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Abstract Traffic information plays a significant role in everyday activities. It can
be used in the context of smart traffic management for detecting traffic congestions,
incidents and other critical events. While there are numerous ways for drivers to
find out where there is a traffic jam at a given moment, the estimation of the future
traffic is not used for proactive activities such as ensuring a smoother traffic flow
and to be prepared for critical situations. Therefore traffic prediction is focal both for
public administrations and for the Police Force in order to do resource management,
network security and to improve transportation infrastructure planning. A number of
models and algorithms were applied to traffic prediction and achieved good results.
Many of them require the length of past data to be predefined and static, do not take
into account dynamic time lags and temporal autocorrelation. To address these issues
in this paper we explore the usage of Artificial Neural Networks. We show how Long
Short-Term Memory (LSTM)), a particular type of Recurrent Neural Network (RNN),
can overcome the above described issues. We compare LSTM with a standard Feed
Forward Neural Network (FDNN), showing that the proposed model achieves higher
accuracy and generalises well.

1 Introduction

With the increasing amount of traffic information collected through automatic num-
ber plate reading systems (NPRS), it is highly desirable for public administrations
and the Police Force to have surveillance tools to estimate traffic parameters such
as the number of car passing through a plate or their average speed to detect traffic
congestions, incidents and other critical events. For example, commercial traffic data
providers, such as Bing maps Microsoft Research [13], rely on traffic flow data, and
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machine learning to predict speeds given road segment. Real-time (15—40 min) fore-
casting gives travellers the ability to choose better routes and authorities the ability
to manage the transportation system. While, for the Police Force it can be useful to
plan surveillance activities. The predictability of network traffic parameters is mainly
determined by their statistical characteristics and by the fact that they present a strong
correlation between chronologically ordered values. Network traffic is identified by:
self-similarity, long-range dependence and a highly nonlinear nature (insufficiently
modelled by Poisson and Gaussian models).

Several methods have been proposed in the literature for the task of traffic forecast-
ing, which can be categorised into: linear prediction and nonlinear prediction. The
most widely used traditional linear prediction methods are: a) the ARMA/ARIMA
model [4, 5, 8]. The most common nonlinear forecasting methods involve Artificial
Neural Networks (ANNs) [1, 4, 6]. The experimental results from [3] show that
nonlinear traffic prediction based on ANNs outperforms linear forecasting models
(e.g. ARMA, ARAR, HW) which cannot meet the accuracy requirements.

Also if it has been proved that ANNs achieve the best results, deciding the best
ANN architecture for the task is still a daunting task. The best architecture can be
a compromise between the complexity of the solution, characteristics of the data
and the desired prediction accuracy. Most of the times a simple Feed Forward Deep
Neural Network (FFDNN) can achieve good results. But, we are going to show that
by taking into account the implicit temporal characteristics of the analysed problem
we can achieve better results.

Unlike feed forward deep neural networks (FFNNs), Recurrent Neural Networks
(RNNs) have cyclic connections over time. The activations from each time step
are stored in the internal state of the network to provide a temporal memory. This
capability makes RNNs better suited for sequence modelling tasks such as time
series prediction and sequence labeling tasks. However, RNNs suffer the well know
problem of the vanishing gradient [7], that happens when multiplying several small
values from the temporal memory. This makes RNNs not able to learn long temporal
dependencies. On the contrary, Long Short-Term Memory (LSTM) [7] addresses
the vanishing gradient problem of conventional RNNs by using an internal memory,
a carry and a forget gate to decide when keep/forget the information stored in its
internal memory. RNNs and LSTMs have been successfully used for handwriting
recognition [10], language modelling [12], speech to voice [2] and other classification
and prediction tasks.

In this paper we present a deep neural network (DNN) architecture based on
LSTM to forecast hour by hour the number of vehicles passing through a gate. We
build a general model that is capable of predicting the next 24 hours of traffic basing
on the past observed data. Moreover, the model is capable of abstracting on the gate
number and on the temporal component. Thus, it can do predictions for variable time
ranges. We show the advantages of the proposed architecture in modelling temporal
correlations with respect to a FFDNN in term of mean square errors. In remainder
of the paper we discuss: RNN and LSTM, the proposed architecture for the task, the
experimental results and we draw conclusions and discuss on future works.
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2 RNN and LSTM

Recurrent Neural Network. Feed Forward Neural Networks treat each input as
independent with respect the previous ones. They start for scratch for every input
not taking into account possible correlation stored in consecutive observations of the
input. On the contrary, RNNs address this issue, by using a loop (see Fig. 1) in them
that allows information to flow.

Given an input-length /, the loop in the RNN unrolls the network [-times and
creates multiple copies of the same network, each passing its computed state value
to a successor (see Fig.2).

The simple architecture of RNN has an input layer x, hidden layer h and output
layer y. At each time step ¢, the values of each layer are computed as follows:

hy = fWUy, + Wp,_) (H
i =gWVh) 2)

where U, W and V are the connection weight matrices in RNN, and f(z) and g(z)
are sigmoid and softmax activation functions.

Long Short-Term Memory. Long short-term memory (LSTM) [7] is a variant of
RNN which is designed to deal with the gradient vanishing and exploding problem
when learning with long-range sequences. LSTM networks are the same as RNN,
except that the hidden layer updates are replaced by memory cells. Basically, a mem-
ory cell unit is composed of three multiplicative gates that control the proportions of
information to forget and to pass on to the next time step. As a result, it is better for
exploiting long-range dependency data. The memory cell is computed as follows:

i = G(Wih,] + Uix, + b;) (3)
fi = O'(Wf]’l,] + for + bf) 4)
¢ = fi ©c_1+i; ©tanh(Weh,—y + Uex; + be) @)
0y = O‘(Wohtfl + Uox; + bo) (6)
Fig. 1 Loops in Recurrent
Neural Networks @
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Fig. 2 Unrolled Recurrent Neural Networks
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Fig. 3 The repeating module in an LSTM contains four interacting layers

h, = 0; © tanh(c,) (7)

where o is the element-wise sigmoid function and © is the element-wise product,
i, f, 0 and c are the input gate, forget gate, output gate and cell vector respectively.
Wi, Wy, W, W, are connection weight matrices between input x and gates, and Uj;,
Uy, U., U, are connection weight matrices between gates and hidden state /2. While,
bi, by, be, b, are the bias vectors. Figure 3 shows how the information carried in the
memory cell are modified and passed out the next LSTM cell.

3 Gate Traffic Prediction

In this section we describe the use of a LSTM to extract the temporal feature of
the network traffic and predict hour by hour the number of vehicles passing through
gates. This architecture can deeply model mutual dependence among gate measure
entries in various time-slots.

3.1 Problem Statement

Let G be the list of the gates in a roads network, and 7" the time dimension, we can
collect data from the gates at each timestamp #;. Each measure contains information
related to the gate number, the number of cars pass through, and the actual timestamp.
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We can represent the data as a matrix of shape L x M, where L is the number of
measures and M is the number of features recorded. Given a list of consecutive
measures for a gate we can model them as a time-series. The main challenge here is
how to sample properly the batches of data to feed the LSTM for the training phase.

3.2 Modelling the Input for the LSTM

As input for the LSTM we draw a sliding window of measures extracted from the
same gate. Each batch has:

e a batch size: the number of observations to generate

e a sample size: the number of consecutive observations to use as features

e a predict step: the position of the observation to use as target value for the pre-
diction task.

Figure 4 shows an example of measure with: batch size equal to 3, sample size
equal to 10 and predict step with value 1.

During the training we feed the LSTM with batches of sample size larger than
the one showed in the example above. In particular, we are interested to predict the
traffic state for the next 24 hours, thus we set this as fixed value for the evaluation.

3.3 Performance Metric

To quantitatively assess the overall performance of our LSTM model, Mean Absolute
Error (MAE) is used to estimate the prediction accuracy. MAE is a scale dependent
metric which quantifies the difference between the forecasted values and the actual
values of the quantity being predicted by computing the average sum of absolute
eITors:

1 & .
MAE = N;ayi ) (8)

where y; is the observed value, y; is the predicted value and N represents the total
number of predictions.
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4 Experimental Results

In order to evaluate the proposed approach, we performed an experimental evaluation
on Trap-2017' dataset. This dataset contains transits recorded using several gates.
It stores measures from the transits of a limited area of Italy, in which gates are
homogeneously distributed. The plates are coherently anonymised (a plate is always
referred using the same ID). Data records contains: plate id, gate number, street
line number, timestamp, nation of the car. All The data are split into a file per day
and the whole dataset contains measured sampled for the 2016, which are in total
155.586.309 observations.

Since our goal to create a model to predict the number of cars flowing through a
specific gate hour by hour, we preprocessed the data to obtain the following features:
gate number; hour, day, month, week-day, and the count of transit in 60min range.
After this data transformation step the size of the dataset was reduced to 222.115
observations. This is mostly because we aggregate the measures to 60 min, if data
was aggregated each 15 min we would have a size four times larger.

We compare results for the proposed LSTM with respect a Feed Forward Deep
Neural Network architecture (FFDNN). Mean Square Error (see Eq.9) is used as
performance measure. To implement both the models we used Keras? Deep Learning
Library. The first architecture is composed by 4 LSTM layers with 64, 128, 64 and
1 neurons per layer, while the second uses 4 Dense Layers with 64, 128, 64 and 1
neurons. As activation functions we used Rectified Linear Unit (ReLU) [9], while
as optimizer RMSprop [11]. The dataset is split in 70%, 10%, 20% for training,
validation and test.

Mean Square Error (MSE) (Eq.9) is used as loss function for the optimizer. MSE
is a scale dependent metric which quantifies the difference between the forecasted
values and the actual values of the quantity being predicted by computing the average
sum of squared errors:
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where y; is the observed value, y; is the predicted value and N represents the total
number of predictions.

The FFDNN and the LSTM models were trained for 50 epochs. Figures 5 and 6
present training and validation MAE for the FFDNN. From the results is interesting
to see that the architecture converge nicely without overfitting. After the training the
minimum MAE for the validation set is 0.29, while for the test set is 0.287.

On the contrary, Figs. 7 and 8 present the results for the LSTM. Here we can note
that the convergence rate is faster than the one observed for the FFDNN network.
Finally, it achieves 0.121 and 0.134 of MAE score for the validation and test set
respectively, which is half the of the value obtained for the FFDNN.

In Figs.9 and 10 we can see an example of prediction done by the two models.
Here we can note that the prediction made by the LSTM is smoother than the one
made by the FFDNN.
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5 Conclusions and Future Works

In this paper, we have presented a new neural network architecture based on LSTM
for gate traffic prediction. Experiments results show that the proposed architecture
performs well on the Trap-2017 dataset in terms of mean absolute error, and that it
obtains better result with respect to a classical FFDNN. As future work we will run
our algorithm on different datasets and do an extensive search for hyper-parameters
tuning.
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