(n) — 1)? ¢o(n), we can write the above
equation in the form:

F(n)=F(n —k)+ Go(0) — G(0) —n (o1 —ox —a1 +ap) . (30)
For k = 1, we get
F(n)=F@n—1)4 Go0) — G1(0) —n (o2 — 201 + ) - €Y
Next, by iteration we find

1
F(n) = F(0) +n(Go(0) — G1(0)) — @ (02 —2a1 +ap).  (32)

We then arrive at a relationship between the sequences { fy} and {c}:

(fon) = 1)* co(n) = F(0) +n (Go(0) — G(0)) — n(nTJrl) (a2 — 201 + ) -
(33)
In addition, substituting (32) to (29) (because it is valid for all k € N), we find a
recurrence relation on the constants a:

Qg1 = 0 + o — o + k (o — 2001 + ap) 34)

and the form of the constant

k(k — 1)
G (0) = Go(0) + k(G 1(0) — Go(0)) —

(052 — 20[1 + Ol()) . (35)
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A straightforward calculation affords

k(k—1)
Olk=0l0+k(011—010)+T(“z—zal-f-ao)- (36)
To sum up, the construction presented in (9) provides the chain of operators Hg
parametrized by the freely chosen sequence {c(} and real parameters o, o1, o2, F(0),
Go(0) and G1(0).

3.2 Example 2

Let us consider a case when f;(n) = 0. Then, the conditions (19)—(21) can be rewrit-
ten in the form:

biy1(n) = br(n) =: bo(n), 37
ck(n) = co(n — k), (38)
bo(n) —bo(n +1) = gy —ox +co(n —k — 1) — co(n — k). (39)

This is a special case of Example 1. We find by(n) by induction in the following
form:
bo(n) = bo(0) — n(ag1 — ax) — co(—=1 — k) +co(n — 1 — k). (40)

From (33) we obtain that the sequence {cy} is a polynomial of degree two:

1
co(n) = co(0) +n(Go(0) — G((0)) — @ (a2 — 201 + o) . (41)

Then, the relation Hkx,i (n) = Af{x,lc (n) is equivalent to
(= o)V + bon) = co(n = B)) Axf ) = G, = wdxln,  @2)

and the eigenvalue problem (14) is reduced to the difference equation of hypergeo-
metric type:

— by(n) v Ax(n) — (co(n — k) — bo(n)) A xp(n) + (e — Ay) xp(n) = 0. (43)

It is not difficult to see that by is a second degree polynomial while the difference
co(n — k) — bo(n) is afirst degree polynomial. From Eq. (17), we find that the ground
state is a constant sequence {x,?(n) = 1} (normalized to one) with the sequence
of eigenvalues {Ag =ay =ag+k(x; — o) + @ (0t — 2001 + o) }. Expression
(18) gives us a formula for polynomials
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-1
Pi(n) = x,l((n) = 1_[ (bo(n)S7 —coln —k+ i)) 1 44)
i=0

corresponding to eigenvalues )Lf{ = a,—;. Using the identity YA = Ay we transform
the above Eq. (43) into the standard form

o(n) A vxi(n) +t(n) A xL(n) + rxt(n) = 0, (45)
where
on) = —by(n) = % (a2 — 201 + ag) n*> + 1 (G1(0) — Go(0) + o) — g

1
—5 (@2 — 2o + ao)) — bo(0), (40)
T(n) = bo(n) — co(n — k) = (ao — oy + (1 — k) (2 — 201 + g)) n
k(k —1
+ bo(0) — co(0) + k (Go(0) — G1(0)) + % (a2 =201 +ap) . (47)

M=o — M=o — oy =1 (o — o)

1 —1
+ (kl - l(l; )> (o2 — 201 + arg) = —1 (r’(n) + %o”(n)) . 48)

It is well known that the above Eq. (43) describes classical orthogonal polynomials
of a discrete variable such as the Charlier, Meixner, Kravchuk, Hahn polynomials.
See [2, 24] for more details.

3.3 Example 3

We assume that by (n) := yibi(n), where y; is some constant different from zero
and one. Then, we get:

k
Sy =1 =[] v (fotn — k) = D), (49)
i=1
k
cn) = [ [re-icotn = o), (50)
i=1

and

be(n) — yibe(n 4+ 1) = aps — o + v (fu(n — 1) — D ex(n — 1)
— (fen) = D*cx(n). (51)
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Using previous results, (see Example 1), we solve by analogy the above difference
equation. By introducing Ry (n) = (fi(n) — 1)2 cx(n) — yrbr(n + 1), we can write
this equation in the form

Ri(n) = v ' Ri(n — 1) + agr — . (52)
By iterating we find
B n l _ ]/]:n
Ri(n) =y, " Ri(0) + —_—— (1 — o) - (53)
Yk

From here, expressing everything by the initial data we obtain

bn+ 1) =y 'y vy (foln — k) — D eo(n — k) — y " R (0)

1 _ —n
e ( — ). (54)
1 -y

This must be consistent with the initial assumption, i.e. by4(n) := by (n). Then,
we get the condition on the sequences { fy} and {co}:

Veove v N (fon—k = 1) = P co(n —k = 1) — T Ry (0)
1_ —n

_ Y _ _ _
- Y 1 L (@ — o) = vy - v (o — k) = D2 co(n — k) — v " Re(0)
= Y+l
11—y "
- k,l (01 — k) - (55)
1— Vi

Again, by entering the following auxiliary function:

Scm) =y v (fon — k) — D co(n — k),

we get a recursion relation for Si:

Sk(n) = v v Setn — 1) — y 7 Riq1(0) + v " Re(0)

L= v -y
- )’k+111—k,+11 (02 — otg41) + 1 L (orr — ) - (56)
— Yk+1 Yk

By iteration,
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— —1\" —n— 1 *Vl 7111 )/
Scm) = (v D) Sk — v ‘l—yk_leH(O)wk l—k“R 1 (0)

Yk - Vk+1
n—1 —n—+i
1 =y
— Y (Olk+2—0‘k+1)z Vi Vi ) —
i=0 1 - Vk+1
n—1 —
1— Y n+i
+ (g1 — ag) Z J/k+1 ' l ) ——. (57)
i=0 1—- Yk

4 Concluding Remarks

In this work, we have investigated a factorization method for difference equations,
adapting and extending previous results known in the literature. We have showed that
some classes of second order linear difference operators, acting in Hilbert spaces, are
factorizable using a pair of mutually adjoint first order difference operators. These
classes encompass equations of hypergeometric type describing classical orthogonal
polynomials of a discrete variable. Other classes of difference equations are still
under consideration, and will be in the core of our forthcoming papers.

An interesting outlook on which we are also working is the extension of this
scheme to classes of higher order difference equations. It is in particular expected
that this method for fourth order equations may allow to derive what one can call
Krall-Laguerre—Hahn polynomials.

Acknowledgements AD is partially supported by the Santander Universidades grant. She also
would like to thank the organizers of ICDDEA 2017 in Amadora, Portugal, for their hospitality.
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Homogeneous Boundary Problem )
for the Compressible Viscous and oo
Heat-Conducting Micropolar

Fluid Model with Cylindrical Symmetry

Ivan Drazié

Abstract We consider nonstationary 3-D flow of a compressible viscous and heat-
conducting micropolar fluid which is in the thermodynamical sense perfect and
polytropic. We analyze the problem on the domain that is bounded by two coax-
ial cylinders which present solid thermo-insulated walls. Therefore we assume the
cylindrical symmetry of the solution. In this work we present the existence and
uniqueness results for corresponding problem with homogeneous boundary data for
velocity, microrotation and heat flux, under the additional assumption that the initial
density and initial temperature are strictly positive.

Keywords Micropolar fluids - Homogeneous boundary problem - Cylindrical
symmetry

1 Introduction

The micropolar fluid model enables us to consider some physical phenomena that
cannot be treated by the classical Navier—Stokes equations, with special emphasis to
phenomena at the micro level. In this model microphenomena are modelled by new
hydrodynamic variable which is called microrotation.

In this work we analyze the compressible flow of an isotropic, viscous and heat
conducting micropolar fluid, which is in the thermodynamical sense perfect and poly-
tropic. This kind of flow was introduced by Mujakovi¢ in [6], where she analysed the
one dimensional model. Here we analyse the motion of the described fluid between
two coaxial cylinders, which enables us to consider the cylindrically symmetric solu-
tion to the governing system, which is introduced in [3]. The motion of fluid between
two concentric spheres has also been analysed and for details and recent progress in
that model we refer to [1].
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The paper is organized as follows. In the next section we will describe the gov-
erning three-dimensional system and derive its cylindrically symmetric form in the
Lagrangian description. Then we will give an overview of the current progress in
mathematical analysis of this problem. We will introduce the generalized solution to
the problem together with the existence and uniqueness theorem.

2 The Mathematical Model

The mathematical model of the described fluid is stated in the book of G. Lukaszewicz
[5] and reads

p=—pV-v, (1)

ov =V _-T + pf, 2

pji®@ =V -C+T, + pg, €)]
pE=-V.q+T:Vv4+C:Vo—-T, -, 4

Tij =(=p+Avi)dij + 1 (Vi,j + Vj,i) + ur (Vj,i - Vi,j) — 20y Emij@m,  (5)

Cij = cowii8ij + ca (w1 + @) + ca (@) — @), (6)
q = —kV6, %)

p = Rpb, (®)

E =¢,0. )

Equations (1)-(4) are, respectively, local forms of conservation laws for the mass,
momentum, momentum moment and energy. Equations (5)—(6) are constitutive equa-
tions for the micropolar continuum. Equation (7) is the Fourier law and Egs. (8)—(9)
present the assumptions that our fluid is perfect and polytropic. We have the following
notations:

e p - mass density, e p - pressure,

e v - velocity, e j,; - microinertia density (j; > 0),

e @ - microrotation velocity, e X, u - coefficients of viscosity,

e E - internal energy density, ffici £ mi

e 0 - absolute temperature ® Ly, Co, Cd, Cq - coetficients of micro-
T- st ‘ p ’ viscosity,

e T - stress tensor, ) .

e C - couple stress tensor. e k - heat conduction coefficient (k > 0),

e q - heat flux density vector, ® R - specific gas constant,

e f - body force density, e ¢, - specific heat for a constant volume

e g - body couple density, (cy > 0).
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Coefficients of viscosity and coefficients of microviscosity are related through the
Clausius—Duhamel inequalities, as follows:

w=0,3A+2u>0, u, >0, cg >0, 3co+2c4 =0, |cg — cal <cq+cq. (10)

Vector T, in Egs.(3) and (4) is an axial vector with the Cartesian components
(Ty)i = &k T jx, where g;j; is the Levi-Civita alternating tensor.! The differential
(dot) operator in Egs. (1)-(4) denotes the material derivative defined by

Jda
Jt

a=— + (Va) v,

and the colon operator in Eq. (4) is the scalar product of tensors, i.e. A : B = tr(A”B).
We take the following homogeneous boundary conditions:

a0
V|a(z =0, (l’|39 =0, 8_ =0, (11)
Vi

where £2 C R? is the spatial domain of our problem and the vector v is the exterior
unit normal vector. For simplicity reasons, we also assume that

f—g=0. (12)

To simplify the system (1)—(9) we will first substitute the (5)—(9) into (1)—(4)
together with (2) and (12). We obtain:

)
E§=—nm»v—va, (13)

pg_v — —p(VV) -V — RV (pO) + O+ st — ) V(V - V)
t (14)

+(+ ) AV + 21,V X @,

ow
Jip——==p(Vw) - v+21 (VxXV—-20)
at (15)

+(co+ca = ca)V(V - @) + (ca + ca) Aw,

30
cup = —cup(V8) -V + kg A6 — RoB(V -¥) + A(V - v)>

2
+u (Vv + (V) (Vv + (VW) +4pu, (%V XV — w) (16)

+co(V - @) + (cqg + c) Vo : Vo + (cqg — ca) Vo : (V)T .

I'We assume the Einstein notation for summation.
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Boundary conditions (11) mean that we analyze the flow of the fluid through a

chamber with solid thermoinsulated walls. Here it is the flow between two coaxial
cylinders and we have

2 ={(x1,x2,x3) € R} a<r<b, x3€R},a>0,r= ,/xlz —l—xg. (17)

Because of the geometry of the spatial domain we introduce the cylindrical coor-
dinate system (O; ey, e;, €3) by

e = %(xl,xz,o), e = %(—Xz,xl, 0), e3=1(0,0,1),
as well as cylindrically symmetric initial conditions
p(x,0) = po(x) = po(r), V(x,0) = vo(x) = vy(r)e; + vg(r)ey +vj(ries, (18)
0(x,0) = 6p(x) = 6p(r), w(x,0) = wy(x) = wy(r)e; + a)g(r)eg + wi(r)es (19)
where po, vy, vo‘p L V5, 00, 0}, wg , w§, are given real functions of one variable on ]a, b[.2

Therefore we expect that the solution depends only on the radial variable r and the
time variable 7, so we take

pXx, 1) =p(r 1), 0(x,1)=0(,1), (20)
v(x,t) =V (r,t)e; +VvP(r, 1)es +vi(r, 1)es, (21)
(X, 1) =o' (r,1)e; + o’ (r, 1)e; + o°(r, 1)es, (22)

for (r, 1) €la, b[x]0, T[. Using these assumptions the spatial domain (17) becomes
a one-dimensional domain Ja, b[. The governing system now takes the form

a a viooov”
-ﬁ+~§w+p(7+ ):o, (23)

or

av"

ar

r ©\2
+%)+p”),(M)

I N 9 9
P +—V' ) =—R—(p0) + (r+2u)—
ar ar r

dt or

vy v, 0 [ov? v yy? ow®
pl—+—v =(M+Mr)a— 5 T 7)) TP =24 ar (25)

ot ar r \ or r
e n v (o + ) 3*ve n 1 9v* Py dw? n w? (26)
. -V = r N r\ —~ — ]
P ot or prr arz  r or H or r

24 and b are the radii of boundary cylinders from (17).
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. (00" dw" Jd [do" Cwfv? ,
Pir + v :(C0+2Cd)a_r - ) tei—; —4p,0”, (27)

ot ar ar
) <8w“’+8w“’ ) (cq i ) (8w“’+a)‘/’>
pjir\ —— T —V cqa+cq —
ot 0 0
r r r 28)
S ov®
—pJr =20 — — 4, 0%,
ar
O n Ba)z — (s + ) E)za)z Por 1 1 dw?
—_— c Ca
. ot 8r d roor
ove @ (29)
(242t
ar r
89+39 _ 829+189 — Rob v’ Bv’
ot or “\oar2 " v ar P 8r
Vv v\ 2 vov" v¥ e\
+A+2u) | —+ —dp———t W+ =+
r or r or r or
v ovY v\ 2 o 0" \?
—4p———+u+ ) 5= +o+2c)|—+
r or or r or
(30)
" dw" o’ dw?\*
—Adcg———F(catc) | —+——
r or r or
w? dw B \? 2 2 2
—4cd—a— (eaten) (T ) @) 4, @) + dpas ()
Ve v’ @
+4/'Lrwwl — 4, v + v_ o
or o r
p(r,0) = po(r), 6(r,0) =06(), (3D
V' (r, 0) = vi(r), v*(r, 0) = v (r), v(r, 0) = vi(r), (32)
o' (r,0) = 0)(r), 0 (r,0) = & (r), @*(r,0) = W§(r). (33)

Via,t) =vi(b,t) =0, v(a,t) =v’(b,t) =0, vi(a,1r) =vi(b,t) =0, (34)

o (a,t) =" (b, 1) =0, 0¥(@,t) =w?b,t) =0, o°(a,t) = (b, t) =0,
(35)

20 200
—(a,t) = —(b,1) =0, (36)
or or

forr €la, bl and ¢t €]0, T|.
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In the mathematical analysis of compressible fluids it is convenient to use
Lagrangian description. The Eulerian coordinates (r,¢) are connected to the
Lagrangian coordinates (£, ¢) by the relation

r&, 1 =ro(§)+ /Ot Vi, ndt,  ro(§) =r(§,0), (37)
where i (£, 1) is defined by
ViE, D=V (r,1),1). (38)
We introduce the new function 7 by
n(r) = /arSpo(S)ds, ro(§) =" (&). (39)

Therefore, we have & €]0, L[, where

b
L— / $p0(s)ds. (40)

Without danger of confusion, we write (x, ¢) instead of (£, ¢), omit ~ notation
and get the system in the Lagrangian form:

ap Zi

— ") = 0. 41
2 T ) “D
ov” 0 0 0 (v¥)?
— R L (p0) + O+ 2w — (o= (v , )
ot "ax PO F( +M)r3x<p8x(rv))+ r “42)
ov?¥ — (et ) d 0 ?) vy# ) BION 43)
or AT\ P VY r Kl

9 3 [ 8 Ve 9
V= r)f ~ ¢ r) 5 2 r o ¢ 5 44
o = (Wt u)r— <pax(rV))+(u+u)pr2+ oo (re), (44

r

w 0 ad
= 2 _ —_ r /
P (co + Cd)rax ('Oax (ro )) + i

(7014 r
OV a2 @5)
r o

Ji

L dw? 0 0 v oY av® w?
Ji——=(at+cr— | p-— (ro®) | —ji = 2pr— —4p,—,  (46)
ot ox dx r ox 0
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Z Z

dw ad d W
= (ca+car— | pm= (ro®) ) + (ca + ca)—5
dx pr

ot

Ji o )
d w*
22— (rv¥) — 4, —,
ox P

26 5 96 9 5
— =ko— (r?p— A+2m)— (') —RO| — ("
“or T ax (r pax)+p[( +2m 5 () :|3x () +

) 2 9 2
(e + ur)p (—a (FV“’)) + (ca +ca)p <— (rw¢)>
X 0x

9 : i\’
r 2 v
+(co +2¢a)p (a_ (reo )) + (e + w)pr (a—>

X X (48)

e

do*\* 3
+(ca + ca)pr? ( ;; ) —2ca— (@) + (@*)?)

a)r2 wa sz
( )+4Mr(p> 4 )

2 (0 + ) + 4

o
z

0 0
iy re 2o — At — (1)
0x 0x

p(x,0) = po(x), V' (x,0) =vi(x), v$(x,0) =vix), vi(x,0) = vjx), (49)

0(x,0) = 0y(x), @ (x,0) = wj(x), ®*(x,0) = 0 (x), &°(x,0) = Wj(x),
(50

V(0,1) =V (L, 1) =0, v(0,1) = v(L,1) =0, v:(0,1) = v (L, 1) =0, (51)

@0, 1)=a (L,1) =0, 0?0,1) =w’(L,1) =0, ©*(0,1) = o*(L, 1) =0,

(52)
20 a0
—(0,t) = —(L,1)=0 (53)
0x 0x
considered on the domain Q7 =]0, L[x]0, T'[.
The function  (x, t) is defined by
t
r(x,t) =ro(x) +/ Vvi(x, t)dt, (x,1) € Or, 54)
0
where l
X 1 5
ro(x) = <a2 42 f dy) , (55)
o Po(y)

and a > 0 is a radius of smaller boundary cylinder.
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3 Existence of the Solution

In this section we consider the existence and uniqueness of the so-called generalized
solution to the problem (41)—(53).

Definition 1 A generalized solution to the problem (41)—(53) in the domain Q7 is
a function

(. 1) = (p, V' Vv o o 0%, 0)(x, 1), (x,1) € O, (56)

where
p € L0, T;H'(10, L)) NH'(Q7) , inf p > 0 (57)

Vv v ol o, @t 0 e L, T; H 10, LD) NH (Q7) NL2(0, T; H2(10, LD)),
(58)

that satisfies the Egs. (41)—(48) a.e. in Q7 and conditions (49)—(53) in the sense of
traces.

Let us mention that by using the embedding and interpolation theorems one can
conclude that our generalized solution could be treated as a strong solution. In fact,
we have

p € L0, T; C([0, L) N C([0, T]; L*(J0, L)) , (59)

Vv v o, wf, ot 0 € L2(0, T; C'([0, L)) N C([0, T1; H' (0, L)), (60)
vr9 v(pv VZ, wrv w(ﬂ’ wz’e GC(ET). (61)

We first analyzed the existence of the generalized solution to the problem (41)-
(51). Using the Faedo—Gelerikin method we proved in [4] the existence locally in
time. After that we analyzed the uniqueness of the solution in [7], and finally based
on extension principle, we proved in [2] the global existence theorem for the the
problem (41)—(51). These results are summarized in the following theorem.

Theorem 1 Let the functions po, 0 € H' (10, L[), vj, v, v§, why, of, of € H (0,
L) satisfy the conditions

po(x) =m, 6o(x) =m for x €]0, L],

wherem € R™. Then for any T € R there exists unique generalized solution to the
problem (41)—(51) on the domain Q1 having the property

0>0 inQr. (62)
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Now we will briefly explain the proof of the Theorem 1.
In the first stage of the proof, based on Faedo—Galerkin method, we introduce the
approximate solutions

(pn’vrn’ V(pn’vzl’l’ wrn’wwn,wzn’ Ql’l) n c N (63)

The approximations v"" and r” of the functions v" and r were defined by

- Tix
M(x,t) = E () sin —, 64
v (x, 1) v; "(t) sin 2 (64)

i=1
r"(x,t) = ro(x) + / V' (x, 1)dT, (65)
0

where 7o(x) is given by (55) and v",i =1, 2, ..., n are unknown smooth functions
defined on an interval [0, 7,,], 7, < T. Using the mass conservation law we obtain

Po(x)

o [ '
1+p0(x)—/ r'v'"dr
ax 0

pl(x, 1) = (66)

We also define the approximations v¥", v*"*, 0" ", w?", »*" and 8" are the approx-
imations of the functions v¥, v%, ", o?, ®* and 6, respectively, by

VO (x, 1) = Zv () sm— (67)

V1) = 3 v (@) sin ”Li‘ W, 1) = Y (1) sin % (68)

i—1 j=1

W) = Yol ()sin 5, o (0 = Y 0l sin T, (69)

j=1 j=1
ety = 3 g Tk 70
(x,t)—kX:(; ( (1) cos ——, (70)
Wherevf",vf”,i=1,2,...,n,a);”,a)f",a)j”,j=1,.. ,nand 0, k=0,...,n

are unknown smooth functions defined on an interval [0, 7,,], T, < T. EV1dent1y, the
boundary conditions

V0,0 =vI(L, 1) =v0"0, 1) =vO(L, 1) = v, 1) =vi"(L,t) =0, (71)
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@00, 1) =" (L, 1) =0?"(0,1) =w?"(L,t) = 0*"(0,t) = *"(L,t) =0,
(72)

(L,t)=0 (73)

09" 09"
0,1 =
0x 0x

for t €]0, T,[ are satisfied.
According to the Faedo—Galerkin method, we take the following approximate
conditions:

L avrn na nnn ila na n..rn
/0 <8t + Rr a(p@)—(k—l—Z,u)r a(p a(rv ))

. (74)
on ;
_(v ) )sin mlxdx =0,
r’ L
L
aveh d ad Ve n
— n___ n__ (.n.on
/(; ( at (¥ pardr ox ('0 ox (r Y )> + r"
(75)
oy L0t nizxd 0
o sin x =0,
" 0x L
L
oveh ad 0 per
/ — (A p)r" = "= (V) ) = et ) s
o \ ot ax " ax pr(r")
(76)
d Ti3X
—2u,— (r"w?" i dx =0,
n P (r w )) sin 7 X
/’“ do™"  co+2¢4 , 0 I . wf"y?"
——r"— | = (r w ) —
0 at JI ax ox r’
, (77)
gl @ )sin LELL—Y
Jji p" L
L
Qw?" ” 9 9 rn,,en . Iy
/ w _Cd—.i_c PR pn_(ranﬂn) +C() v +2/"L._rn v
0 ot Ji ox ox rn Jji 0x
, (78)
+4ﬁ—)s T2Y 4 =0,
Jr p"
L/ cyj4c, 0 cqgtc, "
a bi nax p"a_x(r"a)w) Jji ptrm?
0 I I (79)
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Lroen ko ( ,, ,00"\ p" 3
. _ _ )h 2 _ n.rn _Ren .
/(; ( ot ¢y 0x ((r y'p Bx) ¢y |:( + M)ax (r Y ) :|

i nrn_“+ﬂrn i n.on 2_Cd+Ca n(i n(pn)z
2 (o) p(ax(rv)> o (L o)

Cy Cy
CO+2€d n J n, .rn ? /’L+lu’ ng..ny\2 gv" ?
-0 —(r w ) - ——p" ")\ =
Cy ax Cy 0x

(80)

ny\2 dw*" ? Cd 0 rn\2 n\2
———p"(") +2=— (@) + (@) +
cy ax c, 0x

5 (@ 2 - (" 2 , (" 2
Cy ox Cy ,0" Cy lOn Cy 'On
r v r 0 k
_qFr o pen OV + gBr yen & (r"v?™) | cos L "
cy ax Cy 0x L

foril,iz,i3,j1,j2,j3 = 1,...,n,k=0,1,...,n.
We take the initial conditions for v"'", v¥", v*", ™", w?", w*" and 6" in the form:

VI, 0) = v (), v (x, 0) = vl (x), v (x, 0) = v (x), (81)
o""(x,0) =wy"(x), ©"(x,0)= wg”(x), o (x,0) = of" (x), (82)
0"(x,0) =65(x), xel0,L], (83)

where vj", v§", V", wh", 0l ", w§", and 0] are defined by

n . n .
TLX X
vit(x) = vhosin —, v (x) = vE sin ——, 84
o<)i2210, 7 0()20, . (84)
- Tix . Tjx
vit(x) = vi. sin —, wh"(x) = wp: sin ——, 85
omgo, 7 omgo, 7 (85)
. Tjx . Tjx
wﬁ"(x):ngisin%, wé"(x):Zwéisin%, (86)
i=1 i=l1
B = wkx
03 (x) =Y fox cos - (87)
k=0

and v{;, Vs Vs 4> @;» @ ;> and Oy are the Fourier coefficients of the functions
ro9 4,2 r ¢ z 3
Vo Vo Vg» @ @ > @, and B, respectively.
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n n .
Let z),,, qu be:

t
L OES f vil(tydt, m=1,...,n, (88)
0
t
n _ n rn _
qu(t) _/o zp(t)vq (v)dtr, p,g=1,...,n (89)
and we have
") = ) + 3 e sin T 90)
r(x, =rox Zi S1 L )

i=1

n a /
p"(x, 1) = po(x) | 14 po(x) ZZ?(’)Q (r(’(x) sin ni_x> *
j=1

I CID

" . 0 . mWix . mWjx
Po(x) Z kff(t)ﬁ <sm 7 sin T) ,

ij=1

where ro(x) and po(x) are known functions. Now we obtain the Cauchy problem for

on 7 on P PR .
vitov v el @l @3 O 2 M i o, s i s Jasma pog =1Lk =
0, 1, ..., n which satisfies the conditions of the Cauchy-Picard theorem. Therefore,

we can easily conclude that for each n € N there exists 7,,, 0 < T,, < T such thata
set O, =10, L[x]0, T, [ is a domain of the n-th approximate solution.

The next stage in the proof is to find such Ty, 0 < Ty < T, so that for eachn € N
there exists a solution to the approximate problem defined on [0, Tp]. This is done
by obtaining a series of uniform (in n € N) a priori estimates for the solutions (63).
In the final stage of the proof the convergent subsequence of the sequence (63) was
extracted and it has been shown that the limit of this subsequence is a solution to the
analysed problem.

To prove the uniqueness of the generalized solution we derive the system for the
functions u = u; —uy, u; = p; ',V = Vi =5 v = v — v v =i =5, 0 =
o] — 0, 0¥ = 0] — 0}, 0 = 0] — 5,0 =0, —6and r = r| — ry, where p;, V',

v, V3 wy, a);p, w;, O; are two distinct generalized solution of the described problem.

12 7?

We obtain:

Lemma 3.1 There exists the constant C > 0 such that for any t €]0, T[ we have.

wmwfc/
0

av 2
a(r) dr, (92)
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IV O + IV O + VO + " O + llo? O + o’ 01>+

[l Y ol + 2o 2o + 2L ol
T —I(T —A(T T
0 ax ox ax ax (93)
dof |* [owt | '
+Hi<r) +H (2 dr§C/ 1900 1dx,
ax ax 0
“lae |? '
1001 + / Zo) drsc / 16(0)Pdx. (94)
0 X 0

Using this Lemma and Gronwall’s inequality we immediately get that functions
u, v\, v, v, 0", o?, w*, 6 are equal to zero which ends the proof of the uniqueness.

The proof of the global existence is based on the a priori estimates and extension
principle stated in the following proposition:

Proposition 3.1 Let T € RY and let the function
(. 0) = (p, V' v v o o 0%, 0)(x, 1), (x,1) € Qp (95)

be the generalized solution to the problem (41)~(53) on the domain Qr, for any
T' < T with the property 6 > 0in Q. Then (95) is the generalized solution of the
same problem on the domain Q7 with the property 0 > 0 in Qr.

To be able to use the Proposition 3.1 it is crucial to find a set of global a priori
estimates in which the constants can depend only on initial data and the constant 7
from the Proposition 3.1.
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Hermite—Fejer Polynomials as an )
Approximate Solution of Singular oo
Integro-Differential Equations

Alexander Fedotov

Abstract For full singular integro-differential equations with Gilbert kernel, the
collocation method is justified. The approximate solution is sought in the form of
Hermite—Fejer polynomial. The convergence of the method is proved and the rate of
convergence is estimated.

1 Introduction

Algebraic interpolation polynomials with multiple nodes, known as Hermite poly-
nomials, are well-investigated and are successfully used to solve a wide range of
application-oriented problems. Their trigonometric analogue is investigated much
less and many questions concerning the existence, uniqueness, and approximate
properties of such polynomials still remain open.

Early studies of trigonometric interpolation polynomials with multiple nodes
apparently began toward the 30th years of the 20th century. S. M. Lozinsky [1]
considered the approximation of the complex-variable functions regular in a single
circle, and continuous on its boundary, by the trigonometric interpolation polynomi-
als with multiple nodes located on a single circle’s border. He was the first to call
such polynomials Hermite—Fejer polynomials.

E. O. Zeel [2, 3], generalizing the results of the predecessors [4-7], proved
the existence of the trigonometrical interpolation polynomials of the arbitrary mul-
tiplicity w.r.t. the system of the equidistant nodes for the real-valued 27 - periodic
functions. Moreover, he showed the explicite form of the corresponding fundamental
polynomials and established the conditions of uniform convergence of such polymi-
als to the interpolated function depending on the parity of its multiplicity and the
smoothness of the interpolated function.

B. G. Gabdulkhayev [8] obtained in a convenient form the best, in the sense
of an order, estimates of the speed of convergence of trigonometrical interpolation
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polynomials of the first multiplicity to continuously differentiable functions. Also, in
this work he investigated the properties of the quadrature formulas for Gilbert’s kernel
singular integrals based on such polynomials. Relying on the results of [3] and using
B. G. Gabdulkhayev [8] technique Yu. Soliyev [9, 10] investigated systematically
quadrature formulas based on the interpolation polynomials of different multiplicity
for singular integrals with Cauchy and Gilbert kernels.

In this paper the calculation scheme of the collocation method based on trigono-
metric interpolation polynomials with the multiple nodes for the full singular integro-
differential equation in periodic case is constructed and justified. Convergence of the
method is proved, and the errors of the approximate solution are estimated.

2 Statement of the Problem

Consider the singular integro-differential equation

1

D (@ ®x (0) + by (Tx)(0) + (Johyx ) (1) = y(t), t €[0,27], (1)
v=0

where x is a required function, a,, b,, h, (by both variables), v =0, 1, and y are
known 2 -periodic functions, singular integrals

T—1

1 2
(Jx) () = —f x" (1) cot dr, v=0,1, t €[0,2n],
27T 0

are to be interpreted as the Cauchy—Lebesgues principal value, and
1 2w
(Johyx™) (1) = 2—/ hy(t, T)x"(t)dT, v=10,1, 1 € [0,27],
T Jo

are regular integrals.

3 Calculation Scheme

Let’s denote N the set of natural numbers, Ny the set of natural numbers with zero
added, R the set of real numbers C the set of complex numbers.

Let’s fix the natural number n € N. An approximate solution of the Eq. (1) we
seek as a Hermite—Fejer polynomial
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1 n—1 Sil’l2 E(l‘ - l2k)
X, (1) = ) Z(xzk + Xy, sin(t — tZk))Wy t €0, 2], 2)
k=0 sin T

here t,;, k = 0, 1..., n — 1, are even numbered nodes of the mesh
wk
th=—, k=0,1,...,2n — 1. 3)
n

Unknown coefficients xo, xék, k =0, 1...,n — 1, of the polynomial (2) we find out
as a solution of the system of the algebraic equations

1

D (@ @)x (1) + by () (Tx) (0 + (Jo P3, (hux ™) (1)) = )
v=0

=y(t), k=0,1,..,2n—1,

where

. T — I
2n—1 sinn(t — ;) cos

1
v) _ )
Py, (hyx,")(t,T) = o ;ﬁo hy (8, t)x,” (1)

T — I
2

sin

v=0,1, t,7 € [0, 2],

is a Lagrange interpolation operator w.r.t. the nodes (3) applied by the variable 7 to
the functions hux,(l”), v=20,1, and

n—1

1
(Jx)(1) = ~ Xa‘(ag’kfzszj Faypxh). k=0,1,..2n—1,
j:

agrz{—cotrz—n for r #0, 0 for r =0},
! n

1 1
aéy,:{—; for r #0, 2—’—1 for r=0};

n—1

] !
(Jx) () = - D@y gjxaj o g gjxh ). k=0.1,..n—1,
j=0

n—1

/ 1 0
(X)) (toy1) = - X;al,z,{_wxz,, k=0,1,...,n—1,
]:
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nz—

0 , I
a],rz{csc E for r #0, — for r =0},

1 r rw
a, ={(-1 cch for r #0, 0 for r =0};
2n—1

v 1 v
JOPS (hyx") (1) = > ; ho(te, t)x (), v=0,1, k=0,1,...2n— 1,

are the quadrature formulae.

4 Some Preliminaries

Let’s denote C the space of continuous 27 -periodic functions with usual norm

I fllc = suﬂg | f(H) |, feC.

For the fixed m € Ny denote C™ C C the set of the functions on R with continuous
derivatives of order m (C° = C). The norm on C” we define as follows:

I fllen = max [ £, feC™
0<v<m

Let’s denote H,, the set of Holder continuous functions of ordera € R,0 < o < 1.
For the function f of this set let’s denote

) — sup OO |

t#T |t_T|a

t,TeR

the smallest constant of Holder condition of the function f. With the help of this
constant we can now define the norm on the set H,, namely,

Iflln, = max{[| fllc, H(f; a)}.

From the set C™, for the fixed « € R, 0 < « < 1, we can select the set of the
functions H]} with derivatives of order m satisfying Holder condition

| f @O = [ @IS HF™ 0 [t =T | 1,7 €R.
The norm on the set H” (H? = H,,) we define as follows:

I £ e = max{|| fllcn, H(f™; )}
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Denote .7, the set of all trigonometric polynomials of order not higher than . For
the follows we need 2 lemmas from the paper [11].

Lemma 1 Letthe numbersa, B e RO <a <1,0< B <1,m,r € No,m <r,are
suchthatm + B < r + a. Then for any n € N and any function x € H, the following
estimate is valid ' :

Ix = Tulluy < en” " P HGED; ),

where T, € 9, is a polynomial of the best approximation of the function x.

Lemma2 Foranyn € N, g € R, 0 < 8 < 1| and arbitrary trigonomentric polyno-
mial T, € 9, the following estimate is valid.:

1Tulln, < (L4220 T, )c.

An operator P,, is exact for any polynomial of order n — 1 and, as it is shown in
[12, 13], has the following properties:

2nllH} —HY = 2nllC—-C =
1Pollig -ty < cllPaallc—c < clnn 5)

foranyn e N,n > 2,8 € R,0 < 8 < 1, and arbitrary fixed number m € N.

5 Justification

Theorem 1 Let the Eq. (1) and the calculation scheme (2)—(4) of the method satisfy
the following conditions:

A1 functions a,, b,, v =0, 1, and y belong to Hy, for some a e R, 0 < a < 1;
functions h,, v =0, 1, belong to H, with the same a for each variable uniformly
w.r.t. other variable,

A2aX(t) +b3(t) #0, te[0,2n],

A3« =ind(a; +ib;) =0,

Ad an Eq.(1) has a unique solution x* € Hé for each right-hand side y € Hg,
O<B<ac<l

Then for n large enough the system of equations (4) is uniquely solvable and
approximate solutions x,; converge to the exact solution x* of the Eq. (1) by the norm
of the space Hllg

Ix* = ey, < enPhnn, 0<p<a<l.

Proof Let’s show first that the assumption A4 of the Theorem 1 is not empty in the
sense that there exist the equations of the class considered satisfying A4.

Here and further ¢ denotes generic real positive constants, independent from n.
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In fact, consider an equation
ar(O' (@) +x() + biO((Ix)(@) + (T @) = y(@©), t€[0,2n]. (6)
It is known [14], that the characteristic operator
Bx =a (t)x(t) +bi1(t)(Jx)(t), B:Hg— Hg,

of the Eq. (6) is invertable, and an inverse operator B~ : Hg — Hp could be written
explicitly. Now apply the operator B! to both sides of the Eq.(6). Then we’ll get
an equivalent equation

x'(1) 4+ x(1) = (B 'y)(1), te€[0,2n7]. 7)

In the couple of the spaces (Hfﬁ, Hpg), an Eq.(7) is a Fredholm equation. Homoge-
neous equation
X)) +x@) =0, tel0,2n],

in the space of the real-valued functions has a solution x(¢) = ce™, t € [0, 27].
However, this solution is not periodic for ¢ # 0, so the only suitable value is ¢ = 0.
It means that in the space of the periodic functions H é the homogeneous equation has
the only zero solution x(¢) = 0, ¢ € [0, 27], and it means that the Eq. (7), and thus
the Eq. (6), are uniquely solvable for any right-hand side y € Hg,0 < 8 <o < 1.

For the following part of the proof of the Theorem 1 we’1l use the method described
in[15, 16].

Letsfix e R,0< B <a <l,andlet X = HL Y = Hg. Then the Eq. (1) can
be rewritten as an operator equation

Ox=y, 0:X->Y. (8)

For each function x € X we’ll match the Cauchy integral

2
B 1 x(t)dt
P@)=2(x2) = 27 / 1 —zexp(—it)’ ceC
0

Denote x*(¢) x~(¢) the limit values of the function @(z) as z trends to exp(it) by
any ways inside and outside unit circle correspondently. For the functions x* and
x~ the following Sokhotsky’s formulae are valid means identical operator.

xE () = %((:I:I —iJ)x)(t) + %Jox, t eR. 9)

Differentiating (9) and using known formulae
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®'0)F = @Fm), (J0)'@0) = Ix)0),
we’ll obtain
X)) =x"() —x"7@), (X)) =i @) +x7@). (10)
From the conditions A2, A3, according to [17] it follows

a) — lb] o er

ay+ib; Y-
where .
ay — lbl

, e C.
aq +lb1 ¢

V(@) =e"9, () =Pw;z), u=In

Then, using (10), the characteristic operator of the Eq. (1) can be rewritten [14, 17]
as

(a1(t) +ibi (1))

—- (W~ (O (1) — ¥ Ox" (0).

ay()x' (1) + b1 () (Jx) (1) =
The Eq. (1) or, in other notation, the Eq. (8) we rewrite as an equivalent operator

equation
Kx=Ux+Vx=f K:X—->Y, (11D

where
Ux =y xT—y*x'~, Vx=Ax+ Bx + Wx,

1
Ax =v'apx, Bx=v'byJx, Wx=v"! Z JOh,x ™,
v=0

a; +ib;
V=——"
14

and according the condition A2 of the Theorem 1, v(¢) # 0, ¢ € [0, 27r]. An equiv-
alence here means that the Eqgs. (1) and (11) are both solvable or not solvable simul-
taneously and, if they are solvable, their solutions coincide.

Let X,, C 7, be the set of trigonometrical polynomials of the form (2), and Y,, =
P>, Y C Z,. Then the system of equations (4) is equivalent to the operator equation

f=v'y,

Knxn = Unxn + anil = fn7 Kl’l : Xn - Yil’ (12)
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where
U,=P,U, Vix,= P211Axn + Py, Bx, + Wyx,,

1
Waxy = Py, Y Jo(P,(hux()),  fo = Pa,f.
v=0

Here an equivalence means that if the system of equations (4) has a solution xJ, , xJ;,
k=0,1,...,n — 1, then the Eq. (12) will also has a solution which coincide with the
polynomial

. n
1 n—1 Sln2 E(t — )
5
X:(t) = E E ()C;k +.X'27c Sln(t — tZk))W’ t e R.
k=0 sin T

Let’s prove now that the operators K and K, are close to each other on X,,.
For any x, € X, using the polynomial of the best approximation 7,,_; € J,_4
for the function Ax,, we’ll have

IAxy — PonAxylly = (14 [[Pally=v) 1AXy — Thoilly- (13)
Now, taking into account the structural qualities of the function Ax,, we can estimate
H(Axy; o) < c(lxallc + l1x,llc) < cllxallx- (14
From (13), using Lemma 1, an estimation (5), and in view of (14) we have
1A%, — PoyAxylly < c(n™ " Inn)|lx, | x. (15)
In the same way, we obtain
1By = Pau By lly < c(n™*F Inn) |y Ix. (16)

Considering the trigonometrical degree of accuracy of the quadrature formulae
for the regular integrals used in (4) we can write

1 1

IWxy = Waxally < I1Y JOhx” = Py Y JOP5,(hux)lly < (17)
v=0 v=0

1 1 1
<UD T = Poy Y IOy 4 1Pa Y T (hy — Py
v=0 v=0 =0
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Now, using the polynomial of the best uniform approximation 7, € .7,_; for the
1
function Y Jh,x("), we get
v=0

1 1 1
1Y 70ty = Pay 3 70uxs™)ly < A+ 1Pl Y Iy — Tyl
v=0 v=0 v=0
(18)

Considering the structural qualities of the function £, (¢, T) by the variable ¢, it is
easy to show that

1 1
HO Jhx"):ia) <Y [1xlle < cllxlix. (19)

v=0 v=0
From (18) and (19), using Lemma 1 and an estimation (5), we get

1 1

1Y% = Po ) Ihx”ly < e lam)lblx.  (20)
v=0 v=0

Further, taking into account the structural qualities of the functions 4, (¢, t) by the
variable 7, error estimations of the quadrature formulae, and Lemma 2, for the second
summand of the right-hand side of the estimate (17) we get

1
1P > TG (hy = Py < 1)
v=0

1
<cfnm)| Y IO (hy — Pl < ™ P Inn)||x, |1x.
v=0

Finally, using the estimate (17), (20), and (21), we get
IWax, = Waxally < e Inn)|x, |Ix. (22)

Let’s denote v, (t) € Z;,—; the polynomial of the best uniform approximation
of the function ¥ (¢). Using an auxiliary operator

. 7 o 1+ + /—
Uy, : Xy =Yy, Uxy=v,_x," =¥, X

n

we get _
”an - Unxn”Y = (1 + ||P2n||Y—>Y)||an - Unxn||Y~ (23)
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Futher, we have
1Uxy = Unxally < 166~ =YD lly + 10T =9, Dx Iy, (24)
Each summand of the right-hand side of (24) we estimate, using Lemma 1 as follows:
I = w0ty < 19T =7 lvingSly < en™ Pl lx. (25)
Now by using (24), (25), and (5) we can rewrite inequality (23) as
1Uxy = Upxally < (™% Inn)|lx, |Ix. (26)
And finally, using estimations (15), (16), (22), and (26), we get
IK — Kullx,~y < cn " Inn.
As the operators Q and K are both invertable and the inverse operator Q! is
bounded, then

1K lyox < VIV ly—x <c. 27)

So there exists ny € N such that for all n € N, n > ny,

-1 _
1K™ [ly—xIIK — Kn”X,,—)Y =cn *“*Flnn =

N =

For such n according to the Theorem 1.1 of the paper [16] there exist the operators
K, 1Y, - X, and they are bounded. Moreover, for the right-hand sides of the
Egs.(11), (12), using the condition A1 of the Theorem 1, Lemma | and estimation
(5), we have

Iy = yally =y = Puylly < cn P lnn. (28)

Now, using the corollary of the Theorem 1.2 [16], for the solutions x* and x* of
the Eqgs. (11), (12), taking into account (27), (28), we’ll find

lx* —x;lIx < cen ™ Plan.

The Theorem 1 is proved. U

Corollary 1 [f, in the conditions of the Theorem 1, the functions a,, b, h, (by both
variables), v = 0, 1, and y belong to H],, r € N. Then the approximate solutions x,
converge to the exact solution x* of the Eq. (1) as n — 00 by the norm of the space
H,ls as follows:

lx* — x:||H}; <cen"Plnn, r4+a> 8. (29)
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Proof Using the Theorem 6 from [15], we can write

I = x3lx < (L4 1K, P KIDIX* = Zallx + 1K, 11Ky — PonK Eully,
(30)

where X, is an arbitrary element of the space X,,. Under corollary 1 conditions the
solution x* of the Eq.(1) is so, that x* € H’, for 0 < o < 1 and x*"*D € Z for
a = 1 (Z means Zigmund class of the functions). Then, taking for the X, € 7, the
polynomial of the best uniform approximation for the function x* and using Lemma 1,
for the first summand of the right-hand side of (30) we’ll obtain

(I + 1K, Py KD lIx* = %llx < en” P Inn. 31)

Taking into account the structural qualities of the functions %, (¢, 7), v =0, 1, by
the variable t, the error estimation of the quadrature formulae, using Lemma?2 and
estimation (5) for the second summand of the right-hand side of the inequality (30),
we get

| KnXp — Pon KXplly = |WpXy — P2 Wi, lly < (32)

1

<P Y JoGEY (hy = PLA)ly <
v=0

1
<c@’Inn)|| Y oGP (hy — PLhy))llc < cn™ ") Inn |z, [Ix.
v=0

Now, substituting estimations (31) and (32) in (30), and taking into account, that

1Eallx < Ix7llx + 27 = Zullx < Ix*lx +en =+,

we get an estimation (29). Corollary 1 is proved. (]
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On Nonexistence of Solutions to Some m
Nonlinear Functional Differential i
Inequalities

Evgeny Galakhov and Olga Salieva

Abstract We consider nonexistence of nontrivial solutions for several classes of
nonlinear functional differential inequalities. In particular, we obtain sufficient con-
ditions for nonexistence of such solutions for the following types of inequalities:
semilinear elliptic inequalities with a transformed argument in the nonlinear term,
including higher order ones; quasilinear elliptic inequalities with a transformed argu-
ment in the nonlinear term dependent on the absolute value of the gradient of the
solution; elliptic inequalities with the principal part of the p-Laplacian type with sim-
ilar transformations in the lower order terms; parabolic partial differential inequali-
ties with a transformed temporal argument in the nonlinear term. In the case of the
untransformed argument these results coincide with the well-known optimal results
of Mitidieri and Pohozaev, but in the general case they depend on the character of
the transformation of the argument. The results apply to different types of transfor-
mations of the argument, such as dilatations, rotations, contractions, and shifts.

Keywords Partial differential inequalities - Transformed argument - Nonexistence

1 Introduction

Sufficient conditions of nonexistence of solutions to nonlinear partial differential
equations and inequalities are a popular field of studies in the recent years. This
subject is not only interesting in itself, but has important mathematical and physical
applications. In particular, some Liouville type theorems of nonexistence of nontrivial
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positive solutions to nonlinear equations can be used for obtaining a priori estimates
of solutions to respective problems in bounded domains [1, 2].

In [3-5] (see also references therein) sufficient conditions for nonexistence of
solutions were obtained for different classes of nonlinear partial differential inequal-
ities using the test function method developed by S. Pohozaev [6]. But the respective
functional differential inequalities with transformed argument was not covered by
these results. Some special cases of such problems were treated in [7, 8] and in the
papers of the second author [9, 10].

In this paper we obtain sufficient conditions for nonexistence of solutions to
several classes of elliptic and parabolic functional differential inequalities and for
systems of elliptic inequalities of this type.

The structure of the paper is as follows. In Sect. 2, we prove nonexistence theorems
for semilinear elliptic inequalities of higher order; in Sect. 3, for quasilinear elliptic
inequalities; and in Sect.4, for nonlinear parabolic inequalities with a shifted time
argument.

The letter ¢ with different subscripts or without them denotes positive constants
that may depend on the parameters of the inequalities and systems under considera-
tion.

2 Semilinear Elliptic Inequalities

Let k € N. Consider a semilinear elliptic inequality
(= ux) = a)lu(@))?  (x € R, (1

where g € C!'(R"; R") is a mapping such that

e (gl) there exists a constant ¢ > 0 and B € R such that |Jg*1(x)| > ¢y|x|# > 0 for
all x e R";
e (22)|g(x)| > |x| forall x € R,

and
(al) a : R" — R is a continuous function such that there exist constants ¢, > 0
and @ € R such that a(x) > c¢;|g(x)| for all x € R".

Example 1 Transforms of the form g(x) = y (1 + |x|#)x, where |y S| > 1, satis-
fies assumptions (gl) with ¢; = |y ™" B| and (g2). In particular, the dilatation trans-
form g(x) = yx with any y € R such that |y| > 1 satisfies assumptions (gl) with
¢ =ly|™" and (g2).

Example 2 The rotation transform g(x) = Ax, where A is a n X n unitary matrix
(and therefore |g(x)| = |x| for all x € R"), satisfies assumptions (gl) with ¢ =1
and (g2).
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In some situations assumption (g2) can be replaced by a weaker one:
(g’2) there exist constants ¢y > 0 and p > 0 such that |g(x)| > co|x| for all x €
R"\ B,(0).

Remark 1 'We assume without loss of generality that ¢y < 1.

Example 3 The contraction transform g(x) = yx with0Q < |y| < 1satisfies assump-
tions (gl) with ¢ = |y|™ and (g’2) with ¢y = |y| and any p > 0.

Example 4 So does the shift transform g(x) = x — xg forafixedxg € R” withc = 1,
co = 1/2 and p = 2|xp|.

Definition 1 A weak solution of inequality (1) is a function # € L
the integral inequality

(R") satisfying

loc

/M(X)-(—A)kw(X)dx = /a(X)IM(g(X))I"w(X)dx 2

er er
for any nonnegative function ¢ € Cgk (R™).
For the proof of the following theorems we will need

Lemma 1 There exists a non-increasing function ¢(s) > 0 in C**[0, 0o) satisfying
conditions

(1 O<s<D,
/ o/ ()]s~ 71 917 (5) ds < o, 4)
1
f ¢/ ()57 s~ 9!~ (5) ds < 00 5)

for & < O with sufficiently small absolute value, and

f | Ak ()]s~ 9 (5) ds < oo ©6)

where q' = qu
Proof Take ¢(s) equal to (2 — s)* with a sufficiently large A > 0 in a left neighbor-

hood of 2 (see [3]).
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Theorem 1 Suppose that g satisfies assumptions (g1) and (g2), and a satisfies (al).
Let either n <2k and q > 1, orn > 2k and 1 < q < nteth  Then inequality (1)

n—2k *
has no nontrivial solutions u € L;’oc (R™).

Proof Assume for contradiction that a nontrivial solutions of (1) does exist. Let
0 < R < oo (in particular, the case R = 1 is possible). The function

Yr(x) = ¢ <ﬂ)
R R 5

where ¢(s) is from Lemma 1, will be used as a test function for inequality (1).
Multiplying both sides of (1) by the test function ¢g and integrating by parts 2k
times, we get

/Iu(x)l A gr(x)| dx = /a(x)|”(g(x))|q§0k(x)dx~ (7)

Rn Rn

Using (gl), (g2), and the monotonicity of ¢, one can estimate the right-hand side
of (7) from below as

/ (g () g (x) dx = f a(e™ ) ) pr(g™ NI ()] dx >
R R
>c / I[P lu(x)|“or(g ™" (x)) dx = ¢ / x| (x) | @R (x) dx,

R~ R

®)
where ¢ = cjc; > 0. On the other hand, applying the parametric Young inequality
to the left-hand side of (7), we get

/|u(x)| | A o] dx <
Rn

!’

c c 4 q _atp 1—g' x=Ry
=< f/\x‘ol+/3|u(x)\q(pR(x)dx+ 7 /‘Ak(pR‘ [x] t]—l(pR T (x)dx <

qRﬂ q R)l

!’

x=Ry ¢ c 4 _ a+B+2kq q/ _ath 1—qg’

=7 [ opm s+ R [ bl T ol o).

R” I=<lyl=2

)
Combining (7)—(9), we have

a+p+2kq

/|X|Q+BIM(X)I"§0R(X)dx <c TTARYT A
R/l

where
C s
A= f |A% )| 1917 o () dy < 0.

I=ly|=2
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Restricting the integration domain in the left-hand side of the inequality, we obtain

a+B+2kg
g1

% f P lu )| dx < T ARY
Br(0)

Taking R — o0, in all cases except the critical one (where the power exponent on
the right hand is zero) we get a contradiction which proves the theorem.
In the critical case we get

/|x|“+f‘|u(x)|‘/dx < 0

Rr

and hence

f Ix|9Plu(x)|? dx < / ()9 x|**P dx — 0 as R — oo.

supp Akpg Byr(0)\Bg(0)
But (7), (8), and the Holder inequality imply

1
q

c/|x|a+ﬁ|u(x>|qu5 / Ix|*TPlu)]?dx | x

Br(0) supp A¥ g 1 (10)

i

X / ’AkgoR(x)r] galle_q,(x) dx

upp A gr

and therefore

q

/ lu(x)|9dx <c / lu(x)|?dx | — 0as R — oo

Br(0) supp Akpg

since the second factor in the right-hand side of (10) can be estimated from above by
cR"” Hfra a+ﬂj-12kq

as before, where n — = 0. Thus for a nontrivial # we obtain a
contradiction in this case as well. This completes the proof.

Theorem 2 Suppose that g satisfies assumptions (g1) and (g’2), and a satisfies (al).

Let eithern <2kandq > 1,orn > 2kand1 < q < % Then inequality (1) has

no nontrivial solutions u € L;’OC (R™) such that for some p > 0
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[P u(ol? dx

lim —22*© <00 (11)
R—o00 f lx @ tB u(x)|4 dx ’
Beyr(0)\B,(0)

(in particular, u € LY(R") in case « + = 0).

Proof Similarly to estimate (8), for R > p we get

/ a()|u(g(x)|gr(x) dx = / a(g™ o)) |?or(g ™ I, ()| dx =

R® Rn

> c / |x|“+ﬁ|u(x>|qgoR(i> dx > ¢ / ()| dx.
co

R™\B,(0) By r(0\B,(0)
(12)
Then (7) and (9)—(12) imply
()9 dx < ¢ / X |ux)[9 dx + e R

Beyr (0\B,,(0) Bar(0)

where ¢y, ¢c; > 0, and the constant ¢; can be chosen arbitrarily small. Hence by

assumption (11) for ¢; < ﬁ and sufficiently large R we have

_a+ﬁ+2kq
X [“TPlu(x)|9dx <26, R"™ T,

Beyr(0)\B,(0)

i.e., the conclusion of Theorem 1 remains valid in this case as well. The critical case
can be treated similarly to the previous theorem.

3 Quasilinear Elliptic Inequalities

Consider the inequality

(= u(x) = a()|Du(g(x)?  (x € R"). (13)

Definition 2 A weak solution of inequality (13) is a function u € WIL’Cq (R™) satis-
fying the integral inequality
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k
[ucartpdr = [awipueenipe da (14)
Rn Rn
for any nonnegative function ¢ € CJ(R").

Theorem 3 Suppose that g satisfies assumptions (g1) and (g2), and a satisfies (al).

Let eithern <2k — landq > 1,0orn > 2k — land1 < g < ;’fg’kﬁ Then inequal-

ity (13) has no nontrivial solutions u € WloC (R™).

Proof Multiplying both sides of (13) by the test function ¢ and integrating by parts
2k — 1 times, we get

/ (Du(x), D(A'or(x))) dx > / a(x)|Du(g(x))|?pr(x) dx,

Rn

which implies

[ 1Du 11D prnidx = [awiDueenvedx s,

Rr Rr

Using (g1) and (g2), we can estimate the right-hand side of (15) from below as

f a(x)|Du(g(x))|?¢r(x) dx = / a(g™ ) Du) pr(g™ )| J; ! (x)| dx =
R R~
> ¢ [ 1 Dueo gno d.
Rll
(16)
On the other hand, applying the parametric Young inequality to the left-hand side of
(15), we get

/ |Du(x)| - | D(A*pr(x))| dx <

/\

< / ) Du () g (x) dx + 1 / DA gr )| x5 o (o) dx <

a+ﬂ+(2k g

I/\

/ [+ | Du(x) |99k (x) dx + 2 R"™

(17)
with some constants c;, ¢, > 0. Combining (15)—(17), we have

atB+(2k—1)g

/|x|“+ﬂIDu(X)|"<ﬂR(X)dx <R
Rn
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Restricting the integration domain in the left-hand side of the inequality, we obtain

at+p+2k—1)g

% / x| Du(x)|? dx < c,R"™ a1

Br(0)

2k — 1
Taking R — oo, we geta contradiction forn — ot B+ )4 < 0. The critical

qg—1
case can be treated similarly to the previous theorems.

Theorem 4 Suppose that g satisfies assumptions (gl) and (g’2), and a satisfies

(al). Let either n <2k —land g > 1, orn >2k—1land 1 <q < ngkﬁ Then

inequality (13) has no nontrivial solutions u € Wlt’cq (R™) such that

[ x| Du(x)|? dx
Byr(0)

mp = lim [ e Dumlidx (18)
Beyr (0\B,(0)
(in particular, u € W1 (R") in case o + 8 = 0).
Proof 1t is similar to that of Theorem 2.
Further consider the inequality
— Apu(x) = a()u(g(x)) (x € R"), (19)

where g : R" — R” satisfies conditions (gl) with 0 < o < n, 8 = 0 and (g’2), and
the function a(x) is as in the previous section. Without loss of generality, we can put
a(x) = ca|g(x)|*.

Definition 3 A weak solution of inequality (19) is a function u € Wllo’c"7 (R™") N
Ll (R") satisfying the integral inequality
/IDMI”’Z(DM,Dw)dx > /a(X)uq(g(x))w(X)dx (20)
R R
for any nonnegative function ¢ € CJ(R").

Theorem 5 Let g satisfy conditions (g1) with0 <« <n, B = 0and (g’2), and let

n+a)p—1
n—p '

p—1l<g=
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Then inequality (19) has no nontrivial weak solutions u € WIOC"7 RHNLY
isfying condition (11) with B = 0.

(R") sat-

loc

Remark 2 Condition (11) holds for all nonnegative solutions u € Wlf)’c‘" (R™) of (19)
(and even of the more general inequality —A,u > 0) due to the weak Harnack
inequality
n(p—1) :
Vs e |0, ——) IC =C(n, p,s) > 0:
n—p

21
VR >0 min u(x) > CR~ ||M||L>‘(BzR(0))

x€BR(0)
(see [11]).

Proof (Of Theorem5.) We use test functions ¢ of the same structure as before.
Choose A so that 1 — p < A < 0. Multiplying both sides of (19) by u*(x)@g(x),
integrating by parts, and applying the parametric Young inequality with n > 0, we
get

A/u*-‘<x)|Du<x)|”<pR(x>dx+/u*(x)|Du<x>|”“|D<pR(x>|dx >

R" R»
> [ atougeon’ ot dx = o)
Rn
> ¢, [[ut enentxrdx = [ atoutt copeto dx.
R" R~

Further we note that inequalities c3|x| > |g(x)| > c4]x| (see condition (g’2))

imply
crcsIx]* = a(x) = e2lg ()" = cacglx|®, (23)

and one has

f a(g™ T (gr (e NI () dx = cs / % ud T ()p (g™ (x)) dx =
R” R~
> 5 Ix|%u?t(x) dx > cq / lx|%ud T (x) dx
Beyr(0\B, (0) By (0)
(24)
with some constants cs, cg > 0.
Now, using (gl), (g’2) and (23)—(24), for a sufficiently small n > O (note that
¢y — oo as n — 0,) one can estimate the right-hand side of (24) from below as
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Cn/a(x)u"“(g(x))wk(x)dx - n/a(x)u"“(x)fﬂze(x)dx =

R Rr
=y / a(g™ )™ ()er(g™ ) ()l dx — 1 / a(u"™ (x)pr(x) dx =
R R
> ¢yCo / x|“u?** (x) dx — Czcgn/ x| u? ™ () (x) dx >
Bar(0) R
> ¢y f lx[%ud™* (x) dx — c2e5n / lx[%u?™ (x) dx = C7/ |x[%ud™ (x) dx
B>r(0) By (0) R
(25)

with a constant ¢; = ¢,cg — c2c§n > 0.
On the other hand, applying the parametric Young inequality to the left-hand side

of (22), similarly to the proof of Theorem 1 we get

A/u*‘l(xnnu(xnpw(x)dx +fu*(x)\Du(x)W‘lleoR(xndx <

R» R
<O+o) f W (0| Du) P or (x) dx + s [ WP ()| Do ()P0 () dx <
Re R7
< +e f u* @) [ Du(x)|Ppr (x) dx + %7 / Ix|“u?™ (x)pr (x) dx+
Rn R»

_ plg+r)

p(g+i) a(tp=1)

+es / ID@r ()| 471 x|~ P T g 7T (x)dx < (A +6) / u* ()| Du(x)|P o (x) dx+
Rn

Rn
a(A+p—D+p(g+r)
+37 / Ut ()R () dx + o™ T
Rn
(26)
with some constants ¢, ¢, cg, cg > 0. Choosing ¢ < ||, from (24)—(26) we have

a(tp—1)+plg+h)

%/'xlau‘f“(X)w(X)dx < cR"T
Rn

Choosing A sufficiently close to 0 and taking R — o0, we obtain a contradiction for
n— % <0,ie, p—1<g< %. The critical case can be treated
similarly to the previous theorems.

Further we consider the inequality

— Apu(x) = a(x)|Du(g(x)|?  (x € R"). 27

Definition 4 A weak solution of inequality (27) is a function u € Wli)cmax(‘” (R
satisfying the integral inequality
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/ u- (—AYgdx > / a (1) Du (5(x)) g (x) dx 28)

RH Rn
for any nonnegative function ¢ € CJ(R").

Theorem 6 Let p—1 < g < %. Suppose that g satisfies assumptions (gl)
and (g2). Then inequality (27) has no nontrivial nonnegative solutions
ue WI:),CmaX([’a‘I)(Rn).

Proof Inequality (28) implies

/ |Du)|”~" - | Do (x)| dx = [a(x)lDu(g(X))qupR(X) dx. (29)
Rn ]Rn
Using (g1), (g2), and the Holder inequality, similarly to the previous arguments, we
obtain

— 1——4
fIDu(x)I"qu(x)dx <c / a_ﬁ(X)lDw(X)lq*Z*‘wR T (x) dx
R" B (0)

and hence
/ |Du(x)| dx < ey R"™ 771

Bg(0)

with some constants ¢, c; > 0. Taking R — 0o, we obtain a contradiction for

n— qz;il < 0. The critical case can be treated similarly to the previous theorems.

Remark 3 1f g satisfies (g’2) instead of (g2), a version of Theorem 4 can be proven
for a class of solutions that satisfy (18) (in particular, u € W7 (R") N W14 (R"))
similarly to Theorems 2 and 4.

4 Nonlinear Parabolic Inequalities

Now let T > 0. Consider the semilinear parabolic inequality

du(x,t)
at

+ (M U, ) = ale, Dlulx, g (xeRreRy)  (30)

with initial condition
u(x,0) =up(x) (x eR"), (31)

where uy € C(R") is a function that satisfies the condition
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/ to(x)dx > 0, (32)

]Rn
a € C(R" x R,) is a function that satisfies the condition
a(x,t) > ct* forall (x,7) € R" x Ry (33)

with some constants ¢ > 0 and @ > —1 independent of x and ¢, and g : R, — R,
is a continuous function such that

(g3)t < g(¢) and g'(t) > 1 forany t > 0.

A solution of problem (30)—(31) will be defined in the distributional sense simi-
larly to the previous sections.

Let0 < R, T < oo. We will use as a test function the product of two functions

|x] t
D(x,t)=¢ <7> @ <7) ,

where the function ¢(s) is the one from Lemma 1.

Theorem 7 Problem (30)—(31) with u that satisfies (32) and g that satisfies (g3)

.. . _ Qkgto)(1+a)
has no nontrivial solutions for q > 1 and n Gr0@=0 0.

Proof Multiplying both sides of (30) by the test function @ and integrating by parts,
we get

—/uo(x)cb(x,O)dx+//|u(x,t)|o'% dx dt+
]R';o 0 R ~

+//|u(x,t)|-|Ak4>(x,t)| dxdtZ//a(x,t)|u(x,g(t))|"q§(x,t)dx.
0 R» 0 R~

(34)
Since the function ¢(#/T) monotonically decreases, using (g3) and the monotonic
decay of @ (x,t) in ¢ for each x € R”, one can estimate the right-hand side of (34)
from below as

o0 o0
//a(x,t)|u(x,g(t))|q<1>(x,t)dxdt=f/a(x,g_l(t))\u(x,t)\q@(x,g_l(t))(g_l)/(t)dxdt3

0 R7 0 R
00

Z//a(x,t)lu(x,t)IqQ(x,t)dxdt.

0 En
(35)

On the other hand, applying the parametric Young inequality and Lemma 2.1 to the
second and third terms of the left-hand side of (34), we obtain
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0@(}: t)

//lu( dxdt <
0 R"
<= //a(x D, D14 (x, t)dxdt—i—cl// T (x )‘w(x Dl qﬁl 9 (x, 1) dx dt <
O Rll
lta
< Z//a(x Oux, 9P (x,1)dxdt + coR"T -1
0 R"
(36)
and
o0
//|u(x,t)| : ‘Akdﬁ(x,t)‘ dxdr <
0 R"
oo oo q/ ,
= i//a(x,t)|u(x,t)|‘1¢>(x,;)dxdz+C3//a_7(x’,))Ak(p(x’t)‘q ‘Pl_q/(x,t)dxdt <
0 R" 0 Rn
o0
1 ”72kq+a
< Z//a(x,t)lu(x,t)qu)(x,t)dxdt+C4R =T T
0 R"
(37)
with some constants cy, ..., ¢4 > 0. Combining (34)—(37) and taking into account

(32), we have

2kq+rx

f/|u(x DD (x,t)dxdt < cR'T™ o + R T T,

0 R~

Taking T = R+~ and R — 00, we obtain a contradiction for n — 2];?:;“ < 0. The
critical case can be considered similarly to the previous theorems.
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The Common Descent of Biological )
Shape Description and Special Functions | &

J. Gielis, D. Caratelli, C. Moreno de Jong van Coevorden
and P. E. Ricci

Abstract Gielis transformations, with their origin in botany, are used to define
square waves and trigonometric functions of higher order. They are rewritten in
terms of Chebyshev polynomials. The origin of both, a uniform descriptor and the
origin of orthogonal polynomials, can be traced back to a letter of Guido Grandi to
Leibniz in 1713 on the mathematical description of the shape of flowers. In this way
geometrical description and analytical tools are seamlessly combined.

2000 Mathematics Subject Classification 54C56 - 57N25 - 92C80 - 33C45

1 Gielis Transformations

Gielis transformations [1] are geometric transformations acting on planar functions
f () unifying a wide range of natural and abstract shapes (Eq. 1). Since its discovery
two decades ago and the initial publications in 2001-2005 [1-3] they have been used
in mathematics, biology and various fields of technology. Gielis transformations can
morph a classic Euclidean circle or sphere, into an infinite number of shapes, includ-
ing regular polygons, providing a designated unit circle or unit sphere. For example,
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it became possible to derive analytic solutions to a wide class of boundary value
problems, using Fourier’s classical methods. Heat distribution solved by Fourier on
a circular plate, has now been extended Laplace, Helmholtz, wave and heat equations
for 2D and 3D domains, including annuli and shells [4-8]. They can be extended in
3 or more dimensions [2, 9] also in relation to Generalized Mobius-Listing surfaces
and bodies [10].

nmi

1
k(05 a,b,m,ny, ny,n3) = f(¥) HZCOS (Tﬂ)

Following a generalization of constant mean curvature surfaces for anisotropic energy
functionals [11, 12], snowflakes and flowers can now be studied as minimal surfaces
in the same way as soap bubbles and soap films are minimal surfaces for a given
energy functional [13]. In general natural shapes can be described in a uniform way
and studied via natural curvature conditions [2, 13, 14]. In biology, it has been
used to drastically improve modelling of annual rings in trees [15], leaf shapes
[16] and diatoms [17], to model human skin as dielectric materials [18, 19], or to
model the backbone of RNA [20]. It was used to study the mechanical efficiency
and stability of petioles [21, 22], or for biomechanical studies of knees and multi-
dynamics mechanical systems in the body [23].

Vision algorithms developed with Gielis transformation allows for scanning
objects or signals and for efficient compression algorithms, medical imaging and
datamining [24, 25]. This has led to research in biomedical imaging of blood cells,
heart, skulls and various organs [26, 27]. These algorithms are the first that can rec-
ognize self-intersecting curves or the symmetries of polygons and polygrams without
prior learning algorithms encoded in the computer [24]. Intersecting curves are found
in biomolecules, molecules, ropes and knots and a variety of other natural shapes.

In the field of nanotechnology alone Gielis transformations are used in at least 25
papers. For example, to compute the optimal shape of nanoparticles for applications
in solar panels, cancer treatments with thermal methods, nano-antennas, in-body
telemetry or to shrink sizes of chips in electronics [28—30]. In engineering they have
been used to optimize the shapes of wind turbines [31], heat shields in manned space
vehicles [32, 33], non-circular gears and gear tooth profiles [34, 35], or the shape of
non-planar wings in aircraft [36]. In the field of telecommunications they has been
used to design waveguides and antennas [37—41], whereby design can also be based
on botanical shapes [42, 43], and to optimize lasers [44, 45]. All these developments
originate in the study of plants [46].

In its original form it has six parameters, but to quantify bamboo leaves or tree
rings, the optimization of nanoparticles or in the development of antennas, two or
three parameters suffice for size and shape.
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2 The Origin of Gielis Transformations: Botany

The origin of Gielis transformations is the study of square stems in plants using
Lamé curves [1]. To extend this to other symmetries, inspiration was found in D’ Arcy
Thompson’s On Growth and Form [47] showing the analogy between certain flowers,
and Rhodonea curves, the oldest and most useful mathematical representation of
flowers. Rhodonea curves were discovered by Guido Grandi and communicated to
Leibniz in a letter [48, 49]. The observation that in Rhodonea or Grandi curves
o(¥) = cos m? or o(1¥) = sin m1) the argument of the angle specified the frequency,
was applied to Lamé superellipses (3)" + (%)” = 1 with n a positive integer [50],
in particular to the polar representation of the Lamé curves or superellipses defined
by 0() = —————— The pivotal step to Eq. 1 was rewriting Lamé curves

i I% cos 1‘7|”+|% sin 9|"

in polar coordinates and generalizing the symmetry from 4 to any real number.

Figure 1 displays the result of transformation on some simple function. In trans-
forming the circle f () = constant, also regular polygons can result (Eq.2), or
self-intersecting shapes, for m a rational number (Fig. 2). Such shapes can be found
in plant phyllotaxis [1, 46], the symmetry of DNA in planar view [53], or as separation
zones in phase spaces with non-linear resonances [52].

1
¥) = lim
Q( ) np— 0o m 2(1—ny log, cos =) i (m 2(1—n log, cos =) %
[l cos(F )] w) + | sin(F0)| ) ]m

@)

(a) (b) (c) (d)
(e) () (8
(@ @ (k)

Fig. 1 a-d cross sections of plant stems; e—f starfish; g—i transformations of logarithmic (g-h) and
Archimedean spirals (i); j-1 transformations of cosines, as flowers or in wave view [1]
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nz3 2 1 1 1 3
ng 4 4 20 5 )

Fig. 3 Choripetalous five-petalled flowers with the corresponding constraining superpolygons and
parameters

In Eq. I the function f (1) can be regarded as the developing function DF, the func-
tion that want to grow or develop. The second part of Eq. 1, also known as Gielis
formula, denotes the constraining function CF (k), constraining the development of

DF. When f (%) = 6(¢; m, ng) = | cos(%ﬁ)ﬁ, many natural flowers shapes result
(Fig.3; [53D).

3 Coordinate Functions of First and Higher Order,
and Square Waves

The flower shapes and the wave-like shapes in Fig. 1, lower row, and the flowers in
Fig.3, defined by Eq. 1 are essentially the trigonometric functions associated with the
shapes. Generalized trigonometric functions been defined beyond circular functions
[54-58]. For Lamé curves with exponent p for example, the half perimeter is defined
as 7. For the Euclidean circle ,—, = 7. The corresponding trigonometric functions
of Lamé curves are , cos ) and , sin ), with a Generalized Pythagorean Theorem
(p cos )P 4 (, sin)? =1 [55, 56]. Likewise, the coordinate functions of shapes
defined by Eq. 1, are cosine and sine moderated by Eq. 1.

With Eq. I we can modulate these or trigonometric functions. One example is the
generation of square waves. A square wave may be generated in various ways, e.g.
with reference to step functions, e.g. the Heaviside step function (Eq. 3). Note that
the Dirac delta function is the derivative of the Heaviside function.
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Fig. 4 Equation 5 Sines for varying e = 10™* with & = 0 green; o = 1 blue; o = 3 red solid;
a = 5 orange solid and € = 0 black dashed
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An alternative method, is synthesis via Fourier series. One well-known disadvantage
is the Fourier-Gibbs phenomenon, whereby oscillations occur in points of measure
zero. These phenomena are an inherent feature of the method, but may be mediated
in practice by using sincx = % (Eq.4):

m—1
1 k k k
fx) = an + 321 sincZ (ak cos % + by sin %) 4)

Using Eq. 1 the ratio of the sine function and the absolute value of the sine can be
taken. This is a special case of Eq. 1. In order to generate a square wave which is
differentiable everywhere, all exponents in Eq. 1 are equal to 1, m = 4, and A very
large, so that the cosine term becomes very small, ¢ (Eq.5). In Fig.4 the shape of
the sine wave is given for various values of €. As long as ¢ is finite and not zero, the
function is differentiable everywhere. In this way Gibbs phenomena are avoided and
differentiability can be ensured everywhere.

sin 7
_ 5
€ + | sin Y| )

These curves can also be framed in a window, e.g. the interval [—1; 1] or in a
Gaussian window ﬁe’(%)" (6) for various values of ¢ in (5) (Fig.5). The Haar
wavelet (Daubechies 1 wavelet) and various other step functions classically based
on distributions, can be defined by Eq. 5, using the appropriate window and shifts.
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Fig. 5 Cosines for e = 1075 in Gaussian window with n = 2 in (6) (left). Decaying square wave
with n = 1 in (6) (right)

0.0 0.5 1.0 1.5 2.0

—c(mé§) =—s(ré)

—c(rg) —s(rd)

Fig. 6 First (upper row) and second order (lower row) supertrigonometric functions with associated
polar graphs
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Fig. 7 The Gaussian version
of Fig. 6 lower row

,0<t<

¢(I) = -1, % <t<l1 (6)

1
2

0, otherwise

Second and higher order trigonometric functions based on Eq. 1 can be generated.
Given a shape (1) defined by Eq. 1, the polar plot is generated by:

c(®) = y(¥¥) cos, s(¥) = y(¥)sind} 7

The functions ¢(¥) and s(v)) are displayed in Fig.6 upper row (for A =2, B =
1;m; = 1.5;my =0.5;n; = 1; np = 2; n3 = 3). They are used to define a second
curve whereby ¢(19) and s (19) substitute for the original cosine and sine in Eq. 1 respec-
tively. The second order curve and corresponding trigonometric curves are shown
in Fig.6 lower row (for A =2, B=1;m; =3;my=5;n, =15;n, =5n3=1)
and Fig.7. This can be continued to any order and applying this to Eq. 1 would be
similar to continued fractions.

4 From Transcendental to Algebraic Functions

The original Eq.1 makes use of transcendental functions, defined on the shape
(Fig. 8). What hitherto was missing is the reverse step, namely to express such shapes
in Cartesian coordinates, to convert the transcendental functions into algebraic func-
tions of one or more variables. This can be achieved using Chebyshev polynomials
T, U, V and W. These originate from the work of the Russian mathematician Pafnuty
Chebyshev in the mid 19th century, who laid the foundation for orthogonal polyno-
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Fig. 8 Trigonometric functions defined according to [58] where 1) in is generalized to f (). In

this case f(9) = I with A, Band n1 25 = 1

mials [59, 60] with extremely wide applications in applied mathematics and physics.
There is hardly any field in physics and technology where these special functions are
not used.

Equation 1 can be rewritten as follows:

1
o(x) = (®)
ATl + VT = 20, i)

9

for —1 < x < +1. The substitution for Gielis curves is x = cos j. For Lamé curves
A=B=1,ni=ny,=n3=n,and m =1 so we have 7,, = T, and U,,_; = U,.
This gives a rational polynomial function of transcendental arguments (although
the argument could be any function). In a further step also the exponents can be
internalized in the Chebyshev polynomials so that we have real polynomials, which
can be calculated using the recurrence relations for Chebyshev polynomials. The
roots of the polynomials correspond to the maxima and minima of the Superformula.

Each Chebyshev polynomial is composed of a finite number of terms. For example
To(x) =1, Ti(x) = x, Th(x) =2x% — 1, Ts(x) = 4x> — 3x, Ty(x) = 8x* — 8x%2 +
1, etc. T, contains terms in x of the powers n, (n — 2), (n —4), .. .ending in —1
or +1 for even powers x", and in =nx for odd n. The expression in polar coordinates
can then be studied in a single variable x. In this way it can be shown that for suitable
choice of parameters (exponents n and symmetry parameter m are integers) Eq. 1 can
be regarded as a algebraic function.

This inverse transformation is based on the obvious but novel observation that
Grandi curves (p(¢) = cos m1 or p(¢) = sin m}) simply ARE Chebyshev polynomi-
als of the first kind 7}, (cos ©/) = cos m1} and of the third kind sin YU,,_; (x) = sin m?
for m integer. Three centuries after Grandi first discovered his curves, they led to the
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superformula in polar coordinates (Eq. 1) and the generalized Pythagorean Theorem,
as well as the inverse transformation.

With further developments and generalizations (for example multivariate and
multi-argument Chebyshev polynomials [60]), a wide variety of natural and abstract
shapes can be considered and transformed as algebraic functions (for the appropri-
ate choice of parameters) opening many possibilities in science and technology. For
o(x) = i (x)|"+\\/lﬁum,1(x)|“ we immediately generalize Chebyshev polynomials

and their multiple uses in the sense of Eq. 1, when f (¢) is a Chebyshev polynomial.

5 Fibonacci, Power Laws and Shape Description

Special functions and polynomials can thus become a standard tool in studies in
botany and biology, since description (Eq. 1) and the analytical tools (Chebyshev
polynomials) have the same origin with Grandi’s observations. Chebyshev polyno-
mials are finite and precise, and are known to give the best possible approximation to
functions. Power laws, ubiquitous in the natural sciences, can be defined accurately
in terms of Chebyshev polynomials. Another example in shape description related
to rational approximations of shape descriptors in botany based on elliptic Fourier
series: for even functions (for example the mirror symmetry of a leaf around the
midrib) the Fourier series collapses to a Chebyshev polynomial series. Actually, one
can rewrite Fourier series and consequently also the solutions for boundary value
problems using the Fourier projection method [4-8, 46] in terms of Chebyshev poly-
nomials. An open challenge is to combine Generalized Mobius-Listing bodies and
their relation to knots and links [10, 61, 62] with the recent theorem that every knot
is a Chebyshev knot [63].

There is the direct relation of Chebyshev polynomials to Lucas L, and Fibonacci
numbers F,, widely used in describing plant phyllotaxy. They can all be consid-
ered as special cases of the homogeneous linear second order difference equation
with constant coefficients ug; u1; u, 1 = au, + bu,_1, for n < 1. If a and b are
polynomials in x, a sequence of polynomials is generated. In particular if ¢ = 2x
and b = —1, we obtain Chebyshev polynomials. They are of the first kind 7,,(x)
for ug = 1; uy; = x, and of the second kind U, (x) for ug = 1; u; = 2x. Fibonacci
numbers F, arise fora =b =1;ug=0,uy =1. Fora=b=1; ug =2, u; =1,
we obtain Lucas numbers L, Therefore, if in Chebyshev polynomials i = /—1 is
used with x = ’5 the results are Lucas numbers L, for Chebyshev polynomials of the
first kind 7,,, and Fibonacci numbers F,, for those of the second kind U,,. This also
clarifies the direct relation between Fibonacci and Lucas numbers with the geometry

of phyllotaxy given Eq. 1 with m a rational number (m = ﬁ =5/2,8/3. %)

This ratio gives the number of angles in the numerator p( F,1>) and the number

of rotations needed to close g (= F}) as the inverse of the generally used = by
Obviously care must be taken when connecting Fibonacci to botany and Glehs

transformations and Chebyshev polynomials are not restricted to these numbers.
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Since the symmetry parameter m can be any real number, Eq. I can describe spiral
monostichy or spiral distichy; it suffices for m to deviate slightly from 1 and 2 to
accurately model this type of phyllotaxy as well [1, 46]. A precise description can
help us understand the relation of shape to the nearly universal principle in the
physical sciences is that the equilibrium configuration of a system can be found by
minimizing its total energy among all admissible configurations, also for anisotropic
shapes within the framework of Euclidean geometry. Once more, botany proves to
be a fertile soil for science; Grandi and Gielis curves take the study of plants and
natural organisms, living and non-living, further into the realms of the three pillars
of mathematics, namely geometry, algebra and analysis.
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Abstract In this work, Variational Iteration Method is employed to solve parabolic
partial differential equations subject to initial and nonlocal inhomogeneous boundary
conditions of integral type. Since nonlocal boundary conditions considerably com-
plicate the application of standard functional and numerical techniques, equations
having such conditions are first transformed to local (classical) boundary conditions
Then they are solved by Variational Iteration Method.
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1 Introduction

Various problems arising in heat conduction [1-3], chemical engineering [4], thermo
elasticity [5] and plasma physics [6] can be modeled by nonlocal initial boundary
value problems with integral conditions. This class of boundary value problems has
been investigated in [1, 3, 4, 7-16] for parabolic partial differential equations.

In recent years, Variational Iteration Method (VIM) has received more and more
attention for solving this class of problems. This method was proposed by Ji-Huan He,
in 1998, and has been applied to solve many different linear and non-linear functional
equations, such as autonomous ordinary differential equations [17], wave equations
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[18], non-linear mixed Volterra—Fredholm integral equations [19], non-linear heat
transfer equations [20], and many others.

Here, VIM is employed to solve parabolic partial differential equations subject
to initial and nonlocal inhomogeneous boundary conditions of integral type. But,
presence of nonlocal boundary conditions significantly complicate the application
of standard functional and numerical techniques. So, we transform inhomogeneous
linear parabolic equations with nonlocal boundary conditions to local (classical)
boundary conditions. Then we apply the aforesaid method to find their solutions.

This paper is outlined as follows: In Sect. 2, It is explained how a given nonlocal
initial boundary value problem for inhomogeneous linear parabolic equation subject
to initial and nonlocal inhomogeneous boundary conditions of integral type can be
transformed into a local Dirichlet initial boundary value problem. In Sect.3, this
transformation is applied to some numerical examples and then VIM is employed
to solve the resulted equations. Finally, discussions and conclusions are presented in
the last section.

2 Transforming Equations with Nonlocal Boundary
Conditions into Local Boundary Conditions

2.1 Linear Parabolic Equation with Purely Integral
Conditions

Consider the following inhomogeneous linear parabolic equation

2
8u((x,t) —p(x,t) Ou(x, 1) +q(x,1) 8ur(x,t) +rx,Dux,t)=f(x,t),a<x<b, t>0,
Ox Ox? Ox
(1)
subject to initial conditions;
ux,0)=ak), 2

and the following nonlocal inhomogeneous boundary conditions of integral form.

b b
f o1 () u(x,1)dx = (x), / ©r () u(x, 1) dx = [ (x). 3)

where ; (x), 5; (x),i = 1, 2, and « (x) are known continuous functions.

To transform nonlocal boundary conditions (1)—(3), into local boundary condi-
tions, for a linear parabolic equation, let’s proceed, by introducing a new function
v (x, t) as follows [5],
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v(x,t):fxw(x)u(x,t)dx, 4)
where
p(x) =1 (x) + 2 (x).
Hence, 5
_ 1 v(x,t)
M(.x,t)— QO(X) 8x ’ (5)
Ou(x,t) 1 0% (x, 1) < 1 )/ ov (x, 1) ©)
ox o) Ox? @ (x) ox
Ou(x,t) 1 &% (x,1) o
o @) 0tox
and
O%u (x, 1) B ( 1 )” ov (x,1) +2( 1 )’821) (x,1) 1 Pv(x, 1)
ox2 \p©) Ox © (x) Ox? px) ox3 7
3

Substituting Egs. (5)-(8) into Eq. (1), follows what we were looking for. This proce-
dure states the following lemma.

Lemma 1 Nonlocal initial-boundary value problem (1)—(3) can be always con-
verted into a local initial-boundary value problem of the following form

8%v (x, 1) v (x,1) 8%v (x,1) 93v (x,1)
Gtax —h(X,t) +S(X,t) axz _p(-xﬁt) ax3 _g(xvt)7
dv (x,0)
=k (x),

v@n =0 vt =p@.
©)

where

pen = (=p e () +an (3) e+,

5@ =-2p .0 () e +a 00, (10,
B =060+ 60,
@) =g a,
9.0 =9 () f (1),
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A solution of this problem will lead to a solution of the original problem, where
u (x,t)is given by (5). Once the function u (x, t) is determined, we can return to the
Sfunction v (x, t) by Eq. (4).

3 Numerical Application

Example 1 Consider the following linear parabolic equation with nonlocal condition

Ou (x,1) B Ou (x,1)

5 2 +u(x,t)=0, 0<x=<m t>0,
X

u (x,0) =sinx, (19)
foﬂ xu(x,t)dx =me ¥,
Jo =X u(x,nydx =2 —m)e ™.

Substituting these relations into (19) leads to the following local initial boundary
value problem.

yvuJy_Wvu¢)+aunﬂ
Otdx Ox3

=0, 0<sx<m >0,

v (x, O(?x (20)

=sinx,
Ox
v(0,1)=0,v(mt) =2e 2.
ov (x,0) . .
where - v(0,1), and v (7, t) are determined according to the formulas
X

stated in Lemma 1.

3.1 Solution by VIM

VIM well addressed in [3, 4, 16], is a known tool for solving functional equations.
Let us apply this method for Example 1.
For simplicity let

ov (x,t
W, = 280 ©5)
Ox
Then, Eq. (20) can be reduced to
ow (x,t)  w(x,1)
o - ox2 +wx,1)=0, 0<x=<m t>0, (26)

w (x,0) =sinx,

According to VIM, correction functional for Eq. (26) is constructed as follows.
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' 2.~

Wyt = Wy +/ A(t,s) <8wn — 0", + i)n) ds, n=0,1,... 27
0 Os Ox?

where ) is a Lagrange multiplier, which can be identified optimally, via variational

theory. w,, is the nth approximate solution, and w,, denotes a restricted variation, that

is, 0w, = 0. Considering stationary conditions, the Lagrange multiplier satisfies the

following two conditions,

IX(t, s)
7 0,
Os
1+ A(,t) =0,
Consequently, A (¢, s) = —1. So, Eq. (27) converts into the following equation.
L ow, 0w,
wn+1=wn—/0(as ~ 2 —i—wn)ds, n=0,1,... (28)

And it leads to the following results.
wo = w (x,0) =sinx,
wy = (1 —2¢)sinx,
wy = (1 =2t +2¢%) sinx,
ws = (1 — 2t 4+ 22 — $1%) sin x,

Hence the analytical solution to Eq. (26) can be obtained
o0
w(x, 1) = lim w, (x,t) =sinx ) (chf)k = (sinx) e,
ov (x, 1)
0x

v(x, 1) =(—cosx)e ¥ +c(t),

Using both boundary conditions, v (0, ¢) and v (7, ), leads to ¢ (t) = e~ and so

v (x,t) = (1 —cosx)e >, is an analytic solution of the Eq. (20). And finally,
u (x,t) = (sinx) e~ will be a solution for Eq. (19).

For the second example the change of function (25), is applied for Eq. (21), this
equation reduces to the following simple equation

Since w (x, 1) = , U (x, t) is derived as follows.

0w (x,1) 2 5 Ow(x,t) 92w (x,1)
a7 et T IR T T e =0 Osxshez0
5 ow (x, 0)
wx,0)=x*(x+1), T:O,
(29)
Correction functional for Eq. (29) is constructed as follows.
' 9wy 2 2 O, i
Wyt = Wy +/0 )\(t,s)( FEa a +x)2wn + T+x ox 2 >ds, n=0,1,...
(30)

Considering the stationary conditions, the Lagrange multiplier satisfies the following
system,
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2
O\ (t,s) _o.

oS
AL GL ) Y
Os s=t
A(t, 1) =0,
Which leads to A (t, s) = s — t. So the iterative equation converts into the follow-

ing equation.

4 P w, 2 2 dw, P,
= A, s — 0 — ds, =0,1,...
Wil = Wn +/(; @, 5) ( Os? 1+ x)? Wn + (1+x) Ox Ox2 > 5o

Using this iterative equation, leads to
wo = x3 + xz,
w; =x3+x2+ A +x)13,
wr = x3+x2+ 1 +x)12,
wy =x3+x2+ A +x)12,

Thus an analytical solution to Eq. (29) is w (x, t) = x> + x? 4+ (1 + x) #>. Hence

v =545+ (x+5) 24w,

Using each boundary conditions, v (0, ) and v (1, ¢), leads to ¢ (0) = 0, and
finally an analytic solution to the Eq. (22), as follows.

v =5 +5+ (x+5)2

And u (x,t) = x> + t*is a solution to Eq. (21).

Now consider problem (23). Using (25) for it leads to

Pw (x,t ow (x, ¢t w (x,t
TWD 2,y 4222 8D T 1y
ot? x X Ox? x
ow (x, 0)
w(x,0) = x, TZO’ 0<x=<1,t>0,
(32)
To solve by VIM, Correction functional for Eq. (31) is as follows.
! Pw, 2. O, 0%y, 1_,
wn+1:wn+/0 )\(l,s)(as2 —;wn—kzﬁ—xaxz —x—|—;wn>ds, n=0,1,...
(33)

Similar to the last example, Lagrange multiplier is obtained as \ (¢, s) = s — ¢. Sub-
stitution into Eq. (33), leads to the following iterative equation.

! Pw, 2 Owy, 9w, 1
I s—t — S +2 - —x4+-w?)ds, n=0,1,...
e = +f0 G0 < Os? X + Ox * Ox? ot an> n
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Wy = X,

Thus an analytical solution to Eq. (32) is w (x, r) = x. Hence
2
v(x,1) =75 +c(),
Using each boundary conditions, v (0, #) and v (1, ), leads to ¢ (#) = 0 and finally
an analytic solution to the Eq. (24), as follows.

X2
vx,t)= >

So, u (x,t) = 1 will be a solution to (23).

4 Discussion and Conclusion

In this paper, solving linear parabolic partial differential equations, subject to initial
and nonlocal inhomogeneous boundary conditions of integral form is facilitated by
introducing a change of function. Using this function nonlocal boundary conditions
are transformed into local boundary ones, and these achieved equivalent equations
can be solved by most of known approaches. Here, two well-known and analytical
approaches; Variational Iteration is employed. Three illustrative examples are pro-
vided to verify the transformation and the aforementioned methods are utilized to
solve them. Both of this method lead to the same exact solution which corroborates
the computational efficacy of the transformation and the employed approaches.
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Abstract This paper deals with the existence and energy estimates of positive solu-
tions for a class of Kirchhoff-type boundary-value problems on the real line, while
the nonlinear part of the problem admits some hypotheses on the behavior at origin or
perturbation property. In particular, for a precise localization of the parameter, apply-
ing a consequence of the local minimum theorem for differentiable functionals due to
Bonanno the existence of a positive solution is established requiring the sublinearity
of nonlinear part at origin and infinity. We also consider the existence of solutions for
our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz.
In what follows, employing two consequences of the local minimum theorem for
differentiable functionals due to Bonanno by combining two algebraic conditions on
the nonlinear term which guarantees the existence of two positive solutions as well
as applying the mountain pass theorem given by Pucci and Serrin, we establish the
existence of the third positive solution for our problem. Moreover, concrete examples
of applications are provided.
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1 Introduction

The goal of this paper is to study the existence and the qualitative properties of
positive weak solutions for the Kirchhoff-type elliptic problem on the real line of the
form

M(u) = Aa(x)g(u(x)), for almostevery x € R @))

where

M) =K ( fR (' GO + Blu(o)l")dx ) (= (' (0172 ()’ + Blu()|P2u(x))

in which K : [0, +00) — R is a nondecreasing continuous function such that there
exist two positive constants k| and k, such that x; < K(¢) <k, forallt > 0, A is
a real positive parameter, B is a real positive number, and o, g : R — R are two
functions such that o € L!(R), o # 0 on any subset of positive measure in R and g
is a non-negative continuous function.

The Kirchhoff equation refers back to Kirchhoff [23] in 1883 in the study on the
oscillations of stretched strings and plates. It was suggested as an extended version
of the classical D’ Alembert’s wave equation by taking into account the effects of
the changes in the length of the string during the vibrations. Kirchhoff boundary
value problems can be used for modeling several physical and biological systems
where u describes a process which depend on the average of itself, such as the
population density and dynamics [7]. Kirchhoff equation received great attention
only after Lions [25] proposed an abstract framework for the problem. For some
results on solvability of Kirchhoff type problems, we refer the reader to the papers
[20, 21, 27].

Boundary value problems on infinite intervals arise in the study of radially sym-
metric solutions of nonlinear elliptic equations and various physical phenomena,
such as the theory of drain flows and plasma physics, in the study of unsteady flow
of a gas through a semi-infinite porous medium, discussion of electrostatic probe
measurements in solid-propellant rocket exhausts, analysis of the mass transfer on
a rotating disk in a non-Newtonian fluid, investigation of the temperature distribu-
tion in the problem of phase change of solids with temperature dependent thermal
conductivity, as well as numerous problems arising in the study of draining flows,
circular membranes, nonlinear mechanics, and non-Newtonian fluid flows, see [1-5,
22, 28] and the references therein.

In recent years, boundary value problems in an infinite interval have been studied
extensively and many results for the existence of solutions, positive solutions, mul-
tiple solutions have been obtained [6, 9, 10, 12, 14-16, 24, 26] and the references
therein.

In this paper, we are interested in the existence results and energy estimates of
solutions for problem (1). The main result of this paper ensures the existence of exact
values of the parameter A for which problem (1) admits at least one/two/three positive
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weak solutions. Several special cases of the main results and illustrating examples
are also given. We also refer the reader to [13, 17-19] for some related results in this
subject.

2 Preliminaries

In this section, we state some preliminary results. Let (X, |- |) be a real Banach
space, X* be the dual space of X and (-, -) be the duality pairing between X* and X.

We denote by |-| and by |- |, the usual norms on R and on L'(R), for all
t € [1, +00], while W1-?(R) indicates the closure of Ci°(R) with respect to the

norm |lull;,, = (u'|h + |u|£)1l’. When p =2 the norm is induced by the scalar
product (i, v) = (u', V)2 + (u, v)12. Itis well known that WP (R) = WOI”’(R) and
WP (R) is embedded in L/ (R) for any ¢ € [p, 4+o0].

Remark 1 If {u,},cn is a bounded sequence in WP (R), then it has a subsequence
that point-wise converges tosome u € W'”(R) and also weakly convergesin L (R).
Indeed, it can be inferred from the compact embedding Wl P(R) — C([—R, R)),
R > 0, and the continuity of W!?(R) — L®(R).

1
We consider W'7(R) endowed by the norm [[u|| = ( [, (|u’(x)|? + Blu(x)|")dx)”,
which is equivalent to the usual norm |.||;, that is, when B = 1.

The following proposition corresponds to [14, Proposition 2.2].

Proposition 1 One has |u]e < CB||u||f0r allu € WP(R) where Cy is a constant

given by Cp =25 (p 1)”( )” .

Definition 1 We say that a function u € W'?(R) is a weak solution of prob—
lem (1)ifforallv € WP (R), K (lull”) ([ (Iu' )P 72u' (x)v' (x) + Blu(x)|P"2u(x)
v(x))dx) —A fR a(x)g(u(x))v(x)dx = 0. Moreover, when « 1is, in addition, a con-
tinuous function on R, the (weak) solutions of (1) are actually classical, as standard
computations show.

Put G(1) = [ g(6)d¢ for all £ € R and K(r) = [; K(§)d¢ for all £ >0. Our
hypotheses on g guarantee that G € C!'(R) and G'(t) = g(t) > O for all t € R, so
G is non-decreasing.

Set

v(v) — SUPyedp-1(—o00,r] W (u)
p(r) = sup

ved=1(r,+00) Q) —r

, ()
sup  Y(u)—v((©)

ue®=1(r1,r)

, = inf — , 3
/3(71 7'2) ve(DlIll(r],rz) rp — ¢(V) ( )
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and
v(v) — sup v (u)
pa(ri ) == sup ved o] 4)
2(r1, ) 1= .
ve®=1(ry,r) D) —n

In the proof of our main results, we will apply the following theorems.

Theorem 1 [11, Theorem 5.1] Let X be a real Banach space andlet ®, ¥ : X — R
be two continuously Gdteaux differentiable functions. Assume that there exist ry,
2 € R with ry < ry, such that B(ry, r2) < pa(r1, r2), where B and p, are given by
(3) and (4), and for each A € (m, m), the function J, := @ — AV satisfies
1 (PS)2)-condition (see [30]). Then for all A € (m, m) there exists uy ;. €

®@~(ry, rp) such that Ji(uop) < J,(u) forallu @~ (ry, 1) and Ji (up ) =0.

Theorem 2 [11, Corollary 5.1] Let X be a real Banach space andlet @, : X — R
be two continuously Gateaux differentiable functionals. Put

B* := lim inf SUPuco (oo ¥ (1)

r——+00 r

and assume that there isr € R suchthat p(r) > B* where p is given by (2). Moreover,
assume that for each A € (ﬁ, #) the function J, := @ — A satisfies V1(PS)1-
condition for allr > r. Then there is ry > r such that for each A € (ﬁ, #), there is
up) € @\, ry) such that Ji(uo ) < Ji(u) forallu e &~ (7, ry) and Ji(up;) =
0.

Proposition 2 Let J : WhP(R) — WP (R)* be the operator defined by J (u)(v) =
K ([[ullP)( (' G172 )V (x) + Blu(x)|P2u(x)v(x))dx) for every u,v e
WP (R). Then, J admits a continuous inverse on W7 (R)*.

Proof We have J(u)(u) > «|lul|”, which means that J is coercive. Owing to our
assumptions on the data, one has (J(u) — J(v), u — v) > C|lu — v||> > 0 for some
C > 0 for every u,v € WLP(R), which means that J is strictly monotone. More-
over, since W7 (R) is reflexive, for u, — u strongly in W7 (R) as n — +00, one
has J (1) — J(u) weakly in WP (R)* asn — oo. Hence, J is demicontinuous, so
by [31, Theorem 26.A(d)], the inverse operator J ! of J exists and it is continuous.
Indeed, let p, be a sequence of WLP(R)* such that p, — p strongly in WLP(R)* as
n — oo.Letu, anduin W7 (R) such that J~'(p,) = u, and J~'(p) = u. Since J is
coercive, the sequence u,, is bounded in the reflexive space W' (R). For a suitable
subsequence, we have u, — u weakly in WUP(R) as n — oo, which concludes
(J(up) — JW), u, — i) = {p, — p,u, —ut) = 0. Note that if u, — & weakly in
WLP(R) as n — 400 and J(u,) — J (i) strongly in WP (R)* as n — +00, one
has u,, — u strongly in Wl'p(R) as n — 400, and since J is continuous, we have
u, — it weakly in W"?(R) as n — +oo and J(u,) — J(ii) = J(u) strongly in
WP (R)* as n — +o00. Hence, taking into account that J is an injection, we have
u=1u.
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3 Main Results

In this section, we formulate our main results. Put o := fll a(x)dx and £ :=
1

Cp <22P—1 + ﬁ + 2B) " . Moreover, for every two nonnegative constants y and
o with y J/k| # olfky, set b, (o) = M . We denote by ¢ the class of

yP—kyo P LP
all continuous functions g : R - R satlsfy in the following condition:

e there exist two non-negative constants a;, a, such that
lg(®)] < ai +ax|t|”™" forallt € R. (3)

Theorem 3 Assume that g € & and there exist three real constants yy, y> and o,
with 0 <y <ol < 1 f—;)/z, such that b,,(0) < by, (o). Then for each parameter
1 1
€z wemp )
pC byl(g) pC b}/?( )
Y2

solution ug; € WYP(R), such that < g; < luorll < &

problem (1) possesses at least one positive weak

Proof We will apply Theorem 1. Let X := W!"?(R) and consider the functionals
@, ¥ : X — R defined by @ (u) := %I/{\(llunp) and ¥ (u) := fRot(x)G(u(x))dx.
Thus the functional @ : X — R is coercive. On the other hand, @ and ¥ are contin-
uously Géteaux differentiable. More precisely, ¥’/ (u)(v) = f g (x)g(x))v(x)dx
and @' (u)(v) = K (|lul|”)( [ (' )P ~2u’ (x)V (x) 4+ Blu(x)|”*u(x)v(x))dx) for
every u,v € X. Fix A > 0. A critical point of the functional J, := ® — AV is a
function u € X such that @"(u)(v) — AW’ (u)(v) = 0 for every v € X. Hence, the
critical points of the functional J; are weak solutions of problem (1). At this point,
let us observe that @ (0x) = ¥ (0x) = 0. Moreover, by choosing r; = pK_c]ngp and
pKTlg 1,7, from the definition of @ and taking Proposition 1 into account, one has
& (—o0, 1) = {u e X; w < rl} C{ueX;lul <y} and @~ (—o0, ) =

{uex; K(”“”p) <r} € {u € X;|u| < y.}. Hence,

ry =

sup W) < / a(x) sup G(&)dx = |e|1G(y1) (6)
ued-1(—o0,r) R El<n
and
sup  ¥(u) < / a(x) sup G(&)dx = |a|1G(ya). (7N
ued-1(—oo,r;) R 1E1<y2
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Now we define w, by

do(x+ 1) +o, xe[-3, D),

g, X € [_15 1]’
Wo (x) = 5
do(1 —x)+o, x €(1, 7],
0, otherwise.
Clearly, w, € X. Simple computations show that ||w, |7 = @ + B(z( p1+1) +2)
— pyp pypr pypr
ol = ol (220 4 ST P +2B) = “cfé . Thus, Klp"céf < P(w,) < Kz,fcf and

¥U(wy) = f_‘i ad(x)G(wy(x))dx > f_ll a2(x)G(wy (x))dx = a9G (o). Taking 0 <

<ol <y %yz into account, by a direct computation, one has r; < @ (w,) <

SUPuco 1 oory Y=Y Wo) | ~p |l G(r2)—etyG o)
rp. On the other hand, B(r,r;) < =) C W

Y (Wo)=SUP, cp—1 oor]]llj(u) Cp |zx|]G(y1) oG (o)
D(wg)—r1 K1yl —kr0PeP

notation (3), from (6) and (7) together with ’”;Cpf] <d(wy) < Lol it follows

and py(ry, r2) = . Hence, by using the

CF ’
that B(r1, r2) < pChb,, (o) and ps(ri, r2) > pCyb,, (o). The assumption b, (o) <
by, (0) yields B(ri, r2) < pa2(ri, r2). Now, from above the functional @ is continu-
ously Gateaux differentiable while by Proposition 2 admits a continuous inverse on
X*, the functional @ is continuously Gateaux differentiable whose Gateaux deriva-
tive is compact and since g € ¢ the functional @ — ¥ is coercive. Thus, from [11,
Proposition 1], the functional J; satisfies the "'!(PS)"2]-condition for all r; and r,
with r; < 11"2 < 4+00. Tlllerefore, by Theorem 1, since g is nonnegative, for each
A€ ( C[’ b ’ p )
p n(o) pCgby, (o)

critical point ug , such that r; < @ (ug ;) < ra, thatis 2 _C_B < luprll < ﬁ . This

, the functional J, possesses at least one positive

completes the proof.

Remark 2 The result of Theorem 3 holds true if condition (5) is replaced by

° hmm_,OQ Itlf’ 1 =0, i.e., g is p — 1-sublinear at infinity.

Now, we point out a particular case of Theorem 3.

Theorem 4 Assume that g € 4 and there exist two positive constants y and o with

G . _aa Glo)
124 |<¥|1K2€1’ b

O0<aol <y y, such that . Then for each parameter

N ( Ky oPeP K1 yP )
pCpaoG (o)’ pCy laliG(y)

problem (1) possesses at least one positive weak solution uy ; € WP (R) such that

luoll < &
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Proof Taking y; =0 and y» = y and bearing (3) in mind, we obtain b, (o) =
leh G()=xGlo) - aG(o)
K1yP—KkyoPLP — kKkyoPlP

= by(0). Hence, Theorem 3 ensures the conclusion.

Now, we give an application of Theorem 2 which will be used later to obtain
multiple solutions for the problem (1).

Theorem 5 Assume that g € & and there exist two constants y and & withQ <y <
ol such that |a|,G(y) < agG(a). Then for each ). > A, where

= 1 k1y? — ko PP
ChlaG(7) — apG(d)’

problem (1) possesses at least one positive weak solution iig ; € WP (R) such that

lio.. | > g2 &

K2 CB

Proof Take X = WP (R) and put [, = @ — AW, where ® and ¥ are given as in
the proof of Theorem 3. The functionals @ and ¥ satisfy all assumptions requested
in Theorem 2. Put 7 :=

F1(PS)[rl-condition for all r with r > 7. Arguing as in the proof of Theorem 3,

Y (Wo)=SUP, cp—1 (_oo 7] ‘If(u) G G
we obtain that p () > T pCh ‘“,‘(‘ny,@,(;“p 70) Hence, from our

assumption it follows that ,o(r) > O Therefore It follows from Theorem 2 with
B* =0, foreach A > k, the functional J, admits at least one positive local minimum

ito,, € WIP(R) such that @ (itg ;) > 7, which is just |iig ;| > P/"—‘CL_B. Thus the

K2

conclusion is obtained.

The following result is a straight consequence of Theorem 4.

Theorem 6 Assume that g € 4 and

g@&)
slH)L F = +400. (8)
Furthermore, let y > 0 and set 1}, := p"c‘p m Then for every A € (0, A}),

problem (1) admits at least one positive weak solution uy ; € WP (R) such that

”uO,A ”a,p < CLB

Proof Fix A € (0, A;). From (8) there exists a constanto > O withof < » ﬂ Y such

2824 K1
that C,, wGo) <A< T \allG(y) Hence, by Theorem 4, problem (1) possesses at

least one positive weak solution u ; such that [lug || < C_B'
Example 1 Consider the problem

[1-+ tanh (f (' G* + ) ) | (= ('@ () + ) Puc)

gux))
=AM RS

9)

for almost every x € R
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where

6’[, t e (_OO, _1]3

gt) ={ eMGD te (=1, 1),
e~ ¢ e [1, 00).

. . 4
Direct calculations shows that «; =1, kK, =2, C| = ‘/Tﬁ, =75, |l =m,
. . >in(%£) . . —cos(m&)
limg o+ ‘gp(—‘i)l = limg_, o+ eT = +ooand limg|—, 40 é(% = limg s 100 ﬁT =

0. Now by choosing y = 1 we clearly see that all assumptions of Theorem 6 are
satisfied. Hence, applying Theorem 6 and Remark 2 for every A € (0 4 ), then

> 2me
problem (9) possesses at least one positive weak solution ug; € W!4(R) such that
luosll < -

Theorem 7 Suppose that g € 4. Then the mapping A — J, (uo.,) is negative and
strictly decreasing in (0, 1))

Proof The restriction of the functional J, to @ ~'(0, r,) where r, = %yzp, admits
B

a global minimum, which is a critical point (local minimum) of J, in W'?(R).

. . -1 P (wy) < __Kkolt?
Moreover, in view of w, € @ '(0,r;) and Vo) = 2ClaG@) < A, we have

Ji(uon) < Ji(ws) < 0. Next, we see that J, (u) = k(@ — lll(u)) for every u €
WLP(R) and fix O <Al <Ay < )\.;. Put m,, = (q)(u“l) — ‘P(uo,x,)) =

Al
. @ P (uo,3,) . @
infyco-10,) (% — W), my, = ( = l1’(“0)\2)) = infycp-100,m) (% -

lI/(u)). Clearly, m,, <0 (for i =1,2), and m,;, < m,, thanks to A; < A,. Then

the mapping A > Jy(uo3) is strictly decreasing in (0, A}) owing to Jy, (uo,,) =
homy, < Aomy, < Amy, = Ji, (o z,)-

Remark 3 Generally, Theorem 6 ensures that if g € ¢ satisfies (8), then for every

parameter A belonging to Ag := (0, A*), where A* := ﬁ sup,,-.o %, problem

(1) possesses at least one positive weak solution u ; € WLr(R).

Remark 4 We note that, in particular, if g is (p — 1)-sublinear at infinity, Theorem 6
ensures that problem (1) admits at least one positive weak solution for every positive
parameter A. Moreover, in our case, the obtained solution is non-zero, while the
classical direct method approach, that can be accept in this context, ensures the
existence of at least one solution that may be zero.

Remark 5 A careful analysis of the proof of Theorem 6 ensures that the result
still remains true if condition (8) is replaced by the more general assumption

&)

lim sup;_, o+ G—, = 4-00. Moreover, the previous asymptotic condition at zero can

be replaced by the following form

8€) _ | oo, (10)

lim su
g»o+p g1
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Therefore, it is natural to obtain the following result.

Theorem 8 Let lim;_, o+ tgp(—ff = +o00 and lim,_, 4 ;g,,(—f? = 0. Then there exists A* >
0 such that for every A € (0, A*), problem (1) possesses at least one positive weak

1
solution uy; € WP (R). Moreover, we have (fR(|u/(x)|1’ + Blu(x)l”)dx)" —
0 as A — 0% and the mapping A — iK(fR(M(x)I" + Blu(x)|P)dx) — [, a(x)

(f(;““ g(t)dt)dx is negative and strictly decreasing in (0, 1*).

Below, we show how the former analysis can be used to pass from the existence of
at least one positive solution to that of at least two nontrivial solutions. This objective
will emerge by using the specific nature of the initially found solution, namely a
local minimum. The information is then useful in guaranteeing the existence of a
second solution as a critical point of mountain pass type. Accordingly, we start with
the following theorem, where the celebrated Ambrosetti—Rabinowitz condition is
necessary.

Theorem 9 Let g be a nonnegative continuous function such that g(0) # 0 and the
assumption (10) holds. Furthermore, assume that

(AR) there are constants v > p and p > 0 such that, for all & > p, one has

0 <vG(§) =§g(5). (1)

Then for each A € Ag, problem (1) admits at least two positive weak solutions in
the space WP (R).

Proof Fix A € Ag. Owing to the assumption (10), Theorem 6 ensures that problem
(1) admits at least one weak positive solution «; in W!? (R) which is alocal minimum
of the functional J;, as defined in the proof of Theorem 3. Now, we prove the existence
of the second local minimum distinct from the first one. To this goal, we verify
the hypotheses of the mountain-pass theorem for the functional J,. Clearly, the
functional J; is of class C' and J;(0) = 0. The first part of proof guarantees that
u; € WHP(R) is a positive local minimum for J, in W!?(R). We can assume that
u; is a strict local minimum for J, in W7 (R). Therefore, there is p > 0 such
that inf,—,, =p . (u) > I, (1), so condition [30, (/;), Theorem 2.2] is verified. By
integrating the condition (11), there exist constants a;, @, > 0 such that F(u) >
ailu|” — ay for allu € WP (R). Now, choosing any u € W'?(R), one has

Ji(tu) = (@ — A¥)(tu) < ﬁl?(llfullp) — A/ a(x)G(tu(x))dx
R

K2

IA

124
lul|l? — Aty / a(x)|u(x)|"dx + ras|al; — —o0, T — +00.
P R

Thus condition [30, (1), Theorem 2.2] is satisfied. Therefore the functional J; sat-
isfies the geometry of mountain pass. Moreover, J, satisfies the (PS)-condition.
Indeed, assume that {1, },ey C X such that {J; (u,,)},en is bounded and J; (u,) — O
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as n — —+o0. Then, there exists a positive constant ¢y such that |J, (i,)| < ¢y and
|J; ()] < co forall n € N. Therefore, we infer to deduce from the definition of J;
and the assumption (AR) that

’ v p
co + cillunll = vy (u,) — J)\(un)(un) = Kl(; - 1)””11“1

—A /Q a(x) (VG (un (x)) — & (un(x)) (un(x))) dx = K1(; — D)lluall?,

for some ¢; > 0. Since v > p, this implies that (,) is bounded. Now, by simple
computation we can prove {u, } converges strongly to u in W'” (R). Consequently, J;,
satisfies (PS)-condition. Thus, by the classical theorem of Ambrosetti and Rabinowitz
[8] we establish a nonnegative critical point u, of J; such that J; (uy) > J; (u1). Since
g(0) # 0, u, is positive. Hence, u; and u, are two distinct positive weak solutions
of (1) and the proof is completed.

Remark 6 The non-triviality of the second weak solution ensured by Theorem 9 can
be achieved also in the case g(0) = 0 requiring the extra conditions at zero

G
lim sup ©) =400 and liminf

> —00. (12)
esor &7 §-0t &P

Indeed, let 0 < A < A* where A* = and o is a positive number

267 SUPy=0 G(y)
withol < 7 %y. Then there exists y > 0 such that = B C,, < 7 et and ¥ be
B

leh G(y)*
as given in the proof of Theorem 3. Due to Theorem 9, forevery A € (0, 1) there exists
a critical point of J; = @ — AW such that u;, € ®~'(—o0, ;) where r, = C,,y”

In particular, u; is a global minimum of the restriction of J; to @ ~!(—o0, r;). We
will prove that the function u, cannot be trivial. Let us show that

lim sup = +00. (13)

-0+ D@ )

Owing to the assumption (12), we can consider a sequence {£,} C R converging
to zero and two constants ¢, k (with ¢ > 0) such that llm,,_ﬂroo ‘;‘ﬁ’,’, = 400 and
G (&) > «|&|%P for every & € [0, (]. We consider a set .# C B of positive measure

and a function v € WP (R) such that

(k1) v(x) € [0, 1] for every x € R;
(k2) v(x) = 1 for every x € .Z.

Hence, fix N > 0 and consider a real positive number 1 with

pn [ a(x)dx + px fR\y [v(x)|Pdx

12|V

N <
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Then there is ny € N such that &, < ¢ and G(§,) > n|&,|? for every n > ny. Now,
for every n > ng, by the properties of the function v (that is 0 < &,v(¢) < ¢ for n
large enough), one has

wEy) GG [7a()dx + [p 5z a()GEv(x))dx
D) D (&)

P [ 7 a()dx + pi [, 7 [v(0)1Pdx
>

k2 lvil?

>

Since N could be arbitrarily large, we get lim,,_, o gg:s = +o00, from which (13)
clearly follows. So, there exists a sequence {w,} C X strongly converging to zero
such that, for z large enough, w, € @' (=00, r;) and J, (w,) = @ (w,) — AV (w,) <
0. Since u;, is a global minimum of the restriction of J, to @~ (—00, r;), we obtain
Jy(u;) < 0, so that u, is not trivial.

Below, we present one application of Theorem 9 as follows.

Example 2 Let K(t) =2 4+ tanh(t — 1) forall¢ € [0, 400], p =3, B = 1,a(x) =

e W for all x € R, g(t) =1+1° for all t € R. Thus k; =1, k, =3, |a|; =2,

a=2(1—e"),Cp =55

limg_ o+ l‘;—fﬁ = oo an taking into account that limg|—, .o EGng = limg|- 10 % =
I

and ¢ = /% Moreover, g(0) = 1 # 0, lim;_q+ gf—‘?} =

7 > 3 = p, by choosingv =7 > 3 = p, there exist p > 1 such that the assumption
(AR) in Theorem 9 is fulfilled for all £ > p. Hence, by applying Theorem 9 and
Remark 2, for every A > 0, problem (1), in this case possesses at least two positive
weak solutions.

Finally, as a consequence of Theorems 4 and 5, we can obtain the following existence
result of three solutions.

Theorem 10 Assume that g(0) # 0 and there exist four positive constants y, o, y
and & with 7 UZ <y <y <l such that G(Z) < m%g) and |a||G(y) <
oG (0) hold, and

i G(y) _ aliG(y) — 26 (9)

- - 14
K1yP K1yP — ko PP (14
. . _ T 1 kiyP—kole? Kk yr .
is satisfied. Then foreachh € A = (max {A, 2CT TahGG)-aG@) | pC] IallG(y)) with
M given in Theorem 5, problem (1) possesses at least three positive weak solutions
ug 5, o,y and iig 5 such that ||ug ;| < 2~ and llao ]l > o p CVB

Proof First,in view of (14), we have A # (. Next, fix A E A.Employing Theorem 4,
there is a positive weak solution ug ; such that |[ug ;|| < Cp , whichis alocal minimum
for the associated functional J;, while Theorem 5 ensures a positive weak solution

uo, such that ||ug || > 7 %% which is a local minimum for J,. Arguing as in the
B
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proof of Theorem 3, we observe that the functional J, is coercive, then it satisfies
the (PS)-condition. Hence, the conclusion follows from the mountain pass theorem
as given by Pucci and Serrin (see [29]).

Remark 7 We note that, the results of this article extends the results obtained in [14].
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Comparison of Known Existence Results )
for One-Dimensional Beam Models oo
of Suspension Bridges

Jakub Janousek

Abstract The aim of this paper is to present our recent existence and uniqueness
results for a one-dimensional damped model of a suspension bridge and compare
them to previous results for either damped or non-damped one-dimensional beam
models.

Keywords Suspension bridge - Beam equation - Weak solution

1 Introduction

Since the well-known collapse of Tacoma Narrows Bridge in 1940, efforts have
been made to explain this disaster by mathematical modelling of suspension bridges.
Starting with a very detailed report (see [2]) written by O. H. Amman, T. von Kdrméan
and G. B. Woodruff, continuing through the rest of the twentieth century and still
going on nowadays, the research has brought many approaches and important results.
Some of them were obtained via the nonlinear approach, i.e., considering the bridge’s
cables to have no restoring force when being compressed. The simplest way how to
describe the behaviour of such structure is to model the bridge as a one-dimensional
bending beam with simply supported ends connected to an unmovable object by a set
of nonlinear cables. These cables act as linear springs when being stretched, however,
as already mentioned, when being compressed, they have no restoring force.

In this text, we provide a brief summary of so far known results for these simple
one-dimensional beam models, all of them originating from a model presented by
A. C. Lazer and P. J. McKenna in [14], which has the following form:

g+ Pllers + By +kut =W(x) +ef(x, 1) in (=%, %) xR,

(£2.0) =y (£2.0) =0, uCr.t) = urot 420y,
u 7o) = Uy 7:8) =0, ulx,r) =u(x, 7).
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Here, the displacement u (x, t) of the roadbed is measured as positive in the downward
direction. Parameters o2, B and k represent elastic forces inside the beam, viscous
damping and the cables’ stiffness, respectively. The term W (x) stands for the weight
per unit length of the roadbed, whereas ef (x, r) represents some external forces
affecting the bridge. The nonlinear behaviour of the bridge’s cables is described by
the “positive part” function ()%,

ut(x,t) == max {u(x, 1), 0}.

Although it is true that such models are a major simplification of reality, they exhibit
some phenomena closely connected to the behaviour of real structures such as the
Golden Gate Bridge or even Tacoma Narrows itself (e.g., solutions of large amplitude
or multiplicity of solutions, see [7, 9, 10, 12, 14, 15]). This suggests that even
simple models yield relatively “enough” information about the suspension bridges’
behaviour. These models can be simply improved by adding more “input data”,
such as additional terms, equations or corresponding boundary conditions. For more
information, see, e.g., [9, 10] or [14].

Now let us return to simple one-dimensional models and start with the non-damped
ones.

2 Models Without Damping

During the 1980s, A. C. Lazer, P. J. McKenna and W. Walter were studying mul-
tiplicity of solutions for various types of equations without damping, which were
suggested as a possible tool for modelling suspension bridges (see, e.g. [13] or [15]).
Their work was followed by Q. H. Choi and T. Jung (see [4]) and L. Humphreys, who
also added some important numerical results in [12]. These results were extended
later by P. Drabek and G. Holubova in [7] by employing global bifurcation theory.
Generally, the results of all mentioned authors suggest that the more eigenvalues of
the corresponding linear beam operator are crossed by the stiffness parameter k, the
more solutions appear. Now, let us repeat all these results in more detail.

2.1 PDE Models

At first, in [13—15], models such as

Uy 4 0 lyry +hkut = W) +ef(x, 1) in (—%, %) x R,

u( e z) = Uyy (:t%, z) =0, ulx,t)=u(x,t+2m) @)
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were studied and the first results concerning multiplicity of solutions were obtained.
For simplification, the right-hand side was considered in a more specific form by
putting W(x) = 1. However, such a simplification is natural, since one expects that
the weight per unit length is (more or less) constant for real structures (see e.g. [15]).
After adding the symmetry conditions and normalizing by changing the variables,
the authors of [4, 7, 12, 15] treated the following version of (2):

27
u (:t%, t) = Uy (:t%, t) =0, 3)
ux,t) =u(—x,t) =ulx,—t) =ulx, t +m).

First of all, according to the paper [15], if k € (3, 15) then at least two solutions of
(3) exist. However, for k € (—1, 3), the problem (3) admits a unique solution.

Something more was proved in [4] by a variational reduction method. The authors
brought additional information for k € (3, 15). By their result, under this assumption
on k, the problem (3) has at least three solutions, two of them having large ampli-
tude. The idea of “more solutions appear when k crosses more eigenvalues of the
corresponding linear beam operator” was later numerically supported in [12]. The
author also presented a large-amplitude numerical solution which was obtained by
a mountain pass algorithm (cf. [5]).

Finally, the paper [7] comes with a different approach, looking at the problem (3)
with ¢ sufficiently small, or with ¢ = 0, i.e.,

Upp + Uprry HkuT™ =1 in (—%, %) x R,
u(j:%,t) = Uyy (j:%,t) =0, 4)
ulx,t) =u(—x,t) =ulx,—t) =ulx, t +m)
from the bifurcation theory point of view. This has brought also some other qualitative
information about the solution set. Namely, the authors of [7] proved the following
assertion.

Each eigenvalue of the corresponding linear problem with an odd multiplicity is a point of
global bifurcation and there exists a continuum of solutions, which is either unbounded,
or reaches another eigenvalue. Moreover, for k < —1, the problem (4) has no solution, for
k € (—1, 3) it has a unique, positive and stationary solution and for k € (3, 15) there exist
at least two solutions, one of them being positive and stationary and the other one sign
changing.

Still, some questions remained unanswered, e.g., whether for any k > 3 there exist
multiple solutions of (4). However, for some even more simplified ODE models, one
can obtain more precise results.
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2.2 ODE Models

It is possible to consider the terms of the right-hand side in (3) being W (x) = cosx
and ef (x, t) = ef(¢) cos x and look for no-nodal solutions u(x, t) = y(¢) cos x (see
[7] or [14]). When we insert this additional information into (3), we get an ODE
problem

V' y+kyT =1+ef(1),

)
y@) =y(=t) =yt +m).

Similar model has been dealt with in more detail in [14] and, again, the authors came
to the conclusion that more crossed eigenvalues (by k) of the corresponding linear
problem means more solutions of (5). Later, by taking ¢ sufficiently small or even
¢ = 01n (5) and thus treating the model

Y +y+kyt =1,

(6)
y@) =y(=t) =yt +m),

the authors of [7] obtained quite a strong result, which brings the following infor-
mation about the set of solutions:

There exists a sequence {k,, } where k,,, = 4m? — 1, m € NU {0}, such that (6) has exactly
2m + 1 solutions whenever k € (ky,, kpy41)-

Using global bifurcation theorems, the authors also provided a detailed description
of solution branches bifurcating from the points k,,, m > 1, which are the negatives
of the corresponding linear operator’s eigenvalues (see [7], Theorem 3.1).

Later, P. Drdabek and P. Necesal showed in [8] that the situation is not that simple,
when one considers the solution of (6) not 7-periodic, but generally T'-periodic.
Specifically,if T € (0, 7), the solutions are all uniformly bounded, whereasif T > &
then there exist solutions with an arbitrarily large amplitude. Moreover, there are blow
up points if T > 1, that is, in such case, there exist nonstationary solutions with their
amplitude approaching infinity. Further, the authors of [8] found out that this general
T -periodic problem corresponds to the Fuéik spectrum of

V' +ayt =By =0,

@)
y&)=y(=t)=yt+T)

in the following way:

For a fixed T, the point & is a blow up point if and only if the couple (k + 1, 1) belongs to
the Fucik spectrum of (7). Moreover, as T goes to infinity, the number of blow up points
increases.

The authors also obtained similar results for the right-hand side of (6) being in the
form 1 + ¢f (¢) for ¢ small enough (see [8] for details).
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3 A Damped Model

Now, we turn our attention to a slightly more realistic approach, that is, using a
one-dimensional model with viscous damping. Let us point out that the background
of this model is also in the work of Lazer and McKenna, who introduced it in [14].
The model has the form of a boundary value problem

Uyt + azuxxxx + ,But + kqu - h(xv [),
I/l(o,t)ZM(ﬂ,t)ZMxx(O,t)Zuxx(T[,t)ZO, (8)
ulx,t +2n) =u(lx,t), —00o <t < 400, x € (0, ),

where o > 0, 8 > 0 and k € R. The meaning of all parameters remains the same as
in (1), however, the right-hand side % (x, t) is considered in a more general form. This
model has not been treated in so much detail as the above mentioned non-damped
ones, but still some results have been obtained.

3.1 Previous Results

At the beginning of the 1990s, J. M. Alonso and R. Ortega studied the global asymp-
totic stability and uniqueness of a solution of a forced Newtonian system with dissi-
pation (see [1]), i.e.,

u"(t) +cu'(t) + Au+ VGu) = p(1), 9

where u : R — RV, ¢ > 0, A is a symmetric positive semidefinite matrix, G €
C*(R,R") and the right-hand side p € C(R,R") N L>®(R, RY). By considering
the right-hand side of (8) h(x, ) continuous and bounded, using the spatial dis-
cretization and the finite difference approach, the authors were able to interpret (8)
in view of (9) and obtained a uniqueness result, which is in the form of a sufficient
condition and gives the following information:

Ifk < 8% + 2a then (8) has a unique bounded solution that is exponentially asymptotically
stable.

This result partially coincides with one of the recent results obtained via a different
technique, that can be seen further in this text (see Theorem 1) or with more details
in[11].

Roughly at the same time, P. Drabek also studied the problem (8) (see [6]). He
was able to prove the existence of at least one weak solution for a more general
right-hand side than the one that was considered in [1]. Moreover, under additional
assumptions, he showed that when the external forces are sufficiently small, there
always exists a solution in some sense near to the equilibrium. The work of [6]
was followed by G. Tajcova in [16]. By using Banach Contraction Theorem, she
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determined a sufficient condition of the existence and uniqueness of a weak solution
from the space L?*(£2), where 2 = (0, ) x (0, 27). By employing this abstract
setting and considering the right-hand side to be an arbitrary function from L?(2),
the problem (8) can be transformed into an operator equation

Lu+kut =h, (10)
where the letter L stands for an L2(§2) abstract realization of the linear beam operator
U Uy 4 0 U + Bty

with the given periodic and boundary conditions. The spectrum o (L) of L consists
only of the eigenvalues

2m4—n2+i,3n, meN, nelZ. (11

Amn = O
Furthermore, for A ¢ o (L) the operator L — A1 is invertible (let us denote the corre-
sponding resolvent operator by L;l). This resolvent operator is linear, compact and
bounded (see [3], [6] or [16]) with

1¥2y (12)

) < Tsto o (LY
ist(A, o (L))

Since zero is obviously not an eigenvalue of L, the operator equation (10) can be
viewed as a fixed point problem

u=Ly"(—ku* +h), (13)

which is finally suitable for employing the Banach Contraction Theorem. By doing
this, G. Tajc¢ova obtained the following result (see [16]):

If |k| < dist(0, 0 (L)) then the problem (8) has a unique weak solution for an arbitrary
right-hand side / € L?(£2).

Unfortunately, such a result suggests, that the bridge is “safe enough” if its cables
are not really stiff, which does not often correspond well to reality and therefore it
gives an opportunity for possible improvement.

It is not necessary to change the whole approach. Instead of that, it is possible,
with some minor updates, to get new sufficient conditions, some of them being
less strict. These new conditions have been obtained in [11]. We used again the
same abstract tools and settings (cf. [3, 16]), however, by proceeding with some
new geometric arguments, we were able to extend the “uniqueness interval” for the
stiffness parameter k.
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3.2 Recent Results

The starting point for all upgrades in [11] is the fact that the eigenvalues (11) have
their geometric interpretation in the complex plane. Actually, they can be viewed as
intersections of parabolas

pm={(x,y): X=a2m4—y—}, m e N,

with lines parallel to the real axis, i.e.,

lh={(x.y): y=pn}, nel.

See Fig. 1 for illustration. With this interpretation, it is possible to work with the
distance of parameter A from the spectrum of L in a purely geometric way. So, the first
possible improvement is to make the uniqueness condition from [16] more “readable”
and easier to verify for specific input data. This can be done by determining for which
type of relation between the parameters « and § the smallest real eigenvalue A is
the closest one to the origin, i.e., when

dist(0, o (L)) = |A10] = . (14)
This equality means that the open disc Dy = {z € C : |z| < «?} does not contain

any of the eigenvalues A,,,. Since these eigenvalues can be identified as the above
described intersections, it is enough to check when the first parabola p; is outside

A y
I3

I

Pl 1) p3
h

NN
S

I3

Fig. 1 Illustration of the eigenvalues A, in the complex plane
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a b
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X X
Dy Dy
— ///
///// -
/ //

Fig. 2 Spectrum o (L) and disc Dy foraa = 1.1, B =1.1,ba = 1.1, 8 = 1.25. Here, o (L) N
Dy = {A1+1}in a, whereas 6 (L) N Dg =@ inb

Dy, or when the first pair of lines /1, [ does not go through D,. With this approach,
we can observe the following behaviour (see Fig. 2 for illustration):

e If 8 > o2, then no horizontal line [, n € Z, intersects Dy.

o If g > V2w, then no parabola p,,, m € N, intersects Dy.

o Ifo > land /202 — 1 < 8 < +/2«, then the only parabola intersecting Dy is p1,
but Ay, ¢ Dy foralln € Z.

Hence, if one of these relations holds then (14) is true, we obtain (in view of the
result from [16]) uniqueness of a weak solution for any k € (—a?, &?). Now, let us
summarize all discussed facts.

Proposition 1 ([11]) Let 8 > oczforoz < land B > ~/20% — 1 fora > 1. Then the
problem (8) has a unique weak solution u € H for an arbitrary right-hand side
h € H whenever k € (—a?, a?).

The reader should be aware of the fact, that although Proposition 1 brings a refining
and better readability of the original condition, itis in fact weaker. Indeed, it makes the
chain of implications, which lead to the existence and uniqueness of a weak solution,
longer. If the assumptions of Proposition 1 are satisfied, then |k| < dist(0, o (L)), then
the operator L, Y(—k(-)™ + h) is a contraction and then the existence and unique-
ness result is obtained. Further improvement can be reached by modification of the
operator equation (10) by an e-shift, i.e.,

Lu—cu+cu—+kut =h,
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thus getting an equation comprising an ¢-shifted operator
(L —eDu = —(su+ku") + h. (15)

The main reason of introducing this e-shift can be seen in Fig. 2. Actually, checking
the distance between the origin and o (L) is too restrictive and thanks to the shape of
the parabolas p,,, one would rather check the distance between o (L) and some other
point ¢ on the real axis, especially for ¢ < 0. However, some limited improvement
is possible even for ¢ > 0. Thus, by considering ¢ not to be an eigenvalue of L and
using the decomposition eu = eu™ — eu™ on the right hand side of (15), we get a
fixed point formulation

u=L"(—(k+eu +eu +h). (16)
Next, we again employ Banach Contraction Theorem together with the inequality
Il (k+&)(v" —u™) —e(™ —u7)|| < max{lk +el, lel}l] v —ull

and obtain that if
max{|k + ¢|, |e|} < dist(e, o (L)), 17

then the operator L' (—(k +¢&)()" +&()~ +h) is contractive. Since |k + ¢
expresses the distance between ¢ and —k and |e¢| the distance between ¢ and the
origin, the inequality (17) reads

dist(e, 0) < dist(e, o (L)) A dist(e, —k) < dist(e, o (L)).

Hence, it is optimal to consider k = —2¢, which implies |k + ¢| = |e|. Next, if
we find the maximal positive values ¢,,, €y such that dist(e, 0) < dist(e, o (L))
holds for any ¢ € (—e&y, &) then dist(e, —k) < dist(e, o (L)) is satisfied for any
k € (—2¢,, 2ep). We thus get a larger “uniqueness interval” for values of the stiff-
ness parameter k than the one obtained by the non-¢-shifted approach, however,
finding the values ¢,,, €) is not necessarily simple. The first way how to deal with
this problem is to find some ‘“‘safe” estimates, as it can be seen in the following
existence and uniqueness theorem, which brings a conclusion of the above sketched
discussion and is available together with the proof in [11].

Theorem 1 ([11]) Let ey > 0 and &, > 0 be the maximal real numbers for which
[zeC: (z—enl <ew) V(z+eul <em)}No(Ll) =0. (18)

Then the problem (8) has a unique weak solution u € H for an arbitrary right-hand
side h € H whenever k € (—2¢,,, 2ey). Moreover, the following estimates hold:
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2
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)

o?
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19)

(20)

Similarly as in the previous paragraph, with respect to the nature of the eigenvalues
Amn, it is sufficient to check whether the first parabola or the first pair of lines go
through the corresponding circles (see Figs.3 and 4 for illustration). The estimates
for ¢, &) based on this discussion are basic, since we do not question the position
of other parabolas and pairs of lines, and can be improved. There is also another
possibility, that is, to avoid any estimating and instead of that to compute the values
em, €y directly via an algorithm working for specific given setting of « and 8.
First, let us briefly mention the possibilities of improving the estimates &,, and &,;.
By a thorough checking of the parabolas p; and p,, we find out that for a? < 1and
B < ﬁ we may construct a disc touching the origin and p, with no eigenvalues

|
gl L)

Az

Fig. 3 The values &,,, £y for 2(1 — «a) < B < « and the corresponding “safe” discs, where none

of the eigenvalues may appear
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Iy

1

Fig. 4 The values &,,, £y and the corresponding “safe” discs, where none of the eigenvalues may

2 . . o
appear, however, now for the case 5~ < B < 2(1 — «), when the first pair of lines gains importance.
Here, )7, and &, , stand for the more restrictive estimates, which would have been obtained by
checking the position of the first parabola p

lying on p; in its interior. In this case, we can improve the estimate, which is then in
the form gy, > ey = SO"SZ—J”gZ

By trying to check the position of more parabolas and lines, we can obtain more
precise estimates, but for the price of getting more and more complicated conditions
on « and B. In order to avoid that, we may proceed via the above suggested algorithm
and find the precise optimal values ¢,,, €)s. The algorithm can be described in four
steps (cf. [11]):

1. Put Aope = Ay, With ng = | + 1]. (Here, |-] denotes the integer part of a real
number, and Aj,, is the closest eigenvalue to the imaginary axis with a negative
real part on the parabola p;.)

2. Find an open disc D with the center on the real axis, whose boundary is going
through an eigenvalue A, and the origin, i.e., D = {z € C; |z + &p| < ep} with

|Dopt]?

&p= —F————.
2|Re (hopo) |

3. If there are no eigenvalues inside D, put &) = &p and quit, in the other case

find indexes M = max{m : A,,, € D} and N = min{n : Ay, € D}, i.e., find the

indexes of such an eigenvalue with a negative real part inside D, which is the
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closest one to the imaginary axis and lies on the parabola, whose “branches” are
the furthest from the real axis.
4. Put Ao = Ay and go back to Step 2.

Notice that in the case of ¢,, we can proceed similarly. Now, let us show an example,
which comprises the usage of all tools presented in this section.

Example 1 Let s € N be arbitrary and put « =5, f = % Here, the refining of
previous results, i.e., Proposition 1, gives no information about solvability of
(8), since o > 1 and B <1 <+/2a? — 1. However, since s € N, A, =0 +1,
and the open disc D = {z € C; |z| < 1} contains no other eigenvalue A,,, (i.e.,
MinyeN.nez [Amn| = |A15s] = 1), the original general result from [16] guarantees the
existence and uniqueness of a weak solution of (8) for an arbitrary right-hand side
h € H wheneverk € (—1,1).

By applying Theorem 1, the interval (—1, 1) can be enlarged. It is easy to see,
that for s = 1 the estimates (19), (20) yield k € (—a?, 208 + B*) = (-1, 3), and
fors > 2 we obtain k € (—2aB + B2, 208 + B%) = (—2+ L, 2+ ).

Note that these uniqueness intervals are twice as large as the original one. More-
over, e.g., for s = 1, the closest eigenvalue to the imaginary axis with a negative
real part on p; is A» = —3 + 2i and the disc D, whose boundary is passing through
it, contains no other eigenvalue in its interior. Hence, using our algorithm, we get
ey = Ep = m‘i‘—al)l = 12 and the uniqueness result holds for any k € (—1, £).
Remark 1 Although it is questionable to compare results for non-damped and
damped models, we may observe the following facts. Looking at Example 1 with
using the estimates for s = 1 and at the result [7] for (3) and (4), we get the same
uniqueness interval (—1, 3). If we use our algorithm, the uniqueness interval is larger:
(—1,13/3). This indeed suggests, that adding the damping term into the model may
improve the “uniqueness behaviour” of it. For better illustration, we may consider
a =1 and B > 1. By employing our estimates &,,, &), we obtain the uniqueness
result for any k € (—1, 28 + ,32), where 28 + B2 > 3, i.e., for 3 < k < 15 without
damping, there are more solutions guaranteed, but possibly a unique solution with
sufficient damping added.
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A Certain Class of Harmonic Mappings )
Related to Functions of Bounded Radius e
Rotation

Yasemin Kahramaner, Yasar Polatoglu and Arzu Yemisci Sen

Abstract Let R; be the class of functions with bounded radius rotation and let
Sy be the class of sense-preserving harmonic mappings. In the present paper we
investigate a certain class of harmonic mappings related to the function of bounded
radius rotation.

Keywords Harmonic mapping + Bounded radius rotation + Distortion theorem -
Growth theorem and radius of starlikeness
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1 Introduction

Let A be the class of functions in the open unit disc D that are normalized with
h(0) =0, 4'(0) = 1, then a function h(z) € A is called convex or starlike if it maps
D onto a convex or starlike region, respectively. Corresponding classes are denoted
by C and S*. It is well known that C C S*, that both are subclasses of the univalent
functions and have the following analytical representations.

h(z)eC<:>R6<1+th(Z)> >0, zeD 1)
h'(z)
and Y
h(z) € §* — Re(zﬁ) >0, zeD 2)
h(z)
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More on these class can be found in [2]. Let 4(z) be an element of A. If there is a

function s(z) in C such that

n(z

Re( (Z)> >0, zeD (3)
s'(2)

then A (z) is called close-to-convex function in D and the class of such functions is
denoted by CC.

A function analytic and locally univalent in a given simply connected domain is
said to be of bounded boundary rotation if its range has bounded boundary rotation
which is defined as the total variation of the direction angle of the tangent to the
boundary curve under a complete circuit. Let Vi denote the class of functions h(z) €
A which maps D conformally onto an image domain of boundary rotation at most
k. The class of functions of bounded boundary rotation was introduced by Loewner
[5]1in 1917 and was developed by Paatero [6, 7] who systematically developed their
properties and made an exhaustive study of the class V. Paatero has shown that
h(z) € Vi if and only if

27
h'(z) = Exp |:—/ log (1 —ze™"") du(t)] , 4)
0

where 1(¢) is real-valued function of bounded variation for which

27 27
/ du(t) =2, / ldp()] < k 4)
0 0

for fixed k > 2 it can also be expressed as

2
/()

Clearly, if k; < k, then Vi, C Vi, that is the class V; obviously expands on k
increases. V5 is the class of C of convex univalent functions. Paatero showed that
V4 C S, where S is the class of normalized univalent functions [6, 7]. Later Pinchuk
proved that V} are close-to convex functions in D if 2 < k < 4 [8].

Let R, denote the class of analytic functions f of the form f(z) = z + a»z> +
a3z> + - - - having the representation

(zh'(z))
h'(z)

Re df <2kmw, z= re'’. (6)

27
f(z) = zExp [—/ log (1 —ze™") d,u(t)j| , (7)
0

where p(¢) is given in (5). We note that the class R; was introduced by Pinchuk and
Pinchuk showed that Alexander type relation between the classes V; and R exists,

heVyszh(2) € Ry
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Ry consists of those function # which satisfy

/ZW
0

Geometrically, the condition is that the total variation of angle between radius vector
fre 7y makes with positive real axis is bounded k7. Thus, Ry is the class of functions
of bounded radius rotation bounded by k7, therefore R; generalizes the starlike
functions.

Py denote the class of functions p(0) = 1 analytic in D and having representation

2m —it
1+ ze
@) = / ) ©)
0 1— ze
where pu(¢) is given in (5). Clearly, P, = P where P is the class of analytic functions

with positive real part. For more details see [6].
From (9), one can easily find that p(z) € Py can also written by

ol (ret?)

R -
e(re e

)‘d&gkmr< 1,z =ré?. (8)

1

_ k k1 D 10
p() = (4_1 + 5) pi1(z) — (4_1 - 5) p2(2), z € (10)

where p;(z), p2(z) € P. Pinchuk [8] has shown that the classes V; and R; can be
defined by using the class Py as gives below

h/ /
hevk©%epk (11)

and W)
heR, Zh(s cp (12)

A planar harmonic mapping in the open unit disc ID is a complex-valued harmonic
function f which maps I onto the some planar domain f(ID). Since D is a simply
connected domain, the mapping f has a canonical decomposition f = h(z) + ¢(z)
where /1 (z) and g(z) are analytic in D and have the following power series expansions

oo [o.¢]
h() =) @, 9@ =) b2
n=0 n=0

where a,,b, € C,n=0,1,2,3,.... As usual we call i(z) is analytic part of f
and g(z) is co-analytic part of f. An elegant and complete account of the theory of
harmonic mappings are given in Duren’s monograph [1]. Lewy [4] proved in 1936
that the harmonic mapping f is locally univalent in D if and only if its Jacobian
Jr =W (2))* — |¢'(z)|* is different from zero in D. In view of this result, locally
univalent harmonic mappings in the open unit disc D are either sense-preserving if
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|g'(2)| < |W(z)]in D, or sense-reversing if |¢'(z)| > |h'(z)| in D. Through this paper
we will restrict ourselves to the study of sense- preserving harmonic mappings. We
also note that f = h(z) + g(2) is sense-preserving in D if and only if 4’ (z) does not
vanish in D and the second dilatation w(z) = (%) has the property |w(z)| < 1 for
all z € D. Therefore the class of all sense-preserving harmonic mappings in the open
unit disc D withay = 0, by = 0, a; = 1 will be denoted by Sy . Thus Sy contains the
standard class S of univalent analytic functions. The family of all mappings f € Sy
with the additional property ¢'(0) = 0, i.e., by = 0 is denoted by Sg,. Hence it is
clear that S C 8(121 C Sy (see [2]).

Let i, g € A, then we say that & is subordinate to g, written as & < ¢ if there
exists a Schwarz function ¢ € Q (z € D) such that h(z) = g(¢(z)), z € D. We also
note that if g univalent in D, then & < g if and only if £(0) = ¢(0), k(D) C g(D)
implies 2(D,) C g(D,), where D, = {z : |z] < 7,0 <r < 1} (see [2]).

2 Main Results

Lemma 1 Let p(z) be an element of Py, then

km
<
—1—r2

1+
‘p(z)— -

13)

Proof Robertson [9] proved that if h(z) € Vi, then

kr
172

f//(z) B 2,.2
) 1-=r2

‘z
Therefore the relation can be written in the following form,

km
172

'@, 140’
‘(l—i-zf,(z))— 2

(14)

Using the definition of the class V;, we obtain (13).

Corollary 1 Let p(z) be an element of Py, then

1 —kr +r? 1+ kr + r2

<Pl = —— (15)

1—k 2 1+k 2
—r

1—r
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Theorem 1 Let h(z) be an element of Ry, then

r r

G <1h(2)| < e (17)
(1—r) (1+ ryz (1—r)yz (1+r)

Proof Let h(z) be an element of Ry. Using the definition of R; and P, and Lemma
1, then we can write

n 1+7r2 kr
‘Zh((zz))_ 11Lr2 D (1%)
The inequality (18) can be written in the form
_ 2 ’ 2
Since ,
e };l((zz)) = r.%loglh(z)l
Thus we have . 5 |2
r(l—irZ; < Glogh(@l = — 20)
Integrating both sides (20), we get (17).
Corollary 2 For k = 2, we obtain
r
Tl (z)|_(1 s
This is well known growth theorem for starlike functions [2].
Corollary 3 Let h(z) be an element of Ry, then
— 2 2
a- 1r)2—k§r(1+4:r)2+§ =IE= a- lr)j;kér(::rﬁ—é @D
Proof Since
R 1+r? kr
‘Zh(z) ] R
Then we have
LIl o < ot = L 22)

Using Theorem 1 in the inequality (22), we get (21).
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Corollary 4 For k = 2, we obtain

14+r
1-1r)3

L
(Itrp ==
This is well known distortion theorem for starlike functions [2].

‘We note that all results are sharp because of extremal function is

3 Application to Harmonic Mapping

We now consider the subclass of harmonic mapping,

q'(2) 1+ Az
< bl
h'(z) 1+ Bz

SHRk(A,B)={f=h(z)+ﬁ:w(z)= ,h(z)eRk}

In this section we will investigate the subclass Syg, (A, B).

Theorem 2 Let f = h(z) + g(z) be an element of Sy, (A, B), then

g9 (2) b 14+ Az

< 23
W) 1+ Bz )
Proof We define the function ¢ by
I+A
90 _, 14+46() o

hz) 1+ Bo@)

then ¢ is analytic in D and

14+ A¢p(0)

9)
"1+ Bo(0)

) = ¢(0)=0

1=

z=0

On the other hand, if we take derivative from (24) and after simple calculations we
get

g@ _ b1<1 +A¢(@) | (A—B)zd'(z) h(z) ) (25)

W@ \1+Bo)  (1+Bo()? zh'(z)

One can easily conclude that the subordination (23) is equivalent to |¢(z)| < 1 for
all z € D.
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Since h(z) € Ry, then the boundary value of z% is

h'(z) 1+ kret? + 2

h T 1 (20

and Jack lemma says that "Let ¢(z) be analytic in D with ¢(0) = 0. If |¢(z)] attains
its maximum value on the circle |z| = r at a point zo, then we have

209 (z0) = md(zg), m > 1.

Considering Jack lemma, (25) and (26), then we have

9 _ (1 +Az0) | (A= B)z¢/(z0) 1 +kre” +r2>
] .

R(z0)  \1+Bo(zo) = (1+ Bod(z0)?  1—1r2
This shows that (z)
g (20
= D,
wizo) = 5 ¢ w(d)

where D, = {z : |z| < r < 1}. This is conradiction with (23). Then |¢(z)| < 1 for
all z € D.

Corollary 5 Let f = h(z) + g(z) be an element of Sug, (A, B), then

L—Ar  1—kr+4r? , I+ Ar  1+kr41r2
b1 T S S 1@ = 1bi Tk T
IL—=Br (1 —r2:1+rr: IL+Br(1—r*:(1+r)?:
1—Ar r 1+ Ar r
b o <lg@I=<1b — -
| 1|1—Br(1_r)%(1+r)¥ 9@ = 1|1+Br A—r5+r7
(28)
Proof Since Z/% < b % and % < b % then using subordination principle,
we obtain
b2 @) < 1@ < by i ) 29)
T L P
1— Ar 1+ Ar
b h < <1b h 30
|1|1_Br| (Z)|_|9(2)|_|1|1+Br| @ (30)

Using Theorem 1 and Corollary 3 in (29) and (30), we get (27) and (28).
Theorem 3 Let f = h(z) + ﬁ be an element of Sy, (A, B), then

|b1| —r _ by +r

- < 31
T u Gh
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This inequality is sharp because the extremal function is

w(z) = g _ @
W@ 1+bz
Proof Since ,
w(0) = % T b
then the function o w(z) — w(0)
) = 2wl
1 —wO)w(z)

satisfies the conditions Schwarz lemma. Using the subordination

9@  bi+9@

_ _ _ 9@ . by +z
h'(@@) 1+ big(z)

W) W@  1+biz

w(z)

On the other hand the transformation (24%) maps |z| = r onto the disc with the

1+bz
2 2 . _ 2
centre C(r) = (%, %) and the radius p(r) = (ll_llflll‘zr){ , therefore we can

write

bid—=r’) | _ d=[bP)r
L= 1[byPr2| = 1= |by[?r?

w(z) —

which gives (31).

Corollary 6 Let f = h(z) + g(2) be an element of Syg, (A, B), then

(I —r)(1 + [b1]) (I +r)(L+1b1])
BT §(1+|w(Z)|)S—1+|bl|r (32)
(1 =r)(1 —1|bi]) (1 +r)(1 = 1b1])
BT = =|w@) = T (33)

This corollary is consequence of Theorem 3.

Corollary 7 Let f = h(z) + g(z) be an element of Sy, (A, B), then
Tro =W @P =g @F = W @) — lw@h @)
T =N @QFPA = w@)]?) (34)
()] = 19" @) = @] — @I @D = h@I1 - w35

W' @] +19' @] = 11 ()] + WA (@) = [F @I + [w@)) (36)
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Using (34), (35) and (36) and related theorem and corrollaries, we obtain several
inequlities of f = h(z) + g(z) € Swur, (A, B). At the same time if we give special
values to A and B, we obtain new results of the subclasses of Sug, (A, B).

The special values of A and B are

()A=1,B=—1, (i)A=(1—-2a),B=—-1,0<a <1, (ii)A=1,B=0

1 1
(ivvV A=a,B =0, (v)A:l,B:—1+M,M>f wi)A=a,B=—-a,0<a<l.

o
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Entropy of Nonautonomous Dynamical m
Systems e

Christoph Kawan

Abstract Different notions of entropy play a fundamental role in the classical theory
of dynamical systems. Unlike many other concepts used to analyze autonomous
dynamics, both measure-theoretic and topological entropy can be extended quite
naturally to discrete-time nonautonomous dynamical systems given in the process
formulation. This paper provides an overview of the author’s work on this subject.
Also an example is presented that has not appeared before in the literature.

Keywords Nonautonomous dynamical system - Topological entropy -
Measure-theoretic entropy + Variational principle

1 Introduction

In the 1950s, Kolmogorov and Sinai established the concept of measure-theoretic (or
metric) entropy, based on Shannon entropy from information theory, as an invariant
for measure-preserving maps on probability spaces. This invariant was used, e.g.,
by Ornstein [17] to classify Bernoulli shifts. Some years later, Adler, Konheim and
McAndrew [1] defined in strict analogy a notion of entropy for continuous maps on
compact spaces. They already conjectured that both entropy notions are related to
each other in the sense of a variational principle, i.e., the topological entropy equals
the supremum over all measure-theoretic entropies (supremizing over all invariant
Borel probability measures). This was proved not much later by Goodman, Goodwyn
and Dinaburg [5, 7, 9].

In the theory of dynamical systems, developed in the ensuing decades, both notions
of entropy play a fundamental role as it turned out that they are related to many
other dynamical characteristics such as Lyapunov exponents, dimensions of invariant
measures and invariant sets and growth rates of periodic orbits, and also to the
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existence of horseshoes. Moreover, entropy has become a central concept in a branch
of the topological theory of dynamical systems dedicated to the question of how well
a dynamical system can be ‘digitalized’, i.e., modeled by a symbolic dynamical
system [6].

Motivated by the study of triangular maps, Kolyada and Snoha [14] extended
the notion of topological entropy to nonautonomous systems given by a sequence
of continuous maps on a compact metric space. Together with Misiurewicz, they
generalized this concept to sequences of maps between possibly different metric
spaces in [15] and proved analogues of the Misiurewicz—Szlenk formula for the
entropy of piecewise monotone interval maps. Further work on topological entropy
of nonautonomous systems has been done in [18, 20-25] by several researchers with
different motivations and partially independently of [14, 15]. An essential difference
to the classical theory that should be mentioned is that the nonautonomous version
of topological entropy is not a purely topological quantity. In fact, it depends on the
sequence of metrics imposed on the time-varying state space.

Concepts of measure-theoretic entropy for sequences of maps were first intro-
duced in the papers [4, 10, 25]. While [4, 25] require that all maps in the sequence
preserve the same measure, a very restrictive condition, the approach in [10] is
completely general. The invariant measure now becomes a sequence (i,)nez, Of
measures so that (f,,)«i, = W, for the given sequence of maps f,,. To introduce a
reasonable notion of entropy in this general context, an additional structure (called
an admissible class) needs to be imposed on the system, consisting in a family of
sequences of measurable partitions. This family has to satisfy certain axioms in order
to obtain structural results such as a power rule and invariance under a reasonably
general class of transformations.

In the topological framework, a relation between the topological and the measure-
theoretic entropy can be established through the definition of a suitable admissible
class adapted to the metric space structure. We call this class the Misiurewicz class,
since it allows for an easy adaptation of Misiurewicz’s proof of the variational princi-
ple [19] to show that the measure-theoretic entropy is bounded above by the topolog-
ical entropy. In the classical case of a single map, the entropy computed with respect
to the Misiurewicz class reduces again to the Kolmogorov-Sinai measure-theoretic
entropy.

It is still unclear whether a full variational principle holds in this context. One
obstruction to a proof, amongst others, is that the Misiurewicz class might not contain
elements of arbitrarily small diameter, in general. Some sufficient conditions for the
existence of such sequences of small-diameter partitions have been identified in [13],
but a general approach to this problem is still missing.

The paper is organized as follows. In Sect. 2, we motivate the entropy theory for
nonautonomous dynamical systems by applications in networked control. Section 3
explains the entropy theory developed in [10, 11, 13-15], including the nonau-
tonomous versions of topological and measure-theoretic entropy and their relation.
Finally, an example for a system satisfying a full variational principle is presented
in Sect. 4.
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2 Motivation from Networked Control

The author’s central motivation for the development of a nonautonomous entropy the-
ory comes from problems arising in networked control. Networked control systems
(NCS) are spatially distributed systems whose components (sensors, controllers and
actuators) share a common digital communication network. Examples can be found
in vehicle tracking, underwater communications for remotely controlled surveil-
lance and rescue submarines, remote surgery, space exploration and aircraft design.
Another large field of applications can be found in modern industrial systems, where
industrial production is combined with information and communication technology
(‘Industry 4.0’). A fundamental problem in this field is to determine the minimal
requirements on the communication network so that a specified control objective
can be achieved.

The simplest model of an NCS consists of a single feedback loop containing a
finite-capacity channel which transmits state information acquired by a sensor from
a coder to the controller (see Fig. ). The first task of the controller, before deciding
on the control action, often consists in the computation of a state estimate. If the
system is autonomous, it has been shown in [16] that the smallest channel capacity
above which a state estimation of arbitrary precision can be achieved is given by the
topological entropy of the system. If the problem setup is slightly changed, time-
dependencies of many different sorts can appear. Here are some examples:

e Non-invariance of the region of relevant initial states leads to a time-dependent
state space.

e The requirement of an exponential improvement of the estimate over time leads
to a time-dependent metric on the state space.

e In a stochastic formulation of the problem, non-invariance of the distribution of
Xo (the initial state) leads to a time-dependent probability measure.

e Time-varying coding policies lead to time-dependent partitions of the state space
(with respect to which entropy needs to be computed).

The entropy theory described in this paper is sufficiently general to handle all of these
time-dependencies. A first application to a state estimation problem can be found in
[12].

q 3 Poq
— Coder | —: Channel ]

—> | Controller | ——

Plant

A

Fig. 1 The simplest model of an NCS
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3 Entropy Theory for Nonautonomous Systems

Notation: We write N = {1,2,3,...} and Z, = {0, 1,2, ...}. By 8, we denote the
Dirac measure concentrated at a point x. The cardinality of a finite set S is denoted by
#S.If A is a subset of a metric space (X, d), we write diamA = sup{d(x, y) : x,y €
A}. If of is a collection of sets A C X, we write diam.«/ = sup{diamA : A € &/}.
All logarithms are taken to the base 2.

A nonautonomous dynamical system, or briefly an NDS, is a pair (Xo, fo),
where Xoo = (X,,),ez, is asequence of sets and foo = (fu)nez, asequence of maps
fn: Xy = Xyy1.Foralli € Z, and n € N, we define

fPi=idy,, f'i= figner10--0 fizio fi, £ = (7L

We do not assume that the maps f; are invertible, so ;" is only applied to sets.
We speak of a topological NDS if each X, is a compact metric space (X, d,)
and the sequence f., is equicontinuous, i.e., for every ¢ > 0 there is § > 0 so that
dy(x,y) < & implies d,,+(f,(x), f,(y)) <eforanyn € Z, and x, y € X,,.

3.1 Topological Entropy

To define the topological entropy of a dynamical system, one needs to specify a
resolution on the state space. Usually, this resolution is given by a finite £ > 0 or by
an open cover. In the case of an NDS (X, fx), We have to consider a sequence of
open covers instead. Hence, let %, = (%,)nez, be a sequence so that %, is an open
cover of X, forevery n. Foralli € Z, and n € N define

n—1
wU" = \/ffj‘?/iﬂ‘,
j=0
which is the common refinement of the open covers f;j Y+ ; of X;, i.e., the open
cover whose elements are of the form
~1 —n+1
Uji n fz (Uji+1) n...n fz " (Uji+n71)’ Ujl € U.

Then the entropy of f w.r.t. % is defined by

1
h(foos o) := lim sup — log N(%4"), (D
n

n—00

where N () denotes the minimal cardinality of a finite subcover. Here, unlike in the
autonomous case, the lim sup in general is not a limit (see [ 14] for a counter-example).
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To define a notion of topological entropy, independent of a given resolution, one
usually takes the supremum over all resolutions. However, taking the supremum of
h(fso; %) over all sequences %, would result in a quantity that is usually +oo,
because a sequence of open covers whose diameters exponentially converge to zero
generates an increase of information that is not due to the dynamics of the system.
Hence, such sequences have to be excluded. An elegant way how to do this, is to
consider only sequences with Lebesgue numbers bounded away from zero. We thus
let £ (X ») denote the family of all such sequences and define the topological entropy
of (Xeos foo) as

hiop(foo) = sup  h(foo: Uso)-
Ul (Xoo)

This definition was first given in [15]. Some properties of /i, are the following:

e Alternative characterizations in terms of (n, ¢)-spanning or (n, €)-separated sets
can be given. For instance, a set £ C X is (n, &; fx)-spanning if for every
x € X there exists y € E such that d; (fi(x), f§(y)) < e for0 <i < n. Letting
r(n, &; foo) denote the minimal cardinality of an (n, €; f.)-spanning set,

1
hiop(foo) = liﬂ)l lim sup —logr(n, &; foo).- 2)
&€

n—oo N

o In the case where X, do and fo, are constant, /., ( foo) Teduces to the usual
notion of topological entropy for maps, which immediately follows from (2).

e The topological entropy /p( foo) also generalizes several other notions of entropy
studied before, as for instance fopological sequence entropy [8] and fopological
entropy for uniformly continuous maps on non-compact metric spaces [3].

e Fundamental properties of topological entropy for maps carry over to its nonau-
tonomous generalization, as for instance the power rule, which can be formulated
as follows. For m € N define the mth power system (X1, fImly by xlml .= x,
and fl™ := fm Then the following power rule holds:

Taop (F21) = m - higp(foo)-

Here the equicontinuity of f. is essential, see [14] for a counter-example in the
case when f is not equicontinuous.

3.2 Measure-Theoretic Entropy

To define measure-theoretic entropy, we consider systems given by measurable maps
fu @ Xu = X,q1 between probability spaces (X, %, U,), preserving the measures
W, in the sense that (f,).u, = w,41 for all n € Z,.. In this case, we also call the
Sequence (oo = (Uy)nez, an invariant measure sequence, or briefly an IMS for the
given NDS (X, foo), and we speak of a measure-theoretic NDS. Analogously to
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the topological framework, we define the entropy of f., w.r.t. a sequence of finite
measurable partitions &, of X,, by

. 1
h(foo; Do) = hy (foo; Poo) :=limsup —H,, (Z),

n—oo N

where &7 denotes the partition \/:’;01 fof" & and H,,(-) is the Shannon entropy of
a partition computed w.r.t. the measure /4.

To define measure-theoretic entropy independently of a sequence of partitions, we
have to follow a similar strategy as in the topological case. However, the concept of
Lebesgue numbers is not helpful here, and a similar construction of a family .2 (X ),
using the measures (,, does not lead to satisfying results. Looking at the topological
theory, one sees that results for topological entropy such as the power rule rely on
the equicontinuity of the sequence f,, and not on the mere continuity of each f,.
However, in the measure-theoretic framework considered here we do not require a
similar property.

One way to overcome these obstructions is the study of the essential properties
of the family .Z(X), defined in the topological framework, and enforcing these
properties in the measure-theoretic framework by an axiomatic definition. As it turns
out, the following definition leads to satisfying results.

Definition 1 A nonempty family & of sequences of finite measurable partitions for
X 1s called an admissible class if it satisfies the following axioms:

(A) Foreach P, = (Pp)nez, € & thereisabound N € N on the cardinality #27,,
ie,#%, < Nforalln € Z,.

B) If P = (Pnez, € € and Loy = (Z,),ez, is another sequence of finite
measurable partitions for X, such that each 2, is coarser than &7,, then
Dy € 8.

(©) If P = (P)nez. € € and m € N, then also the sequence @&" >, defined as
follows, is an element of &:

m—1

@énﬁ = \/ fniig@l‘_»rn, ne Z+.

i=0

Given an admissible class &, we can define the measure-theoretic entropy of fi,
w.r.t. this class as

he (foo) = he (foos hoo) = sup hy (foo; Poo).
P €S

Some elementary properties of admissible classes and their entropy are summa-
rized in the following proposition, cf. [10].
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Proposition 1 Given a measure-theoretic NDS, the following statements hold:

(i) There exists a maximal admissible class &y defined as the family of all
sequences Py, satisfying Axiom (A).
(ii) Unions and nonempty intersections of admissible classes are admissible classes.
(iii) For each @ # % C &nax there exists a smallest admissible class &(F) con-
taining 7, and its entropy satisfies

he7)(foo) = sup h(foo; Poo).
PeF

One might be tempted to regard the maximal admissible class &« as a canonical
admissible class for the definition of entropy. However, this class is usually useless,
because it contains two many elements. In [10, Example 18] it has been shown that
he,..(foo) = 00 whenever the maps f;, are bi-measurable and the probability spaces
X, are non-atomic.

As in the classical theory, we can describe the dependence of h( fy; Poo) ON
P € Emax, USINg a metric on &y, defined as

D(‘@O(h o@oo) ‘= sup (Hu,,(yﬂo@n) + H/l.,, (£n|<@n))

nelsy

with the conditional entropy H (+|-). In the classical case, D(, -) reduces to the well-
known Rokhlin metric. Just as in this case, the map &, — h( fo; Pso) is Lipschitz
continuous w.r.t. D with Lipschitz constant 1.

One particularly useful property of the measure-theoretic entropy w.r.t. an admis-
sible class is the following power rule, cf. [10, Proposition 25].

Proposition 2 Given a measure-theoretic NDS (X, foo) and m € N, consider the
mth power system (Xg’g], fgé"]). If & is an admissible class for (X oo, foo), we denote
by & the class of all sequences of partitions for X" which are defined by restricting
the sequences in & to the spaces in XC[;Z}], i, Poo ={Pplpez, € Eiff

9})2"] = {<@nm}nez+ e &,
Then &™) is an admissible class for (X, fI™) and

hem (fIy =m - he (fx) .

3.3 Measure-Theoretic Entropy for Topological NDS

The concept of measure-theoretic entropy described in the preceding subsection
appears to be too general and abstract for interesting applications. In this section, we
explain how measure-theoretic and topological entropy interact through the definition
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of a specific admissible class adapted to the metric space structure of a topological
NDS.
In the following, let (X, f) be a topological NDS and 11, an associated IMS.

Definition 2 The Misiurewicz class &y associated with (X, foo) and e iS
defined as follows. A sequence P, = (Z,)nez, of finite Borel partitions, &, =
{Pu1,..., Pug,}, belongs to &y if for every ¢ > O there are § > 0 and compact sets
K,; C P,;forn eZ;,1 <i <k,, such that the following holds for all n € Z,:

(a) :u'n(Pn,i\Kn,i) <e for 1 =< i < kn-
(b) Ifx € K, ;,y € K, j,i #j,thend,(x,y) > 6.

As it turns out, this definition in fact yields an admissible class that is well-adapted
to the metric space structure, as expressed by the following theorem.

Theorem 1 &\ is an admissible class with the following properties:

(i) évandthe associated entropy hs,,(foo; ILeo) are preserved by equi-conjugacies,
i.e., equicontinuous changes of coordinates.

(ii) In the autonomous case, i.e., when X, deo, foo and o are constant,
hey (foos Moo) Teduces to the usual Kolmogorov-Sinai measure-theoretic
entropy.

(iii) The inequality

hey (foos oo) = hiop(foo)

holds (establishing one part of the variational principle).

The proofs of (i) and (iii) can be found in [10, Propositions 26 and 27, Theorem 28]
and the proof of (ii) in [13, Corollary 3.1].

Since the definition of &) is tailored to the (first half of the) proof of the variational
principle due to Misiurewicz [19], proving (ii) is an easy task. However, it is not as
easy as it might seem to prove that &, generalizes the classical notion of measure-
theoretic entropy, since even if X, d, foo and pioo are assumed to be constant, we
still have to deal with non-constant sequences of partitions. The proof is accomplished
through the following result, cf. [13, Theorem 3.1].

Theorem 2 Assume that there exists a sequence (%Z;o)ke%r in &y with

lim sup diam%* = 0.
k—o00 n€Z+

Then the measure-theoretic entropy satisfies

i foot Hoo) = i h(foo: ) = SUP h(foc: ).
[e%e) €z,

In the autonomous case, it is clear that every constant sequence of partitions is con-
tained in &y, hence any refining sequence of partitions defines a sequence (%) keZo s



Entropy of Nonautonomous Dynamical Systems 187

as required in the theorem. Consequently, the theorem says that the entropy is already
determined on the constant sequences of partitions, so the classical definition of
Kolmogorov-Sinai entropy is retained.

In general, it is unclear whether the Misiurewicz class contains sequences as
required in Theorem 2. The following result, proved in [13], yields several sufficient
conditions in the case when the state space is time-invariant, cf. [13, Theorem 3.2].

Theorem 3 Assume that (X,, d,) = (X, d) for some compact metric space (X, d).
Then each of the following conditions guarantees that &y contains elements of arbi-
trarily (uniformly) small diameter:

(i) {un :n € Zy} is relatively compact in the strong topology on the space of
measures.

(ii) Foreverya > O there is a finite measurable partition <7 of X with diam.«/ < «
such that v(0.27) = 0 for all weak*-limits v of oo (This holds, in particular, if
there are only countably many non-equivalent weak*-limits.) In this case, &y
contains all constant sequences of partitions of the form (<, &, <, .. .).

(iii) X = [0, 11or X = S! and there exists a dense set D C X such thateveryx € D
satisfies v({x}) = 0 for all weak*-limits v of [hoo.

(iv) X has topological dimension zero.

In each case, the sequences of partitions can in fact be chosen constant.

The following theorem provides an example, where both topological and measure-
theoretic entropy can be computed, cf. [11, Theorem 5.4 and Theorem5.5].

Theorem 4 Let M be a compact Riemannian manifold and foo = (fu)nez, a
sequence of C*-expanding maps f, : M — M with expansion factors uniformly
bounded away from one, and C*-norms uniformly bounded. Then

hiop(foo) = lim sup — log/ | det D fy' (x)|dvol,

n—0o0

and for any smooth initial measure Lo, With [Loo = ((f§)x0)nez,

hey(foos Moo) = lim sup — / log | det D £ (x)|dvol.
M

n—o0o

The question under which conditions an NDS satisfies a full variational principle,
i.e.,

hiop(foo) = sup hgy (foos too)
Moo

is completely open. Only some examples are known which do not allow for a broad
generalization.
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4 An Example

In this section, we apply the theory explained above to an NDS which has been
introduced in [2] by Balibrea and Oprocha. We will need the following proposition
whose proof is completely analogous to the autonomous case, and hence is omitted.

Proposition 3 Let (Xoo, foo) be a topological NDS such that f, is (globally)
Lipschitz-continuous with Lipschitz constant Ly, for each n and X has finite upper
capacitive dimension dim¢ (Xg). Then

n—1

_ 1
uop(foe) < dime (Xo) - lim sup > " max{0,log L;}.

n— 00 ;
i=0

Now consider the NDS from [2, Theorem 4], which is constructed from the two
piecewise affine maps depicted in Fig. 2. More precisely, let my := 1 and m,, := 2"
for all n € N. Consider the maps f, g : [0, 1] — [0, 1] in Fig.2, and the NDS f., =
(fw)nez, defined by

) f ifi =m, for some n
fi= { g otherwise )

For the Lebesgue measure A on [0, 1] we have weak convergence i, = (fg')«A — do,
since every trajectory with initial value in [0, 1) converges to zero. More precisely,
this implies ¢ o fi(x) — @ (0) for every x € [0, 1) and every continuous function
¢ : [0, 1] — R. Hence, [ ¢du, = [¢o fi'dr — [ ¢(0)dA by the theorem of dom-
inated convergence. Consequently, by Theorem 3(ii), the admissible class & (tx0)

J~ J JT J- J JT
(a) Graph of f (b) Graphof g

Fig. 2 The maps f and g
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contains all constant sequences of partitions with §y-zero boundaries, in particular all
constant sequences &, = &, where & consists of nontrivial subintervals of [0, 1].

Let & be a partition of [0, 1] into intervals of length 1/(3k) for some k € N.
Then each interval in & is completely contained in J~ := [0, 1/3], J :=[1/3,2/3]
or J*:=[2/3,1] and

H, (Vfo_i@) = H, v ' PV \/ 2| = H \/ o'
i=0 i=0

i=my,_1+1 i=my,_1+1

Note that for m,,_y + 1 <i < m,, we have

—i i— _ -1 —(my_1+1 —(i—mpy_y—
f()lz(gl My lofm”,lo"'oflofo) :fo(m 1 )Og (i—mp_ 1)’

and hence, writing [, :== m, — m,_; — 1,
m, Iy
H, (\/ fo_l<@> > H, (fo(m'llﬂ) \/gigz) .
i=0 i=0

" & ' 2 thatcome fromintervals P € &
with P C J. Let us write &7 for the set of all elements in & contained in J. Then
the above can be estimated by

In
> H, (fo(mn1+1) \/giyl>

i=0

Now we look only at those members of \/f’

[ Z )\'(fo_(mn—l"rl)P) log)\’(fo_(mn—lﬂ’l)P).
Pe\/?;ogii'(//zj

Now we use that J is g-invariant and fo_(m”"H)(A) = f"(A) forany A C J and
n > 1. Moreover, we use that f~'(x) = (1/2)(x — (1/3)) + (2/3) on J. Together
with the fact that g_' is trivial on J T, this gives

m I}
. . X .
H, A R EAVI 1
’ (\/O /o ) - ( Ve )3’n2"3k %8 323k

i=0
= log (31” 2”3k) =1, log(3) + nlog(2) + log(3k).

Dividing by m,, and sending n to infinity, gives log(3), since

n nf_l I P 1
Mo ZMn-1 7 2 _p=2n o,
my n
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and n/m, — 0. Writing A, for the sequence A, := (')A, we obtain

hey (foor Aoo) = 10g(3).

Since L = 3 is a Lipschitz constant for both f and g, Proposition 3 yields

log(3) =< hey, (fooi Aoo) = hiop(foo) = 10g(3),

implying that for f, a full variational principle is satisfied with L, being an IMS
of maximal entropy.

Remark 1 It is easy to see that every trajectory { f' (x)},ez, With x # 1 converges
to 0. Hence, the example shows that both the measure-theoretic and the topological
entropy can capture transient chaotic behavior, which is not seen in the asymptotic
behavior of trajectories.
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A Proposal for an Application of a )
Max-Type Difference Equation to L
Epilepsy

David M. Chan, Candace M. Kent, Vlajko Koci¢ and Stevo Stevié¢

Abstract We propose, for the sake of dialogue, that the nonautomomous reciprocal
max-type difference equation,

A0 A AK)
Xni1 =max{ 2.,
Xn Xn—1 Xn—k

}, n=0,1,...,

where the parameters are positive periodic sequences and the initial conditions are
positive, when k = 1 may serve as a phenomenological model of seizure activity as
occurs in mesial (or middle) temporal lobe epilepsy.

Keywords Max-type difference equation - Heaviside function + Unbounded -
Non-persistent + Temporal lobe epilepsy

1 Introduction

Difference equations with the maximum function, unlike differential equations with
the maximum function, have up to now no known applications. The use of the max-
imum function with differential equations made its debut as early as the 1960s and
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such differential equations were of the form

xX'=f <t,x(t), mSa(x) x(s)) , tela,b),

where x e R", a >0, b < o0, S(t) € [o(t), T(t)] with o, T : R — R. These dif-
ferential equations were constructed with particular applications in mind such as
automatic control, optimal control theory, and vision to name a few (see [3] and the
references therein).

We propose, for the sake of dialogue, that the nonautomomous reciprocal max-
type difference equation,

AO® 4 A
x,Hl:max{ n_oo_r_o..., = }, n=0,1,..., (D
Xn  Xn—1 Xn—k

where the parameters {A!Y )}, are positive periodic sequences with periods p; €
{1,2, ...} and the initial conditions are positive, when k = 1 may serve as a phe-
nomenological model of seizure activity as occurs in mesial (or middle) temporal
lobe epilepsy.

When k = 1, Eq. (1) is written as

Apn B,
-anrl:max{_, }, n=0,1,.... 2)

Xn  Xn—1

A phenomenological model is one that “does not follow directly from theory” and
one whose variables do not directly represent measurable quantities, but rather is one
which attempts to “describe the empirical relationship of phenomena” (-Wikipedia).

The focus, or starting point, of a seizure in mesial temporal lobe epilepsy exists
in the middle structures of the temporal lobe, which include what is called the hip-
pocampus (bearing resemblance to a seahorse). The hippocampus is involved in
processing short- and long-term memory.

We ask the following questions.

Why use a difference equation at all to model particular physiological processes
of the human brain?

Human brain function, from that which is physiological to that which is higher-
level cognitive, can be viewed as recursive in nature. See, for example, the book by
Corballis [7].

Why use the max-type difference equation, Eq. (1), to model normal functions
of the human brain (e.g., the formation of memory) and abnormal function of the
human brain (specifically, seizures)?

The behavior of Eq. (1) is such that either every positive solution is eventually
periodic or every positive solution is unbounded (i.e., there exists a subsequence that
diverges to +00) and does not persist (i.e. there exists a subsequence that converges
to 0) (see [4, 9]). Afterall, under normal conditions, aggregates of neurons in the
human brain undergo oscillatory electrochemical activity. Broadly speaking, epilepsy
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is characterized by seemingly spontaneously occurring and intermittent seizures,
which, in turn, are characterized by a rapid spreading of hyperexcitability (i.e., being
easily excited) of neurons and hypersynchronization (i.e., oscillations in synchrony)
of activated neurons in certain regions of the brain, depending on the type of epilepsy.

Finally, why use Eq. (2) to model seizure activity in mesial temporal lobe epilepsy
(where Eq.(2) is Eq. (1) for k = 1)?

According to the papers by Cranston and Kent [9] and Kent and Radin [17], the
following can be said:

1. The smaller the delay k is in Eq. (1), the fewer the number of conditions on the
parameters there are that need to be satisfied in order for there to be unboundedness
and non-persistence of every solution of Eq. (1). Thus, the smaller the delay & is,
the “easier” it is for Eq. (1) to have every solution unbounded and not persist.

2. The larger the delay & is in Eq. (1), the more sparsely distributed those periods of
the parameters are that need to be avoided in order for there to be boundedness
and persistence of every solution of Eq. (1). Thus, the larger the delay & is, the
“easier” it is for Eq. (1) to have every solution bounded and persist and so be
eventually periodic.

2 Epilepsy: A Brief Synopsis

Epilepsy is actually a constellation of syndromes that are chronic and have in common
spontaneous seizures or unprovoked recurrent seizures (see [1, 5]). Lay persons often
use the term convulsion instead of seizure; but a convulsion is a specific type of
seizure, namely, one with a motor (i.e., movements) component.

Besides being characterized by recurrent seizures, epilepsy carries with it social
and psychological problems, and is often co-morbid with other medical conditions
(see, for example, [6]). Therefore, the most efficacious treatment is not simply with
anti-seizure drugs, also known as antiepileptic drugs (AEDs) (see Chap. 1 in [10]
and Chap. 121 in [11]), but drugs combined with a social support system and psy-
chotherapy.

We present the highlights of a 1981 International League Against Epilepsy (1981
ILAE) classification scheme of seizure types (see Chap.44 in [10]). Note that this
1981 classification was modified in 2001.

1. Partial Seizures. (These are called focal or local seizures in the 2001 classifica-
tion.) These seizures begin in one of the cerebral hemispheres of the brain, but
may eventually spread to both hemispheres. When consciousness is not lost, a
partial seizure is referred to as simple. When consciousness is lost, it is referred to
as complex, and is more likely to involve eventually both cerebral hemispheres.
Partial seizures include motor symptoms; somatosensory symptoms (e.g., audi-
tory and visual hallucinations); autonomic symptoms (e.g., pallor, sweating); and
psychic symptoms (e.g., impairment of higher cerebral function).
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2. Generalized Seizures. These seizures begin in both cerebral hemispheres and are
widespread. Consciousness is frequently lost. A typical example of generalized
seizures is petit mal or absence seizures, in which the epileptic individual loses
consciousness for a few seconds to half a minute, and appears as if he or she is
day dreaming.

3. Status Epilepticus. These seizures last for a long period of time and are closely
repetitive, with no recovery between seizures. Status epilepticus may be partial
or generalized, and can be fatal without intervention.

The state of a seizure also provides another classification of seizures [1]: the ictal
state, which is when the seizure is actually occurring; and the interictal state, the
period between seizures, which includes the recovery time. There is also the pre-ictal
state and the post-ictal state, whose details we omit.

Mesial temporal lobe epilepsy (MTLE), some aspects of which we will later
propose as being successfully represented by a modified version of Eq. (2), is one of
two forms of temporal lobe epilepsy (TLE), and involves the hippocampus, with or
without sclerosis (i.e., scarring), which is located in the middle part of the temporal
lobe [24]. The hippocampus is a part of the brain that resembles a seahorse and
plays an important role in memory processing, as alluded to earlier. In particular, the
hippocampus is important in synaptic plasticity (i.e., growth of neurons in making
connections with other neurons), long-term memory formation, and maintenance of
visuospatial working memory (i.e., the short-term maintenance and manipulation
of visual sensory input), sometimes performing these functions in connection with
such structures as the prefrontal cortex (i.e., the seat of impulse control and judgment,
among other functions) (see [2, 8, 12, 14, 18, 19, 21]).

MTLE also involves other structures that are part of the limbic system (the limbic
system has to do with human emotions, as well as other functions) [24]. Note that the
other form of TLE, referred to as neocortical temporal lobe epilepsy, has its seizure
focus located along the side or base of the temporal lobe [24]. TLE in general is the
most common form of epilepsy characterized by partial seizures [24].

3 Equation (2): Boundedness and Persistence Results

We begin by covering some sufficient conditions on the unboundedness and non-
persistence of Eq. (2).

Our first result is by Kent and Radin [17] and is on sufficient conditions on the
parameters {A,}°2, and {B,};2 for every positive solution {x,}52, of Eq.(2) to be
unbounded and not to persist, with {A,}°2, and { B, }°2, not necessarily periodic.

Theorem 1 [17] (Unbounded and Non-Persistent Solution) Let {x,}5> _, be a pos-
itive solution of Eq. (2). Suppose that there exists i € {0, 1, 2} such that

sup {A3l‘1+4+i cn= 03 17 .. } < inf {B3l’l+3+l s n= 07 17 H '} )
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and
sup{Bsptayi : n=0,1,...} <inf {A3,404;,: n=0,1,...}.

Then {x,};2 _, is unbounded and does not persist. In particular, {x,},- _, consists of
the following three convergent and divergent subsequences:

lim x3,424; =0,
n— o0

lim x3,434; = +00,
n—oo

lim  x3,444; = +00,
n— 00

with the subsequence {x3,,4;}.2 strictly decreasing to 0.

The next two results are also on sufficient conditions for every positive solution
{x,}02 _, of Eq.(2) to be unbounded and not to persist, only with these results {A,}°
and {B,}52, are positive periodic sequences with period p € {1,2,...} and q €
{1,2,...}, respectively.

Corollary 1 [17] (Period of {A,}°2, a Multiple of Three) In Eq.(2), let {A,}2, be
a positive periodic sequence with period p = 3k, k € {1,2, ...}, and let {B,}° , be a
positive periodic sequence with periodq € {1,2, ...} suchthat forsomei € {0, 1,2},

Azjyavi < Bo, By, ..., By—1 < Azjyoyi,

forall j =0,1, ...,k — 1. Then every positive solution of Eq.(2) is unbounded and
does not persist.

Corollary 2 [17] (Period of {B,};2, a Multiple of Three) In Eq.(2), let {B,}3>, be
a positive periodic sequence with periodq = 3¢, £ € {1,2, ...}, and let {A,}7°, bea
positive periodic sequence withperiod p € {1, 2, ...} suchthat for somei € {0, 1,2},

B3jiari < Ao, Ar, ..o, Aply < B3jiay,

forall j =0,1,...,¢— 1. Then every positive solution of Eq. (2) is unbounded and
does not persist.

Our last three results are on sufficient conditions for every positive solution of
Eq. (1) or (2) to be bounded and persist (and therefore to be eventually periodic).

Theorem 2 [17] (Bounded and Persistent Solutions) In Eq.(2), let {A,};2,
and {B,};2, be positive periodic sequences with periods p € {1,2,...} and
q € {1,2,...}, respectively. Suppose that neither p nor q is a multiple of three.
Then every positive solution of Eq. (2) is bounded and persists.

We generalize.
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Theorem 3 [9] (Boundedness and Persistence) In Eq.(I), let {AV}°° be pos-
itive periodic sequences with periods p; € {1,2,...}. Suppose that there exists
ie{l,2,...,k} such that the greatest common divisor gcd (k + 2, p; pr—i) = 1.
Then every solution of Eq. (1) is bounded and persists.

What will be specific to our model is the following.

Theorem 4 [16] In Eq.(2), let {A,};2, and { B, }.2, be positive periodic sequences
with period 2. Then every solution of Eq. (2) is bounded and persists, and, in partic-
ular, is eventually periodic with period 4.

4 A Proposal for a Model of Seizure Activity in MTLE

We propose, for the sake of dialogue, that a modified version of Eq.(2) serve as a
phenomenological model of seizure activity in MTLE.
The modified version of Eq. (2) is the difference equation

An Dn -H n Bn
an:max{ + (x), }, n=0,1,..., 3)
Xn Xn—1
where H (x) is the Heaviside function,
0,0<x <e,
H(x) = 4)

I, x > ¢,

with ¢ sufficiently small (i.e., ¢ < 1), and where the periodic parameters {A,}°,
{B.}o2, and {D,}°, will be specified below such that {A, + D,};2, and {B,}32,
satisfy conditions for unboundedness and non-persistence and {A,};° and {B,};2,
satisfy conditions for boundedness and persistence. Note that the role of the Heaviside
function is to halt temporarily the ongoing unbounded and non-persistent behavior
of solutions of Eq. (3). Motivated by numerical experiments, we call ¢ in Eq. (4) the
seizure threshold. The state variable, x,,, represents the density of activated neurons
in the middle of the temporal lobe, the region of the brain where seizures occur
in MTLE. The magnitudes of the three parameters, {A,}72, {B}o, and{D,}5,
represent the degree to which neurons are inherently hyperexcitable.

An activated neuron is a neuron in a depolarized state, i.e., the voltage gradient
across the membrane of the neuron is positive, compared to when the neuron is at
rest and the voltage gradient across its membrane is negative. Activation is always
followed immediately by deactivation, where the neuron ends up in a hyperpolarized
state, i.e., the voltage gradient across the membrane is negative and the neuron is
rendered temporarily refractory to further activation by incoming or afferent neurons.

The hallmarks of a seizure are hyperexcitability (easy activation of neurons) and
hypersynchronization (synchronization of activation and deactivation of neurons,
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with an increase of synchronization over time). The model, Eq. (3), when its param-
eters satisfy the sufficient conditions for unboundedness and non-persistence, has
these hallmarks: there are the three subsequences, {X3,424i}c o, {X3n43+i}oeg, and
{X3n44+i Joe g, Of the solution {x,}°°,, where, as mentioned before in Theorem 1, two
of which are tending to +o00 (representing hyperexcitability and increasing hypersyn-
chronization of activation), and one of which is strictly decreasing to O (representing
increasing hypersynchronization of deactivation).

We state a definition which will play an important part in Sects. 5 and 6 on symbolic
and numerical simulations.

Definition 1 (Ictal State) We define the period of time of duration of a seizure gener-
ated by the model, Eq. (3), 1.e., from onset to termination, as that period characterized
by the following:

(i) The subsequence {x3,12+4}n is strictly decreasing to 0.
(ii)) The terms of the three subsequences {x3,io4ilocgs {X3n+3+i}oeg, and
{X3natitoe satisfy the strict inequality

X3n424+i < X3n434i> X3n+4+i-

Remark 1 Note that discontinuation of ongoing strict decrease to O with the subse-
quence {x3,42+4i}oc leads to the discontinuation of ongoing unbounded growth of
the two subsequences {x3,431i}oc o and {X3,144i}o0 -

‘We next list conditions that we place on the parameters of our model, which are suf-
ficient for boundedness and persistence when H (x,) = 0, and that are sufficient for
unboundedness and non-persistence when H (x,) = 1. (Note that, for convenience,
we are going to let i = 0 in the three subsequences {x3,124i}50, {X3n43+i )5, and
{(X3n444i }Zi(y)

(CH {A,};2, and {B,};2, are both periodic with period 2. In this case, every
positive solution of

A B
Xn+1=max{—", . } n=0,1,...

Xn  Xn—1

(i.e., when H (x,) = 01in Eq.(3)), is bounded and persists, and, in fact, is periodic
with period 4. So, we expect that a seizure will terminate when H (x,,) = 0.

(C2) ({D,}:2, is periodic with period 3. Thus, {A, + D, };2, (when H(x,) = 1)
is periodic with period 6, which is a multiple of 3. Note that for m > 0,

Ay + Dy, n = 6m,
Al+D,n=6m+1,
_ AO+D2,n=6m+2,
An+Dn_ A1+D0,n=6m+3,
A0+D1,n=6m+4,
A1+ Dy, n =6m+5.
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This is one half of the sufficient conditions for unboundedness and non-persistence
taken from Corollary 1.
(C3) The two sets of inequalities

Ao+ Dy < By, By < Ay + D>, 5)

A1+ Dy < By, B <A1+ D,

hold. This is the second half of the sufficient conditions for unboundedness and

non-persistence taken from Corollary 1. Observe that these conditions imply fur-
ther that

Ao, Al, Dl < BQ, B]. (6)

It should be reiterated that Conditions (C2) and (C3) generate the three subse-
quences {X3,1+2}:O:0, {x3143 }gi(), and {x3n+4};.,i() such that

X302 4 0, X343 = +00, X344 —> +00

asn — oo (as long as H(x,) = 1).

S Symbolic Simulation of Seizure Activity with Eq. (3)

We now exemplify how the model (Eq.(3)) works by symbolically simulating the
occurrence of a seizure and its termination under a particular scenario of the following
conditions (so that we can make certain assumptions in the computation of terms of
the solution of Eq.(3)): we will assume that ¢ < 1, Ag, A; > 1, By, B; > 1, and
Dy, Dy, D, > 1, and the inequalities in Egs. (5) and (6) are close.

1. To begin the simulation of a seizure, we choose any initial values greater than
¢, and the resulting solution of Eq.(3) will begin its unbounded growth and its
non-persistent decay. However, because there is one subsequence, {x3,42},2,
that tends to 0, there must exist no > 0 such that

Xng+1 < €,
where x,,,41 € {x3,42}52, and where

{ Ang + Dno Bnu }

Xpp4l =MAX | ————, — ¢ .
xl‘l() xn()fl
Observe that H (x,,) = 1, since x,,4+; is extremely small (i.e., x,,+1 < & K< 1)
so that x,, (and x,,_;) must be extremely large (i.e., x,,, Xp,—1 > 1 > ¢€). Let
Xnot1 = > €.

2. We next have
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An0+1 Bn()+l An()+l Ano+1 + Dn()+l
Xpg42 = mMax , = < ,
o Xng o o

since « is extremely small, x,, is extremely large, and A, A; are close in value
to By, B;. Note that H (a) = 0, where a < &. Also notice that because

Apgi _ Ang+1 + Dygi1
o o

)

it appears as though ongoing unboundedness may be nearing a halt.
3. Then

’

Ano + Dn0+2 %} _ Bno

Xpo43 = mMax { ,
AnoJrl/a o

o

A110+1

since A,y+1 > 1 and o < 1 so that we can assume that is much larger

o
than « and that this difference outweighs what difference there may be between

A
Apn, + Dpy+2 and B,,. Note that H T+l notl

A
=1, where ——— > 1 > ¢. The
o

result here is something that we could have obtained without the Heaviside func-
tion incorporated in the model. In other words, here there is no indication that
unboundedness is nearing a halt.

4. Finally,

Ano+1 + Dno Bno+1 } > BI‘L()+1 > a,

Xpo+4 = Max { =
! Bno/a ’ An0+l/a Al’l0+l/a

no

where the last inequality is justified by Eq. (6). Note that H = 1. Since

o
Xno+4 is a term in the subsequence {x3,42}52,, which should be strictly decreasing
to 0 if non-persistence is occurring, we may say that ongoing non-persistence has
come to a halt, where we have x,,44 > «. Let x,,,14 = B > a. We then have one
of two situations:

Case 1. x,,44 = B < ¢ and H(B) = 0 with the result that

A, B, A A A D,
xn0+5=max{ °,¢}=max{ "”,oz}: 1o <<< M)
B B/ B B <«

Therefore, with x,,,14 and x,,,+5, we no longer have ongoing non-persistence
or ongoing unboundedness. So, by Definition 1, we can say that we are sim-
ulating being in an interictal state (i.e., the state between seizures) and may

remain in such a state or eventually have another seizure.
Case2. Xx,,44 = B > ¢ and H(B) = 1, with the result that

Ang + Drg+t -~ Buo ] — max { Ang + Dng41 ,a} _ Auw + Digt (<< Ang + Dug41 )
B Byy /o B B <a

Xno+5 = Max {
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where we have that « is extremely small, g is still small, and A,,, + Dy, 41 >

Ano + Dn()+l

1, so that we can assume that > «. Therefore, again, with x4

and x,,+5, we can say that ongoing non-persistence and unboundedness stop,
but only for a moment, for we also have x,,,14, x,,,+5 > €. Hence, there is a
short-lived interictal period. If the interictal period is almost nonexistent with a
second seizure developing almost immediately, we can say that we probably
are at the beginning of status epilepticus (i.e., the repetitive occurrence of
seizures with no opportunity to recover fully between them).

6 Numerical Simulations of Seizure Activity

In the following simulations we study (1) the relative duration of seizures, and (2) the
relative frequency of seizures as they correlate with the magnitudes of the parameters
{An}20s {Bali2y, and {D,}52,. See Figs. 1, 2, 3,4 and 5 at the end of this section.
Note the following, however: Figs. 1, 2, 3, 4 and 5 only roughly demonstrate the
salient observations referred to below. All observations in this section are actually
based on the multitude of data points which gave rise to Figs. 1, 2, 3,4 and 5.

The numerical simulations are created using Eq. (3) with the Heaviside function
defined by Eq. (4). In each figure we have the following:

1. The initial values are x_; = 0.5 and xy = 1.5.
2. e=1.

x(n)

0 10 20 30 40 50 60 70 80 90 100
n

Fig. 1 Time series plot x,, versus n. Ag = 0.1, A} =02, By =3,B; =4,Dp=1, D] =2, and
Dy, =4
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x(n)

0 10 20 30 40 50 60 70 80 90 100
n

Fig. 2 Time series plot x, versus n. Ag =5, Aj =6, Bo=7, B =8, Dy =1, D; =0.5, and
D, =4

60
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40
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x(n)

20

10

20 40 60 80 100 120 140 160 180 200
n

Fig. 3 Time series plot x,, versus n. Ag =21, A} =23, By =25,B; =27,Dy=1,D; = 1,and
D, =10
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Fig.4 Time series plot x,, versus n. Ag = 20, A} = 30, Bp = 40, B; = 50, Dy = 25, D; = 5, and
D, =35
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Fig.5 Time series plot x,, versusn. Ag = 0.1,A; = 0.2, Bo = 0.3, By = 0.4, Dy = 1, D; = 0.05,
and D, = 0.5



A Proposal for an Application of a Max-Type Difference Equation to Epilepsy 205

3. In each figure,

(a) the subsequence {x3,42}52, consists of the terms x, x5, x3, . .. of the solu-
tion {x,}72 s

(b) the subsequence {x3,43}5, consists of the terms x3, X¢, X9, ... of the solu-
tion {xn},c;o:();

(c) the subsequence {x3,44}52, consists of the terms x4, x7, X19, . . . of the solu-
tion {x,}52 .

We do not make specific measurements of seizure durations in time and seizure
frequencies of occurrence, but instead discuss relative seizure durations and fre-
quencies as we compare Figs. 1,2, 3, 4 and 5. We summarize our findings with each
figure:

Figurel. Here, A, < ¢ and B,, D,, > ¢. Seizure duration is relatively moderate,
but seizure frequency is relatively low. Note that the solution of Eq. (3) is even-
tually periodic with period 36 according to the data points underlying Fig. 1.
Additional symbolic hand computations indicate that, coincident with eventual
periodicity of the solution, the first parameter {A, + D, - H(x,)}52, in Eq.(3)
is eventually periodic (see Theorem 5 below) (of course the second parameter
{B,}:2, in Eq.(3) is periodic with period 2 from the beginning of the computa-
tion of terms).

Figure2. Here, A,, B, > ¢ and Dy = ¢, D| < ¢, and D, > ¢. Seizure duration
is relatively low and seizure frequency is relatively high. There is, however, no
evidence of eventual periodicity of the solution of Eq.(3) from the data points
underlying Fig. 2, although Fig.2 seems to suggest an “almost eventual periodic-
ity” of the solution.

Figure3. Here, A,, B, > ¢ and D, > ¢. Seizure duration and seizure frequency
are both relatively high. Figure 3 itself appears bounded from above and bounded
away from 0, and so we may say that the solution of Eq. (3) is perhaps bounded
and persistent (see Lemma 1).

Figure4. A,, B,, D, < ¢. Again, seizure duration and seizure frequency are both
relatively high. Figure4 itself appears bounded from above and bounded away
from 0, and so we may say that the solution of Eq.(3) is perhaps bounded and
persistent (see Lemma 1).

Figure5. Here, A,, B, < ¢ and Dy = ¢, D| < ¢, and D, < ¢, and, in this case,
by Definition 1, there is no seizure activity according to the data points underlying
Fig.5. In fact, according to the data points, the solution is eventually periodic with
period 4 and shows no ongoing unboundedness and ongoing non-persistence.
Indeed, this behavior is characteristic of Eq. (2),

A,+D,-0 B, }

Xp4+1 = mMax { P X
n n—1

and is in accordance with Theorem 4.
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The observations of Figs. 1, 2, 3, 4 and 5 along with their associated data points
suggest that the greater the magnitudes of the two parameters {A,}52, and {B,}2,
compared to the seizure threshold ¢ = 1, the greater the seizure duration and seizure
frequency. Also suggested is that if the three parameters {A,} 2, {B,},-,, and
{D,};2, are less than the seizure threshold & = 1, then there will be no seizure
activity.

Figures1, 2, 3, 4 and 5 and the data points associated with them additionally
indicate that the solutions of Eq.(3) are bounded and persist, and that furthermore
under certain circumstances the solutions are eventually periodic. Related to this
latter tentative conclusion, we have the following lemma and theorem:

Lemma 1 Consider Eq.(3) and suppose that the following hypotheses hold:

(HI) {A,}52, {Bn}2, are both positive periodic sequences with period 2.
(H2) {D,};2, is a positive periodic sequence with period 3.

(H3) The inequalities in Eq.(5) hold.

(H4) Bo, Bl > £.

(H5) e<1.

Then every positive solution of Eq.(3) is bounded and persists.

Proof We first prove a result that is a byproduct of the symbolic computations in
Sect. 5; namely, if x; > € {x3,42}00» Xi—1 € {X3043} g Xi € {X3p4a}reg-and x; 1 €
{xX3n12)52g, where x; 2, x;—1,x; > e and x; 4| = & < ¢, then x; 4 € {x3,12},5, and
Xitq > Xjqg)] = O

Specifically, let x;_» € {x3,42}52, and x;_» > € and let

Ai+D; B }

Xi+1 = max s
Xi Xi—1

where x;_1, x; are relatively large and greater than ¢ and x;; is relatively small and
less than €. Set x;+1 = @ < €. Then

Xi42 = max

I

Ait1 Biy Aiq Bty
, = or
o X o Xi

At Biy 0
> gor —— > &. Nextx;43 € {x3,44};o and

Xi

where we may or may not have

X;4+3 > &. Finally, either

{Ai-H +D; By } Biy
X414 = Max >

b p— > a?
Xig3 Aiyi/a Aiy1/a
where B;y1 > A;yq, Or
A1 +Di Big B
Xj44 = Max > =X >€&>ad.
i+4 s jl i
Xit3 Bii1/xi Bii1/xi
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Thus, x;44 € {X3n+2}3020 such that x; 14 > x;41.

Based upon the above finding, we look for the “smallest o that can be attained
such that every solution is bounded away from 0 by this “smallest «.” Indeed, there
exists m > 0 defined by

min {Ag + Dy, A1 + D1, Ao+ Do, A1 + Dy}

l 9
o max {Ag + D, A| + D;, Ag + Do, A + Do}

which can be observed to be a lower bound of every positive solution of Eq. (3).
Observe that m < &, where m is of the form

P P .
m=——=—-¢g with P < Q.
Q/e 0O

Then there exists M > 0 defined by

A D, A D
M:max{ o+ Dy A+ 2}’

)
m m

which can be seen to be an upper bound of every positive solution of Eq. (3). Observe
that M > &, where we have

m<e<1and A9+ Dy, A| + D > By, B; > ¢,

so that
A0+D2 AI+D2
—— = >gand —— >¢
m

m}

We need the boundedness and persistence of every positive solution of Eq. (3) for
the following theorem on eventual periodicity.
Theorem 5 (Eventual Periodicity) Let {x,},-_, be a positive solution of Eq.(3),
and suppose that Hypotheses (HI)-(H5) from Lemma 1 hold. If the parameter { A, +
D, - H(x,)}22, is eventually periodic, then {x,};°_, is eventually periodic.

Proof The results in the paper [4] by Bidwell and Franke hold in this case, with
some minor inconsequential modifications. First of all, by Lemma 1, we know that
our solution {x,}2 _; of Eq.(3) is bounded and persists. We then take {x,}>> _, and
eliminate all terms up to the point when {A, 4+ D, - H(x,)};2, becomes periodic to
obtain the new sequence {x,}; _,.

We make a transformation to a dynamically conjugate system that Bidwell and
Franke refer to as the log version: Let

yn = In(xp);



208 D. M. Chan et al.

and starting with where {A, + D, - H(x,)};2, becomes periodic, we define the
parameters
a, =In(A, + D, - H(x,)), b, =1n(B,).

The log version of Eq. (3) is then

Yn41 = max{a, — y,, b, — ya—1},
where {a,};2 is periodic with period p € {1,2,...} and {b,}.2,, is periodic with
period 2.
Then THEOREM 4 in [4] applies here and {y, }>2 _, is eventually periodic with

period J P, where J = lcm(p, 2) and P is some integer defined in [4]. O

Remark 2 The observation that if the parameter {A, + D, - H(x,)}52, of Eq.(3)
is eventually periodic, then the positive solutions of Eq.(3) are eventually periodic
demonstrates that our model, Eq. (3), supports the occurrence of unprovoked recur-
rent seizures, a feature of MTLE.

7 Discussion

As was mentioned in Sect. 2, the hippocampus located in the middle region of the
temporal lobe is significantly involved in certain aspects of memory processing and
formation.

There are numerous reports that certain chemical receptors on hippocampal neu-
rons (neurotransmitters like glutamate, dopamine, norepinephrine, and serotonin
attach themselves to chemical receptors on neurons, which result in the activation
of these neurons), called Group I metabotropic glutamate receptors types 1 and 5
(mGIuR1 and mGIuRS5), but particularly mGluRS, in conjunction with N-methyl-
D-aspartate receptors (NMDARS), play an integral part in synaptic plasticity (the
formation of new connections among neurons for the storage of memory), long-
term memory processes such as long-term potentiation and depression, learning, and
visuospatial working memory processing and maintenance (see [13, 19, 20, 22, 23]).

In MTLE, there can be subtle cognitive deficits in the form of memory impairment
as measured by psychological tests. Coincidentally, dysregulation of mGIluRS plays
a strong role in MTLE [15].

With our proposed model, Eq. (3), if we look at x,, ;| as representing a future state,
X, as representing a present state, and x,,_ as representing a past state, we can say
that the model does not go far back into the past, relatively speaking, where the delay
k = 11is as small as it can be, and so the model has “little memory.”

Therefore, our proposed model could, in a phenomenonological manner, sup-
port the idea that dysregulation of the Group I mGluRs, especially dysregulation of
mGluRS5, plays a salient part in the etiology of seizure activity in MTLE. Following
along these lines, we will make the further suggestion put forth in the paper [23]
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by Purgert et al. that intracellular (i.e., within the neuronal cell), as against extracel-
lular (i.e., in the outside fluid bathing the neuronal cell), mGluRS5 be targeted with
antagonists (i.e., chemicals that block the attachment of glutamate to mGluRS5) for
an antiepileptic effect.
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On the Maximum Principle for Systems )
with Delays e

A. V. Kim, V. M. Kormyshev and A. V. Ivanov

Abstract In this article we present the Pontryagin maximum principle of a time-
optimal control problem for general form of functional-differential equations. The
obtained results are the direct generalization of the case for ordinary differential equa-
tions: if the delay disappear then the results turn into the classic Pontryagin maximum
principle for finite dimensional systems. In this work we apply the methodology and
constructions of the i-Smooth analysis.

Keywords Functional-differential equations + Optimal control - Maximum
principle - i-smooth analysis

1 Introduction

The delay phenomenon plays an important role in the study of processes arising in
natural science, technology and society. First of all, this is due to the fact that the
future development of many processes depends not only on their present state but is
essentially influenced by their previous history. Such processes can be described
mathematically using the functional-differential equations (hereinafter FDE). At
present FDE theory is the well developed branch of the differential equations and
offenly uses in description and modeling of automatic control processes with afteref-
fect, mechanics, technology, economics, medicine and other areas of human activity
[6, 10].

This work is devoted to establishing the necessary optimality conditions in the
form of Pontryagin’s maximum principle for general FDEs. The discovery of the
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famous Pontryagin maximum principle [12] started the development of the mathe-
matical theory of optimal processes. This classic fundamental book already included
a variant of the maximum principle for systems with discrete delays. The origin of
the development of the theory of delayed optimal processes goes back to [7], where
an analog of the Pontryagin maximum principle was proved for optimal systems with
constant delays in state coordinates. The maximum principle was later proved for
some classes of systems with distributed delays ([1, 2, 5, 11, 13]). However, there is
no principle maximum variant for general form FDE, that is systems without a priory
specification of delay types. In this work we apply i-Smooth analysis [8, 9] to obtain
the Pontryagin maximum principle for general form FDEs. i-Smooth analysis allows
to obtain results by using methods and arguments similar to ordinary differential
equations. In our article we apply an analog of the methodology developed in [3] for
deriving the Pontryagin maximum principle for finite-dimensional systems.

This article is organized as follows. In the second section, we obtain special
conditions of optimality in the form of the Bellman functional by applying the
i-smooth analysis. In the third section we use these relations to obtain the maxi-
mum principle for general form of FDEs.

2 Problem Statement and Preliminaries

In the article we consider a control system with delays

X = fx(0), x(+5),u@)), 6]

where x(¢) = (x{(t), x2(t), ..., x, ()T € R, x(t + ) = {x(t +5), —T <5 < 0},
fx,y(),u): R" x Q[-1,0) x P — R"; Q[—T1, 0) is the space of piecewise con-
tinuous n-dimensional functions x(-) on [—t, 0) (right continuous at points of dis-
continuity) with the norm |[x(-)[lp = sup_, -, lIx(@)Il, P € R" is a control region;
h(x,y(:)) e H=R" x Q[-1,0), x, = {x(#),x(t+ )} € H.

The problem is to find a control which transfers the system (1) from a phase
(functional) state (position) k(x, y(-)) € H into a given point x* € R". Herewith as
an initial position 4 we will consider various points of the phase space H.

We assume that further the following condition is valid

Assumption 1. For every position /(x, y(-)) € H there is the time-optimal tran-
sition process from the position / into the point x*.

We denote by T'[x, y(-)] the optimal transition time from the position A (x, y(-))
€ H into a given point x*. For the convenience we consider the functional

Wix, y()]1 = =T[hl, 2

which depends on 27 variables

Wix, y(Ol = Wix', x%, o x", v 6, »2 6y e, Y O
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We also assume that for the considered problem the following condition is also valid
Assumption 2. The functional W[x, y(-)] has the following partial and invariant

derivatives
oW ow ow
Ty OW, W, L O W,
dx, 0xp 0x, ’

which are invariantly continuous in domains.

Let h(xo, yo(-)) be an arbitrary point of the phase space H, and u, € P is an
arbitrary point of the control region.

Consider a process which starts at a moment fy from the position 4, under the con-
stant control u = uy. Therefore the phase trajectory of the process
x(®) = (x1(t), x2(2), ..., x,(2)) satisfies the following functional differential equa-
tion

X = fx(@), x(+-),uy), for t >t 3)

and the initial condition
X1y = ho. “4)

It takes time ¢ — £y to move along this trajectory from the point x, to the point x (z).
Applying from the moment ¢ an optimal control we move from x; into the terminal
point x* during the time 7T [x,].

Such movement from the point xp into the terminal point x* takes
time (¢t — f9) + T[x,]. Taking into account that optimal (minimal) time from the
position (point) i (x°) is equal to T[ho] = T'[x;,] we obtain the following inequality

T[xzo] < —1) + Tlx],
from which (see (2)) we have
—Wix,l < (1 = 19) — Wix].

Therefore
Wix] — Wilx,] <t — 1,

Wix,] — Wix,]
t—1

<l1.

Proceeding in the last inequality to limit as t — #;, we obtain

d
Ew[xf]ll:fo <1 (5)

The left-hand side of the inequality (5) can be expressed in terms of the partial
and the invariant derivatives, then (5) can be presented in the form
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oW |xo, .
[xg—xyo()] - f(x0, yo(+), uo) + dWlxo, yo()] < 1.

h = {xo, Yo} and u are arbitrary elements, therefore for any position & = {xo, y(-)} €
H and every point u € P the following relation is valid

OWLx, y()I

ox f,yO),u) +aW[x, y()] < 1. (6)

Let {x(:), y(-)} be the time-optimal process of transferring the system from the
position A into the point x*, and [#, ;] is the corresponding time interval, therefore:
Xy = ho, Xy = X and 1y = t; + T [ho].

The process satisfies the equation

x() = fxu@®), to=t=t. (7

Movement along the optimal trajectory from the position /¢ (xg, yo(-)) to a point
x (1) takes t — 1y, and from the point x(¢) to the terminal point x* the system moves
during #; — ¢, then T[ho] — (¢ — ty) is the minimal time of transferring the system
from the state x, into the point x*, that is

Tx:] = Tlhol — (t — to).
By virtue of T[h] = —W[h] we obtain
Wix;] = =Wlhol + (t — to),
Wlx(®), x( + )] = —=Wlhol + (t — 10).

Differentiating this equality by ¢ we obtain

n

— 0x

Taking into account (7) we have

n

OWlxl
Yo S @) WOl =1, =t <n. ®)

i=1
Thus for every optimal process the equality (8) is valid during the process.

Consider the functional

" OW[h
B[.X, y()»”] = Z%

i=l1

- f'(hyu) €))
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then relations (6), (8) can be presented in the following form

Blh,u] <1, foreveryh € Handu € P. (10)

B[h,u] = 1, along any optimal process (x(-), y(-)). (11

Thus the following theorem is proved

Theorem 1 [f the assumptions for the control system (1) and a fixed terminal point
x* are valid, then the relations (10) and (11) take place.

This theorem presents the essence of the dynamic programming method for sys-
tems with delays. Its main mathematical relation can be expressed in other form.
From (11) with ¢t = 7y we have Blhg, u(ty)] = 1. Taking into account (10) we
obtain relation
max B[h,u]=1, Vhe H,
ueP

or equivalently

max 3 WAL ey, u)+0,Wlx()] =1, VheH. (12)

ueP 4 Bxi
i=1

3 Maximum Principle

Further along with the assumptions 1,2 we suppose that the following conditions are
satisfied.
Assumption 1.

e The functional W[x, y(-)] has invariantly continuous derivatives with respect to
xi=1,...,n, up to the second order, that is functionals

oW[h] 3*W[h]

—_ Y L, j=1,...,n.
ax' ~ dx'ox/
are invariantly continuous.
e Functionals f*(x, y(-),u),i = 1, ..., nhaveinvariantly continuous partial deriva-

tives i

oft(h,u) . .

— > L, ] = 1,...,1’1.

ax/

Let (x (1), u(t)), to <t < t; be the time-optimal process transferring the system
(1) from the position A into the terminal point x*.

Fix amoment ¢ € [#, ;) and consider the functional B(x, y(-), u(t)) of variables
X, y()
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From the definition of the functional B (see. 9) and the hypothesis 3 it follows
that the functional B(x, y(-), u(¢)) has the invariantly continuous derivatives with

respect to variables x', x2, ..., x":
IB(x, y() u(t)) 9*W[h] awm] Oy (), w)
Zaxax [ hu (r)>+z P k=1....n
(13)

By virtue of (10), (11) we have
Blh,u(t)] <1, Yhe H,;
Blh,u(t)]=1, Vh=x,.

These two relations mean that the functional achieves the maximum at the element
h = x;.

Therefore, if we fix x(¢ + -) and u(¢) in the functional B[x, x(t + -), u(¢)], and
consider it as the function of x, then this function has the maximum at the point
x = x(t). Hence its partial derivatives with respect to x', x2, Idots, x" are equals to
zero at this point:

Zaw[x’] £, mHZ"’W["’] O yOu®) gy

dxi0xk dxk
(14
(see (13)).
Differentiating the function % with respect to ¢ and taking into account (7),
we find
d (dW[x] —~ OW[x] oW lx,]
dt( o )_;axkaxix (t) = Z R =i u@), k=1,....n.

Then relation (15) can be presented in the following form:

d (OW[x] 2L OWx ] AW [x,]
E( >=Z ()—Z fiog,u@), k=1,...,n.

dx — ox* axi xkx
(16)
(note, that 5° W dx’ = dx’ M due to continuity of the second derivatives).
Formulas (10)—(12), and (16) do not include the functional W, but only its partial
derivatives with respect to Xt X % e, g)l:V , 0, for the convenience, we will
use the following notation:

oWl _ o OWl] WL
oy = il — 5= =l e

= Ynlt]. a7
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Then the functional B (see (9)) can be presented in the form:

Blx,, y(-), u(®)] = Y ile] - f(x,, u(t))

i=1

and the relation (11) becomes
Z vilt] - fi (x¢, u(t)) = 1 for optimal process (x(t), u(t)),to <t <t;. (18)
i=1
Besides, according to (10)

ZI//,’[[] . fi(xr, u(t)) < 1foreverypointu € Pandallfy <t <t. (19)

i=1
Finally, relations (15) can be presented in the following form:

o =0, k=1,...,n. (20)
X

Yiltl+ Y ile] -
i=1

In summary, if (x(¢), u(t)), tp <t <t is the optimal process, then there exist
functionals vy [#], ¥ [t], . . . , ¥, [¢] (defined by (16)), such that the relations are valid.

The form of the left-hand sides of (17), (18) lead us to consideration of the
functional

HIy. 2.yl =Y Wi flnw) =y f )+ g f (o), Q1)

i=1

depending on 2n 4 r variables ¥, ..., ¥, x', ..., x", u', ..., u". In terms of this

functional relations (17), (18) can be presented in the form of two following relations:
H[y[t], x;, y(-), u(¢)] = 1 for optimal process (x(¢), u(t)), to <t <1, (22)
where ¥ [t] = (Y[t], ..., ¥,[t]) is defined by (16).
H[y[t], x;, y(-),u(t)] < 1foreverypointu € Pandallfy <t <t. (23)
Relations (22) and (23) can be unified in a compact form

max H[y[t], x(t), u®)] = H{Ylr], x, u®)], to <t <1 (24)

Additionally, the relation (19) can be presented in the form:



218 A.V. Kim et al.

OH[Y 1], xi, y(), u(n)]

o k=1,....n. (25)
X

Yilt] = —
Thus, if (x(¢), u(t)), tp <t <1, is the optimal process, then a function {[t] =
(Y [t], ..., ¥nlt]) exists and the relations (22), (24), (25) are valid, in which the
functional H is defined by (21).
Formulas (21), (22), (24), (25) do not contain explicitly the functional W[x, y(-)],
so equalities (17), representing the functions v [t], ..., ¥, [¢] by the functional W,
do not give us additional information and will be out of our consideration. Relation
(25) is the system of equations which satisfy these functions. Note that the functions
Y lt], ..., ¥, [t] are nontrivial solutions of this system (that is the functions do not
equal to zero at the same time); indeed, if at some moment ¢ we have ¥ [t] =
... = Y, [t] = 0, then from (21) we obtain H[y[t], x;, u(¢)] = O that contradicts to
equality (22). Thus we obtain the following theorem in the form of the maximum
principle.

Theorem 2 Let for the control system
X@) = fx@),x@+s),u(), uecP, (26)

and a terminal point x*, assumptions 1, 2 and 3 are valid, and let (x(t), u(t)),
to <t < t| be a process transferring the system from an initial state hy € H into the
final point x,. Consider a functional depending on variables x', ..., x", u', ... u"

and auxiliary variables ry, ..., V¥, (cf. (21)):

HIy, x, y(), ul =9 f1(x, (), ). 27)

i=1
Consider for the auxiliary variables the system of differential equations

KLIVIGERIO)

oo k=1,....n, (28)
X

Unlt] =

where (x(t), u(t)) is the process under consideration (cf. (25)). Then, if (x(t), u(t)),
to <t <t is the time-optimal process, then there exists nontrivial solution
Yltl, ..., waltl, to <t <t of the system (28) such that for every moment ty <
t <t the following maximum condition
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(cf. (24)) and the equality (cf. (22)

H{y (1], x, u(@®)] =1

are valid.

The Theorem 2 presents necessary conditions for optimality of systems with

delays in the form of the maximum principle.
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Hyperbolicity and Solvability for Linear )
Systems on Time Scales Gzt

Sergey Kryzhevich

Abstract We believe that the difference between time scale systems and ordinary
differential equations is not as big as people use to think. We consider linear oper-
ators that correspond to linear dynamic systems on time scales. We study solvabil-
ity of these operators in IL*°. For ordinary differential equations such solvability
is equivalent to hyperbolicity of the considered linear system. Using this approach
and transformations of the time variable, we spread the concept of hyperbolicity to
time scale dynamics. We provide some analogs of well-known facts of Hyperbolic
Systems Theory, e.g. the Lyapunov—Perron theorem on stable manifold.

Keywords Time scale - Hyperbolicity - Solvability - Stable manifolds -
Exponential dichotomy

1 Introduction

Time scale systems play an important role in modern dynamics as they stand between
discrete and continuous ones. For applications, they could be used for modelling
strongly nonlinear phenomena e.g. impacts. There are hundreds of books and papers,
devoted to time scale dynamics (see [1-7, 9, 11-13, 15-20, 23, 24, 28, 29] and
references therein, the list is still incomplete). The main obstacle to study such
systems is that they are in principle non-autonomous unless the time scale is periodic.

Here, we are mostly interested in stability of solutions of time scale systems. There
were two principal approaches. One is related to Grobman—Bellman, Bihari and other
similar estimates [6, 11-13, 16, 23, 24, 28, 29], see also [8] for the classical case
of ordinary differential equations. Another powerful tool is the second Lyapunov
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method, related to constructing so-called Lyapunov functions ([2, 4-7, 12, 15-19,
23, 28], see also the classical book [21] for origins). However, in the ODE theory there
is the third approach, the so-called first or direct Lyapunov method [10, 21]. Unlike
implicit methods, listed above, this method allows to construct bounded solutions
and even invariant manifolds as limits of successive approximations. The main aim
of this paper is to generalise this approach, developed for non-autonomous ODEs, to
the case of time scale dynamics. We study solvability of operators, corresponding to
linear systems, we give analogs of classical result of hyperbolic theory: existence of
bounded solutions for almost linear systems, Lyapunov—Perron theorem on invariant
manifolds, etc.

A similar approach was developed in papers [12, 28], the principal difference of
our approach is that we study equivalences between time scale equations and ODE:s.
This leads to different results. The key point is that many linear time scale systems can
be represented as reductions of linear systems of ordinary differential equations and
solvability of linear time scale operator follows from one of the differential operator.

In our paper, we always operate with the so-called A — derivatives, the case of
V — derivatives may be considered similarly. Studying the case of solvability of
linear differential operators (and of the time scale ones), we always concentrate on
results, related to hyperbolicity (exponential dichotomy) of the corresponding ODE
systems. We could also consider the so-called regularity of linear systems or one of
its generalisations instead (this would give solvability in the space of exponentially
decaying solutions). However, we prefer to postpone this activity for the future. In this
paper, we consider both systems on time scales and ordinary differential equations.
We distinguish these two cases by the following formalism: solutions related to time
scales are highlighted in bold. We use standard notions B(e, x) for £ — ball, centred
in x and | - | for the Euclidean norm.

2 Dynamic Systems on Time Scales

Definition 2.1 Let the time scale be an unbounded closed subset of [0, +00).
Let T be a time scale. Without loss of generality, we always assume that 0 € T.

Definition 2.2 Given a t) € T, we denote o(fy) :=inf{r € T : t > 15}, p(t) :=
o(ty) — to. Such pu(ty) is called graininess function. We say that 1 is right-dense
if u(tp) = 0 and right-scattered otherwise. We say that a function f : T — R is
rd-continuous if it is continuous at all right-dense points and left continuous at all
left-dense points.

Definition 2.3 The function f : T — R is called A-differentiable at a point t € T
if there exists v € R such that for any € > 0 there exists a neighborhood W C T of
t satisfying

ILf(e@®) = f($)] =Alo@) = sl < elo(r) —s]

for all s € W. In this case, we write f2(t) = .
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When T = R, x2(¢) = %(t). When T = Z, x*(n) is the standard forward differ-
ence operator x(n + 1) — x(n).

Definition 2.4 If F2(t) = f(t), t € T, then F is a A-antiderivative of f, and the
Cauchy A-integral is given by the formula

/Sf(l‘)Af:F(S)—F(T) forall s,7 € T.

Similarly, we may differentiate and integrate vector and matrix-valued functions.

Definition 2.5 A function p : T — R is called regressive provided 1 + u(t) p(t) #
0 for all # € T and positively regressive if 1 4+ pu(t)p(t) > 0 for all r € T. The set of
all regressive and rd-continuous functions is denoted by R = R(T, R). The set of
all positively regressive and rd-continuous function is denoted by R*.

Definition 2.6 A real non-degenerate matrix A is called positive if one of following
three equivalent conditions is satisfied:

1. there is a real matrix B such that A = exp(B);

2. there is a real matrix C such that A = C?;

3. for any negative value A\ and for any k € N the number of entries of the k x k
block

A0 O0...0
1 X 0...0
B,=101 X...0
0...0 1 A

in the Jordan normal form of the matrix A is even (that can be 0, of course).

Particularly, the positivity implies (but is not equivalent to) the fact that det A > 0.
Now, we introduce a result from linear algebra. Let M, ,(R) (or M, ,,(C)) be the
class of all real (or, respectively, complex) n x n matrices.

Proposition 2.7 There exists a function log from the set of all non-degenerate n x n
matrices such that the following holds.

1. B =log A implies A = exp B;

2. this function is measurable and bounded on any set {A : max(|A|, |A~'|) < R},
R > 0;

3. if A is positive, then log A is real-valued.

The construction of such logarithm is described in [14, Chapter VIII, Sect. §8].

Definition 2.8 A matrix-valued mapping A : T — M, ,(R) is called regressive if
foreacht € T then x n matrix E, + p(¢)A(t) is invertible, and uniformly regressive
if in addition the matrix-valued function (E, + u()A(2))~" is bounded. Here E,, is
the unit matrix. We say that the matrix-valued function A is positively regressive if
all matrices E, + u(t)A(t) are positive.
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Definition 2.9 We say that a time scale T is syndetic if sup{o(¢) : t € T} < +o0 or,
in other words, gaps of the time scale are bounded.

We introduce a notion [¢]y = max{r € T : 7 < t}. Clearly, [t]r < f and [t]T = ¢
ifand only if r € T.

3 Solvability of Linear Non-homogenous Systems

Consider a time scale T and an rd-continuous matrix-valued function A : T — R”.
We study a linear system
x2 =A@)x +£@) (3.1)

and the corresponding homogeneous system
A
x> =A(t)x. (3.2)

Here A is a bounded uniformly regressive rd-continuous matrix-valued function, f
is a bounded rd-continuous vector function. We are interested when systems (3.1)
have bounded solutions for all admissible right-hand sides f. We recall a notion from
the theory of linear systems of ordinary differential equations. Given a linear system

x = A(s)x (3.3)

of ordinary differential equations, we consider the Cauchy matrix ® (¢, 7) =
(1) D, (7).

Definition 3.1 A linear system (3.3) is called hyperbolic if for any ¢ € [0, 0co) there
exists linear spaces U (¢) and U~ (¢) called stable and unstable spaces respectively
and positive values C and A such that

Ut(tye U () =R";

(1, HU(1) = U*(1);

| D 4(t, T)xo| < Cexp(=Xo(t — 7)) |xo| forall t > 7, xg € UT(7);
|4, T)xo| < Cexp(Ao(t — 7))|xo| forallt < 7, xg € U™ (7).

Sl

Many examples of hyperbolic systems, e.g., linear systems with constant matrices
may be constructed, using approaches of the paper [28].
If a continuous function f : [0, +00) — R” is bounded, the system

X =A()x + f(s) 34

has a bounded solution ¢ := L f, where

p(s) = / Dy (s, T)H+(T)f(7') dr —/ Ou(t, T (7)) f(T)dT. 3.5)
0 '
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Here " (s) and T1~ (s) are linear projector operators on the stable and the unstable
spaces respectively such that [T" (s)x + [T~ (s)x = x. A similar fact is true for expo-
nentially decaying right hand sides. There exists a A\; > 0 and K > 0 such that for
any X € [0, \]if | £(£)] < Cexp(=At), then |Lf(t)] < K\C exp(—At). Actually,
we may take any \; € (0, A\g). The inverse statement is also true (see [22, 26] and
also [30] for discrete case).

Theorem 3.2 ([22, 27]) (Pliss—Maizel Theorem) If system (3.4), defined on [0, c0)
has a bounded solution for any bounded function f, the corresponding system (3.3)
is hyperbolic.

4 Transformation of the Time Variable

Given a time scale T, we define the function s : R — R:

s(t)=/ log(1 + p([t]T)) dr
0 pu((t]T)

Observe that s(0) = 0. The following statement is evident.

Lemma 4.1 For any time scale T the function s(t) is strictly increasing and
unbounded;
limsups(t)/t < 1.

t—>+00

If the time scale is syndetic, we also have lim +inf s@)/t > 0.
—>—+00

Let W4 (s, 0) be a fundamental matrix of the time scale system (3.2), such that
U (0) = E,. We prove the following statement.

Lemma 4.2 Given an rd-continuous uniformly regressive matrix A : T — M, ,
there exists a piece-wise continuous complex matrix-valued function A : [0, +00) —
M, ,, such that for

Q4 (s(2),0) = Wa(r,0) 4.1)

forallt € T. Ifsup |A(t)| < 400 and sup |A~"'(¢)| < 400, then sup |A(t)| < +oo.
If A is uniformly positively regressive, then the matrix A can be taken real.

Proof We set A(s(t)) = A(t) forallt € T. Fort ¢ T, we set

log[E, + p([7]p)A(([7]1)]

A(s(1) = log(1 + p([t]1))

By choice of the function s(#) equality (4.1) is fulfilled. Evidently,
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log(E), + pA)
log(1 + 1)

as 1 — 0 uniformly on compact sets of matrices A. On the other hand,

log(E, + pA) lim log nE, + log(A + u~'E,)

im = =E, “4.2)
p—+oo  log(1 + w) p—>+00 log 1t

for any non-degenerate matrix A and the limit is uniform on all compact subsets of
M, ,, that do not contain degenerate matrices. O

Definition 4.3 Consider atime-scale system (3.2) with auniformly regressive matrix
A(?) such that sup{|A(t)] + |A~'(#)| : t € T} < +o0. We call it hyperbolic if the
corresponding system of ordinary differential equations (3.3) is hyperbolic.

For hyperbolic time scale systems, we may take stable and unstable spaces U™ (1)
(same as for the corresponding systems of ordinary differential equations).

Proposition 4.4 [f (3.2) is hyperbolic, there exist constants C, A > 0 such that

L. [WA(2, to)xo| < Clxol exp(=A(s(?) — 5(1))) for all t,1p€T, t > 1y, xo €
U (to);
2. |WA(t, to)xol < Clxol exp(A(s(t) — s(to))) forallt, ty € T, t < tg, xo € U™ (to).

Particularly, this statement implies that Wa (¢, fp)xo — 0 as t — 400 if xy €
Ut (tp) and Wa (¢, to)xg — oo ast — +ooif xg € U (1) \ {0).

Remark 4.5 It follows from (4.2) that for any hyperbolic system (3.2) on a time scale
T the following dichotomy takes place: either the time scale is syndetic or the system
(3.2) is unstable hyperbolic i.e. U~ (t) = R".

5 Transformation of the Right Hand Side

Now, we consider a system (3.2) on a time scale T. We fix the corresponding trans-
formation s(-) of the time variable and the corresponding system (3.3) of ordinary
differential equations. Suppose that the matrix A(¢) is regressive and invertible for
all . Observe that on the time-scale T there exists the sigma—algebra, engendered
from R, so we can consider measurable functions on T. Given a vector function
f € L°°(T — R"), we construct a function f € L*°(R — R") such that

L flr =£;
2. forany xo € R" andany r € T

x(t, 0, xg) = x(s(1), 0, xp), (5.1)

where x(¢, 0, xo) (x(s(2), 0, x¢)) is the solution of systems (3.2) (or, respectively
(3.3)) with initial conditions x (0) = xo;
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3. fl.o)) = const forany ¢ € T.

By (4.1) (Lemma4.2) it suffices to check (5.1) for xo = 0 only. Then (5.1) is equiv-
alent to

(i) (1) = / (51, 7)f () dr. 52)

So

Here so = s(#), s1 = s(o(f)). In our assumptions, setting fo := fl(,.s,), We refor-
mulate Eq. (5.2) as follows:

Al A — —E,
f(r) = o (SO);firlo) 2 o _ log(1 + (1)) (log[ E,, + p(t0)A(t0)]) ™" Alt0) fo

if p(tp) > 0 or
_log[E, + u(to)A(1)]

—1
fo= log(1 + (o) A7 (1) (1)

These formulae imply the following statement.

Theorem 5.1 Let the matrix A be uniformly regressive with respect to the time scale
T, hyperbolic and uniformly bounded together with the inverse matrix A~'. Then,
Jor any function f € L®°(T — R") the corresponding system (3.1) has a bounded
solution.

In this case, there exists a continuous linear operator L : L*°(T — R") —
L>®(T — R") such that for any f € L>°(T — R") the function Lf is a bounded
solution of system (3.1). This operator L corresponds to the operator £ that gives a
bounded solution for Eq. (3.4) and is defined by formula (3.5). Let K = ||L||.

An analog of Pliss—Maizel Theorem is also true for time scale systems.

Theorem 5.2 Let the matrix A be uniformly regressive with respect to the time
scale T. Suppose that for any f € L*° the corresponding system (3.1) has a bounded
solution and the time scale is syndetic. Then system (3.2) is hyperbolic on T.

Proof Suppose that system (3.3), constructed by system (3.2) as demonstrated is not
hyperbolic. Then, there exists a bounded right hand side f such that the corresponding
system (3.4) does not have any solutions, bounded on [0, +00). Since system (3.4)
is linear, all coefficients are bounded and the time scale is syndetic, all solutions of
(3.4) are unbounded on T. Consider the function f : T — R” such that f(t) = f(¢)
for all right-dense points ¢ and Eq. (5.2) is satisfied for all right-scattered points.
Then all solutions of Eq. (3.1) are unbounded. [l

Similarly to what is done for ordinary differential equations, we can give estimates
of the operator L in spaces of “exponentially small” functions.

Proposition 5.3 Let the matrix A be hyperbolic on the time scale T. Then there
exist K >0 and \\ > 0 such that for any )\ € [0, \g] the inequality |£(t)| <
Cexp(—As(t)) Vt € T implies |Lf(t)] < CK exp(—As(t)) Vt eT.
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6 Conditional Stability by First Approximation

We can use the statement of Lemma4.1 to prove some time scale analogs of famous
statements from the theory of hyperbolic ODE:s.

Theorem 6.1 Let the matrix A satisfy conditions of Theorem 5.1. Let ry > 0 and
the continuous function g : T x B(0, ro) be such that

1. 1g@t,0)| <eforanyt €T,
2. |g(t, x1) — g(t, x2)| <l|x; — xz2] foranyt € T, x; 5 € B(0, r¢).

Then given rq there exist €, ly > 0 such that ifl < ly, € < g there exists a bounded
solution X(t) of the system
x2 =A@)x + g, x) (6.1)

such that

X = (6.2)

1-KI
Let )¢ be a constant of hyperbolicity of the matrix A.

Theorem 6.2 (Lyapunov—Perron Theorem) Let the matrix A satisfy conditions of
Theorem 5.1. Let ro > 0 and the continuous function g : T x B(0, ro) be such that

1. g(t,0)=0foranyt €T,
2. |g(t, x1) — g(t, x2)| <l|x1 —x2| foranyt € T, x12 € B(0, rp).

Then given ro, X € (0, A\g), to € T there exist D > 01y > 0 such that if | < ly, there
exists amap h : B(0,ro) (YU (t0) = U~ (to) such that

1. h(0) =0;

2. |h(x) —h(y)| = Dl|x — y|.

3. If xo is such that xo = yo + h(yo) for some yy, then X(t, ty, xo) tends to zero as t
goes to infinity (in fact, it tends to zero). Here X(t, ty, x¢) is the solution of system
(6.1) with initial conditions X(ty) = Xo.

This allows to construct the so-called local stable manifold as the image of the
constructed map 4. By Remark4.5, this result is non-trivial only if the time scale
is syndetic. Proofs of Theorems 6.1 and 6.2 are very close to ones of their classical
analogs [8, 10, 21, 25-27].

Proof of Theorem 6.1 Consider the equation
x(1) = L[g(-, x)](1). (6.3)

Any solution X(#) of (6.3) is a bounded solution of the equation x® = A(¢)x +
g(t, X (t)) and, hence, one of Eq. (6.1). Given r(, we take ¢ and [y so small that
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We set x(¢) = 0 for all 7 and define
x" (1) = Lig(, x" " H1(@). (6.4)

for allm € N.
Lemma 6.3 All approximations x" (¢t) (m € N|J{0}) are

1. well-defined on T,
2. such that |x"(t)| <roforallt € T,m e N;
3. such that
X" (1) — x"(1)| < Ke(KD)™, teT. (6.5)

Observe that,
Ix'] = Ix' —x°|| < IL{gC, 01|l < Ke (6.6)

(all norms are considered in IL°°(T)). So, the statement of the lemma is true for
m = 0.

Proceed by induction from the step m — 1 to m. If | x| < r¢, the right hand
side of Eq. (6.4) is well-defined and the solution x™(¢) can be found. Inequalities
(6.5) considered for all previous steps and (6.6) imply that

pery < KUK o 6.7
Hence the iteration x"*! is also well-defined and
I — x| = [ILig(. x") — g(. x" O]l < K/|x" —x"~'|
that implies (6.5). .

So, the iterations x* converge uniformly and we may set X = lim x". Since the

function g is uniformly continuous w.r.t. x, we can proceed to limit in (6.4). So, X
is a solution of (6.3). Proceeding to limit in Eq. (6.7), we get (6.2) that finishes the
proof. (]

Proof of Theorem 6.2 Without loss of generality, we suppose that 7y = 0.
Fix yo € Ut(0). Take x°(t, yo) = 0, x'(z, yo) = Wa(t, 0)y and set x" (¢, yo) =
Wa(t,0)yo + L[g(-,x")](¢) for all m e N. By definition, we have
Ix'(z, yo)| < alyol exp(—As(t)). We consider yy so small that 2a|yy| < ry. We prove
the following lemma, similar to Lemma 6.3.

Lemma 6.4 All approximations X" (¢t) (m € N|J{0}) are

1. well-defined on T,
2. such that

IX"(t, yo)| < 2alyolexp(=As(t)) <ro, t€T, meN; and (6.8)
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X", yo) — X" (t, yo)| < a(KD)"|yolexp(=As(r)), t€T. (6.9)
Proof Inequalities (6.8) are evident for m = 0 and m = 1, inequality (6.9) is evident

for m = 0. Now we are going to prove the lemma by induction.
If X" (¢, yo)| < ro, X" (¢, yo)| is correctly defined. Moreover,

X" (t, yo) — x" (¢, yo)| = [LIg(-, X™)](t, yo) — LIg(-, x"~1)]
(t, y0)l < Kllyola(KD)™ |yolexp(—=As(1))

which proves (6.9) for the given m. Taking sum of inequalities (6.9) for all previous
values of m and taking into account the estimate for x!, we get

Kl
m+1
z, =
X"+ (2, yo)l <a+a1_Kl

) |yol exp(=As(2)).

If KI < 1/2, this implies (6.8) on the step m + 1. ]
Now we prove that all iterations x™ are Lipschitz continuous. We set

X" (t, y0) = x'(t, yo) + 2" (t, yo) = Wa(t, 0)yo + 2" (t, o).

Lemma 6.5 All iterations X" (t, yo) and 2" (t, o) are Lipschitz continuous: for any
t €T, yo, y1 such that |yo 1| < ro

X" (7, yo) — X" (z, yD)| < 2aexp(=As(t))|yo — yil;

6.10
127(t, yo) — 2"(t, y1)| < 2Kal exp(—As())]yo — wil. (6.10)

Proof Form = 1, (6.10) is evident:

Ix" (£, yo) — x' (¢, y1)| < aexp(=As(®))|yo — yil,

z' (¢, yo) = 0. Then, we continue the proof by induction.
Let (6.10) be satisfied for a fixed value m. We write

12", yo) — 2" (1, yp)| =
IL[g(, X", yo)1(r) — Lig(, X" (., yo)1(0)] < 2aKlexp(—As()|yo — y1l;

X" (1, yo) — X", y)| < XL, yo) — x @,y + 127 @, yo) — 2" @, yy)| <
(a +2Kal) exp(—As(1)]yo — y1] < 2aexp(—As(1)]yo — y1l. -

By Lemma 6.4, approximations x* (¢, y,) converge to
X*(t, y0) = x' (1, yo) +2°(¢, o)

that is a solution of the equation x(¢) = Wu (¢, 0)yo + L[g(-, x(-))](¢) with initial
conditions x(0) = yo + z"(0, yo) =: yo + h(yp). Proceeding to limit in (6.8), we get
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IX*(, yo)| < 2alyol exp(—=As (1)),

the second line of (6.10) implies
lh(yo) — h(y)| < 2aKl|yo — yil. 0

Many other analogs of classical results of hyperbolic systems of o.d.e.s may be
proved for time scale systems. For example, following the lines of [27, Chap. 1],
we can prove that all solutions that start in a small neighbourhood of zero out of
the stable manifold, leave this small neighbourhood as time increases. Also, we can
prove that for any r € N the stable manifold is C" - smooth provided the function g
is C" - smooth w.r.t. x.
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Oscillation of Third-Order Nonlinear )
Neutral Differential Equations L

Petr Liska

Abstract In this paper, we study the oscillation and asymptotic properties of solu-
tions of a certain nonlinear neutral third-order differential equation with either delay
or advanced argument.

Keywords Neutral - Third-order - Almost oscillatory

1 Introduction

Consider third-order neutral differential equation of the form

(% [(% (u/(t))ﬂ)T) + a0 f(x(6®)) =0, (E)

where

u(t) = x(6) +a®)x(y (1) ey

and 7 > ty. We will always assume that

® p@), r@), q(0), a(®), y (@), 8(¢) € Cliy, 00), p(t), r(r), q(t), y (), 8(¢) are
positive for t > 1,
(i) « and B are ratios of odd positive integers,
(i) [° pt () dr = [ rb (1) dr = oo,
(iv) (1) < 1, lim oo ¥ (1) = 00,
(V) lim; 00 8(2) = 00
(vi) 0 <a(t) <ag < 1fort > 1,
(vii) f € CR,R), fisodd, f(v)v > 0forv # 0.
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Functional and neutral equations play an important role in many applications.
Third-order differential equations arise in the study of entry-flow phenomenon,
in mathematical theory of thyroid-pituitary interactions, in problems concerning
nuclear reactor feedback etc.

In this paper we are going to enhance the results from [6, 7], where equation (E)
was studied in the case « = 8 = 1. There exist various papers studying equations
similar to (E) in the case that § = 1, see e.g. [3, 8—11] or equations with 8 = 1 and
additional middle term, see e.g. [2, 4] or [5]. Hence, it is natural to try to enhance
our results and, if able, to relate them to the ones obtained by other authors.

If u is a function defined by (1), then functions

(0] _ m_ L onp e L[ L /ﬁ>/a_1 [11y\*
wWl=u = TE ) W= [(r(r)(”) =0 (@)

are called quasiderivatives of u. A solution x of (E) is said to be proper if it exists on
the interval [#y, oo) and satisfies the condition sup{|x(s)|: r < s < oo} > 0 for any
t > to. A proper solution is called oscillatory or nonoscillatory according to whether
it does or does not have arbitrarily large zeros.

Definition 1 Equation (E) is said to have property A if any proper solution x of (E)
is either oscillatory or satisfies lim;_, o, x(¢) = 0.

Some authors use a different terminology and instead of using property A they say
that equation (E) is almost oscillatory.

2 Basic Properties of (E)
By a modification of the well-known result of Kiguradze we obtain lemma which
characterizes behaviour of nonoscillatory solution of (E).

Lemma 1 Let x be a nonoscillatory solution of (E) and let u be defined by (1). Then
there are only two possible classes of solutions
o = {x solution, 3T, : u®yu'\(1) < 0, u@®u (1) > 0 for t > T},
s = {x solution, 3T, : u(®)u'"'(t) > 0, u®u™ ) > 0 fort > ..} .
It is clear that equation (E) has property A if and only if every nonoscillatory

solution x belongs to class .4 and lim,_, o, x(z) = 0.
One can simply prove following property of quasiderivatives.

Lemma 2 Let x be a nonoscillatory solution of (E) and let u be defined by (1). Then
u, " and u'® are monotone for large t.

The basic properties of solutions in class .45 are described by the following lemma.
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Lemma 3 Assume that x is a solution of (E) from class N3. Then
(I —ag)lu@®] < |x@)| < lu@)] )

fort > T and
tlim lu(t)| = [lim |x(t)] = 0. 3)

Proof Let x € .#. Without loss of generality we may assume that x is eventu-
ally positive, i.e. there exists T, > fy such that x(¢) > 0, u(z) > 0, u!'!(¢) > 0 and
uPl(t) > 0fort > T, and T > T, such that y(t) > T, fort > T.

Since y () < t and u is an increasing function, we havex(y (t)) < u(y (t)) <u(t)
fort > T. Hence

x(1) = u(t) —a®x(y @) = u) —apx(y (1)) = u(t) — apu(y (1)) = u(@)(1 — ap).

To prove the second part we have that u!!! is positive and increasing function
and therefore there exists K > 0 such that u!'!(t) > K for large ¢. Integrating this
inequality from 7 to t we obtain

w(t) > u(T) + KF f r#(s)ds.
T

Letting + — oo and using the fact that fz:O rp (t) dt = oo, we obtain u(t) — co. By
the first part, x(¢#) > (1 — ag)u(t). From here it follows that x (1) — co.

In our first theorem we will give the condition that ensures that every solution
from class .4 has the desired asymptotic behaviour.

Theorem 1 Assume that

/ |:r(t)/ [p(s)/ q(v) dvi| ds:| dr = oo, “4)
Iy t s
then every solution of (E) that belongs to class N satisfies

lim x(r) = 0.

1—>00
Proof Without loss of generality we may assume that x € .4 is an eventually posi-
tive solution. Then there exists T, > fy such that u(t) > 0, u(y (t)) >0, uM(r) <0,

u?l(t) > 0 for t > T,. Since u is positive, there exists lim,_, o, ul!!(t) = ¢;, i =
0,1, 2. We will show that £; =0 fori =0, 1, 2.
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Assume that £; < 0, then

lim L[M,(t)]ﬂ = El — u/(t) < E%r%(t)
1—00 r(t)

and integrating the last inequality from 7 to ¢ and letting t — oo we get a contra-
diction with the positivity of «. In the similar manner we can see that £, = 0.

Assume by contradiction that £y > 0. Then for any ¢ > 0 we have that there exists
T, > T, such that £, + & > u(y (t)) > {¢ and choosing 0 < ¢ < W we obtain
the lower estimate

x(t) = u(t) —a@®)x(y @) > Lo — apu(y (1)) > Lo — ap(bo + &) = k(Lo + &) > klo, (5)

where k = > (. From (5) and in view of the fact that f is continuous, there
exist K and T, > T such that f(x(8(r))) = K fort > T,. Hence from equation (E)
it follows that (um (t))/ < —q(t)K. Integrating this inequality two times from 7 to

o0 we obtain 1
o0 o0 o
—u(t) > Kif |:p(V)/ q(s)ds:| dv.
t v

Integrating from 7, to t we get

L—ag(l+e)
l+e

t 00 o] % B
—u(t) +u(lr) > Kﬁ f |:r(w)/ |:p(v)/ q(s) ds:| dv] dw.
T, w v

Letting t — oo we obtain

1

00 9 % é B
/ [r(W)/ |:p(v)/ q(s) ds] dv:| dw < oo,
T w v

which contradicts (4). Therefore ¢ = 0 and the inequality 0 < x(¢) < u(¢) implies
that lim;_, o, x () = 0 as well.

3 Oscillation Theorems for Superlinear Case

In this section we treat the so-called superlinear case, i.e. we will assume the condition

lim sup
v—>00 12)

< 00, (6)

which is fulfilled for example for functions v*, where A > 1.
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The first two theorems deal with equation with delay, the third one is for the
equation with advanced argument and the last one covers both cases.

Theorem 2 Assume that §(t) < t, aff > 1 and (6). If (4) holds and

00 8@ s ¥
/ q(t)f re(s) |:/ pn(v)dv] ds dt = o0, (7)

then equation (E) has property A.

Proof We rewrite equation (E) as a system

W (1) = r¥ )y (1)
/ 11
y(t) = pe(z=(1) ®)
(0 = ) f(x(6()))
Without loss of generality assume that x is a positive solution from class .45. Then
u, y and z are monotone and there exists T, such that x(¢) > 0, u(t) > 0, y(¢) > 0
and z(t) > Ofort > T, and T > T, such that§(¢) > T, fort > T.

Integrating the second equation of (8) and using the fact that z is monotone and
decreasing we obtain

y(1) = z%(r)/T pe(s)ds

and therefore ]

yflf(t)zzw’ﬂ(t)[/ p;(s)ds:|ﬂ.
T

using this estimate we get from the first equation

u() >ul) —u(T) = / r%(s)yé(s) ds > f r%(s)zﬁ(s) |:/Y pal(v) dv:|[j ds.
T T T

Using inequality (2) and the fact that z is monotone and decreasing yields

t N B
x(t) = (1 —ao)zé(t)/ r (s) [/ pé(v)dv] ds. 9)
T T
Using (6) we get from the third equation of (8) fort > T

f(x(3)))

—70) =g f(x()) = inf x(8(s))

g()x(8(0)),
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i.e.
—7/(1) sup *(06)

s>t W z ‘I(I)X(S(t))

Substituting (9) into last inequality and using facts that §(¢) < ¢ and z is decreasing
we obtain

1

, x(8(s)) 1 o, sy 7
—z'(t) sup z(l—ao)q(t)Z“f’(t)/T re(s) [/T p“(V)dV} ds.

s>t f(x (8 (s)))

Dividing by zé (#) and integrating from T to r we get

ds >

x(8(s)) /’ 2 (s)
sup -3
sz f(x(8®)) Jr zar(s)

‘ 86 v 3
>(1-— ao)/ q(s)/ re(v) |:/ pe(w) dw]ﬁ dvds. (10)
T T T

Quick computation shows that
/—Z:(S) ds=<i—1)/ L) 4=
T 7w (s) of T \z# ' (s)
_ (L B 1) 1 3 1
~ \oB o) i m))

Since @ > 1, we have that [;° — 26 ds < oco. Passing t — oo in (10) we get the

29 (s)
contradiction with condition (7), hence .45 = @.
As condition (4) holds, by Theorem 1 we have that every solution x from class
N satisfies lim,_, o x(¢) = 0, which completes the proof.

Adapting the useful trick from [1] we can extend previous theorem to the case
aff = 1.

Theorem 3 Assume that 6(t) < t, a = 1 and (6).
If (4) holds and

00 5 s 3 1-e
/ q(1) |:/ re(s) |:/ pa(v)dvi| ds:| dt = oo, (11

where 0 < ¢ < 1, then equation (E) has property A.
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Proof Without loss of generality assume that x is a positive solution from class
5. Then u, y and z are monotone and there exist 7, such that x(¢) > 0, u(t) > 0,
y() >0and z(t) > Ofort > Ty and T > T, such that§(¢) > T, fort > T.

We proceed exactly as in the proof of the previous theorem and establish inequality
(9). Raising this inequality to (1 — €)-th power and using o = 1 we obtain

1

1 1—-¢
) = (L —ag)' ) (f ri (s) U P“l‘(v)dv:|ﬁds) . (12)
T T

Since x is nondecreasing, there exist 7; > T and constant d > 0 such that x(¢) > d
for t > T;. This implies that x'~#(r) < dfx(t) for ¢t > T). Combining this inequality
with (12) we get

1 1=
x(1) = d°(1—ap)' 2"~ (1) </ r%(s) [[ pi(v) dvi|ﬁ ds)
T T

Similarly to the proof of the preceding theorem, using the third equation, previous
inequality and integrating from 77 to ¢ we obtain

x(8) [T Z@)
oo A

1 1—¢
t 8(s) ' L =z
>d°(1— ao)lfa/‘ q(s) |;/ re(v) |:/ pe(w) dwi|ﬂ dvj| ds. (13)
T T T

Since 0 < 1 —¢ < 1, we get by a direct computation that fT —,,Z EA())

Hence, passing t+ — oo in (13) gives a contradiction with (11), i.e. ,/1/2
Rest of the proof follows from Theorem 1.

ds < o0.

Theorem 4 Assume that §(t) > t, a8 < 1 and (6).
If (4) holds and

/wr%(s) [/Spi(v)dv]ﬁ[/wqwdvrds:oo, (14)

then equation (E) has property A.

Proof We rewrite equation (E) as a system (8). Without loss of generality assume
that x is a positive solution from class .#5. Then u, y and z are monotone and there
exists Ty such that x(z) > 0, u(¢t) > 0, y(t) > 0 and z(¢t) > O fort > T.

Integrating the third equation of the system (8) from ¢ to oo (+ > T,) and using
(in this order) that z is positive and decreasing, assumption (6), x is increasing and
8(t) >t and (2) we get
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- 5
() z[ q(s)f(x(S(s)))ds - inf i( ®)))

= (6( )

B0 / q(s)x(s(s))ds >
(t)/ g(s)ds > (1 —ap) 1nf 8( ) (t)/ q(s)ds.

We conclude from the second equation that

1

yE@) = 29 (1) [f phs)ds}ﬂ
T

Substituting into the first equation we obtain

1
1 1 t B
uW'@®)=rP ) =z (1) [/ pi(s)ds]'3 >
T

1 1 1 00 ai ! B
>rB()(1 —ag)*P in f(x(ﬁ(s))) u b (t) |:/ q(s) ds] ’ . |:f pé(s) dsi|ﬂ .
szt x(8(s)) t T
Dividing by u w (t) and integrating from T to t we get
A ©0) 4>
T yap (s)

1 1 1
ap t B aB
>(l_ao)aﬂ fw / r%(s) [/spé(v)dv]ﬁ [/wq(v)dv:| ﬁds.
=i x(8(s)) T T s

5)

Quick computation shows that
f’ u'(s) ds_<1_i>/’ ) a5 =
T U (s) ap W~ (s)
. (1 B L) 1 B 1
of uﬁfl(t) uéfl(T) -

Since aff < 1 and u is positive and increasing, we have that f;o 26 ds < 0.
u B (s)

Passing + — oo in (15) we get the contradiction with condition (14), hence .45 = .
Rest of the proof follows from Theorem 1.

The next theorem is less subtle than theorems before (no role of function p in the
criteria), but it has two advantages. There are no additional assumptions on « and
and § can be either delay or advanced argument.
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Theorem 5 Assume (6). If (4) and

) s
f q(t)/ r#(s)dsdr = oo, (16)

then (E) has property A.

Proof Without loss of generality assume that x is a positive solution from class .45.
Then u, y and z are monotone and there exists 7, such that x(¢) > 0, u(t) > 0,
y() >0and z(t) > Ofort > T, and T > T, such that§(¢) > T, fort > T.

Since u!! is an eventually positive increasing function, we have ul'l(¢) > u!'l(T)
and by integrating from 7 to ¢t we get

u(t) > (u“](T))%/ 77 (s) ds =K/ 77 (s)ds.
T T

Applying (2) yields

O
x (@) = A —apu () = (1 —ao)K/ r#(s)ds. (17
T

Integrating equation (E) from 7 to oo we have

uN(T) — u?(c0) = /oo q(s) f(x(8(s))) ds.

T

Since u!?! is decreasing, [, ¢ (s) f (x(8(s))) ds < oo. Moreover, using (6) we obtain

()

) /T q(5)x(8()) ds < /T () f (x(3(5))) ds,

i.e.

/Ooq(s)x(S(s)) ds < oo.
T
Replacing x (§(¢)) by (17) we get
) s@
(l—ao)K/ q(t)f r#(s)dsdr < oo,
T T

which contradicts (16), i.e. 45 = (.
Rest of the proof follows from Theorem 1.
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4 Oscillation Theorem for Sublinear Case

In this section we deal with the so-called sublinear case, i.e. we will assume that

1
/ AN (18)
0 fev)

Observe that, if« = 8 = 1 then condition (18) is fulfilled for example for f(v) = v*,
where 0 < A < 1.

Theorem 6 Assume that f is nondecreasing in R such that f(uv) > f(u) f(v) for
u,velR, §() <tand (18).
If (4) and

o0 8w s 3
/ q(t)f(/ rﬂ(s)[/ pa(v)dvi|ﬁds)dt:oo, (19)

then equation (E) has property A.

Proof Without loss of generality assume that x is a positive solution from class
5. Then u, y and z are monotone and there exist T, such that x(¢) > 0, u(t) > 0,
y(@) >0and z(t) > Ofort > T, and T > T, such that5(z) > T, fort > T.

Since u'?! is decreasing, we get by integrating from T to ¢

ue) = ul(T) + / pi(s) (W) ds = (uP(0))* [ pe(s)ds
T T

and it follows that

1

1 ! P
W (0) = ()7 1) [ / pe(s) ds]
T
Using this inequality we obtain

W) ds = () / ri(s) [/ ot dVT ds.
r T

t

u(t) = u(t) —u(l) = /

T

Since 8(1) < t, u!?! is decreasing and f (uv) > f(u) f (v), we get

1 LIONES s 5
F(s®)) = f (@P@)7) s (/T ri(s) UT pd(v)dv:|ﬁ ds) >

1 8 1 S 5
> fo (um(w)f(fT rﬂ(s)[/r pw(v)dv}ﬂds). (20)
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Using (2) we get from (E) the following estimate

— (W?®) =g f(x(5®))) = ¢ f(1 — ao) f (u((1)))-

Applying (20) and integrating from T to ¢ yields

. (u[zl(w)>/ i 5w) 1
—/ ﬁdwif(l—ao)/ qw) f / rﬁ(s)[
T o) ! !

Passing ¢+ — oo and using

00 (M[2] (W)), u[2](’r) dS
- / ) = / Y
Tfa (WP ) uPloe) £ (s)

1

S B
/ pe(v) dv} ds) dw.
T

we get the contradiction, i.e. 45 = @.
Rest of the proof follows from Theorem 1.

S Examples

Example 1 Consider the equation

Wi

=3\’
+ixA L 1)
t4 k ’
where A > 1,k >1,0<a(t) <ap<landt > 1.
i

In this case we have @ =3, B =3, p(t) =1, r(1) =1 and q(1) = % and (6)
holds. Condition (4), which reads as

1 /
<, K; (@) +a®x (y®)))

o9 % 1 0 % %
/ t[/ —f —4dvi| ds | dr = o0,
1 t S Js v

is fulfilled for every [ > 0. Similarly, condition (7) reads as

o ] £ s 2
—4/ s |:/ —ldv] dsdt = oo
1 1 V3

and holds for every I > 0 as well. Hence, according Theorem 2 Eq. (21) has property
A forevery [ > 0.
Note, that condition (16) is not fulfilled, so Theorem 5 cannot be applied.

10
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Example 2 Consider the equation

<t|:<x(t)+ax<%>>:|>+tizx(t)=0, t>1, aef0.1). [>0.

(22)

One can easily check that (16) is satisfied and (4) holds for every o > % Therefore

Eq.(22) has property A for every/ > 0 and o > % by Theorem 5.
This results generalizes and improves Corollary 3 in [3], where Eq. (22) has prop-
erty Aforo = 1and!/ > ﬁ

Example 3 Consider the equation

!/

> [
([(((x(t) +a(t)x ()/(t)))/)z) ] ) + t—zxf <

where k > 1,0 <a(t) <ap < landt > 1.
In this case we have o = 8 =2, p(t) =r(t) =1, q(t) = ;LZ and condition (6)
does not hold. Since we have that
/1 dv
- < 00,
0 V8

i.e. condition (18) holds, we can use Theorem 6.
It is obvious that condition (4) holds for every > 0 and (19) reads as

! =0 23
Z>_ ) ( )

[ o] o] wes

and holds for every / > 0 as well. Therefore, according Theorem 6, Eq.(23) has
property A for every [ > 0.

=1

Conclusion

By taking more general form of equation (E), i.e. having o # 1 and 8 # 1, we lost
some precision in our criterias given in [6], because now we are not able to determine
value of critical constant in borderline cases. On the other hand our technique of
asymptotical integration gives new results in comparison to using Ricatti technique,
which is used only in case when g = 1.
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Conjecture on Fucik Curve Asymptotes )
for a Particular Discrete Operator L

Iveta Looseova

Abstract In this paper we study properties of the Neumann discrete problem. We
investigate so called polar Pareto spectrum of a specific matrix which represents the
Neumann discrete operator. There is a known relation between polar Pareto spectrum
of any discrete operator and its Fucik spectrum. We also state a conjecture about
asymptotes of Fucik curves with respect to the matrix and we illustrate a variety of
polar Pareto eigenvectors corresponding to a fixed polar Pareto eigenvalue.

Keywords Fucik spectrum - Pareto spectrum - Discrete operator - Asymptotes of
the Fucik curves

1 Introduction

First of all, let us consider sets of numbers T = {0, ...,n — 1} and T = {—1,...,n},
wheren € N\ {1}. Letu : T — R and let us denote a positive part of u by ut : t —
max{u(t), 0} and negative part of u by u~ : t — max{—u(t), 0}.
In this paper, we study the following discrete problem with Neumann boundary
conditions
—Au(t —1) =aut(t) — Bu(t),t €T, !
{86.14(0) =d.un—1)=0, M

where o, B € R, the difference operator is defined as
Alu(t — 1) =u@—1)—2u@) +u+1)

and the boundary conditions are given by the central difference as

Scu(0) = w Seun—1) = u(n)+(n—2)
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Problem (1) is equivalent to the matrix equation
AVu = aut — pu, )

. T . L
where u™ is a vector u* = [u*(0), ..., u*(n — 1)]" and matrix A" is tridiagonal
non-symmetric square matrix of size n x n taking the form

2 -2
-1 2-1

-1 2-1
-2 2

We are interested in the properties of the discrete operator in (1), thus we inves-
tigate properties of matrix AN defined by (3).

The structure of the article is the following. In Sect. 2 we obtain results regarding
the spectrum of matrix AY and the polar Pareto spectrum of A¥. In Sect. 3 we show the
connection between this polar Pareto spectrum and corresponding Fucik spectrum.
We also state a conjecture on asymptotes of the Fucik curves. A detailed investigation
of Fucik spectrum problems for the second order difference operators is still an
ongoing research topic.

A very little is known in general about the description of the Fuéik spectrum for
matrices. If we deal with a specific matrix, the situation is usually not any better. Thus
any information about the Fucik spectrum or its structure (for example asymptotes
of the Fucik curves) is appreciated and it might be helpful to other related research
topics.

2 Polar Pareto Spectrum of AY

First of all, we discuss the spectrum of matrix AN.

Theorem 1 Let AN be defined by (3), n € N\ {1}. Eigenvalues of AN are simple of
the form

k
e =dsin? —2 k{0 1,....n—1},
20— 1)

with the corresponding eigenvectors

kmt
ur(t) = cos il , teT.
n—1

Proof Eigenvalues of the matrix AN are real since A" is similar to the symmet-
ric matrix with the change of basis matrix P such that P is diagonal with entries
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[1, g, el 4, 117. Hence, the eigenvalues can be found using standard tools for
retrieving eigenvalues of the second order difference operators. We can find this
approach in the book [4] on the p. 2801in the Example 7.1.

In this part we define Pareto spectrum and polar Pareto spectrum of a matrix.
More details about Pareto spectrum can be found in articles [1, 7, 8] and the concept
of polar Pareto eigenvalues is introduced in article [3].

Let M,, be a set of all real square matrices of size n x n. Let x,u,v € R",
x = [x(0), ..., x(n — 1)]". Thenx > Oisequivalenttox(0) > 0, ...,x(n — 1) > 0.
Scalar product of vectors u and v is defined as (u, v) = u’'v. Let us define Pareto
eigenvalues and polar Pareto eigenvalues.

Definition 1 A real number A is called a (polar) Pareto eigenvalue of matrix B € M,
if there exists non-zero vector x € R” satisfying

x>0, Bx —x(=<) >0, (x,Bx—Ax)=0. 4

Moreover, X is a (polar) Pareto eigenvector of matrix B (corresponding to the (polar)
Pareto eigenvalue A). A set of all (polar) Pareto eigenvalues of matrix B is called
(polar) Pareto spectrum of matrix B and it is denoted by oparero (B) or al;’arem (B) for
polar Pareto spectrum respectively.

The difference between Pareto eigenvalues and polar Pareto eigenvalues lies only
in the second inequality in (4). Let us point out, that there is a known relation between
Pareto and polar Pareto eigenvalues. Let B € M,. Then A € oy, (B) if and only if
-\ € O‘pareto(_B)-

The estimation of the total number of Pareto eigenvalues 8, with respect to a
general matrix B € M], is (see article [7]) 1 < §, < n2"' — (n —1). For obtaining
the Pareto spectrum of some matrix we can use a numerical approach which is based
on Semi-Smooth Newton method, details can be found in the article [1]. Advantage
of this method is that some of the Pareto eigenvalues are obtained easily. On the
other hand, it might not find all Pareto eigenvalues. In Fig. 1 there are polar Pareto
eigenvectors corresponding to different polar Pareto eigenvalues of matrix A" for
n = 10 obtained numerically by Semi-Smooth Newton method.

In the two following theorems we give a description of some numbers which are
polar Pareto eigenvalues of matrix AY and its corresponding polar Pareto eigenvec-
tors. Let the polar Pareto eigenvectors given by these theorems be referred to as basic
polar Pareto eigenvectors.

Theorem 2 Let AN be defined by (3), n € N\ {1}. Number Lo = 0 is polar Pareto
eigenvalue of matrix AN and its corresponding polar Pareto eigenvector is Uy =
[1,...,117.

Let us denote two sets of numbers E,,, O, as

E,={i:i=2kkeN,i<2n-1), (5)
Op={i:i=2+1,keN,i<n-—1)}. (©6)
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t

Fig. 1 Polar Pareto eigenvectors corresponding to different polar Pareto eigenvalues of matrix AY
for n = 10 obtained numerically by Semi-Smooth Newton method

Theorem 3 Let A" be defined by (3), n € N\ {1}. Numbers

V4
Ap=2—2cos—, pekE,UQO0,,
p

are polar Pareto eigenvalues of matrix AN. Corresponding polar Pareto eigenvector
for polar Pareto eigenvalue X ,, where p € E,, is

w, () = | €% (%m)fort €{0,.... 5},
P forte {5 +1,....,n—1},

and for p € O, is

in (L
u, () = sin (prrt) fort €{0, ..., p},
forte{p+1,...,n—1}.
Proof (Theorems?2 and 3) Proof of assertions in Theorems 2 and 3 is technical and
consists of verification of conditions in Definition 1.

Basic polar Pareto eigenvectors corresponding to different polar Pareto eigenval-
ues of matrix AY for n = 10 given by Theorems 2 and 3 are illustrated in Fig. 2. As
a consequence we have that lower total number estimate of polar Pareto eigenvalues
of matrix AMisn + [ 4] — 1.

Let us discuss in more detail polar Pareto eigenvectors. We have introduced basic
polar Pareto eigenvectors. Using these we can generate other vectors which are also
polar Pareto eigenvectors for the same polar Pareto eigenvalue. We want to illustrate
(in Sects. 2.1 and 2.2) a variety of polar Pareto eigenvectors corresponding to a fixed
polar Pareto eigenvalue.
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y Y=ll0(f) y .y=u18(l) y .y=“|6(f) y .y=“14(f) y .y=“12(f)
I r r r
y=.l.l9(f) yh y=us(n) y.=.ll7(f) yh V=U6(t)

Fig.2 Basic polar Pareto eigenvectors corresponding to different polar Pareto eigenvalues of matrix
A¥ forn = 10

Let u, =[u,(0),...,u,(n — D]” be a basic polar Pareto eigenvector corre-
sponding to the polar Pareto eigenvalue A, (see Theorem3). Interval [0,n — 1] is
split into (n — 1) equidistant subintervals d; of length one

di=[ii+ 11, i€{0,....n—2),
ie.dy=10,11,d; =[1,2],...,d,—» = [n — 2,n — 1]. Let us define set J, as
Ju=1{i€{0,....,n =2} :u,(i) #0 V u,@i + 1) #0}. 7

Hence set J, contains indices i of subintervals d; for which the value of vector u,, is
zero in at least one of the end points of subinterval d;.

2.1 Polar Pareto Eigenvectors with Respect to the Set O,
In this section we will only deal with polar Pareto eigenvalues A ,, where p belongs
to the number set O, defined in (6).

Lemma 1 Let A" be defined by (3),n € N\ {1}. Let p € O,. Vectorv,(t) = u,(t —
n + 1) is polar Pareto eigenvector corresponding to the polar Pareto eigenvalue X .

Proof Showing that vector

0 forr €{0,....,.n -2 -2},

VP(t)Zup(t—n+l)={Cos<%7r(l‘—l’l+l)> forrefn—1-%,....n—1},
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satisfies conditions in Definition 1 (definition of polar Pareto eigenvectors) is straight-
forward.

Algorithms 1, 2 represent the way how to get other polar Pareto eigenvectors
for a fixed polar Pareto eigenvalue using the basic polar Pareto eigenvector u,, (see
Lemmas 2 and 3). In Fig. 3 we illustrate the upcoming algorithms and lemmas.

Data: n,u,, p

Result: w),

w, = NULL;

w,(0) :=0;

i:=1;

whilei <n —1do
if i < £ then

Wp(i) = “p(g —1i);

wp(p —i)i=uy(§ —i);
end
if i > p then

| wp(i):=0;
end
i:=i+1;
end
Algorithm 1: Algorithm for retrieving polar Pareto eigenvector w,, (see Lemma?2).

Lemma 2 Let AN be defined by (3), n € N\ {1}. Let p € O,. If p <n — 1 then
vector w, retrieved from Algorithm 1 is the polar Pareto eigenvector corresponding
to the polar Pareto eigenvalue A .

Proof To show that vector

in (L
W, () = sm(pnt) fort € {0,..., p},
0 forte{p+1,...,n—1},

satisfies conditions in Definition 1 is straightforward.

Data: n, w,, a, p

Result: xf,

X‘;, :=NULL,

i:=0;

whilei <n —1do
if i <a — 1 then

\ X4 (i) :=0;

else

| x9G) :=wp,(i —a);
end

i:=i+1;

end
Algorithm 2: Algorithm for retrieving polar Pareto eigenvectors X/, (see Lemma 3).
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Lemma 3 Let AV be defined by (3), n € N\ {1}. Let p € O, and w, vector retrieved
from Algorithm 1. Then for a € {1, ..., n — 1 — p} vectors xj, retrieved from Algo-
rithm 2 are polar Pareto eigenvectors corresponding to the polar Pareto eigenvalue
Ap.

Proof Showing that fora € {1,...,n — 1 — p} vectors

X4 (1) = sin(%ﬂt—a)) fort €{a,...,p+al,
P 0 fort €{0,....,n—1}\{a,..., p+al,

satisfy conditions in Definition 1 is straightforward.

Let us define set VPO (see Fig.3) as set of all polar Pareto eigenvectors corre-
sponding to the polar Pareto eigenvalue A, p € O, determined by Theorems 2, 3
and Lemmas 1-3, i. e:

1 -
VI,O ={u,, vy, Wy, X, ...,x; P, )

Next theorem shows us that any vector which is a certain combination of polar
Pareto eigenvectors from the set Vpo is (if one condition is satisfied) also a polar
Pareto eigenvector to the same polar Pareto eigenvalue.

Theorem 4 Let AN be defined by (3), n € N\ {1}. Let p € O,. Leta,b € Vpo and
let Ju, Jy be corresponding sets defined in (7). If J, N Jy = @ is satisfied, then

z=Cia+Cb, C; >0, C, >0, Clcz#O,

is a polar Pareto eigenvector corresponding to the polar Pareto eigenvalue A .

Proof Proof of the theorem is immediately obtained by substituting to Definition 1.

Fig. 3 Vectors belonging to the set VPO (defined in (8)) forn = 10 and p = 4
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t

Fig.4 Basic polar Pareto eigenvector u,, polar Pareto eigenvector x‘l‘7 and polar Pareto eigenvector
zZ=u,+ O.4x‘[‘, forn = 10 and p = 4 (corresponding to polar Pareto eigenvalue A4 of matrix AN)

In the Fig.4 there is an example of results from Theorem 4. We have a = u,,
b= x;‘,, thus the final vector z = Cja + C,b (right) for C; = 1, C; = 0.4 is also
polar Pareto eigenvector corresponding to the polar Pareto eigenvalue A,, where
p =4and n = 10.

2.2 Polar Pareto Eigenvectors with Respect to the Set E,,

In this section we inspect polar Pareto eigenvalues A ,, where p belongs to the number
set E,, defined in (5). Situation is very similar as in the case p € O,,.
Data: n,u,, a, p

Result: y},
y¢:=NULL;
i:=0;

while; <n —1do
if i <a— 1 then

| ¥56) :=0;

else

‘ Y;l)(i) =u,@ —a);
end

i=i4+1;

end
Algorithm 3: Algorithm for retrieving polar Pareto eigenvectors y/, (see Lemma4).

Lemma 4 Let AN be defined by (3), n € N\ {1}. Let p € E,. Then fora € {1, ...,
n — 1 — p} vectors y), retrieved from Algorithm 3 are polar Pareto eigenvectors
corresponding to the polar Pareto eigenvalue X .

Proof Proof of this lemma is straightforward and it is obtained as in Lemma 3.

Notice that Algorithms 2 and 3 are almost the same with only difference in the
input data (instead of w, we use u, in Algorithm 3).
Let us define set V,* as

E __ 1 n—l—p
vV, ={up,y,.....¥, }.
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Theorem 5 Let AY be defined by (3), n € N\ {l1}. Let p € E,.. Let a,b € Vf and
let Ja, Jp be corresponding sets defined in (7). If J, N Jy, = @ is satisfied, then

z=Cia+Chb, C;>0, C,>0, CiC, #0,

is polar Pareto eigenvector corresponding to the polar Pareto eigenvalue A .

Proof Again, we would approach the proof in the same way as for Theorem 4.

3 Fudik spectrum of AY

In the previous section we studied specific properties of a discrete problem with
Neumann boundary conditions (1) which can be written in the matrix form as A¥u =
au’ — Bu~. We discussed the polar Pareto spectrum of matrix A¥. In this section we
will explore properties of the Fu¢ik spectrum of matrix A¥ and its connection with the
corresponding polar Pareto spectrum. In Fig. 5, one can observe the Fucik spectrum of
matrix A" for n = 6 and n = 10 obtained numerically. In general, a Fu¢ik spectrum
for a matrix is defined as follows.

Definition 2 The Fucik spectrum of matrix B € M, is the set X' (B) of all pairs
(o, B) € R2, for which there exists a non-trivial solution u of the problem Bu =
au’ — Bu~. The pair («, B) € X (B) is called the Fu¢ik eigenvalue.

Before we inspect a relation between asymptotes of Fucik curves and the polar
Pareto spectrum, we introduce already known properties regarding Fucik spectrum
with respect to discrete operators.

Authors Ma et al. [6] gave an expression of the Fucik spectrum regarding Dirich-
let matrix (a similar discrete problem to (1), only Dirichlet boundary conditions are

(AN, n=6 Z(AYM),n=10

0 2 4 « 0 2 4 «

Fig. 5 Numerical reconstruction of the Fugik spectrum of matrix AN for n = 6 (left) a n = 10
(right)
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considered instead of Neumann boundary conditions) via the matching-extension
method. They described all points from (0, 4) x (0, 4) belonging to the Fucik spec-
trum. A part of this expression has to be calculated numerically before the matching-
extension method can be used.

Stehlik [9] studied the first non-trivial Fuc¢ik curve of Dirichlet matrix in detail.
In doing so, necessary conditions for points from R? belonging to the first non-
trivial Fucik curve were introduced. A conjecture that this curve has no elementary
parametrization was stated in the article.

Authors Holubova and Necesal [2] discussed similarities of structures in the
Fucik spectrum for continuous and discrete operators. They also suggested an algo-
rithm for numerical reconstruction of the Fucik spectrum for reasonably small matri-
ces.

A connection between polar Pareto spectrum and Fucik spectrum was inspected
in the article [3]. Authors discussed a more general relation between Fuéik spectrum
and so called K -spectrum.

Recently, a paper investigating Fucik spectrum of the Dirichlet matrix has
appeared [5]. Moreover, all obtained results therein can be also applied for dis-
crete problems with different local boundary conditions (for example problem (1)
with Neumann boundary conditions). Authors provide the exact implicit descrip-
tion of all non-trivial Fu¢ik curves. Furthermore, for each non-trivial Fucik curve,
they give several different implicit descriptions, which differ in the level of depth of
used nested functions. All presented descriptions of Fu¢ik curves have the form of
necessary and sufficient conditions.

Let B € M,. The Fucik spectrum of a matrix consists of finitely many algebraic
curves, so called Fucik curves. Next theorem states the following. If the half-line
a=pn R, B>0,is avertical asymptote of the Fu¢ik curve (thus this Fucik curve
has an asymptotic behaviour in the sense of Theorem 6) then u is the polar Pareto
eigenvalue of B. But to the contrary, the opposite implication does not hold. Not
every polar Pareto eigenvalue is vertical asymptote to some Fucik curve. Moreover,
due to the fact, that Fucik spectrum is in general symmetric (with respect to the line
a = B in the sense: («, B) € X (B) & (B, a) € X (B)), it is enough to investigate
only vertical asymptotes of the Fucik curves.

Theorem 6 Let B € M, and let a sequence of Fucik eigenvalues (o, Br) € X (B)
exist such that o, — p € R for k — +o0. If By — 400 for k — +00 then w is a
polar Pareto eigenvalue of B.

Proof Proof can be found in the article [3].

Our goal is to distinguish which of the polar Pareto eigenvalues of matrix AN
actually make vertical asymptotes of some Fucik curve. The following conjecture
concerning this issue has not been proved yet and therefore the distinction is still an
open problem.

Conjecture 1 Let AN be defined by (3), n € N\ {1}. Half-linea = Ay, B > 0, where
Ao is polar Pareto eigenvalue of matrix A", is a vertical asymptote of the first
Fucik curve of X (AY).
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1. Let p € O,. Then the half-line « = A, B > 0, where A, is polar Pareto eigen-
value of matrix A", is vertical asymptote of some Fucik curve if and only

if there exists i € {0,1,2}, j € HO, R {%—H such that i + j # 0 and exists

kel0,... i+j— l}suchthatn:i{g-‘ +jp k41
2. Let p € E,. Then half-line o = X, B > 0, where A, is polar Pareto eigenvalue
of matrix AN, is vertical asymptote of some Fucik curve if and only if there exists

ie{o,l},je{1,...,[%”,ke{o,...,j—l} suchthatn:i{ﬂJrijr
k+ 1.

4 Conclusion

In this paper we investigated relation between the Fucik spectrum of matrix AN
defined in (3) and polar Pareto spectrum of the matrix. We found numbers which
belong to the polar Pareto spectrum of matrix A¥. We discussed in detail polar Pareto
eigenvectors belonging to a single fixed polar Pareto eigenvalue and how to generate
them from so called basic polar Pareto eigenvectors. Then we provided a conjecture
on vertical asymptotes to the Fu&ik curves in the Fuéik spectrum of matrix AY.
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Interval Difference Methods for Solving m)
the Poisson Equation L

Andrzej Marciniak and Tomasz Hoffmann

Abstract In the paper we resemble interval difference method of second order
designed by us earlier and present new, fourth order interval difference methods
for solving the Poisson equation with Dirichlet boundary conditions. Interval solu-
tions obtained contain all possible numerical errors. Numerical solutions presented
confirm the fact that the exact solutions are within the resulting intervals.

Keywords Interval difference methods - Floating-point interval arithmetic -
Poisson’s equation + Boundary value problem in partial differential equations

1 Introduction

As it is well-known, there are two kinds of errors caused by floating-point arithmetic:
representation errors and rounding errors. When we apply an approximate method
to solve a problem on a computer we introduce the third kind of error—the error
of method (usually called the truncation error). Using interval methods realized in
interval floating-point arithmetic we can obtain solutions (in the form of intervals)
which contain all these errors.

In this paper we resemble (see [6—8, 10]) second order interval difference methods
for solving the Poisson equation with boundary conditions and present new, fourth
order methods. The solutions obtained by these methods are in the form of intervals
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which contain all possible numerical errors. Moreover, it has been experimentally
confirmed' that the exact solutions are placed inside the resulting intervals.

The paper is divided into seven sections. In Sect.2 we present shortly the basis
of interval arithmetic and their realization in floating-point computer arithmetic. In
Sect.3 we recall the well-known Poisson equation with Dirichlet boundary con-
ditions which are of our interest. In the next section we resemble our second
order interval difference methods. The main section of this paper is Sect.5, where
we present new, fourth order interval difference methods for using in proper and
directed interval arithmetics. Numerical examples for second and fourth order inter-
val methods developed are presented and compared in Sect. 6. These examples have
been carried out in proper and directed floating-point interval arithmetics using our
IntervalArithmetic32and64 unit[12] written in the Delphi Pascal program-
ming language. Finally, we shortly present conclusions and problems to consider in
further research.

2 Interval Arithmetic

Verified numerical computing requires a mathematical tool to describe operations
performed on computers. Such a mathematical tool, called interval arithmetic, has
been developed by R. E. Moore in 1966 [15, 16] and extended by other researchers
in the following years (see, e.g., [1, 3, 4]). As it is well-known, a real interval,
or shortly an interval, is a closed and bounded subset of real numbers R : [x] =
[x,X] = {x € R:x <x <X}, where x and X denote the lower and upper bounds of
the interval [x], respectively. An interval is called a point interval if x = X. We can
distinguish real (proper) and directed interval arithmetic. In real interval arithmetic it
is excluded a division by an interval containing zero. This restriction may be removed
in so called extended (real) interval arithmetic. Both of these interval arithmetics
(real and extended real) are called proper, since for any interval [x] = [x < X] we
have x < X. It should be noted that the opposite and the inverse elements do not
exist in proper interval arithmetic. Such elements exist in so called directed interval
arithmetic, where for any interval [x] we can have either x < X or x > X.

The realization of proper interval arithmetic is based on simple rule, where left
and right endpoints are calculated by using downward and upward roundings (see,
e.g., [3]). In the case of directed interval arithmetic the rules of calculating endpoints
are much more complicated. For each basic operation different rounding can be used
for calculation of endpoints of the result interval. The accurate description of directed
interval arithmetic is presented, among others, in [11, 18].

'In our opinion, it is rather impossible to obtain a theoretical proof of this fact.
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3 The Poisson Equation

Our problem is to find u = u(x, y) satisfying the partial-differential equation (called
the Poisson equation)

9%u 9%u
)+ e @ ) =f(ny), 0<x<a 0<y<B§
ox ay

with the Dirichlet boundary conditions

¢1(y), forx=0,
¢ (x), fory=0,
»3(y), forx=a,
¢a(x), fory=p,

ulp(x,y) = ¢, y) =

where

1(0) = ¢2(0), @) = ¢3(0), @3(8) = pa(@), ¢4(0) = 1 (B),
F'={xy): x=0,cand0 <y <Bor0)<x<woandy=0, 8}.

4 Interval Difference Methods of Second Order

Interval difference methods of second order based on proper and directed interval
arithmetic we developed in details in [6-8, 10]. Below we resemble some essential
facts.

Partitioning the interval [0, «] into n equal parts of width £ and the interval [0, 8]
into m equal parts of width k provides a mean of placing a grid on the rectangle R
with mesh points (x;, y;) = (ih, jk), where h =a/n, k = f/m,i=0,1,...,n and
j=0,1,..., m. Assuming that the fourth order partial derivatives of u exist, for each
mesh point in the interior of the grid we use the Taylor series in the variable x about
x; and in the variable y about y;. This allows us to express the Poisson equation at
the points (x;, y;) as

) 2 h? 3*u k* 3*u
8 uij + 8 u; — e (& y1) — 2oy (xi, mj) = fij» 1)

where
2y, = il — 2u;j + ui-y 2y — it~ 2u;j + uij
x 7y T h2 ’ yoy kz ’
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U = L{(X,', yj),ﬁj =f(xi, y_,‘), and where S,‘ € (x,‘_l, XH_]), nj € (y]‘_] s yj+1) are inter-
mediate points, and the boundary conditions as

u(0,y)) = ¢103)),
u(x;, 0) = pa(x;),
u(a, y;) = ¢3()),
u(xi, B) = a(xi),

forj=0,1,...,m,
fori=1,2,...,n—1,
forj=0,1,...,m,
fori=1,2,...,n—1.

@)

Omitting in (1) the partial derivatives, we obtain a method, called the central-
difference method, with local truncation error of order O(h> + k?) (see, e.g., [2,
9, 14]):

Suyj + 8wy = f. 3)

Such formulas together with (2) present a system of linear equations (with respect
to unknowns u;;), which may be solved by any known exact or iterative method.

To construct an interval method, let us assume that there exists a constant M such
that

34
_u <M forall0 <x<wand0 <y <8,
0x29y?
and let
*u 4
8x2—8yz(x’ y) = W(% y).

Since from the Poisson equation (1) it follows that

84u( ) % f 8*u . y)
—— WX, = TS — X, ¥),
ot Y ox2  9x20y? Y

d*u 3°f 0*u

8—))4(36, y) = 8_y2 - W(& y),

then it is obvious that we have

4

ax

3*u
= m € QXY + [k, kD) +[-M,M],
ox

forany & € (x — h,x+ h)andanyn € (y — k,y + k), where X and Y denote interval
extensions of x and y, respectively, and W (X, Y) and Q (X, Y) are interval extensions

92f 3%f .
of a—x’; (x,y) and Wé (x, .y), respectn./ely. . ' .

If we recall the Poisson equation at the mesh points (1) and write the partial
derivatives at the right-hand side, it is easy to write an interval analogy to this equation.

Assuming that all interval extensions are proper, we have
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KU1+ WP Uijoy = 2007 + k) Uiy + kUi + Ui

1
=h’k? (Fi,j +15 (RPW(X; 4+ [~h,h), Y)) + QX Y; + [k, k]) 4)

+(h* + kz)[—M,M])),

i=12,....,.n—1, j=1,2,...,m—1,
where F; ; = F(X;, Y;), and where

Upj = ®1(Y)), U= P2Xp), U,j = 3(Y), Uip=Ps(Xp)
foreachj=0,1,...,mandi=1,2,...,n—1,

®)

D (Y), P(X), P3(Y) and $4(X) denote interval extensions of the functions ¢ (y),
©2(x), p3(y) and @4(x), respectively. The system of linear equations (4)—(5) can
be solved in conventional (proper) floating-point interval arithmetic, because all
intervals are proper. But we can consider another analogy of (1). Namely, we can
write

KUioyj+ 1PUijoy — 2002 + k)U;j + kKU j + B Ui
h*k?
=y (YOG +[=h, B, Y) + QX ¥; + [—k, kD
+(0 + KD [=M, M])
= W*k*F,
i=1,2,...,n—1, j=1,2,...,m—1.

Using directed interval arithmetic, we can add at both sides of this equation the
opposites to some elements. We get

KU1+ WUy — 2007 + k) Uiy + K Ui + U,

1
=h’K? (Fi.j +5 (RPW(X; + [—h, h], Y)) + K*Q(X;, Y; + [k, k])

+(h* 4+ KH[M, —M])>, (6)

i=1,2....n—1, j=12,....m—1l.

The last Eq. (6) differs from the Eq. (4) only by the last term on the right-hand side,
which is an improper interval. But using the directed interval floating-point arithmetic
we can solve the system (6) (together with (5)). If the interval solutions of this system
are in the form of improper intervals, to get the proper intervals we can use the so-
called proper projection of intervals, i.e. transform each interval [a, b], for which
b < a, to the interval [b, a].
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We should also add a remark concerning the constant M . In general, when the
exact solution is unknown and nothing can be concluded about M from physical or
technical properties or characteristics of the problem considered, we propose to find
this constant by the following procedure: It is obvious that

d*u Ui—1j—1+ Ui—1jr1 + Uir1j—1 + Uit1j+1
——(x;, y;) = lim lim T

0x20y? h—0k—0
n Auij — 2(ui—1j + uij1 + uijo1 + ui+l,j)>
h2k? '

We can calculate

1
M, = Tk max \MHJA F Uiy Ui o1+ Uikl

Fhuij— 21+ gy 4 Ui+ i)

fori=1,2,...,n—1,j=1,2,...,m— 1 and where u; are obtained by a conven-
tional method for a variety of n and m, say n = m = 10, 20, ..., N, where N is
sufficiently large. Then, we can plot M, ,, against different n = m. The constant M

can be easy determined from the obtained graph, since lim lim M, ,, <M.
n—00 m— 00

5 Interval Difference Methods of Fourth Order

Using the Taylor series of higher order, we can express the Poisson equation at the
points (x;, y;) as

1
Suy + Sy + E(h2 + k)88 u;

L (s 0 ey 402
S ~ Aa 9 i7 j xl’
240 \"" Gxtgy2 oY axzayt i

h?k? 8%u o%u
- m <8x48y (&, mj) + ax2dy 4($la 77})) @)

1
=fi+ —(h282 + K28))f;

1 0
~ 210 ( ai(élvyj) +k* J:(Xi, le)) .

If in (7) we omit the partial derivatives, we get the following conventional difference
method of fourth order [5, 19]:
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2 2 2 2 202 202
8%uy; + 82uy + —(h + k2)8282u; = f + —2(h 82 + K282)f;. (8)

Let ®(X,Y) and E(X, Y) denote interval extensions of 4 and 2 V4, respectively,
and let us assume that

6

86
u RS
x2ay*

W < <Qforall0<x<oand0 <y <§.

It is obvious that

' 3 =
@(5’)’) € ®(X + [_hv h]v Y)v a_yél(-xa 77) € E‘(X, Y =+ [_k’k])a

9%u 90

8x48 5 € [-P, P] W € [-0,0],

If in (7) we write all partial derivatives at the right-hand side, then it is easy to obtain
an interval analogy to this equation. We have
(W + k) Uiz jo1 + Uici o1 + Uis1jo1 + Uit j+1)
+ 25k = ) (Uj-1j + Ui ) +2(5h* — k*) (U j-1 + Ujj1)
—20(1* + k) Uy
:h2k2<Fi—l,j+Fi+l,j+8Fi,j+Fi,j—l + Fjjt1 9)

—%(h“@(X +[—h, h], Y) + kK*EX:, Y, + [~k kD)

(h“[ P, Pl + k*[—Q, Q])+@[ P— QP+Q)
20

If in (7) we leave partial derivatives at the left-hand side, write an interval analogy
to this equation, and then add adequate opposite interval elements (which exist in
directed interval arithmetic), we get

(h* + kz)(Ui—l,j—l + Uizt j1 + Uig1j—1 + Uig1 j41)
+2(5k> = B)(Ui—1j + Uis1j) + 250 — k*) (Ui j-1 + Ui j1)
—20(h* + kH) U,

= W2k <Fi1,j +Fipj+8Fj+Fij_1+ Fij (10)
1
- = (h4®(x,« +[=h, 1, Y) + K EX;, Y + [k, kD)

(h“[P —P] +k*[0, Q])+%[P+Q —P— QJ)
20
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The difference between (9) and (10) occurs only in the last line. If from the problem
considered there is no information about the constants P and Q, we can calculate

1
Py = h4k2 max |uz —2j—1 F Ui j+1 + Uiv2j—1 + Uit jy1 — 2(ui- 2+ ul+2j)
— 411+ w11 i1+ i)
+8ui—1j + tit1j) + 6(u;j—1 + Ui jr1) — 12“@/} ,
1
Onm = h2k4 H}ax |uz 1j—2 + Uip1j—2 + Ui—1j+2 + Uitr1j42 — 2(“11 2+ ulj+2)
— 411+ i1 w1+ i)
+8(uij—1 + i jy1) + 61 + Uir1;) — 12“@,‘} ,
fori=2,3,...,n—2, j=2,3,...,m— 2, where u; are obtained by a conven-

tional method for a variety of #n and m. Then, the values of constants P and Q may
be estimated from the fact that lim lim P,, < Pand lim lim Q,, < Q.

n— 00 m— 00 n— 00 m— 00

6 Numerical Examples

In the examples presented in this section we have used our own implementation of
floating-point interval arithmetic written in Delphi Pascal. This implementation has
been written in the form of a unit called IntervalArithmetic32and64, which
current version one can find in [12]. All programs for the examples presented can be
load from [13].

Example 1
Let us take into account the following boundary value problem:

e+ T =0, 0<x<1, 0<y<1
—(x, — (X, =V, =SX=1, =y=1,
M+ 55y y

¢1(y) = cos(3y), forx =0,
@r(x) = exp(3x), fory =0,

03(y) = exp(3) cos(3y), forx =1,
@4(x) = exp(3x) cos(3), fory=1.

(11)
ulr(x,y) = o(x,y) =

The exact solution is given by u(x, y) = exp(3x) cos(3y). In Table 1 we present the
results obtained by the second and fourth order methods in proper and directed
arithmetics at the center of the region I'.

In the second order methods we have assumed M = 1627. Of course, this esti-
mation of can be calculated from the known exact solution, but a similar estimation
one can obtain from the graph presented in Fig. 1.
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Table1 The interval solutions and the widths of intervals obtained in proper (U),) and directed (Uy)
interval arithmetics to the problem (11) at (0.5, 0.5) (#exacr (0.5, 0.5) = 0.31702214358044366)

m=n Uy(0.5,0.5) Width(Uy) | Uy4(0.5,0.5) Width(Uyg)
20 [0.26795781801796551, | 0.099689963 | [0.26795781801796628, | 0.099689963
(2nd order) | 0.36764778128690462] 0.36764778128690385]
20 [0.31687231501883790, | 0.000299659 | [0.31687231501883870, | 0.000299659
(4th order) 0.31717197371330709] 0.31717197371330630]
60 [0.31156101681974879, | 0.011096024 | [0.31156101681975913, | 0.011096024
(2nd order) | 0.32265704145441798] 0.32265704145440782]
60 [0.31702029383932179, | 0.000003700| [0.31702029383933359, | 0.000003699
(4th order) 0.31702399332372090] 0.31702399332370710]
100 [0.31505586246198510, | 0.003995128 | [0.31505586246202793, | 0.003995128
(2nd order) | 0.31905099073825598] 0.31905099073821316]
100 [0.31702190385388648, | 0.000000048 | [0.31702212784104150, | 0.000000031
(4th order) 0.31702238330710142] 0.31702215931994640]

L s

1400

1200

1000 1 1 | | | | | | | | 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200
approx M —_—- M=1627

Fig. 1 Approximations to the constant M for the problem (11)

In the fourth order methods we have taken P = Q = 14 643. In general, if the
estimations of P and Q can not be obtained from any information about the problem
considered, we can use similar technique as previously. Let us note that in both

methods the exact solution belongs to the interval solutions obtained. ]
Example 2
As the second example let us consider the following problem:

O e+ ) = 2 sinGro sinGry), 0=l 0=y<l

— (x, — (x,¥) = —2m sin(wx) sin(my), <x<l, <y<l,

a2 Y T Y Y Y (12)

ulr(x,y) =0

with the exact solution u(x, y) = sin(wx) sin(ry). The interval solutions obtained
are presented in Table2. To solve the problem (12) we have assumed M = 97.5
for the second order methods, and P = Q = 961.4 for the fourth order ones. As in
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Table 2 The interval solutions and the widths of intervals obtained in proper (U,) and directed
(Uyp) interval arithmetics to the problem (12) at (0.5, 0.5) (¢texqcr(0.5,0.5) = 1)

m=n Uy(0.5,0.5) Width(Uy) | Uy4(0.5,0.5) Width(Uyg)
20 [0.9943031722943299, |0.008993528| [0.9972920186287353, |0.003015835
(2nd order) | 1.0032966998827956] 1.0003078535483902]

20 [0.9999825795708284, | 0.000023406 | [0.9999863114853876, | 0.000015942
(4th order) 1.0000059858600965] 1.0000022539455373]

60 [0.9993877757476903, |0.000803292| [0.9995227144656405, |0.000533414
(2nd order) | 1.0001910675167757] 1.0000561287988255]

60 [0.9999997879937084, | 0.000000262 | [0.9999998069620024, | 0.000000217
(4th order) 1.0000000498551452] 1.0000000308868512]

100 [0.9997852097215218, |0.000259718| [0.9998155730093303, |0.000210278
(2nd order) | 1.0000562138028589] 1.0000258505150504]

100 [0.9999999728030543, | 0.000000033 | [0.9999999743621285, | 0.000000030
(4th order) 1.0000000058410797] 1.0000000042820054]

Table 3 The interval solutions and the widths of intervals obtained in proper (U,) and directed
(Uy) interval arithmetics to the problem (12) at (0.5, 0.5) for M = 100 and P = Q = 1000

m=n U,(0.5,0.5) Width(Uy) | U4(0.5,0.5) Width(Ug)
20 [0.9942265819722118, |0.009146708 | [0.9972460644354644, |0.003107743
(2nd order) | 1.0033732902049137] 1.0003538077416611]

20 [0.9999821846099048, | 0.000024196 | [0.9999859165244640, |0.000016732
(4th order) 1.0000063808210200] 1.0000026489064608]

60 [0.9993792508363238, |0.000820342| [0.9995175995188206, |0.000543644
(2nd order) | 1.0001995924281422] 1.0000612437456454]

60 [0.9999997831176551, |0.000000264 | [0.9999998020859490, | 0.000000234
(4th order) 1.0000000547311985] 1.0000000357629046]

100 [0.9997821403236452, |0.000277143 | [0.9998137313706043, |0.000213961
(2nd order) | 1.0000592832007355] 1.0000276921537746]

100 [0.9999999721711177, |0.000000034 | [0.9999999737301920, |0.000000031
(4th order) 1.0000000064730162] 1.0000000049139419]

Example 1, the exact solution is within the interval solution obtained. Let us note
that if we a little bit overestimate the constants M or P and Q (what can happen if we
have no information about adequate partial derivatives) the interval results change
insignificantly. In Table3 we present the results obtained by our methods for the

problem (12) with M = 100 and P = Q = 1000.
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7 Conclusions and Further Studies

Interval methods for solving partial-differential equation problems in floating-point
interval arithmetic give solutions in the form of intervals which contain all possible
numerical errors, i.e. representation, rounding and truncation errors. The interval
difference methods of fourth order are (of course) better than the methods of second
order (give intervals with smaller widths). The interval difference methods realized
in directed floating-point interval arithmetic are longer in time (approximately 15%)
than by the methods realized in proper one, but yield interval solutions with a little
bit smaller widths. Depending on the problem considered, the differences in widths
may be decreasing or increasing in the number of mesh points, but in all cases the
widths of intervals for directed interval arithmetic are a little bit smaller. To have
more valuable approximations for constants used in our methods, in further studies
we plan to use the Nakao interval estimations to partial derivatives (see, e.g., [17]).
Moreover, according to a special form of the system of (interval) linear equations that
have to be solved, some more effective methods should also be taken into account.
We will also try to solve a generalized Poisson equation of the form

92 92
a(x, y)a—xﬁ‘(x, ¥) + b(x, y)a—yf(x,w =f(x.y), (13)

where
a(x,y) - b(x,y) > 0.

with some boundary conditions by interval difference methods of fourth order (inter-
val difference methods of second order for solving (13) with the Dirichlet boundary
conditions have been presented in [8]), and to use other interval difference methods.
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Gevrey Well Posedness of )
Goursat-Darboux Problems oo
and Asymptotic Solutions

Jorge Marques and Jaime Carvalho e Silva

Abstract We consider the generalized Goursat-Darboux problem for a third order
linear PDE with real constant coefficients. Our purpose is to find necessary conditions
for the problem to be well-posed in the Gevrey classes. Since this problem can be
reduced to the Cauchy problem using permutations of independent variables, we
solve it for a ODE with complex coefficients and two unknown initial data. In order
to prove our results, we first construct an explicit solution of a family of problems
with initial data depending on a parameter > 0 and then we obtain an asymptotic
representation of a solution as 7 tends to infinity.

Keywords Goursat-Darboux problems * Gevrey classes < Asymptotic solutions

1 Introduction

The generalized Goursat-Darboux problem for a third order linear PDE with real
constant coefficients in the space C* was studied in [2, 3]. Given an open set §2 C
R3*™  neighborhood of the origin, the most general problem is defined on £2 by
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ddedyu(t, x,y,2) = Y a0 05oj0fult, x, y, 2)
I+k+j+]&|<3
I#3,k#3,j£3

u@©,x,y,2) = filx,y,2) (1

u(t707 v, Z) = fZ(ts Yy, Z)
u(t,x,0,z) = fa(t, x, 2)

where initial data satisfy the necessary compatibility conditions:

J100,y,2) = £2(0,y,2)
J1(x,0,2) = f3(0,x, 2)
f2(1,0,2) = f3(2,0,2)
f10,0,2) = f2(0,0,2) = f3(0,0,2) ..

@)

It was showed in [3] that if the problem (1)—(2) is locally C* well-posed in the
neighborhood of origin then the coefficients ag o0& with | £ |< 3 are zero.

The necessary conditions for the problem to be C* well-posed are very strong.
Our goal is to investigate the local solvability of this problem in the classes of Gevrey
functions [5].

Definition 1 (Gevrey classes)

Let s > 1 be a real number and §2 be an open subset of R". The Gevrey class of
index s on £2, I'*(£2), is the space of all the functions f € C°(£2) such that for
every compact K C £2 there exist constants C > 0 and L > 0 satisfying

sup | 3% f (x) |< CL™a? 3)

xek
for all multi-index «.

It is well known that there is a scale of Gevrey classes I'*(£2) of index s > 1:
l<s <s = I (R2)cCr* ).

In fact these classes play an important role as spaces intermediate between the spaces
of real analytic functions (s = 1) and C*°(£2). In addition we have

r'@c(re - |Jreceew.

s>1 s>1

We need to give a topology for I'(£2). Let L be a positive constant, we denote by
I} i the space of smooth functions f* € §2 such that for every compact K C £2,

I£15 & = sup[L™*la! ™ sup | 9% £ (x) [] < o0
a xekK

We also consider the space of functions in I} , with compact support,
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I} ¢ (2)={f eC®2): suppf C K, [ fll} x < oo},

which is a Banach space endowed with the norm || f ||} x. From a topological point
of view, the Gevrey classes

re= J iy
L>0,KC$

are projective limits of inductive limits of Banach spaces [9].

2 Formulation of the Generalized Goursat-Darboux
Problem

Let m = 1, without loss of generality, and let 2 € R* be an open set, neighborhood
of the origin, defined by

={tx.y,2:tl<to A x| <xo A [y <yo A 2] <20}

We consider the simplest Goursat-Darboux problem on §2 for a third order linear
PDE with real constant coefficients:

B dyu(t,x, y,2) = Y A;dlu(t.x.y.z2)
0<j<3
u@0,x,y,2) = filx,y,2) 4
u(t,0,y,z2) = fo(t, y,2)
u(t,x,0,z2) = fa(t, x,2)

where initial data satisfy compatibility conditions (2) on characteristic hyperplanes:
Ti={t.xy.0eR =0}, H={C.x.y,20eR :x=0}, (5
Z3={(t.x,y.2) eR*: y=0}. (6)

The problem (4)—(2) is a generalization of the problem studied by Hasegawa [7] for
a second order linear PDE. It is called the Goursat problem of three faces.

Letus now introduce the definition of the well posed problem in the Gevrey classes
in the sense of Hadamard [6].

Definition 2 (Problem well-posed in the Gevrey classes)

Lets > 1beareal number and §2 be an open subset of R", neighborhood of origin. We
say that the problem (4)—(2) is 1" (£2) well-posed on £2 if there exists a neighborhood
% C $2 such that
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e Forevery f; € I'(§£2 N X;), the problem (4)—(2) has a solution u € I'*(%);

e Itis unique;

e Itdepends continuously on the data. This means that for every compact K C 2 and
every constant L > 0 there exist compacts K; and constants L; > 0,i =1, 2, 3,
and C > 0 such that

lully & < C(Mfilly, k, + 12l & + 1507, k) - (7

Our purpose is to find necessary conditions for the problem (4)—(2) to be well-posed
in the Gevrey classes. We will try to find some critical index so such that if the
Goursat-Darboux problem is well posed in I"* for s > s( then the coefficients of the
derivatives with respect to z are zero.

We begin by showing how the problem (4)—(2) can be reduced to a Cauchy problem
following the ideas of Bronshtein [1]. It is easy to see that the differential operator

3.0y — (A39% + A20% + A1, + Ag)

and the three characteristic hyperplanes X; remain invariant under any permutation
of the independent variables ¢, x and y. Let i be the minimum value between #y, x
and yo and

u={tx,y,:ltl<pun|x|l<pnlyl<pnlzl<zo}

be an open set, £2,, C §2. From now on we suppose that the problem (4)—(2) is I"*
well-posed on £2. By linearity, if u(¢, x, y, z) is a solution of the problem (4)—(2) on
£2 then

v(t,x,y,2) =u(t,x,y,2)+ulx,y, t,z) +uly, t,x,z2) (8)

is a solution of the corresponding problem on £2,,

B0y v(t, x, y,2) = Y _A;0lv(t, x,y,2)
<3
V(O’xﬂyﬂz) = fl(xvyﬂz)+f3(x’y’z)+f2(yaxvz) (9)
v(t,0,y,2) = fot,y, )+ fi(y,t,2) + f3(3, £, 2)
v(t,x,0,2) = f3(t,x,2) + folx, t,2) + fi(t, x, 2).

We then reduce the number of the independent variables by setting t = x = y. We
can define a function w by w(r, z) = v(r, r,r, z) on

Q={(r:rl<uA |zl<z) SR,

Its partial derivatives with respect to r are given by
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ow(r,z) =30v(r,rrz), 8rzzw(r, z) =90,0,v(r,r,1,2),
Aw(r, 2) = 278,,9,v(r, 1,1, 2) .
For every parameter n > 0, taking
v(0,x,y,2) =v(t,0,y,2) =v(t,x,0,7) = e*

we are looking for a unique solution depending continuously on the data. If v, is
solution of the problem on £2,,

3,0,0,v(1, X, y,2) = ZA,azfv(t, X, 9,2)
Jj<3 ) (10)
v(0,x,y,2) =v(,0,y,2) =v(t,x,0,z7) =€

then w),(r, z) = v, (r, r, r, z) is solution of the Cauchy problem on 2

(1)

w(r, 2) = 27(A30} + A28} + A19; + Ag)w(r, 2)
w(0, z) = €.

Notice that there are two arbitrary data 9, w(0, z) and 832w(0, 2).

3 Solving the Cauchy Problem

Applying the method of separation of variables we determine a unique solution of
the Cauchy problem (11) in the form w, (r, z) = m, (r)e'™*. Hence m,(r) is solution
of the initial value problem

m" (r) = 27(—Asin® — Ay + Ajin + Ag)m(r)

m(0) =1
m'(0) =« 12)
m"(0) = B
where « and 8 are unknown. In order to solve a third order linear ODE
m"(r) = 27(=Asin’ = Aan® + Avin + Ao)m(r) (13)

we use its characteristic equation

A —27p() =0 (14)



276 J. Marques and J. C. Silva

where p(7) = —Azin® — Ayn®> + Ajin + Ay is a polynomial with complex coeffi-
cients.

Lemmal Lety andy be two conjugate complex roots of unity. If A, # 0 is a
solution of the Eq. (13) then the solution of the problem (12) is given by

my(r) = 21+ ay + bye™ + 1 (1 +7va, + yb,) e’ "+

(15)
(14 yay +7b) 7
where a, = Ai and b, = %
n n

Proof Let A, # 0 be a solution of (13). If y and ¥ are two conjugate complex roots
of unity then by de Moivre’s formula the general solution of the (13) is written in the
form

my,(r) = Cie™" 4 Cre? " 4 Cye? ™

where Cy, C,, C3 € C are arbitrary constants, which are determined from initial data
of the problem (12) by solving a linear system.

If A, is a real root of the (13) we simplify (15) by using the Euler’s formula.

Corollary 1 (Characteristic equation with one real root) If A, € R — {0} then

my(r) = (1 —¢)e™ + 1 (24 ¢;) cos (v3A,r/2)e 472+
(16)
+83d, sin (v3A,r/2)e A2

where ¢, = —a, — b, and d,, = —i(a, — by).
If A, is a pure imaginary root of the (13), (15) can be written in a simpler expression.

Corollary 2 (Characteristic equation with a pure imaginary root) If A, = —i B,
with B, € R — {0} then

my(r) = % [(2 + ¢,) cosh (v/3B,r/2) + +/3d, sinh (ﬁB,,r/Z)] el B2 4
(17)

+1(1 = cpe B

where ¢, = ﬁz —iiandd,7 == —iﬁz.
B; B, B,  Bj
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4 Asymptotic Representation of Solutions

In previous works [2, 3, 7] an explicit solution of the generalized Goursat-Darboux
problem involves a hypergeometric function of several variables. However some dif-
ficulties for obtaining asymptotic representations for these functions were pointed
out in the paper [4].

In our work we have a linear combination of complex exponential functions as
solution of the Cauchy problem. We provide asymptotic representations, as 1 tends
to infinity, for the absolute value of complex functions m, on a compact, which
depends on 7 and s. Our approach is based on asymptotic analysis of the initial data
in order to have only one exponential function as dominant term, that is, when one
exponential function tends to infinity and the others tend to zero.

Here R (p(n)) and I(p(n)) denote the real part of p(n) and the imaginary part of
p(n), respectively.

Proposition 1 If I(p(n)) =0, Ay #0 and s > 3/2 then there exist a constant
¢ > 0and a compact K,, neighborhood of the origin, such that

sup | m, (r) |~ ceVTA" (18)

rek,

as n tends to infinity.

Proof By assumption I(p(#)) = 0and A, # 0. The Eq. (13) has one real root A,, =

—3/An? — Ay, then by Corollary 1 the solution of the problem (12), my(r), is
given by (16). Let’s see three cases that may occur depending on complex values

cy = Y ﬁ andd, = —i i ﬁ . We first suppose that
Ay A Ay A

ldy|=0(1=cy DA 24 ¢, [=0(1T—=cy).

We choose a compact K,

1
K,={rz:(rz)= ig(nl/s—Zﬁ’ 0},
in which

sup (A,r) = /| Ay [n'/*.

rek,
Notice that if s > 3/2 then K, is a neighborhood of the origin on R2. Since

| 24 ¢y cos Q7'V3Y Ay [9'5) | e 2 VIR — (| 1 — ¢, | ¥TAD"
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and
| dysin (27 /33 | A; | ,71/S)| 27 YA o 1—c, | mnl/v)

we obtain
wplmﬂﬂl~—|1—0| e VI (19)
rek,
with 1 3 |1 —cy|=c >0, as n tends to infinity. Then we suppose that
ldyl=0(24+c, ) A |1=cy|l=0(24¢, ).

If s > 3/2 we choose a compact K, neighborhood of the origin on R?, in which

sup (—A,r) = 2/| Ay In'/* .
reKn

Moreover, we choose a sequence of n values satisfying sup tan (\/§Anr/2) =0.

rek,
Since ]
| 1—c, | e VR — 52 4 ¢, | VM)
and
| dysin (V3Y/1 A2 [n'"*) = o(1 2 +¢;) cos (V3Y/T Az [n'") 1)
we obtain
wpImA0|~—|2+c| 1Az (20)
re K

with % | 2+ ¢, |> ¢ > 0, as n tends to infinity. Finally we suppose that
124c; [=0(dy DA |1 =c, [=0(dy ).
If s > 3/2 we choose a compact K, neighborhood of the origin on R?, in which

sup (—A,r) = 2J/| Ay [n'/*,
rek,

and a sequence of n values satisfying sup cot («/gAnr/ 2) = 0. Since

rek;,

| 1—cy | e VBT = o( dy | V1T

and
| (2+C,7) CcoS (\/33 | Az |)71/S) |: 0(| d’] sin (\/53 | A2 |n1/S) |)
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we obtain

3 1/s
sw|m40kv%ﬂdﬂewhw 1)
rek,

with ¢T§ | d, |> ¢ > 0, as n tends to infinity.

Proposition 2 If 9i(p(n)) =0, A3 =0, A; # 0 and s > 3 then there exist a con-
stant ¢ > 0 and a compact K, neighborhood of the origin, such that

sup | m, (r) |~ ceV1Ain" (22)

rek,

as n tends to infinity.

Proof By assumption we have p(n) = A;ni with A; % 0. The Eq.(13) has a pure
imaginary root A, = —3i/An. We consider iA, = 3y/Ain = B, with B, € R,
then by Corollary 2 the solution of the problem (12), m, (r), is given by (17), where

o
ﬁz — ii andandd, = — — iﬁz. We notice than 2 + ¢, and d,, are not null
B n n B n n

simultaneously. If we suppose that

C,;Z

[1—cy[=0(2+cy DA 1dy|=0(2+¢y D,

then for s > 3 we choose a compact K,

2
Kﬂ = {(r’ Z) : (ra Z) = im(nl/“‘_l/?)’o)} ’

neighborhood of origin, in which

V3
~= sup(B,r) = /| A In'/*.

2 rek,
Since
| 1—cy |=0( 24 ¢, | cosh (/] Ay [ n'/%))
and
| d, |'sinh (V] A1 [0 = 012+ ¢, | cosh (V] Ay [17)
we obtain 1
sup | my(r) |~ = | 24¢, | VA0 23)
rek, 3

with % | 24 ¢, |> ¢ > 0, as n tends to infinity. If we suppose that
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[ 1—cy[=0(dy DA 124 ¢, [=0(dy ),

then for s > 3 we can choose a compact K, neighborhood of the origin, in which

V3 ,
~= sup(B,r) =~/ Ay In'/*.

rek,
Since
| 1 —c, |=o(d,|sinh (/| Ay | n'/*))
and
|2+ ¢, | cosh (/] Ay [ 0'7) = O( d, | sinh (V] Ay [77))
we obtain 7
3 : s
sup | m, (r) |~ 22 | dy | VA"
re[(W 3

with ¢T§ | d, |= ¢ > 0, as n tends to infinity.

(24)

Lemma 2 Let g1, g2, g3 and h with R(h(n)) > 0 be complex functions of the real

variable n. We consider m defined by

m(n) = gi1(n)e" ™ + ga(n)e’" M 4 g3 (n)e’ ™

wherey = —% + %2 If |g;(n)] = 0(gi(MD, j # 1 and |3(h(n))| < ~/3%R(A(n))

then

Im@)| ~ |g1 ()]

as n tends to infinity.

Proof By assumption, we have [g;(n)| = O(|gi(m)]), j =2, 3, that is, there are
constants k; > 0, such that |g;(n)| < k;|g1(n)| for all n €]0, +o0[. From simple

calculations we get

R((y — Dh()) = 3R + V33Rh(m), RF — D)) = 3R () — V33 ().

The condition [J(h(n))| < \/giﬁ‘(h(n)) it is equivalent to

Ry —Dhm) <0 A R — Dh(m) <0.

Since

182 1€V = o(1g1 ()] M) A |g3()]" T = o(| g ()|

it implies
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|g2(m1e” M + g3 (e T = o(|g1 ()],

by consequence

Im@m)| ~ |g1 ()]

as 7 tends to infinity [8].

Proposition 3 If N (p(n)) # 0, A3 # 0and s > 1 then there exist a constant ¢ > 0
and a compact K, neighborhood of origin, such that

sup | m,(r) |~ ceVIAm"” (25)

rek,

as n tends to infinity.

Proof We have R(p(n)) = —A:n? + Ay # 0 and I(p(n)) = —A3zn® + A with
Asz # 0 by assumption. Let A, = 33/p(57) be one of the three complex roots of the
Eq. (13) whose principal argument is

T T 2 2
0 ]——,ouo,—[ V=6 - v =0+
16( 3 [U] 3> h 1 3 3 1-|—3

Then by Lemma 1 the solution of the problem (12), m,,(r), is given by (15), where

a, = @ and b, = ﬁ If we first suppose that
A, AZ

|1+7an+ybn = O(] l+an+br} DA |1+Van+7br; |= O( 1+ar1 +bn b)

we choose a compact K, neighborhood of origin for s > 1, in which

h(n) = sup A,r = (1 +itan6))y/| Az [n'/*,

rek,

for some 6; € (] — 5, 0[U]0, ). Since [I(h(n))| < V3R(h(n)) by Lemma 2 we
obtain

1 3 s
sup | my(r) |~ 3 | 1 +a,+by | /750 (26)
rek;, 3
with | 1 +a, + b, |> ¢ > 0, as n tends to infinity. Then if we suppose that
[1+ay+by|=0(1+vay+yby D A | 1+yay+vbyl=0(1+yay+ybyl)
we choose now a compact K, neighborhood of origin for s > 1, in which

tan 0 _ﬁ
h(n) = sup A,r = (1+ 2 Y )J | As In'’*

1
rek, 1+ «/gtan 6,
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forsome 6, € (] — 7, —Z[U] = 7, =5 D. Since [I(h(n))| < V3R (h(n)) by Lemma

2 we obtain 1
J— 3 1/s
sup | my(r) |~ 3 | 1+Vay +yby | eViAshn (27)
rek;

with | 1 4+ya, + yb, |> ¢ > 0, as n tends to infinity. Finally if we suppose that
[1+ay+by|=0(1+yay+vby D AN | 1+Yay+ybyl=0(1+yay+¥by )

we take a compact K, neighborhood of origin for s > 1, in which

tan93+\/§ 1
h) =sup A,r = (1 +i——"" ) Y| A; n'/*,
7 relg ! ( 1—\/§tan93) | As In

for some 63 € (15, 5[U17, 7[). Since [S(h(n))| < V3R(h(n)) by Lemma 2 we
obtain

1 3 5
sup | my () |~ 3| 1+ ya, +7b, | eVIAsIn'! (28)

rek,

with | 1 + ya, +¥b, |> ¢ > 0, as n tends to infinity.

Theorem 1 [f the problem (4)—(2) is I'* well-posed on §2 then

(i)
s>1 = A;3=0; 29)
(i)
3
s>§ = A, =0; (30)
(iii)
s>3 = A; =0. (31

Proof We suppose that the problem (4)—(2) is I"* well-posed on §2 with s > 1. Then
for every n > 0 the corresponding problem (10) has a unique solution v, on £2,,.

On the one hand, we determine a prior an estimation for the Gevrey norm of v,,
an upper bound, from the initial data, ||/ 7 k- forevery compact K C £2 and every
constant L > 0. The partial derivatives of ¢/ with respect to multi-index (I, k, j, &),
such that/ # O or k # 0 or j # 0, are zero. Otherwise, it is clear that

02 (e") = (im)*le"™
it follows that

sup | 8%(e"™) |=1n"

(t,x,y,2)eK
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so that
”ean”SL,K = sup (| o |7s\0t\ L*\a\n\a\) .
o

. . . —lp=1/spl/s .
Since the supremum is given by ¢ """ there exist constants ¢; = se” 'L~/
and C > 0 such that

: 1/s
vyl & < Clle™ |}, < Cer™ (32)

for every n > 0. This is a condition for stability of solution.

On the other hand, let’s prove that if each coefficient of the equation is different
from zero, A; # 0, then there is some critical index sy such that if s > sy then (32)
will be violated.

In (i) we suppose that A3 % 0 and assume A, = 0, in (ii) we suppose that A, 7#= 0
and assume A; = 0 and in (iii) we suppose that A; # 0 and assume Ay = 0. We
assume that some coefficient is null because we can do suitable dependent variable
changes.

By using previous propositions we construct an asymptotic representation of a
solution as 7 tends to infinity. For every neighborhood of the origin & there exist a
compact K, K, C €, and constants C > 0 and ¢, > 0 such that

1/s
sup | vy(r,r,r,z) |~ Ce™" "

rek;,

Notice that K,, C & only if 5o = 1in (i), so = 3/2 in (ii) and 5o = 3 in (iii).
We have

sup | my(r) |= sup [ wy(r, 2) |= sup | vy(r, 7,7, 2) |
rek, rek, rek,

and as we know that

Wyl , > sup | vy(r, 7,7, 2) |
rek,

we can choose a constant L’ > 0 such that

vallz k, > Ivall k

as 1) tends to infinity. The condition (32) fails to hold since v, || X, has exponential

1/s

growth of higher order to 1'/* as 1 tends to infinity.
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Oscillation Criteria for a Difference m
System with Two Delays L

Pati Doi and Hideaki Matsunaga

Abstract The oscillation of all solutions of a linear autonomous difference system
with two delays is studied. Explicit necessary and sufficient conditions in terms of
the coefficient matrix and the delays are established, which are some extensions of
the previous results. As an application, we can completely classify the oscillation
and the asymptotic stability of a delay difference system.

Keywords Difference equations - Oscillation - Delay + Characteristic equation

1 Introduction

Delay difference equations have been actively investigated since Levin and May
[6] studied them as discrete models corresponding to delay differential equations.
Although delay difference equations are regarded as higher order difference equa-
tions, the special relations among the terms caused by delay are not reflected fully
in the classical qualitative theory of higher order ones. But, the use of the method
developed in the theory of delay differential equations enables us to analyze delay
difference equations in detailed, and its new theory has been obtained.
In this paper we are concerned with a linear difference system

x(n+1)—ax(n—10)+Bx(n—k)=0, n=0,1,2,..., (1)
where a is a real number, B is a d x d real constant matrix, and k, / are nonnegative

integer. By a solution of (1) we mean a sequence {x(n)} of vectors in R is defined
for n > — max{k, [} and satisfies (1) for n > 0.
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A sequence of real numbers {y(n)} is said to be oscillatory if the terms y(n)
are not eventually positive or negative. Let x(n) be a solution of (1) with x(n) =
col (xl (n), x2(n), ..., x4 (n)) for n > 0. We say that the solution x (n) is oscillatory
if each component x; (n) is oscillatory. Otherwise it is called nonoscillatory.

For the simplest delay difference equation

x(n+1)—x(m)+bx(n—k)=0, n=0,1,2,..., 2)

where b is areal number and k is a positive integer, it is known [2—4] that all nontrivial
solutions of (2) are oscillatory if and only if

kk

b> ———.
G

In the scalar case, system (1) is expressed as

xn+1)—ax(mn—0D+bx(n—k)y=0, n=0,1,2,..., 3)

where b is a real number. In [5], Ladas et al. gave the oscillation criterion for (3) as
follows. Without loss of generality, one may assume that k > /.

Theorem A Let k and | be positive integers with k > 1. Then all nontrivial solutions
of (3) are oscillatory if and only if

Bl = i+ (I + Dk — D!

a >0, U+ i

or
a<0, b>0.

In the case thata = 1 and [ = 0, system (1) becomes
x(n+1)—x(n)+ Bx(n—k)=0, n=0,1,2,.... 4

In [1], Chuanxi et al. obtained the following result:

Theorem B Let k be a positive integer. Then all nontrivial solutions of (4) are
oscillatory if and only if the matrix B has no real eigenvalues or

kk

Amin(B) > W,

where hnin(B) denotes the minimum of real eigenvalues of B.
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The purpose of this paper is to establish explicit necessary and sufficient conditions
for all nontrivial solutions of (1) to be oscillatory. For simplicity, we put

_ (l + 1)l+l(k _ l)k—l
- (k + 1)k+l

Our main result is stated in the following:

Theorem 1 Letk > . Then all nontrivial solutions of (1) are oscillatory if and only
if any one of the following four conditions holds:

(1) The matrix B has no real eigenvalues;

(i) k>1, a>0, Apn(B) > a%KHLI; (5)
(iii) k>1, a <0, Amin(B) = 0; (6)
(iv) k=1, Anin(B) = a. (7N

Here Amin(B) denotes the minimum of real eigenvalues of B.

Remark 1 Inthe case that B = diag[b, ..., b]and k > [, Theorem 1 coincides with
Theorem A. In the case thata = 1 and/ = 0, Theorem 1 coincides with Theorem B.
Hence, Theorem 1 is an extension of Theorems A and B.

Remark 2 In the case that k < [, the oscillation problem of (1) is unsolved and it is
left for a future work.

2 Proof of Main Result

The characteristic equation of (1) is given by the form
detO! T —ad*'1 4+ B) = 0, (8)

where [ is the d x d identity matrix. Between the oscillation of solutions of (1) and
the roots of the characteristic equation (8), the following proposition holds; see, e.g.
[3, Chap. 7].

Proposition 1 All nontrivial solutions of (1) are oscillatory if and only if the char-
acteristic equation (8) has no positive roots.

Remark 3 By virtue of Proposition 1, the following statements are equivalent:

(a) All nontrivial solutions of (1) are oscillatory componentwise;
(b) At least a component of all nontrivial solutions of (1) is oscillatory.
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Proof of Theorem 1. By using Proposition 1, we will investigate explicit necessary
and sufficient conditions for the characteristic equation (8) to have no positive roots.
Equation (8) can also be written as

det[(arx*~! — A — B1 =0.

We notice that A is a root of (8) if and only if arg ' — AL is an eigenvalue of B.
Set

FO) = arkt =3 for A > 0.
Then

') =atk — DA — (k+ DaF = 25 Yatk — 1) — (k + DAY,

We will study necessary and sufficient conditions for the matrix B to have no real
eigenvalues belonging to the range of f (1) for A > 0. Our argument is divided into
four cases.

Case (i): The matrix B has no real eigenvalues. In this case there are no real roots
of (8).

Case (ii): k > [ and a > 0. One can easily find that the function f(A) attains the

- i
maximum value at A = {% } =1 It follows that

-~ fak=D)T  fatk—D|T
f(k)_a{ k+1} {k+1 }

1o\ - "
- (m) [atatk = DY &k + 1) — fatk )]

1 +1 k=1
<—1) {atk — DY {atk + 1) — atk — D))

Il
=
+

~

+1
{ l+ )l+](k )k I}Jlr
TKT

I
7N
k-

(L ) aiF (k= DiFadl + 1)F

+‘+

(k + DT

‘+
+‘—

Since lim; o, f(A) = —o0, the range of f (1) is equal to (—oo, art K ]. There-
fore, Eq.(8) has no real roots if and only if no real eigenvalues of B belong to
(—o0, a%ll K =T ], that is,

Amin(B) > a'’it K.
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Case (iii): k > [and a < 0. Since f(0) = 0,1im; o, f (1) = —occand f'(A) <0
for A > 0, the range of f(A) is equal to (—oo, 0). Hence, Eq. (8) has no real roots if
and only if no real eigenvalues of B belong to (—o0, 0), that is,

)\min(B) > 0.

Case (iv): k = 1. Since f(0) = a, limy_, o f(A) = —ocoand /(1) < Ofor A > 0,
the range of f(A) is equal to (—oo, a). Thus, Eq. (8) has no real roots if and only if
no real eigenvalues of B belong to (—oo, a), that is,

Amin(B) > a.

This completes the proof. O

3 Two Dimensional Case

In this section we will consider the oscillation problem of (1) in the two dimensional
case. The characteristic equation of the 2 x 2 matrix B becomes

22— (trB)L+detB =0

and therefore, all the eigenvalues of B are explicitly given by

S - tr B4 /(tr B)2 —4det B
= 3 .

If (tr B)> — 4det B < 0, then the matrix B has no real eigenvalues, and thus, one
can immediately obtain the following result from Theorem 1.

Theorem 2 Letd =2 and k > 1. If (tr B)? — 4det B < 0, then all nontrivial solu-
tions of (1) are oscillatory.

On the other hand, if (tr B)? — 4 det B > 0, then we have the explicit oscillation
criterion for (1) from Theorem 1.

Theorem 3 Let d =2, k > | and (tr B)> — 4det B > 0. Then all nontrivial solu-
tions of (1) are oscillatory if and only if any one of the following three conditions

holds:

+ . N 2
(1) k>1, a>0, trB>2alelKl+il, detB>a§TllKl+iltrB—(aHK'+il> ;
(i) k>1, a<0, r B>0, detB > 0;
(iii) k=1, tr B>2a, detB > atr B — a’.
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Proof Fromd = 2 and (tr B)? — 4det B > 0, the matrix B has two real eigenvalues,
and hence, we find

tr B — /(tr B)2 — 4 det B

Amin(B) = D)

Our argument is divided into three cases.
Case (i): k > [ and a > 0. Condition (5) in Theorem 1 asserts that all nontrivial
k+1 1
solutions of (1) are oscillatory if and only if Ay (B) > am K =1, or equivalently,

k+1 1
tr B —/(tr B)2 —4det B > 2a 1 K1

e trB—2a K > /(tr B)? — 4det B
tr B >2a%11K1+L1,

k+ 1

(r B)> —4a™ KTt B +4(a1 K77)” > (tr B)® — 4det B

& wB>2Kr, detB>am KritrB—(ai Ki1)’,

Case (ii): k > [ and a < 0. Condition (6) in Theorem 1 asserts that all nontrivial
solutions of (1) are oscillatory if and only if A, (B) > 0, or equivalently,

tr B—+/(trB)2 —4detB >0
& trB >./(r B)2 —4detB

< trB>0, (trB)*> (trB)*> —4detB
<= trB>0, detB>0.

Case (iii): k = [. Condition (7) in Theorem 1 asserts that all nontrivial solutions
of (1) are oscillatory if and only if Ay (B) > a, or equivalently,

tr B —/(tr B)2 —4det B > 2a

& trB—2a>+/(r B)2 —4detB

< trB>2a, (trB)’>—4atrB+4a*>> (tr B)> —4detB
<= trB > 2a, detBZatrB—az.

This completes the proof. O

Finally, let us focus on the asymptotic behavior of solutions of (4) in the two
dimensional case. By applying Theorems 2 and 3 to system (4), one can immediately
obtain the following oscillation criterion for (4).

Corollary 1 Let d = 2. Then all nontrivial solutions of (4) are oscillatory if and

only if
(tr B)> —4detB <0
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or
2 det B
(tr B)* —4detB >0, 2Ky <trB < Kp+ K

0

where Ky = k¥ /(k + 1)F+1,

In [7], the second author has studied the asymptotic stability of (4). He presented
the following result:

Theorem C Letd = 2. Then the zero solution of (4) is asymptotically stable if and

only if
Jdet B det B
2/det B sin<(2k + 1)sin~! (%)) <tB<a+4 =

o

and
0 <detB < az,

where o = 2 cos((kr)/(2k + 1)).

By combining Corollary 1 and Theorem C, we can completely classify the oscil-
lation and the asymptotic stability of (4). The proof of the theorem will be omitted.

Theorem 4 Let d = 2. Then all nontrivial solutions of (4) are oscillatory and tend
to 0 as n — oo if and only if

/det B
2+/det B sin<(2k +1) sin_l( d;t )) < trB

and

2J/detB (0 <det B < Kp?)

Ko+ 8 (k< detB <ak
B < o+ Ko (Kop” < det B < aKp)
det B )
o+ (@Ko < det B < a”),
o

where Ko = k*/(k + D*! and o = 2 cos((k)/(2k + 1)).

Remark 4 Theorem 4 is an extension of the following known result: all nontrivial
solutions of (2) are oscillatory and tend to 0 as n — oo if and only if

kk
— __<b<2 .
U+ DT =7 T
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log 0 = log oo = (0 and Applications )

Check for
updates

Hiroshi Michiwaki, Tsutomu Matuura and Saburou Saitoh

Abstract In this paper, we will show that log0 = log oo = 0 by the division by
zero z/0 = 0 and its fundamental applications. In particular, we will know that the
division by zero is our elementary and fundamental mathematics.

Keywords Division by zero + 1/0 =0/0=0+1log0 =0 logoo =0-0° = 1.0

e®=1,0-cos0=1,0 - Y-field - Point at infinity - Infinity + Green function
Robin constant + Capacity + Riemann mapping function + Laurent expansion

1 Introduction

By a natural extension of the fractions

b
- 6]
a

for any complex numbers a and b, we found the simple and result, for any complex
number b

- =0, 2)
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incidentally in [16] by the Tikhonov regularization for the Hadamard product inver-
sions for matrices and we discussed their properties and gave several physical inter-
pretations on the general fractions in [7] for the case of real numbers. The result is a
very special case for general fractional functions in [5].

The division by zero has a long and mysterious story over the world (see, for
example, H. G. Romig [15] and Google site with the division by zero) with its physical
viewpoints since the document of zero in India on AD 628, however, Sin-Ei Takahasi
[7] established a simple and decisive interpretation (2) by analyzing the extensions
of fractions and by showing the complete characterization for the property (2).

‘We thus should consider, for any complex number b, as (2); that is, for the mapping

1
W=- 3)
Z

the image of z = 0 is W = 0 (should be defined). This fact seems to be a curious
one in connection with our well-established popular image for the point at infinity
on the Riemann sphere [1]. Therefore, the division by zero will give great impacts
to complex analysis and to our ideas for the space and universe.

However, the division by zero (2) is now clear, indeed, for the introduction of (2),
we have several independent approaches as in:

(1) by the generalization of the fractions by the Tikhonov regularization or by the
Moore-Penrose generalized inverse,

(2) by the intuitive meaning of the fractions (division) by H. Michiwaki,
(3) by the unique extension of the fractions by S. Takahasi, as in the above,

(4) by the extension of the fundamental function W = 1/z from C \ {0} into C
such that W = 1/z is a one to one and onto mapping from C \ {0} onto C \ {0} and
the division by zero 1/0 = 0 is a one to one and onto mapping extension of the
function W = 1/z from C onto C,

and

(5) by considering the values of functions with the mean values of functions.

Furthermore, in [9] we gave the results in order to show the reality of the division
by zero in our world:

(A) a field structure containing the division by zero — the Yamada field Y,

(B) by the gradient of the y axis on the (x, y) plane — tan 7 = 0,

(C) by the reflection W = 1/7 of W = z with respect to the unit circle with center
at the origin on the complex z plane — the reflection point of zero is zero,
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and

(D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.

See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker [4] and J. A. Bergstra [3] for
the relationship between fields and the division by zero, and the importance of the
division by zero for computer science: It seems that the relationship of the division
by zero and field structures are abstract in their papers.

Meanwhile, J. P. Barukci¢ and I. Baruk¢i¢ [2] discussed the relation between the
division 0/0 and special relative theory of Einstein. However, the result obtained
contradicts with ours and their logic seems to be curious.

Furthermore, T.S. Reis and J.A.D.W. Anderson [13, 14] extend the system of
the real numbers by introducing three infinities 1 /0 = +o00, —1/0 = —00, 0/0 = .
Could we accept their theory as a natural one? They introduce a curious ideal number
for the division 0/0.

Here, we recall Albert Einstein’s words on mathematics: Black holes are where
God divided by zero. I don’t believe in mathematics. George Gamow (1904—1968)
Russian-born American nuclear physicist and cosmologist remarked that “it is well
known to students of high school algebra” that division by zero is not valid; and
Einstein admitted it as the biggest blunder of his life (Gamow, G., My World Line
(Viking, New York). p 44, 1970).

As the number system containing the division by zero, the Yamada structure is
complete [9]. However, for applications of the division by zero to functions, we will
need the concept of division by zero calculus for the sake of uniquely determinations
of the results. See [10].

For example, for the typical linear mapping

z—1
Tz4i]

“4)

it gives a conformal mapping on {C \ {—i}} onto {C \ {1}} in one to one and from

—2i

W=14+—"-—,
z—(—i)

&)

we see that —i corresponds to 1 and so the function maps the whole {C} onto {C} in
one to one.
Meanwhile, note that for

1
Wz(z—i)-Z_H,, (6)

we should not enter z = —i in the way

. 1
[(z—D)]=i - [—

—| =02 =0 (7)

z=i
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Therefore, we will introduce the division by zero calculus: For any formal Laurent
expansion around z = a,

f@=) CGk-a" ®)

n=—00

we obtain the identity, by the division by zero
f(a) = Co. €))

Note that here, there is no problem on any convergence of the expansion (8) at the
point z = a. (Here, as convention, we consider as 00 = 1)

For the correspondence (9) for the function f(z), we will call it the division by
zero calculus. By considering the formal derivatives in (8), we can define any order
derivatives of the function f at the singular point a.

However, for functions we see that the results by the division by zero calculus
have not always practical senses and so, for the results by division by zero we should
check the results, case by case; see many examples, [10].

2 Introduction of Formulas log ) = logoo =0

For any fixed complex number a, we will consider the sector domain A, («, 8)
defined by
O<a<arg(z—a)<p <2m

on the complex z plane and we consider the conformal mapping of A, («, B) into the
complex W plane by the mapping

W =log(z — a). (10)
Then, the image domain is represented by
S, B) = {W;a < IW < B}.

Here, we will check the space structure by the division by zero.

We will be able to see the whole Euclidean plane by the stereographic projection
into the Riemann sphere — We think that in the Euclidean plane, there does not exist
the point at infinity.

However, we can consider it as a limit like co. Recall the definition of z — oo
by e-§ logic; that is, lim,_, ., z = oo if and only if for any large M > 0, there exists
a number L > 0 such that for any z satisfying L < |z|, M < |z|. In this definition,
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the infinity oo does not appear. The infinity is not a number, but it is an ideal space
point of the one point compactification of Aleksandrov.

The behavior of the space around the point at infinity may be considered (may
be defined) by that around the origin by the linear transform W = 1/z [1]. We thus
see that

lim z = oo, (11
—> 0

however,
[2]:=00 = 0, (12)

by the division by zero. Here, [z],—~, denotes the value of the function W = z at
the topological point at the infinity in one point compactification by Aleksandrov.
The difference of (11) and (12) is very important as we see clearly by the function
W = 1/z and the behavior at the origin. The limiting value to the origin and the value
at the origin are different. For surprising results, we will state the property in the real
space as follows:

lim x =400, lim x = —o0, (13)
X—>+00 X——00
however,
)40 =0, [x]-c=0. (14)

Of course, two points 400 and —oo are the same point as the point at infinity.
However, + will be convenient in order to show the approach directions.

We were able to give also many evidences by analytic geometry in the Euclidean
space for these properties [10]. In [8], we gave beautiful geometrical interpretations
of determinants from the viewpoint of the division by zero.

Next, two lines {W; IW = «} and {W; IW = B} usually were considered as
having the common point at infinity, however, in the division by zero, the point is
represented by zero (the point at infinity and zero point are coincident.).

Note that two parallel lines that are not the same have the common point the origin
(0, 0) in the sense of the division by zero. Here, the common point is, of course, not
in the usual sense. By writing the common point of the two lines that are not parallel,
we obtain the common point (0, 0) applying the division by zero.

Indeed, we consider lines:

ax+by+c=0,ax+by+c =0. (15)
The common point of the lines (15) is given by, if ab’ — a’b # 0; that is, the lines

are not parallel

bc' —b'c dc—ac

; . (16)
ab' —a'b” ab' —a'b

By the division by zero, we can understand that if ab’ — a’b = 0, then the common
point is always given by
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0,0, (17)

even when the two lines are the same.
Meanwhile, we write a line by the polar coordinate

= —d 18)
"= cos(d —a)’ (

where d = O H > 0 is the distance of the origin O and the line such that OH and the
line is orthogonal and H is on the line, « is the angle of the line OH and the positive
x axis, and 0 is the angle OP (P = (r, 0) on the line) and the positive x axis. Then,
if & — oo = r/2: that is, OP and the line is parallel and P is the point at infinity, then
we see that » = 0 by the division by zero; the point at infinity is represented by zero
and we can consider the line passes the origin, however, it is in a discontinuous way.

Thatis, a line is, indeed, contains the origin; the true line should be considered
as the sum of a usual line and the origin. We can say that it is a compactification
of the line and the compacted point is the origin.

The similar property of a line passing the origin may be looked by using a Hesse
representation of a line.

Therefore, log 0 and log co should be defined as zero. Here, log co is precisely
given in the sense of [log z],—~.. However, the properties of the logarithmic function
should not be expected more, we should consider the value only. For example,

log0 =log(2 - 0) =1log?2 + log0

is not valid.
In particular, in many formulas in physics, in some expression, for some constants
A, B

I A
og —,
& B
if we consider the case that A or B is zero, then we should consider it in the form
A
logE =log A —log B, (19)

and we should put zero in A or B. Then, in many formulas, we will be able to consider
the case that A or B is zero. For the case that A or B is zero, the identity (19) is not
valid, then the expression log A — log B may be valid in many physical formulas.
However, the results are case by case, and we should check the obtained results for
applying the formula (19) for A =0or B = 0.

We can apply the result log 0 = 0 for many cases as in the following way.

For example, we will consider the differential equation

xy' = xy? — a’xlog®* (Bx) + ak log" ' (Bx). (20)
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For the solution y = a logy‘ (Bx) ([12], page 95, 5), we can consider the solution
y=0asp =0.
In the famous function (Leminiscate)

x =alog

2 _ 2 1
¢ — alog [MP (__ az_yz)] )
y a

By the division by zero, at the point y = 0

)
w_ /a2_y2’ a>0, (21)
y

we have

2 _ 2
[”# exp (—é\/cﬂ — yz):| —0. (23)

Thus the curve passes also the origin (0.0).
In the differential equation

x2y" 4+ 4x%y" —2xy' — 4y =logx, (24)

we have the general solution

C Cy
y=—1+—+sz ——10gx+4 25)
satisfying that at the origin x = 0
1 ,
yO) =7y '(0) =0, y"(0) =2C3, y"(0) = 0. (26)

We can give the values C; and C,. For the sake of the division by zero, we can, in
general, consider differential equations even at analytic and isolated singular points.
In the formula ([6], p. 153), for0 < x,t <m

©_ sinns sin nt 1 . .
Z = 5 log | sin((s +¢)/2)/sin((s — t)/2)], 27

n=I1

for s =t = 0, m, we can interpret that
0 : 1 0 log0 (28)
= —log - =logO.
2 %8 T ¢

In general, for s = ¢, we may consider that
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2

2 sin’ns 1 .
Z — = 5log|s1n((s—i—s)/2)/0)| 29)

1 1
= 510g|sinns/0| = ElogO =0.

Note that this result is not a contradiction. Recall the case of the function y = 1/x
at the origin:

lim — = oo, (30)

|:l] = 0. 3D
X 1y=0

Such a discontinuity property is important in the division by zero.
We will give a physical sense of log0 = 0. We shall consider a uniform line
density u on the z— axis, then the force field F and the potential ¢ are given, for

p=xi+yj, p=|pl,

2
F=-"Lp (32)
p
and |
¢ = —2ulog —, (33)
p

respectively. On the z- axis, we have, of course,

F=0¢=0. (34)

3 Robin Constant and Green’s Functions

From the typical case, we will consider a fundamental application. Let D(a, R) =
{|z] > R} be the outer disc on the complex plane. Then, the Riemann mapping
function that maps conformally onto the unit disc {| W| < 1} and the point at infinity
to the origin is given by

R
W= . (35)
z—a
Therefore, the Green function G(z, o0) of D(a, R) is given by
G(z,00) = — log{ } . (36)
|z —al
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Therefore, from the representation

a
G(z,00) = —log R +log|z| + log (1 — m) , 37

we have the identity
G (00, 00) = —logR, (38)

that is the Robin constant of D(a, R). This formula is valid in the general situation,
because the Robin constant is defined by

lin;{G(Z, b) +log |z — b}, (39)
—

for a general Green function with pole at b of some domain [1].

4 "=1,0

By the introduction of the value log 0 = 0, as the inversion function y = e* of the
logarithmic function, we will consider that y = ¢" = 0. Indeed, we will show that
this definition is very natural.

We will consider the conformal mapping W = e° of the strip

S(—mi, i) ={z; —m <Jz < 7}

onto the whole W plane cut by the negative real line (—oo, 0]. Of course, the origin
0 corresponds to 1. Meanwhile, we see that the negative line (—oo, 0] corresponds
to the negative real line (—oo, 0]. In particular, on the real line lim,_, o, e* = 0. In
our new space idea from the division by zero, the point at infinity is represented by
zero and therefore, we should define as

e’ =0. (40)

For the fundamental exponential function W = exp z, at the origin, we should con-
sider 2 valued function. The value 1 is the natural value as a regular point of analytic
function, meanwhile the value 0 is given with a strong discontinuity; however, this
value will appear in the universe as a natural way.

For the elementary functions y = x"*, n = &1, £2, ..., we have

y = e"ler, (41)

Then, we wish to have
y(0) = ¢80 = 0 = 0. (42)
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As a typical example, we will consider the simple differential equation

d 2yd
S22 o (43)
x 14y
Then, by the usual method,
log x| —log |1 + y*| = C; (44)
that is,
log |——| = loge€ =log K. K = ¢€ > 0 (45)
og 5,2 =loge” =logK, K =e¢~ >
and
Y 4k (46)
1+ y2 '

However, the constant K may be taken zero, as we see directly log e¢ = log K = 0.
In the differential equations

y/ — _)Lekxyz + aeuxy _ ae(u—k)x (47)
and
y = —be"*y? 4+ are’y — albe X (48)
we have solutions
y=—e, (49)
y =ae™, (50)
respectively. For A = 0, as y = —1, y = a are solutions, respectively, however, the

functions y = 0, y = 0 are not solutions, respectively. However, many and many

cases, as the function y = %% = 0, we see that the function is solutions of differential

equations, when y = ¢ is the solutions. See [12] for many concrete examples.
Meanwhile, we will consider the Fourier integral

" piongal gy — 2 (51)
N a2+ w?’

For the case o = 0, if this formula valid, then we have to consider ¢? = 0.
Furthermore, by Poisson’s formula, we have

o] o0

20
E —aln| _ E
¢ n a2+ (2nn)?’ (52)

n=—00 n=—0oQ
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If ¢ = 0, then the above identity is still valid, however, for e¥ = 1, the identity is
not valid. We have many examples.

For the integral

0 1.3 3

/ de = ze“’ cosa, (53)
0 .X'4 + 4 2

the formula is valid for a = 0.
For the integral

* ESL(XE) e le_(x/a)’ X > O’ (54)
0 1 =+ (12%' 2(12
the formula is valid for x = 0.
5 0°=1,0
By the standard definition, we will consider
0° = exp(0log0) =exp0 =1,0. (55)

The value 1 is famous which was derived by N. Abel, meanwhile, H. Michiwaki
have directly derived it as O from the result of the division by zero. However, we now
know that 0° = 1, 0 is the natural result.

We will see its reality.
For 0° = 1:

In general, for z # 0, from 70 = 02z -0 — 1 and so, we will consider that
0° = 1 in a natural way.
For example, in the elementary expansion

A+2)"=) .G (56)
k=0

the formula 0° = 1 will be convenient for k = 0 and z = 0.
In the fundamental definition

o0

1
expz=Y Ezk (57)
k=0 "

in order to have a sense of the expansion at z = 0 and k = 0, we have to accept the
formula 0° = 1.
In the differential formula
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dn
dx"

X" =nx""", (58)

in the case n = 1 and x = 0, the formula 0° = 1 is convenient and natural.
For 0° = 0:

For any positive integer 7, since 7 = 0 for z = 0, we wish to consider that 0° = 0
forn = 0.

6 cos0=1,0

Since
cosf = e—, 59)

we wish to consider also the value cos 0 = 0.
The values ¢” = 0 and cos 0 = 0 may be considered that the values at the point
at infinity are reflected to the origin and other many functions will have the same

property.
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Collocation Method to Solve Second )
Order Cauchy Integro-Differential L
Equations

Abdelaziz Mennouni and Nedjem Eddine Ramdani

Abstract In this paper, we present a collocation method for solving the following
second-order Cauchy integro-differential equation

1
x”(s)—i—% Mdt =f@s), —1<s<l1,
-1 S —

X(=1) =x(1) =0,
in the space 2" := €°([—1, 1], C), with domain
Z={xeZ :x"eZ, X(=1)=x(1)=0}.

The integral is a Cauchy principal value, and

w(s) = T

is the weight function. We come up with a modified collocation method to build an
approximate solution x,, using the airfoil polynomials of the first kind. Finally, we
establish a numerical example to exhibit the theoretical results.

Keywords Cauchy kernel - Collocation method - Airfoil polynomials
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1 Introduction and Mathematical Background

Integro-differential equations appear in many applications in scientific fields such as
biological, physical, and engineering problems. In [2], the authors have presented a
high-order methods for the numerical solution of Volterra integro-differential equa-
tions. In [3], the authors have derived m-stage Runge-Kutta-Nystrm methods for the
numerical solution of general second-order Volterra integro-differential equations.
These implicit methods are based on collocation techniques in certain polynomial
spline spaces. The modified trapezoidal method adapted for general second order
initial value problems has been being given in [4]. In [6], the authors have presented
a direct methods for a class of second order Volterra integro-differential equations
which explicitly contain a first order derivative. In [8], the author has studied and
presented a projection method for solving operator equations with bounded operator
in Hilbert spaces. In [9], the author has introduced a projection method based on the
Legendre polynomials, for solving integro-differential equations with Cauchy ker-
nel. In [10], the author has studied a collocation method, for approximate solution of
an integro-differential equations with logarithmic kernel, using airfoil polynomials.
The goal of this study is to present a collocation method for solving second order
integro-differential equations, using airfoil polynomials.

Let L?([—1, 1], C), be the space of complex-valued Lebesgue square integrable
(classes of) functions on [—1, 1].

We recall that the so-called airfoil polynomials are used as expansion functions
to compute the pressure on an airfoil in steady or unsteady subsonic flow.

The airfoil polynomial 7, of the first kind is defined by

cos[(n + %) arccos x|

In (.X) = 1
cos(5 arccos x)

The airfoil polynomial u,, of the second kind is defined by

sin[(n + %) arccos x|

Up (.X) = . 1
sin(3 arccos x)

2 The Approximate Solution

Consider the following second order Fredholm integro-differential equation with
Cauchy kernel:

1
€0//(S)+y§1 %dl =f(s), —-l<s<l. (D

x'(=1) = x(1) = 0,
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with the domain
Z={xeZ :x"eZ, X(=1)=x(1)=0}.

The following two formulas (cf. [5])
, o1 1
(IT+s5)5(s) =0+ E)“i(s) - ztf(S),

(1= sHt'(s) + (1 = 25)t/(s) +n(n — Dt;(s) =0
give

L, @s—Dn+1/2) 25 — 1) +2n(n — 1)
) = T AT WO 2(1 — 52

VT +1 400 _
f_] ::dt—nui(s). 3)

Our goal is to approximate the solution of Eq. (1) via the airfoil polynomials of
the first kind 7, as

@)

We recall that (cf. [5]),

n

on(s) =) aiti(s).

i=0

Consider the set of n + 1 collocation points s;, which are the zeros of u,,4:

Letting
(Viy)(s) = / Y,

b
(Vay)(s) = / V().

We recall that Vy, V, : 5 — & are compact.
Moreover,
Forall ¢ € 2,

WViS)e = —¢.
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Consider the space C%*[—1, 1] of all functions ¢ defined on [—1, 1] satisfying the
following Holder condition: 3M > 0 such that

Vs, € [—1, 11, lo(s1) — @(s2)| < M |s; — 52",

where 0 < A < 1.
Let

H={pe L’[-1,1] : ¢" e L)(~11])., ¢'(=1) =¢(1) =0}.
Note that the the operator T is bounded from L2[—1, 1] into itself and also from

CY%*[—1, 1] into itself.
Consider hat functions eg, ey, ea, . . ., e, in C°[—1, 1] such that

e;j(xr) = djx.
Define the projection operators 7z, from CY[—1, 1] into the space of continuous
functions by
Tag(x) =Y g(x;)e;(x).
j=0
Let us define the operators
Vo i=WVin, T, V:=WVT.
Consider the following approximate equation in the unknown g@,:
—¢n + Vapn = V2V1 [

Theorem 1 Assume that f € C°[—1, 1]. There exists a positive constant o, such
that

lo — @nlloo < all (Vi — V) ¢l

for n large enough.

Proof Tt is well-known that ||,x — x|, — 0, for all x € C°[—1, 1]. Since V»V,
is compact, it is clear that V is compact. In (cf. [1, 7]) it is shown that the inverse
operator (—I + V,,)~! exists and is uniformly bounded for n large enough. On the
other hand,

On =@ =[Vagu = V2Vi f1=[Vo = WV2Vi f],

hence
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on — @ = [Vap, — Vol.

This leads to
n =@ =[(Va = V)o + V(g — 9)].

Thus

(=TI + V)@ —¢) =V —V)g.
Consequently

9 —gn=(=1+ V)" [(V, — Vgl

lon — @lloo < all(Vi = V)@,

where

b

« = sup ||(—I + V,Z)_1
n>N

which is finite.
Thus, we obtain the following system:

S@u(s;) +Toa(s;) = f(s;), j=0,1,...,n

By (2) and (3),

(1 =5 +5)) 2(1 - 57)

i=0

3 Numerical Results

S af [0t sy - BEEAD p) < rop j=t

311

Letus consider the integro-differential equation (1), with the following exact solution

@(x) =x —3x+2.

Table 1 gives the numerical results for Example 1.
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Table 1 Example 1

X n==6 n=22 n=120
—0.8 0.133e-1 0.154e-2 0.142e-3
—0.6 0.172e-1 0.179%-2 0.147e-3
—04 0.124e-1 0.163e-2 0.241e-4
—0.2 0.321e-1 0.165e-2 0.134e-3
0.0 0.156e-1 0.187e-2 0.201e-4
0.2 0.179e-1 0.177e-2 0.443e-4
0.4 0.195e-1 0.165e-2 0.781e-4
0.6 0.541e-1 0.167e-2 0.795e-4
0.8 0.325e-1 0.167e-2 0.807e-4
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Janusz Migda

Abstract Asymptotic properties of solutions to difference equations of the form
A" (Xp — UnXn—k) = ayn f(x(f(n)) + by
Using a new version of the Krasnoselski fixed point theorem and the iterated remain-
der operator, we establish sufficient conditions under which a given solution of the
equation
A" (xn - unxn—k) = bn

is an approximative solution to the above equation. Our approach, based on the
iterated remainder operator, allows us to control the degree of approximation. We

use o(n*), for a given nonpositive real s, as a measure of approximation.

Keywords Difference equation - Neutral equation - Prescribed asymptotic
behavior - Asymptotically polynomial solution - Convergent solution

1 Introduction

Let Z, R, N denote the set of all integers, the set of all real numbers, and the set of
nonnegative integers respectively. Fix a positive integer m. We consider the difference
equation of the form

A" (xn - Cnxn—k) = anf(x(r(n)) + bm (E)

ap, by, c, €R, keZ, f:R—-R, 0:N—=>N, o) — oo.
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By a solution of (E) we mean a sequence x : N — R satisfying (E) for all large n.
If y : N — Ris a given sequence and x is solution of (E) such that y, — x,, = o(1),
then we say that y is an approximative solution and x is a solution with prescribed
asymptotic behavior. In our investigations we replace o(1) by o(n*) for a given
nonpositive real s.

Asymptotic properties of solutions to neutral equations were investigated in many
papers. See, for example, [1-9, 13, 14]. The existence of solutions with prescribed
asymptotic behavior to difference equations of neutral type is the theme of many
papers. See, for example, [3, 5-9, 12] or [16].

This paper completes the paper [12]. In Theorem 1 we generalize [12, Theorem
4.1], which is the main result of [12]. Next, in Theorems 2 and 3, we present some
additional results.

2 Notation and Terminology

We will use the following notation
R*=R\ {0}, Z*=7Z\{0}, N*=N\{0}.
The space of all sequences x : N — R we denote by SQ. If x, y € SQ, then
xy and |x|

denotes the sequences defined by xy(n) = x,,y, and |x|(n) = |x,| respectively. If
there exists a positive constant ¢ such that x, — y, > ¢ for any n, then we write

x> y.
Leta € SQ, t € [1, 00). We will use the following notations
Fin = {x € SQ : x,, = 0 for all large n} ,
o(1) = {x € SQ: x is convergent to zero}, O(1) = {x € SQ : x is bounded},

o(a) ={ax : x € o(1)} +Fin, O(a) = {ax : x € O(1)} + Fin,

A(t):={aeSQ: Y n'a) < oo}, Polm—1)=KerA".

n=1

Note that Pol(m — 1) is the space of all polynomial sequences of degree less than m.
Let f : R — R. We say that a sequence x : N — R is uniformly f-bounded if there
exists a positive € such that f is bounded on the set
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o0

U[xn —&,x, + €]

n=0

For a sequence x € SQ we define

lx [l = sup |x,| € [0, oo].
neN

We say that a subset X of SQ is ordinaryif || x — y|| < ooforall x, y € X. We regard
any ordinary subset X of SQ as a metric space with metric defined by

d(x,y) =[x =yl

Remainder operator. Let

o0 o0 o0
S(m) = {a € SQ : series Z Z e Z a;, s convergent

=0 ir=i| =i
For any a € S(m) we define the sequence r™ (a) by
o0 oo oo
r'"(a)(n) = ZZ Z a;, .
i1:n i2:i1 i,”:i,,,,1
Then S(m) is a linear subspace of o(1), r"(a) € o(1) for any a € S(m) and
™ S(m) — o(1)

is a linear operator which we call the remainder operator of order m.

Lemma 1 Assumea € A(m), x € SQ, u € O(1), and p € N. Then
(a) x € A(m) < |x| € S(m) < O(x) C S(m), O(a) C A(m) C o(n'™™),

[e.¢] [e ]

m m—1+k m m m—
r (a><p>=2( o )am, ral < rivlal < 0" al,

k=0 n=p

(b) A"r"a = (=1)"a, |r"(ua)| < |lu|lr"|al, Ar"la| <0,
() ifx,y € S(m)and x, < y, forn > p, thenr)'x <r)'y forn > p,
(d) ifs € (—o0,0] and x € A(m — s), then r"x € o(n®).

Proof This lemma is a consequence of [10, Lemma 3.1] and [11, Lemma 4,2].

Fundamental equation of neutral type. Let m € N*, k € Z, A € R. We consider
the equations
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A" (xy — Mp_i) =0 (F)
Xn — Mg =0 (&)
which we call a fundamental equation of neutral type and a geometric equation
respectively. By a solution of (F) we mean a real sequence x such that (F) is satisfied
for all n > max(0, k). Analogously we define solutions of (G). We denote by
PG(m, \, k), Geo(\, k)
the set of all solutions of (F) and (G) respectively. Let k € Z*, x, y € SQ. If
Xn+lk| = Xn>» Yn+lk| = —Yn
for any n € N, then we say that x is k-periodic and y is k-alternating. We denote by

Per(k), Alt(k)

the set of all k-periodic sequences and the set of all k-alternating sequences respec-
tively. Note that Per(k), and Alt(k) are linear subspaces of SQ and

dim Per(k) = |k| = dim Alt(k),  Alt(k) C Per(2k).
Letn € N, k € Z*, and A € R*. We define
ndivk := (sgnk)max{j € Z: jlk| <n}, nmodk:=n— |k|(ndivl|k]),
geo(\, k), alt(k) : N — R, geo(\, k)(n) = N"WVE alt(k) = geo(—1, k).
Note that
ndiv(—k) = —(ndivk), nmod(—k) =nmodk, geo(\, —k) = geo(\"', k).

Moreover, geo(\, k) is an “expanded” geometric sequence. Note also, that for a fixed
k, the sequence (n mod k) is k-periodic.

Example 1
(ndiv3) = (0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,...),
(nmod3) = (0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,...),
geo(\, 1) = (\"IVDy = (") = (1, \, A2, 03, 0% 05,00,

geo(X, 3) = (") = (1, 1, LA AL AL NN N N N, ),
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alt3)=(1,1,1,—-1,—-1,—-1,1, 1,1, -1, -1, =1, ...).

Lemma 2 (Solutions of geometric equation) Ifk € Z* and A € R*, then a sequence

x : N — R is a solution of the geometric equation (G) if and only if for any n € N

we have
=\ divk
Xn = Xnmodk-

Proof See [12, Lemma 3.2].

Lemma 3 (Solutions of fundamental equation) If k € Z*, A € R¥, then
PG(m, A, k) = Pol(m — 1) ® Geo(\, k).

Moreover, if p = |\, then k(|\| — 1)(p — 1) > 0 and

(p")Per(k) if A >0

Geo(\, k) = geo(\, k)Per(k) = (ALK ifA <0 ,

Alt(k) = alt(k)Per(k).

Proof See [12, Theorem 3.1].
Hence any solution y € PG(m, A, k) of the fundamental equation
A" (Y = Ayn—t) =0

is of the form
Yo = @) +wpp" = pn) +0(p"),

where ¢ € Pol(m — 1), p = /||, and w is 2k-periodic.

Moreover, if k(|]A\| — 1) < 0, then p < 1 and the polynomial part ¢ of y is domi-
nating. On the other hand, if k(| \| — 1) > 0, then p > 1 and the geometric part w, p"
is dominating.

3 Approximative Solutions

In this section, in Theorems 1, 2, and 3, we present our main results. First we need
some lemmas.

Lemma 4 Assume k € N(0), x,z,c € SQ, a € (0,1), |c] <a, s € R,
In = Xn — CpXpn—k

forn >k and 7 = o(n*). Then x = o(n®).
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Proof See [12, Lemma 4.1].

Lemma 5 (Krasnosielski fixed point lemma) Assume X is an ordinary compact and
convex subset of SQ, A, B : X — SQ, AX + BX C X, a € (0, 1), A is continuous
and B is an a-contraction. Then there exists a point x € X such that Ax + Bx = x.

Proof This lemma is a consequence of [12, Theorem 2.2].

Lemma 6 Ify € SQ, p € o(1), then the set S = {x € SQ: |x — y| < |p|} is ordi-
nary, convex and compact.

Proof See [12, Lemma 2.2].

Lemma 7 Assume X C SQ, f:R — R is a continuous function, o : N — N,
lim, .o 0(n) =00, a € A(m), LeR, and |foxoo| <L forany x € X. Then
the map R : X — SQ defined by R(x) = r"(a(f o x o 0)) is continuous.

Proof Letx € X and € > 0. There exist p € N and a > 0 such that

00 P
2L Zn’"’”anl <e and « Zn'"’1|a,,| <e.

n=p n=1

There exists an index ¢ such that ({0, 1, ..., p}) C {0, 1,..., g}. Let
W=[xo—Lxo+1U[x; =1, x +1JU---U[x, — 1, x, + 1].

Then W is compact and f is uniformly continuous on W. Choose a § € (0, 1) such

that for s, ¢t € W the condition |s — ¢| < § implies | f(s) — f(¢)| < a. Assume z €

X, |lx — z|]| < 9. Then

[Rx — Rz|| = sup |[R(x)(n) — R(2)(n)| = sup |y (a(f ox 0 0)) —ry'(a(f oz 00))|

n>0 n>0

=sup|r)'(a(foxoo— fozoo))| <supr)(la|]|f oxoo— fozool)
n>0 n>0

=rg(lallf oxoo— fozool) <Y n" laullf Cow) — f Gow)]

n=0

P 00
<Y " Mallf Gom) = FGow)| + D 2" Manll f Cow) = f o)
n=0

n=p

< aan_lmnl +2Lan_1|an| <e+te.

n=0 n=p
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Theorem 1 Assume A € R*, k € Z*, s € (—00,0], a, b € A(m — s), f is continu-
ous, and one of the following conditions is satisfied

(@) k(A —1) <0andu, = X+ o(n* "1, ®) k(A —1) > 0and u, = A.
Then for any uniformly f-bounded sequence

y € PG(m, A\, k)
there exists a solution x of (E) such that x, = y, + o(n®).

Proof Modify the proof of [12, Theorem 4.1], using Lemma 7.

Corollary 1 (Polynomial approximative solutions) Assume A\ € R*, k € Z*, s €
(=00,0], a,b € A(m — ), f is continuous, and one of the following conditions
is satisfied

@ k(N —=1) <0andu, =\ +om ™), b) k(N —1) > 0andu, = \.

Then for any uniformly f-bounded polynomial sequence ¢ € Pol(m — 1) there exists
a solution x of (E) such that x, = p(n) + o(n®).

Proof Since Pol(m — 1) C PG(m, A, k), the assertion is a consequence of Theo-
rem 1.

Corollary 2 (Convergent solutions) Assume A € R*, k € Z*, s € (—00,0], a,b €
A(m —s), f is continuous, and one of the following conditions is satisfied

@ k(N —=1) <0andu, =\ +o@™), B) k(N —1) > 0and u, = \.

Then for any constant d € R there exists a solution x of (E) such that x,, = d + o(n*).

Proof Note that if f is continuous, then any constant sequence is uniformly
f-bounded. Hence the assertion is a consequence of Corollary 1.

Example 2 Assume f(t) =e¢',m =3,s =—1,k(|]\|—1) <0,a,b € A4), u, =
A+ o(n™3). Then, by Theorem 1, for any ¢, < 0 and all ¢y, ¢y € R there exists a
solution x of the equation

A3(xn - Mnxn—k) = anex” + bn

such that x, = con? + c1n + co + o(n™1).

Example 3 Assume s € (—00,0],a,b € A(m — s),and f(t) = e¢~". Then, by The-
orem 1, for any polynomial sequence ¢ € Pol(m — 1) and any positive 3-periodic
sequence w there exists a solution x of the equation
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A" (X, — 27x,-3) = ane_x" + b,

such that x, = ¢(n) + w,3" + o(n*).

Theorem 2 Assume s € (—00,0], a € A(m —s), |c| K 1, and f is continuous.
Then for any uniformly f-bounded solution y of the equation

Am(yn - Cnynfk) = bn

there exists a solution x of (E) such that x = y + o(n*).

Proof Choose a real number « such that |c| < o < 1. Let 3 = (1 — a)~!. Assume
y is a uniformly f-bounded solution of the equation

Am(yn - Cnynfk) = bn~

There exists a positive number p such that f is bounded on the set

00
Z = Jlyn = o yu + p1l.
n=0
Choose a constant L such that | f(#)| < L forany ¢t € Z. Let
Y ={xeSQ:|[lx—yll <pu}
Note that || f ox o o] < L for any x € Y. Hence
a(foxoo)e Aim —s) C A(m)

forany x € Y. Let

Bpn if k<Oandn >0
p.v eSQ,  p=Lr"al, v, =13pn if k>0andn <k .
pn+ovy,_, if k>0andn >k

By Lemma 1 we have p = o(n*). If k > 0 and n > k, then
Pn =Yy = OV
By Lemma 4 we have v* € o(n*) C o(1). Note also, that v* > 0. Choose an index

p > max(k, 0) such that
v < p foranyn > p.
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Let
0 if n<p

s X={xeSQ:|x—yl <~}
v a0 {(xeSQ:|x—yl <9}

'YESQa ’Ynz{

By Lemma 6, X is an ordinary compact and convex subset of SQ. Moreover X C Y.
Let

B:SQ—SQ, B(x)(n) = {O it n<p

CnXnk —yop) if n>p’

ifn<p

0
R,A:Y — SQ, R(x)(n):{ , Ax =y+ Rx.

(D" a(foxoo)) ifn>p

If n > p, then

IR(X) ()| = [(=1)"ry(a(f ox 00))| = |y (a(f oxo0))| <r,(|a(f ox o))
<r,(Llal) = Lr,"la| = px.

Letx, z € X. Forn < p we have
|Ax + Bz — y|(n) =0 =,.

Assume n > p. If k > 0, then

|Ax + Bz — y[(n) = |Rx + Bz|(n) < pu + |cn(Zn—k = Yn-i)| = pu + @Ynt = Y-

If K <0, then

|Ax + Bz — yl(n) < pn + lcn@n—ik = Yn-)| = pn + Yk =
Pn + aBpuni = pn + afpy = (1 + af)pn = Bpn = Y-

Therefore AX + BX C X. Using Lemma 7, it is easy to see that the map A is
continuous. Obviously B is an a-contraction. By Lemma 5 there exists a point x € X
such that x = Ax + Bx. Then for n > p we have

xn = RO)(1) + yp + Bx)(n) = (=D"r(a(f 0o x 00)) + yn + cnXn—k — cn¥n—k>

Xn — CnXn—k = Yn — CaYn—k + (_l)mr:ln(a(f oXx 00)).
Since A" (v, — ¢, Yn—x) = b, and

A" ((=D)"r"™(a(f oxo0))) =a(foxoo)
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we obtain
A" (Xn — CnXn—k) = ay f(x(f(n)) + by

forn > p. Since x € X we have x = y + o(n”).

Theorem 3 Assume s € (—00,0], a € A(m —s), |c| > 1, and f is continuous.
Then for any uniformly f-bounded solution y of the equation

Am(yn - cnyn—k) = bn

there exists a solution x of (E) such that x = y + o(n®).

Proof Choose a real number 3 such that |c| > § > 1. Let
a=p"and A=1-a)"".
Assume y is a uniformly f-bounded solution of the equation
A" (yn = CaYn—k) = by.

There exists a positive number x4 such that f is bounded on the set

oo
Z = Jlyn = o yu + pil.
n=0

Choose a constant L such that | f(#)| < L forany ¢t € Z. Let
Y ={xeSQ:lx -yl = pu}
Since || f ox o o] < L forany x € Y, we have
a(foxoo)e Am —s) C A(m)

forany x € Y. Let

0 if n < max(0, —k)
pESQ, pu= , :
Lar,! la] if n > max(0, —k)
APn if k>0andn >0
v eSQ, vi=1{p. if k<Oandn < —k .

pnt+avy, if k<Oandn > —k

By Lemma 1 we have p = o(n®). If k < 0 and n > —k, then
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% *
pﬂ - /YI’I - Of}/n-‘rk'

By Lemma 4 we have v* € o(n®) C o(1). Note also, that v* > 0. Choose an index
p > max (0, —k) such that

Yy < foranyn > p.
Let

0 ifn<p

, X={xeSQ:|x—y|l <~}
v ifn =0 { Q:lx —yl =~}

’YGSQ, ’Yn:{

Then X is an ordinary compact and convex subset of SQ. Moreover X C Y. Let

0 if
d € SQ. an{_l it n<p

oy if n>p

B:SQ—SQ, B(x)n) = {0 itn<p

dy(Xpik — Ypk) if n>p '

| o ifn<p
frrm s Kom= {<—dn><—1>'"r,:”+k<a<f oxo0) ifnzp’

A:Y — SQ, Ax =y + Rx.
If n > p, then

IR(X) ()| = [(=d) (=D (@(f o x 00))| = |dylr (@(f o x 00))]
<ar(la(f oxoo)]) < ary (Llal) = Lar, lal = pa.
Let x,z € X. Forn < p we have
|Ax + Bz — y|(n) =0 = ,.
Assume n > p.If k < 0, then
|Ax + Bz — yl(n) = |Rx + Bz|(n) < pp + |du(Zntk — Ynti)| < pu + QYnsk = Y-
If k > 0, then

|[Ax + Bz — y|(n) < pp + [cn(Znak — Yt < pn + Qg

= pp + aApuik < pp+adp, = (L+aN)p, = Aoy = Y.
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Therefore AX + BX C X. Using Lemma 7, it is easy to see that the map A is
continuous. Obviously B is an c-contraction. By Lemma 5 there exists a pointx € X
such that x = Ax + Bx. Then for n > p we have

Xp = R(x)(n) + yu + B(x)(n) = (_dn)(_l)mry’,n_;_k(a(f 0x00)) + Y + dn(Xntk — Yntk)s

Xp — dpXpyk = Yn — dnYntk — dn(_l)mr;ln.;_k(a(f oxo0)).
Multiplying by —c,+x we have
—Cnt+kXn T Xntk = —CntkYn + Yntk + (_l)mr,’:l.;_k(a(f oxo0)).

Replacing n by n — k we obtain

Xp = CnXp—k = Yn — CpYn—k + (_])mr,lln(a(f o0xo00)).

Since A" (y, — ¢y Yn—k) = b, and
A"(=1D)"r"(a(f oxo0))) =a(f oxoo0)

we obtain
A" (xn - Cnxn—k) = dap f(xa(n)) + bn

forn > p. Since x € X we have x = y + o(n°).
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Asymptotic Properties of Nonoscillatory )
Solutions of Third-Order Delay ek
Difference Equations

Alina Gleska and Malgorzata Migda

Abstract We study a third-order delay trinomial difference equation. We transform
this equation to a binomial third-order difference equation with quasidifferences.
Using comparison theorems with a certain first order delay difference equation we
establish results on asymptotic properties of nonoscillatory solutions of the studied
equation. We give an easily verifiable criterium which ensures that all nonoscillatory
solutions tend to zero.

Keywords Third-order difference equation + Asymptotic behavior
Non-oscillation - Oscillation

1 Introduction

In this paper we consider the linear third-order difference equation of the form
A3xn + pnAxn-H + gnXn—r = 0, (E)

where n € N(ng), N(ng) = {ng,no+1,...}, npis fixedin N={1,2,...}, 7isa
positive integer, (p,) is a sequence of nonnegative real numbers, (g,) is a sequence
of positive real numbers. A is the forward difference operator defined by Ax, =
Xn+1 — Xp.

By a solution of equation (E) we mean a real sequence (x,) defined for n >
no — 7 which satisfies (E) for all n > ng. A solution is said to be nonoscillatory if
it is eventually positive or eventually negative. Otherwise, the solution is said to be
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oscillatory. Equation (E) is called oscillatory if all its solutions are oscillatory. For
k € N we use the usual factorial notation

k=nn—1)...n—k+1) with n®=1.

The third-order difference equations often arise in the study of many problems
of economics, mathematical biology, ecology and engineering. So, in recent years,
there has been an increasing interest in the study of qualitative properties of solutions
of such equations. For example, the third-order binomial difference equation related
to Eq.(E), i.e.,

A3xn + DnXpy1 = 0

and its various generalization including quasidifferences have been studied, e.g., in
[2, 3, 8, 12, 16, 18-21]. For some background details we refer to [20].
Equation (E£) may be considered as a discrete analogue of the delay differential
equation
Y (@) + p0)y' (1) + q(1)y(r(1)) = 0.

For some recent results on oscillation and nonoscillation of this equation, see, for
example, [4, 5, 10].

In this paper we study asymptotic properties of nonoscillatory solutions of equa-
tion (E) by transforming this equation to a third-order binomial difference equation.
Using comparison theorems with a certain first order delay difference equation we
establish results on asymptotic properties of solutions of equation (E). We also
present sufficient conditions which ensure that all nonoscillatory solutions of equa-
tion (E) tend to zero. The presented criteria are easily applicable.

2 Preparatory Results

The main results of this paper are based on the connection between the properties of
Eq.(E) and positive solutions of the auxiliary second-order difference equation

Azun + Pnltpt1 = 0. (D

Lemma 1 Let (u,) be a positive solution of (1). Then Eq.(E) can be written in the
form

1
A (Mn+1MnA (—Ax,,)) + Upi1GuXn_r = 0. (E)

Un

Proof Let (u,) be a positive solution of (1). It is easy to check that

! A (u,,ﬂun (A <iAxn>>> = ! (A (unAzx,, — Ax,,Aun))
Upt1 Uy Upt1
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1

Un+1

(un+1A3xn - Axn+lA2ui1) = A3xn + pnAxnii.

Hence we see that Eq. (E) takes the form of Eq. (E"). O

In the sequel, we first investigate the existence and the properties of positive
solutions of (1) and then, instead of studying the properties of the trinomial equation
(E), we study the properties of its binomial representation (Eq. (E’)).

The following result, (see e.g. [1, Theorem 1.14.2]), enables us to determine if
there exist positive solutions of (1).

Theorem 1 ([1]) Suppose that p,, > 0,

o0 o0 1
. < 00, limsu g < —. 2
D < pn;p <3 ©)

n—-:o0
n=ngq

Then (1) possesses a positive solution.

Itis well-known, see [1] or [14], that if the second order linear equation (1) is nonoscil-
latory, then there exists a nontrivial positive solution (u,) uniquely determined up to
a constant factor, such that
. uﬂ
Iim — =0,
Un

where (v,) denotes an arbitrary nontrivial solution of (1), linearly independent of
(u,,). Solution u is called a recessive solution. Any solution v linearly independent
of u is called a dominant solution. Recessive solutions # and dominant solutions v
have the following useful properties

|
= oo, (3)
n=ny UpUpi1
=
< 0. “4)
n=nyp vnvn+l

Following Trench [22], we say that a linear difference operator

Li, = A (. A(r A, )

n

is in a canonical form if
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For our purpose it will be convenient to have Eq. (E’) in a canonical form. So, in the
sequel we require that the condition

iunzoo &)

n=ngo

and the condition (3) hold. The next result is obvious.

Lemma 2 Let (u,) be a positive solution of (1). Then Au, > 0, A%u, < 0, and (5)
holds.

Therefore, every recessive solution (u,) of Eq. (1) satisfies the conditions (3) and
(5). Hence, combining Lemmas 1 and 2 and Theorem 1, we get the following result.
Corollary 1 Assume that condition (2) is satisfied and that (u,) is a recessive solu-
tion of equation (1). Then Eq.(E) can be written in a binomial form (E'), which is
in a canonical form.

Now, denote for Eq. (E’) the quasidifferences by

1
L()xn = Xn, len = M_A (L()xn) P

n

L2xn = ununJrlA (len) s L3xn =A (L2xn) . (6)

Observe, that if x is a solution of equation (E”), then —x is also a solution of equation
(E"). Thus, during studying the nonoscillation of Eq. (E”), for the sake of simplicity,
we restrict our attention to eventually positive solutions.

Using the generalized Kiguradze’s Lemma (see [17]), we get the following struc-
ture of nonoscillatory solutions of equation (E’) (as well as Eq. (E)).
Lemma 3 Let condition (2) holds. Assume that (u,) is such a positive solution of
(1) for which (3) and (5) are satisfied. Then every positive solution (x,) of Eq.(E’)
is either of degree 0,

Lox, >0, Lix, <0, Lyx,>0, L3x,<0 @)
or of degree 2
Lox, >0, Lix,>0, Lyx, >0, Ls3x, <O0. (8)
We say that (E’) has property (A) if its every nonoscillatory solution (x,) is of
degree 0, that it satisfies (7). We say that (E) has property ( P) if all its nonoscillatory
solutions (x,) satisfy the condition

x,Ax, < 0. )

To the end of this section we present a useful comparison result (see [13], Corollary
7.6.1).
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Lemma 4 ([13]) Assume (a,) is a sequence of nonnegative real numbers and T is a

n—1
positive integer such that Y a; > 0 for large n. Then the difference inequality

k=n—7
Ax, + apxp— <0
has an eventually positive solution if and only if the equation
Ax, +apxp—r =0

has an eventually positive solution.

3 Main Results

First we show that property (P) of Eq. (E) and property (A) of Eq. (E”) are equivalent.

Theorem 2 Let condition (2) hold. Assume that (u,,) is a recessive solution of equa-
tion (1). Then Eq.(E’) has property (A) if and only if Eq. (E) has property (P).

Proof Let (x,) be a positive solution of equation (E’). Suppose that Eq.(E’) has
property (A). Then it is easy to check that Ax,, < 0. Hence x,, Ax, < 0 what means
that Eq. (E) has property (P).

Now suppose that Eq. (E) has property (P). Then

1
Loxn = Xp > Oa len = —A)Cn < 0.

n

Let us observe that also L3x, < 0 as the first part of Eq.(E"). It means that (L,x,,)
is decreasing. We have two possibilities: (Lx,) is positive for n > ng or (Lyx,)
is eventually negative, say for n > n; > ny. The second case means that (L;x,) is
decreasing. Then for n > n, the condition

Lix, < Lix,,

implies that
ALox, < up,Lixy,.

Summing now from n; ton — 1 we get

n—1
Lox, < Loxp, + Lixy, E Uj.

i=n
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From (5) the right-hand side of the above inequality tends to —oo which contradicts

that (x,) is positive. Thus (L,x,) is positive and (7) holds. [l

Now, we provide criteria that enable us to deduce property (P) of Eq.(E) from
the oscillation of certain first-order difference equation.
Theorem 3 Let condition (2) hold. Assume that (u,) is a recessive solution of equa-

tion (1). Let us denote

n—1—1

n = Un+19n Z U; Z

i=n, Jj=ni

Ujlhjt1
for some ny > ny. If the first-order difference equation
Az + anzu—r =0 (10)

is oscillatory, then Eq.(E) has property (P).

Proof Assume that Eq. (E) has a positive solution (x,). Then from Lemma 3 it fol-
lows that (x,,) is either of degree 2 or of degree 0. If (x,) is of degree 2, then using

the fact that z, = u,u,+1 A (%Axn> is decreasing there exists n; > ng such that for

n > n; we obtain

n—1
1
—Axn > Z < ij> >z ) .
= oy Wit

Summing now from n; ton — 1, we get

n—1 i

n—1 i
w3 (aw Y —— )20 Y [w Y —

i=n; Jj=n Ujtj+1 i=n; Jj=ni Ujhj+
Then also
n—7—1 i 1
Xn—r 2 Zn—1 E u; E Wil (ll)
i=n j=ni JHIH
Combining (11) with Eq. (E"), we see that
n—71—1 i 1
—Az, = Upn+1G9nXn—r = Un+1G9nZn—7 E u; E
i=n jmny I
=n J=n

In other words, (z,) is a positive solution of the difference inequality
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Azp + anZn—r <0,

where
n—7—1 i
1

ay = Upt+19n E Ui E

Uuilu;
i=n Jj=ni JHj+L

Hence, by Lemma4, we conclude that the corresponding difference equation (10)
has also a positive solution which contradicts the oscillation of (10). Therefore (x;,)
is of degree 0 what means that Eq. (E) has property (P). (]

Using known oscillation criteria to the first order difference equation with delay of
the form (10) (see, for example, [6, 7, 11, 15]), we immediately get from Theorem 3
various criteria for property (P) of Eq. (E).

Corollary 2 Assume condition (2) holds and (u,,) is a recessive solution of equation
(1). If one of the following conditions holds

n—1 k—1—1 i T+1
. 1 T
L S e B S T Sl <T+1> (12)

k=n—r1 i=n, j=m

or
n k—1—1 i 1
lim sup Ug+1Gk U; > 1, (13)
then Eq.(E) has property (P).
Example 1 Consider the difference equation
Adx, + Axps1 + ! Xno1=0, n>0 (14)
n 2(2n+] — 1) n+1 8(2—2_n) n—1 — VY, - U.

It is easy to check that for this equation conditions (2) and (13) are satisfied. Hence,
by Corollary 2, every nonoscillatory solution of equation (14) satisfies the condition

xpAx, < 0.Indeed, the sequence x,, = zi is one of such solutions.

Our comparison method is based on the canonical representation (E’) of Eq.(E).
The condition (2) guarantees the existence of the positive solution (u,) of (1); then
the canonical representation (E”) is possible. Here arises a natural question, what to
do when we are not able to find (#,). So next we give criteria in which instead of
(u,) its asymptotic representation is used. The assumption on the coefficient (p,,) is
stronger, but the presented results are easier to use.

The following theorem will be used.
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Theorem 4 ([9]) Suppose that p, > 0 and

> npy < oo (15)

n=ng

Then foreveryd € R there exists a solution (u,) ofthe Eq. (1) suchthat lim u, =d.
n—:o0

Combining Theorem4 with Corollary 2, we get the following result.

Theorem 5 Suppose that (15) holds. If for some c € (0, 1) one of the following
conditions is satisfied

n=1 o 2 T+1
L c(k—T1—np)* T

1 f _ 16
e k=nsz 2 Qk>(7+1> 1o

or ,

" (k-1 —np)*
li _ 1, 17
lflilipk;T 5 i > (17)

then Eq.(E) has property (P).

Proof Let (u,) be apositive solution of (1). It follows from Theorem 4 and Lemma 2
that for any ¢ € (0, 1) we have
c<u, <1,

for sufficiently large n, say n > n;. Hence, by (16), we get

i=n;

n—1 k—1—1 i )
liminf > wrpige | Y wi ) wjt
Jj=n

n—oo ;7

n—1 k—7—1
> liminf > wupr1qx < oi—m+ l)ui)

e e i=n,

n—1
s ctk=7—n;)*
> hrfgggfk Y M waqe
=n—7

n—1 ¢ 2
> liminf ) <42 g
=00 j=p—1

Thus, by Corollary 2, Eq. (E) has property (P). (]

Example 2 Consider the difference equation
5 a 4b
A’x, + _3Axn+l + _an—'r =0, n>1, (18)
n n

where a, b, 3 > 0, 7 > 1. It is easy to see that (15) holds. Let us take ¢ = % For
[# <2and b > 1 we have
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k — —124b
11msupZ( T )ﬁzb 1.

k=n—r1

Hence, condition (17) is satisfied and by Theorem 5, Eq. (18) has property (P).

In the next theorem we derive conditions guaranteeing that every nonoscillatory
solution of equation (E) tends to zero as n — 0.

Theorem 6 Assume condition (2) holds and (u,) is a recessive solution of equation
(1). Assume that Eq. (E) has property (P). If

1 o0

[e.¢] o0
dw Yy o Y uip1gi =00, (19)

k=ng  j=k IHIHL G

then every nonoscillatory solution of (E) has the property lim x, = 0.
n—00

Proof Let (x,) be a nonoscillatory solution of equation (E) satisfying (P). Without
loss of generality, we may assume that (x,) is eventually positive. Therefore there
exists ny > ng such that x, > 0 and x,_, > 0 for n > n;. Then Ax, < 0 for all
n > n, for some n, > ny. Hence, there exists a limit lim x, =/ > 0. Assume for

n—-oo

contradiction that/ > 0. By Theorem2, (x,,) is also a solution of degree 0 of Eq. (E").
Since x,,_, > [ for n > n,, from Eq.(E’) we get

1
—A (uil+1ul1A <_Axn>> = lun-ﬁ-lQns n=njp. (20)
Uy

From (6) it follows that (L;x,) and (L,x,) tends to zero. Hence, summing (20) from

n to 0o, we obtain
1
Upy1Up <A Axn) > lZ“z-H‘]z

i=n
Summing again we get

—%Axn > IZ

o]

Zui+1ql'~

i=j

L Wittt

Finally, summing the above equation from n, to n — 1, we have

n—1 0 1 00
xnfxnz_lzukz — Z”H—l‘h-
k=n, j=k u./u./+] i=j
Letting n — oo and using (19) we get lim x, = —oo which contradicts the fact that
n—00

(xp) is eventually positive. Hence [ = 0. The proof is complete. ]
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From Theorems4 and 6, we get the following result. The proof is similar to the
proof of Theorem 5, so it is omitted.

Theorem 7 Let condition (15) be satisfied. Assume that Eq.(E) has property (P).
If

oo
> n’gqy = oo, 1)

n=ng
then every nonoscillatory solution of equation (E) has the property lim x, = 0.
n— o0

Combining Theorem 7 with Theorem 5 we get following result.

Corollary 3 Let condition (15) be satisfied. If condition (16) or (17) is satisfied,
then every nonoscillatory solution of equation (E) has the property

lim x, = 0.

n—0oQ

Proof Observe that condition (16) or (17) implies condition (21). Thus we get the
result. -

Example 3 Consider the difference equations (14) and (18). It is easy to see that

o0

n
> sam <

n=0

Moreover, by Example 1, Eq. (14) has property (P). Hence, by Corollary 3, every
nonoscillatory solution of this equation tends to zero as n — oo. Similarly, for
Eq.(18) by Example 2, assumptions of Corollary 3 hold. Hence every nonoscilla-
tory solution of equation (18) tends to zero as n — 00, too.

4 Summary

In this paper we have studied asymptotic properties of nonoscillatory solutions of the
third-order delay trinomial equation (E) by transforming this equation to a binomial
third-order difference equation with quasidifferences. We have deduced property (P)
of Eq. (E) from the oscillation of a certain first-order difference equation. Finally, in
Corollary 3, we have presented an easily verifiable criterium which ensures that all
nonoscillatory solutions of equation (E) tend to zero. We point out that the assump-
tions of this criterium depend only on the coefficients (p,), (¢,) and the delay 7.
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On Copson’s Theorem and Its )
Generalizations ey

A. Linero Bas and D. Nieves Roldan

Abstract E.T. Copson generalized the well-known result about the convergence of
bounded and monotonic sequences of real numbers. Over the years, generalizations
of this result have been made concerning linear and nonlinear inequalities that gave
us a wide range of criteria for the convergence of sequences in relationship to the
characteristic polynomial, monotonicity of the variables, etc. In this paper, we present
a survey about these generalizations of Copson’s result, focusing in the state-of-art of
the problem, and bring up some open questions that could lead us to future research.

Keywords Sequences - Convergence + Copson’s Theorem - Characteristic
polynomial - Monotonicity - Monotone convergence theorem

1 Introduction

It is a widely known result of real mathematical analysis that a bounded monotonic
sequence of real numbers converges. In 1969, Professor E.T. Copson, inspired by two
suggestions of J. M. Whittaker and J. B. Tatchell, generalized this result by changing
the monotonicity of the sequence by a convex inequality that involves r consecutive
members of the sequence as follows:

Theorem 1 ([3]) If (a,) is a bounded sequence of real numbers which satisfies the
inequality

Aptr = stanJrrfsv (l)
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where the coefficients kg are strictly positive and ky + - - - + k, = 1, withr > 1, then
(ayn) is a convergent sequence. But if (a,) is unbounded, it diverges to —oo.

It is worth mentioning that, apart from its own proof, Copson included in his
article another one due to R. A. Rankin. On one hand, Copson’s proof underlines
the relevance of the characteristic polynomial associated to inequality (1), given
by P(A) = A —IkgA ™! — kA" =2 — ... — k,_A — k,. The main point of the proof
is to bound the sequence as follows: a1, < Z:Zl As()ay—j4r—s, where the co-
efficients A;(l) are given by A;(I + 1) = ksA1 () + Az (D). After that, using an
auxiliary result, it can be assured the convergence of A,(/), and then, by apply-
ing some properties of the inferior and superior limit the proof ends. On the other
hand, the technique developed by Rankin, based on defining an auxiliary sequence
A, = max{a,_1, ..., a,_,} which is monotonic under the conditions of the theorem,
allows us to extend this result to other mathematical objects like double sequences
or sequences of functions.

It should be highlighted that the direction of inequality (1) is clearly immaterial,
since we may replace a, by —a, to reach the same conclusion. Also, it should be
emphasized that the conclusion does not necessarily follow if some of the coefficients
kg are zero, as the following example shows.

Example 1 1f (a,) is bounded and

1
pys = E(an+2 + an)’

then the sequences (ay,) and (ap,+1) are convergent, but (a,) is not necessarily
convergent. To show this, just consider the sequence

(@) =01,-1,1,-1,1,—-1,...).

]

In addition, the coefficients k; does not have to be all positive. In fact, as we will
see later, if (a,) is bounded and satisfies

apy3 < _%al‘l+2 + %an+l + Zana
then it is convergent.

These remarks let us conclude that the condition of Copson’s Theorem is sufficient
but not necessary. This gave rise to numerous generalizations in the literature. In the
present paper we are going to survey some of these generalizations (see Sects.2 and
3) and we will finish extending the result to other mathematical objects, including a
generalization of the monotone convergence theorem of Lebesgue (see Sect. 4).
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2 Characterization of Convergence in Terms of the
Characteristic Polynomial

As we have previously commented, Copson’s proof suggests that the characteristic
polynomial associated to inequality (1) is the key to develop new results in order
to assure or characterize the convergence of real bounded sequences. Firstly, J. D.
Kecki¢ justified that all the coefficients k; of the inequality need not be positive [6].
In this sense, he presented a sufficient condition of convergence that depends on the
roots of the characteristic polynomial. Under some conditions, if all the roots are
distinct and lie in the open unit disk, then we have the convergence of the sequence.
Namely, he proved the following:

Theorem 2 ([6]) Let (a,) be a bounded sequence of real numbers, which satisfies
inequality (1), with > _ ks =1.If l;,=1—k —---—k; (s=1,2,...,r = 1)
and if all roots of the equation

AN 2+ L, =0, 2)

are distinct and lie in the disk |\| < 1, then (a,) is a convergent sequence.

Sometimes, it is not necessary to look for the roots of the equation, for instance by
a direct application of Rouché’s theorem (see [9]), which says that two holomorphic
functions f and g have the same number of zeros in a region €2 (the unit disk in our
case) if it is verified that | f(z) — g(z)| < | f(z)| for all z € y, being y a closed path
in ; we can see that all the roots of equation (2) lie in the open unit disk whenever
1] + |l2] + - - - +l,—1] < 1. Indeed, it suffices to consider the polynomials g(A) =
A4 Z;;‘l [;"~'=J and f(A) = A"~ !in the disk |z] < 1.

Example 2 ([6]) If (a,) is bounded and verifies

13 1 1 1 1

ants = TGt T 53 + 39n+2 + 21 T gns

then it is convergent, since

S + +
27374 6

Afterwards, S. Stevi¢ characterized in [11] the convergence of real bounded se-
quences by giving a sufficient and necessary condition related to the characteristic
polynomial too. In this case, the roots need not lie in the unit disk.

Theorem 3 ([11]) Let k; be real, > ' k;=1, P(z2)=2 —kz '— .. —
k,_1z — k, and let the real sequence (a,) satisfy the inequality
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Qnyr < kippr_1 + -+ kea,.

Then the boundedness of (a,) implies its convergence if and only if zeros of polynomial
P, (z) belong to the set C\ {z : |z| = 1,z # 1}.

The main point of the proof is to reduce the order of the corresponding difference
inequality by a suitable substitution b, = a,1| + aa,.

We should remark that before Stevi¢ presented his result, D.C. Russell published
an analogous result [10] that also characterized the convergence, but he appealed to
summability theory giving a tougher proof. In that sense, Stevi¢’s result is given in
a more natural form, since he expresses it in terms of the characteristic polynomial
of the corresponding difference equation.

3 Sufficient Conditions of Monotonicity

In this section we will handle with different generalizations related to monotonicity
criteria. In this way, we will present sufficient conditions of convergence by studying
the monotonicity properties of the functions, not necessarily linear, that define the
Copson-type inequalities verified by the bounded sequences.

Firstly, we will start defining two notions involved in Bibby’s theorem [1].

Definition 1 A function f : R" — R is said to be an averaging function if it is
continuous, strictly increasing in each argument and satisfies

x=f(x,...,x),

forall x € R.

Definition 2 A sequence (a,) is said to be g-decreasing if there exists an averaging
function f such that
a, < f(an—l’ an—2, ..., an—r)a (3)

foralln > r.
If inequality (3) is reversed, we say the sequence is g-increasing. A sequence is
g-monotonic if it is either g-decreasing or g-increasing.

We can now state the following theorem due to J. Bibby [1].

Theorem 4 ([1]) If a real sequence is bounded and g-monotonic then it is conver-
gent.

Example 3 The weighted arithmetic mean (with positive weights «;, ..., ) is an
example of an averaging function
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fla . x) = 2=

which is continuous, strictly increasing and f(x, ..., x) = x.

Then if (a,) is a bounded sequence satisfying

it is convergent.
Another averaging function is given by

—
s X,) = .t X
S, 0x) X1 *Xrs

with r an odd positive integer. Therefore, if the bounded sequence (a,) holds

a, = NOn—1 " Qpy,s

we can ensure its convergence. O

Now we will change the convex combination that appears in Copson’s inequality
(1) to a continuous real-valued function. In this way we characterize the conver-
gence of the considered sequence (a,) establishing conditions of monotonicity in
the function.

Theorem 5 ([12]) Assume that f is a continuous real-valued function defined on
R" satisfying the following conditions:

1. f is nondecreasing in each of its arguments;
2. f(x1,...,x,) is strictly increasing in x;
3. forevery x € R it holds
flx,x,...,x) <x.

Then every bounded solution of the difference inequality
Xn f f(xn—la ceey xn—r)

converges.

The condition of the existence of a variable such that f(xy, ..., x,) is increasing
in it, is necessary. Indeed, let f(xy, ..., x,) = max{xy, ..., x,}. It is easy to check
that it is a continuous real function, nondecreasing in each variable and it verifies
f(x,...,x) <x forevery x € R. Now, considering the sequence

@) =,2, ..., n 1,2, r 1,2, ),
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it satisfies the inequality
apyr < max{an+r—la Apgr—25--+; an}»

and it is not convergent.
Now, let us consider an autonomous difference equation of order r € N

Xp = f(xn—lv~-~axn—r)a (4)

in order to generate sequences of real numbers by applying (4) from the initial values
Xpyooey X1.

Theorem 6 ([5]) Let f(x1, ..., x,) be a continuous function from 1" into I, where
I is bounded or unbounded interval of R, which satisfies the following conditions:

1.

f(-xla-x27"'axr) 2 f(-x25"'7-xraxl)v
ifx; = max{x, ..., x};
2.
S, x2,000,x) < f(x, .0, X, X1),
ifx; <min{xy, ..., x};

3. f is nondecreasing in the last variable x,.

Then every bounded solution of (4) with initial values x_y, ..., x_y € I converges,
and every unbounded solution of (4) tends either to 4+00 or to —oo.

Example 4 ([5]) Let us consider the function f and suppose that it is a linear com-
bination of any monotonous nondecreasing function g, not necessarily linear, with
respect to variables z;, i = 1,2,...,r, thatis

fGi,....z)=a1glz) +--+agiz), ag=za>--->a >0.

The case when all constants a;, i = 1,2,...,r, are the same, obviously sat-
isfies all conditions. So, suppose that a; > a,. Now, assume that z; > z; for all
i=1,2,...,r.Itis well known that for any monotonous nondecreasing function g

(not necessarily differentiable), inequality g(z;) > g(z;) holdsforalli =1,2,...,r.
After the multiplication of all these inequalities by (a;—; — a;)/(a; — a,), respec-
tively, and the summation from i = 2 to i = r, for some 1 < z; we get (notice that

Yiso(@im —a)/(a —ay) = 1)

1 r r
gz g = —— (Z a;i18(zi) — Za,-g(z,o) :
" \i=2 i=2
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that is

Zaig(zi) > Zaiflg(zi) +arg(z1),

i=1 i=2

which constitutes the first condition of the theorem. Similar algebraic manipulations
lead us to verify the other two conditions.
Therefore, we can apply Theorem 6 to conclude that every bounded solution of

r
Xn = f(-xn—l’ ces Xpp) = Zajg(xn—j)v
j=1
is convergent. 0

We will finish this section by considering inequalities involving two different
sequences. It would be interesting to study the generalization to an arbitrary number
of sequences and to look for possible applications.

Theorem 7 ([13]) Let f(x1, x2, ..., X,) be a continuous real function on R” which
satisfies the following conditions:

1. f is nondecreasing in each variable and increasing in the first one;
2. f(x,x,...,x) <x, foreveryx € R.

If (ay) is a sequence bounded from below and satisfies the inequality

Ap+r =< f(an+r—la Apgr—25 .-y an) + bn’

where (b,) is a sequence of real numbers suchthat "~ |b,| < 00, then it converges.

The stated results have a lot of applications to other fields, since the difference
inequality
Apyr < f(anerfl’ Apgr—2;5 -+, Cln),

includes the difference equation

Apyr = f(arH—r—l» Apgr—25 -y an)a

which appears in a large class of mathematical biology models. As an example we
can consider the following difference equations that describe population models:

Xnt+1 = (axn + bxn—lexn_]) e-xn’

Yn

Y1 = (@y, + Byn—1) e~

In particular, the first one describes the growth of a mosquito population. If the
reader is interested in these or other population models, see [4].
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4 Extensions of Copson’s Theorem

Apart from the numerous generalizations that have been made from Copson’s theo-
rem, the result can be extended to other fields or mathematical objects.
Firstly, D. Borwein extended Theorem I to the complex plane [2]. Let us introduce
some preliminary notation in order to understand the statement of Borwein’s result.
Let (K,) be a sequence of complex numbers, let

o0
K(z) = Zan", z7eC,
n=0

and let kg = Ko, k, = K, — K,_;. _
_ Let D be the open unit disk {z € C : |z| < 1}, let D be its closure and let 9D =
D — D be its border.

Theorem 8 ([2]) Under the above notation, if

oo
D 1K, | < oo,
n=0

K(z) #00n 0D,

and if (a,) is a bounded sequence such that, for some positive integer N,

n

Y ks =0 (n=N,N+1,..)),
s=0

then (a,) is convergent.
Example 5 Every bounded sequence (a,) satisfying

i i i

— I——Hd”,I — man72 e (1 T l)n

an ap > 0,

is convergent.

To prove it, consider K, = ( 1

)" verifying

T+
o0 n o0
1 1 1
= - = < 00,
gl—i-i gzz V2-1

and K (z) # 0 in 8D since K(z2) =, (1} )" 2" = = is the sum of a geo-

1_+i 1+i
metric progression well defined for |z| < |1 +i| = V2. Finally, notice that k; =

|
KS - Ks—l = -1 1+ - O
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Realize that if kg = —1 = K, then it is easily seen that K} = —1 + k;, K» =
—1 4k + k,and,ingeneral, K; = —1 + k; + ko + ... + k; for j > 2. This shows
us that, in essence, we can deduce Copson’s Theorem if in Theorem 8 we replace the
conditions Y o~ |K,| < 00, K(z) # 0 on 3D, by the single condition

—1=Ky<Ky<...<K,_1 <K, =K,y 1 =K, =...=0,

since in this case K (z) reduces to the polynomial of degree r — 1, K(z) = —1 +
(=14+k)z+...+ (=14+k +...4+ k_;)z"~" and, under the hypothesis of Theo-
rem 1, wehave that K (1) < OandRe ((1 —2)K (2)) = — Y. _o ks(1 —cos(r6)) < 0
forz =¢?,0 <6 < 2.

Secondly, G.G. Vrinceanu extended in [14] the result to other mathematical ob-
jects getting convergence criteria based on Copson-type inequalities. For example,
we can extend it to double sequences.

Theorem 9 ([14]) If (a}}) is a bounded double sequence which satisfies the inequal-
ity

rl
n+l § : n+l—p
am+r = kS,PanH—r—x ’
s,p=1

where the coefficients ks, , are strictly positive and )k, , = 1, then (a)),) is conver-
gent.

Also, we can extend it to real continuous functions in a way that generalize Dini’s
theorem (see [8]) about monotonic sequences of continuous functions on a compact
space.

Theorem 10 ([14]) Let X be a compact space and ( f,,) be a bounded sequence of

real continuous functions such that:

1. f, — f simple and f continuous.
2. There exists strictly positive constants ks with y_._, ks = 1 and

Fusr (@) <Y ks s ().

s=1
Then ( f,) converges uniformly to f.

It is easy to see that the properties established about double sequences and se-
quences of continuous functions can be proved if we reverse the inequality, following
the same strategy we remarked with Copson’s Theorem.

Moreover, he presented an extension to hermitian operators.

Theorem 11 ([14]) If (T,) is a bounded sequence of hermitian operators and for
each n we have
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r
Tn+r - Z ks Tn+r—x s
s=1

where ky are strictly positive numbers and ", _, ks = 1, then (T,) converges strongly
to a hermitian operator.

Finally, we announce a proper result, whose proof is not published yet. By ap-
plying the ideas and techniques developed by R.A. Rankin in his proof of Copson’s
theorem, we are able to generalize the monotone convergence theorem of Lebesgue
(for consulting the statement of this well-known result from Measure Theory, the
reader is referred to [8], where he/she can also find the associate notions of measur-
able functions and Lebesgue integral).

Theorem 12 Let (f,,) be a sequence of measurable and positive functions over X.
Assuming

k
Fork () = Y0 fri (),

Jj=1
forall x € X, where Z];=1Olj =1,0<a;<1, j=1,...,k, and

Jn(x) = f(x),

forall x € X when n — oo. Then f is measurable and fx frdi — fx fdu when
n — oo.

We emphasize that our proof uses both the ideas of Copson’s Theorem and elementary
techniques from Measure Theory. We hope that we will publish it in a forthcoming
publication [7].

Another future line of research deals with the analysis of the convergence of
sequences satisfying a Copson-type inequality involving two or more sequences, in
the line of Theorem 7. As a first step in this direction, we could think about new
sufficient conditions on the auxiliary sequence (b, ) in that theorem.

We conclude our survey by emphasizing that the evolution of a simple and elegant
result has been the origin of a wide range of results about its generalizations and
extensions, enriching the literature in relation with the topic of the convergence of
sequences. In our opinion, there are still some interesting questions related with it,
in particular in the setting of difference equations, and applications to mathematical
models will be welcome.
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Abstract A preliminary mathematical model of diabetes has been proposed in [4],
in which the evolution of the size of a population of diabetes mellitus patients and the
number of patients with complications, has been modeled by second order system of
nonlinear differential equations. The model, has already been analyzed for the linear
local stability of the equilibria of the system. However, the global behavior of the
flow of the nonlinear system has not been studied. The present article analyzes the
global behavior of the trajectories of the population growth using Lyapunov stability
analysis. Toward this, we construct a suitable Lyapunov function corresponding to an
interior equilibrium point and show that it is asymptotically stable within the entire
open first quadrant of the planar state space which is the region of interest. Further,
transient or incremental stability in the phase plane has been studied via Lyapunov
exponent analysis. The stability analysis has also been verified through numerical
simulations, under various parameters. A physical interpretation of the parametric
dependence of the flows of the nonlinear system is provided from the point of view
of diabetic population dynamics.
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1 Introduction

Diabetes is a group of diseases characterized by high levels of blood glucose result-
ing from defect in insulin production, insulin action or both. It is now commonly
admitted that diabetes is an important public health problem, worrisome and serious
worldwide. According to the World Health Organization [3], the diabetes is on the
rise. No longer its a disease of predominantly rich nations; the prevalence and inci-
dence of the disease are steadily increasing everywhere. Is it estimated that globally,
422 million adults were living with diabetes in 2014, compared to 108 million in
1980 [3].

Diabetes can lead to complications in many parts of the body, reduced quality of
life and premature death. In addition to placing a large financial burden on individuals
and their families due to the cost of insulin and other essential medicines, diabetes
also has a substantial economic impact on countries and national health systems [1].

Based on the cost estimates from a recent systematic review, the World Health
Organization has estimated the direct annual cost of diabetes to the world to be
more than US$ 827 billion [3]. Thus, the growing trend of diabetes requires urgent
measures and effective strategies for the prevention and management of diabetes and
its complications.

Currently, there is a growing interest in the study and development of population
level models and in the behavior of non-communicable disease. The combination of
theoretical methods with mathematical methods has played an essential role in the
development of this area. Specifically, the role and sensitivity of various parameters
of these models to the dynamics of diabetic population growth is significant since
estimation of the parameters couple the multiscale models.

Abundant mathematical models have been developed to understand diabetes and it
is mainly devoted to simulate and analyze the dynamics of glucose and insulin. The
literature shows different models using differential equations, delayed differential
equations, integro-differential equations, stochastic differential equations, optimal
control and others methods for glycaemic control, blood glucose monitoring and
devices devoted to diabetes prevention [2]. In this way, few authors have proposed
epidemiological models for diabetes for understanding the populations dynamics.

A mathematical model of diabetes by Boutayeb et al., for the evolution of the
size of a population of Diabetes Mellitus patients and the number of patients with
complications, has been studied for stability with respect to various parameters.The
model, a second order system of nonlinear differential equations, has already been
analysed for the linear local stabilityof the equilibria of the system. However, the
global behavior of the flow of the nonlinear system has not been studied as it requires
further phase plane analysis, which in turn gives parametric insight into the model.

The aim of this paper is to extend the analysis of the stability of the system pro-
posed by [4]. Thus, we study the global behavior of the trajectories of the population
growth using Lyapunov stability analysis. Toward this, we construct a suitable Lya-
punov function corresponding to an interior equilibrium point and show that it is
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asymptotically stable within the entire open first quadrant of the planar state space
which is the region of interest.

2 The Mathematical Model

A. Boutayed [4] proposed the following two-dimensional population model of Dia-
betes Mellitus,

dD
o =1~ A+ w)D() + AC (1) (D

dcC
It will now be assumed that the probability of developing a complication A is
given by:

pC@)

A= A1) = NGO

which N () = C(t) + D(¢) give rise to the initial-value problem (IVP)

(2—(; =—-A+0OCEH +AN@),1>0;C0) =C 3)
dN
E=1—(v+7)C(t)—uN(t),t>0;N(0)=No “)
where 6 = v+ pu+v+9.
dc C2(1) _ _
E—(ﬁ—e)C(l)—ﬁN(t),l>0,C(0)—C0 (5)
i—lj=1—(v+5)C(l)—MN(t),t>0;N(0)=No (6)

The possible steady states of the dynamical system equation (5) and (6) are: Sy =
(0, ﬁ), S| = (C*, N*) where

(B—0ON*—pC*=0 (7
W+ HC +uN* =1 (®)

The Egs. (7) and (8) may be written in matrix-vector form as:
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a2 )= [

—Bu — (v + §) (B — 0) # 0 uniquesolution

(W)= mraram=s (v %) 0)
N )" pB+@+6)B -0 \-w+d) =4 1

« _ (=01 . _ 51
hence, C* = B0 and N* = o =n)
(the non-trivial fixed point)

The Jacobian matrix of model system 5 and 6 at the trivial critical point, is given by:

([ B-0 0
J(s0) = (_(U 6 _M) ©)

The eigenvalues of J (sg) are the roots x; and X, of the characteristic equation:
X+ (u+0—B)x + (0~ Pp =0,

so that
xX1=(@—-60)>0and xyo=—-—pu<0

thus, the trivial critical point is saddle point.
Similarly, the Jacobian matrix associated with the non-trivial critical point is given
by:

_ (60 5=
J(s1) = (_(v+ 5 s (10)

The eigenvalues of J (s1) are the roots x; and X, of the characteristic equation:

@ +HBE—-0? _

0,
B

X AHB-0+wx+B—0u+

which is of the form:
X2+bx+c=0;b>0,c>0.

Hence, x; and x, may be:

e Case 1: both real and negative, so that the non-trivial critical point given is a stable
node.
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e Case 2: complex conjugates with negative real parts, so that the non-trivial critical
point is a stable spiral and the solution of the ODE system in (3), (4) spirals into
the non-trivial critical point.

3 Global Stability

We consider the global stability of the system of equation (5) and (6) by constructing
a suitable Lyapunov function:

V(C,N) = [(c —C*) = C*In (CE)} + W |:(N — N*) = N*In <Nl>} (11)

where w is a suitable constant to be determined in the subsequent steps. It can be
easily verified that V is zero at the equilibrium point (C*, N*) and positive for all
other positive value of C, N. The time derivative of V along the trajectories of equation
(5) and (6),

Wy () "

dr -~ C i N ) dr

*

C N

Also we have the set of equilibrium equations:

(B—60)N*—3C* =0 and
W+ C*+uN*=1

corresponding the steady state S} = (C*, N*)
We can write the Eq. (12) together with the above two equations in the form:

=(C-C [(5—0)— %(C—C*)— %C{|+

(N_N*) * * * %
WSm =l = (04 )(C = ) = p(N = N*) = (u+ 8)C* — uN*]

B-6) o B
N (N —N%) N(C C)]+

:(C—C*)[

W(N—N*)
N

— (C_C*)2<

[~ +)(C = C) — u(N — N9)]

=B B-0
W) TN

(C — C*)(N — N*)+
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W(C - C*)(N = N*) <7_(UN+ 0

- —[(c —C*)? (%) +(C—C*)(N = N*) [W
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H *\2
)—WNW—N)

w+d)  (B-0)

N

ﬁ A2
5 ]+WN(N N)]

=- [(C —C%)? (%) + W%(N - N*)Z]

We choose W = @ here.

(v

Now since dV/dt is negative semidefinite in some neighbourhood of (C*, N*), the
interior equilibrium point (C*, N*) is globally asymptotically stable.

4 Numerical Results

In this section, we consider some numerical examples (Table 1). Parameters values

are taken as follows:

Tablg 1 Pmameters values Parameters Values
used in numerical
experiments I 60 000
B 1
v 0.05
é 0.05
Iz 0.02
0% 0.08
0 0.2
Fig. 1 Profiles of C(¢) and ok 10°
N(t) ' 5
5+ J
ar 1
s I
83 | .
a ]
g 2
i i number of diabetics with complications
| number of diabetics
0 I—/ L 'S 'l A A L L L
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Fig. 2 Profiles of C(¢) and £105
6 T T T T T T T T
N(1)
5k
al i
{
c H
2 !
]
353 ]
Q
(=]
o
2 8 -
] number of diabetics with complications
* number of diabetics

20 30 40 50 60 70 80 90
time

Figure 1 shows the behavior of C and N and Fig. 2 shows also the behavior of the
populations using the previous values of parameters and the rate of recovery from
complications v = 0.

The behavior of system is exhibited similar of behaviour as with v = 0.08.

S Summary

A mathematical model is considered to investigate the number of diabetics and those
with complications. By utilizing a Lyapunov function, global stability of one equi-
libria is studied.The stability analysis has also been also verified through numerical
simulations.
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On a Nonlocal Boundary Value Problem )
for First Order Nonlinear Functional L
Differential Equations

Zdenék Oplustil

Abstract A nonlocal boundary value problem for nonlinear functional equations is
studied. New effective conditions are found for solvability a unique solvability of
considered problem. Obtained results are concretized for differential equation with
deviating argument.

Keywords Functional differential equation - Solvability - Unique solvability
Equations with deviating arguments

1 Introduction

On the interval [a, b], we consider the functional differential equation
u'(t) = Fu)(@), ey

where F : C([a, b]; R) — L([a, b]; R) is a continuous (in general) nonlinear oper-
ator. As usual, by a solution of this equation we understand an absolutely continu-
ous function u : [a, b] — R satisfying the equality (1) almost everywhere on [a, b].
Along with the Eq. (1), we consider the nonlocal boundary condition

h(u) = ¢(u), (2)

where ¢ : C([a, b]; R) — R is a continuous (in general) nonlinear functional and
h: C([a, b]; R) — Ris a (non-zero) linear bounded functional.
The following notation is used in the sequel.

R is the set of all real numbers. R, = [0, +oo].
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C([a, b]; R) is the Banach space of continuous functions v : [a, b] — R with the

norm ||v||c = max {|v(¢)| : t € [a, b]}.

C([a,b]; Ry) ={ve C(a,bl;R) : v(t) > O fort € [a, b]}.

AC([a, b]; R) is the set of absolutely continuous functions v : [a, b] — R.

L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] — R
b

with the norm || pll, = [ |p(s)|ds.

L([a,b];Ry) = {p € L([a, b]; R) : p(t) > 0 for almost all ¢ € [a, b]}.
Z.p 1s the set of linear operators £ : C([a, b]; R) — L([a, b]; R) for which there
is a function n € L([a, b]; R,) such that

L)) < n@®)|v]lc forae.t € [a,b] and all v € C([a, b]; R).

P,, is the set of so-called positive operators £ € £, transforming the set
C([a, b]; R,) into the set L([a, b]; R,).

F,;, is the set of linear bounded functionals i : C([a, b]; R) — R.

PF, is the set of so-called positive functionals h € F,;, transforming the set
C([a, b]; R,) into the set R .

B ={u € C([a,b]; R) : h(u) sgnu(a) < c}, where h € F,, c € R.

K ([a,b] x A; B), where A, B C R, is the set of function f : [a,b] x A —> B
satisfying the Carathéodory conditions, i.e., f (-, x) : [a, b] — B is a measurable
function forallx € A, f(¢,-) : A — B isa continuous function for almost every
t € [a, b], and for every r > O there exists ¢, € L([a, b]; R,) such that

|f(t,x)] <gq,(t) forae.r€[a,b]landall x € A, |x| <r.
As it is usual, we suppose following assumptions on a nonlinear operator F and

a functional ¢ throughout the paper:

(Hy)) F:C(la,b];R) - L([a, b]; R)isacontinuous operator such that the relation
sup {|[F(W()|:v e C(la,bl; R), |vllc <r} € L(la,bl; Ry)

is satisfied for every r > 0.
(Hy) ¢ : C(la, b]; R) — R is a continuous functional such that the condition

sup {le(W)| : v € C([a,bL: R), [vc <r} < +oo

holds for every » > 0.

The question on the solvability and unique solvability of various types of boundary
value problems for functional differential equations and their systems is a classical
topic in the theory of differential equations (see, e.g., [1-6, 8] and references therein).
There is alot of interesting general results but only a few efficient conditions is known,
namely, in the case where the boundary condition considered is nonlocal.
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One can find (e.g. see [3]) that it is very useful to consider the boundary condition
(2) as a nonlocal perturbation of the two-point condition

u(a) + ru(b) = ¢(u), 3)

where A € R.. Consequently, it is natural to consider, in what follows, that the linear
functional % in (2) is defined by the formula

h(v) =v(a) + 2 (b) — ho(v) + hi(v) forv e C([a, b]; R),

where A € R, and hg, h; € P F_,,. We should mention that there is no loss of gener-
ality to assume £ like this, because an arbitrary linear functional / can be represented
in this form.

One can see that a particular case of the Eq.(1) is, for example, a differential
equation with deviating arguments

u'(t) = pu(r () — gulo (1)) + f(t, u(®), u(u(®)), “4)

where p, g € L([a, b]; R}), t, 0, i : [a, b] — [a, b] are measurable functions, and
f € K(a,b] x R*; R).

On the other hand, particular case of boundary condition (2) are, for example,
Cauchy problem, anti-periodic problem (if ¢ = ¢ and hy, h; are trivial functionals),
and some integral condition of the form fab u(s)ds = c.

In this paper, we extended results presented in [7] to nonlinear case, as well as,
some results stated in [3] concerning the problem (1), (3). New efficient conditions
are found for the solvability and unique solvability of the problem (1), (2). More-
over, below presented statements are concretized for the differential equation with
deviating argument (4).

2 Main Results

Firstly we formulate statements, which guarantee solvability of considered boundary
value problem.

Theorem 1 Letc € Ry, A > 0and hy € PF,, is such that
ho(1) < 1. (5)
Let, moreover, the condition
e()sgnv(a) < c forv € C(la, b]; R) (6)

be fulfilled and there exist
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Lo, L1 € Py (N

such that, on the set B,.(la, b]; R), the inequality
(FO)(0) = L) (1) + 61(v)(0))sgnv(r) < q(t, [vlie) foraet€la,b]  (8)

holds, where the function g € K ([a, b] x Ry; R,) satisfies

b
lim l/q(s,)c) ds =0. 9)
x—>—+00 X
If, in addition,
1= ho(1) = (A + hi(1)* < LoDl < 1 —ho(1), (10)
oDl + (A + hi (D) 161Dl < 1 = ho(D), (11)

then the problem (1), (2) has at least one solution.

The next theorem can be regarded as complement of previous one in the sense, we
consider the condition |[£y(1)], < 1 — ho(1) — (A + hy (1))2 holds instead of (10).

Theorem 2 Letc € Ry, A > 0and hy, hy € PF,;, be such that

O+ hi(D)* < 1 — ho(D) (12)
holds. Let, moreover, the condition (6) be fulfilled and there exist £y, £ € Py
such that, on the set By.([a, b]; R), the inequality (8) hold, where the function
q € K([a, b] x Ry; R,) satisfies (9). If, in addition,

oDl < 1 —ho(1) — (A + hi(1))*, (13)
€1 (DL < 23/1—ho(1) — [[€o(DllL — A — A (1), (14)

then the problem (1), (2) has at least one solution.
The following assertion immediately follows from previous theorems.

Corollary 1 Let c € Ry, A > 0 and hy, hy € PF,;, be such that (12) holds. Let,
moreover, (6) and

f(t, x,y)sgnx < q(t) forae. tela,blandall x,y € R

be satisfied, where g € L([a, b]; R,). If, in addition,

b b

/p(s) ds < 1 — ho(1), fg(s) ds < w(A, ho(1), hi(1)), (15)

a a
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where

b
I—ho(D)—[ p(s)ds b
—m— i [ pe)ds = 1—ho(1) = A+ k1 (1),

b b
21— ho(D) = [ p(s)ds —x —hi(1) if [ p(s)ds < 1—ho(1) — (h+ hi(1)2,

then problem (4), (2) has at least one solution.

(X, ho(1), h1(1)) =

Now we formulate statements concerning the unique solvability of the considered
problems.

Theorem 3 Let & > 0 and the condition

(p(») — p(w))sgn(v(a) —w(a)) <0 (16)

hold for every v,w € C([a, b]; R) and there exist £y, £, € Py, such that, on the set
B ([a, b]; R) with ¢ = |@(0)|, the inequality

(FO) @) = Fw)(1) = Lo(v = w)(1) + £1(v = w)(1))sgn(v(t) —w(1)) <0 (17)

is fulfilled for a.e. t € [a, b]. If, in addition, either conditions (5), (10), (11) or con-
ditions (12)—(14) are satisfied, then the problem (1), (2) is uniquely solvable.

Finally we established assertion for the unique solvability of problem (4), (2), which
immediately follows from the previous theorem.

Corollary 2 Let A > 0 and hg, hy € P F,, satisfy the relation (12). Let, moreover,
conditions (15) and

[f(t, x1,x2) — f(t, y1, yz)]sgn(xl —x3) <0forae. t€la,b], andallxy,x2,y1,y> € R

hold. If, in addition, condition (16) is fulfilled for every v, w € C([a, b]; R), then the
problem (4), (2) is uniquely solvable.

3 Auxiliary Propositions

The main results are proved using the lemma on a priory estimate stated in [6] by
Kiguradze and Pdza. This lemma can be formulated as follows.

Lemma 1 ([6, Corollary 2]) Let there exist a positive number p and an operator
L € %, such that the homogeneous problem

u'(t) =C)®), h) =0 (18)
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has only the trivial solution, and, for every 6 €10, 1[, an arbitrary function u €
AC ([a, b]; R) satisfying the relations

u'(t) = L) (1) + S[F(u)(t) — L(u) ()] forae t €la,bl, h(u)=38pm) (19)

admits the estimate
lullc < p. (20)

Then the problem (1), (2) has at least one solution.

Definition 1 Leth € F,;,. We say that an operator £ € .%,;, belongs to the set % (h),
if there exists r > 0 such that for arbitrary ¢* € L([a, b]; R;) and ¢ € R, every
function u € AC([a, b]; R) satisfying the inequalities

h(u)sgnu(a) < c, 21
(u'(t) — L) (@))sgnu(t) < g*(t) forae.t € [a,b] (22)

admits the estimate
lulle <r(c+llg*lo). (23)

Lemma 2 Let ¢ € Ry and (6) hold. Let, moreover; there exist £ € % (h) such that,
on the set By.([a, b]; R), the inequality

(FO)(0) =€) (0)sgnv(t) < q(t, [Ivlic) forae. 1 € [a,b] (24)

is fulfilled, where the function q € K ([a, b] x Ry ; R,) satisfies (9). Then the prob-
lem (1), (2) has at least one solution.

Proof Firstly, we note that, due to the condition ¢ € % (h), the homogeneous prob-
lem (18) has only the trivial solution.
Let r be the number appearing in Definition 1. According to (9), there exists

p > 2rc such that
b

1 1
—/q(s,x)ds < — forx > p.
X 2r

a

Assume that a function u € AC([a, b]; R) satisfies (19) for some § € 0, 1[. Then,
according to (6), u satisfies inequality (21), i.e., u € B.([a, b]; R). By (24), we
obtain that inequality (22) is fulfilled with ¢* = ¢(-, ||u||¢). Hence, by virtue of the
condition £ € % () and the definition of the number p, we get the estimate (20).

Since p depends neither on u nor on §, it follows from Lemma I that the problem
(1), (2) has at least one solution.
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4 Proofs of Main Results

Proof of Theorem 1 Let £ = £y — £1, where £y, £; € Py, are such that the conditions
(10) and (11) hold. We show that ¢ belongs to the set % (h).

Letc € Ry,g* € L([a, b]; Ry),andu € AC([a, b]; R) satisfy (21) and (22). We
prove that the estimate (23) hold, where r depends only on |[£o(1) |z, €1 (D], A,
ho(1), and i (1).

It is clear that

u' (1) = Lo(u)(t) — L (u)(t) +q(t) forae.t € [a,b], 25)

where
gty =u'(t) —L(u)(t) forae.t € [a,b].

From (21) and (22), we get
(u(@) + ru(b) — ho(u) + hy(u))sgnu(a) < ¢ (26)

and
q(t)sgnu(t) < q*(t) forae.r € [a,b]. 27)

First suppose that the function u does not change its sign. We set
M = max{|u(t)| : t € [a, b]}, m = min{|u(?)| : t € [a, b} (28)
and choose t;, t;; € [a, b] such that ¢;; # t; and
uti)l =M, Ju(tq)| = m. (29)
It is clear that M > 0, m > 0, and either
ty <t (30)

or
vy > li. (31

Moreover, according to (7), (27), and (28), from (25) we obtain
lu@)| < M Ly(1)(t) + g*(t) forae.t € [a,b]. (32)

If u(a) = 0 then m = 0 and integrating inequality (32) from a to f;; and taking
into account (29), one gets
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M < M/EO(I)(s)ds—i—/q*(s)ds.

It follows from the last inequality and (7) that
M < M|bo(D)lL + llg*llz + c.
Hence, in view of (10), we have
llulle < (Ilg*e +¢) (1= eI~

Consequently, the estimate (23) holds with r = (1 — |[€o(1)||) "
If u(a) # O then, according to (26), we obtain

lu(@)| + Au(b)| < ho(Jul) — hi(Jul) +c. (33)
Let first (30) hold. Then integrating of inequality (32) from a to f;; one gets

M — |u(a)] < Mfzo<1)(s)ds+/q*(s) ds

a
Latter two inequalities give

M + Mu(®b)| = ho(Jul) + hi(jul) — ¢ < M/Eo(l)(S)dS +fq*(S)dS-

a

Therefore, in view of (7), (29), (33) and hg, h, € P F,,, we obtain
M — Mho(1) — ¢ < M|leo(D)lL + g™z (34)

Now suppose that (31) is fulfilled. Then the integration of (32) from ¢ to #;;, on
account of (7) and (28), yields

M —m < ML)l + llg*|lL.
On the other hand, by virtue of (28) and kg, h; € P F,p, inequality (33) implies

m + am — Mho(1) + mh (1) < c.
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Summing the last inequalities, we get

M + i — Mho(1) + mhi (1) < M€ + llg*] +c.

367

Hence, the inequality (34) holds in both cases (30) and (31). Consequently, in view

of the assumption (10) we obtain
M < (1 —ho(D) = l6eDI) " ig*llz + o).

Thus, estimate (23) hold, where r = (1 — ho(1) — ||€0(1)||L)_1.
Let now u change its sign. We choose t,,, ty € [a, b] such that

u(ty) = minf{u(t) : ¢ € [a, b}, ulty) = max{u(?) : t € [a, b]}

and we denote
—m=u(ty), M =u(ty).

It is clear that m > 0 and M > 0 and either
tn <ty

or
tm > 1ty.

Suppose that (37) holds firstly. Then there exists a, € |t,,, f)[ such that
u(a) =0, u@) >0 for a, <t <ty.
On the other hand, we put
a; =inf{t € [a, t,] :u(s) <Ofort <s <t,}.
Obviously,
u(t) <0 for ay <t <t, andif a; >a then u(a;)=0.
Hence, by virtue of conditions A > 0 and (26), we have

u(ay) = —AM — mho(1) — Mh (1) — c.

(35)

(36)

(37

(38)

(39)

(40)

(41)

Integration equality (25) from a; to #,, and from a; to #,; and taking into account (7),

(27), (35), (36), (39)—(41), one gets



368 Z. Oplustil

tm tm tm

m—AM—mho(l)—Mhl(l)—c5M/Kl(l)(s)ds+m/£0(1)(s)ds+/q*(s)ds

al ai aj
m 1374 1374
M < M/ZO(I)(s)ds+m/€1(1)(s)ds+/q*(s)ds.
ap az az

From the last two inequalities we obtain

m(l—C—ho(1)) =M G+h )+ A)+llg"lL,

M —D)<mB+||g"||L, @
where l .
A =/mf1(1)(S)ds, B =f€1(1)(S)ds,
@
C= /Eo(l)(s)ds, D= /Eo(l)(s)ds.

It follows from (10) that 1 > C + ho(1) and 1 > D. Consequently, inequalities (42)
yield
O0<m(1—-C—ho(l))(1=—D) <
mB (A +hi(1)+A) + (Ilg*llL +¢) L+ 14+hi (D) + 16 (D),
O<M(A—-C—ho(1))(1—D) <

MB O +hi(D)+ A+ (Ilg*lle +¢) L+ e (D).
(44)
It is clear that

(1=C—=ho(1))(1 =D)=1—(C+ D) —ho(l) = 1= [[lo(D]lL — ho(1).
(45)
On the other hand, we get from the first inequality in (10) and (11) that
B < [[ti(DllL <A+ hi(1)

and therefore

A+r+h(1)B=AB+ (G +h(1)B=G+h@)[6MI.  46)
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By using (11), (45), and the last inequality, we obtain from (44) that

m <ro(1+4+h )+ 6l (¢ + llg*llL)

(47)
M <ro(1+lle (MWL) (c+lg*lL),

where
ro=(1—ho(1) = [€(Dll, — A+ h (D) € (D). (43)

Consequently, the estimate (23) is fulfilled withr = ro (1 + A + A1 (1) + [|£1(D]I2).
Let now (38) hold. Then there exists a4 € |y, t,,[ such that

u(ag) =0, u(@) <0 for a4 <t <ty 49)

We put
az = inf{t € [a, ty] : u(s) > 0fort <s < ty}

It is clear that
u() >0 for az <t <ty andif az >a then u(az) =0. (50)
Consequently, from A > 0, (26) and (50), we obtain
u(az) < im+ Mho(1) + mh(1) +c. (51)

Integration (25) from aj to 7y and from ay to #,, and taking into account (7), (27),
(35), (36), (49)—(51), one gets

1274 1274 tm
M —im — Mho(l) —mhi(1) — ¢ < M/Zo(l)(s) ds +m/£1(1)(s) ds + /q*(s) ds,
as as as

tm Im

Im
m < M/Zl(l)(s)ds+m/£0(1)(s)ds—|—/q*(s)ds.

asq as as
The last two inequalities yield

M(1=C = ho(1)) <m(r+ (1) + A) + ¢ +1lg" |11,

~ ~ (52)
m(1— D) < MB +|lg*||.,
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where . l
Z=/zl(1)<s>ds, §=f£1(1><s>ds,

ajM a4tm (53)
C= /Eo(l)(s)ds, D= /Eo(l)(s)ds.

It follows from (10) that C<1- ho(1) and D<1. Consequently, inequalities
(52) imply

IA

MB(h+hi(1) + A
0<m(l—C—ho())(1-D
mB(A+hi (1) + A) + (llg*]lL +¢) (1 + 16Dl -

0 < M(1—C—ho())(1-D)
A) + (g1l +¢) (14 A+ hi () + 16 (DI,
5) <

From latter inequalities, analogously as in the case (37), we can show that relations
(47) hold, i.e. the estimate (23) is fulfilled with » = r(, where rg is introduces in (48).

Consequently, functionu € AC([a, b]; R) satisfies estimates (23) in all cases and
therefore, operator £ = £y — £1 belongs to the set % (h). The assertion of Theorem 1
follows from the Lemma?2.

Proof of Theorem?2 Let £ = £y — £1, where £y, £; € Py, are such that the conditions
(13) and (14) hold. We show that £ belongs to the set % (h).

Letc e Ry,q* € L([a, b]; Ry),andu € AC([a, b]; R) satisfy (21) and (22). We
prove that the estimate (23) hold, where r depends only on ||[£o(1) |z, €1 (D], A,
ho(1), and A (1).

Analogously to the proof of Theorem 1, if the function u does not change its sign,
one can prove that estimate (23) hold.

Let now the function u change its sign. Then either (37) or (38) is fulfilled, where
tm, ty are introduced in relations (35) and (36).

Similarly as in the proof of Theorem 1, we can show that inequalities (47) are
satisfied in both cases (37) and (38) with

1 2!
o= [1 — ho() = oWl = 3 (el + 2+ (D) } .
We only use conditions (13), (14) instead of (10), (11) and relation
1 21 2
(o + 2+ () B = (S +B+2+mD) = (16Dl +2+mD)

instead of (46). We put &7 := A, &8 = B in the case (3)7land o = K, % =B in
the case (38), where A, B are introduced by (43) and A, B by (53).
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Hence, function u € AC([a, b]; R) satisfies estimates (23) in all cases and there-
fore operator £ = £, — £1 belongs to the set % (h). Now the assertion of Theorem 2
follows from the Lemma 2.

Proof of Theorem 3 It follows from the condition (16) that the inequality (6) is fulfilled,
where ¢ = |¢(0)|. Moreover, from (17) we get that the inequality (8) holds on the
set Bie([a, b]; R), where ¢ = |F(0)|. Hence, if conditions (5), (10), (11) hold, then
all the assumptions of Theorem 1 are fulfilled. On the other hand, if conditions (12)—
(14) hold, then all the assumptions of Theorem 2 are satisfied. Consequently, in both
cases the problem (1), (2) has at least one solution and, moreover, it follows from
the proofs of Theorems 1 and 2 that operator £ = £y — ¢, belongs to the set Z (h).

It remains to show that problem (1), (2) has at most one solution. Let u;, u, be
arbitrary solutions of the problem (1), (2). Put u(¢) = u;(t) — uy(¢) for ¢ € [a, b].
Then, by virtue of (16) and (17), we get uy, uy € By (la, b]; R) and

h(u)sgnu(a) <0,
(u'(t) — £(u)(1))sgnu(r) <0 forae.t € [a,b].

The last relations, together with £ € % (h), result in u = 0. Consequently, u; = u;.
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Existence Results for Fuzzy Differential )
Equations via Truncation Operators L
Between an Upper and a Lower Solution

and Fixed Point Results

Rosana Rodriguez-Lopez

Abstract In this work, we analyze the existence of solution to a fuzzy differential
equation of first order in the fuzzy functional interval determined by an upper and a
lower solution. The approach followed consists in the study of an auxiliary problem
that is defined through a proper ‘truncation operator’ based on the choice of well
ordered upper and lower solutions to the problem of interest. To our purpose, we
justify that the truncation operator is well defined and satisfies some monotonicity
properties. Finally, using the lattice structure of some subsets of the space of con-
tinuous fuzzy-valued functions and imposing some restrictions on the nonlinearity,
we conclude the existence of solution to the equation on the interval [0, +00) by the
application of Tarski’s fixed point theorem.

Keywords Fuzzy differential equations - Upper and lower solutions
Truncation operator - Fixed point theory

1 Introduction

The use of fuzzy mathematics can be an adequate tool to model processes which
are subject to imprecise factors such as inexact physical measurements or uncer-
tain information. In particular, fuzzy differential equations [3, 4, 13] have relevant
applications in different scientific and social fields.

When considering a fuzzy differential equation, we often have to specify the type
of fuzzy derivative chosen for fuzzy-valued functions [10]. We illustrate the method
followed by using Hukuhara differentiability, which has several drawbacks, but the
procedure can be extended to equations under more general types of fuzzy derivatives
[1, 14].

In what follows, we present the problem of interest, the fixed point result we
apply, and some notation and basic results on the properties of fuzzy sets (Sect.2).
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In the main section (Sect. 3), we define the truncation operators and give their main
properties, and we obtain some existence results by applying fixed point theory. For
some other results concerning the application of fixed point results to the solvability
of fuzzy differential equations, see, for instance, [6].

2 Notation and Preliminaries

We consider the space E! of normal, upper semicontinuous, fuzzy-convex and
compact-supported mappings u : R — [0, 1]. In this space E' (of fuzzy intervals),
we define the distance

doo(x,y) = sup dy([x]°,[y]*), x, yeE",
ael0,1]

where dy denotes the Hausdorff distance in J#¢ (the set of nonempty compact and
convex subsets of R).
We consider the following nonlinear first-order fuzzy differential equation

x'(t) = f(t,x)), t € [ty, +00),

where to € Rand f : [to, +00) x E! — E!, although, by simplicity, we will study
the case #p = 0. The previous equation is written in integral form by

x(t) = x(1p) +/ f(s,x(s)ds, t>1t.

Here, the level sets of x € E! are represented by [x]¢ = [x,, x,-], fora € [0, 1].
We also use the functions x;, : [0, 1] — R and xg : [0, 1] — R defined, respec-
tively, by x (a) = x4, and xg(a) = x,,, for all a € [0, 1].

Here, we consider the problem of the existence of solution between an upper
and a lower solution for one-dimensional fuzzy differential equations by passing
to a modified ‘truncated’ problem through an operator obtained by using the upper
and lower solutions. To prove the existence of solution, we use Tarski’s Fixed Point
Theorem.

Theorem 1 ([15]) Suppose that X is a complete lattice and F : X —> X is a non-
decreasing function, that is, F (x) < F(y) whenever x < y. Moreover, suppose that
there exists xy € X such that F (xo) > xo. Then F has at least one fixed point in X.

In this context, the maximal fixed point for F is obtained as the supremum of the
set Y ={x € X : F(x) > x}. On the other hand, if there exists x; € X such that
F(x1) < x1, then the minimal fixed point can be obtained as the infimum of the set
Z ={x € X : F(x) < x}.If there exist simultaneously xy and x; such that F (xg) >
xoand F(x;) < xj,thenz =supY =sup{x € X : F(x) > x}is the maximal fixed
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pointof Fin X andZ = inf Z = inf{x € X : F(x) < x} is the minimal fixed point
of Fin X.
In the sequel, we use the following two order relations in E!.

Definition 1 ([9]) Let x, y € E'. We say that x < y if and only if
X < Vg and x4 < y,,, forevery a € [0, 1].
On the other hand, we say that x < y if and only if
Xal = Yo and x4 < 4, foreverya € [0, 1],

that is, [x]* C [y]¢,Va € [0, 1].
Remark 1 ([9]) Note that:

e x <y isequivalentto x; <y, andxz < ygon [0, 1].
e x <Xy isequivalentto y; <x;and xg < ygon [0, 1].

Lemma 1 ([6]) Consider the above-introduced partial orderings < and < in E'.
(i) Givenx, y € E', the following properties are valid:
x =yifandonlyifx <yandy < x,
x =yifandonlyifx < yandy < x.
(ii) Ifx, y, z € E' are such that x < vy, thenx +z <y+z

(iii) Ifx, y, z € E' are such that x < vy, thenx +z <y+z

In the following result, the product of fuzzy intervals is defined by the Zadeh’s
Extension Principle.

Lemma?2 Ifx <y and z > xo), then xz < yz. Similarly, if x <y and z > X,
then xz < yz.

Proof Ifx < y,thenx; < ypandxg < ygon[0, 1],andusingthatz; (a), zg(a) > 0
for a € [0, 1], we obtain, for every a € [0, 1], that

(xz)r(a) = x(a)zr(a) < yr(a)zr(a) = (y2)L(a),
(xz)r(a) = xgp(a)zr(a) < yr(a)zr(a) = (y2)r(a).

Ifx < y,theny;, <xp,xg < ygonl0, 1], thus, for every a € [0, 1], using the prop-
erties of z, we have

(y2)e(a) = yr(@)zp(a) = xp(a)ze(a) = (x2)p(a),  (x2)r(a) < (y2)r(a). U



376 R. Rodriguez-Lépez

Definition 2 For f, g : I — E', with I areal interval, we say that f < g if f(¢) <
g(t), for every t € I. Analogously, for the order relation <.

Lemma 3 ([6]) Considert € [0, +00) arbitrarily fixed. Then:

(i) Ifx(s) < y(s), Vs €[0,1], then [, x(s)ds < [, y(s)ds.
(i) Ifx(s) < y(s), ¥s € [0,1], then [; x(s)ds < [y y(s)ds.

Proof Indeed, for the partial ordering < and a € [0, 1],

|:/ x(s)ds:| =/ x(8)a ds 5/ V(S)uds = |:/ y(s)ds] ,

0 al 0 0 0 al

|:/ x(s) dsi| =/ x(8)ards < / V($)ar ds = [/ y(s) ds:| .
0 ar 0 0 0 ar

Similarly, for < and a € [0, 1],
[/ x(s) ds:| = / [x(s)]*ds C / [y(s)]“ds = |:/ y(s) ds] . O
0 0 0 0

3 Main Results

We consider the equation
u'(t) = f(t, u), t €0, +00), (D

where f : [0, +00) x E! — E!.

Our approach is based on the use of upper and lower solutions in order to obtain a
modified auxiliary problem, and the main interest is to prove the existence of solution
to (1) between an upper and a lower solution to this equation.

We consider C! ([0, +00), E') as the set of continuous functions x : [0, +00) —
E' with continuous derivative under a certain kind of fuzzy derivative. The type
of derivative considered in the rest of the paper will be Hukuhara derivative for
fuzzy-valued functions (see [2]).

Definition 3 The function @ € C'([0, +00), E') is a <-lower solution to equation
(Difa'(t) < f(t, a(t)), t € [0, +00). Similarly, 8 € C'([0, 4+-00), EYis <-upper
solution to (1) if the reversed inequality is satisfied.

We can define the corresponding concepts for the partial ordering <.
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3.1 Definition and Properties of the Truncation Operators

Suppose that «, 8 are, respectively, lower and upper solutions for equation (1) such
that
o < B on [0, 4+00) (resp. « < B on [0, +00)),

and define the truncation operator

q:[0,4+00) x E! — E!
(t, x) — q(t, x),

respectively,
G:[0,400) x E! — E!
(ta-x) —>5(st)9

as we explain in the sequel.
First, we consider & < 8, then «(t) < B(t), Vt € [0, +00), that is,

O5(1‘)111 =< ﬂ(t)al and a(t)ar < ﬂ(t)ar’ fOT every a € [O, 1]7
and ¢ is defined in such a way that, for every a € (0, 1],

[q(t, x)]* := [max{a(t)a, minfxa, B()ar}}, max{a(t)er, min{xa,, B(1)ar}}]

and [¢(t, x)]° U [q (¢, x)]¢. We have to prove that the sets given previously
ae(0,1]

define a fuzzy interval. To this purpose, we use the following characterization of

Theorem 1.5.1 [5] in terms of the functions x; and xy (branches) associated to a

fuzzy interval x.

Theorem 2 Ifu € E', then the following conditions hold:

ML(a) S uR(“)v fOVeV”'ya S [07 1]7 (2)
uy is nondecreasing and u g is nonincreasing on [0, 1], 3)
uyp, ug are left-continuous on (0, 1]. 4)

Conversely, if fp : [0, 1] — R and fg : [0, 1] —> R are two functions satisfying
conditions (2)—(4), then there exists u € E' such that

ur(a) = fr(a), ug(a) = fr(a), Va € (0, 1]
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and
ur(0) = igg fr(@ = fL(0), ugr(0) = Sug fr(@) < fr(0). (5

Proof The proof is obvious considering that conditions (2)—(4) are equivalent to
hypotheses (1.5.1)—(1.5.3) in Theorem 1.5.1 [5]. Indeed, for x : R — [0, 1],

[x1(a), xg(a)] € ¢, forevery a € [0, 1]

if and only if
xr(a) < xg(a), and x;, xg bounded on [0, 1].

On the other hand,

[x1(a2), xr(az)] € [xr(a1), xg(ar)], for0 <a; <a, <1

= xp(a1) < xp(a2), xg(ar) = xg(az), for0 <a; <a, <1,

and for (a;)ren @ nondecreasing sequence converging to a > 0 ((ax) — a™), taking
into account that {[x (ax), xg(ax)] : k € N} is a nested sequence and the charac-
terization of the Hausdorff distance in terms of the functions x; and xp, we obtain
that

[xr(a), xr(@)] = Miz1lxr(ax), xr(ar)]
> xp(ar) — xp(a), xglax) — xg(a).
In consequence, the conclusion follows from Theorem 1.5.1 [5]. ([

Remark 2 In Theorem?2, if u € E', then u; and uy are right-continuous at 0. Con-
versely, if we add the right-continuity of u; and ug at O in condition (4), then an
identity is obtained in (5).

Lemma 4 Supposethata < B on[0, +00), thenq(t, x) € E' foreveryt € [0, +00)
and x € E'.

Proof Lett € [0, +00) andx € E ! fixed. We take the functions

fr = max{a(t),, min{x,, B(*).}}, and fr = max{a(t)g, min{xg, B(t)r}},

which are defined on [0, 1].

Since «(?), x and B(t) are fuzzy intervals, then conditions (2)—(4) of Theorem2
hold and, therefore, they are also satisfied for f; and f. Hence, ¢(¢, x) is a fuzzy
interval, and

[qt, x)]1“ =1[q(t, x)(a), q(t, x)r(a)], Ya € [0, 1],



Existence Results for Fuzzy Differential Equations via Truncation Operators. .. 379
where
q(t, x)L(a) = max{a(r).(a), minfx, (a), B(1)L(a)}}, Va € (0, 1],
q(t,x)L(0) = (illg)CI(f» x)(a),

and
q(t, x)g(a) = max{a(t)g(a), min{xg(a), B(t)r(a)}}, Va € (0, 1],

q(t, x)g(0) = supq(z, x)r(a),

a>0

which means that the endpoints of the level sets of g (¢, x) are given by the truncation
of x; and xp in [ (¢), B(t).] and [ (¥) g, B(t)r], respectively. O

Now, for the partial ordering <, if « < B, then, for every ¢ € [0, +00),
B()a < a(t)q and a(t)qr < B(t)q,, forevery a € [0, 1],

and we define g (¢, x) such that, for every a € (0, 1],
[q (t,x)]" = [max{B(t)a, min{x,;, a(t)a}}, max{o(t),,, min{x.,, B(t)ar}}],

and [G(1, 01" = | ] [, 01

ae(0,1]

Lemmas If o < 8 on [0, +00), then q(t,x) is a fuzzy interval for every t €
[0, +00) and x € E'.

Proof Fort € [0, +00) and x € E! fixed, we apply Theorem 2 to functions
gr = max{B(t),, min{x,, «(?).}}, and ggr = max{e(t)r, min{xg, B(*)r}},
defined on [0, 1]. Using that «(#), x and B(¢) are fuzzy intervals, then conditions

(2)—(4) of Theorem 2 hold and, in consequence, functions g; and g are under the
assumptions of Theorem 2. This proves that G (¢, x) € E' and

[é(tsx)]a = [q(tv-x)L(a)v é(t,x)R(a)], ae [03 1]7

where
q(t, x)p(a) = max{B(¢)(a), min{xy (a), a(t)(a)}}, Va € (0, 1],

g, x)(0) = iggé(t, x)(a),
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and
q(t, x)g(a) = max{a(t)r(a), min{xg(a), B(H)r(@)}}, Ya € (0, 1],

q(t, x)g(0) = supg(z, x)r(a).

a>0

Note that the right-continuity at @ = 0 also holds. In this case, the endpoints of
the level sets of g(, x) are given by the truncation of x; and xg in the intervals
[B(#)r, a(r)] and [ (1) g, B(?)r], respectively. 0

Next, we present some properties of the truncation operators g and g that will be
useful later in our procedure.

Lemma 6 The following assertions are valid for the operators q and q:

(i) Ifa < B on [0, +00), then a(t) < q(t, x) < B(t), Vt € [0, +00), Vx € E.
(ii) Ifa X Bon[0,+00), then a(t) < g(t,x) < B(t), Vt € [0, +00), Vx € E'.
(iii) Taking t € [0, 400) fixed, then q(t, x) = x if and only if a(t) < x < B(1).
(iv) Takingt € [0, +00) fixed, then ¢(t, x) = x if and only if a(t) < x < B(¢).

Proof Properties (i) and (ii) are obtained from Remark 1, since, given ¢ € [0, 4-00),
and x € E! fixed,

at)r < q(t,x)p = max{a(t),, min{x;, B(t)L}} < B(t)r on]0, 1],
B < g, x), =max{B(t),, min{x;, a(),}} < a), on]l0,1],

and

a(t)r < qt,x)p = q(t, x)p = max{a(t)g, min{xg, B(t)r}} < B(t)r on]O, 1].

To prove (iii), consider ¢ € [0, +00) fixed, and take into account that g (¢, x) = x
means that

q(t,x), = max{a (), min{x;, (1) }} = xr,
q(t, x)p = max{a(t)g, min{xg, B(H)r}} = Xk,

or, equivalently, a(f);, < x; < B(t)L, a(t)g < xg < B(t)g. Analogous conclusion
is obtained for g. O

Moreover, functions g and g are nondecreasing in the second variable.

Lemma?7 If x <y, then q(t,x) < q(t,y), for every t € [0, +00). On the other
hand, if x <y, then q(t,x) < q(t,y), foreveryt € [0, 400).

Proof If x <y, then x; < y; and xg < yg on [0, 1] so that, for ¢ € [0, +00), we
obtain
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q(t,x)p = max{a(t), min{xz, B(#)r}} < max{a(t)r, min{y., B(t)L}} =q(t, ¥)L,

and

q(t, x)gp = max{a(r) g, min{xg, B(r)g}} < max{a(t) g, min{yg, B()R}Y} = q(z. Y)R-

Similarly, if x <y, then y, < x; and xg < yg on [0, 1], so that, for every ¢ €
[0, +00),
q(t,x)p = max{B(t), min{x;, a()}} = max{B(t),, min{y, a() }} = q(t, y)L,

and §(t, x)g < g(t, y)g. -

To apply the fixed point theorem we use in the main existence results, itis important
to determine the lattice structure of certain sets of fuzzy intervals and sets of fuzzy-
valued functions.

Lemma 8 (Proposition 2.1 [7]) The set (E', <) is a lattice.

Proof Given x, y € E!, it is easy to prove that there exist lower and upper bounds
(namely, min{x, y} and max{x, y}) of x and y in E'. Indeed (see [7]), fora € [0, 1],

[max{x, y}1* = [max{xa, ya}, max{xa, yor}l

= [max{x; (a), yr (@)}, max{xg(a), yr(a)}],

[min{x, y}]a = [min{xal» yal}v min{xara yar}]

= [min{x; (a), y.(a)}, min{xg(a), yr(a)}].
It is easy to check that each pair of functions
(e =max{x., y.}, (fi)r = max{xg, yr}
(f2)r =min{xz, yr}, (f2)r = min{xg, yr},

satisfy the conditions in Theorem 2, then the fuzzy intervals max{x, y} and min{x, y}
are well-defined and

max{x,y}p = (fi)r, max{x, y}gr = (f0)r, min{x, y}p = (f2)p, min{x, y}r = (f2)Rr,

From these relations and Remark 1, it can be easily proved that min{x, y} < x, y <
max{x, y}. See [7] for further details. (Il

Although (E . <) is not a lattice, we can work on some of their subsets which are
lattices.

Lemma 9 (Proposition 3.2 [7]) Let p e R and S C E' be such that Xip) =2 X, for
allx € S. Then (S, X) is a lattice.
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Proof 1In this case, for x, y € S, we can take (see [7]),

[M{x, y}]a = [min{xala yal}v max{xa,, Yar }]

= [min{xz (@), yr(a)}, max{xg(a), yr(a)}],

and

I:;/l\i;{x» y}]a = [max{xal, yal}v min{xar’ yar}]

= [max{x.(a), y.(a)}, min{xg(a), yr(a)}].
Again, each pair of functions
(f3) =min{xz, y.}, (f3)r = max{xg. yr},
(fo)r = max{xz, y.}, (fa)g = min{xg, yr},

satisfy conditions in Theorem?2, then the fuzzy intervals max{x, y} and min{x, y}
are well-defined and

—_— —

max{x, y}p = (f3)r, max{x, y}gr = (f3)r, min{x, y}p = (fo)r, min{x, y}r = (f)r-

Hence ﬁ{x, y} < x, y < max{x, y}. See [7] for further details. O

Lemma 10 ([7]) The following properties are valid:

e Ifu,ve E" are such that w < v, then ([, v], <) is a complete lattice, where
[, vl:={x e E' : p<x<v}

e Ifu,ve E'are such that ;. < v, then ([, v], <) is a complete lattice, where
[m, v] ::{er1 p=<x =<v}h

Corollary 1 ([7]) Consider I areal interval. Ifa, B € C(I, E') are suchthata < f8
on I, then
[@.Bl<:={x e CU,E") : a<x<Bonl)

is a complete lattice. On the other hand, if o, B € C(I, E") are such that a < B on
1, then
[a, Bl< = {x eC(I,El) o =<x=<XpBonl}

is a complete lattice.

Proof This property is clear taking into account that, for x, y € C(I, E'), we can
define, respectively, lower and upper bounds for x and y for the ordering < as
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min{x, y} : I — E! max{x, y} : [ — E!
t — min{x(t), y(1)}, t —> max{x(t), y(*)}’

and, for the partial ordering <, as

%{x,y}:l—) E! max{x,y}: 1 — E!
t — min{x(t), y(©)}, t — max{x(t),y()}. O

3.2 Study of the Nonlinear Fuzzy Differential Equation

To find a solution to equation (1), given «, B, respectively, <-lower and <-upper
solutions for (1) with @ < 8 on [0, +00), we consider the following auxiliary fuzzy
differential equation

u'(t) = f(t,q(t, u(®)), t €0, +00). (6)

Clearly, by the properties stated in Lemma6, if u : [0, +00) — E! is a solution
to (6) such that « < u < B on [0, +00), then u is a solution to (1), and this solu-
tion belongs to the functional interval [«, B]< := {x € C([0, +0), E') : a <x <
B on [0, +00)}. We show that the Eq.(6) has a solution in the functional interval
[o, Bl< under suitable hypotheses. To this aim, we write the mentioned Eq. (6) in
integral form and try to apply some appropriate fixed point results. We proceed
similarly for the case where @ < B on [0, +00), taking the equation

u'(t) = f(t, 4t u®)), t €0, +00). (7

In this case, if u is a solution to (7) such that « < u < § on [0, +00), then u is a
solution to (1). In the following, we denote I := [0, +00).

Theorem 3 If «, B are, respectively, <-lower and <-upper solutions for (1) such
thata < Bon I, and f(t, x) continuous is <-nondecreasing in the second variable
x fort € I fixed and x in the interval [a(t), B(1)] :=={x € E' : a(t) <x < B@1))},
then (1) has at least one solution in [a, B]< = {u € C(1, EY ra<uc< Bonl}.

Proof We consider the auxiliary problem (6) and define

F:CU,E"YY — CU,EY
X — Fx,

given by [Fx](¢) = x(0) + fot f(s,q(s,x(s)))ds, t € I. Note that the space where
the mapping F is defined is not a complete metric space, since the interval [ =
[0, 400) is not compact. However, C(/, E 1) is a partially ordered set, with the
induced ordering relation given in Definition 2. According to this order relation,
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function F is nondecreasing. Indeed, for x < y, then x(s) < y(s), for every s € I.
Using Lemma7,
q(s,x(s)) < q(s, y(s)), Vs € 1,

and, by using the <-nondecreasing character of f (¢, x) in the second variable x
relative to the interval [«(2), B(¢)], we obtain, applying Lemma 6, that

f(5.q(s, x(5)) = f(s,q(s,y(5))), Vs € I.

Using Lemmas 1 and 3, we get

[Fx1(0) = x(0) + f) F(s.q(s.x()) ds < y(0)
(
+[O F(s.q(s, y(s))ds = [Fyl(t), t € 1.

Moreover, using Lemma 6 and the definitions of lower and upper solutions for equa-
tion (1), we obtain

at) =a<0>+/0la/<s>ds 5a<0>+/0'f<s,a<s»ds
= a(0) + /0 ' F(s. s, ) ds = [Fal(o), 1 € 1.
[FBIG) = BO) + /0 ' F(s. (s, Bls)) ds = BO) + fo ' F(s. BGs)) ds
< BO) + /0 Bs)ds = B, 1€ 1,

so that « < Fo and FB < . The proof is completed using Tarski’s Fixed Point
Theorem (see [15]) from the considerations in [7] (see Corollary 1). (I

Theorem 4 If o, B are, respectively, <-lower and <-upper solutions for (1) such
thata < Bon I, and f(t, x) continuous is <-nondecreasing in the second variable
x fort € I fixed and x in the interval [a (1), B(1)] ;== {x € E' : a(t) < x < B},
then (1) has at least one solution in [a, Bl< :={u € CU,E") : « <u < Bonl).

The use of comparison results can be also useful to study some problems for fuzzy
differential equations (see [11, 12]), allowing to replace the condition of monotonicity
of f in the second variable by a similar property of a modified function related to
f. However, in some cases, additional conditions have to be imposed in order to
guarantee the existence of the appropriate Hukuhara differences. See [8] for details
on the existence of solution to some boundary value problems and also [6] for other
approaches. The use of other more general types of derivatives can also lead to weaker
restrictions on the nonlinearity f.
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On Systems of Nonlinear ODE Arising in | M)
Gas Dynamics: Application to Vortical oo
Motion

Olga S. Rozanova and Marko K. Turzynski

Abstract We show that with the multidimensional system of gas dynamics with
a special forcing one can associate a quadratically nonlinear ODE system which
describes a special class of motion. The system can be obtained by two different ways.
In particular, we study the influence of Coriolis and frictional terms. We review the
result about the non-frictional case and study the influence of constant dry friction.

Keywords Gas dynamics - Vortex motion * Nonlinear stability - Linear profile of
velocity « Coriolis force + Dry friction

Introduction

We study the model of gas dynamics in the uniformly rotating reference frame. This
model is important due to applications in geophysics. Namely, in the middle scale
approximation, the motion of air can be considered on the /-plane (i.e. on the plane
tangent to the Earth surface at a fixed point). In this approximation, the Coriolis
parameter [ is a constant. Moreover, the horizontal dimension of the atmosphere is
much more large than the vertical one, therefore the atmosphere often is modeled
in the two-dimensional setting. Many important systems of equations arising from
physics (so called systems of hydrodynamical type) possess a special class of solu-
tions. Such solutions can be obtained by reducing to a nonlinear system of ODEs.
The reducing is possible if we make an assumption on the structure of velocity: it
has to be linear with respect to the space coordinates. The existence of this class of
motions implies that under some special conditions the liquid or gas behaves like
a rigid body. First, this class of solution was applied to the incompressible fluid,
then many other models, including geophysical ones, were analyzed from this point
of view. This helped to study many important properties of complicated physical
models within a subclass of motions. The motion with a linear profile of velocity is
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meaningful by itself since any large atmospherical vortex near its center has such
structure [11]. Also, this class of motions can help to study trajectories of tropical
cyclones [8, 9].

An extensive review of the state of art can be found, for example, in [1, 4].

Considering geophysical models it is natural to take into account interaction of air
with the underlying surface. The dry friction, when the friction force is proportional
to velocity, is the simplest way to describe this interaction.

In this paper, we are going to show that under the assumption of linear structure
of velocity the model of two-dimensional rotating gas influenced by the dry friction
can be reduced to a system of nonlinear ODEs, having independent mathematical
1nterest.

1 Model of Two Dimensional Gas Dynamics

We consider the system of non-isentropic polytropic gas dynamics equations in
a uniformly rotating reference frame for unknown functions p >0, p >0, U =
(U1, Uy, Us), S (density, pressure, velocity, and entropy), in the presence of the
horizontal dry friction (e.g. [7]), namely

p(0:U 4+ (U, VYU +les x U+ uU + gez) = —Vp, (D
3 p +div(pU) =0, 2)
%S+ (U, VS) = 0. 3)

The functions depend on time # and on point x € R3, e3 = (0,0, 1) is the “upward”
unit vector, / is the Coriolis parameter, u is the friction coefficient, g is the acceleration
due to gravity (in —es direction), ;. > 0 is the friction coefficient. The state equation

18

p=pe’, 4

where y € (1, 2) is the adiabatic exponent. We assume U = (Ug, 0) = (Uy, U,, 0),
therefore the model becomes two-dimensional.
For ;. = 0, the system implies the conservation of mass .#Z = f p dx, momen-
Q@)
tum P = [ pU dx and energy
2()

Ul? 1
& =61 +E,(1) = / <p| | +—p> dx,
2 y —1
(1)

inside a material volume £2(t), if we assume the hydrostatic balance

O, p = —gp. )
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To prove these conservation laws we apply the formula for the derivative with respect
to time of integral taken over a material volume [3], namely,

%/f(r,x)dxz /(Btf(t,x)+div(f(t,x)v))dx. (6)

Q@) Q)

Let us introduce the following functionals:

1
GO =3 / pIXi P dxidxy, Fi(t) = /(U, Xi)pdxidx,,
(1) 2()

1 1
Gy () =3 / pxidxidxs, Go() =3 f pxydxdx,,
() ()

1
lexz(t) = 5 / pXNCzdxlde,
2(1)

where X = (x1, x2), X» = (x2, —x1), i = 1,2. Wenote that G(¢) > 0 and A(t) =
G, Gy, — G2 > 0 for nontrivial solutions to (1)—(5).

X1 X2

We assume that / and p are positive constants.

Lemma 1 For the classical solutions to (1)—(5) the following relations hold:
G=F, F=IF —ukF,
Fi=2(y — DE, +2E, —F, — puFy,
E = =21 Ey, (7

where E () = f %”lzdxldxz, E.(t) = f ﬁpdxldxz.
(1) (1)

Proof To prove the identities it is enough to apply formula (6) with respect to the
variables x; and x,. For example, taking into account (1), we get
dg 1
T / 01 X1|* dxidx, =
2@

1 i
/ (—5 div(p U) X1 + 5 div(p Un 1 X, |2))) dxidxs =
20
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= / (X1,U) pdxidx, = F.
2
The proof of other identities are analogous. It is convenient to take into account that
(2)~(4) imply
op+ U,Vp)+y pdivU = 0. ®)
]

System (7) is not closed. Nevertheless, we can use a special assumption on the
velocity structure inside £2(#) to close it.
Namely, we set

_ _ (a@®) b(@) _
Uy = Ox, Q_(C(t) d(;))’ Vs =0. 9)

Lemma 2 For the velocity (9) we have
Gy, =2aGy, +2bGyy,, Gy, =2dGy, +2¢Gyy,,
Gu = (@ + )Gy, +bGy, + Gy,
E,=—(y—D@+dE, A=2a+dA.
The potential energy E, is connected with A as
E,(t,x) = E 0, x)AY"D20) ATV x).

Proof The proof is a direct computation with taking into account formula (6). The
expression for potential energy can be obtained my means of (8).

Let us introduce new functions
G, = G)qA_(y-H)/Z’ G, = zeA_(y+l)/2s G; = lesz_(y+l)/2'

Lemmas | and 2 imply that for the elements of the matrix Q and G, G,, G3 the
following closed system of equations can be obtained:

Gi = (1 —y)a—(1+y)d)G +2bG3,

Gy = ((1 —y)d — (1 + y)a)G1 + 2¢Gs,

G3 =c¢G +bGy —y(a+d)Gs,
a=—a’>—bc+lc—pa— HG,, (10)
b= —ba+d) +1d— uby + #Gs,
¢=—cla+d)—la— pucy + #Gjs,
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d=—d*>—bc—1b—ud— %G,

with & =~ E,AV=D2| . 1
. . A(t) 1B(1) )
This system for the components of the matrices Q and R = 2 can
y P ¢ ( LB() Cao),
be written as:

R+RQO+ Q'R+ (y — DtrQR =0,

) 11
O+ Q> +ILQO+ nQ+2cR =0, (an

where A = Gz, B = —2G3, C = Gl,
The same system of ODEs can be obtained in the barotropic model. Indeed, if
—1
P =Cp”, C =constandw = P 5 , the system under consideration can be reduced
to two equations

U+ U -VYU+ (L +pul)U +cyVr =0,
o+ (Vo -U)+(y —DradivU = 0,

0-1
1 0

We consider a simple class of exact solutions which correspond to the first terms
of expansion of the local field 7 at a critical point and look for the solution of form

9,

1
with ¢y = %C?. Here L = ), I is the identity matrix.

7(t,X) = A(t)x? 4+ B(t)x1x + C(t)x3 + I1(2).
On this way we get (11) with #” = 2c¢. The system of matrix equations consists of

7 nonlinear ODEs. IT does not appear there, this component can be found from a
separate linear equation.

1.1 A Friction-Free Vortex (1 = 0)

Let us make some review of known results about the non-frictional case [8, 10].

1.1.1 Axisymmetric Case

Itiseasy to see that (11) has a closed submanifold of solutions having additional prop-
ertiesa = d,c = —b, A = C, B = 0. These solutions corresponds to the axisymmet-
ric motion. Note that it is the most interesting case related to the vortex in atmosphere.
Here we get a system of 3 ODE:s:
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A+2yaA =0,
a+4a*—b*+1b+2chA =0, (12)
b+2ab —la =0.
The functions a, b, A correspond to one half of divergence, one half of vorticity

and the fall of pressure in the center of vortex, respectively. The only nontrivial
equilibrium point that relates to a vortex motion is

. b*(b* —1)
a=0,b=—c=b", A= Ax= ———. (13)
2C()
Further, there exists one first integral
/ 1
b:§+C|A|V, (14)

where C is a constant. Thus, (12) can be reduced to the following system:

A= —2yaA,
2

. 2 l 2 2
a=—a _Z+C Av —2¢cpA.

For A > 0 the system has the unique equilibrium, it is stable in the Lyapunov sense.

1.1.2 General Case

Theorem 1 If

1-42 1++/2

b* < [ or b*> ——1>1,
2 2

then the equilibrium of system (11) is unstable.

Proof The point (13) is the only equilibrium of the full system (11). It is the same
point of equilibrium as in the axisymmetric case (12). Nevertheless, in the symmetric
case this equilibrium is always stable in the Lyapunov sense, whereas in the general
case the situation is different. Indeed, the eigenvalues of matrix corresponding to the
linearization at the equilibrium point are the following:

M=0, Ay =E/—QQ2—y)bb* —1)+17),

I IN? (12
Aaser =EV2 | —l <b* + Z) + \/(b* + E) (Z + b*l — (b*)2>.
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Since (2 — y)b*(b* —1) + 12> 0 for y € (1,2), then R(X,3) = 0. Eigenvalues
Xi, I =4,5,6,7 have zero real part if and only if b* satisfies the following inequali-
ties simultancously: I(b* + 1) >0, L 4b1— "2 >0, 2(b*+1) >
(b* + %)2 (% + b*l — (b*)z) , that is b* € [l%ﬁ I, %5 l]. For others values of
b* the eigenvalues A4 567 = £ £ i, o # 0, B # 0, therefore there exist an eigen-
value with a positive real part. Thus, the Lyapunov theorem implies instability of the

equilibrium for b* < 152 1 and b* > 127 > . O
Let us recall the following properties of solution to (11).

Theorem 2 System (11) has three first integrals:

b—c—DP v =1, (15)

((d —a)B +2bA —2cC —I(A+CNT~ > = I, (16)

(@*+A)C + (B + d)A + (ac + bd)B — 4C°1 NI =L, (A7)
-

where 9 = AC — B?/4.

Theorem 3 The equilibrium (13) is nonlinearly stable in the Lyapunov sense for
0<b* <L

To proof it is enough to construct the Lyapunov function. The function
A(a,b,c,d, A, B,C) =b*"I, — Iy — Ag, where I and I3 are given by equalities
(16) and (17), the constant Ay is the value of A at the equilibrium point (13), satis-
fies all necessary properties.

First integral (15) reduces the full system (11) to the system of 6 equations. If
b*e X, ¥ = (%l , 0) U (l , 1+Tﬁl), then the matrix, corresponding to the sys-
tem, linearized at the equilibrium, has 3 pairs of pure imaginary complex conjugate
roots A;, i =2, ..., 7 (for the range of parameters under consideration the roots are
simple). It can be proved that in the general case of rationally independent frequen-
cies almost all trajectories in e-neighborhood of the equilibrium are quasi-periodic.
This means that the equilibrium is “practically” stable in the Lyapunov sense. The
cases of possible resonant frequencies correspond to several values of b*, very close
to the boundaries of X, see [10] for details.

Instability of the equilibrium (0, b,, A,) in the cases b, = 0 and b, = [ can be
proven directly, since here A, = 0.

1.2 Influence of the Friction on an Axisymmetric Vortex

The system of equations, describing a vortex with a rotational symmetry is the fol-
lowing:
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2 a z =z =
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Fig. 1 Influence of friction on the steady solution (the graph is a straight line) on example of
component A. Here [ = 1, u = 0.05, y = 9/7. Given b* and cy, the value of A*, corresponding
to the equilibrium, is found from (13). Left: b* = 0.1, ¢o = —1. Center: b* =5, ¢p = 1. Right:
b*=—-0.1,c0 =1

A+2yaA =0,
a+a?> —b*+1b+2c)A = —pa, (18)
b+2ab —la = —ub.

The solution to the equation has a complicated oscillating behavior. Influenced by
a small friction, the vortex, which is stable at u = 0, can quickly decay or develop
increasing oscillations. The oscillations in its turn can decay or not (a typical behavior
one can see in Fig. 1). Nevertheless it is possible to study it analytically to a certain
extent.

Theorem 4 System (18) has two equilibriums (af, b}, A7) =(0,0,0) and
(a3, b5, A3) = (—u, [, 0), both are unstable.

Proof Indeed, the matrix of the system linearized at the point (Ag, ag, by) is

—2yay —2y Ay 0
j(A(), ap, b()) = —2C0 —2610 — MU 2[90 —1
0 —2by+1 —2ap —

The eigenvalues of £ (0, —u, 1) solve the equation
Qyu—k)(n—k)?+1%) =0.

The polynomial has a positive root, this means instability of equilibrium (—pu, /, 0).
The eigenvalues of £ (0, 0, 0) are (0, —u =+ il), therefore the linearized theory does
not give an answer on the stability or instability of zero equilibrium. However in the
critical case we can use the theory of [5], Sect.4. Namely, we consider expansions
into series a(A) = a;A + O(A?), b(A) = b, A + O(A?) as A — 0, substitute the
expansions into (18) and get a; = —Mzz"—f?z, b = —%, therefore A = ff;ﬁ;’ A% +
O(A?). This implies instability of zero equilibrium. |
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Remark 1 Theorem4 implies that the the zero equilibrium of the full system (11) is
also unstable.

Theorem 5 Let cy # 0. and A* > 0. Then solutions to system (18) has no finite time
blow up points at t > 0. Moreover, the following estimates hold:

e forcy >0

A(t) < Koeto", (19)

e forcy <0
Ar) = K-, (20)
with positive constants Ky and K _, depending only on initial data.

Proof 1.cp > 0.Letusdenote A = # The first equation and two latter equations
of (18) imply )
A7V —2qA7 VY =0 (1)

and )
A+2aA+2cpaA+2uA =0, (22)

respectively. Equations (21) and (22) result

d _1 co y=1 _1
— | AATY — A7 ) =-=2uAA"7 <0. (23)
dt y —1
From (23) we obtain
o L o
A< 1A+k0Aye M kg > 0. 24)
y —

Inequality (24) implies that there exists a constant A, depending on initial data such
that for A > A we have
A <kA (25)

with a positive constant k. Further, (25) and the first equation of (18) imply A <

kyA3/2, for some ky > 0, t < t, = é, and
A0)

A< ——— k 0. 26

= 0= tan? 3> (26)

Thus, we get a rough upper bound for a possible growth rate for A. To refine the

1 .
upper estimate we introduce a new variable H(t) = (b — %)A_Ve‘” . It is easy to
check that

. [
H = _gﬁew <0. 27)
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As follows from (27), H(t) < H(0). The second equation of (18) takes the form

l2
a=—a®>— pa+ H>A*Y e 2V _2c0A — T (28)

First, we consider the cases Iu =0, where H(t) = H(0), and b(0) < % (or
H(0) < 0), for [;t # 0. Then (28) and (25) imply that for sufficiently large A we
have

a > H*(0)A*Y e 2" _[4 A, ks > 0.
Thus, if there exits an interval of ¢ such that the inequality
el 2
A7 > kse M (29)

holds with a positive constant ks, depending only on initial data, then for these ¢ the
function a(t) increases and, as follows from the first equation of (18), A(¢) decreases.
Thus A(?) can increase if and only if inequality (19), opposite to (29), holds.

The last case is Iu # 0, b(0) > % or H(0) > 0. Here we use the rough upper
estimate for A(z), (26), to obtain from (27)

. lw 1 2
HS_TA v < —ks(1 —kst)7, ks >0, <t,.

Integrating this inequality we can see that H(t,) < H(0) — k}(’; ka) < H(0). Let
t = t, be the initial moment of time. If H (z,) < 0 we get estimates (19) and (24) as
before. If H(t,) > 0, we apply the estimate (26) to inequality (27) again. One can
see that at a finite step n, we get H (nt,) < 0.

2. co < 0. In this case we are in the frame of the model described by (10) and the
balance of energy E’(t) = —u Ey, obtained for a smooth solution in a moving volume
(see Lemma 1) prevents an unbounded growth of A. Indeed, if the velocity field
has the form (9), a = d, ¢ = —b, then Ey = (a* + b*)G >0, E, = §;G'7 > 0,
Ey + E, < d,, where §; and §, are positive constants, depending on initial data.

1
This implies G > (g—;) [ 83 > 0. However, as follows from the results of Sect. 1,

A=G, =G7 < 83_’/. Thus, (20) is proved. O

Remark 2 For = 0 inequalities (19) and (24) imply that the solution to system
(12) for ¢y > 0 is bounded for all # > 0 by a constant depending on initial data.

Remark 3 As follows from (27), the value of H (t) is constant for /;x = 0. From the
conservation of H for u = 0 we get integral (14).

Remark 4 1f ¢y = 0, then (18) splits into two part, one of them is (30), solved in
Sect. 1.4. Thus, as follows from the explicit form of solution, @ can blow up within
a finite time. First equation of (18) implies that in his case A blows up, too.
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1.3 Small u Expansion

For small p solution to the system (18) can be expanding into a convergent Taylor
series with respect to parameter (. The proof of this fact is standard [6]. Let us take
as a zero approximation a steady state solution to (11) and find the first term of the
expansion. Thus, A(¢) = Ag(t) + nA1(t) +o(w), a(t) = ap(t) + pna(t) + o(u),
b(t) = bo(t) + ub,(t) + o(u). Functions A;(¢), a (1), bi(t) satisfy the following
linear system of ODEs:

A] = —2)/(1]A*,
a; = (Zb* — Db (t) — 2cpAq,
by = (I — 2b%)a; — b*,

subject to initial conditions A;(0) = 0, a;(0) = 0, b;(0) = 0,b* and A* correspond
to the stationary point (13). The solution is a;(t) = I%d(l —cos+/Bt), Ai(t) =

2 A b sinﬁt_ e (d b g
—( o5 1) =0 (/3 1)r BL sin /Br, where d =1

B
2b* = —2C|A*|$, B = d?> — 4cyy A*. The constant 8 is positive, since g = 4(C>
2 2
|A*|7 — coy A*) > 4(CPA*|7 — & —2¢9A%) = 0.

1.4 Special Class of Solutions to (18) for A(t) =0

For A(t) = 0 the system (18) can be explicitly solved. Indeed, it takes the form

a=—a*+b>—1b— ua,

b=—-2ab+la— ub. (30)

If we introduce the new complex variable z = a 4 ib, we can rewrite (30) as
K

z= _Z2 + Kz, where K =il — /.L.Thl.IS,Z = m, where C = Cy +iC»,

Cy, C; are real constants. Taking real and imaginary part of z we get

1
a= 5((;& +1%)(C coslt + Cysinlt) e — i),

b(t) = — ((u* + 1*)(Cy sinlt — Cycoslt)e™ +1),

1
D
D =2((Cl — Cop) sinlt — (Cyp + Cal) coslt) e + (u? + [2)(C2 + C2)e?H + 1.

Proposition 1 System (30) has two equilibria: (af, by) = (0, 0) (stable focus) and
(a3, by) = (=, 1) (unstable focus).
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The equilibria can be found from equation —z> +ilz — uz =0, i.e. Zzi =0 and
75 = p — il. Thus, in variables a, b we get (af, b7) = (0, 0) and (a3, b3) = (—u, ).
Matrix of linearization at some point (ag, by) is

. —2ao—u 2bo—l
< (@0, bo) = <—2b0 +1 —2ay — u) '

Eigenvalues of .Z(0, 0) and £ (—pu, [) are —p il and p % il, respectively. O
Conclusion

We considered a special class of solutions of the gas dynamics equations in the
rotating reference frame. It is characterized by the linear profile of velocity. We
studied the influence of small friction on the stationary vortex from the above class
of solutions. In particular, we showed that the presence of friction in this system does
not necessarily lead to depletion of the vortex, as intuition suggests. Sometimes the
vortex demonstrates the appearance of strong oscillations. They can decay to zero
after some period or continue to rise. A similar influence of friction is known in the
nonlinear solid mechanics [2]. Nevertheless, the solution will never blow up within
a finite time.
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Abstract In this paper, we will show and give applications of the division by zero
z/0=1/0 =0/0 = 0 in calculus and differential equations. In particular, we will
know that the division by zero is our elementary and fundamental mathematics.
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Differential equation + Division by zero - 0/0 =1/0 =2z/0 =0

Point at infinity - Infinity - Gradient - Laurent expansion

1 Introduction

By a natural extension of the fractions

b
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for any complex numbers a and b, we found the simple result, for any complex
number b
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incidentally in [20] by the Tikhonov regularization for the Hadamard product inver-
sions for matrices and we discussed their properties and gave several physical inter-
pretations on the general fractions in [10] for the case of real numbers. The result is
a very special case for general fractional functions in [5].

The division by zero has a long and mysterious story over the world (see, for
example, H.G. Romig [ 18] and Google site with the division by zero) with its physical
viewpoints since the document of zero in India on AD 628. In particular, note that
Brahmagupta (598-668?) established the four arithmetic operations by introducing
0 and at the same time he defined as 0/0 = 0 in Brahmasphutasiddhanta. Our
world history, however, stated that his definition 0/0 = 0 is wrong over 1300 years.
We will see that his definition is right and suitable.

Indeed, we will show typical examples:

The conditional probability P(A|B) for the probability of A under the condition
that B happens is given by the formula

P(AN B)
PAIB) = — 2
P(B)
If P(B) = 0, then, of course, P(AN B) =0and P(A|B) = 0and so, 0/0 = 0.
For the differential equation
dy 2y

’

dx X

we have the general solution with constant C
y = Cx%.

At the origin (0, 0) we have
0
'0) = - =0.
y(0) o

We have many and many concrete examples.

However, we do not know the reason and motivation of the definition of 0/0 = 0,
furthermore, for the important case 1/0 we do not know any result there.

Meanwhile, Sin-Ei Takahasi [10] established a simple and decisive interpretation
(2) by analyzing the extensions of fractions and by showing the complete character-
ization for the property (2):

Proposition 1 Let F be a function from C x C to C satisfying the product property
Fb,a)F(c,d) = F(bc,ad)

for all
a,b,c,d eC
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and b
Fb,a)=—, a,beC,a #0.
a

Then, we obtain, for any b € C
F(,0)=0.

Note that the complete proof of this proposition is simply given by 2 or 3 lines in
[10].
We thus should consider, for any complex number b, as (2); that is, for the mapping

1
W= ) (3)
Z

the image of z = 0 is W = 0 (should be defined). This fact seems to be a curious
one in connection with our well-established popular image for the point at infinity on
the Riemann sphere [1]. As the representation of the point at infinity of the Riemann
sphere by the zero z = 0, we will see some delicate relations between 0 and co which
show a strong discontinuity at the point of infinity on the Riemann sphere. We
did not consider any value of the elementary function W = 1/z at the origin z = 0,
because we did not consider the division by zero 1/0 in a good way. Many and many
people consider its value by the limiting like +00 and —oo or the point at infinity
as 0o. However, their basic idea comes from continuity with the common sense or
based on the basic idea of Aristotle. — For the related Greece philosophy, see [6-8].
However, as the division by zero we will consider its value of the function W = 1/z
as zero at z = 0. We will see that this new definition is valid widely in mathematics
and mathematical sciences, see [13, 14] for example. Therefore, the division by zero
will give great impacts to complex analysis and to our basic ideas for the space and
universe.

However, the division by zero (2) is now clear, indeed, for the introduction of (2),
we have several independent approaches as in:

(1) by the generalization of the fractions by the Tikhonov regularization or by the
Moore-Penrose generalized inverse,

(2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

(3) by the unique extension of the fractions by S. Takahasi, as in the above,

(4) by the extension of the fundamental function W = 1/z from C\{0} into C such
that W = 1/z is a one to one and onto mapping from C\{0} onto C\{0} and
the division by zero 1/0 = 0 is a one to one and onto mapping extension of the
function W = 1/z from C onto C,
and

(5) by considering the values of functions with the mean values of functions.

Furthermore, in [12] we gave the results in order to show the reality of the division
by zero in our world:
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(A) afield structure containing the division by zero — the Yamada field Y,

(B) by the gradient of the y axis on the (x, y) plane —tan 7 = 0,

(C) by the reflection W = 1/z of W = z with respect to the unit circle with center
at the origin on the complex z plane — the reflection point of zero is zero,
and

(D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.

Furthermore, in [13, 14, 19, 20, 22], we discussed many division by zero prop-
erties in the Euclidean plane. In [11], we gave geometrical interpretations of deter-
minants from the viewpoint of the division by zero.

See also J.A. Bergstra, Y. Hirshfeld and J.V. Tucker [4] and J.A. Bergstra [3] for
the relationship between fields and the division by zero, and the importance of the
division by zero for computer science. It seems that the relationship of the division
by zero and field structures are abstract in their paper.

Meanwhile, J.P. Barukcic and I. Barukcic [2] discussed the relation between the
division 0/0 and special relative theory of Einstein. However it seems that their
results are curious with their logics. Their results contradict with ours.

Furthermore, T.S. Reis and J.A.D.W. Anderson [16, 17] extend the system of the
real numbers by defining division by zero with three infinities +o00, —oc. @. Could
we accept their theory as a natural one? They introduce a curious ideal number for
the division 0/0 = @.

Here, we recall Albert Einstein’s words on mathematics: Blackholes are where
God divided by zero. I don’t believe in mathematics. George Gamow (1904—1968)
Russian-born American nuclear physicist and cosmologist remarked that “it is well
known to students of high school algebra” that division by zero is not valid; and
Einstein admitted it as the biggest blunder of his life (Gamow, G., My World Line
(Viking, New York). p 44, 1970).

In this paper, we will discuss the division by zero in calculus and differential
equations, and we will be able to see that the division by zero is our elementary and
fundamental mathematics.

In particular, we would like to express our deep thanks Dr. Masako Takagi who
initially considered the applications of the division by zero to differential equations.

2 Calculation by Division by Zero

As the number system containing the division by zero, the Yamada structure is
complete, however for applications of the division by zero to functions, we will need
the concept of division by zero calculus for the sake of uniquely determinations of
the results. See [13] for examples:
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For any formal Laurent expansion around z = a,

f@= )Y CGk-a" )

n=—00

we obtain the identity, by the division by zero

fla) = Co. ®)

Note that here, there is no problem on any convergence of the expansion (4) at the
point z = a. (Here, as convention, we consider 0% = 1.) For the correspondence (5)
for the function f(z), we will call it the division by zero calculus. By considering
the formal derivatives in (4), we can define any order derivatives of the function f
at the singular point a.

In order to avoid any logical confusion in the division by zero, we would like to
refer to the logical essence:

For the elementary function W = f(z) = 1/z, we define f(0) =0 and we
will write it by 1/0 following the form, apart from the intuitive sense of fraction.
With only this new definition, we can develop our mathematics, through the
division by zero calculus.

We will give typical and various examples.

For the typical function sin x /x, we have

sin x 0) = sin 0 _ 9 _o,
X 0 0

however, by the division by zero calculus, we have, for the function (sin x)/x

sin x

0) =1,
X
that is more reasonable in analysis.

However, for functions we see that the results by the division by zero calculus
have not always practical senses and so, for the results by division by zero we should
check the results, case by case, see many examples, [13].

For the function

f(x) = xsin l,
X

if £(0) = 0, then the function is continuous at x = 0, however, it is not differentiable
at the origin. By the division by zero calculus, we have, automatically

£0) = 1.

We will show division by zero calculus examples:
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1.
(ax + b)"*! f . In|ax + b
—_ = by dx = ———— 0;
|: am+1) J,__, (ax +b) dx a a7l
and
[<ax+b>"“} / bdx — b
S = X = X.
am+1) 1,
2.
|:arctan (x/a)i| 1
—dx———
3.

|: a i| =/dx=x.
IOgCl a=1

4. For the integral

) . _ (x2+ 1)a+1 B
/x(x + 1)%x = —2(a D (a #—1), (6)

we obtain, by the division by zero,

2
fx(x2 1) dx = w. (7

5. For the integral

sin ax sin x + a cos ax cos x

/sin ax cos xdx = (a* # 1), ®)
1—a?
we obtain, by the division by zero, for the case a = 1
2
1
/sinx cosxdx = Smx —. 9)
2 4
6. For the integral
soo—1 L. o
sin®” " x cos(a + 1)xdx = —sin” x cos ax, (10)
o

we obtain, by the division by zero, for the case o« = 0

/sin_lxcosxdx = logsin x. (11
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Meanwhile, for many generating functions we can obtain some interesting iden-

tities. For example, we will consider the mapping

1
zeC\{O}»F(z,o::expg(;——).

¢
Then, from
+00
Fz,0)= Y B¢,
n=—00
we obtain:

F(z,0) = Jy(2).

Difficulty in Maple for specialization problems
For the Fourier coefficients a; of a function:

ak?
4

= sin(mwk) cos(mwk) + 2% sin(wwk) cos(wk) + 27t(cos(7rk))2 — 7k,

for k = 0, we obtain, by the division by zero calculus, immediately

8
ap = §7T2

(see [9], (3.4)).

. Reproducing kernels

The function

1 b
Kip(x,y) = 3ap &P (_E|x - yl)

is the reproducing kernel for the space H,, equipped with the norm
171y, = [@ 5@ + 0 f P
([21], pp. 15-16 ). If b = 0, then

1
Kio(x,y) = —ﬁu =yl

is the reproducing kernel for the space H, , equipped with the norm

1f 17, =4’ f (f'(x)dx.

(12)

13)

(14)



406 S. Pinelas and S. Saitoh

Meanwhile, if a = 0, K¢ ,(x, y) = 0, then it is the trivial reproducing kernel for
the zero function space.

3 Derivatives of a Function

On derivatives, we obtain new concepts, from the division by zero.
From the viewpoint of the division by zero, when there exists the limit, at x

fa+h = f)
m-——— =00

foN
S = ;lll—>o h (15)
or
f'(x) = —oo, (16)
both cases, we can write them as follows:
f'(x)=0. (17)

This property was derived from the fact that the gradient of the y axis is zero; that is,

tan = = 0 (18)
an — =
2 9

that was derived from many geometric properties in [13], and also from the formal
way from the result 1/0 = 0.
We will look this fundamental result by elementary functions. For the function

y=+1-—x2 (19)

/
= —, (20)
Y V1 —x2
and so, by the division by zero calculus,
[V1e=1 =0, [Y]i=—1=0. 2n

Of course, depending on the context, we should refer to the derivatives of a function
at a point from the right hand direction and the left hand direction.
Here, note that, for x = cos 6, y = sin9,

dy_dy dx _l_ cot 8
dx — do \do - '
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Note also that from the expansion
1 < 1
cotz=—+ Y ( +—> (22)
Z Z—Vvmw  vw
v=—00,v7#0
or the Laurent expansion
oo
(=1)"2%"Bay 5,y
cotz = A —— ,
2= 2 2n)!
n=—oo
we have, by the division by zero calculus,
cot0 =0.
Note that in (22), since
1 1 1
+— -, (23)
z—vw  vw ), 2
we can write it simply
i 1 1
cotz = — . 24
=2 () @
v=—00
The differential equation
’ X
y=-= (25)
y
with a general solution
X +yi=d (26)

is satisfied for all the points of the solutions by the division by zero, however, the

differential equations

x+yy =0 y. .Z=-1 27

are not satisfied for all points of the solutions.

4 Continuation of Solution

We will consider the differential equation



408 S. Pinelas and S. Saitoh

d
& x2cost. (28)
dt

Then, as the general solution, we obtain, for a constant C

1
X=—. 29
C —sint (29
For xo # 0, for any given initial value (79, xo) we obtain the solution satisfying the
initial condition,

1
X=———F """ (30)
smto—i—% —sint¢
It |
sintg + —| < 1, 3D
Xo

then the solution has many poles and L.S. Pontrjagin stated in his book that the
solution is disconnected by the poles and so, the solution may be considered as
infinitely many solutions.

However, by the viewpoint of the division by zero, the solution takes the value
zero at the singular points and the derivatives at the singular points are all zero; that
is, the solution (30) may be understood as one solution.

Furthermore, by the division by zero, the solution (30) has its sense for even the
case xo = 0 and it is the solution of (28) satisfying the initial condition (¢, 0).

We will consider the differential equation

y =y~ (32)

For a > 0, the solution satisfying y(0) = a is given by

y=1. (33)

Note that the solution satisfies on the whole space (—oo, +00) even at the singular
point x = %, in the sense of the division by zero, as

1 1
a a

5 Singular Solutions

We will consider the differential equation
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(1 = y))dx = y(1 — x)dy. (35)
By the standard method, we obtain the general solution, for a constant C (C # 0)

-2,

By the division by zero, for C = 0, we obtain the singular solution
y ==£l1,

like the singular solution x = 1.
For the simple Clairaut differential equation

1 dy
y=px+—, p=—-, (37)
p dx
we have the general solution
1
y=cx+ —, (38)
c
with a general constant ¢ and the singular solution
2 _
v =4x. (39)

Note that we have also the solution y = 0 from the general solution, by the division
by zero 1/0 = 0 from ¢ = 0 in (38).

6 Solutions with Singularities

(1) We will consider the differential equation

V=5 (40)

We will consider the solution with an isolated singularity at a point a with taking the
value —2a in the sence of division by zero.
First, by the standard method, we have the general solution, with a constant C

2x

= — 41
14+2Cx “1

y

From the singularity, we have, C = —1/2a and we obtain the desired solution
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2ax
y=—. (42)
a—x
Indeed, from the expansion
2ax 242
= —2a — s 43)
a—x X —a

we see that it takes —2a at the point a in the sense of the division by zero calculus.
This function was appeared in [12].
(2) For any fixed y > 0, we will consider the differential equation

IE(x,y) y2d?

E(x,y) PP

(44)
for 0 < x < y. Then, note that the function
E(x,y) = ——Vd+ (y —2)? (45)
y—x
satisfies the differential equation (44) satisfying the condition

[E(x, Y)]x=y =0, (46)

in the sense of the division by zero. This function was appeared in showing a strong
discontinuity of the curvature center (the inversion of EM diameter) of the circle
movement of the rotation of two circles with radii x and y in [12].

(3) We will consider the singular differential equation

d’y 3dy 3

dx?  xdx x2

y =0. (47
By the series expansion, we obtain the general solution, for any constants a, b
a
y=—+bx. (48)
X
We see that by the division by zero
y(0) =0, y'(0) = b, y"(0) = 0. (49)
The solution (48) has its sense and the Eq. (47) is satisfied even at the origin. The value
y'(0) = b may be given arbitrary, however, in order to determine the value a, we have
to give some value for the regular point x # 0. Of course, we can give the information

at the singular point with the Laurent coefficient a, that may be interpreted with the
value at the singular point zero, with the division by zero. Indeed, the value a may
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be considered at the value
[y(0)x i = a. (50)

(4) Next, we will consider the Euler differential equation

2

d-y dy
2
— +4x— +2y =0. 51
xdx2+xdx+y Gb

We obtain the general solution, for any constants a, b

y=—-—+—. (52)
The solution (52) is satisfied even at the origin, by the division by zero and further-
more, all the derivatives of the solution of any order are all zero at the origin.
7 Solutions with an Analytic Parameter

For example, in the ordinary differential equation
Y +4y 43y =5¢7, (53)

in order to look for a special solution, by setting y = Ae** we have, from

Y+ 4y 43y = 5¢, (54)
Sekx
= - 55
YTt 4k +3 (53)
For k = —3, by the division by zero calculus, we obtain
5 5

—3x
=e " |\—zx—-], 56
y=e ( 7% 4> (56)

y=—=xe . &0
For example, for the differential equation
y"' +a’y = bcos Ax, (58)

we have a special solution
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b
y = m COS AX. (59)

Then, when for A = a, by the division by zero, we obtain the special solution

bx sin(ax)  bcos(ax)
= . 60
Y 2a + 4a? (60)

We can find many examples.

8 Special Reductions by Division by Zero of Solutions

We will consider the differential equation, for a constant R

y' = Ry.

Then, we have the solution
y() = y(0)e™.

For the differential equation, for constants R, K

y
'=R (1——),
Y= K

we have the solution .
y(0)e
YO = oy
+ =
If K = 0, then, by the division by zero, we obtain the previous result, immediately.
We will consider the fundamental ordinary differential equations

x"(t) =g —kx'(t) (61)
with the initial conditions
x(0) = —h,x'(0) =0. (62)
Then we have the solution
g gl —1
H==t+-———-—h. 63
x(t) = S+ s (63)

Then, for k = 0, we obtain, immediately, by the division by zero calculus

x(1) = %gtz —h. (64)
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For the differential equation
x'(1) = g — k(x'(1))
satisfying the same condition with (62), we obtain the solution

x(t) = —log (6%@ i 1)2

2k 402k h.

Then, for k = 0, we obtain

1 2
t) = —gt” —h.
x(1) 78

immediately, by the division by zero calculus.
For the differential equation

X'(1) = —g + k(')
satisfying the initial conditions
x(0)=0,x'(0) =V,

we have

x'(t) = —\/gtan(\/@t — ),

k
a=tan"' [=V
8

1 cos («/kgt —
x(t) — _log M'
k cos o

with

and the solution

Then we obtain for k£ = 0, by the division by zero calculus
xX'(t)=—gt+V

and
1,
x(t) = —Egt + Vit

413

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

We can find many and many such examples. However, note that the following

fact.



414 S. Pinelas and S. Saitoh

For the differential equation
y/// + a2y/ — 0,

we obtain the general solution, for a # 0

y = Asinax + Bcosax + C.

(75)

(76)

For a = 0, from this general solution, how can we obtain the correspondent solution

y:Ax2+Bx+C,

naturally?
For the differential equation

y/:ae)\xyZ_i_afe)\xy_i_)\f’

we obtain a special solution, for a # 0

For a = 0, from this solution, how can we obtain the correspondent solution
y=Afx+C,

naturally?

9 Partial Differential Equations

For the partial differential equation
ow 82w+b 8w+( )
— =a— +bx— 4+ (cx w,
at dx? dx

we have a special solution

c ac?
w(x,t) = exp —Ex—i— d—i—ﬁ t].

For b = 0, how will be the correspondent solution? If » = 0, then ¢ = 0 and

c
b

77

(78)

(79)

(80)

81

(82)

(83)
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and we obtain the correspondent solution.
For the partial differential equation

ow 3w
o, Bt
oy = a 512 + (be”" + c)w,

we have special solutions

b
w(x,t) = (Ax + B) exp [Eeﬁ’ + ct] ,

b
w(x, 1) = A(x* + 2ar) exp [Eeﬁ’ + ct:| ,

and
2 b g
w(x,t) = Aexp )»x+a)»t+ﬁe +ct|.

Then, we see that for 8 = 0, by the interpretation

e
B lp=o

we can obtain the correspondent solutions.
For the partial differential equation

ad 92 :
8_V: = aa—xv; + (bxeP™ + o)w,

we have a special solution
b b?
w(x,t) = Aexp [Exeﬁ’ + %ezﬂ’ + ct] .

Then, for 8 = 0, by the interpretation

[Leﬁ’} = itj,
p’ p=o J!

we can obtain the correspondent solution.
However, the above properties will be, in general, complicated.
For the partial differential equation

ow 3w

Z—a— 4 bw,
or Yo TOW

415

(84)

(85)

(86)

87)

(88)

(89)

(90)

oD

92)
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we have the fundamental solution

2
w(x. t) = oy bt) . 93)

1
—eX
2/ mat p( 4at

For a = 0, we have the correspondent solution

w(x, t) = expbt. %94)
For the factor
L ( X ) (95)
—_— X —_—
2/ mat P dat
we have, for letting a — 0,
3(x), (96)

meanwhile, at a = 0, by the division by zero, we have 0. So, the reduction problem
is a delicate open problem.
For the partial differential equation

aw 3w 5
o= + (=bx* +ct +d)w, o7

we have a special solution

1 /b 1
w(x, 1) = exp |:§\/jx2 + Ect2 + (Vab + d)t:| . 98)
a
For a = 0, how will be the correspondent solution? Since we have the solution
2 15
w(x,t) =exp|—bx"t + ECt +dt |, 99)
for the factor
L /b (100)
—./—x
2V a
we have to have
— bx’t. (101)

We can see many and many interesting examples in [15].
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10 Conclusion

The division by zero is uniquely and reasonably determined as
1/0=0/0=2/0=0

in the natural extensions of fractions.
We have to change our basic ideas for our space and world.
We have to change our textbooks and scientific books on the division by zero.
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Involving the Caputo-Type Fractional
Derivative

Barbara Lupinska, Tatiana Odzijewicz and Ewa Schmeidel

Abstract We study multidimensional variational problems, where the Lagrange
function depends on the partial Caputo—Katugampola fractional derivatives, gen-
eralizing the Caputo and the Caputo—Hadamard fractional derivatives. We present
sufficient and necessary conditions which determine the extremizers of a functional.

Keywords Fractional calculus
Multidimensional variational calculus - Caputo-type fractional derivative

AMS Subject classification 26A33 - 34A08 - 34K28

1 Introduction

Fractional variational calculus studies problems of extremizing (minimizing or max-
imizing) functionals with integrands depending on fractional derivatives (derivatives
of real or complex order). In the first works on this subject, published by Fred Riewe
in 19961997, it was noted that fractional derivatives can describe non-conservative
systems in mechanics [18, 19]. It is an important issue because frictional and non-
conservative forces are under macroscopic variational treatment and, therefore, they
are studied using the most advanced methods of classical mechanics [10]. So far
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several remarkable results concerning fractional calculus of variations were obtained
including necessary optimality conditions for fundamental and isoperimetric prob-
lems, transversality conditions or Noether’s theorem [3, 12, 14, 15, 17]. In the
simplest case, one thinks of one-dimensional problems. However, results were also
generalized to the multi-dimensional case [4, 14, 16]. For the comprehensive study
on the fractional variational calculus we refer the reader to the recent books [9, 13].

In the theory of fractional calculus one can find several types of differential opera-
tors and, depending on the considered system, one should choose the most appropriate
one [8, 9]. In order to unify the theory, interesting approach was introduced in the
works [6, 7], where author defines new derivatives and integrals which in particular
cases reduce to the Riemann-Liouville and Hadamard operators. Some properties of
these operators were studied in [11]. Moreover, in the works [1, 5], extension of the
Caputo and the Caputo—Hadamard operators was proposed.

In this work, in contrary to [1] where the one-dimensional fractional variational
problems were studied, our goal is to develop non-integer order calculus of variations
by considering multidimensional problems with Lagrangians depending on the new
partial Caputo-type operators (generalizing the Caputo and the Caputo—Hadamard
partial derivatives). First we prove generalized integration by parts formula and next
we apply this result to obtain necessary optimality conditions of Euler—Lagrange type
to the fundamental and isoperimetric problems. Notice that, a formula of integration
by parts for arbitrary @ > 0 in the one dimensional case was proven in [2].

The text is organized as follows. In Sect.2 we present definitions of the new
Caputo-type partial fractional derivatives and prove generalized integration by parts
formula. Section3 is devoted to the fundamental problem- we prove necessary and
sufficient conditions for extremizers. Finally, in Sect.4, we derive necessary opti-
mality conditions for isoperimetric problem.

2 Preliminaries

In this section we introduce notions of the Caputo—Katugampola fractional deriva-
tives in a multidimensional finite domain and obtain the generalized integration by
parts formula. Along the work, fori =1, ...,n,let0 < a; < b; < 00,a;,b; € Rand
t=(t,...,1,) be apoint in £2,,, where £2, = (a;, b;) X --- X (a,, b,) is a subset
in R". Moreover, we denote by dt = dt, ...dt,.

Definition 1 Let 7 € 2, and p > 0. The left and the right partial Caputo—
Katugampola fractional derivatives of order o € (0, 1) of a function x € C'(£2,; R),
with respect to the ith variable #;, are defined by

D, () = /t’ 5 ! —x(t t T, ! t,)dt
. X X g e e bj—1, Ly lj g e ey
o ra—-aw/, @ —°)*adt ! -l i
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and

c
Dyt x(1) = X(ty, ooy s, Ty tigt, -2 -5 BT,

ad
F(l —a) / (tP — z")w at
respectively.

Remark 1 Note that, for p = 1, operators CDa +.. and CD * . become standard
partial left and right Caputo fractional derivatives, while for p —> 07, they recover
classical partial left and right Caputo—Hadamard fractional derivatives (see e.g., [5—7,
13]).

Following the idea from [1], in order to obtain integration by parts formula for
Caputo—Katugampola partial derivatives, we introduce two fractional operators act-
ing on functions of several variables. Let ¢ € £2,, then the fractional integral type
operator is defined by

Ly’ x(t) = F(a)/ @ =) —x(f, o G, Tyl oo, )T,

while the fractional differential type operator is given by

Dy”  x(1) = — x(tl, .o tist, Ty by ..., BT,

P
rad-—o) /, (P — 1;P)™

Theorem 1 Ifx € C(£2,;R) and y € C'(£2,; R), then
/ XD y(ndt = —f Dy?  x(1)y(t)dt +/ y(t)lbl,:‘f;fx(t)v"d(mn),
2, 2, 982,

where V' is the outward pointing unit normal to 382,.

Proof Using Fubini’s theorem we change the order of integration in the iterated
integrals

/ x(N°DgY  y(ndt

1 ay
// F(l a)(t” l_p)aa(tl,...,ti,l,r,t[+1,...,tn)drdt

:/ / ——dt; | dt, ...dt;_dtdt;yy . ..dH
2, F(l— ) ( p—f”)“

3)’ 1
=/ ale CPx(y G Tt ) dl g dTdl L,
24
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where i—ﬁ means g—i(rl, cen i Toligns ).
Integrating by parts, we obtain

o, a o, o,
/le_,px(z)—y(z)dt /Qa—lbl_t’ox(t)y(t)dt—i-/ YOI, P x(0V' d(320)

n

/Dbftx(t)y(t)dt—l—/ y(t)lb‘}/’x(t)ufd(agn).
982,

3 The Fundamental Problem

In the space C' (£2,: R) consider the norm ||-|| given by

||x||—max|x<r>|+Z max [“DGL  x(0)].

tesf2,

Let o7 be a nonempty subset of C!(£2,; R) and .# be a functional defined on 7.
We say that X is a local minimizer of .# in the set o7 if there exists a neighborhood
A5(x) of x such that for all x € #5(x) N <, we have

I (x) < I ().

Note thatany functionx € #5(x) N o canbe represented in the formx = x + ¢h,
where |¢] < 1 and & is such that X + ¢h € /.
Let ¢ : 082, — R be a given function and n € N. We consider the following
functional
S dE) — R (1)
X —> / F(t,x(), V¥*x(1)) dt,

n

where ]
A () = {x € C'(2,,R) : xlyg, = ¢},

VL x(t) —ZcDa,+,,x(t)~e,- = (°DYA  x(0),....C DI x(@)).
i=1

Moreover, function F : .(_2,1 x R x R" — Ris of class C! and satisfies the following
conditions

e 0, i F(t,x(1), V¥*x(t)) € C'(2,;R) foralli =1,...,n

o BF(1,x(1), V¥Px(1) € C(2,;R)
o ,-DZ[’fBH,-F(t,x(t), V*Px(t)) € C(£2,; R) foralli =1,...,n
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Here and along the work 9; F denotes the partial derivative of function F' with
respect to its ith argument.

Theorem 2 Suppose that x € </ (¢) is a minimizer of the functional (1). Then, X
satisfies the following generalized Euler—Lagrange equation

BF (@) — Y CDI i Fex) (1) = 0, 1 € 25, )
i=1
where (x,)(t) = (t, x(t), V¥Px(1)).

Proof Let X € o/ (¢) be a minimizer of (1). Then, for any |¢] < 1 and every h €
27 (0), it satisfies
J(x) < I (x +¢h).

Now, let us define the function j : [—1, 1] — R as follows

je)=I(x+eh) = / F(t,x(t) + eh(t), V*P (x(t) + eh(1)))dt.

2,

Since X is a minimizer of (1), & = 0 is minimizer of j and so j’(0) = 0. Computing
j’(0) and using Theorem 1, we obtain

J0) = /
2,

= [ areom hodi =Y [ no- 052 g F o0
2 — e,

0 F (x5) (1) - h(t)dt + ) / 821 F (#2) (1) - Dt h(n)dt
i=1 Y5

n

+ / h(t) - 12 i F (+0) (V' A (92,).
392,

Since h € o7 (0) and h is arbitrary elsewhere, we conclude
OF () (1) = Y Dy’ i F()(1) =0, t € £2,
i=1
by the fundamental lemma of the calculus of variations.

We remark that Eq.(2) gives only a necessary condition. To deduce a suffi-
cient condition, we recall the notion of convex function. Let f : R”" — R and
f € C'(R™; R). The function f is convex if and only if

f@)=fOM+HVfO);x—y), x,y € R",
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where (-; -) denotes the scalar product in R™.

Theorem 3 Suppose that X € </ (¢) satisfies (2) and function (u, v) +— F(t,u, v)
is convex for every t € §2,. Then, X is a minimizer of functional (1).

Proof If x € &/ (¢) satisfies (2) and function (u, v) — F (¢, u, v) is convex for every
t € §2,, then

n
I = S @) + /Q (32F(*i)(t) =B+ Y 0 )0 € D — ﬂ) dr,
n i=1

for every x € .7(¢). By Theorem 1 and the fact that x — X[, = 0, we get

T() = I+ / (azmx)(t) - pyr, az+[F<*x)(r)> (x — D).
i=1

n

Finally, applying Eq. (2), we have .# (x) > . (x) for any x € &7 (¢).

4 Isoperimetric Problem

Let us define the functional ¢ : &/ (¢) — R by

Fx) = f G(t, x(1), V¥l x(1))dt, 3)
2

n

where operator V%# and function G are of the same class as in the case of func-
tional (1). In the next theorem we give a necessary optimality condition for a function
to be a minimizer of (1) subject to the isoperimetric constraint _# (x) = &.

Theorem 4 Suppose that x is a minimizer of functional (1) on the set

G ()= {x e ) Jx) =&}

and that the following condition is satisfied

G (x:)(1) = 3 Dy 31, G(x:) (1) # 0. @)
i=1
Then, there exists a real constant hy such that, for H = F 4+ A0G, equation

0o H () (1) — Y Dy’ 004 H (x5) (1) = 0, (5)

i=1
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holds.

Proof By the fundamental lemma of the calculus of variations and hypothesis (4),
there exists /1, € 27 (0) so that

/ (82G(*x)(t) - Z Dy’ 32+lG(*x)(t)> hy(t)dt = 1.
2,

Now, with function 4, and an arbitrary ; € <7 (0), let us define two functions ¢, ¥ :
[—1,1] x [—1, 1] — R such that

@(er, &) = I (& +e1h) + exhy)
V(e &) = F (X +eh +eh) —&.

Note that, ¥ (0, 0) = 0 and that

v

882

= / (32G(*x)(t) - Z Dy’ . 32+iG(*i)(t)> hy()dr = 1.
2

(0.0)

The implicit function theorem implies, that there are §y > 0 and a function s €
C'([-8y, 8o]; R) with s(0) = O such that

Ve, s(e1) =0, &g < do,

and then X + €1/ + s(&1)hy € % (¢). Moreover,

0
WL Sey=0. el <.
381 de &
and then 81//
5'(0) =
851 (00)

Because x € 7 (¢) is a minimizer of .# we have

9(0,0) < ¢(er,s(e1)),  lerl = do,

and hence 5 5
o9 9% .5'(0) = 0.
881 0,0 882 0,0
0
Letting Ag = — 2@ be the Lagrange multiplier we find
382 (0,0)
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or,

oy
0 —
(0,0) 881

dg
881

=0

(0,0)

in other words

/ BFE0 + Y b Fe 0D ha(t) | di
" im1

o / HGED + Y G ODE! o) ) dr | =0

n i=1

Finally, applying Theorem 1 and fundamental lemma of the calculus of variations
we obtain (5).
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Maximum Principle for a Kind of Elliptic | m)
Systems with Morrey Data L

Lubomira G. Softova

Abstract We consider nonlinear elliptic systems satisfying componentwise coer-
civity condition. The nonlinear terms have controlled growths with respect to the
solution and its gradient, while the behaviour in the independent variable x is gov-
erned by functions in Morrey spaces. We obtain maximum principle for such kind
of systems.

Keywords Nonlinear elliptic systems + Morrey spaces *+ Maximum principle

1 Introduction

Let 2 C R", n > 2 be a bounded domain. We are interested in boundedness of the
weak solutions to nonlinear elliptic systems of the type

divA(x,u, Du) = b(x, u, Du), x e (1)
where the nonlinear terms

Alx,u,z) : 2 x RY x MV — RV>n
b(x,u,z): 2 x RY x MV*" — RV )

are Carathéodory maps. That is, they are measurable in x € §2 for each (u,z) €
RY x M¥*" and continuous in (u, z) for almost all x € £2.

The celebrated result of De Giorgi [6] and Nash [14] implies that any weak solution
u e Wol’z(.Q) of the linear elliptic equation div(A (x) Du + g(x)) = f(x) is locally
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Holder continuous when g € L?(£2, R") with p > nand f € L9(£2) withqg > n/2,
even if the coefficients are only L>°. Unfortunately the De Giorgi—Nash result does
not hold anymore if we consider a system of uniformly elliptic equations because
of the lack of Maximum principle, as it was shown by De Giorgi himself almost ten
years later, constructing a counterexample [7].

Moreover, the result of De Giorgi—Nash cannot be extended to quasilinear systems
even if the coefficients are analytic functions, as it was shown by Giusti and Miranda
in [9]. In order to get a maximum principle for elliptic systems we need to impose
some quite restrictive structural conditions. The simplest one requires the system to
be in diagonal form, or decoupled.

Example 1 Consider the operator div(A(x, Du)) = 0 in £2 with coefficients

n N
Af(x, Du) = > Y " 8 AT (x) Dju”
j=1 =1

where d.4 is the Kronecker delta. Then u® solves a single elliptic equation and
sup, u® < supyo u®, foreacha =1,..., N.

One more example was given by Necas and Stard in [15].

Example 2 Consider the system divA (x, u, Du) = 0 in §2 that is diagonal for large
values of u®, that is,

n N
0<0" <u” = AY(x.u,Du) =YY 8,A7 (x, wyDu” 3)
j=1 =1

with bounded and elliptic Af’f . It turns out that

supu® < max {9“; supu“} .
2 ¥e)

The situation becomes more complicated if we consider general nonlinear sys-
tems. Along with the Carathéodory conditions on the maps A(x, u, z) and b(x, u, z)
we need to control also the growths of A and b with respect to u and z. These addi-
tional controlled growth conditions ensure the convergence of the integrals in the
definition of weak solution to (1).

In[13] Leonetti and Petricca assume componentwise coercivity of A and positivity
of b for large values of u*, that is, for each « =1, ..., N, there exist positive
constants 6 such that

n
v|z¥P — M, < A%(x,u,2)z?
o< s |V _2 “(x,u,2)z; @

0<b¥(x,u,z).
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Combining the Sobolev inequality with the Stampacchia Lemma [23] they get a
componentwise bound of the solution, covering this way also the systems studied in
[15], since (3) is a special case of (4). Let us note that getting essential boundedness
of the weak solution to (1) is a starting point for a further study of its regularity
in various function spaces. In [8, 16, 18] the authors obtain better integrability and
Holder regularity of the bounded solutions to quasilinear elliptic equations (N = 1)
under controlled growth conditions on the nonlinear terms. Further this result has
been extended in [20] to semilinear uniformly elliptic systems of the form

div(A(x)Du + a(x,u)) = b(x,u, Du)  in £ (5)

with minimal regular assumptions on the coefficients and the underlying domain.
Precisely, it is shown that if the nonlinear terms satisfy the controlled growth con-

ditions with ¢ € L?(82), p > 2 and ¥ € L9(£2), g > % then any bounded weak

solution to (5) belongs to Wol’r(.Q; RY) with r = min{p, g*}.

The natural question that arises is what kind of regularity of the solution to (1)
we can expect if the given functions ¢ and v belong to some Morrey space. In
the case of a single equation we count with the results of Byun and Palagachev [2,
4]. Combining the Gehring—Giaquinta—-Modica lemma, the Adams trace inequality
and the Hartmann—Stampacchia maximum principle they obtain L* estimate of the
solution. Further, the Morrey-type estimate of the gradient permits the authors to
show also Holder regularity of the solution.

Our goal is to obtain a componentwise maximum principle for any component of
the solution u of (1) supposing that the operators A and b satisfy structural conditions
expressed in terms of Morrey functions.

As a consequence we obtain also Morrey regularity of the gradient of each com-
ponent of the solution, extending such a way the regularity results obtained in [2—4,
8, 10, 17, 20, 21] for linear and quasilinear equations and systems with Morrey data
to nonlinear systems with Morrey data.

Recall that a real valued function f € L”(§2) belongs to the Morrey space
LP*(£2) with p € [1, 00), A € (0, n), if

1/p

1 llpne = <Sup ik If(y)l”dy) <00 (6)
B,(x) 7" J2n%, (x)

where the supremum is taken over all balls %, (x), r € (0, diam £2] and x € 2.

Working in the framework of the Morrey spaces we note that the Sobolev trace

inequality is not enough anymore. For this goal we will use the following result due

to Adams.

Lemma 1 (Adams Trace Inequality, [1, 5, 19]) Let d ¢ be a positive Radon measure
defined in 2 and such that for each ball %, it holds

s(%,) < Kp™, ‘1:0=£(n—r), l<r<s<oo, r<n @)
r
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with an absolute constant K > 0. Then

1

(/|vuﬂrdg>sscXmsJ0Ki</1u»mmrdx)’ ®)
2 2

for each function v € W, (£2).

In what follows we suppose that £2 C R", n > 2, is a bounded domain satisfying
the (A)-condition, that is, there exists a constant A, > 0 such that

12,(X)] > Agr® VYxe 82, re (0, diam 2] (A)

where 2, (x) = £2 N %, (x). It is worth noting that the (A)-condition excludes inte-
rior cusps at each point of the boundary and guarantees the validity of the Sobolev
embedding theorem in W' 7(£2). This geometric property is surely satisfied when
052 has the uniform interior cone property (e.g. C'-smooth or Lipschitz continuous
boundaries), but it holds also for the Reifenberg falt domains (cf. [18]).

Throughout the text the standard summation convention on the repeated indexes
is adopted. The letter C > 0 is used for various constants and may change from one
occurrence to another.

2 Maximum Principle

Consider in £2 the system (1) under the basic assumptions (2). In [22] we have studied
the properties of the weak solutions u € W!2(£2, R") to such a system. Our goal
is to extend this study to solutions with higher integrability. Such a way we cover
the case of m-Laplacian systems. For this goal we impose the following controlled
growth conditions. Suppose that for each (x,u,z) € 2 x RY x MV>*" and m > 2
holds

m*(m—1)

AG,u,2)] < A(p(x) +ul  +]z"")

b(x,u,z)| < A(Y(x) + u" ' + |Z|m”'m:‘>)

9)

as |ul, |z] — oo, with some positive constant A (cf. [12]). Here m™ is the Sobolev
conjugate of m, that is,

mn .
ifn>m

m*: n—m

any large number if n <m,

and the given functions ¢ and v satisfy
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(peLIM(_Q), p > mlip reO,n), m—)p+r>n 10)

*

Ve LT(82), q> i, neO,n), mg+p>n.

A weak solution of (1)is afunctionu € W' (2; RV) N L™ (§2; RV), satisfying
Z/ Af (x,u, Du)D;¢* (x) dx +/ b%(x,u(x), Du(x))¢p*(x)dx =0 (11)
i=1 Y% 2

forallp = (¢', ..., ") € Wy (£2; RY). The conditions (9) and (10) are the natu-
ral assumptions that ensure the convergence of the integrals in (11). Moreover, they
are optimal as it is shown in [12] in case of single equation.

Generally we cannot expect boundedness of the solutions to (1) unless we add
some restrictions on the structure of the operator (see for example [11, 13]). For this
goal we impose componentwise coercivity on AY and a sign condition on b%.

For every o € {1, ..., N} there exist positive constants 6%, y and a function ¢
such that for each u* > 0 we have

n
ylz*|" = Ap(x)nT < Y A¥(x,u, 2)]
i=1

0 e LM (R2), p> — S e Om), (m—Dp+i>n
—

0<b%(x,u,z) foraa xes, VzeMV*".

(12)

Theorem 1 (Maximum principle) Let £2 be (A)-type and u € W' (2; RV) N
L™ (£2; RN) be a weak solution to (1) under the conditions (9)—(12) and such that
sup, o u® < 0o. Then

supu® < max {Oa,supu“} +M, aoaef{l,...,N}
2 1)

where My depends onn,m, p, A, A, y, |9l 1.0, and |$2].

Proof We choose a constant L > 0 such that L > max{6“; sup,, u“} and define the
set &/ = {x € £2 : u*(x) — L > 0}. Then we take a vector function v as follows

8 max {u* — L; 0} if 8 =« P Du®xy« ifB =«
v = . , DvP = L .
0 if B £« 0 if B #«

Itis clear thatv € W, (£2; RV) and hence v € L”"(£2; RY) by the Sobolev embed-
ding. Choosing ¢* = v* as a test function we obtain
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Z/ A%(x,u, Du)D;u®(x) dx +/ b (x,u, Du)(u®(x) — L)dx = 0.
i=1 VL AL

We start with the case n > m whenm* = mn/(n — m). Define a positive measure
d¢ supported in §2 by
ds = (xe(x) + @(x)T)dx,

where yg, is the characteristic function of §2. Then by (12) we get the estimate

A A
f | Du ()" dx < —f ()T dx < —f (X () + ()71 dx
A V Jay V Jap
= CA, y)s(F). 13)
We extend the solution #* and ¢ as zero out of §2. Direct calculations give that

s(%y) =/ﬂ (XQ(X)‘F(ﬂ(x)"%‘)dx

m

< C(n. diam )" "I g 7,5 g, = Kp® (14)

with K = K(n, p, A, m, diam 2, ||¢|l, ».e) and

n—Ar m

To—=n — >n—m.

p m—1
Applying (8) with r = m < n and calculating s from (7) we get
’ 1
W (x) = Lydg < (/ u (x) — Llsdg) sy
o o

Ay
1

<CK: (/ |Du ()" dx) S (15)
AL
1_1
= C(na P, K7 Y, A)g(ﬂfl)H—m B
1 — _m _ (m=Mm
with s = -~ p(m—l):l > m.

A similar bound holds also in the case n = m. In fact, for any ball %, C R" we
have

m—rm m

B T
§(Bp) = Co" gl o < Kp™,

with tp = m — mT’*% > 0. Choosing s = m we calculate r from (7)
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 mpm—1)
" 2pm— 1) —(m— 1)

e (1,m).
Then by the Holder inequality, the Adams trace inequality and (13) we obtain

W (x) — Lydg < (/ (u® (x) — L)’”dg) c(a)
£ A

1

<CK: (/ |Du“(x)|rdx>r c(f)'~n (16)
S

1 1 1

CKn (/ |Du°‘(x)|mdx> (/ Xg(x)dx> c(d)
AL AL

CK

IA

E

(/ DUt dX) S E < Cola) iR
o
with C = C(n, p, A, K, y, A). Unifying the estimates (15) and (16) we obtain

u*(x) — Lydm < Cm(a/)"+0 (17)
M{l

where

I pm—1+xr—n
;_np(m—l)—(n—k)m
I pm—D+i—m
m mp(m — 1)

ifn >m

ifn=m.

Suppose now that ¢(o7*) > 0, otherwise sup, u*(x) < L. Forany L; > L we
have szf‘l C 2/ and therefore (17) yields

(Ly = L)s(a)) =< /ﬁ/d W*(x) = L)ydg

< | W) —L)yds < Cg(af)t.
o

Hence

S < S () F.

L—-L

In order to estimate the measure of the set </;* we apply the following Lemma of
Stampacchia [23, Lemma 4.1].
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Lemma2 Let ® : [Ly, 0c0) — [0, 00) be a decreasing function. Assume that there
exist c,a € (0, 00) and b € (1, 00) such that

Cc
Li>L>1L O(L) < ———(O(L))".
1>L>=L) = (])_(LI—L“(())

)

Then .
OLy+d)=0 where d= [c@(LO)b*IQﬁ]E .

The application of the Lemma 2 to the function & (L) = ¢(&7) with a =1,
b =1+ o0pand Ly = max{6“, sup,, u®} yields

S(fg) =0  where  d, < Co(@)™2" . (18)

The last assertion means that for each « = 1, ..., N there exists a constant M,
dependingonn, p, A, y, A, |£2], l¢ll e such that

supu® < max {9"‘; supu"‘} + M, (19)
Q a2
and this completes the proof of the theorem.

Corollary 1 Letu € Wol’m (£2;: RY) be a solution of (1) under the assumptions (A),
(2), 9), and (10). Suppose that instead of (12) holds

n
Iz " = Ap(x) T < Af(x, u, )z

i=1

) m (20)
¢ € LP(£2), p> 1,/\6(0,71), (m—Dp+i>n
m—
0 < b%(x,u, z)sign u®(x)
for [u*| > 60> 0, a =1,...,N. Then there exists a constant M depending on

known quantities such that
[allcc,0 = M.

Proof Take a positive constant L such that L > 6 and consider the set szf_L“ ={xe
£ :u*(x) + L < 0}. Then the Theorem 1 applied to —u® gives

infu® > —0% — M, . (21)
2

Unifying (19) and (21) we get boundedness of ||u®|cc:2 for each w =1,..., N.
Then
lufloo; 2 = max ”Ma”oo;.Q =M <o0.
1<a<N
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Theorem 2 (Morrey Regularity of the Gradient) Let 2 be a bounded (A)-type
domain in R",n > m, and u € Wol‘m(.Q, R™) be a weak solution to (1) under the
assumptions (A), (2), (9), (10), and (20). Then Du® € L™"~"(£2) and

/ |[Du®(x)|"dx < Cp"™  Vxg € 2, p € (0, diam £2] (22)
Qp(xo)

and constant depending on known quantities.

Proof Fix xo € §2 and p > 0 be such that %, (xg) C %»,(x0) € 2, p > 1. Define
a cut-off function ¢ (x) € C'(R")

c(x>={l XEB) b <

¢
0 x ¢ %,(x0), P

For any fixed « take ¢%(x) = " ®)¢(x)™ as a test function in (11) to get
Z / A%(x,u, Dw)e" ™ D;u®(x)¢ (x)™ dx
i=1Y%

= _Z/ A%(x,u, Dw)e" Ome(x)" ' D¢ (x) dx
i=17%

- / b%(x, u, Dwe ¢ (x)" dx .
2

The left-hand side can be estimated by (20) while for the right-hand side we use (9)
and (10)

e /Q (V1 Du®@)|" — Ag() =)L (x)" dx

n

< mnAe" / (p(0) + Jul 5 + [Dul" )¢ (x)" DL (x)| dx
2

mn—n+m

“eM/ (¥ (o) + [u =" 4 | Dul ™) ¢ (x)" dx.
2

pp/(P=1

“7o-n» Whence

To proceed further, we use the Young inequality ab < ea” +

1 _m_
/ PE )" |DE dx < 5 f P T ()" dx + 2" f \DE()|" dix
2 22 2
n(m—1) m—1 n(m—1) 1 m m—1 m
/ ul "5 "D dx < MU (2 / £ dx +2 f IDE() ™ dx
o 2 Jo 2

/ |Du" ¢ (x)" ! D¢ dx 56/ |Du|™ ¢ (x)™ dx + %/ D¢ (x)|™ dx
Q Q em=tJ@
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mn—,

f 1Du)™ 5 e (x)" dx < g/ |Dul™ ¢ ()" dx + &~ i / c)™ dx .
2 2 2

Unifying the above estimates we get

f |Du ("¢ (x)" dx
2
sc/<1+w<x)+so(x>#>c<x)mdx (23)
2
+C/ |D§(x)|'"dx+£C/ [Du(x)|"¢(x)™ dx
2 2

with constants depending on n, A, y, M, and e. Then we sum up (23) over « and fix
¢ small enough, such that to have the estimate

f |Du|" dx < C a+wm+¢w#nw+cf IDc(x)|["dx. (24)
B, 2

7 (7
B, B

Then, by (10) we have

f (14 ¥ (x) + @) 1) dx < Clp" + pnf%lllﬂllq,u;g
By

p—t=h _m T
+p pom=l ”(p”p,)\;g]

f |IDg(x)|"dx < Cp" ™.
-@Zp

Hence
f |Du®|™ dx < Cp™ (25)
B

with A9 = min {n — ML_], n— 14
. p m q
on known quantities.
Let %,(xo) N 982 # ¥. Then we extend #* and the given functions ¢ and  as

zero in §2¢ and consider the test functions

N — m} = n — m and the constant depends

¢ (x) = (" — e (x)"signu’ (x).
Then the estimate follows the same line of the proof as before.
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A Survey on the Oscillation of Delay )
Equations with A Monotone or oo
Non-monotone Argument

G. M. Moremedi and I. P. Stavroulakis

Abstract Consider the first-order linear differential equation

X'+ pOx(r(1) =0, 1>,
where the functions p, 7 € C([fg,00), RY), (here RT = [0, 00)), 7(¢) <t fort > 1
and lim,_, o, 7(¢#) = 00. A survey on the oscillation of all solutions to this equation
is presented in the case of monotone and non-monotone argument and especially in

the critical case where liminf,_, o p(t) = 1/e7 and also when the known oscilla-
tion conditions lim sup th(t) p(s)ds > 1 and liminf,_ f;m p(s)ds > % are not
11— 00

satisfied. Examples illustrating the results are given.

Keywords Oscillation - Retarded - Differential equations - Non-monotone
arguments

1991 Mathematics Subject Classification Primary 34K11 - Secondary 34K06

1 Introduction

Consider the differential equation with a retarded argument of the form
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X't + pO)x(r(1) =0, =1, (1.1)

where the functions p, 7 € C([fp,00), RT), (here RT = [0, 00)), 7(t) <t fort > 1y
and lim,_, o, 7(¢) = 0.

By asolution of the Eq. (1.1) we understand a continuously differentiable function
defined on [7(Tp), +00) for some Ty > ¢ and such that (1.1) is satisfied for r > T..
Such a solution is called oscillatory if it has arbitrarily large zeros, and otherwise it
is called nonoscillatory.

It is noteworthy to observe that a first-order linear differential equation of the form
(1.1) without delay (7(¢) = t) does not possess ocillatory solutions. Therefore the
investigation of oscillatory solutions is of interest for equations of the form (1.1).
Furthermore, the mathematical modelling of several real-world problems leads to
differential equations that depend on the past history (like equations of the form
(1.1)) rather than only the current state. For the general theory of this equation the
reader is referred to [15, 18-20].

In this paper we present a survey on the oscillation of all solutions to this equation
in the case of a monotone or non-monotone argument and especially in the criti-
cal case where liminf,_  p(t) = é and also when the well-known oscillation
conditions

t t
1
lim sup/ p(s)ds >1 and lim inf/ p(s)ds > —.
T T e

t—00 (t) =00 ()

are not satisfied.

2 Oscillation Criteria for Eq. (1.1)

In this section we study the delay differential equation

X'+ px(r(1) =0, 1=>1, (1.1)

where the functions p, 7 € C([fp,00), RY), 7(r) <t fort >ty and lim,_, o, 7(¢) =
00.

The problem of establishing sufficient conditions for the oscillation of all solutions
to the delay differential equation (1.1) has been the subject of many investigations.
See, for example, [1-40] and the references cited therein.

The first systematic study for the oscillation of all solutions to Eq. (1.1) was made
by Myshkis. In 1950 [32] he proved that every solution of Eq. (1.1) oscillates if

1
limsup[t — 7(#)] < o0 and liminf[t — 7(¢)]liminf p(¢) > —.
t—00 t—00 e

—>00
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In 1972, Ladas, Lakshmikantham and Papadakis [28] proved that the same con-
clusion holds if

t
T is a non-decreasing function and A := lim sup/ p(s)ds > 1. (Cy)

—>0o0 (1)

In 1979, Ladas [27] established integral conditions for the oscillation of equation
(1.1) with constant delay, while in 1982, Koplatadze and Canturija [24] established
the following result. If

t
1
a:=lim inf/ p(s)ds > —, (Cy)
- e

—>00 (1)

then all solutions of Eq. (1.1) oscillate; If

t
1
lim sup/ p(s)ds < —, (Ny)
t—00 () e
then Eq. (1.1) has a non-oscillatory solution.
Set
P = limsup p(¢)
—00
and

p=Iliminf p(r).
=00
Observe that in the case of the equation
X0+ pOxt —7)=0, >1, (1.1

the results by Myshkis [32] reduce to the following conditions: If

pT > —, (c2)
e

then all solutions of Eq. (1.1)’ oscillate, while

1
Pr < — (N])/
e

implies the existence of a non-oscillatory solution of (1.1)". Thus, for the oscillation
of all solutions to (1.1)" a necessary condition is the following

Pr > 2.1)

Q| =
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At this point it should be pointed out that in the special case of the delay equation
with a constant positive coefficient p and a constant positive delay 7, that is in the
case of the equation

xX'()+px(t—7)=0, t>1, 1.1y”

pT> - (c2)
e

is a necessary and sufficient condition [29] for all solutions to (1.1)” to oscillate.
In 2017, Pituk [34] studied the delay equation (1.1)’ in the case where the function
p € C([fp.00), R") is slowly varying at infinity, that is, for every s € R,

pt+s)—pt)—0 as t— oo,

and proved the following theorem.

Theorem 2.1 ([34]) Suppose that the function p is slowly varying at infinity and

p > 0. Then

1
Pr > —, (Cy)
e

implies that all solutions of Eq. (1.1)" oscillate.
Remark 2.1 ([34]) It is easy to see that

pT <a <A <Pr.

Thus the above oscillation results by Ladas [27] and Koplatadze and Chanturija [24]
imply the results by Myshkis [32]. As it is shown in [34], when the function p is
slowly varying at infinity, then

pr=a and Pr=A. (2.2)

Therefore in that case both results are equivalent. Moreover, condition (C) together
with (2.2) implies that if p is slowly varying at infinity, then the condition

Pr>1, (Cry

guarantees the oscillation of all solutions to Eq. (1.1)" Consequently, if instead of
(C,)’ the stronger condition (Cy)’ is assumed, then the uniform positivity condition
p > 0 can be omitted.

Note the analogy of the conditions (C;)’, (Cy) also (C2)’, (c2)’, (¢2), (C3) and
(N, (N1)

Remark 2.2 ([34]) The conclusion of Theorem 2.1 does not hold if (C;)’ is replaced
by (2.1). Indeed, if p(¢) = % identiacally for ¢ > 1y, then the function p is slowly



A Survey on the Oscillation of Delay Equations ... 445

varying at infinity with p =P = # so that P71 = g Observe that in this case

Eq.(1.1) admits a non-oscillatory solution given by x(¢) = e /" for t > ty. Fur-
thermore in the case that p = P ==L so that P = é and

Te
1
p(t) > —ast — oo,
Té

although p is slowly varying at infinity, Theorem 2.1 does not apply because in this
case the oscillation of all solutions depends on the rate of convergence of p(f) to the
limit % ast — oo asitis explained below.

In 1995 Elbert and Stavroulakis [13] established sufficient conditions under which
all solutions to Eq. (1.1) oscillate in the critical case where

! 1 ! 1
/ p(s)ds > — and lim p(s)ds = —.
- e

([) e —>00 T([)
In 1996 Domshlak [6, 7] investigated Eq. (1.1) in the critical case where p = %

and sufficient conditions for the oscillation of all solutions were established in spite
of the fact that the corresponding “limiting” equation

1
X))+ —x@t—71)=0, 1>t
Te
admits a non-oscillatory solution x(¢) = /7. Indeed, in [6, 7] it was proved that if
.. 1 . 1Y\, T
liminf p(t) = — and liminf || p(#)— — || > — (2.3)
t—00 Te =00 Te 8e
then all solutions of (1.1)" oscillate.

Also in 1996 this result was improved by Domshlak and Stavroulakis [8] as
follows.

Theorem 2.2 ([8]) Assume that

1 1
liminf p(r) = —, lim inf |:<p(t) - —> ﬂ] -
t—00 TE t—>00 Te 8e

and .
C:=liminf || ( p(t) = — ) 2= Z |m2s} > . (2.4)
t—00 Te 8e 8e
Then all solutions of Eq. (1.1) oscillate.
Example 2.1 ([8]) Consider the equation (cf. Theorem 3 in [13])

X't + pHxt—1) =0, t>1,
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where
2t —1)Int —1

2e/t(t — DIntIn(t — 1)

p(t) =

It is easy to see that x(f) = e¢~"+/t Int is a non-oscillatory solution. In this case one

can check that
lim inf P PR e P R
imin - — — —|In = —,
t— 00 p Te 8e 8e

that is, condition (2.4) is not satisfied (as expected). Thus the inequality C > ¢- can
not be replaced by the corresponding equality.

Later in 1998 and 2000 the above results were extended by Diblik [9-11] using
the iterated logarithm as follows. Call the expression Ing 7, k > 1, defined by the
formula

Ingt =1Inln...In¢t, k> 1
k

the kth iterated logarithm if ¢t > exp;_, 1 where
exp,t = (exp(exp(...expt))), k > 1,
[
k

expyt =t and exp_, t = 0. Moreover, let us define Iny ¢ = ¢ and also instead of
expressions Ing 7, In; 7, we will write only ¢ and In 7. Then the following results were
established.

Theorem 2.3 ([9-11]) If for some integer k > 0

1 T T T T
pt) < —

R e st ,
or T8 T 8eme? T 8eimrimn? T T SeGinrimgr. 2 BT

then there exists a positive solution x = x(t) of Eq. (1.1) and moreover,

x(t) <e " JtIntlnyt...Ingt ast — oo,

while if for a constant 6 > 1,

T T or

1
1) > — S -
Pz er + 8et2  8e(tInt)? Tt Se(tIntlnyt... Ing_11)2 + Se(tIntlnyt...Ing )2

(2.5)
ast — 00, then all solutions of Eq. (1.1) oscillate.

It is obvious that there is a gap between the conditions (C) and (C,) when the
limit lim le(Z) p(s)ds does not exist. How to fill this gap is an interesting problem
—>00

which has been recently investigated by several authors.
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In 1988, Erbe and Zhang [16] developed new oscillation criteria by employing
the upper bound of the ratio x (7(¢)) /x(¢) for possible non-oscillatory solutions x (¢)
of Eq.(1.1). Their result says that all the solutions of Eq.(1.1) are oscillatory, if

0<a<?and

2

a
A 1 ——. C
> 1 (C3)

Since then several authors tried to obtain better results by improving the upper bound

for x(7(2))/x(t).
In 1991, Jian [22] derived the condition

2

a
A>1— ———, C
> 0 —a) (Cy)
while in 1992, Yu, Wang, Zhang and Qian [38] obtained the condition
l—a—+1—-2a—a?
A>1-— 3 ) (Cs)

In 1990, Elbert and Stavroulakis [12] and in 1991 Kwong [26], using different

techniques, improved (C3), in the case where 0 < a < %, to the conditions

2
A>1—(1—\/L)\_> (Cs)
1

and
11’1)\1 +1
> —

A b
Al

(C7)

respectively, where \;is the smaller real root of the equation \ = e®.

In 1998, Philos and Sficas [33] and in 1999, Zhou and Yu [40] and Jaro$ and
Stavroulakis [21] improved further the above conditions in the case where 0 < a < %

as follows

a’ a’
As>1—— 23 C
T 21— 27" ()
l—a—+1—2a—a 1\’
As1-—°¢ aa—(l——), (Co)
2 4/)\1

and
InA\+1 1—a—+1—-2a—a?
A > - ,
Al 2

(Cr0)

respectively.
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Consider equation (1.1) and assume that 7(¢) is continuously differentiable and
that there exists @ > 0 such that p(7(¢))7'(t) > Op(t) eventually for all . Under
this additional assumption, in 2000, Kon, Sficas and Stavroulakis [23] and in 2003,
Sficas and Stavroulakis [35] established the conditions

2
A>2a4+— —1, (C1)
Al

and

InA; — 1+ 4/5—=2)\ +2a)\;
>
Al ’

A (Cr2)

respectively. In the case where a = %, then A\ = e, and (Cy,) leads to

JT=2
A= Y1720 1 0.459987065.
e

It is to be noted that for small values of a (¢ — 0), all the previous conditions
(C3) — (Cyy) reduce to the condition (Cy), i.e. A > 1. However, the condition (C,)
leads to

A>3—-1=0732,

which is an essential improvement. Moreover (C|,) improves all the above conditions
for all values of a € (0, %]. Note that the value of the lower bound on A can not be
less than % =~ 0.367879441. Thus, the aim is to establish a condition which leads to
a value as close as possible to %

For illustrative purpose, we give the values of the lower bound on A under these
conditions when (i) a = 1/1000 and (ii) a = 1/e.

® (i)
(C3) : 0.999999750 0.966166179
(Cs) : 0.999999499 0.892951367
(Cs) : 0.999999499 0.863457014
(Ce) : 0.999999749 0.845181878
(C7) : 0.999999499 0.735758882
(Cg) : 0.999998998 0.709011646
(Co) - 0.999999249 0.708638892
(Ci0) : 0.999998998 0.599215896
(C11) = 0.999999004 0.471517764
(Cr2) : 0.733050517 0.459987065
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We see that the condition (Cj,) essentially improves all the known results in the
literature.

Moreover, it should be pointed out that in 1994, Koplatadze and Kvinikadze [25]
improved (Cs) as follows: Assume

o(t) :=sup7(s), t=>0. (2.6)

s<t

Clearly o (t) is non-decreasing and 7(¢) < o(¢) for all + > 0. Define

t

Y1) =0, i (t) = exp {/ p({)l/}il(f)dﬁ} ,i=2,3,..fort e R". (2.7)

()
Then the following theorem was established in [25].
Theorem 2.4 ([25]) Let k € {1, 2, ...} exist such that
t o(t)
timsup [ pis)exp { / p(fwk(a)df} ds>1-c@,  @8)
1—00 o(t) o(s)
where o, Uy, a are defined by (2.6), (2.7),(C,) respectively, and

0 ifa>1

c(a)zié(l—a—\/l—Za—az) ifO<a§é. 29)

Then all solutions of Eq. (1.1) oscillate.

Concerning the constants 1 and é which appear in the conditions (C;), (C,) and
(N1), in 2011, Berezansky and Braverman [1] established the following:

Theorem 2.5 ([1]) For any o € (1/e, 1) there exists a non-oscillatory equation
X®+pt)x@t—1)=0, 7>0

with p(t) > 0 such that
t
lim sup/ p(s)ds = a.
=7

—>00

Also in 2011, Braverman and Karpuz [2] investigated equation (1.1) in the case
of a general argument (7 is not assumed monotone) and proved that:

Theorem 2.6 ([2]) There is no constant K > 0 such that

t
lim supf p(s)ds > K (2.10)

t—00 0)
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implies oscillation of equation (1.1) for arbitrary (not necessarily non-decreasing)
argument T(t) <t.

Remark 2.3 Observe that, because of the condition (N ), the constant K in the above
inequality makes sense for K > 1/e.

Moreover in [2] the following result was established.

Theorem 2.7 ([2]) Assume that

t o(r)
B = limsup/ p(s) exp {f p(ﬁ)d{} ds > 1, (2.11)

=00 () (s)
where o (t) is defined by (2.6). Then all solutions of Eq.(1.1) oscillate.

Observe that condition (2.11) improves (Cy).

Using the upper bound of the ratio w for possible non-oscillatory solutions x (¢)
of Eq.(1.1), presented in [12, 21, 23, 35], the above result was recently essentially
improved in [36].

Theorem 2.8 ([36]) Assume that 0 < a < % and

t o(t)
B = lirnsup/ p(s)exp{/ p({)dﬁ}ds >1-— % (1 —a—+1—2a— a2>

=00 () (s)
(2.12)
where o (t) is defined by (2.6). Then all solutions of Eq.(1.1) oscillate.

Remark 2.4 ([36]) Observe that as a — 0, then condition (2.12) reduces to (2.11).
However the improvement is clear as a — % Actually, when a = %, the value of
the lower bound on B is equal to ~0.863457014. That is, (2.12) essentially improves
(2.11).

Remark 2.5 ([36]) Note that, under the additional assumption that 7(¢) is continu-
ously differentiable and that there exists # > 0 such that p(7(¢))7'(¢) > Op(t) even-
tually for all ¢, (see [23, 35]) the condition (2.12) of Theorem 2.8 reduces to

B>1—%<l—a—\/(l—a)2—4M), 2.12)

where M is given by
eMfe — \jfa—1

(M0)?

and )\, is the smaller root of the equation A = ¢**. When @ = 1, then from [35] it

follows that ) {
—<l—a—\/(l—a)2—4M):1—a——

2 Al
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and in the case that a = %, then \; = e and (2.12)’ leads to

2 2
B>1- (1 - —) = — ~ (.735758882.
e

e

That is, condition (2.12) essentially improves (2.12) but of course under the addi-
tional (stronger) assumptions on 7(¢) and p(z).

The following example illustrates the significance of Theorem 2.8.

Example 2.2 (cf. [2, 36]) Consider the equation

x'()+ pMx(r() =0, =0, (2.13)
where p(t) = % and
t—1, t €[3n,3n +1]
7(t) =1 —3t+ (12n+ 3), te3n+1,3n+2]
5t — (12n + 13), t€[3n+2,3n+ 3]
We see that
r—1, t €[3n,3n+ 1]
o(t) = 3n, te3n+1,3n+2.6]

5t — (12n 4 13), t €[3n+2.6,3n43].

Observe that

t
. . 1
a= liminf/ %ds = % ~ (0.34212788 < —,
- e e

—00 (f) e

) " 0.93 0.93
lim sup ——ds =2.6—— =0.889532488 < 1.

t—00 @ € e

Moreover, for n > 0 we have

n+30.93 7Gn+3) .93 3n+30.93 3nt2 0.93
/ — exp / —d€ds = / —exp{/ —dﬁ}ds
o(3n+3) € 7(s) e 3n+2 e 5s—(12n+13) €

430,93 4.65
:/ —exp{—[3n+3—s]}ds
3n+2 e e

1 4.65

=3 [exp —} - 1:| ~ 0.906499566 < 1.
e

That is, the conditions (Cy), (C3), and (2.11) are not satisfied. Observe, however,
that for a ~ 0.34212788
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|- % (1 —a—+1-2a— a2) ~ 0.893938766

and we see that

t a(t) 1
lim sup/ p(s)exp {/ p(§)d§} ds >090>1— 3 (1 —a—+v1—-2a—- a2> ~ (.89,
a T

=00 () (s)

that is, the conditions of Theorem 2.8 are satisfied and therefore all solutions of the
Eq. (2.13) are oscillatory.

In 2016, El- Morshedy and Attia [14] proved that, if

lim sup [ / Pu(s)ds + c(a) exp ( / Z"f:) P (s)ds)] > 1, (2.14)
g g(0) J=

—>00 (1)

where

Pu(t) = pp_1(t) DPn—1(5) exp </ pn_l(u)du> ds,n > 1, with po(t) = p()
8

g(1) (s)

(2.15)
and c(a) is given by (2.9), then all solutions of (1.1) oscillate. Here, g(#) is a non-
decreasing continuous function such that 7(¢) < g(¢) <t, t > t; for some #; > t,.
Clearly, g(¢) is more general than o(¢) given by (2.6).

Recently, Chatzarakis [3, 4], proved that if for some j € N

t o(t)
lim sup/ p(s)exp (/ p_,-(u)du) ds > 1 (2.16)
t—>o00  Jo(t) 7(s)
or
_ ! o) l—a—+1-2a—a?
lim sup p(s)exp pjuydu |ds > 1 — ,
=00 Jo) () 2
2.17)
where

t o(t)
pj(t) = p() [1 +/ p(s)exp (/ Pj—l(u)du> dS} » with po(1) = p(1),

(1) (s)
(2.18)
and) < a < %, then all solutions of (1.1) oscillate.
Very recently, Chatzarakis, Purnaras and Stavroulakis [5] improved the above
conditions as follows.

Theorem 2.9 ([5]) Assume that for some j € N

t o(t)
lim sup/ p(s)exp (/ Pj(u)du) ds > 1, (2.19)

=00 () (s)
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or

, r ) l—a-VT—2a—a
lim supf p(s)exp / Pi(uw)du | ds > 1 — s
=00 Jo(r) 7(s) 2
(2.20)

or

t t
2
lim sup/ p(s) exp (/ Pj(u)du> ds > s (2.21)
t—oo Jo(r) 7(5) l—-a—+V1-2a—a2

or
! o(s) I+1In) l—a—+/1—-2a—a?
limsup/ p(s) exp (/ Pj(u)du> ds > Lkl ¢ a-d ,
t—o00 Jow) () Al 2
(2.22)
where

Pi(t) = p(1) [1 + f p(s) exp < / p(u) exp ( / P,-1<£)d5) du) ds],
T(t) T(s) T(u) (223)

with Py(t) = p(1).0 < a < %, and \1 is the smaller root of the transcendental equa-
tion A\ = e. Then all solutions of (1.1) oscillate.

Theorem 2.10 ([5]) Assume that for some j € N
t o(s) 1
lim inf/ p(s) exp </ P,»(u)du) ds > —, (2.24)
= Jow 7(s) e
where P is defined by (2.23). Then all solutions of (1.1) oscillate.

Before closing this section we note that one can easily see that the conditions
(2.19), (2.20), (2.22), and (2.24) substantially improve the conditions (Cy), (2.11),
(2.16), (2.12), (C}p) and (C,). That can immediately be observed, if we compare the
corresponding parts on the left-hand side of these conditions.

3 Examples

The examples below illustrate that the oscillation conditions presented in Theorems
2.9 and 2.10 essentially improve known results in the literature yet indicate a type
of independence among some of them. The calculations were made by the use of
MATLAB software.

Example 3.1 ([5]) Consider the retarded differential equation

x'(t) + éx(r(r)) =0, t >0, 3.1
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y ®

15
14
13
12
11
10

[ R T S

-
2 3 A4 5 Ko 7A8 9 10 11 12 13 14 15 16

71/ T TT

-2

19/5 29/5 44/6

Fig. 1 The graphs of 7(¢) and o (¢)

with (see Fig. 1a)

r—1, if 7 € [8k, 8k + 2]

—4f +40k +9, ift € [8k +2, 8k + 3]

5t — 32k — 18, ifr e [8k + 3, 8k + 4]

T(t) = | —4t + 40k + 18, if t € [8k + 4,8k + 5] ,k e Ny,
St — 32k — 27, ifr e [8k+ 5, 8k + 6]

—2t + 24k + 15, if t € [8k + 6, 8k + 7]

6 — 40k — 41, ift € [8k + 7, 8k + 8]

where Nj is the set of non-negative integers.

By (2.6), we see (Fig. 1b) that

t—1, if t € [8k, 8k + 2]
8k +1, ifr € [8k+2, 8k +19/5]
S5t — 32k — 18, if t € [8k +19/5, 8k + 4]
o) =3 8k+2, ift € [8k + 4,8k +29/5] ,k e Ny.
S5t — 32k =27, if t € [8k +29/5, 8k + 6]
8k + 3, ift € [8k + 6, 8k +44/6]
6t — 40k — 41, if t € [8k +44/6, 8k 4 8]

Let the function F; : Ry — R, (j € N) be defined by

t o(t)
Fi(t) = / p(s)exp (/ P; (u)du) ds, (3.2)

) (s)
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with P; given by (2.23). Noting that F; attains its maximum at t = 8k + 44/6,
k € Ny, for every j € N, and using an algorithm on MATLAB software, we obtain

t o(t)
lim sup F(t) = lim sup/ p(s)exp </ Pl(u)du) ds >~ 1.0097 > 1.

t—00 t—00 (1) (s)

That is, condition (2.19) of Theorem 2.9 is satisfied for j = 1, and therefore all
solutions of (3.1) oscillate.
Observe, however, that

¢ 8k+44/6 |
lim sup/ p(s)ds = lim sup/ —ds =0.5417 < 1,
o 8

t—00 (1) k— 00 k+3

t 8k+2 1
a = lim inf/ p(s)ds = lim inf/ —-ds =0.125 < —,
T 8

t—00 () k—o00 k1 8 e

14N, l—a—VI—2a—d2
0.5417 < +)\“ L1~ : 7% L 0.9815,
1

where \; = 1.15537 is the smaller solution of ¢*!2°* = \.

Noting that the function ®; defined by

t o(t)
D) = / p(s) exp (/ p(u)wj(u)du> ds, (j =2), (3.3)
o(t) o(s)

(with v); defined by (2.7)) attains its maximum at ¢ = 8k + 44/6, k € N for every
Jj = 2. Specifically, we find

l—a—vi—a—c2
lim sup > (1) =~ 0.6450 < 1 — — = 7%~ 0.99098.

t—00 2

Also ) o
lim sup/ p(s)exp (f p(u)du> ds ~0.74354 < 1
t—o00 a(t) T(s)
and
l—a—+v1—-2a—a2
0.74354 <1 — —° : 7%~ 0.99098.

As each one of the functions G; (j € N) defined by

t o(r)
Gt) = / p(s)exp (/ pj(u)du) ds, (jeN) (3.4)
o(t) T(s)
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attains its maximum at ¢t = 8k 4 44/6, k € Ny, for every j € N we find

t o(t)
limsup G (t) = lim sup/ p(s)exp (/ pl(u)du> ds ~0.8626 < 1

t—00 t—00 (1) (s)

and
l—a—VI—2a—d2
08626 <1——"2 : 7%~ 0.99098.

That is, none of the conditions (C), (C3) (Cio), (2.8) (for j = 2), (2.11), (2.12) and
(2.16) (for j = 1), is satisfied. In addition, observe that conditions (2.8) and (2.16)
do not lead to oscillation at the first iteration. On the contrary, condition (2.19) is
satisfied from the first iteration, which means that it is much faster than (2.8) and
(2.16).

In addition,

t t
2
lim sup[ p(s)exp ([ P (u)du) ds ~4.8243 < ~ 110.85,
t—o0 Jo(r) 7(s) l—a—+1—-2a—a2

t a(s)
lim sup/ p(s)exp (/ Py (u)du) ds ~0.7983

f—00 (®) ()

1+In), 1—a—+1—-2a—a?
< J—

~ 0.9815,
Al 2
t o(s) 1
liminff p(s) exp (/ Pl(u)du) ds =0.125 < —,
=00 Jo(r) 7(s) e

that is, none of the conditions (2.21) (for j = 1), (2.22) (for j = 1) and (2.24) (for
Jj = 1), is satisfied.

The next example concerns the condition (2.20) of Theorem 2.9. It will be apparent
that it may imply oscillation when other known criteria cited in the paper (including
condition (2.19)) fail.

Example 3.2 ([5]) Consider the retarded differential equation

25
x'(1) 4+ —x(r(1)) =0, >0, (3.5)
27e
with (see Fig. 2, blue line)

T(t)=t—15+sin(2t), t > 0.
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Fig. 2 The graphs of 7(¢) 12 ¢ E
and o(t) y=t *

monotone argument

,:t

0 2 4 ] 8 10 12

By (2.6), we see (Fig. 2, red line) that

t—1.5+sin@0), if 1 € [0, 7/3]U 2 [2.6938 + k. (k + D + /3]
o(t) =
983V3 4k it s e (U lor + /3, 2.6938 + krr]

It is easy to see that

t T /4+kT 1
a = lim inf/ p(s)ds = lim inf/ ——ds >~ 0.170314556 < —.
=00 Jr@) k=00 Jrjarkn—o05 27e e

Observe that the function F; defined by (3.2) in Example 3.1, attains its maximum
att = 2.6938 + km, k € Ny, for every j € N. By using an algorithm on MATLAB
software, we obtain

l—a—vI—2a—a
lim sup Fy (1) ~ 0.9836 > 1 — — 2 CTE + 0.9629.

—>00 2

That is, condition (2.20) of Theorem 2.9 is satisfied for j = 1, and therefore all
solutions of (3.5) oscillate.
However,

t 2.6938+km 5
lim sup/ p(s)ds = lim sup/ —ds ~0.7768 < 1,

t—00 0) ko0 J I gy 27e

and the value of the constant a is found to be
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1
a>~0.170314556 < —.
e

Consequently, the smaller root of the equation ¢®* = X is approximately \; =
1.23386, so

l1+In)\, 1—a—+1-2a—a?

0.7768
ST 2

2~ 0.9629,

indicating that condition (C1) does not hold.
Observe that the function @, defined by (3.3) in Example 3.1 attains its maximum
att = 2.6938 + km, k € Ny. Specifically, we find

l—a—vI—2a—a
lim sup » (1) ~ 0.7971 < 1 — —° 7% 0.9821,

—>00 2

and . o
lim sup/ p(s)exp (/ p(u)du) ds >~ 0.8776 < 1,

=00 Jo() ®)

l—a—Vi—2a—a?
08776 <1— —°2 : 47 % L 0.9821.

Also, specifically for the function G| : Ry — R, defined by (3.4) in Example 3.1,
we find

t o(t)
limsup G(¢) = lim supf p(s) exp (/ pl(u)du> ds ~0.9555 < 1,

t—00 t—00 ) (s)

so we see that

l—a—vI—2a—a
09555 < 1— — 2 : G7% L 0.9821.

That is, none of conditions (2.19) (for j = 1), (C}), (C3) (Cip), (2.8) (for j = 2),
(2.11), (2.12), (2.16) (for j = 1) and (2.17) (for j = 1), is satisfied. In addition,
observe that conditions (2.19), (2.8), (2.16) and (2.17) do not lead to oscillation at
the first iteration. On the contrary, condition (2.20) is satisfied from the first iteration,
which means that it is much faster than (2.19), (2.17), (2.16) and (2.8).

In addition,

t t 2
lim sup/ p(s)exp ( / Py (u)du) ds 2387 < ~ 55.974,
o 7(s)

t—00 (1) l—a—\/1—2a—a2
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t a(s) 1
lim inf/ p(s) exp (f Py (u)du) ds >~ 0.170314556 < —.
=00 Jo(r) (s) e

That is, none of the conditions (2.21) (for j = 1) and (2.24) (for j = 1) is satisfied.
The last example deals with the condition (2.21) of Theorem 2.9.

Example 3.3 ([5]) Consider the retarded differential equation

x'(t) + %X(T(l‘)) =0, >0, (3.6)

where 7(t) is defined as in Example 3.1.
It is easy to see that

t Tk+2 1
a= liminf/ p(s)ds = liminf/ p(s)ds = 0.1552 < —.
t—00 (t) k—o00 Tk+1 e

As before, we may see that the function I?, (j € N) defined by

F,(z):f p(s) exp (/ P,(u)du) ds, (jeN),
a(t) 7(s)

attains its maximum at ¢ = 8k + 44/6, k € Ny, for every j € N. An algorithm on
MATLAB software gives

-~ 2
lim sup F(t) >~ 69.8327 > ~ 68.9412,

t—00 l—a—v1—2a—a2

that is, condition (2.21) of Theorem 2.9 is satisfied for j = 1, and therefore all
solutions of (3.6) oscillate.
However, we find

1 8k+44/6
lim supf p(s)ds = lim sup/ —ds ~0.6725 < 1,
=00 Jo) koo Jakts 025

and since a = 0.1552 < é

I1+In)\, l—a—+1-2a—a?

0.6725
DY 2

~0.97,

where \; = 1.2058 is the smaller solution of ¢*152* = ).

Recalling that the function @ ; defined as in Example 3.1, attains its maximum at
t =8k +44/6, k € Ny, for every j > 2. Specifically, we find
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l—a—vI—2a—a
lim sup @5 (1) ~ 0.84 < | — — = 7%+ 09855,

—00 2

that is, none of conditions (Cy), (C»), (Cyo) and (2.8) (for j = 1) is satisfied.

In addition,

t o(s) 1
lim inf/ p(s) exp (f Py (u)du) ds =0.1552 < —,

=00 Jo@) (s) e

that is, condition (2.24) (for j = 1) is not satisfied.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Berezansky, L., Braverman, E.: On some constants for oscillation and stability of delay equa-

tions. Proc. Am. Math. Soc. 139(11), 4017-4026 (2011)

Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-
monotone delays. Appl. Math. Comput. 58, 766-775 (2011)

Chatzarakis, G.E.: Differential equations with non-monotone arguments: iterative Oscillation
Results. J. Math. Comput. Sci. 6(5), 953-964 (2016)

Chatzarakis, G.E.: On oscillation of differential equations with non-monotone deviating argu-
ments. Mediterr. J. Math. 14, 82 (2017). https://doi.org/10.1007/s00009-017-0883-0.2017
Chatzarakis, G.E., Purnaras, [.K., Stavroulakis, I.P.: Oscillation tests of differential equations
with deviating arguments. Adv. Math. Sci. Appl. 27(1), 1-28 (2018)

Domshlak, Y.: Sturmian Comparison Mathod in Investigation of the Bahaviour of Solutions of
Differential-Operator Equations. ELM Baku, USSR (1986). (in Russian)

Domshlak, Y.: On oscillation properties of delay differential equations with oscillating coeffi-
cients. Functional Differential Equations, vol. 2, pp. 59-68. Israel Seminar

Domshlak, Y., Stavroulakis, I.P.: Oscillations of first-order delay defferential equations in a
critical case. Appl. Anal. 61, 359-371 (1996)

Diblik, J.: Behaviour of solutions of linear differential equations with delay. Arch. Math. 34(1),
31-47 (1998)

Diblik, J.: Positive and oscillating solutions of differential equations with delay in critical case.
J. Comput. Appl. Math. 88, 185-202 (1998)

Diblik, J., Koksch, N.: Positive solutions of the equation x’(t) = —c(¢)x(¢t — 7) in the critical
case. J. Math. Anal. Appl. 250, 635-659 (2000)

Elbert, A., Stavroulakis, I.P.: Oscillations of first order differential equations with deviating
arguments, Univ of Ioannina T. R. No 172 (1990); Recent Trends in Differential Equations,
pp- 163-178. World Scientific Series in Applicable Analysis, vol. 1. World Sci. Publishing Co.
(1992)

Elbert, A., Stavroulakis, I.P.: Oscillation and non-oscillation criteria for delay differential equa-
tions. Proc. Am. Math. Soc. 123, 1503-1510 (1995)

El-Morshedy, H.A., Attia, E.R.: New oscillation criterion for delay differential equations with
non-monotone arguments. Appl. Math. Lett., 54, 54-59 (2016)

Erbe, L.H.: Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations.
Marcel Dekker, New York (1995)

Erbe, L.H., Zhang, B.G.: Oscillation of first order linear differential equations with deviating
arguments. Differ. Integr. Equ. 1, 305-314 (1988)

Fukagai, N., Kusano, T.: Oscillation theory of first order functional differential equations with
deviating arguments. Ann. Mat. Pura Appl. 136, 95-117 (1984)


https://doi.org/10.1007/s00009-017-0883-0.2017

A Survey on the Oscillation of Delay Equations ... 461

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population
Dynamics. Kluwer Academic Publishers, London (1992)

Gyori, 1., Ladas, G.: Oscillation Theory of Delay Differential Equatiosn with Applications.
Clarendon Press, Oxford (1991)

Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)

Jaros, J., Stavroulakis, I.P.: Oscillation tests for delay equations. Rocky Mt. J. Math. 29, 139-
145 (1999)

Jian, C.: Oscillation of linear differential equations with deviating argument. Math. Pract.
Theory 1, 32-41 (1991). (in Chinese)

Kon, M., Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for delay equations. Proc. Am.
Math. Soc. 128, 2989-2997 (2000)

Koplatadze, R.G., Chanturija, T.A.: On the oscillatory and monotonic solutions of first order
differential equations with deviating arguments. Differentsial’nye Uravneniya 18, 1463-1465
(1982)

Koplatadze, R.G., Kvinikadze, G.: On the oscillation of solutions of first order delay differential
inequalities and equations. Georgian Math. J. 1, 675-685 (1994)

Kwong, M.K.: Oscillation of first order delay equations. J. Math. Anal. Appl. 156 , 286-374
(1991)

Ladas, G.: Sharp conditions for oscillations caused by delay. Appl. Anal. 9, 93-98 (1979)
Ladas, G., Laskhmikantham, V., Papadakis, J.S.: Oscillations of higher-order retarded differ-
ential equations generated by retarded arguments. Delay and Functional Differential Equations
and their Applications, pp. 219-231. Academic Press, New York (1972)

Ladas, G., Stavroulakis, I.P.: On delay differential inequalities of first order. Funkcial. Ekvac.
25, 105-113 (1982)

Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations
with Deviating Arguments. Marcel Dekker, New York (1987)

Li, B.: Oscillations of first order delay differential equations. Proc. Am. Math. Soc. 124, 3729—
3737 (1996)

Myshkis, A.D.: Linear homogeneous differential equations of first order with deviating argu-
ments. Uspekhi Mat. Nauk 5, 160-162 (1950). (Russian)

Philos, ChG, Sficas, Y.G.: An oscillation criterion for first-order linear delay differential equa-
tions. Can. Math. Bull. 41, 207-213 (1998)

Pituk, M.: Oscillation of a linear delay differential equation with slowly varying coefficient.
Appl. Math. Lett. 73, 29-36 (2017)

Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for first-order delay equations. Bull. Lond.
Math. Soc. 35, 239-246 (2003)

Stavroulakis, I.P.: Oscillation criteria for delay and difference equations with non-monotone
arguments. Appl. Math. Comput. 226, 661-672 (2014)

Wang, Z.C., Stavroulakis, I.P., Qian, X.Z.: A Survey on the oscillation of solutions of first order
linear differential equations with deviating arguments. Appl. Math. E-Notes 2, 171-191 (2002)
Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z.: Oscillations of differential equations with
deviating arguments. Panam. Math. J. 2, 59-78 (1992)

Zhou, D.: On some problems on oscillation of functional differential equations of first order.
J. Shandong Univ. 25, 434-442 (1990)

Zhou, Y., Yu, Y.H.: On the oscillation of solutions of first order differential equations with
deviating arguments. Acta Math. Appl. Sin. 15(3), 288-302 (1999)



Discrete Versions of Some Dirac Type m
Equations and Plane Wave Solutions oo

Volodymyr Sushch

Abstract A discrete version of the plane wave solution to some discrete Dirac type
equations in the spacetime algebra is established. The conditions under which a
discrete analogue of the plane wave solution satisfies the discrete Hestenes equation
are briefly discussed.

Keywords Dirac—Kihler equation + Hestenes equation + Clifford product
Spacetime algebra - Plane wave solution - Discrete models

MSC 81Q05 - 39A12 - 39A70

1 Introduction

This work is a direct continuation of that described in my previous papers [11, 12].
In [11], a discrete analogue of the Dirac equation for a free electron in the Hestenes
form was constructed based on the discretization scheme [10]. In [12], a relationship
between the discrete Dirac—Kéhler equation and discrete analogues of some Dirac
type equations in the spacetime algebra was discussed. In this paper, we establish a
discrete version of plane wave solutions to discrete Dirac type equations.

We first briefly review some definitions and basic facts on the Dirac—Kéihler
equation [7, 8] and the Dirac equation in the spacetime algebra [4, 5]. Let M =
R!3 be Minkowski space with metric signature (+, —, —, —). Denote by A’ (M)
the vector space of smooth differential r-forms, r =0, 1, 2, 3,4. We consider
A"(M) over C. Let d : A"(M) — A™'(M) be the exterior differential and let
§: A" (M) — A”"'(M) be the formal adjoint of d with respect to the natural
inner product in A"(M). We have § = xd*, where * is the Hodge star operator
%1 AT (M) — A* (M) with respect to the Lorentz metric. Denote by A (M) the set
of all differential forms on M. We have
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AM) = A (M) ® A* (M),

where A% (M) = A°(M) @ A2(M) & A*(M) and A°Y(M) = AV (M) & A3(M).
Let 2 € A(M) be an inhomogeneous differential form, i.e. £2 = Zfzo @, where

we A (M). The Dirac—Kdhler equation is given by
id+8)2 =ms2, (1)

where i is the usual complex unit and m is a mass parameter. It is easy to show that
Eq. (1) is equivalent to the set of equations

i&%} = mc(z)),
i(dd + 8) = ma,
. 1 3 2
i(do+ dw) =mo,
i(déd + 8) = ma,

.3 4
idow = mo.

The operator d + § is an analogue of the gradient operator V = Zizo Y0 in
Minkowski spacetime, where y,, is the Dirac gamma matrix and 0" is a partial deriva-
tive. Think of {yp, y1, ¥2, ¥3} as a vector basis in spacetime. Then the gamma matrices
¥, can be considered as generators of the Clifford algebra C¢(1, 3) [1, 2]. Hestenes
[5] calls this algebra the spacetime algebra. Denote by C¢r(1, 3) (Clc(1, 3)) the
real (complex) Clifford algebra. It is known that an inhomogeneous form §2 can be
represented as element of C£c (1, 3). Then the Dirac—Kéhler equation can be written
as the algebraic equation

iVR2 =ms$2, $£2 e Clc(l,3). (2)

Equation (2) is equivalent to the four Dirac equations (traditional column-spinor

equations) for a free electron. Let C€¢V(1, 3) be the even subalgebra of the algebra
C¢(1, 3). The equation

— V1, =m2%y, 2° e Cly(1,3), 3)

is called the Hestenes form of the Dirac equation [4, 5]. Consider also the equation

iVQRY =mQ%y, £2° e ClE(1,3). 4)

In [6], this equation is called the “generalized bivector Dirac equation”. Following

Baylis [2] we call Eq.(4) the Joyce equation. This equation admits the plane wave
solution of the form
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3
¥ = Aexp in“xu , (%)
n=0

where A € C¢% (1, 3) isaconstantelementand {p°, p', p?, p*}isafour-momentum.
Suppose that for exterior forms (elements of A(M)) the Clifford multiplication is
defined. It should be noted that the graded algebra A (M) endowed with the Clifford
multiplication is an example of the Clifford algebra. In this case the basis covectors
et =dx", u=0,1,2,3, of spacetime are considered as generators of the Clifford
algebra. Let Ar(M) denote the set of real-valued differential forms. Then Egs. (3)
and (4) can be rewritten in terms of inhomogeneous forms as

—(d+8)R%'P =mRe", Q2 e AT (M), (6)
and
i(d+8)R2% =mNeL, 2 e AY(M). (7)

The aim of the present paper is to construct a discrete version of the plane wave
solution (5). In much the same way as in the continuum case [2, 6] we show that the
discrete Joyce equation admits eight linearly independent plane wave solutions in
the discrete formulation. We briefly discuss the conditions under which the obtained
plane wave solutions satisfy the discrete Hestenes equation.

2 Discrete Dirac—Kihler equation

In this section, we start off with a discretization scheme. The scheme is based on the
language of differential forms and is described in [10]. This approach was originated
by Dezin in [3]. Due to space limitations, we skip the relevant material from [10].
For the convenience of the reader, we fix only some notation and recall some facts
concerning discrete analogues of the differential operators d and §. All details can
be found in [9, 10].

Let K(4) = K ® K ® K ® K be a cochain complex with complex coefficients,
where K is the 1-dimensional complex generated by 0- and 1-dimensional basis ele-
ments x“ and e“, k € Z, respectively. Then an arbitrary r-dimensional basis element
of K (4) can be written as sé‘r) = sk @ sk @ %2 ® 553, where s*» is either x*» or ek«
k = (ko, k1, k2, k3) and kl/- € 7. Let

=i eexh,  d=dved @@
denote the 0- and 4-dimensional basis elements of K (4). The dimension r of a basis

element sé‘r) is given by the number of factors e* that appear in it. For example, the
1-dimensional basis element el’; € K (4) can be written as
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e’é = @ xh @ xk @ xk, e’l‘ =xh @ ®xk @xh,
s=x"@r" M @r", A= s ",

where the subscript = 0, 1,2, 3 indicates a place of e+ in ef. Similarly, e,
n < v, and ef‘w, t < u < v, denote the 2- and 3-dimensional basic elements of
K (4). The complex K (4) is a discrete analogue of A(M) and cochains play the role
of differential forms. Let us call them forms or discrete forms to emphasize their
relationship with differential forms. Denote by K" (4) the set of all r-forms. Then
we have

K@) =K"® ® K4,

where K¢ (4) = K°(4) @ K*(4) @ K*(4) and K*(4) = K'(4) ® K*(4). Any
r-formw € K "(4) can be expressed as

0 0 2 w K 4 4 4
w= E X", o= E E W €y w = E we”, (8)
1 ok 3 wy k
w = €, w= O €y 9)
k k

~
~
=
A
<
=~

0 4 . .
where @y, ", @k, o) and " are complex numbers. A discrete inhomogeneous

form §2 € K (4) is defined to be

4
2= o (10)
=0

r

Let d°: K"(4) — K'*'(4) be a discrete analogue of the exterior derivative d and
let 8¢ : K" (4) — K"~'(4) be a discrete analogue of the codifferential §. For more
precise definitions of these operators we refer the reader to [10]. In this paper we
give only the difference expressions for d€ and 5. Let the difference operator A, be
defined by

M = o} — o, (1n

where a),Er) € Cis a component of @ € K" (4) and 7,, is the shift operator which acts
as Tk = (ko, ...k, +1,...k3), u=0,1,2,3. For forms (8), (9) we have

3
dcc(z)) = Z Z(Auc%k)eﬁ, dcél) = Z Z(Auwl‘c) - Ava);:)e];w’ (12)

k pn=0 k p<v
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2
d‘o = Z [(Aow — Aw)” + A ef, + (Mg — Ao} + Az )eg s
k
+ (Ao — Mo + Az ey + (A1 — Aoy + Az el ], (13)

d'o =Y (Al — 410 + 0P — AN, dw=0,  (14)
0

Fo=0, o= (Aw)— A} — Ao} — Ao, (15)
k

2
8w = Z [(A