
Chapter 4
Simplicial Toric Varieties Which Are
Set-Theoretic Complete Intersections

Marcel Morales

Abstract We say that a polynomial ideal I is set-theoretically generated by a family
of elements f1, . . . , fk in I if the radical of I coincides with the radical of the ideal
generated by f1, . . . , fk . Over an algebraically closed field, the smallest number
among all such possible k is the minimal number of equations needed to define
the zero set of I . To find this number is a classical problem in both Commutative
Algebra and Algebraic Geometry. This problem is even not solved for the defining
ideals of toric varieties, whose zeros are given parametrically by monomials. In
this lecture notes we study set-theoretically generation of the defining ideals of
simplicial toric varieties, which are defined by the property that the exponents of the
parametrizing monomials span a simplicial complex. We review and improve most
of results on simplicial toric varieties which are set-theoretic complete intersections,
previously obtained by the author in collaboration with M. Barile and A. Thoma.

4.1 Introduction

In the beginning of Algebraic Geometry, varieties were described by equations.
However, such description is ambiguous. In order to be more precise, the notion
of ideal (defining a variety) was introduced. But if we define a variety as the zero
set of a polynomial ideal, there is still ambiguity because different ideals can have
the same zero set. The famous Hilbert Nullstellensatz helps us to understand this
phenomenon better.

More precisely, let S := K[X1, . . . , Xn] be a polynomial ring over a field
K . Let An

K be the affine n-dimensional space over K . Given a set f1, . . . , fk of
polynomials, the zero set

Z(f1, . . . , fk) = {P ∈ A
n
K | fi(P ) = 0 ∀i = 1, . . . , k}
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is called an algebraic set. It is also the zero set Z(I) of the ideal I = (f1, . . . , fk).
For any subset Y ⊂ A

n
K , we define the ideal of Y by

I (Y ) = {f ∈ S | f (P ) = 0 ∀P ∈ Y }.

For an algebraic set V , the ideal I (V ) is called the defining ideal of V . It is clear
that if I (V ) = (f1, . . . , fs ), then V = ∩s

i=1Z(fi), i.e. V is the intersection of the
hypersurfaces Z(fi). However, there are many ways to define V as an intersection
of hypersurfaces. An important problem in Algebraic Geometry is to determine the
minimum number of equations needed to define an algebraic set V set-theoretically,
that is the minimal number s such that V = ∩s

i=1Z(fi) for a family of s polynomials
f1, . . . , fs ∈ K[X1, . . . , Xn]. An important tool in the study of this problem is:

Theorem 4.1.1 (Hilbert’s Nullstellensatz) Let K be an algebraically closed field.
Then for any family of polynomials f1, . . . , fs , we have

I (Z(f1, . . . , fs)) = rad (f1, . . . , fs).

This result leads to the following definition.

Definition 4.1.2 The arithmetical rank of an algebraic set V ⊂ A
n
K is the number

ara(V ) = min{k| ∃f1, . . . , fk ∈ S : I (V ) = rad (f1, . . . , fk)},

and the arithmetical rank of an ideal I is

ara(I) = min{k| ∃f1, . . . , fk ∈ S : rad I = rad (f1, . . . , fk)}.

Let Pn
K be the projective n-dimensional space over K . Similarly, one can define

an algebraic set in P
n−1
K as the zero set of a family of homogeneous polynomials

in S. For any subset Y ⊂ P
n−1
K , one define I (Y ) to be the ideal generated by the

homogeneous polynomials f ∈ K[X0, . . . , Xn] vanishing on Y . Then we also have
the homogeneousHilbert Nullstellensatz, and we can define the arithmetical rank of
an algebraic set in Pn

K or of a homogeneous ideal in K[X0, . . . , Xn].
Thus, if K is an algebraically closed field, we have ara(Z(I)) = ara(I) for

any ideal I (homogeneous or not). However, it is more convenient to work over any
field K and on set-theoretic generation of ideals. From now on, when we consider
affine or projective algebraic sets, we only take care of their defining ideals. For an
arbitrary ideal I , we always have the following inequalities:

ht (I) ≤ ara(I) ≤ μ(I).

Here, ht (I) denotes the height and μ(I) the minimal number of generators of I .
When h(I) = ara(I), the ideal I as well as the algebraic set V = Z(I) is called
a set-theoretic complete intersection (s.t.c.i). When ht (I) = μ(I), it is called a
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complete intersection. It is called an almost set-theoretic complete intersection if
ara(I) ≤ ht (I) + 1.

In this lecture notes we focus on toric ideals and toric varieties whose precise
definition will be given in Sect. 4.2. Toric ideals and toric varieties play an important
role in both Commutative Algebra and Algebraic Geometry because they serve
as models for general algebraic varieties. Toric ideals are generated by binomials.
Moreover, each binomial is a difference of two monomials with coefficients equal
to 1. A rather systematic study of binomial ideals (i.e. generated by binomials) was
done by Eisenbud and Sturmfels in [7]. There are numerous publications on minimal
generation of a binomial ideal or of its radical, see, for example, [12] Chapter V and
[1, 2, 4, 9, 10, 13–15, 19, 22].

The binomial arithmetical rank bar(I) of a binomial ideal I is the smallest
integer s for which there exist binomials f1, . . . , fs in S such that rad(I) =
rad(f1, . . . , fs ). This intermediate invariant is, on one side, easier to compute. On
the other side, it gives an upper bound for the arithmetical rank of a binomial ideal
I as we always have:

ht (I) ≤ ara(I) ≤ bar(I) ≤ μ(I).

Using binomial arithmetic rank, one has obtained many results on set-theoretic
complete intersections. In this lecture notes we review, and sometimes improve,
some of these results.

The main results are (see Sects. 4.2, 4.3 for the used notations):

1. In characteristic p > 0, every simplicial toric affine or projective variety with
almost full parametrization is a set-theoretic complete intersection. This extends
previous results by Hartshorne [10], Moh [13], and Barile et al. [2].

2. In any characteristic, every simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection.We give a more
transparent proof of this result, which is due to Barile et al. [2].

3. Let V (p, q, r) be the projective toric curve in P3
K with parametrization

w = ur, x = ur−pvp, y = ur−qvq , z = vr .

Then V (p, q, r) in P3 is a set-theoretic complete intersection for r � 0.
4. Let p, q0, q1, . . . , qn−1 be positive integers. Let V (p, q0, q1, . . . , qn−2) ⊂ P

n
K

be the projective toric curve with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .
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Let V 1(p, q0, q1, . . . , qn−2, qn−1) ⊂ P
n+1
K be the projective curve defined by

w = uqn−1,

x = uqn−1−pvp,

y = uqn−1−q0vq0 ,

z1 = uqn−1−q1vq1 ,

. . .

zn−2 = uqn−1−qn−2vqn−2 ,

zn−1 = vqn−1 .

Let gcd (p, qn−2) = l, p′ = p/l, q ′ = qn−2/l. Assume that qn−1 ≥ p′q ′(q ′ −
1) + q ′l. If V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection, then
so is V 1(p, q0, q1, . . . , qn−2, qn−1).

Moreover, the proofs presented here are constructive. It should be mentioned
that there is no general way to study set-theoretically generation of ideals. This is
not surprising because one can not give an answer to this most famous problem on
this subject, which deals a very simple case of projective curve in P

3
K :

Question 4.1.3 Assume that K is a field of characteristic 0. Let V (1, 3, 4) be the
projective toric curve with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

Is V (1, 3, 4) a set-theoretic complete intersection?

4.2 Definition of Toric Varieties by Parametrization,
Semigroups or Lattices

There are several ways to introduce a toric variety, which is associated with a set of
n vectors ai = (ai,1, . . . , ai,m) ∈ Z

m, i = 1, . . . , n.

1. Parametrization. A toric variety V ⊂ Kn is a variety having a following
parametrization of the form

x1 = ua1,

...

xn = uan ,
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where uai = u
ai,1
1 · · ·uai,m

m , i = 1, . . . , n, are monomials in a polynomial
ring K[u1, . . . , um]. Sometimes we simply say that V is parametrized by
ua1, . . . , uan .

2. Semigroups. The coordinate ring of the above toric variety is isomorphic to the
subring K[uα, α ∈ ΣA] ⊂ K[u1, . . . , um]. This subring can be considered as
the semigroup ring K[ΣA] of the semigroup

ΣA = Na1 + . . . + Nan ⊂ Z
m.

Note that K[ΣA] is a domain and that dimK[ΣA] = rankA, where A is the
m × n matrix whose i-th column vector is ai.

There is a canonical surjective map Ψ : S = K[X1, . . . , Xn] → K[ΣA]. Let
IA = kerΨ . Then IA is the defining ideal of the toric variety in S. One calls IA

a toric ideal.
We give now a short proof of the fact that IA is generated by binomials.

Observe that

• For any non zero monomial M ∈ S its image Ψ (M) is non zero.
• For any monomials M1,M2 ∈ S, if Ψ (M1) = Ψ (M2) then M1 − M2 ∈ IA.
• For any non zero monomials M1,M2 ∈ S, if Ψ (M1) �= Ψ (M2) then any

linear combination αΨ (M1) + βΨ (M2) with (α, β) ∈ (K2)∗ is non zero.

Let F = ∑t
i=1 αiMi ∈ IA, where αi ∈ K∗ and Mi is a nonzero monomial,

i = 1, . . . , t . By the observation above we may assume that Ψ (Mi) = Ψ (Mj )

for any i, j = 1, . . . , t . It is clear that this implies
∑t

i=1 αi = 0 and consequently
α1 = − ∑t

i=2 αi . Hence F = ∑t
i=2 αi(Mi −M1). That shows that the toric ideal

IA is generated by binomials of the typeM−N , whereM,N are monomials with
coefficients 1 without common divisor.

3. Lattice of relations. Note that any vector α ∈ Z
n can be uniquely written as

α = α+ − α−, with α+, α− ∈ N
n such as (α+)i(α−)i = 0 for all i = 1, . . . , n.

Let

LA := {α ∈ Z
n | Xα+ − Xα− ∈ IA}.

Then LA ⊂ Z
n is a subgroup of finite rank. We call it the lattice of relations

associated to IA. It is easy to see that LA ⊂ Z
n is the set of integer solutions of

the linear system AX = 0.

In general, given a subgroup of finite rank (lattice) L ⊂ Z
n, we can define the

ideal IL ⊂ S generated by the binomials Xα+ − Xα− , α ∈ L. It is called the lattice
ideal associated to L. We call L saturated if dv ∈ L for some d ∈ Z \ {0}, v ∈ Z

n,
implies v ∈ L.

Remark The lattice of relations of a toric ideal IA is saturated and has the property

ILA = IA.



222 M. Morales

For any vector α ∈ Z
n, we set Fα := Xα+ − Xα− . Note that Fα is a reduced

binomial, that is it can’t be factored by a monomial.

Lemma 4.2.1 Let IA be a toric ideal and v1, . . . , vr a basis of LA. Let Fvi ∈ IA be
the binomial associated to vi. Then

Z(Fv1 , . . . , Fvr) ∩ (K∗)n = V (IA) ∩ (K∗)n.

Proof We have only to prove the inclusion Z(Fv1, . . . , Fvr) ∩ (K∗)n ⊂ V (IA).

Let P ∈ Z(Fv1 , . . . , Fvr) ∩ (K∗)n. Then Fv1(P ) = 0, . . . , Fvr(P ) = 0. Let F ∈
IA be any reduced binomial then there exist v ∈ LA such that F = Xv+−Xv− . Since
v1, . . . , vr is a basis of LA, we can write v = α1v1 + · · · + αrvr for some integers
αi . Let P = (x1, . . . , xn) ∈ (K∗)n. We have xvi+ −xvi− = 0 for i = 1, . . . , r . Since
P = (x1, . . . , xn) ∈ (K∗)n, this is equivalent to xvi = 1 for i = 1, . . . , r , which
implies xαivi = 1 for i = 1, . . . , r . Hence 1 = x

∑r
i=1 αivi = xv, and so F(P) = 0.

The following result [7, Corollary 2.6] gives an exact relationship between binomial
ideals and toric ideals.

Theorem 4.2.2 Let K be an algebraically closed field. A binomial ideal is toric if
and only if it is prime.

For simplicity, we say that a binomial ideal is a set-theoretic complete intersec-
tion of binomials if bar(I) = ht (I). We have the following theorem from [16].

Theorem 4.2.3 Let K be a field of characteristic zero. A toric ideal is a set-
theoretic complete intersection of binomials if and only if it is a complete inter-
section.

By virtue of this theorem, we always assume that our toric ideal is not a complete
intersection in the rest of the lecture notes.

4.3 Simplicial Toric Varieties Which Are Set-Theoretic
Complete Intersections

Most of the results on set-theoretic complete intersections in this lecture notes
concern the following class of toric varieties.

Let e1, . . . , en denote the elements of the canonical basis of Z
n. Let ai =

(ai,1, . . . , ai,n), i = 1, . . . , r, be non zero vectors in N
n.

Definition 4.3.1 LetA be a matrix with column vectors d1e1, . . . , dnen, a1, . . . , ar,
where d1 . . . , dn ∈ N

∗, that is

A =

⎛

⎜
⎜
⎝

d1 0 . . . 0 a1,1 . . . ar,1

0 d2 . . . 0 a1,2 . . . ar,2

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . dn a1,n . . . ar,n

⎞

⎟
⎟
⎠ .
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Then IA is called the simplicial toric ideal associated to A and its affine variety
VA = V (IA) in Kn+r is called an affine simplicial toric variety.

In this case, the dimension of the affine semigroup ring K[ΣA] is n. Note that
VA has codimension r ≥ 2 in Kn+r and has the following parametrization:

x1 = u
d1
1 ,

...

xn = udn
n ,

y1 = u
a1,1
1 · · · ua1,n

n ,

...

yr = u
ar,1
1 · · · uar,n

n ,

One can define a projective simplicial toric variety similarly as above. For that
we need to assume that d1 = · · · = dr = deg uai for all i = 1, . . . , r .

For any vector v ∈ Z
m, we set supp (v) = {j ∈ {1, . . . ,m} | vj �= 0} and call it

the support of v.

Definition 4.3.2 We say that the parametrization of VA is full if supp ai = supp aj
for i, j = 1, . . . , r . The parametrization of VA is almost full if supp a1 ⊂ supp a2 ⊂
· · · ⊂ supp ar.

Note that when working with full or almost full parametrization we may always
assume that supp ar = {1, . . . ,m}.

In this section we extend the results on simplicial varieties with full parametriza-
tion of [2] to those with almost full parametrization. Namely, we will prove the
following results.

1. In characteristic p > 0, any simplicial toric affine or projective variety
with almost full parametrization is a set-theoretic complete intersection (see
Theorem 4.3.8).

2. In any characteristic, any simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection (see Theo-
rem 4.3.11).

4.3.1 Lattice of Relations of Simplicial Toric Varieties

As we said above for toric ideals IA the lattice LA is the set of integer solutions
of the linear system AX = 0. That is the problem of finding binomials in IA is
equivalent to finding solutions of AX = 0 or more generally of AX = b. For any
matrix with integer coefficients A, we set | A | to be the greatest common divisor
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of all its maximal minors. We say that the matrix A, has full rank if at least one
of its maximal minors is non null. Suppose that A has full rank. If there exists one
column vector for which some integer multiple belongs to the lattice generated by
the other column vectors, we can delete this column vector preserving our search
of solutions for the equation AX = b. That means that we can assume that all the
maximal minors are non zero.

We have the following basic lemma in Number Theory (see [11], or for a modern
presentation, [23, p. 51]):

Lemma 4.3.3 Assume that |A| �= 0. The linear Diophantine systemAX = b has an
integer solution if and only if |A| �= 0 and |A| = |Ab|, where Ab is the augmented
matrix.

Another important ingredient is given by the chapter IV of [5] about basis of
Lattices. We learn in this chapter that we can find triangular basis of a lattice that
we will describe thanks to Lemma 4.3.3 in the case of simplicial toric varieties.

With the notations of Definition 4.3.1, for all i = 0 . . . , r, let Ai be the matrix:

Ai =

⎛

⎜
⎜
⎝

d1 0 . . . 0 a1,1 . . . ai,1

0 d2 . . . 0 a1,2 . . . ai,2

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . dn a1,n . . . ai,n

⎞

⎟
⎟
⎠ .

We denote by di the ith column vector of A for all i = 1, . . . , n, and by ai the (n +
i)th column vector of A for all i = 1, . . . , r . We set D[j1, . . . , jn] the determinant
of the n × n submatrix consisting of the columns of A with the indices j1, . . . , jn,
where {j1, . . . , jn} is an n-subset of {1, 2, . . . , n+r}. For all i = 0, . . . , r let |Ai | :=
gcd {D[j1, . . . , jn] : 1 ≤ j1 < j2 < · · · < jn ≤ n + i}; for the sake of simplicity
we set gi = |Ai |. Moreover, let ζi = gi−1/gi , for all i = 1, . . . , r .

Let us remark that any integer solution α of the linear system AiZ = 0
gives rise to a binomial, more precisely, let write α = β + γ , with suppβ ⊂
{1, 2, . . . , n}, supp γ ⊂ {n + 1, n + 2, . . . , n + i}, then the binomial Fα+β =
xβ+yγ+ − xβ−yγ− in the variables x1, . . . , xn, y1, . . . , yi belongs to IA.

In our situation we have the following corollary of Lemma 4.3.3 which can be
seen as a generalization of [15, Remark 2.1.2]:

Theorem 4.3.4 Keep the above notations. Then

1. For any i = 1, . . . , r , the linear Diophantine system Ai−1Z = θai has an integer
solution if and only if θ ∈ ζiZ.

2. The lattice LA ⊂ Z
n+r of rank r has a triangular basis:

{(w1, s(1,1), 0, . . . , 0), (w2, s(2,1), s(2,2), 0, . . . , 0), . . . ,

(wr, s(r,1), s(r,2), . . . , s(r,r))},

where w1, . . . , wr ∈ Z
n and s(i,i) = ζi .
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3. Let s1 = (s(1,1), 0, . . . , 0), s1 = (s(2,1), s(2,2), 0, . . . , 0), . . . , sr = (s(r,1),

s(r,2), . . . , s(r,r)). For i ∈ {1, . . . , r} we have the reduced binomials

Fwi+si := Mi − Niy
ζi

i ∈ IA,

where Mi,Ni are monomials in K[x1, . . . , xn, y1, . . . , yi−1].
4. Z(Fw1+s1, . . . , Fwr+sr) ∩ (K∗)n+r ⊂ VA.

Proof

1. We have g0 = d0d1 . . . dn and for all 1 ≤ i ≤ r , the numbers gi−1 are non null.
On the other hand it holds:

gi = gcd {gi−1,D[j1, . . . , jn−1, n + i] : 1 ≤ j1 < j2 < · · · < jn ≤ n + i − 1},
(4.1)

which yields

1 = gcd {gi−1

gi

,
D[j1, . . . , jn−1, n + i]

gi

: 1 ≤ j1 < j2 < · · · < jn ≤ n + i − 1},
(4.2)

|Ai−1, θai| = gcd {gi−1, θD[j1, . . . , jn−1, n + i] : 1 ≤ jk ≤ n + i − 1}
= gcd {(gi−1

gi

)gi , θD[j1, . . . , jn−1, n + i] : 1 ≤ jk ≤ n + i − 1}

= gigcd {(gi−1

gi

), θ
D[j1, . . . , jn−1, n + i]

gi

: 1 ≤ jk ≤ n + i − 1}

Hence |Ai−1, θai|gi−1 = |Ai−1| if and only if

gigcd {(gi−1

gi

), θ
D[j1, . . . , jn−1, n + i]

gi

: 1 ≤ jk ≤ n + i − 1} = gi−1,

or equivalently

gcd {ζi, θ
D[j1, . . . , jn−1, n + i]

gi

: 1 ≤ jk ≤ n + i − 1} = ζi .

Using (2) it implies that |Ai−1, θai|gi−1 = |Ai−1| if and only if θ ∈ ζiZ.
2. By the first part, for every i ∈ {1, . . . , r} the Diophantine system Ai−1x = ζiai

always has a solution. This means that the vector ζiai can be expressed as a linear
combination of the vectors d1, . . . , dn, a1, . . . , ai−1 with integer coefficients,
i.e., one has

ζiai = w(i,1)d1 + · · · + w(i,n)dn + s(i,1)a1 + · · · + s(i−1,i−1)ai−1, (4.3)
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for some integers w(i,j), . . . , s(i,j). Setting for every i ∈ {1, . . . , r} wi =
(w(i,1), . . . , w(i,n)), we have that

{(w1, s(1,1), 0, . . . , 0), (w2, s(2,1), s(2,2), 0, . . . , 0), . . . ,

(wr, s(r,1), s(r,2), . . . , s(r,r))},

is a triangular basis of LA.
3. The expression (3) gives us monomials Mi,Ni in K[x1, . . . , xn, y1, . . . , yi−1]

such that Fwi+si := Mi − Niy
ζi

i .
4. Follows from the above items and Lemma 4.2.1.

Triangular basis will give us some particular binomials which will play an
important role in our proofs.

Remark For the sake of simplicity we shall set s = (s1, . . . , sr−1), y =
(y1, . . . , yr−1). In particular, if (w, s, t) ∈ LA, then t ∈ ζrZ and, conversely,
for all multiples t of ζr there is s ∈ Z

r−1, w ∈ Z
n such that (w, s, t) ∈ LA.

For all s ∈ Z
r−1, we can write s = s+ − s−. Fix an element (w, s, sr ) ∈ LA. Let

w = w+ − w−. Then the binomial corresponding to (w, s, sr ) ∈ LA is

ys+xw+ − y−sr
r ys−xw−,

provided sr ≤ 0; otherwise it is

ys+ysr
r xw+ − ys−xw− .

Remark Let

J = IA ∩ K[x1, . . . , xn, y1, . . . , yr−1].

Then J is the defining ideal of the simplicial toric variety of codimension r − 1
having the following parametrization:

x1 = u
d1
1 ,

...

xn = udn
n ,

y1 = u
a1,1
1 · · · ua1,n

n ,

...

yr−1 = u
ar−1,1
1 · · · uar−1,n

n .

Note that if the parametrization of the variety defined by IA is full (resp. almost full),
then the parametrization of the variety defined by J satisfies the same property.



4 Simplicial Toric Varieties Which Are Set-Theoretic Complete Intersections 227

4.3.2 Simplicial Toric Varieties in Characteristic p > 0

We introduce one more piece of notation. Let M1, M2 be monomials, and let h =
M1 − M2. For all positive integers q we set

h(q) = M
q

1 − M
q

2 .

Lemma 4.3.5 Let J = IA ∩K[x1, . . . , xn, y1, . . . , yr−1], and δ > 0 an integer for
which there is a binomial

fr = yζrδ
r − ysδ x

l1
1 · · · xln

n ∈ IA.

Then for any binomial h in IA we have

h(δ) ∈ (J, fr ).

Proof Let h ∈ IA be a binomial. Since IA is a prime ideal, we may assume that

h = yζrρ
r g1 − g2

for some monomials g1, g2 ∈ K[x1, . . . , xn, y1, . . . , yr−1]. Then

h(δ) = yζrρδ
r gδ

1 − gδ
2

= (f (ρ)
r + (ysδ x

l1
1 · · · xln

n )ρ)gδ
1 − gδ

2

∈ (J, fr ).

Lemma 4.3.6 Suppose that supp ar = {1, . . . ,m}. For all sufficiently large integers
δ > 0 there is a binomial

fr = yζrδ
r − ysx

l1
1 · · · xln

n ∈ IA.

Proof Let δ > 0. There is s′ such that (s′,−ζr ) ∈ KerΦ. Hence there are integers
r ′
1, . . . , r

′
n such that for all i

r−1∑

j=1

s′
j aj,i − ζrar,i = r ′

idi

for all i. Multiplying this relation by δ > 0 we get

r−1∑

j=1

δs′
j aj,i − ζrδar,i = δr ′

idi
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for all i. Let d = lcm{d1, . . . , dn}. Replacing δs′
j by its residue sj modulo d , we

get a relation

r−1∑

j

sj aj,i − ζrδar,i = ridi .

Thus, if δ is sufficiently large, we will have ri < 0 for all i. Then fr = y
ζrδ
r −

ysx
−r1
1 · · · x−rn

n ∈ IA as required.

As an immediate consequence we have:

Corollary 4.3.7 Suppose that supp ar = {1, . . . ,m}. Let p be a prime number. For
any sufficiently large integer m there is a binomial

fr = y
ζrp

m

r − ysx
l1
1 · · · xln

n ∈ IA.

The next theorem improves [2, Theorem 1], where the case of full parametriza-
tion was considered.

Theorem 4.3.8 Suppose that char K = p > 0. Then every simplicial toric variety
having an almost full parametrization is a set-theoretic complete intersection.

Proof We proceed by induction on r ≥ 1. Since the polynomial ring
K[x1, . . . , xn, y1] is an UFD the claim is true for r = 1.

Suppose that r ≥ 2 and the claim is true in codimension r − 1. Let h ∈ IA be a
binomial, then by Corollary 4.3.7 and Lemma 4.3.6, for m sufficiently large we get

hpm = h(pm) ∈ (fr , J ).

By the induction hypothesis the ideal J is set-theoretically generated by r − 1
binomials f1, . . . , fr−1. Hence some power of h lies in (f1, . . . , fr ).

Remark Note that the proof of the preceding result yields an effective and recursive
construction of the defining equations of a simplicial toric variety having almost full
parametrization over any field K of characteristic p > 0.

Exercise 4.3.9 Assume that K is a field of characteristic p. Let V (1, 3, 4) be the
projective toric curve in P3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

1. Write the matrix A corresponding to V (1, 3, 4).
2. Use Theorem 4.3.4 to find a triangular basis of the Lattice LA.
3. Give f1, f2 such that rad (f1, f2) = I (V (1, 3, 4)) showing that in characteristic

p, V (1, 3, 4) is a set-theoretic complete intersection.
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4.3.3 Almost Set-Theoretic Complete Intersections

We have studied the case where the field K is of characteristic p > 0, so now we
assume that the field K is algebraically closed of characteristic 0, since we will use
the Hilbert’s Nullstellensatz.

In this section we show that simplicial toric varieties having a full parametriza-
tion are almost set-theoretic complete intersections.

If the parametrization of VA is full we will improve the triangular basis of IA

founded in Theorem 4.3.4.

Lemma 4.3.10 Let VA be a simplicial toric variety. If the parametrization of VA is
full, then for every i = 2, . . . , r there exists a binomial

Fi = y
μi

i−1 − x
νi,1
1 · · · xνi,n

n y
μi,1
1 · · · yμi,i−2

i−2 y
ζi

i ∈ IA,

and there also exists a binomial

F1 = y
ζ1
1 − x

ν1,1
1 · · · xν1,n

n ∈ IA,

for some strictly positive integers μi, μi,j and νi,j .

Proof In this proof, for all i = 1, . . . , n, di will denote the ith column vector of A

and for all i = 1, . . . , r , ai will denote the (n + i)th column vector of A.
Set μ = gcd (d1, . . . , dn) and qi = gcd (μ, ai,1, . . . , ai,n) for all i = 1, . . . , r .

For all i = 1, . . . , r and all j = 1, . . . , n let ρi,j = ai,jμ/djqj . Then, for all
i = 1, . . . , r , one has that

Gi = y
μ/qi

i − x
ρi,1
1 · · · xρi,n

n ∈ IA.

It is easy to see that ζ1 = μ/q1, then for i = 1 the preceding formula yields the
required binomial F1.

As we have seen in Theorem 4.3.4, for all i = 1, . . . , r the vector ζiai can
be expressed as a linear combination of the vectors d1, . . . , dn, a1, . . . , ai−1 with
integer coefficients, i.e., one has

ζiai = w(i,1)d1 + · · · + w(i,n)dn + s(i,1)a1 + · · · + s(i−1,i−1)ai−1, (4.2)

for some integers w(i,j), . . . , s(i,j) and this expression gives us monomials Mi,Ni

in K[x1, . . . , xn, y1, . . . , yi−1] such that Mi − Niy
ζi

i ∈ IA.
Now suppose that the parametrization of VA is full. From the binomial Gj we

see that for each aj there exist positive integers ρj = μ/qi, ρj,1, . . . , ρj,n such
that ρj aj = ρj,1d1 + · · · + ρj,ndn. Furthermore, for all 1 ≤ j ≤ i − 2 there
exists a positive integer νj such that, after adding all the zero vectors νj (ρj,1d1 +
· · · + ρj,ndn − ρj aj) to the right-hand side of (2), the new coefficient −μi,j of aj
is negative for all j = 1, . . . , i − 2. There also exists a large positive integer νi−1
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such that after adding the zero vector νi−1(ρi−1ai−1 − (ρi−1,1d1 + · · ·+ ρi−1,ndn))

on the right-hand side of the new equation, for all j = 1, . . . , n the new coefficient
−νi,j of dj is negative and the new coefficient μi of ai−1 is positive. It follows that
for all i = 2 . . . , r we have a binomial

Fi = y
μi

i−1 − x
νi,1
1 · · · xνi,n

n y
μi,1
1 . . . y

μi,i−2
i−2 y

ζi

i ∈ IA.

Theorem 4.3.11 Assume thatK is algebraically closed field of characteristic 0. Let
VA be a simplicial toric variety having a full parametrization. Then r ≤ bar(IA)) ≤
r + 1. In fact bar(IA) = r + 1 unless IA is a complete intersection.

Proof Consider the r binomials F1, F2, . . . , Fr which were defined in Lemma 3
and let Fr+1 be any binomial monic in yr , for example Gr . We claim that IA =
rad (F1, . . . , Fr+1).

By virtue of Hilbert Nullstellensatz the claim is proved once it has been
shown that every point x = (x1, . . . , xn, y1, . . . , yr) which is a common zero of
F1, . . . , Fr+1 in Kn+r is also a point of VA. First of all note that if xk = 0 for some
index k, then yj = 0 for all indices j . It is then easy to find u1, . . . , un ∈ K which
allow us to write x as a point of VA. Now suppose that xk �= 0 for all indices k,
F1(x) = 0, . . . , Fr+1(x) = 0, we have inductively that y1 �= 0, . . . , yr �= 0. So we
can assume that all the coordinates of x are non zero. Note that the vectors in LA

corresponding to F1, F2, . . . , Fr form a triangular basis of LA, hence by applying
Theorem 4.3.4 we have that x is a point of VA.

Exercise 4.3.12 Assume that K is an algebraically closed field of characteristic 0.
Let V (1, 3, 4) be the projective toric curve in P

3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

Use Exercise 4.3.9 and the above section to give F1, F2, F3 binomials such that
rad (F1, F2, F3) = I (V (1, 3, 4)).

4.4 Equations in Codimension 2

This section is an English shorten version of the results in [15].
In this section we suppose that r = 2, i.e., VA is a simplicial toric variety of

codimension 2 in Kn+2. The parametrization of VA now is:

x1 = u
d1
1 ,

...

xn = udn
n ,
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y1 = u
a1,1
1 · · · ua1,n

n ,

y2 = u
a2,1
1 · · · ua2,n

n ,

where the vectors a1, a2 may have zero components.

4.4.1 The Lattice Associated in Codimension Two

In this section, we introduce the reduced lattice associated to VA, which determines
the associated lattice LA, in this particular case.

Consider the morphism of groups:

Φ : Z2 −→ Z/d1Z × · · · × Z/dnZ (s, p) �→ (sb1 − pc1, . . . , sbn − pcn)

Definition 4.4.1 The reduced lattice associated to VA is

Ker(Φ) := {(s, p) ∈ Z
2 | sbi − pci ≡ 0 mod di,∀i = 1, . . . , n}.

Remark Ker(Φ) is not the lattice of VA in the sense given in Sect. 4.3, but it
determines the lattice of VA. For any i = 1, . . . , n there exists integers numbers
li such that sbi − pci = lidi . To the vector (s, p) ∈ Ker(Φ) corresponds the
vectors (−l1, . . . ,−ln, s,−p) in the Lattice LA. As a consequence, we associate to
the vector (s, p) ∈ Ker(Φ) with s ≥ 0 a binomial F(−l1,...,−ln,s,−p) ∈ IA and we
call it the binomial associated to (s, p). Reciprocally, any vector (w, s,−p) ∈ LA,
with s ≥ 0, determines a unique (s, p) ∈ Ker(Φ).

Proposition 4.4.2 We will define a fan decomposition ofKer(Φ) inR2+, i.e. we will
determine a family of vectors ε−1, ε0, . . . , εm+1 ∈ Ker(Φ) ∩ Z2+ such that εi , εi+1
is a base of Ker(Φ), with det (εi, εi+1) > 0.

Proof We use the notion of base adapted to a lattice used in [5] p. 67. This allows
us to determine a base ε−1, ε0 of Ker(Φ). Precisely ε−1 = (s−1, 0), ε0 = (s0, p0)

where s−1 is the smallest positive integer s �= 0 such that (s, 0) ∈ Ker(Φ) and p0
is the smallest positive integer p �= 0 such that there is a vector (s, p) ∈ Ker(Φ),
s0 is unique defined such that s0 < s−1.

Consider Euclide’s algorithm, with negative rest, for the computation of the
greatest common divisor, gcd (s−1, s0):

s−1 = q1s0 − s1

s0 = q2s1 − s2

. . .

sm−1 = qm+1sm
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sm+1 = 0

∀i qi ≥ 2 , si ≥ 0.

Let us define the sequence: pi (−1 ≤ i ≤ m + 1) , by p−1 = 0 and:

pi+1 = piqi+1 − pi−1 , (0 ≤ i ≤ m).

We set εi = (si , pi). By induction it is easy to check that sipi+1 − si+1pi = p0s−1
for all −1 ≤ i ≤ m + 1, completing the proof.

In particular we have defined two sequences {si}, {pi}.
Example 4.4.3 Let consider the projective monomial curve with parametrization:

X = s10, Y = s7t3Z = s3t7,W = t10.

The lattice Ker(Φ) is given by the vectors (s, p) such that (r, r ′, s, p) is an integer
solution of the system:

7s − 3p = 10r

s − 7p = 10r ′

Note that the Lattice LA is given by the vectors (−r,−r ′, s,−p) such that
(s, p, r, r ′) is an integer solution of the above system.

We have the following table

i si pi ri r ′
i qi

−1 10 0 7 3 0

0 9 1 6 2 0

1 8 2 5 1 2

2 7 3 4 0 2

3 6 4 3 −1 2

4 5 5 2 −2 2

5 4 6 1 −3 2

6 3 7 0 −4 2

7 2 8 −1 −5 2

8 1 9 −2 −6 2

9 0 10 −3 −7 2
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Corollary 4.4.4 For i = −1, . . . ,m + 1 we set εi = (si , pi). With the above
notations, the vectors

εm+1, . . . , ε0, ε−1, ε−1 − ε0, . . . , ε−1 − (q1 − 1)ε0 = ε0 − ε1, . . . , ε0 − (q2 − 1)ε1

= ε1 − ε2, . . . ,

εm−2 − (qm−1 − 1)εm−1 = εm−1 − εm, . . . , εm−1 − (qm − 1)εm

= εm − εm+1,−εm+1

are a fan decomposition of R+ × R. The determinant of two consecutive vectors is
−p0s−1.

Proof The conclusion is a consequence of the above Proposition, since :

det(εi−1 − jεi , εi−1 − (j + 1)εi) = − det(εi−1, εi ).

The fan decomposition of R+ × R is represented in Fig. 4.1:

Corollary 4.4.5 The set of binomials associated to the vectors

εm+1, . . . , ε0, ε−1, ε−1 − ε0, . . . , ε−1 − (q1 − 1)ε0

= ε0 − ε1, . . . , ε0 − (q2 − 1)ε1 = ε1 − ε2, . . . ,

εm−2−(qm−1−1)εm−1 = εm−1−εm, . . . , εm−1−(qm−1)εm = εm−εm+1,−εm+1

is a Universal Grobner Basis of IA.

Fig. 4.1 Fan decomposition
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4.4.2 Effective Computation of the Fan Associated
to the Universal Grobner Basis of IA

We can assume that di, bi , ci are coprime.

Lemma 4.4.6 For any i let δi = gcd (di, bi), and

Φi : Z2 −→ Z/diZ (s, p) �→ (sbi − pci)

Then Ker(Φi) is a Z−free submodule of Z2 generated by the vectors (di/δi, 0),
(s̃i,0, δi ) where s̃i,0 is the unique integer such that s̃i,0bi − (δi)ci ≡ 0 mod di and
0 ≤ s̃i,0 < di/δi .

The proof is elementary. We have the following consequence:

Lemma 4.4.7 Let

ρi = gcd (d1/δ1, di/δi) , χi = gcd (δ1, δi ),

κi = gcd ((δ1si,0)/(χi) − (δis1,0)/(χi), ρi),

s−1 = lcm(d1/δ1, . . . , dn/δn), p−1 = 0, and

p0 = lcm2≤i≤n((ρi/κi)lcm(δ1, δi )).

ThenKerΦ is a subgroup ofZ2 generated by the vectors: (s−1, p−1) (s0, p0) where
s0 is the unique integer such that:

0 ≤ s0 < lcm(d1/δ1, . . . , dn/δn) and

∀i ∈ {1, . . . , n} s0 ≡ si,0p0/δi mod di/δi .

For the proof we refer to [15].

Definition 4.4.8 We define the sequences of integers {si}, {pi} as in Proposi-
tion 4.4.2. That is {si} is defined by Euclid algorithm and {pi} by p−1 = 0 and:

pi+1 = piqi+1 − pi−1 , (0 ≤ i ≤ m).

For all j ∈ {1, . . . , n} we define the sequences {rj,i} by

rj,i = (sibj − picj )/dj − 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n.
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Lemma 4.4.9

1) The sequences {si}, {pi}, {rj,i}, 1 ≤ j ≤ n satisfy the following recurrent
relations:

vi+2 = qi+2vi+1 − vi for −1 ≤ i ≤ m − 1.
2) rj,−1 = s−1bi/di.∀1 ≤ j ≤ n

3) For any index i such that −1 ≤ i ≤ m, we have:

i) sipi+1 − si+1pi = s−1p0

ii) si+1rj,i − sirj,i+1 = s−1p0ci/di

iii) pi+1rj,i − pirj,i+1 = s−1p0bi/di

Lemma 4.4.10 For all j the sequences {si}, {rj,i} are strictly decreasing, and the
sequence {pi} is strictly increasing.
Definition 4.4.11

1) Let Dj be the line with equation sbj − pcj = 0. By changing if necessary the
order of the variables xj we can assume that the slopes of the lines Dj are in
increasing order.

2) Let ν (resp. μ ) the unique integer such that r1,ν ≥ 0 > r1,ν+1, (resp. rn,μ >

0 ≥ rn,μ+1).
3) Suppose that μ �= ν. For 1 ≤ i ≤ μ − ν let ki be the smallest integer j ≤ n − 1

such that rj,ν+i < 0. We set kμ−ν+1 = n.

Lemma 4.4.12 We have:

i) −1 ≤ ν ≤ μ ≤ m,

ii) let 1 ≤ i ≤ μ − ν. If l ≤ ki then rl,ν+i < 0 and if l > ki then rl,ν+i ≥ 0,
iii) if rj,μ+1 = 0 then rn,μ+1 = 0, and
iv) μ = ν if and only if rj,u ≤ 0 for all j ∈ {1, . . . , n} and u ≥ ν + 1.

Theorem 4.4.13 ([15]) Let VA be a simplicial toric variety of codimension 2. VA

is arithmetically Cohen-Macaulay if and only if μ = ν. If VA is not arithmetically
Cohen-Macaulay the ideal IA is minimally generated by the binomials associated
to the vectors

εν , εν+1 , εν − εν+1,

εν − 2εν+1 , . . . , εν − qν+2εν+1 , εν+2,

. . .

εμ−1 − 2εμ , . . . , εμ−1 − qμ+1εμ , εμ+1.

The proof consist to check that the mentioned binomials are a Grobner basis of IA.
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Example 4.4.14 We consider again the Toric variety of Example 4.4.3, with
parametrization

X = s10, Y = s7t3Z = s3t7,W = t10.

Its defining ideal is generated by the polynomials:

F1 = Z7 − Y 3W 4,

F2 = YZ − XW,

F3 = Y 4W 3 − XZ6,

F4 = Y 5W 2 − X2Z5,

F5 = Y 6W − X3Z4,

F6 = Y 7 − X4Z3.

Theorem 4.4.15 [15] Let VA be a simplicial toric variety of codimension 2. Assume
that VA is arithmetically Cohen-Macaulay that is μ = ν. The ideal IA is generated
by three binomials Fεν , Fεν+1, Fεν−εν+1 associated to the vectors

εν, εν+1, εν − εν+1.

That is

Fεν = zsν − ypν x
r1,ν
1 . . . x

rn,ν
n ,

Fεν+1 = ypν+1 − zsν+1x
−r1,ν+1
1 . . . x

−rn,ν+1
n ,

Fεν−εν+1 = zsν−sν+1ypν+1−pν − x
r1,ν−r1,ν+1
1 . . . x

rn,ν−rn,ν+1
n .

In fact Fεν , Fεν+1, Fεν−εν+1 are the 2 × 2 minors of the matrix

M =
(

x
r1,ν
1 . . . x

rn,ν
n ypν zsν−sν+1

ypν+1−pν zsν+1 x
−r1,ν+1
1 . . . x

−rn,ν+1
n

)

.

Moreover IA is a complete intersection if and only if either pν = 0 or sν+1 = 0.

Exercise 4.4.16 Let K be any field. Let V (1, 3, 4) be the projective toric curve in
P
3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.
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1. Draw the fan decomposition of V (1, 3, 4).
2. Use Theorem 4.4.13 to find a minimal generating set F1, F2, F3, F4 of the ideal

IA.
3. Use the fact that we have an explicit formulation of Ker(Φ), and so of LA,

together with the fan decomposition to prove directly Theorem 4.4.13 for this
example. (Hint. Binomials are represented by plane vectors.)

The material developed in this section help to understand not only generators but
also syzygies for codimension two simplicial toric ideals. See for example [6].

4.5 Almost-Complete Intersections and Set-Theoretic
Complete Intersections

From now on, we assume that the field K is algebraically closed of characteristic 0,
since we will use the Hilbert’s Nullstellensatz.

4.5.1 Almost-Complete Intersections: The General Case

Lemma 4.5.1 Assume that we have r binomials in K[x1, . . . , xn, y1, . . . , yr ]:

F1 = y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x),

F2 = y
ρ2
2 − y

β2,1
1 y

β2,3
3 · · · yβ2,r

r h2(x),

F3 = y
ρ3
3 − y

β3,1
1 y

β3,4
4 · · · yβ3,r

r h3(x),

. . .

Fr−1 = y
ρr−1
r−1 − y

βr−1,1
1 y

βr−1,r
r hr−1(x),

Fr = yρr
r − y

βr,1
1 hr(x),

where h1(x), . . . , hr (x) are monomials in x1, . . . , xn, ρ1 >
∑r

k=2 βk,1, and for

j = 2, . . . , r , ρj ≥ ∑j−1
k=1 βk,j . Let σ = ρ2 · · · ρr . Then we have

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 F̃ σ
1 , mod (F2, . . . , Fr ),

with

F̃ σ
1 =

σ∑

k=0

(−1)k
(

σ

k

)

y
γk,1
1 y

δ2,k
2 y

δ3,k
3 · · · yδr,k

r h
α1,k
1 h

α2,k
2 · · · hαr,k

2 ,



238 M. Morales

where all exponents are non negative integer numbers such that 0 ≤ δj,k < ρj ,
αj,0 = δj,0 = 0, δj,σ = 0 for j = 2, . . . , r, k = 0, . . . , σ , and γ0,1 > γ1,1 > · · · >

γσ,1 = 0.

Proof We have

(y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x))σ =
σ∑

k=0

(−1)k
(

σ

k

)

y
(σ−k)ρ1
1 y

kβ1,2
2 · · · ykβ1,r

r hk
1(x).

Let α1,k = k, we define α2,k, δ2,k by the relation

α1,kβ1,2 = α2,kρ2 + δ2,k, α2,k ≥ 0, 0 ≤ δ2,k < ρ2.

Note that α1,0 = 0, hence α2,0 = δ2,0 = 0, and α1,σ = σ , hence α2,σ =
(σ/ρ2)β1,2, δ2,σ = 0. By using F2 we get:

Fσ
1 =

σ∑

k=0

(−1)k
(

σ

k

)

y
(σ−k)ρ1+α2,kβ2,1
1 y

δ2,k
2 · · · ykβ1,3+α2,kβ2,3

3 + · · ·

+ y
kβ1,r+α2,kβ2,r
r h

α1,k
1 (x) mod F2.

We define α3,k, δ3,k by the relation:

α1,kβ1,3 + α2,kβ2,3 = α3,kρ3 + δ3,k, α3,k ≥ 0, 0 ≤ δ3,k < ρ3.

Note that α3,0 = δ3,0 = 0, and δ3,σ = 0. By using F3 we get:

Fσ
1 =

σ∑

k=0

(−1)k
(

σ

k

)

y
(σ−k)ρ1+α2,kβ2,1+α3,kβ3,1
1 y

δ2,k
2 y

δ3,k
3 · · · ykβ1,r+α2,kβ2,r+α3,kβ3,r

r

× h
α1,k
1 h

α2,k
2

modulo the ideal (F2, F3). We can inductively define the numbers αj,k, δj,k by the
relation:

α1,kβ1,j +α2,kβ2,j +· · ·+αj−1,kβj−1,j = αj,kρj +δj,k, αj,k ≥ 0, 0 ≤ δj,k < ρj .

Note that αj,0 = δj,0 = 0, and δj,σ = 0. Hence

Fσ
1 =

σ∑

k=0

(−1)k
(

σ

k

)

y
(σ−k)ρ1+∑r

j=2 αj,kβj,1

1 y
δ2,k
2 y

δ3,k
3 · · · yδr,k

r h
α1,k
1 h

α2,k
2 · · ·

× h
αr,k

2 mod (F2, . . . , Fr ).
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It is easy to prove by induction that

∀k = 0, . . . , σ − 1, 0 ≤ α1,k+1 − α1,k ≤ 1.

Hence

(σ − k)ρ1 +
r∑

j=2

αj,kβj,1 − (σ − k − 1)ρ1 +
r∑

j=2

αj,k+1βj,1

= ρ1 +
r∑

j=2

(αj,k − αj,k+1)βj,1

>

r∑

j=2

βj,1 +
r∑

j=2

(αj,k − αj,k+1)βj,1 =
r∑

j=2

(1 + αj,k − αj,k+1)βj,1 ≥ 0

We can factor by y

∑r
j=2 αj,σ βj,1

1 and finally get

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 (

σ∑

k=0

(−1)k
(

σ

k

)

y
γk,1
1 y

δ2,k
2 y

δ3,k
3 · · · yδr,k

r h
α1,k
1 h

α2,k
2 · · ·hαr,k

2 )

mod (F2, . . . , Fr ).

with γk,1 > γk+1,1.

Theorem 4.5.2 Let VA be a simplicial toric variety. Let

F1 = y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x),

F2 = y
ρ2
2 − y

β2,1
1 y

β2,3
3 · · · yβ2,r

r h2(x),

F3 = y
ρ3
3 − y

β3,1
1 y

β3,4
4 · · · yβ3,r

r h3(x),

. . .

Fr−1 = y
ρr−1
r−1 − y

βr−1,1
1 y

βr−1,r
r hr−1(x),

Fr = yρr
r − y

βr,1
1 hr(x),

Fr+1 = y
ρ1−∑r

k=2 βk,1
1 y

ρ2−β1,2
2 y

ρ3−∑2
k=1 βk,3

3 · · · yρr−∑r−1
k=1 βk,r

r − h1(x) · · ·hr(x),

be r + 1 binomials in IA ⊂ K[x1, . . . , xn, y1, . . . , yr ], where h1(x), . . . , hr (x) are

monomials in x1, . . . , xn, ρ1 >
∑r

k=2 βk,1, and for j = 2, . . . , r , ρj ≥ ∑j−1
k=1 βk,j .

Note that if for i = 1, . . . , r , Fi corresponds to the vector vi in the lattice LA, then
Fr+1 corresponds to the vector v1+· · ·+vr . Suppose that IA = J +(F1, . . . , Fr+1)
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and J ⊂ rad (F1, . . . , Fr+1). Then, IA = rad (F2, . . . , Fr , F̃
σ
1 ); in particular VA is

a set-theoretic complete intersection.

Proof Since

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 F̃ σ
1 mod (F2, . . . , Fr ),

and IA is a prime ideal, we have that F̃ σ
1 ∈ IA. So we only need to prove that if

P = (x1, . . . , xn, y1, . . . , yr) is a zero of F2, . . . , Fr , F̃
σ
1 , then P is also a zero of

IA. We note that Fσ
1 (P ) = 0. Since J ⊂ rad (F1, . . . , Fr+1), we have H(P) = 0

for any H ∈ J . So we only have to check that Fr+1(P ) = 0.
Note that for i = 1, . . . , r , ρi �= 0. Let examine the terms of Fr+1(P ). We have

four cases:

1. Suppose that hi(P ) = 0 for some i = 1, . . . , r . Since Fi(P ) = 0, we have yi =
0. If ρi − ∑i−1

k=1 βk,i > 0, we have Fr+1(P ) = 0. If ρi − ∑i−1
k=1 βk,i = 0, let 1 ≤

k1 ≤ i −1 be the smallest integer such that βk1,i �= 0. Since Fk1(P ) = 0 we have
yk1 = 0. If ρk1−

∑k1−1
k=1 βk,k1 > 0,we haveFr+1(P ) = 0. If ρk1−

∑k1−1
k=1 βk,k1 =

0, there exists 1 ≤ k2 ≤ k1 − 1 such that βk2,k1 �= 0, a contradiction.
2. If y1 = 0, then F̃ σ

1 (P ) = 0 implies hi(P ) = 0 for some i, so we are done.
3. If yj = 0 for some j > 1, let i > 1 be the biggest one such that yi = 0. Then

from Fi(P ) = 0 we have either hi(P ) = 0, or y1 = 0. We are done.
4. If for all i = 1, . . . , r , hi(P ) �= 0 and yi �= 0. For i = 1, . . . , r , assume that

Fi corresponds to the vector vi in the lattice LA, then Fr+1 corresponds to the
vector v1 + . . . + vr . Since Fi(P ) = 0 for i = 1, . . . , r , the assertion follows
trivially.

The following examples are applications of the above Theorem 4.5.2.

Example 4.5.3 Let V be the projective toric curve in P
4 with parametrization

w = t7, x = s7, y = t3s4, z = t4s3, a = t2s5.

Then I (V ) is generated by

Fv1 = a2 − xz, Fv2 = y2 − az, Fv3 = z3 − yaw,Fv1+v2+v3 = yz − xw.

Example 4.5.4 Let V be the toric surface in K4 with parametrization

w = t9, x = s9, y = ts5, z = t2s7, a = ts8.

Then I (V ) is generated by

Fv1 = y3 − az, Fv2 = a2 − xz, Fv3 = z5 − x3aw,Fv1+v2+v3 = y3z3 − x4w.
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Example 4.5.5 Let V be the projective toric surface in P5 with parametrization

x = s9, w = t9, v = u9, y = t4s4u, z = t5s2u2, a = t3s6.

Then I (V ) is generated by

Fv1 = y2 − az, Fv2 = a3 − wx2, Fv3 = z5 − vw2ya, Fv1+v3 = yz4 − vw2a2.

Example 4.5.6 Let V be the projective toric curve in P
4 with parametrization

x = u11,

w = v11,

y = u6v5,

z = u7v4,

a = u3v8.

Then the ideal I (V ) is generated by:

Fv1 = y3 − wxz,

Fv2 = −wa + z2,

Fv3 = −xy + a2,

Fv1+v2+v3 = −w2x2 + y2az.

I (V ) is a set-theoretic complete intersection.
We can compute F 4

v1
modulo Fv2 , Fv3 , and we get:

F 4
v1

= y(y11 − 4y8wxz + 6y5w3x2z − 4y2w4x3za + w6x5) modulo (Fv2 , Fv3).

Let F := y11 − 4y8wxz + 6y5w3x2z − 4y2w4x3za + w6x5. Our theorem says that
I (V ) = rad (Fv2, Fv3 , F ).

Example 4.5.7 Let the projective surface V with parametrization

x = s15, w = t15, v = u15, y = t4s2u9, z = t6s3u6, a = t10s5.

We have

I (V ) = (y2a − z3, y3 − vz2, w2x − a3,−va + yz).

Note that if y2a − z3 corresponds to a vector v1, y3 − vz2 corresponds to a vector
v2, then −va + yz corresponds to the vector v2 − v1. So V is a stci.
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Example 4.5.8 Let V be the projective toric curve in P
4 with parametrization

x = s5, w = t5, y = t4s, z = t3s2, a = t2s3.

The ideal I (V ) is generated by

xy − a2,−wx + az,−ya + z2,−wa + yz, y2 − wz.

It is a Gorenstein projective curve in P
4. We prove now that I (V ) is a set-theoretic

complete intersection. We follow the ideas of Brezinsky [3]:
First note that z(−wa + yz) = y(−ya + z2) + a(y2 − wz) implies −wa + yz ∈

rad (xy − a2,−wx + az,−ya + z2, y2 − wz). Next if a2 − xy corresponds to a
vector v1, z2 − ya corresponds to a vector v2, y2 − wz corresponds to a vector v3,
then az − wx corresponds to the vector v1 + v2 + v3, so by our Theorem 4.5.2,
rad (xy − a2,−wx + az,−ya + z2, y2 −wz) = rad (xy − a2,−ya + z2, y2 −wz).

Now let α1, . . . , α5 be any positive numbers, α := α1 + · · · + α5 > 0. Let us
consider the variety W :

x = s5α,

w = t5α,

y = t4αsα,

z = t3αs2α,

a = t2αs3α,

b = t5α2+4α3+3α4+2α5s5α1+α3+2α4+3α5 .

Then W is a set-theoretic complete intersection. Note that the ideal I (W) is gener-
ated by: xy−a2,−wx+az,−ya+z2,−wa+yz, y2−wz, bα −xα1wα2yα3zα4aα5 .

I (W) = rad (xy − a2,−ya + z2, y2 − wz, bα − xα1wα2yα3zα4aα5).

Example 4.5.9 Let V be the projective toric curve in P
3, with parametrization

w = t9, x = s9, y = t8s, z = t4s5.

VA is arithmetically Cohen-Macaulay. Let V be the projective toric curve in P4, with
parametrization

w = t9, x = s9, y = t8s, z = t4s5, a = t6s3.

Its ideal is generated by five elements: −y3+w2a,−y2a+w2z,−w2x +yaz, a2−
yz,−xy + z2 but is not Gorenstein, However we can still apply the method used
by Brezinsky [3]. First note that a(−y2a + w2z) = y2(yz − a2) + z(−y3 + w2a)

implies by studying both cases when a = 0 or when a �= 0 that −y2a + w2z ∈
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rad (xy − a2,−wx + az,−ya + z2, y2 − wz). Secondly if −y3 +w2a corresponds
to a vector v1, a2 − yz corresponds to a vector v2, −xy + z2 corresponds to a
vector v3, then −w2x + yaz corresponds to the vector v1 + v2 + v3, so by our
Theorem 4.5.2, rad (−y3 +w2a,−y2a +w2z,−w2x + yaz, a2− yz,−xy + z2) =
rad ( ˜(−y3 + w2a)4, a2 − yz,−xy + z2).

We have the following open question:

Question 4.5.10 : Let V be the toric variety with parametrization

w = td , x = sd, y = sa1, z = sa2

and let V1 be the toric variety with parametrization

w = td , x = sd , y = sa1, z = sa2, a = s
a1+a2

2 ,

where we assume that a1+a2
2 has integer coordinates. We know by Theorem 4.5.12,

that if V is arithmetically Cohen-Macaulay then it is a set-theoretic complete
intersection. Can we say if I (V1) is a set-theoretic complete intersection?

We can answer to this question in Theorem 4.6.2 if one of the components of a1+a2
is odd.

Example 4.5.11 Let the projective curve with parametrization

w = t5, x = s5, y = t3s2, z = t1s4,

it is arithmetically Cohen-Macaulay. The projective curve with parametrization

w = t5, x = s5, y = t3s2, z = t1s4, a = t2s3

is Gorenstein and generated by five elements.

4.5.2 Almost-Complete Intersections, The Codimension
Two Case

In this subsection we apply Theorem 4.5.2 in the case of simplicial monomial
varieties of codimension two which are arithmetically Cohen-Macaulay:

Theorem 4.5.12 Let VA be a simplicial toric variety of codimension 2, such that is
arithmetically Cohen-Macaulay. Then VA is a set-theoretic complete intersection.
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Proof By Theorem 4.4.15, the defining ideal of a simplicial monomial variety of
codimension two arithmetically Cohen-Macaulay, is generated by three elements

F = zsμ − ypμx
r1,μ
1 · · · xrn,μ

n ,

G = ypμ+1 − zsμ+1x
−r1,μ+1
1 · · · x−rn,μ+1

n ,

H = zsμ−sμ+1ypμ+1−pμ − x
r1,μ−r1,μ+1
1 · · · xrn,μ−rn,μ+1

n ,

for some positive integer exponents with sμ > sμ+1, pμ+1 > pμ.
It is clear that we can apply the Theorem 4.5.2. Indeed let F1 be the polynomial

obtained from (zsμ − ypμxrμ)pμ+1 by reduction moduloG. That is Fpμ+1 = AG+
zpμ(sμ+1)F1. Then I = rad (G,F1).

Example 4.5.13 Let VA be the projective toric surface in P5 with parametrization

v = u10,

x = s10,

w = t10,

y = t5s5,

z = t4s2u4,

a = t2s6u2.

The ideal IA is generated by:

Fv1 = z3 − vwa,

Fv2 = a2 − xz,

Fv3 = −y2 + wx,

Fv1+v2+v3 = vy2 − az2.

Then IA is a set-theoretic complete intersection. In fact we can compute F 4
v1
modulo

Fv2, Fv3 , and we get:

F 4
v1

= z2(v4w4x2 − 4v3w3axz2 + 6v2w2xz5 − 4vwaz7 + z11) mod (Fv2 , Fv3).

Let F := v4w4x2 − 4v3w3axz2 + 6v2w2xz5 − 4vwaz7 + z11. By Theorem 4.5.2
we have I (V ) = rad (Fv2, Fv3 , F ).

Another proof: Let us consider the variety W :

v = u5,

x = s5,
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w = t5,

z = t2su2,

a = ts3u.

By the trick developed in Sect. 4.6.1, IA = (I (W) + (y2 − xw)). I (W) has
codimension 2 and is arithmetically Cohen-Macaulay.Hence I (W) is a set-theoretic
complete intersection and so is IA.

Remark For an arithmetically Cohen-Macaulay projective curve, the shape of the
equations and the above theorem was known, by Stuckrad and Vogel [22] and by
Robbiano and Valla [19]. For an arithmetically Cohen-Macaulay simplicial toric
variety of codimension two, in [15] it was proved that its equations are given by the
2 × 2 minors of a 2 × 3 matrix, so the above theorem can be also proved by using
[22], or the next theorem. Our proof is simpler, it gives us the ideal I up to radical
in one step, while the next theorem needs several steps.

Theorem 4.5.14 ([19]) Let R be a commutative ring with identity, let m,n be non
negative integers, and let J be the ideal generated by the 2× 2 minors of the matrix

M =
(

a bm c

bn d e

)

, with entries inR. Then we can construct two elements f, g ∈
J , such that

rad (J ) = rad (f, g).

4.6 Some Set-Theoretic Complete Intersection Toric Varieties

4.6.1 Tricks on Toric Varieties

The following theorem was originally stated and proved in [14], in the case
of numerical semigroups, but it can be extended in general and the proofs are
unchanged.

Theorem 4.6.1 Let H be the semigroup of Nm generated by a1, . . . , an. Let IH ⊂
K[x1, . . . , xn] be the toric ideal associated to H .

1. Let l ∈ N
∗, and H(l) be the semigroup generated by la1, . . . , lan−1, an. Then the

ideal IH(l) is generated by f̃ (x1, . . . , xn) := f (x1, . . . , xn−1, x
l
n), where f runs

over all the generators of IH .

2. Let l1, . . . , ln ∈ N, l = l1 + · · · + ln > 0, let H
(l1,...,ln)

be the semigroup
generated by la1, . . . , lan−1, lan, an+1 := l1a1 + · · · + lnan. If l is relatively
prime to a component of an+1 then I

H
(l1,...,ln) = IH + (xl

n+1 − x
l1
1 · · · xln

n ) ⊂
K[x1, . . . , xn+1].
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The following theorem follows from [14], Lemmas 1.3, 1.4, and 1.5. See also [21]
Corollary 2.5 and [16] Theorem 2.6.

Theorem 4.6.2

1. If IH is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection then the same property holds for IH(l) .

2. If IH is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection and l is relatively prime to a component of an+1 then the
same property holds for I

H
(l1,...,ln) .

We deduce a positive answer to Question 4.5.10 if one of the components of a1 +a2
is odd. The following example shows that the hypothesis l is relatively prime to a
component of an+1 is necessary. We thank Mesut Sahin to pointed us this problem.

Example 4.6.3 Consider the projective surface with parametrization

x = s9, w = t9, v = u9, z = t5s2u2, a = t3s4u2.

It is a complete intersection but the projective surface with parametrization

x = s9, w = t9, v = u9, y = t4s3u2, z = t5s2u2, a = t3s4u2

is not arithmetically Cohen-Macaulay. Its defining ideal is generated by six ele-
ments.

These tricks can be applied to the projective case using the following

Theorem 4.6.4 Let H be the semigroup of Nm generated by a1, . . . , an, which are
not necessarily homogeneous with respect to the standard graduation. Suppose that
IH = rad (F1, . . . , Fr ). Let d = max{dega1, . . . , degan}, where degai is the sum of
its components. Let H1 be the semigroup in Zm+1 generated by b1, . . . , bn+1, where
for i = 1, . . . , n, bi = ai + (d − degai)em+1 and bn+1 = dem+1. Let xn+1 be a
new variable and let Fh

1 , . . . , F h
r be the homogenization of F1, . . . , Fr with respect

to xn+1.
Let P = (x1, . . . , xn, xn+1) be a zero of Fh

1 , . . . , F h
r . If xn+1 = 0 implies that

F(P) = 0 for all F ∈ Ih
H , then IH1 = rad (Fh

1 , . . . , F h
r ).

Proof For projective closure and parametrization of toric varieties we refer to [4].
Let VA be the zero set of IH , then the projective closure V is the zero set of Ih

H and
since both ideals Ih

H , IH1 , are prime of the same height they coincide. This implies
that rad (Fh

1 , . . . , F h
r ) ⊂ IH1 .

Let P = (x1, . . . , xn, xm+1) be a zero of Fh
1 , . . . , F h

r . By hypothesis, if xm+1 =
0 then P ∈ V . If xm+1 �= 0 then P ∈ V since V ∩ (xm+1 = 1) = {(Q, 1) | Q ∈ V },
by general arguments on the projective closure.
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Example 4.6.5 Let VA be the affine surface with parametrization

b = t7, x = s7, y = t3s2, z = t4s3, a = t2s5,

V be the projective surface with parametrization

b = t7, x = s7, w = u7, y = t3s2u2, z = t4s3, a = t2s5.

Then

I (V ) = (−a2 + xz, z4 − xab2,−az3 + x2b2, y7 − x2b3),

and

I (V ) = (−a2 + xz, z4 − xab2,−az3 + x2b2, y7 − w2x2b3).

Applying the proof of Theorem 4.5.2, we have that V is a set-theoretic complete
intersection. Indeed, let Fv1 = z4 −xab2, Fv2 = a2 −xz then Fv1+v2 = az3−x2b2

and F 2
v1

= z(z7 − 2z3ab2x + b4x3) mod Fv2 . Hence I (V ) = rad (−a2 + xz, z7 −
2z3ab2x + b4x3, y7 − x2b3).

4.6.2 Toric Curves in P
3

In this section we consider curves, that is VA is a simplicial toric variety of
dimension 1 in K3. The parametrization of VA is:

x = vp,

y = vq,

z = vr ,

where p < q < r are positive integers. We simply denote this curve by V or
V (p, q, r). Let V be the projective toric curve in P3, with parametrization

w = ur ,

x = ur−pvp,

y = ur−qvq ,

z = vr .

We simply denote this curve by V (p, q, r).
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Theorem 4.6.6 ([20]) Let a, b, p, q, r be natural integer numbers such that r =
ap + bq. If b ≥ a(q − p − 1) + 1, then V (p, q, r) is a set-theoretic complete
intersection. Moreover V (p, q, r) is the zero set of the polynomials F1 := xq −
ypwq−p, F2 = ((z − xayb)q)hyp=xq , where (H)yp=xq means substitution when

possible xq by yp, and Hh is the homogenization of H with respect to w.

Proof This proof is more or less the proof given by Sahin [20].
Let us consider

(z − xayb)q = zq +
q−1∑

k=1

(−1)k
(

q

k

)

zq−kxkaykb + xqayqb.

By setting ka = skq + rk ,with 0 ≤ sk, 0 ≤ rk < q , we can write

((z − xayb)q)yp=xq = zq +
q−1∑

k=1

(−1)k
(

q

k

)

zq−kxrkyskp+kb + ypa+qb.

Note that for k = 1, . . . , q − 1, q − k + rk + skp + kb < q − k + ka + kb, so it is
enough to check the condition q − k + ka + kb ≤ pa + qb for k = 0, . . . , q − 1.
This is equivalent to q − k + ka − pa ≤ qb + kb = q − k + (q − k)(b − 1), i.e.,
equivalent to (k −p)a ≤ (q − k)(b −1) for k = 0, . . . , q −1. This last condition is
equivalent to (k − p)a ≤ (q − k)(b − 1) for k = p + 1, . . . , q − 1. We remark that
if b − 1 ≥ a(q − p − 1), then (k − p)a ≤ a(q − p − 1) ≤ b − 1 ≤ (q − k)(b − 1).
We can write:

((z − xayb)q)yp=xq =
q−1∑

k=0

(−1)k
(

q

k

)

zq−kxrkysk+kbwr−(q−k+rk+sk+kb) + yr .

By the preceding discussion q − k + rk + skp + kb < q − k + ka + kb ≤ r

if b − 1 ≥ a(q − p − 1). In conclusion the exponent of w in the monomial
zq−kxrkysk+kbwr−(q−k+rk+sk+kb) is strictly positive.

Let P = (w : x : y : z) ∈ Z(F1, F2). If w = 0, then F2(P ) = 0 implies y = 0,
and F1(P ) = 0 implies x = 0. Hence P = (0 : 0 : 0 : 1) belongs to V . If w �= 0,
we can assume that w = 1. Hence F1(P ) = 0 implies that there exists v ∈ K such
that x = vp, y = vq and F2(P ) = 0 implies (z − vr )q = 0, which finally implies
z = vr ; that is P = (1 : vp : vq : vr) belongs to V .

The next theorem uses a trick that improves Sahin’s theorem in some cases:

Theorem 4.6.7 ([17])

1. Let p, q, r be natural integer numbers and V (p, q, r) be the projective toric
curve in P

3, with parametrization (ur, ur−pvp, ur−qvq , vr ). Suppose that r =
ap + bq, with a, b ∈ N,
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a. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a , or
b. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ (q − a − 1)p,

then V (p, q, r) is a set-theoretic complete intersection. Moreover V (p, q, r) is
the zero set of the polynomials Fh

1 := xq − ypwq−p, Fh
2 , where Fh

2 is obtained
from ((z − xayb)q)xq−yp , by a trick, explained in the proof.

2. Let l be a natural number, let V (lp, lq, r) be the projective toric curve in P
3.

Suppose that r = ap + bq, with a, b ∈ N,

a. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a − 1 + l, or
b. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ q − a − p + l, b ≥ (q − a − 1)p,

then V (lp, lq, r) is a set-theoretic complete intersection. Moreover V (lp, lq, r)

is the zero set of the polynomials Fh
1 := xq − ypwq−p, F 2 where

F 2(w, x, y, z) = (F2(x, y, zl))h, by the trick developed in Sect. 4.6.1.

Proof We prove only the first claim, the second claim follows from the proof of the
first and the trick developed in Sect. 4.6.1. The proof is more or less the one given
in [17].

Let us consider

(z − xayb)q = zq +
q−1∑

k=1

(−1)q−k

(
q

k

)

zkx(q−k)ay(q−k)b + xqayqb.

By setting (q − k)a = k(q − a) + q(a − k) and by using yp = xq , we get the
polynomial

F2 := zq +
q−1∑

k=1

(−1)q−k

(
q

k

)

zkxk(q−a)yr−k(b+p) + yr ,

For k = 1, . . . , q−1, the exponent of x in F2 is xk(q−a) which is strictly positive.
For k = 1, . . . , q − 1, the exponent of y in F2 is yr−k(b+p) which is positive if and
only if b ≥ (q − a − 1)p. Finally degF2 = r if and only if b ≥ q − a − p + 1.

It is easy to show that these conditions are equivalent to

1. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a, or
2. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ (q − a − 1)p.

We also remark that the affine curve V (p, q, r) is a complete intersection by the
trick developed in Sect. 4.6.1, so is clear that V (p, q, r) is a set-theoretic complete
intersection defined by (F1, F2).
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Now we can prove that V (p, q, r) is a set-theoretic complete intersection defined
by (Fh

1 , F h
2 ), where

Fh
1 := xq − ypwq−p,

Fh
2 := zqwr−q +

q−1∑

k=1

(−1)q−k

(
q

k

)

zkxk(q−a)yr−k(b+p)wk(b+p+a−q−1 + yr .

Let P = (w : x : y : z) ∈ Z(F1, F2). If w = 0 then F1(P ) = 0 implies x = 0, and
F2(P ) = 0 implies y = 0. Hence P = (0 : 0 : 0 : 1) and it is clear that it belongs
to V . If w �= 0, we can assume that w = 1, the claim follows from the fact that
V (p, q, r) is a set-theoretic complete intersection defined by (F1, F2).

Remark We can compare the bounds on b given in Theorems 4.6.6 and 4.6.7. We
assume that 0 ≤ a ≤ q − 1

1. If p = 1 then the bound given by Theorem 4.6.7 is better, that is b ≥ q − a.
2. If p > 1 and p ≤ a then the bound given by Theorem 4.6.7 is better, that is

b ≥ (q − a − 1)p,
3. If p > 1 and p > a then the bound given by Theorem 4.6.6 is better, that is

b ≥ a(q − p − 1) + 1.

Proof We need a proof.

1. If p = 1 q − a ≤ a(q − 1 − 1) + 1 ⇔ (a − 1)(q − 1) ≥ 0.
2. If p > 1 (q − a − 1)p ≥ a(q − p − 1) + 1 ⇔ (p − a)(q − 1) ≥ 1.

Note also that the bound given in Theorem 4.6.7 is the best one given by the methods
used, but the bound given by Theorem 4.6.6 is not the best obtained by the methods
used. We sometimes can get better bounds by applying the proof of Theorem 4.6.6.

Theorem 4.6.8 Suppose that gcd (p, q) = l. We set p′ = p/l, q ′ = q/l. If r ≥
p′q ′(q ′ − 1) + q ′l, then V (p, q, r) is a set-theoretic complete intersection.

In particular given two positive numbers p, q there is only a finite number of
positive integers r for which we don’t know if the projective toric curve V (p, q, r)

in P3 is a set-theoretic complete intersection.

Proof The Frobenius number for the semigroup generated by p′, q ′ is (p′ −1)(q ′ −
1), since r ≥ p′q ′(q ′ − 1) + q ′l ≥ (p′ − 1)(q ′ − 1), we have that r belongs to the
semigroup generated by p′, q ′, and we can find a, b integers such that r = ap′ +
bq ′, 0 ≤ a ≤ q − 1, b ≥ 1. We will check the conditions for b in Theorem 4.6.7.

1. Suppose that b < q ′ − a − p′ − l, then

r = ap′ + bq ′ < r = ap′ + q ′(q ′ − a − p′ − l) = q ′(q ′ − p′ − l) − a(q ′ − p′)

≤ q ′(q ′ − p′ − l),

and q ′(q ′ − p′ − l) ≤ p′q ′(q ′ − 1) + q ′l is equivalent to q ′ ≤ p′q ′, so we get a
contradiction.
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2. Suppose that b < (q ′ − a − 1)p′, then

r = ap′ + bq ′ < r = ap′ + q ′((q ′ − a − 1)p′) = q ′((q ′ − 1)p′) − a(q ′ − p′)

≤ p′q ′(q ′ − 1) ≤ p′q ′(q ′ − 1) + q ′l,

we get again a contradiction.

We conclude that the conditions for b in Theorem 4.6.7 are satisfied, hence
V (p, q, r) is a set-theoretic complete intersection.

Example 4.6.9 Let V (1, 2, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 3, by applying the proof of the
above theorem.

Example 4.6.10 Let V (1, 3, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 5, by applying the proof of the
above theorem.

Remark that in this case the only unsolved example is the famous projective
quartic V (1, 3, 4).

Example 4.6.11 Let V (1, 4, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ∈ {7, 8, 10, . . .}. By applying the
proof of the above theorem, we get that r ∈ {7, 10, 11, 13, . . .}. Now by a direct
computation using [15], we get that V is a complete intersection for r = 8, 12.

The unsolved cases are V (1, 4, 5), V (1, 4, 6) and V (1, 4, 9).

Example 4.6.12 Let V (2, 3, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 4. By applying the proof of the
above theorem, we get that r ∈ {4, 7, 8, 10, 11, 12, . . .}. Now by direct computation
using [15], we get that V is a arithmetically Cohen-Macaulay for r = 5 and a
complete intersection for r = 6, 9.

4.6.3 Toric Curves in P
n

Let K be an algebraically closed field. In this subsection we consider curves in Kn,
that is V (p, q0, q1, . . . , qn−2) is an affine simplicial toric variety of dimension 1.
The parametrization of V := V (p, q0, q1, . . . , qn−2) is:

x = vp,

y = vq0 ,

z1 = vq1 ,

. . .

zn−2 = vqn−2 .
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Theorem 4.6.13 Let p, q0, q1, . . . , qn−2 be positive integers. Let V (p, q0, q1, . . . ,

qn−2) be the projective toric curve in P
n with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .

Suppose that V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection,
defined by F1, . . . , Fn−1. Let qn−1 ∈ N, and V 1 the projective curve defined
by

w = uqn−1,

x = uqn−1−pvp,

y = uqn−1−q0vq0 ,

z1 = uqn−1−q1vq1 ,

. . .

zn−2 = uqn−1−qn−2vqn−2 ,

zn−1 = vqn−1 .

If qn−1 = ap + bqn−2, with 0 ≤ a ≤ qn−2 − 1, b ≥ qn−2 − a when p = 1, or 0 ≤
a ≤ qn−2−1, b ≥ (qn−2−a−1)p when p > 1, then V 1(p, q0, q1, . . . , qn−2, qn−1)

is a set-theoretic complete intersection.
In particular, let gcd (p, qn−2) = l. We set p′ = p/l, q ′ = qn−2/l. If qn−1 ≥

p′q ′(q ′ − 1) + q ′l, then V 1(p, q0, q1, . . . , qn−2, qn−1) is a set-theoretic complete
intersection.

Proof By the hypothesis V is a set-theoretic complete intersection, defined by
F1, . . . , Fn−1. We will prove that V 1 is a set-theoretic complete intersection, defined
by F1, . . . , Fn−1, Fn, where Fn is the polynomial

z
qn−2
n−1 wqn−1−qn−2 +

qn−2−1∑

k=1

(−1)qn−2−k

(
qn−2

k

)

zk
n−1x

k(qn−2−a)z
qn−1−k(b+p)

n−2

× wk(b+p+a−qn−2−1) + z
qn−1
n−2 ,
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obtained from ((zn−1 − xazb
n−2)

qn−2)zp
n−2=xqn−2 by the trick used in the proof of the

Theorem 4.6.7. Note that also by Theorem 4.6.7, all exponents are positive with our
hypothesis.

First note that Fn ∈ I (V 1). Let P = (w, x, y, z1, . . . , zn−1) ∈ V 1. Ifw = 0 then
from the parametrization we get x = y = z = · · · = zn−2 = 0, hence Fn(P ) = 0.
If w �= 0, we can assume that w = 1, there exists v ∈ K such that

x = vp, y = vq0 , z1 = vq1, . . . , zn−1 = vqn−1 .

If v = 0 then x = y = z = · · · = zn−1 = 0, and Fn(P ) = 0. If v �= 0,
we can perform the trick used in the proof of the Theorem 4.6.7, and we get that
Fn(P ) = (zn−1 − xazb

n−2)
qn−2 = 0.

Secondly we prove that F1, . . . , Fn−1 ∈ I (V )1. For i = 1, . . . , n−1, Fi ∈ I (V ).
This implies Fdeh

i ∈ I (V ), where Fdeh
i is the dehomogenized polynomial, that is

setting w = 1 in Fi , hence Fi(1, vp, vq , vq1 , . . . , vqn−2) = 0, so Fdeh
i ∈ I (V1) and

finally Fi ∈ I (V 1). As a conclusion, the zero set of F1, . . . , Fn−1, Fn, is included
in V 1.

Third, we have to prove that if P = (w, x, y, z1, . . . , zn−1) is a zero of
F1, . . . , Fn−1, Fn, then P ∈ V 1. Let P ′ = (w, x, y, z1, . . . , zn−2), since F1(P

′) =
· · · = Fn−1(P

′) = 0, there exist u, v ∈ K such that

w = uqn−2, x = uqn−2−pvp, y = uqn−2−qvq0 ,

z1 = uqn−2−q1vq1 , . . . , zn−2 = vqn−2 .

Suppose that w = 0, then x = y = z = · · · = zn−3 = 0. Hence Fn(P ) = 0 implies
zn−2 = 0, that is P = (0, . . . , 0, 1), which is a point of V 1. Suppose that w �= 0,
we can assume that w = 1, hence there exists v ∈ K such that

x = vp, y = vq0 , z1 = vq1, . . . , zn−2 = vqn−2 .

In particular xqn−2 = (vp)qn−2 = z
p
n−2. From Fn(P ) = 0, we get (zn−1 −

xazb
n−2)

qn−2 = 0, that is zn−1 = xazb
n−2 = vqn−1 .

Example 4.6.14 Consider the projective curve V (p, q0, q1, . . . , qn−2). Let qn−1 =
bqn−2 for a natural number b ≥ 2. Then V 1(p, q0, q1, . . . , qn−2, qn−1) is the
zero set of I (V (p, q0, q1, . . . , qn−2)) and Fh := zn−1w

b−1 − zb
n−2. In par-

ticular if V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection, then
V 1(p, q0, q1, . . . , qn−2, qn−1) is a set-theoretic complete intersection.

Example 4.6.15 Let V (1, 2, 3, r) be the projective toric curve in P
4 with

parametrization

w = ur , x = ur−1v1, y = ur−2v2, z1 = ur−3v3, z2 = vr .
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Then V is a set-theoretic complete intersection for all integers r ≥ 4. By the above
theoremwe have that V (1, 2, 3, r) is a set-theoretic complete intersection for r ≥ 5.
The case r = 4 was done in [19]. Note that the case r = 5 follows also from [8].
This example was independently studied in [18].

Example 4.6.16 Let V (1, 3, 5, r) be the projective toric curve in P
4 with

parametrization

w = ur , x = ur−1v1, y = ur−3v3, z1 = ur−5v5, z2 = vr .

Then by using the Theorem 4.6.7 V is a set-theoretic complete intersection for all
integers r ∈ {9, 13, 14, 17, 18, 19, 21, 22, . . .}, and by Example 4.6.14, for all r =
5b, b ≥ 2.

The trick used above can be improved. Let us consider the following example.
Let V (1, 3, 5, 11) be the projective toric curve in P

4, then V (1, 3, 5, 11) is a set-
theoretic complete intersection on I (V (1, 3, 5)) and F , where F is obtained from
(z2 − y2z1)

5 = 0 working modulo y5 − z31.

In conclusion the only unknown cases are for r = 6, 7, 8, 12.

Example 4.6.17 Let V (2, 3, 5, r) be the projective toric curve in P
4. We have seen

in Example 4.6.14, that V (2, 3, 5, r) is a set-theoretic complete intersection for r =
5b, b ≥ 2. By using the method in Theorem 4.6.6, we can see that V (2, 3, 5, r) is
a set-theoretic complete intersection for r = 12 + 5b, 14 + 5b, and by using the
methods in Theorem 4.6.7, that V (2, 3, 5, r) is a set-theoretic complete intersection
for r = 8 + 5b, 16 + 5b. In conclusion V (2, 3, 5, r) is a set-theoretic complete
intersection for all positive integers, except possibly for r ∈ {6, 7, 11}. Note that the
case V (2, 3, 5, 9) was solved in [24].

Theorem 4.6.18 Let p, q0, q1, . . . , qn−2 be positive integers. Let V be the projec-
tive toric curve in P

n, with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .

For i = 0, . . . , qn−3 let gcd (p, qi) = li . We set p′ = p/l, q ′
i = qi/ li . Suppose that

for i = 1, . . . , n − 2, qi ≥ q ′
i−1(q

′
i−1 − 1)(q ′

i−1 − p′ − 1) + q ′
i−1li . Then V is a

set-theoretic complete intersection.

Proof The proof is by induction, the case n = 3 is Theorem 4.6.8. The case n − 1
implies n follows from Theorem 4.6.13. In the case where li = 1 for all i we
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have that for i = 1, . . . , n − 2, there exist positive integers ai, bi such that qi =
aip

′ + biq
′
i−1, 0 ≤ ai ≤ q ′

i−1 − 1. V is the zero set of the polynomials

F1 := xq0 − ypwq0−p, F2, . . . , Fn−1,

where Fi−1 is obtained, by applying the trick used in the proof of Theorem 4.6.7,
from

((zi − xai z
bi

i−1)
qi−1)h

z
p

i−1=xqi−1 ,

where (H)yp=xq0 means substitution when possible xq0 by yp, and Hh is the
homogenization of H with respect to w.
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