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Abstract. This paper is a continuation of a series of papers devoted to the
construction and investigation of the properties of integro-differential polyno-
mial splines of the fifth order. It is supposed that values of function in grid nodes
and values of integrals over intervals are known. Solving the system of linear
algebraic equations, we find basic splines. An approximation of the function in
this paper is constructed on every grid interval separately using values of the
function in two adjacent grid nodes and the values of three integrals over
intervals, and basic splines.

We call this approximation an integro-differential spline and we call these
basic splines integro-differential basic splines. The properties of interpolation
with integro-differential polynomial basic splines are investigated. A compar-
ison of the properties of integro-differential approximations for a different choice
of integrals is presented. A comparison of the integro-differential approximation
with approximation using polynomial splines of the Lagrangian type is made.
Numerical examples are presented.
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1 Introduction

A variety of splines with different properties are used in calculations in many engi-
neering projects [1, 3]. Among them are analysis-suitable T-splines of arbitrary degree,
which are useful for modeling cracks in plane problems, and for the solution of
boundary-value problems, cubic, bicubic and biquadratic B-splines, trigonometric,
orthogonal splines. These splines are applied to the construction of curves and surfaces,
to the designing of ship hulls, to the transformation of a sound signal’s frequency and
to many others [1-13].

This paper is a continuation of the series of papers devoted to the construction and
investigation of the properties of integro-differential polynomial splines of the fifth
order [7, 14, 15]. In this paper we discuss the construction of polynomial splines which
use three integrals over subintervals in addition to the values of the function in the
nodes. As in previous papers, we construct the approximation separately for each
subinterval. As usual, local spline approximation uses values of the approximated
function and, sometimes, values of its derivatives.

© Springer International Publishing AG, part of Springer Nature 2019
K. Ntalianis and A. Croitoru (Eds.): APSAC 2017, LNEE 489, pp. 39-46, 2019.
https://doi.org/10.1007/978-3-319-75605-9_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75605-9_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75605-9_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75605-9_6&amp;domain=pdf

40 1. G. Burova and A. G. Doronina

2 Approximation of the Function

Suppose that n, m are natural numbers, while a, b, ¢, d, h are real numbers, h = (b-a)/n.
Let the function u(x) be such that u € C5[a — 3h, b]. We have the grid of interpolation
nodes x; such thatx_y = a —kh,k =3,2, 1, xo = a,x;+1 =xi+h,i=0,...,n,x, =b.

Suppose that u(x;),i =0,1,...,n and f;q u(&)dé, fj,z u(&)dé, jjf} u(é)déi =
0,...,n are known. We denote L:t(x) as an approximation of function u(x) in interval
[xi, xi 1] C [a, D]

Xi Xi

(x) = u()wi(x) 4+ u(xi w1 (x) + / u(@)déw 07 (x) + / u(@déw: "7 (x)
+ / u(&)dé Wi<_3'0> (x).
We obtain basic splines w;(x), wi1(x), w= "* (x),w "~ (x),w "~ (x)

from system: u#(x) = u(x), u(x)=x"', i=1,2,3,4,5.
If x=x;+th, t€][0,1], then the basic splines can be written in the form:

_ 3 2 2 3
witi + th) = (1 —1)(125¢° + 5771 + 7361 +222) Wit () = t(12 + 331+ 241 + 5¢ )7
222 74
10> _ 1t = 1)(15572 46031 +516) 505 (1 —1)(552 + 17114 90)
w; (xi+1th) = TA8h W, (xi+1th) = 1285 ,
_ t(t — 1)(85 + 197t + 92
W,'< 3,0 > ()Ci+ﬂ’l) _ ( )( )
1332h
We can also construct the approximation in this form:
V(x) = u(x;) o (x) +u(xi 1)1 (x) + / w(@)dé o™ (x) + / w(&dé w771 (x)
. Xi-1 Xi—2 ( 1 )
+ / u(&)dé o 77 (x),x € [y x4 1]
We obtain basic splines w;o(x), wi+170(x),a)i<s’s+l 7 (x),s = —1,-2, -3, from

the system:

V(x) = u(x), u(x)= X i=1,2,3,4,5. (2)
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If x=2x;+1th, 1€]0,1], then the basic splines can be written in the following
form:

(1 —1)(125¢% + 577> + 7361 + 222)

w,-(x,- + ﬂ’l) = ) s
t(12 4+ 33t 4+ 2472 4+ 58
Wi +1(xi+1th) = ( ),
74
<10 > 1(t — 1)(985¢* + 40851 + 3926)
; ’ i+ th) = ,
@i (xi +1h) 13324
<2 1> t(t — 1)(205£2 + 6711+ 359)
; ’ i +th) = — ,
@i (xi+th) 666h

t(t — 1)(85£ + 197t +92)

<-3,-2> ) —
w; (x; + th) 3900

1

Our aim is to determine if V(x) = u(x).

Lemma 1. Let function u € C°[a — 3h,b]. The next statement is valid:

V(x) =u(x), x€x,xi1], i=0,1,...n—1.

Proof. It can be shown that the next relations are valid:

<-1,0>

-2,0
i i< 0 (

<-3,0> <-10>

L=w (xi +th)+w x;i +th) +w; (x; +1th) = w; (x; +th),

L=w""2"" (x;+1h) +w 77 (xj +th) = 07> 7 (x; +th),

1

L=w"""" (xj+1h) = 0 77 (x; + th).

i i
Therefore, we obtain:

Xi Xi—1

1:4(x,~ + ﬂ’l) = u(xi)w,;o(x) + M(X,'+1)(Ui+110(x) + / M(i)di 11 + / M(é)dilz

Xi—2 Xi

+ / u(&)dé Iz = u(x;)wip(x) +ulx; ¢ 1)o; 1 10(x) + /u(f)dfwf*"b(xﬁth)

+ / w(@)dé 717 (x+th) + / w(E)dé w77 (x; + th) = V(x; +th).

Xi-2 Xi3

The proof is complete.
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Lemma 2. Let the function be such that u € C°[a — 3h, b]. The next statements are
valid:

(1) V() =ulx), (2) Vi) =ulxii1), (3) J V(x)dx = | u(x)dx,

Xi-1 Xi—1

@) V@ =" u(xdx, (5) 7 V(x)dy =" u(x)dx.

Xi—2 Xi—2 Xi-3 Xi-3

Proof. Firstly, let us notice that statements (1)—(2) follow from the next relations:
<-1,0>
wi(x;) = 1, 0(xi11) = 0,0 41(x;) = 0,04 1(xi41) = 1, 0; (xi) =0,
wi<71,0 > (.xi+1) — 0, wi<72,71 > (.xi) — O, COi<72,71 > (xi+1) — 07 wi<73,72 > (xi) — 0,
l<73,72 >

w; (xit1) = 0.

Similarly, statements (3)—(5) follow from the next relations:

X X X X;
/ w;(x)dx = 0,/ Wi+ 10(x)dx = 0,/ o707 (x)dx = l,/ o777 (0)dx = 0,
Xi—1 Xi—1 Xi—1 Xi—1

/ o —3-2> (x)dx = 0.
Xi-1

Xi-3

Xi-3 Xi-3

The proof is complete.
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Now we can find the points {;, {,, {3 such that

w(COh = | u(&de, el xluG)h = | w(E)dE, Coelxi-a,xi-1],

i—1 i—

u((3)h = )72 u(&)d¢, (3elxi—3, xi-]-
i3

We can construct approximation i(x), x € [x;, xj 1], in the form:

i(x) = u(xj) wjo(x) + u(xH 1)60j+ 10(x)

+u(C)hof O (x) +u(l)hol >V (x) +u(l)hof 7 (x),

The interpolation of the Lagrange type with nodes (;, {5, {3, {4 = xj, {s = xj1, has
the form

O(x) = u(@)WE)/((x = W), x € .3 1], 3)
where W(x) = (x — () (x — () (x — ) (x — {4) (x — &5).

The remainder term of the Lagrange interpolation (3) is as follows:

U () (x — x7) (x = x551) (x = () (x = L) (x = §3) /50 me [x7-3, X541

Table 1 shows actual errors of approximation of functions constructed with formula
(1) and theoretical errors of approximation of functions constructed with formula (3)
when [a,b] = [-1,1],h = 0.1. Calculations were done in Maple with Digits = 15.

Table 1. Actual errors max,e[o,l]W — u| constructed with formula (1) and theoretical errors of
approximation (3)

u(x) Actual errors | Theoretical errors
sin(3x)cos(5x) | 0.26 - 1072 [0.139 - 107!

x /5! 0.18 - 107% [0.85 107°

1/(1 4 25x%) [0.25 - 107! |0.27

3 Comparison with Lagrange Type Splines

Suppose we know the values of function u € C3[a — 3h, b] in the points x;. We consider
the interpolation with Lagrange type splines

W(x) = u(x;) 0;(x) +u(xj 1) 041 (x) + 1 (xi1) 01 (x) + u(xj-2) ;2 (x)
+u(x-3)03(x),x € [x7,%41]

4)
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It can be found that e, 4 (x) = (x — ) (x — 5-1) (¥ — 3-2) (x — x3) /Zj 1 1.
Zror = (=) (1 = 5-1) (501 = 5-2) (51 = 52)
(%) = (r = xj50) (x = x1) (¥ = x5-2) (v = 5-3) /2,
2= (5 = x+0) (6 = x-1) (5 = 5-2) (5 = %5-3),
01 () = (¥ = x51) (0 =) (x = x52) (¥ = %3) /Z1,
Zir = (51 = 500) (-1 =) (501 = x52) (501 = x3),
@j2(%) = (= x501) (x = x) (x = x-1) (x = %-3) /%2,
Zi2 = (52 = x1) (52 = ) (2 = x-1) (52 = %)
0j-3(x) = (= 541) (¥ = %) (¥ = x-1) (¥ = %-2) /%3,
)

Zi3 = (%3 = %+1) (%3 — ) (-3 — x-1) (-3 — x2).

Lemma 3. Suppose u € C°[a — 3h, b]. There is a point 1 € [x;_3,%;+1], such that

4
u(x) — W(x) = ;m

(x = 27) (x = x4 1) (r = xj-1) (% = x5-2) (x = %j-3),x € [x,3541]-

Proof. The points x;_;, i = —1,0,1,2,3 are the points of interpolation. Using the
formula of the remainder term of Lagrange interpolation we obtain the formula.

Corollary. If M = [max | ) (x)| and we put x = x;+h, 1€ [0,1], then
x€la—3h,b

W (x;j +th) — u(xj +th)| < 3.63Mh’ /5!
J 7

Proof. Obviously,
\W (5 + th) — u(x;+ th) | < MR |t(t — 1)(t + 1) (¢4 2) (1 + 3)| /5!

It can be obtained, that

maxejo,q)|t(t — 1) (¢ +1)(t+2)(t+3)| = 3.63,

when ¢ ~ 0.6444.

The proof is complete.

Table 2 shows actual and theoretical errors of approximation of functions con-
structed with formula (4) when [a,b] = [-1,1], & = 0.1. Calculations were done in
Maple with Digits = 15.
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Table 2. Actual and theoretical errors max,cjo1)|V — u| of approximation constructed with

formula (4)
u(x) Actual errors | Theoretical errors
sin(3x)cos(5x) | 0.45 - 1072 0.139 - 107!
x /5! 0.30259 - 107°|0.30262 - 10~°
1/(1 + 25x%) | 0.34 - 107! 0.95 - 107!

4 Conclusion

Here we investigated approximation using the values of integrals of the function over
the subintervals immediately to the left of this subinterval. If the values of the integral
of the function are unknown, we will use quadrature formulae with the fifth order of
approximation.
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