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Preface

This collection of notes is based on four lectures given during the programme
Commutative Algebra at the Vietnam Institute of Advanced Study in Mathematics
in the winter semester 2013-2014. The lectures provide introductions to recent
research topics in Commutative Algebra, which are related to Algebraic Geometry
and other fields. The topics were chosen to represent different aspects of the use
of the basic tools of Commutative Algebra. The notes are mainly self-contained,
with the hope that students with advanced backgrounds in algebra can get through
and absorb different techniques and ideas in Commutative Algebra before settling
on concrete research problems. They can also be used separately as courses for
graduate students, depending on the level and interest of the students.

The first lecture, by M. Brodmann, offers an introduction to the theory of
rings of differential operators and their modules, also known as Weyl algebras
and D-modules. These concepts relate Non-commutative Algebra and Commutative
Algebra with Algebraic Geometry and Analysis in a very appealing way. The lecture
presents this theory from the viewpoint of Commutative Algebra and is aimed at
an audience having only a basic background in Commutative Algebra. The main
feature is therefore not to explain everything about Weyl algebras and D-modules,
but only the relevant aspects which are directly related to Commutative Algebra,
such as the characteristic variety via the theory of filtered algebras and modules. The
last part also contains some recent results on the stability, deformation and defining
equations of the characteristic variety. The material is developed systematically
and is accompanied by examples and exercises. These notes are well suited for an
undergraduate course.

The second lecture, by J. Elias, is a short introduction to the theory of inverse
systems and its application in the classification of Artinian Gorenstein rings. The
classification of Artinian rings (rings of finite length) up to analytic isomorphism
is a basic problem in Commutative Algebra and Algebraic Geometry. This problem
is even open for Artinian Gorenstein rings, when the ring is an injective module
over itself. Inverse systems provide an important tool in Commutative Algebra,
establishing a beautiful correspondence between Artinian Gorenstein quotient rings
and certain polynomials via derivations. The notes give a thorough introduction to
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the theory of injective modules and inverse systems and show how to use these
tools to classify Artinian Gorenstein rings and to compute their Betti numbers. The
presented material combines several basic techniques of Commutative Algebra and
could be used for a graduate course.

The third lecture, by R.M. Mir6-Roig, is on the complexity of the structure of
projective varieties. This complexity can be measured by the representation type,
which is the dimension and the number of families of indecomposable arithmetically
Cohen—Macaulay sheaves (i.e. sheaves without intermediate cohomology) on the
underlying variety. This is a fascinating topic of Algebraic Geometry, which requires
an advanced background in Commutative Algebra. The notes cover the basic facts
on this and related subjects such as moduli spaces of sheaves, liaison theory,
minimal resolutions and Hilbert schemes of points. Many interesting results are
presented on arithmetically Cohen—Macaulay sheaves and bundles having natural
extremal algebraic properties, and several examples of varieties of wild represen-
tation type are given. The exposition is self-contained and features numerous open
problems and promising ideas for further investigation. It may serve as a graduate
course in Algebraic Geometry.

The last lecture, by M. Morales, addresses a classical problem of both Commu-
tative Algebra and Algebraic Geometry, namely, how many equations are needed
to define an algebraic variety set-theoretically. This seemingly simple problem is
wide open even for toric varieties, which are given parametrically by monomials.
The notes provide an extensive survey on this problem in the case of simplicial toric
varieties, which are defined by the property that the exponents of the parametrizing
monomials span a simplicial complex. One can use arithmetical and combinatorial
tools (semigroups, lattices) to obtain satisfactory results for large classes of sim-
plicial toric varieties. The material is presented in a systematic way and can easily
be followed by any reader with some basic background in Commutative Algebra.
These notes are recommended as a first course for anyone who wants to see the
interaction between algebra, combinatorics and geometry. They can be used as a
starting point for graduate studies in Commutative Algebra.

Hanoi, Vietnam Nguyen Tu CUONG
14 October 2017 Le Tuan HOA
Ngo Viet TRUNG
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Chapter 1 )
Notes on Weyl Algebra and D-Modules Sheiie

Markus Brodmann

Abstract Weyl algebras, sometimes called algebras of differential operators, are a
fascinating and important subject, which relates Non-Commutative and Commuta-
tive Algebra, Algebraic Geometry and Analysis in very appealing way. The theory
of modules over Weyl algebras, sometimes called D-modules, finds application in
the theory of partial differential equations, and thus has a great impact to many fields
of Mathematics. In our course, we shall give a short introduction to the subject,
using only prerequisites from Linear Algebra, Basic Abstract Algebra, and Basic
Commutative Algebra. In addition, in the last two sections, we present a few recent
results.

1.1 Introduction

The present notes base on two short courses:

(1) Introduction to Weyl Algebras: five Twin Lessons, Thai Nguyen University of
Science TNUS (Thai Nguyen, Vietnam), November 1-10, 2013.

(2) Weyl Algebras, Universal Grobner Bases, Filtration Deformations and Char-
acteristic Varieties of D-Modules: four Twin Lessons, Vietnam Institute for
Advanced Study in Mathematics VIASM (Hanoi, Vietnam), November 12-26,
2013.

They were also the base for a third course:

(3) Introduction to Weyl Algebras and D-Modules: four Lessons and two Tuto-
rial Sessions, “Workshop on Local Cohomology”, St. Joseph’s College Irin-
jalakuda, Kerala (India), June 20-July 2, 2016.

M. Brodmann (0<)
Universitit Ziirich, Institut fiir Mathematik, Ziirich, Switzerland
e-mail: brodmann@math.uzh.ch

© Springer International Publishing AG, part of Springer Nature 2018 1
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2 M. Brodmann

These notes aim to give an approach to Boldini’s stability and deformation results
for characteristic varieties [11, 12] and to the bounding result [16] for the degrees of
defining equations of characteristic varieties, including a self-contained introduction
to the needed background on Weyl Algebras and D-modules. In particular, these
notes should not be understood as an independent or complete introduction to the
field of Weyl algebras and D-modules, which could replace one of the existing
textbooks or monographs like [8, 9, 13, 24, 29, 37] or [38]: Too many core subjects
are not treated at all or only marginally in these notes, as they are not needed on the
way to our final results.

So, a few basic topics which are lacking in these notes—and which ought to be
considered as indispensable in a complete introduction to the field—are:

— asystematic study of Bernstein’s Inequality and holonomic D-modules (we treat
these subjects only briefly in Exercise and Remark 1.14.3),

— Bernstein’s result on singularities of generalized I"-functions and Bernstein-Sato
polynomials,

— weighted filtrations with negative weights,

— the sheaf theoretic and cohomological aspect,

— the analytic aspect.

Another subject which is not treated in our notes are Lyubeznik’s finiteness
results for local cohomology modules of regular local rings in characteristic O (see
[33] and also [34]), which brought a break-through in Commutative Algebra, as they
base on the use of (holonomic) D-modules—and hence present a very important link
between these two fields.

These notes are divided up in 14 sections:

Introduction

Filtered Algebras

Associated Graded Rings
Derivations

Weyl Algebras

Arithmetic in Weyl Algebras

The Standard Basis

Weighted Degrees and Filtrations
Weighted Associated Graded Rings
10. Filtered Modules

11. D-Modules

12. Grobner Bases

13. Weighted Orderings

14. Standard Degree and Hilbert Polynomials

NN R WD =

e

Sections 1.1-1.9 were the subject of the introductory course (1) at TNUS. In our
course (2) at the VIASM we gave an account on all 14 sections, and discussed a few
applications (to the Gelfand-Kirillow dimension of D-modules for example), which
are not contained in these notes. In the course (3) at St. Joseph’s College we treated
Sects. 1.1-1.9 and 1.14.
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Our suggested basic reference is Coutinho’s introduction [24], although we
do not follow that introduction and we partly use our own terminology and
notations. We start in a slightly more general setting, than Coutinho, and so also
we recommend the references [4, 10, 11, 32] and [35]. Files of [10] and [11] are
available on request at the author. For readers who have already some background
in the subject, we recommend as possible references [8, 9, 13, 29, 37], or the first
part of the PhD thesis [11].

Finally, we aim to fix a few notations and make a few conventions which
we shall keep throughout these notes. We do this on a fairly elementary level,
according to the original intention of the short course (1): To give a first introduction
to the subject to an audience having only some background in Linear Algebra
and basic Abstract Algebra. Only in Sect. 1.14 we will need some background
from Commutative Algebra, notably Hilbert functions and -polynomials, Local
Cohomology and Castelnuovo-Mumford regularity. We shall give brief reminders
on these more advanced preliminaries in Sect. 1.14.

Conventions, Reminders and Notations 1.1.1 (A) (General Notations) By Z, Q
and R we respectively denote the set of integers, of rationals and of real numbers.
We also write

Rsp:={xeR|x>0}andR.p:={x e R| x > 0}

for the set of non-negative respectively of positive real numbers. Moreover, we use
the following notations for the set of non-negative respectively the set of positive
integers:

No:=ZNR=gand N:=ZNR.o = Ny \ {0}.

If S € R we form the supremum and infimum sup(S) resp. inf(S) within the set
R U {—00, oo}, using the convention that sup(¥) = —oo and inf(¥) = oo.

Empty sums and empty products are respectively understood to be 0 or 1. We
thus set

-1 -1
in := 0 and l_[xi = 1 with x1, xp,--- € R.
i=0 i=0

(B) (Rings) All rings R are understood to be associative, non-trivial and unital, so
that they have a unit-element 1 = 1z € R\ {0} and the following properties hold

(@) Ox =x0=0and 1x =x1 =x forall x € R;
®) x(yz) = (xy)z,x(y+2) =xy+xzand (x+y)z = xz+yzforallx, y,z € R.

Rings need not be commutative.

If R is aring, a subring of R is a subset Rg € R, suchthat1g € Rpandx 4y, xy €
Ro whenever x,y € Ro. If Rgp € R is a subring and S C R is an arbitrary subset,
we write Ro[S] for the subring of R generated by Ry and S, hence for the smallest
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subring of R which contains Ry and S. Thus, Ry[S] is the intersection of all subrings
of R which contain Ry and S, and may be written in the form

r o kr
Ro[S1={>_[Jaijlrki.....kr €N.ajj € RyUS.¥i <r.Vj <ki}.
i=1 j=1

Ifay,an, ..., a,is afinite collection of elements of R, we set

Rolai, az, ...,a;) := Rol{ar, a2, ..., ar}l.

(C) (Homomorphisms of Rings) All homomorphisms of rings are understood to
be unital, and hence are maps 4 : R —> S, with R and S rings, such that

@ h(x+y)=nh(x)+h(y) and h(xy) = h(x)h(y) forall x, y € R;
(b) h(lg) = Is.

Clearly, the identity map Idg : R — R is a homomorphism of rings, and
the composition of homomorphisms of rings is again a homomorphism of rings.
An isomorphism of rings is a homomorphism of rings admitting an inverse
homomorphism. A homomorphism of rings is an isomorphism, if and only if it
is bijective.

(D) (K-Algebras) All fields are considered as commutative. If K is a field, a
K -algebra is understood to be a ring A together with a homomorphism of rings
¢ : K — A such that

eg(c)a =ae(c)forallc € K andalla € A.

As the ring A is non-trivial, the homomorphism ¢ : K — A is injective. So, we
can and do always embed K into A by means of ¢ and thus identify ¢ with ¢(c) for
all c € K. Hence we have

c:=¢e(c)=clyp=1gqcandca = acforallc € K andalla € A.

Keep in mind, that a K -algebra A is a K -vector space in a natural way.
(E) (Homomorphisms of K-Algebras) Let K be a field. A homomorphism of
K -algebras h : A —> B is a map with K-algebras A and B such that:

(@) h: A — B is ahomomorphism of rings;
(b) h(c) =cforallc € K.

Observe, that a homomorphism of K -algebras is also a homomorphism of K -vector
spaces.

(F) (Modules) We usually shall consider unital left-modules, hence modules M
over aring R, such that

x(m+n)=xm+xn, x+ym=xm+ym, (xy)m=x(ym)andlm=m
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forall x, y € R and all m, n € M. We shall refer to left-modules just as modules.
By a homomorphism of R-modules we meanamap h : M —> N, with M and N
both R-modules, such that

(@ h(m+n) =h(m)+ h(@n) forallm,n € M.
(b) h(xm) = xh(m) forallx € Randallm € M.

A submodule of a R-module M is a subset N € M, such that m +n € N and
xm € N whenever m,n € N and x € R. Clearly O := {0} and M are submodules
of M.

If h : M — N is a homomorphism of R-modules, the kernel Ker(h) := {m €
M | h(m) = 0} of h is a submodule of M and the image Im(h) := h(M) of h is a
submodule of N.

A sequence of (homomorphisms of) R-modules

ho hi hi—1 hi hr—1
My — My — My---Mj_y — M; — Miy1---M,_1 — M,

is said to be exact if Ker(h;) = Im(h;_1) foralli = 1,2,...,r — 1. A short exact

. h I
sequence of R-modules is an exact sequence of the foom 0 — M — N —>

P — 0, meaning that # is injective, [ is surjective and Ker(/) = Im(h).
The annihilator of an R-module M is defined as the left ideal of R consisting of all
elements which annihilate M, thus:

Annp(M) :={x € R| xM = 0}.

(G) (Noetherian Modules and Rings) Let R be a ring. A left R-module is said to
be Noetherian, if it satisfies the following equivalent conditions

(1) Each left submodule N € M if finitely generated, and hence of the form N =

Y i_y Rnj withr € Ng and ny,na,...,n, € N.

(i) Each ascending sequence N9 € N; € ---N; € Nj11 C - - - of left submodules
N; € M ultimately becomes stationary and thus satisfies N;, = Njjy1 =
Niy4+2 = ... for some iy € Ny.

We say that the ring R is left Noetherian if it is Noetherian as a left module.
Keep in mind the following facts:

(@) f0 — N — M — P — 0 is an exact sequence of left R-modules then
M is Noetherian if and only N and P are both Noetherian.

(b) If M and N are two Noetherian left R-modules, then their direct sum M @ N is
Noetherian, too.

(c) If R is left Noetherian, a left R-module M is Noetherian if and only if it is
finitely generated.
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(H) (Modules of Finite Presentation) Let R be aring. A left R-module M is said
to be of finite presentation if there is an exact sequence of left R-modules

RS R 5 M—>0 withr.s e N,.

In this situation, the above exact sequence is called a (finite) presentation of M and

h . ; .
R® — R’ is called a presenting homomorphism for M.
Keep in mind, that the presenting homomorphism is given by a matrix with entries
in R, more precisely: There is a matrix

alapy ...aiy
a1 ax ... ay oxr

A= L . € R*”*" such that
ds] As2 ... dsr

N N )
h(xi, x2, ..., x5) = (x1, X2, ..., Xs)A = (inail, inaiz, cees inair)
i=1 i=1 i=1

for all (xq, x2, ..., x5) € R®. This matrix A is called a presentation matrix for M.
Note the following facts:

(a) A left R-module M of finite presentation is finitely generated.
(b) If R is left Noetherian, then each finitely generated left R-module is of finite
presentation.

(D (Graded Rings and Modules) A (positively) graded ring is a ring R together
with a family (R;);en, of additive subgroups R; C R such that

(1) R = @en, Ris
(2) 1 € Ro;
(3) foralli,j e Ngpandalla € R; and all b € R; itholds ab € R; ;.

In this situation we also refer to R = P,y Ri as (positively) graded Ro-algebra.
Ifa € R; \ {0}, we call a a homogeneous element of degree i.

Let R" = Py, R; be a second graded ring. A homomorphism of graded rings
is a homomorphism f : R —> R’ of rings which respects gradings, hence such
that f(R;) S R! for all i € Ny. Clearly, the identity map Idg : R — R
of a graded ring as well as the composition of two homomorphisms of graded
rings is a homomorphism of graded rings. An isomorphism of graded rings is a
homomorphism of graded rings which admits an inverse which is a homomorphism
of graded rings—or, equivalently—a bijective homomorphism of graded rings.

The (positively) graded ring R = €P; eN, Ri is called a homogeneous ring if it is
generated over Ry by homogeneous elements of degree 1, hence if (in the notation
introduced in part (B)) we have R = Ry[R;].
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A graded (left) module over the graded ring R is a left R-module together with a
family (M) jez of additive subgroups M; C M such that

(1) M =@y Mj;
(2) Foralli € Ng,all j € Z,alla € R; and all m € M; it holds am € M, ;.

A homomorphism of graded (left) modules is a homomorphism h : M — N
of R-modules, in which M = P, M; and N = Pz N; are both graded
and h(M;) € N; for all j € Z. Clearly, the identity map of a graded R-
module and the composition of two homomorphisms of graded R-modules are again
homomorphisms of graded R-modules. An isomorphism of graded R-modules is a
homomorphism of graded R-modules which admits an inverse which is a homo-
morphism of graded R-modules—or, equivalently—a bijective homomorphism of
graded R-modules.

(K) (Prime Varieties) Let R be a commutative ring. We denote the prime
spectrum of R, hence the set of all prime ideals in R, by Spec(R). If a € R is
an ideal, we denote by Var(a) the prime variety of a, thus

Var(a) := {p € Spec(R) | a < p}.
Let
Ja:={aeR|ImeN:a" €a}.

denote the radical ideal of a. Keep in mind the following facts:

(a) Var(a) = Var(y/a).
(b) If a, b C R are ideals, then Var(a) = Var(b) if and only if /a = V.

(L) (Krull Dimension) Let R be as in part (K) and let M be a finitely generated
R-module. Then, the (Krull) dimension dimg (M) of M is defined as the supremum
of the lengths of chains of prime ideals which can be found in the prime variety of
the annihilator of M:

dimg (M) :=sup{r € No | Ipg, ..., pr € VaI(AnnR(M)) withp; 1 C p;
fori =1,...,r}

In particular, the (Krull) dimension dim(R) of R is the dimension of the R-
module R:

dim(R) = sup{r € No | Ipo, ..., p, € Spec(R) withp;_1 T p; fori =1,...,r}.

Before giving a formal acknowledgement, the author likes very much to express
his gratitude toward his Vietnamese fellow mathematicians, who gave him the
chance to visit the Country so many times, to teach several invited short courses,
to present talks and to discuss on Mathematics at various Universities since his
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first visit of Vietnam in 1996. He also looks back with pleasure to the many visits
of Vietnamese mathematicians in Ziirich as well as the numerous mathematical
cooperations and the many personal friendships which resulted from them.
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1.2 Filtered Algebras

We begin with a few general preliminaries, which will pave our way to introduce
and to treat Weyl algebras and D-modules. Our first preliminary theme are filtered
algebras over a field. It will turn out later, that this concept is of basic significance
for the theory of Weyl algebras.

Definition and Remark 1.2.1 (A) Let K be a field and let A be K-algebra (see
Conventions, Reminders and Notations 1.1.1 (D)). By a filtration of A we mean a
family

Ao = (Ai)iEN()

such that the following conditions hold:

(a) Each A; is a K-vector subspace of A;
(b) A; € A4 foralli € Ny;

(c) 1€ Ag;

(D) A=Uen, Ais

(e) AjA; C Ajyjforalli, j € No.

In requirement (e) we have used the standard notation

AiAj= Y Kfgforalli,jeN,
(f,8)€AiIXA;
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which we shall use from now on without further mention. To simplify notation, we
also often set

A; =0foralli <0
and then write our filtration in the form
Ay = (A)iez.

If a filtration of A is given, we say that (A, A,) or—by abuse of language—that A
is a filtered K -algebra.

(B) Keep the notations and hypotheses of part (A) and let A, = (A;);cz be a
filtered K -algebra. Observe that we have the following statements:

(a) Apisa K-subalgebra of A.
(b) Foralli € Z the K-vector space A; is a left- and a right- Ap-submodule of A.

Example 1.2.2 (The Degree Filtration of a Commutative Polynomial Ring) Let
neNandlet A = K[X1, X2, ..., X,] be the commutative polynomial algebra over
the field K in the indeterminates X1, X», ..., X,,. Then clearly A is a K -space over
its monomial basis:

A=K[X1.X2.....X)l= P kx('x2... Xy =P Kx",

U],vz,‘A‘,vnENo VENS
where we have used use the standard notation
. Vi V2 .
XV =X"X? ... X, forvi= (v, v...v,) € Nj.

So, each f € A can be written as

f= 3y

n
veNj

with a unique family

(Cl()f))veNg e [[ k=«

veNj
whose support

supp(/) = supp((€}””) ) = (v € NG | i #0)
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is finite. We also introduce the notation
n
v = Zvi, forv = (vi,v2,...,v,) € Nj.
i=1

Then, with the usual convention of Conventions, Reminders and Notations 1.1.1 (A)
we may describe the degree of the polynomial f € A by

deg(f) = sup{|v| | ¢{/) # 0} = sup{[v| | v € supp(f)}.

Now, for each i € Ny we introduce the K -subspace A; of A which is given by

Ai={feAldeg(f)<i}= € Kx"

veNG wi [V]<i

With the usual convention that u + (—o0) = —oo for all u € Z U {—o0}, we have
the obvious relation

deg(fg) = deg(f) +deg(g) forall f,g € A =K[X1, X2,..., Xyl
From this it follows easily:

The family A, = (A; := {f € A | deg(f) <i})

ieNy

is a filtration of A. This filtration is called the degree filtration of the polynomial
algebra A = K[X1, X2, ..., Xnl.

Clearly filtrations also may occur in non-commutative algebras. The next
example presents somehow the “generic occurrence” of this.

Example 1.2.3 (The Degree Filtration of a Free Associative Algebra) Letn € N,
let K be a field and let A = K (X1, X2, ..., X,) be the free associative algebra
over K in the indeterminates X1, X2, ..., X,. We suppose in particular that (see
Conventions, Reminders and Notations 1.1.1 (D))

cX; = X;cforallce Kandalli =1,2,...,n,
and hence

cf = fcforallc € K andall f € A.

Leti € Np. If

o= (0o1,09,...,01) €{1,2,....n)
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is a sequence of length i with values in the set {1, 2, ..., n} we write
i
X, =[] Xo; = X0, Xo, ... Xo.
j=1

Then, with the usual convention that the product [] jep Xj of an empty family of
factors equals 1 and using the notation

Su = {{1,2,...,n} | i € No}
we can write A as a K-space over its monomial basis as follows:

A=K(X1,X2,...,Xn)

=P 5 KXo, Xo, ... Xo,

ieNg  (01,07...01)€{1,2,....n}i

=P SD KX,

ieNo  oe{l,2,...,n)
=P kx,.
oeS,

Clearly, as in the case of a commutative polynomial ring, each f € A may be written
in the form

=Yy,

ogEeS,

with a unique family

(Cz(ff))aeS,, € 1_[ K= KSVL’

oES,

whose support
supp(f) = supp((c5oes,) = {o € Su | 5 # 0}

is finite. We also introduce the notion of length of a sequence o € S, by setting
o) =i, ifo e{l,2,...,n}.
Now, we may define the degree of an element f € A by

deg(f) = sup{r(o) | c/) # 0} = sup{r(0) | & € supp(f)}.
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For each i € Ny we introduce a K-subspace A; of A, by setting

Ai={feAldegH)<i}= P KX,.

o €Sy wihA(0)<i

We obviously have the relation

deg(fg) < deg(f) + deg(g) forall f,g € A=K (X1, Xa,...,Xn).
Moreover, it is easy to see:

The family A, = (A; = {f € A | deg(f) <1i})

ieNy

is a filtration of A. This filtration is called the degree filtration of the free associative
K-algebra A = K (X1, X2, ..., Xn).

Later, our basic filtered algebras will be Weyl algebras. These are non-
commutative too, but they also admit the notion of degree and of degree filtration.
From the point of view of filtrations, these algebras will turn out to be “close to
commutative”, as we shall see later. To make this more precise, we will introduce
the notion of associated graded ring with respect to a filtration in the next section.

1.3 Associated Graded Rings

Remark and Definition 1.3.1 (A) Let K be a field and let A = (A, A,) be a
filtered K -algebra. We consider the K -vector space

Gr(A) = Gra,(4) = @D Ai/Ai 1.

ieNp
For all i € Ny we also use the notation
Gr(A); = Gra, (A); := Ai/Ai_1,

so that we may write

Gr(A) = Gra,(A) = @ Gra, (A):.

ieNp
(B)Leti, j € No,let f, f" € A; andlet g, g’ € A; such that

h:=f—f eAi_jandk:=g—g €Aj.
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It follows that
fe—f'¢d=re—(f—h(g—k) = fk+hg—hk
€EAA 1 +A 1A+ A 1A C
CAij-» +Ajri-n +Ai-D+(-1) S Aitj-1.
Soin Aj4j/Aiyrj—1 = Gra,(A)i+; C Gra,(A) we get the relation
fe+Aivj—1=f'g +Aiqj1.
This allows to define a multiplication on the K -space Grg,(A) which is induced by
(f+Ai—D)(g+Aj-1) ;= fg+Aiyrj-1foralli, j € Ng, all f € A;andallg € A;.

With respect to this multiplication, the K -vector space Gry4, (A) acquires a structure
of K -algebra.
Observe that, if r, s € Ng and

,
f=)_ fi. with f; € A; and f; = (f; + A1) € Gra,(A); foralli =0,1,....r,
i=0

and, moreover
s
g= Zgj, Withgj €A; andgj =(gj+Aj-1E€ GI”A.(A)J' forall j =0,1,...,s,
j=0
then

r+s r+s

fe=Y Y figi=Y, Y. (figj+Airj).
k=0 k=0

= i+j=k = i+j=k

(C) Keep the above notations and hypotheses. Observe in particular, that Gra, (A)o
is a K-subalgebra of Grg, (A), and that there is an isomorphism of K -algebras

Gra,(A)o = Ap.
Moreover, with respect to our multiplication on Grg, (A) we have the relations
Gry, (A);iGra, (A)j € Gry,(A)iqj foralli, j € Np.

So, the K -vector space Grg, (A) is turned into a (positively) graded ring

Gra,(A) = (Gra,(4), (Gra,(A))ien,) = @ Gra, (A);

ieNp
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by means of the above multiplication. We call this ring the associated graded ring
of A with respect to the filtration A,. From now on, we always furnish Gryu, (A)
with this multiplication.

Example and Exercise 1.3.2 (A) Let n € N, let K be a field and consider the
commutative polynomial ring A = K[X1, X»2,..., X,]. Show that A has the
following universal property within the category of all commutative K -algebras:

If B is a commutative K -algebra and ¢ : {X], Xz,;. .,X,} — Bisa map, then
there is a unique homomorphism of K -algebras ¢ : A — B such that ¢(X;) =
¢(X;) foralli =1,2,...,n

Show also, that A has the following relational universal property within the category
of all associative K -algebras:

If B is an associative K -algebraand ¢ : {X1, X2, ..., X,;} — B is amap such that
P X)P(X;) = ¢ (X)) (X)) for alli, j € {1, 2 , n}, then there is a unique
homomorphlsm of K-algebras d) A — B such that d)(X ) = ¢(X;) for all
i=1,2,...,

(B) Now, furnish A = K[X1, X2,..., X,] with its degree filtration (see
Example 1.2.2). Then, on use of the above universal property of A it is not hard
to show that there is an isomorphism of K -algebras

K[X1. X2, ..., Xy] —> Gra, (A),

givenby X; — (X;+Ap) € A1/Ap = Gra,(A)1 C Gra,(A) foralli=1,2...,n

We now introduce a class of filtrations, which will be of particular interest for
our lectures.

Definition 1.3.3 Let K be a field and let A = (A, A,) be a filtered K -algebra. The
filtration A, is said to be commutative if

fe—gf €Aiyj_1foralli, j e Npandforall f € A; andall g € A;.

It is equivalent to say that the associated graded ring Gry, (A) is commutative. In
this situation, we also say that (A, A,) is a commutatively filtered K -algebra.

Later, in the case of Weyl algebras, we shall meet various interesting commu-
tative filtrations—and precisely this makes these algebras to a subject which is
intimately tied to Commutative Algebra. We now shall define three special types
of commutative filtrations, which will play a particularly important role in Weyl
algebras.

Definition and Remark 1.3.4 (A) Let (A, A,) be a filtered K -algebra. The filtra-
tion A, is said to be very good if it satisfies the following conditions:

(a) The filtration A, is commutative;
(b) Ap=K;
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(c) dimg (A1) < o0
(d) Aj = A1A;_qforalli e N.

Under these circumstances and on use of the notation introduced in Conventions,
Reminders and Notations 1.1.1 (B) we clearly have

dimg (A1/Ag) = dimg (Gra, (A)1) = dimg (A)—1 < oo and Gra, (A) = K[Gra, (A)1].

So, in this situation, the associated graded ring Gryg, (A) is a commutative homo-
geneous (thus standard graded) Noetherian K -algebra (see Conventions, Reminders
and Notations 1.1.1 (I)). If A, is a very good filtration of A, we say that (A, A,)—or
briefly A—is a very well-filtered K -algebra.

(B) Let (A, A,) be a filtered K -algebra. The filtration A, is said to be good if it
satisfies the following conditions:

(a) The filtration A, is commutative;

(b) Ao isa K-algebra of finite type;

(c) Aj is finitely generated as a (left-)module over Ag;
(d) Aj = A1A;_qforalli e N.

Under these circumstances we clearly have

Ao = Gry, (A)p is commutative and Noetherian
A1/Ap = Gry,(A); is a finitely generated Ap-module, and
Gra, (A) = Gra, (A)o[Gra, (A)1].

So, in this situation, the associated graded ring Gra, (A) is a commutative homoge-
neous Noetherian Ag-algebra (see Conventions, Reminders and Notations 1.1.1 (I)).
If A, is a good filtration of A, we say that (A, A,)—or briefly A—is a well-filtered
K -algebra.

Clearly, a very well-filtered K-algebra is also well-filtered. (C) Let (A, A,) be a
filtered K-algebra. The filtration A, is said to be of finite type if it satisfies the
following conditions:

(a) The filtration A, is commutative;

(b) Ap is a K-algebra of finite type;

(c) There is an integer § € N such that A; is finitely generated as a (left-)module
over Ag forall j < § and

d) A; = Z‘jzl AjA;_j foralli > 6.

In this situation, we call the number § a generating degree of the filtration A,. Under
these circumstances we clearly have

A = > Aj Ay, (VieN)
lfjl7‘“5j558:jl+‘“+j3‘=i

Ao = Gry, (A)p is commutative and Noetherian
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A1/Ap = Gry,(A) is a finitely generated Ap-module, and

$
Gra,(A) = Gra,(A)[Y _ Gra,(A)i].

i=1

So, in this situation, the associated graded ring Gry4, (A) is a commutative Noethe-
rian graded Ap-algebra, which is generated by finitely many homogeneous elements
of degree < §. If A, is a filtration of A, which is of finite type, we say that (A, A,)
is a filtered algebra of finite type.

Clearly, a well-filtered K -algebra is also finitely filtered. Moreover, if A, is of finite
type and § = 1, the filtration A, is good.

Example and Exercise 1.3.5 (A) Let n € N, let K be a field and consider the

commutative polynomial ring A = K[X1, X3, ..., X, ], furnished with its degree
filtration. Then, it is easy to see, that A = K[X1, X2, ..., X,] is a very well filtered
K -algebra.

(B) Let n € N, let K be a field and consider the commutative polynomial ring
A = K[X1,X2,...,Xn]. Let m € {0,1,...,n — 1} and consider the subring
B = K[X1,X2,...,Xn] C A, sothat A = B[Xu+1, Xm+2, ..., X,]. For
each polynomial f = ) cl(,f )XY € A we denote by degp(f) the degree of f
with respect to the indeterminates X,;,+1, X;u+2, - .., X», hence the degree of f
considered as a polynomial in these indeterminates with coefficients in B. Thus
we may write

n
degg(f) = sup{y_wivi | (1, v2. ... vy) € supp(f)}
i=1
where
wp=w2=---=wy =0and wy4] = wypy2 =---=w, = 1.
Show, that by

A; :={f € A|degg(f) <i}foralli € Ny

a good filtration A, on A is defined and that there is a canonical isomorphism of
graded B-algebras

A = B[Xm+11 Xm+27 ceey Xn] = GrA.(A)v
where A = B[X,+1, Xm+2, - - ., X»] is endowed with the standard grading with

respect to the indeterminates X,+1, ..., X,, hence with the grading given by
deg(X;) =0if 1 <i <m anddeg(X;) =1form <i <n.



1 Notes on Weyl Algebra and D-Modules 17

(C) Letn € N, withn > 1, let K be a field and consider the free associative K -
algebra A = K (X1, X2, ..., X;), furnished with its degree filtration A,. For each
ie{l,2,...,n},let

X; == (X; + Ao) € A1/Ag = Gry,(A)1 C Gry, (A).
Show that
XiX;j=X;X;ifandonlyifi = j.
(D) Let the notations and hypotheses be as in part (C). Show that A =

K{(X1, X2,...,X,) has the following universal property in the category of K-
algebras:

If B is a K-algebra and ¢ : {X|, {2, ..., Xp} — Bis a map, there is a unique
homomorphism of K-algebras ¢ : A — B such that ¢(X;) = ¢(X;) for all
i=1,2,...,n.

Use this to show, that there is a unique homomorphism of (graded) K-algebras
(which must be in addition surjective)

¢~S: A — Gry,(A), suchthat X; — X; := (X; + Ag) € A1/Ap = Gra,(A);.

(E) Let (A, A,) be a filtered K-algebra, let r € N and let i1, iz, ...,i € No. We
define inductively

A, ifr=1,
(]‘[;;11 Ai))A;,,  ifr> 1

In particular, if i € Ny we set

,
) =]]A
j=1
Assume now, that the filtration A, is good and prove that
Ar = (A1) and A;A; = A;4j forallr e Nandall 7, j € No.
Assume that the filtration A, is of finite type and has generating degree §. Prove that

)
A = Z ]_[ A;j forall i € Np.

Y i—
VOsVseens l)gENoil:Zj:OjVj Jj=0
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1.4 Derivations

Filtered K -algebras and their associated graded rings are one basic ingredient of the
theory of Weyl algebras. Another basic ingredient are derivations (or derivatives).
The present section is devoted to this subject.

Definition and Remark 1.4.1 (A) Let K be a field, let A be a commutative K-
algebra and let M be an A-module. A K-derivation (or K-derivative) on A with
values in M is amap d : A —> M such that:

(a) dis K-linear: d(axa + Bb) = ad(a) + Bd(b) foralla, B € K and alla, b € A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b) 4+ bd(a) foralla,b € A.

We denote the set of all K -derivations on A with values in M by Derg (A, M), thus:
Derx (A, M) := {d € Homg (A, M) | d(ab) = ad(b) 4+ bd(a) forall a, b € A}.
To simplify notations, we also write
Derg (A, A) =: Derg (A).

(B) Keep in mind, that Homg (A, M) carries a natural structure of A-module, with
scalar multiplication given by

(ah)(x) ;= a(h(x)) foralla € A, all h € Homg (A, M) andall x € A.
It is easy to verify:
Derg (A, M) is a submodule of the A-module Homg (A, M).

With our usual convention (suggested in Conventions, Reminders and Nota-
tions 1.1.1 (D)) that we identify ¢ € K with cl4 € A, the rules (a) and (b)
of part (A) imply d(c) = d(cl) = cd(1) and d(cl) = 1d(c) + cd(l), hence
d(c) =d(c) 4+ cd(l) =d(c) +d(c), thus

i)

d(¢c) =0forall c € K and all d € Derg (A, M) : “Derivations vanish on constants.

Next, we shall look at the arithmetic properties of derivations and gain an impor-
tant embedding procedure for modules of derivations of K-algebras of finite type.

Exercise and Definition 1.4.2 (A) Let K be a field, let A be a commutative K-
algebra and let M be an A-module. Let d € Derx(A, M), let r € N, let
Vi, V2,..., v € Nand let aj,as,...,a € A. Use induction on r to prove the
Generalized Product Rule

r

d( 1_[ a,l;j) = Z via;)"il(l_[a;j)d(a,’)
i=1

j=1 J#
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and the resulting Power Rule
d(@) =ra""'d(a) foralla € A.

(B) Let the notations and hypotheses be as in part (A). Assume in addition that
A = Klay,az,...,a,]. Let e € Derg(A, M). Use what you have shown in part
(A) together with the fact that e and d are K-linear to prove that the following
uniqueness statement holds:

e =difandonlyife(q;) =d(a;) foralli =1,2,...,r.

(C) Yet assume that A = K[aj, az, ..., a,]. Prove that there is a monomorphism
(thus an injective homomorphism) of A-modules

OY =0 . ) :Derk(A, M) — M, givenbyd — (d(a)).d(ay).....d(a)).

r

This monomorphism @é"’ is called the embedding of Derg (A, M) in M" with
respectto a := (ay, az, ..., ar).

(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely
generated. Prove, that the A-module Derg (A, M) is finitely generated.

Now, we turn to derivatives in polynomial algebras, a basic ingredient of Weyl
algebras.

Exercise and Definition 1.4.3 (Partial Derivatives in Polynomial Rings) (A)
Letn € N, let K be a field and consider the polynomial algebra K[ X1, X», ..., X, ].
Fixi € {1,2,..., n}. Then, using the monomial basis of K[X1, X5, ..., X, ] we see
that there is a unique K -linear map

0
ai = aX :K[X17X27-'-1X}’l]—> K[X17X277Xn]
l

such that for all v = (v, vp,...,V,) € Ng we have

n i—1 v; .
ax) =" ([Tx7) = viX T T X5, v > 0
aX; izl J 0, ifv; =0.
(B) Keep the notations and hypotheses of part (A). Let
MZ(Ml,MZ,---,/Ln), ]):(Ulav27-'-avn)€N8

and prove that

% (XHXV) = X" 0;(X") + XVo; (XH).
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Use the K -linearity of 9; to conclude that

a
0 = 9% eDerK(K[Xl,Xz,...,X,,]) foralli =1,2...,n.
i

The derivation 9; = a; is called the i-th partial derivative in K[ X1, X2, ..., Xn].

As we shall see in the proposition below, the embedding introduced in Exercise
and Definition 1.4.2 (C) takes a particularly favorable shape in the case of
polynomial algebras. The exercise to come is aimed to prepare the proof for this.

Exercise 1.4.4 (A) Let the notations and hypotheses be as in Exercise and Defini-
tion 1.4.3. Forall i, j € Z let §; ; denote the Kronecker symbol, so that

1, ifi=j,
bij = e,
0, ifi#j.
Check that
0;(X;) =46;j, foralli, j e {1,2...,n}.

(B) Keep the above notations and hypotheses. Show that

(a) For eachi € {1,2,...,n} it holds K[X1, X2, ..., Xi—1, Xit1,..., Xn] C
Ker(9;) with equality if and only if Char(K) = 0.

(b) K < )/_, Ker(d;) with equality if and only if Char(K) = 0.

Proposition 1.4.5 (The Canonical Basis for the Derivations of a Polynomial

Ring) Let n € N, let K be a field and consider the polynomial algebra

K[X1, X2, ..., Xn). Then the canonical embedding ofDerK(K[Xl, X2, ..., Xn])

into K[X1, X2, ..., X, 1" with respect to X1, X2, ..., Xy (see Exercise and Defini-
tion 1.4.2 (C)) yields an isomorphism of K[ X1, X2, ..., X, ]-modules

,,,,,

O = Ox, x,,...x, : Derg (K[ X1, X2, ..., Xp]) — K[X1, X2, ..., XuI",
given by
d > O(d) := Ox, x,,..x,(d) = (d(X1),d(X2), ..., d(Xn)),

foralld € Derg (K[X1, X2, ..., Xal).

In particular, the n partial derivatives 01, 02, ...,0, form a free basis of the
K[X1, X3, ..., X,]-module Derg (K[Xl, X2, ..., Xn]), hence

n
Derg (K[X1, X2, ..., Xu]) = @K[Xl, Xo, ..., Xu10;.
i=1
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Proof According to Exercise and Definition 1.4.2 (C), the map @ is a monomor-
phism of K[X1, X», ..., X, ]-modules. By what we have seen in Exercise 1.4.4 (A)
we have

Q@) = (81,1, 8120 -+ 8i1is 8iis Sisig 1o - 8in) = (8i)) 1, =t ei
foralli =1,2,...,n. As the n elements

e = (8ij)_, € KIX1. X2, ..., X" withi =1,2,....n

form the canonical free basis of the K[X1, X», ..., X,;]-module K[X, X5, ...,
X, 1" our claims follow immediately.

1.5 Weyl Algebras

Now, we are ready to introduce Weyl algebras. We first remind a few facts on
endomorphism rings of commutative K-algebras and relate these to modules of
derivations.

Reminder and Remark 1.5.1 (A) Let K be a field and let A be a commutative
K -algebra and let M be an A-module. Keep in mind, that the A-module

Endg (M) := Homg (M, M)

carries a natural structure of K-algebra, whose multiplication is given by composi-
tion of maps, thus:

fg = fog, hence (fg)(m) := f(g(m)) forall f, g € Endg(M)andallm € M.

The module Endg (M) endowed with this multiplication is called the K-
endomorphism ring of M. Observe, that this endomorphism ring is not commutative
in general.

(B) Keep the above notations and hypothesis. Then, we have a canonical
homomorphism of rings

ey : A —> Endg (M) givenby a — ep(a) := aidy foralla € A,
where idy, : M — M is the identity map on M, so that
em(@)(m)=amforalla € Aandallm € M.

It is immediate to verify that this canonical homomorphism is injective if M = A:

The canonical homomorphism ¢4 : A —> Endg (A) is injective.
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We therefore call the map €4 : A —> Endg (A) the canonical embedding of A into
its K-endomorphism ring and we consider A as a subalgebra of Endg (A) by means
of this canonical embedding. So, for all @ € A we identify a with g4 (a).

Remark and Definition 1.5.2 (A) Let K be a field and let A be a commutative K -
algebra. By the convention made in Reminder and Remark 1.5.1 we may consider
A as a subalgebra of the endomorphism ring Endg (A). We obviously also have
Derg (A) € Endg (A). So using the notation introduced in Conventions, Reminders
and Notations 1.1.1 (B), we have may consider the K -subalgebra

Wk (A) := K[A UDerg (A)] = A[Derg (A)] € Endg (A).

of the K-endomorphism ring of A which is generated by A and all derivations on A
with values in A. We call Wi (A) the Weyl algebra of the K -algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutative K -algebra A is of finite type, so that we find some r € Ny and elements
ai,ay, ..., a, € A such that

A =Klay,a,...,a;].
Then according to Exercise and Definition 1.4.2 (D), the A-module Derg (A) is

finitely generated. We thus find some s € Ny and derivations dj, d, ..., d; €
Derg (A) such that

N
Derk (A) = ZAdi.
i=1

A straight forward computation now allows to see, that
Wg(A) =Klay,az...,ar,d1,da, ..., ds] € Endg (A).
In particular we may conclude, that the K -algebra Wk (A) is finitely generated.

(C) Keep the above notations and let n € N. The n-th standard Weyl algebra
W(K, n) over the field K is defined as the Weyl algebra of the polynomial ring
K[X1, X2, ..., Xn], thus

W(K,n) := Wi (K[X1, X2, ..., X,]) € Endg (K[X1, X2, ..., Xa]).

Observe, that by Proposition 1.4.5 and according to the observations made in part
(B) we may write

W(Ka n) = K[X17X27 MR X}’la 315 817 325 MR an] g EndK(K[Xla X25 MR Xn])-
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The elements of W(K,n) are called polynomial differential operators in the
indeterminates X1, X», ..., X, over the field K. They are all K -linear combinations
of products of indeterminates X; and partial derivatives 9;.

The differential operators of the form

n n

XVt =X Xt o =] X ]9 e W(K. )
i=1 j=1
with
vi= .., poi= (., 1) € Np
are called elementary differential operators in the indeterminates X1, X», ..., X,

over the field K.

We now aim to study the structure of standard Weyl algebras. One of the main
goals we are heading for is to find an appropriate “monomial basis“ in each of
these algebras. We namely shall see later that the previously introduced elementary
differential operators form a K-basis of the standard Weyl algebra W(K, n),
provided K is of characteristic 0. To pave our way to this fundamental result, we
first of all have to prove that in standard Weyl algebras certain commutation relations
hold: the so-called Heisenberg relations. To establish these relations, we begin with
the following preparations.

Remark and Exercise 1.5.3 (A) If K is a field and B is a K -algebra, we introduce
the Poisson operation, that is the map

[e,e] : B x B —> B, defined by [a, b] := ab — ba foralla,b € B.

Show, that the Poisson operation has the following properties:

(a) [a,b] = —[b, a] forall a, b  B.

(b) [[a, bl, c]+ [[b, ], al + [[c, al, b] = O forall a, b, ¢ € B.

(©) [aa+d'd, Bb+ B’V =aBla, bl +af'a,b'] +a'Bla’, bl + o' B'[d, b]
foralla,o’, B, 8 € K andalla,a’,b,b’ € B.

Observe in particular, that statement (a) says that the Poisson operation is anti-
commutative, whereas statement (c) says that this operation is K -bilinear. We call
[a, b] the commutator of a and b.

(B) Now, let K be a field, let A be a commutative K -algebra and consider the
Weyl algebra Wk (A) := A[Derk (A)]. Show that the following relations hold:

(@) [a,b]=0foralla,b € A.
() [a,d] = —d(a) foralla € A and all d € Derg (A).
(c) [d, e] € Derx(A) foralld, e € Derg (A).
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(C) Let the notations and hypotheses be as in part (B). Let d, e € Derg (A), let
r e N,letvy,vp,...,v, € Nandletay,as,...,ar € A. Use statement (c) of part
(B) and the Generalized Product Rule of Exercise and Definition 1.4.2 (A) to prove
that

r r

[d.e)([]a) = wia’ " (]]a))ld. ela).
j 1

j=1 i= j#i

Proposition 1.5.4 (The Heisenberg Relations) Let n € N, and let Kbe a field.
Then, in the standard Weyl algebra

W(Kan) = K[X17X27-'-7Xn5817325 '-'73}’!]

the following relations hold:

@ [X;, X;1=0, foralli,je{l,2,...,n};
(b) [Xi,d;1=—8;j, foralli, j €{1,2,...,n};

(¢) [0:,0;1=0, foralli,je{l,2,...,n}
Proof

(a) This is clear on application of Remark and Exercise 1.5.3 (B)(a) with a = X;
andb = X;.

(b) If we apply Remark and Exercise 1.5.3 (B)(b) with a = X; and d = 9, and
observe that d;(X;) = 8;; = §; j we get our claim.

(c) Observe that for all i, k € {1, 2,...,n} we have 9; (Xx) € {0, 1} C K. So for
alli, j,k € {1,2,...,n} we obtain (see Definition and Remark 1.4.1 (B)):

[8;,8;1(Xi) = 8; (8 (X1)) — 8;(3; (Xx)) € 8;(K) +8;(K) = {0} + {0} = {0}.

Now, we get our claim by Exercise and Definition 1.4.2 (B) and Remark and
Exercise 1.5.3 (B) (c¢) and (C).

The Heisenberg relations are of basic significance for the arithmetic in standard
Weyl algebras. Before we show that the elementary differential operators provide a
basis for a standard Weyl algebra we shall study the arithmetic of these algebras.
In particular, in the next section we shall prove a product formula for elementary
differential operators, which will be of basic significance. We shall do this in
a slightly more general setting, namely just for K-algebras “mimicking* the
Heisenberg relations. The next exercise is aimed to prepare this.

Exercise 1.5.5 (A) Letn € N, let K be a field, let B be a K -algebra and let

ai,ai,...,ap,di,da,...,d, € B



1 Notes on Weyl Algebra and D-Modules 25

be elements mimicking the Heisenberg relations, which means:

(1) lai,aj]=0, foralli, j € {1,2,...,n};
(2) [a,',dj]z—(si,j, foralli,j 6{1,2,...,}1};
(3) [di,d;1=0, foralli, j € {1,2,...,n}.

Let i, v € Np. To simplify notations, we set
0b* ;=0 forallb € Bandall k € Z.

prove the following statements (using induction on p and v):

Loy __ v M,
(@) a; a; =aja;;

(b) df'd} =d}d}";

(c) dl'a¥ = a¥d!" foralli, j € {1,2,...,n) withi # j.
(d) dia) = a¥d; +va’" foralli € {1,2,...,n).

(B) Keep the notations and hypotheses of part (A). For all (A1, A2, ..., 1,) € Njj
and each sequence (b1, b, ..., b,) € B" we use again our earlier standard notation

n
o= (A2, Ag) and br = bbbl = [ [ b1
i=1

Now, let
W= (1, L1, .-y n),  Vi=(V1,V2,...,V,), and
o= 1), V= (v, ) € NG
Prove that the following relations hold
(@ a'd" =[[i_ a;' [T}= d;'” =[Tio a;'d;".
’ / i Wi vl.’ ,LL/-
() (@d"@ d") = ([l e Mo dy” ) (i o' =i d;7)

/ 4
n vi gii Vi gHi
[Tizia;'dj"a;"d; "

1.6 Arithmetic in Weyl Algebras

As announced above, we now aim to do some Arithmetic in standard Wey] algebras.
This means in particular, that we make explicit a number of computations in the
hope that readers who up to now were mainly faced with commutative rings, get
fascinated by the complexity of the arithmetic in Weyl algebras.

The following arithmetical Lemma is formulated in a more general framework,
namely in a situation, which “mimicks” the Heisenberg relation. If we specialize
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this Lemma to standard Weyl algebras, we get a most important formula, which
expresses the product of two elementary differential operators as a Z-linear
combination of elementary differential operators. This will also give us an explicit
presentation of the commutator [d, e] (see Remark and Exercise 5.3 (A)) of two
elementary differential operators d and e. As a further application we will get the
Reduction Principle for arbitrary products of elementary differential operators and
thus pave our way to the standard basis presentation of Weyl algebras, which we
shall introduce in the next section.

We prove the announced Lemma in a setting which is more general than just the
framework of Weyl algebras, because in this form it will help us to prove the
universal property of Weyl algebras formulated in Corollary 1.7.5. This property
is an analogue of the (relational) universal property of commutative polynomial
algebras (see Example and Exercise 1.3.2 (A)) or of free associative algebras (see
Example and Exercise 1.3.5 (D)).

Lemma 1.6.1 Letn € N, let K be a field, let B be a K -algebra and let
al,az,...,an,dl,dz,...,dn €B

such that:

1) lai,aj]1=0, foralli,je{1,2,...,n};
(2) la;,djl=—6ij, foralli,je{l,2,...,n};
(3) di,dj]1=0, foralli,je{l1,2,...,n}

Then, the following statements hold:

(a) Forall u,v e Noandalli € {1,2,...,n} we have

minf{u,v} " k—1
dla) = )" <k)l—[(v—p)a;’_kdi“_k.

k=0 p=0
(b) Let
poi= (i fis oo ) V= (V1,025 ..., V), and
pwo= (s i), V=, ) € NG
Set

I:={k:=(k1, ko, ..., ky) € Ng | ki < min{u;, vl-’}fori =1,2,...,n},
and let
n n k,‘—l

=1 (Z)] <([TTTwi - .

i=1 i=1 p=0
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Then, we have the relation

(@ d"y(a" d") (]_[ ”']_[d‘“)]_[ l—[d )
_ vi+v! du,-i-p,, n 3 vi+v — . lll«,+,ul/-—ki
[T [T 3 sl e

kel\[0o}  i=1
/ ’ ’ ’_
Vv gt Z )Lkaerv —k guAn'=k

kel \{0}

Proof (a) To simplify matters we use the notation
0b* :=Oforallb € Bandall k € Z

already introduced in the previous Exercise 1.5.5 (A). Then, it suffices to show that

n

k—1
" o
ata =3 () TTw - para™

k=0 p=0

We proceed by induction on p. The case u = 0 is obvious. The case u = 1 is clear
by Exercise 1.5.5 (A)(d). So, let u > 1. By induction we have

n—1 - k—1
diﬂla;’:Z('a )n(v—p)a” kd“ 1=k
k=0 p=0

It follows on use of Exercise 1.5.5 (A)(d) and the Pascal formulas for the sum of
binomial coefficients, that

pn—1 k—1
_ " — 1
diuaz]}:di(diu la;})zdi(2< X )H(V—p)a” kd“ 1= k)

u—1 1 k—1

= (Mk ) (v—p)(da” k)du 1—k
u—1 1 k—1

= (M « ) [Tev = p(a™d + @ — kg )at 1+
k=0 p=0
pu—1 1 k—1

_ [<Mk > (U—p)au kdu —k
k=0 p=0

+<Mk )H(v—p)(v Kya!*1g 14
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u—1 N
=5 () o - e
p=0

k=0
n—1 1 k
() T ot
=0 =0
—1 PR L .
- P - ke
= ( f )l_[(v—p)al." d! —}—Z(k_l)l_[(v—p)ai" dt
k=0 p=0 k=1 p=0
N
=ald' + Z ( ' > 1_[(1) - p)ai‘)*kdi“_k—f—
k=1 p=0
n—1 - 1 k—1 L n—1
£ () o= paa + Tlo - pa™
k=1 p=0 p=0

n—1 k—1 n—1
n—1 u—1 b o _
:a;d;‘+2[< k )+<k—1>]H(V—P)“i” faf~ + T = pa™
k=1 p=0 p=0

u—1 k—1 n—1
% Cr e _
=+ 3 (1) TTo - -t + Tl pa™
k=1 p=0

p=0
k—1
= i H l_[(v — pya’~*a .
k 1 l
k=0 p=0

(b) According to Exercise 1.5.5 (B)(a),(b), the previous statement (a) and Exer-
cise 1.5.5 (A)(a),(b) and (c) we may write

n n n n ’ n ’ ’
@da"@”d"y = ([Ta [T ([1a" [14,7) = []a"d/ a"a"
i=1 j=1 i=1 j=1 i=1

n

’ ’
_ Vi ghti Vi) gHi
—'II‘% @Q ai)di

i=1

n minfui,vi} k-1 - ,
=[Ta't X (’Z’)l‘[(vz—maf" d"~d}"
i=1 k=0 p=0

n  min{u; ,V{}

k—1

i i+vi—k i+ —k

STTCX (4 Tt i
p=0

i=1 k=0
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S (o) e

k:=(ky,ka,....kp)eli=1

n ki—1

n ! s
= (T o= [
kel i=1 " i=1 p=0
n " n ki—1 N n g
= ST DT e e [
kel i=1 " i=1 p=0 i=1
Zﬁayi+v£ﬁdyi+u;+ Z )\kli[ayﬂrv;*kiﬁd_uﬂrugfki
i=1 l i=1 l kel\{0} i=1 l i=1 l
a”+”/d“+“,~|— Z )LkaHV’—kduHL’—k_
kell\{0}

As an application we now get the announced product formula for elementary
differential operators.

Proposition 1.6.2 (The Product Formula for Elementary Differential Opera-
tors) Letn €N, let K be a field and consider the standard Weyl algebra

W(K,n) = K[X1, X2,...X,,01,02...,0,].
Moreover, let
= (U1, U1s-nny Mn), V:i=(V,v2,...,V,) and
D= e ), V= (00, y) € NG
Set
I:={k:=(ki, k2, ..., ky) € N} | ki < min{u;, v} fori=1,2,...,n},

and let

n n ki—1

= (L (DT ot =)

i=1 i=1 p=0
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Then, we have the equality

n

x ooy = (TTx TTo W ] X I1 aj.‘})

i=1 j=1 i=1 j=1

- ] T +u - )=k T~ ik,

v; 4! il v+ —k; i+ —k;

=||Xi’ ||a,“ My § Ak||le i ||a,“ i
i=1

i=1 kel\[0}  i=l i=1

— XU+V,8,LL+H., + Z )\.ka+V,_kaﬂ+ﬂ/_k.
kel\{0}

Proof 1t suffices to apply Lemma 1.6.1 (b) with a; := X; and d; := 9; fori =
1,2...,n.

Now, we can prove the main result of the present section. To formulate it, we
introduce another notation and suggest a further exercise.

Notation and Remark 1.6.3 (A) Let n € N and let
k= (Kk1,Kk2,...,kp) and A := (A1, A2, ..., Ay) € NG.
We write
k < Xxifandonlyifk; <A; fori =1,2,...,n
and
k < Aifandonly if « <A and x # A.
(B) Keep the notations of part (A). Observe that
k < Aifandonlyif A — k € Nj
and

k < Aif and only if 2 — k € Nj \ {0}.

(C) We now introduce a few notations, which we will have to use later very
frequently. Namely, for

05:(0{1,052,---,0571),,8Z(ﬂlaﬂZa---a.Bn)ENg

we set

M(e, B) :={(a —k, B —k) | k € N \ {0} with k < «, B}
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and

M(a, B) :={(a —k, B —k) | k € Ny with k < «, B} = Mi(e, B) U {(e, B)}.
Moreover, we write
M<(a, B) :={(A, k) e Nj x Nj | A < vandk < u for some (v, n) € M(a, B)}.
Observe that

M(a, B) € M<(a, B).

Exercise 1.6.4 (A) Let n € N, let K be a field and consider the standard Weyl
algebra

W(Kan) = K[Xla X25 MR Xna 817 325 AR an]
In addition, let

o= (1, (L1, ooy ),  Vi=(V1,V2,...,V,) and

n

o= ), V= (v, ) € NG
Moreover, let the sets
M@+, u+u)y c M+, n+u') C Ny x Nj
be defined according to Notation and Remark 1.6.3 (C). Prove that

(XYM (XY gy — xvHVgnti ¢ > ZX 9"
(A )eM+v/, u+u')

and

(X" (XY 9"y e > 7ZX9%.
(A 0)eMv+V, ')

(B) Let the notations be as in part (A) and let the set
M@+, p+u') C N} x Nj
be defined according to Notation and Remark 1.6.3 (C). Prove that

[XVa", x"9"] e > ZX*9 .
(k) M+ )
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(C) To give a more precise statement than what was just said in part (B), keep the
notations of Proposition 1.6.2 and set in addition

I':={k':= (kj, k. ..., k) € N} | k, <min{u;,v;}fori =1,2,...,n}.
Use the product formula of Proposition 1.6.2 to show that

[xvar, xVo = S XUt kgutk N g xR gtk
kel\{0} k'el'\{0}

(D) Let i € {1,,2,...,n} and consider the n-tuple e; := (8,-,j);f:1 =
©,...,0,1,0,...,0) € Ng. Use what you have shown in part (C) to prove the
following statements

—piXPOR i > 0
(a) [Xia XUalL] — Mi i pu; >
0 if g =0,

XVER i vy > 0;
(b) [3,',Xv3“] _ {Vl Iy, >

, ifv; =0.

Theorem 1.6.5 (The Reduction Principle) Let n € N, let K be a field and
consider the standard Weyl algebra

W(Kan) = K[Xla X25 LR ] Xna 817 325 LR ] an]
Letr € N, let
v® = (vfi), véi),...,v,gi)) and p9 = (uii),uéi),...,u,(li)) eNg, fori=1,2,...,r

and abbreviate

-
V= Z @D = ZM(’).
i=1 i
Moreover, let the set
M =M< (v, ) C Nj x Njj

be defined according to Notation and Remark 1.6.3 (C). Then, we have

.
[Tx"o " — x4 e Y zx*o~.
i=1 (k,)eM
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Proof We proceed by induction on r. The case » = 1 is obvious. The case r =
2 follows from Proposition 1.6.2, more precisely from its consequence proved in
Exercise 1.6.4 (A) (see also Notation and Remark 1.6.3 (C)) . So, let r > 2. We set

r—1 r—1
Vo= Z v = Z pu® and M’ := M< (', ).
i=1 i=1

By induction we have
r—1 ) o
o=[]x"" —x"a" e Y zx¥o = N.
i=1 O k"eM

By the case r = 2 we have (see once more Notation and Remark 1.6.3 (C) and
Exercise 1.6.4 (A))

o= (X" )x"" " —x ot ¢ Y XM = M.
(A, k)eM

-
GIWIO) ")
[]x" 8" —x"9" =0 +ox" 0",
i=1
it remains to show that
(r) (r)
oX" " e M.

Observe that

QXV(r) aH’(r) c NXU(r) aH’(r) _ Z ZX)‘IBK/XU“)BH'(V).
W ,k"eM’

Observe also that
W+ vk + u®y e Mforall (W, k') € M,
so that in the notation introduced in Notation and Remark 1.6.3 (C) we have

MO + v k" + ™) < Mforall (), k") € M.



34 M. Brodmann

Hence, on application of Exercise 1.6.4 (A) it follows that

/ ’ r (r)
x¥ o< xv" g ¢ 3 XY Y ZX*o =M,
(A k)M 0@ /) (A )eM

and this shows that indeed o X Oar” e .

Now, in the next section, we can show that the elementary differential operators
form a K-basis of the standard Weyl algebra W(K, n), provided the field K has
characteristic 0. To prepare this, we add an additional exercise.

Exercise 1.6.6 (A)Letn € N and consider the polynomial ring K[ X1, X2, ..., X,].
Moreover, let

= (Mla ,Ll/la ---7/1/71)7 andv = (Ula V2, ..., Vn) € Ng

Fixi € {1, 2, ..., n} and prove by induction on u;, that

a,U-z a,U-z l_[X l_lk 0 (Vl k)X;')iim l_[j;éi X;jv ifvi > pi;
0, if vi < w;.

(B) Let the notations and hypotheses be as in part (A) and use what you have
shown there to prove that

n n

o (x")=TTo"(ITx")
i=1 j=1
T TS 0 =X if v = g foralli € {1,2,...,n);
0, if v < u; forsomei € {1,2,...,n}.

T TS v = XY™, ifv >
0, otherwise.

1.7 The Standard Basis

Now, we are ready to prove the fact that over a base field of characteristic O the
elementary differential operators form a vector space basis of the standard Weyl
algebra.

Theorem 1.7.1 (The Standard Basis) Let n € N and let K be a field of

characteristic 0. Then, the elementary differential operators

n

n
XVt = HX}” 1_[81.“" with (v := (U1, n2, ..., mn) and v := (v, va, ..., vy) € Nj
' i=1
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form a K -vector space basis of the standard Weyl algebra
W(Kvn) = K[Xls X21 ceey X}’ls 817 821 LRI an]-

So, in particular we can say

(a) W(K’ I’l) = @V”LLENS KXUal'L = @;},1,#2 ..... Wi sV1,V2,yeeey v, eNp Kl_[?:1
X{ T, 9
(b) Each differential operator d € W(K, n) can be written in the form

- Y
v,,ueNg

with a unique family

(d) l_[ _ NN
(CU,M)v,MENS € K =Ko,
v,,ueNg

whose support
supp(d) = supp((c$))y. uer) = {(v, ) € Nf x Nj | ¢i), # 0)
is a finite set. We thus can write

— (d) yvau
d= > DX
(v, ) esupp(d)

Proof We first show, that the elementary differential operators generate W(K, n) as
a K -vector space, hence that

W(K, n) = Z KX'* = M.
v,,u.eNg

Observe, that by definition each element d of W(K, n) is a K-linear combination
of products of elementary differential operators. But by the Reduction Principle of
Theorem 1.6.5 each product of elementary differential operators is contained in the
K -vector space M.

It remains to show, that the elementary differential operators are linearly indepen-
dent among each other. Assume to the contrary, that there are linearly dependent
elementary differential operators in W(K, n). Then, we find a positive integer
r € N, families

p® =@ n ) v =P D) e Ny =12,
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with
@, v Dy £ P vy foralli, j e {1,2,...,r} withi # |,
and elements
cDek\{0} (=1,2,...,r),
such that
-
d:=Y cOx""gn" =0,
i=1
We may assume, that
®) = max{|x?P|i=1,2,...,r}
and that for some s € {1, 2, ..., r} we have
u® £ u foralli < sand u® = pu foralli > s.
Then, it follows easily by what we have seen in Exercise 1.6.6 (B), that

Mo uix”, ifs<i<r

@ gu® (XMU)) _
0, ifi <s.

So, we get

0= d(XM(r) Z (z)Xy(t)a'u(r) X'U'( ) Zc(’) 1—[ (r)'Xv(z)
i=

i=1

. @) .. . .
As Char(K) = 0, and as the monomials X" are pairwise different fori = s, s +
1, ..., r, the last sum does not vanish, and we have a contradiction.

Definition and Remark 1.7.2 (A) Let the notations and hypotheses be as in Theo-
rem 1.6.5. We call the basis of W(K, n) which consists of all elementary differential
operators the standard basis. If we present a differential operator d € W(K, n) with
respect to the standard basis and write

Z D XVt

v, neNG
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as in statement (b) of Theorem 1.6.5, we say that d is written in standard form. The
support of a differential operator d in W(K, n) is always defined with respect to the
standard form as in statement (b) of Theorem 1.7.1. We therefore call the support of
d also the standard support of d.

(B) Keep the above notations and hypotheses. It is a fundamental task, to write
an arbitrarily given differential operator d € W(K, n) in standard form. This task
actually is reduced by the Reduction Principle of Theorem 1.6.5 to make explicit
the coefficients of the differences

,
i (@ r i r i
Ay = [[ 300" — x TV ¢ N zxhge,
i=1 (A, k)eM

This task can be solved by a repeated application of the Product Formula of Propo-
sition 1.6.2 or—directly—by a repeated application of the Heisenberg relations.
Clearly, this is a task which usually is performed by means of Computer Algebra
systems.

We now prove the following application, a result on supports, which will turn out
to be useful in the next section.

Proposition 1.7.3 (Behavior of Supports) Let n € N, let K be a field of
characteristic O and consider the differential operators

d,e e W(K,n) =K[X1,X2,...,X,,01,02,...,04].

For all (o, B) € Njj x N, let the sets

M(e, ) € M(e, B) € N§ x Np

be defined according to Notation and Remark 1.6.3 (C). Then, we have

(a) (supp(d)Usupp(e))\ (supp(d) Nsupp(e)) < supp(d +e) < supp(d) Usupp(e).
(b) supp(cd) = supp(d) forall c € K \ {0}.

(©) supp(de) € U, uyesupp(a). (7. )esuppier MOV + V' 1t + 1.

(d) supp(Id, 1) € U, esupp@, o/, esuppier MO + V' 4+ ).

Proof (a), (b) These statements follow in a straight forward way from our definition

of support, and we leave it as an exercise to perform their proof.
(¢) In the notations of Theorem 1.7.1 we write

d (e) Py
d= Y X" ande= Y o X"
(v, ) esupp(d) (v, ") esupp(e)
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it follows that

_ (d) (e) ny v p.
de = > c\hey) X "XV D
(v,p)esupp(d), (v, ;') esupp(e)

But according to Exercise 1.6.4 (A) we have
supp(X”B“X”/E)”/) C M@+, u+u') forall (v, u) € supp(d) and all (v', 1) € supp(e).

Now, our claim follows easily on repeated application of statements (a) and (b).
(d) As in the proof of statement (c) we can write

d) (e) !
de = > el X X"
(v,pu)€supp(d), (v, u")esupp(e)
and, similarly
_ @ @ w w
ed = > ey XV XV,

(v,u)esupp(d), (v, ") €supp(e)
It follows that
[de, ed] =de —ed

(d)(e) oy au
v,uvp.XBXB

Il
N

(v,u)esupp(d), (v, ") €supp(e)

ST G S

V,LL v’

N

(v,u)esupp(d), (v, u) esupp(e)

(d) (e) o
e (X arxY 9" — XV XV M)

Il
N

(v,u)esupp(d), (v, ") €supp(e)

- A [X 9, X,

(v, u)esupp(d), (v, ") esupp(e)
By Exercise 1.6.4 (B) we have
supp([X¥9", X" 0" ]) € M + v/, p + 1)
for all (v, u) € supp(d) and all (V', ) € supp(e).

Now, statement (d) follows easily on repeated application of statements (a) and (b).
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Exercise 1.7.4
(A) Letn € N, let K be a field of characteristic 0 and consider the standard Weyl
algebra
WZW(K,H) = K[X17X27 -'-7Xna 817 325 MR a}’l]

Prove in detail statements (a) and (b) of Proposition 1.7.3.
(B) Let the notations and hypotheses be as in part (A). Present in standard form the
following differential operators:

X X131 X1 —1, 97X707 —01X7, 3X1X201 + 91 X1X2 € W(K, n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2.
Compute 01 (X7) for all v € Ny and comment your findings in view of the
Standard Basis Theorem.

(D) Keep the notations of part (A), let

d= Y X" eW. (cff) € K\{0}V(v, u) € supp(d))
(v, ) esupp(d)

(see Theorem 1.7.1) and leti € {1, 2, ..., n}. Use Exercise 1.6.4 (D) to prove
the following equalities:

@ [Xi,d] == ) esuppld)ui=0 il XV o,
() [3;.d] = 2 (v, esupp(d):v; =0 Vicl(f,l;)zxvfe"aﬂ-
Conclude that
(© d=0&Vie{l,2,....n}: [X;,d]=[0;,d] =0.
As another application of the Standard Basis Theorem we now can prove
Corollary 1.7.5 (The Universal Property of Weyl Algebras) Letn > 2 and let
the notations and hypotheses be as in Theorem 1.7.1. Let B be a K -algebra and let

¢ {X1,X2,...,X,,01,02,...,0,} — B

be a map “which respects the Heisenberg relations” and hence satisfies the
requirements

D) [p(Xi), ¢(X;)] =0, foralli, j €{1,2,...,n);
2 [p(XD). 0@ = =8, foralli,je{l,2,...,n};
(3) [¢(9i),¢(9;)] =0, foralli,je{1,2,...,n}.

Then, there is a unique homomorphism of K -algebras

é:W(K,n) — B
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such that
$(X)) = ¢(X;) and $(3) = $(@)) forall i = 1,2,...,n.
Proof According to Theorem 1.7.1 there is a K -linear map
5 : W(K,n) —> B given by
n n
P(X ") = 1_[¢(X,~)”" ]_[¢(a,~)ﬂi for all
i=1 i=1
M: (Hlle«Za»lln) andU: (v11v21~-~7vn) ENS

Next, we show, that the previously defined K-linear map 5 is multiplicative, and
hence satisfies the condition that

b(de) = d(d)p(e) foralld, e € W(K, n).
As the multiplication maps
W(K,n) x W(K,n) — W(K,n),(d,e)y>de and BxB — B,(a,b) ab

are both K -bilinear, it suffices to verify the above multiplicativity condition in the
special case where

d:=X"3"ande := X" "
with
wi= (1, m2, ..., ky), Vv:=(vy,v2,...,V,) and
W= e ), V=0, ) € NG

But this can be done by a straight forward computation, on use of the Product
Formula of Proposition 1.6.2 and on application of Lemma 1.6.1 with

a; ¢p(X;)andd; == ¢(9;) foralli =1,2,...,n.

It remains to show, that a : W(K,n) —> B is the only homomorphism of K-
algebras which satisfies the requirement that

d(Xi)=¢(X;) and G =) foralli =1,2,...,n.
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But indeed, if a map 5 satisfies this requirement and is multiplicative, it must be
defined on the elementary differential operators as suggested above. This proves the
requested uniqueness.

Exercise 1.7.6

(A) Letn € N, let K be a field of characteristic 0. Show, that there is a unique
automorphism of K -algebras

o: WK, n) = W(K,n) with a(X;) =09; and «(9;) = —X; foralli =1,2,...,n.

(B) Keep the notations and hypotheses of part (A). Present in standard form all
elements a(X}9/") € W(K,n) with u, v € No.

1.8 Weighted Degrees and Filtrations

In this section we introduce and investigate a particularly nice class of filtrations of
the standard Weyl algebras, the so-called weighted filtrations. To do so, we first will
introduce the related notion of weighted degree of a differential operator.

Convention 1.8.1 Throughout this section we fix a positive integer 7, a field K of
characteristic 0 and we consider the standard Weyl algebra

W:=W(K,n) = KI[X1,X2,...,Xn, 01,02, ..., 0]
Definition and Remark 1.8.2 (A) By a weight we mean a pair
W, w) = ((v1,v2, ..., V), (Wi, wa, ..., wy)) € Nj x Njj
such that
(vi, w;) #(0,0) foralli =1,2,...,n.
For
a:=(ay,a,...,ay), b:=(b1,br,...,by) eR”

we frequently shall use the scalar product

n
a-b:= Za,’bi.
i=1
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(B) Fix a weight (v, w) € Njj x Njj. We define the degree associated to the weight
(v, w) (or just the weighted degree) of a differential form d € W by

deg" (d) := sup{v - v +w - | (v, p) € supp(d))}.

with the usual convention that sup(¥) = —oo.
Observe that by our definition of weight, for all d € W and all u, v € Nyo—and
using the notations of Notation and Remark 1.6.3 (C)— we can say:

(a) deg’”(d) € Ng U {—o0} with deg"” (d) = —oo if and only if d = 0.
(b) If x <vandk < uforall (A, k) € supp(d), then

deg’”(d) <v-v+w-pu.
(c) If supp(d) € M<(v, ), then

deg’(d) <v-v+w- u.

(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
i € Ng and set

W™ :={d € W | deg"" (d) < i}.
Observe, that we also may write

WY = EB K X",

i
v,ueNg:v~v+w~u§i

Lemma 1.8.3 Ler (v, w) € Ng X Ng be aweight and letd, e € W. Then we have

(a) deg"™(d + e) < max{deg""(d), deg""(e)}, with equality if deg’”(d) #
deng(E),'

(b) deg®™(cd) = deg"™ (d) forall c € K \ {0}.

(c) deg'™(de) < deg"™(d) + deg"™ (e);

(d) deg’([d, e]) < deg"™ (d) + deg"” (e).

Notice: In statement (c) actually equality holds. We shall prove this later (see
Corollary 1.9.5).

Proof (a) The stated inequality is clear by the second inclusion of the following
relation (see Proposition 1.7.3 (a)):

(supp(d) U supp(e)) \ (supp(d) N supp(e)) < supp(d + ¢) < supp(d) U supp(e).

It remains to establish the stated equality if deg"" (d) # deg"" (e). It suffices to treat
the case in which deg”"(d) < deg""(e). In this case, there is some

(v, u) € supp(e) \ supp(d) with v - v + w - u = deg"" (e).
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By the first of the previous inclusions we have (v, u) € supp(d + e) and hence
deg"(d+e)>v-v+w-u=deg""(e).

By the already proved inequality deg""(d + e¢) < max{deg’”(d), deg""(e)} it
follows that deg’” (d + ¢) = deg""(e).

(b) This is obvious.

(c) This follows easily by Proposition 1.7.3 (c) and Definition and Remark 1.8.2

(B) (b).
(d) This follows in a straight forward manner by Proposition 1.7.3 (d) and
Definition and Remark 1.8.2 (B) (¢).

Theorem 1.8.4 (Weighted Filtrations) Let
((vla U27 ey Un)a (wla w27 IR ] wn)) = (Ua w) E Ng X Ng
be a weight. Then, the family

WY = (W" = {d € W | deg""(d) < i})

ieNy
is a commutative filtration of the K -algebra W = W(K, n).

Moreover, the following statements hold.

(a) Wsw = K[X;,9; | vi =0, w; =0], so that Wgw is a commutative polynomial
algebra in the variables X; and d; for which either v; = 0 or else w; = 0.

(b) Let § = §(vw) = max{vy, va, ..., Uy, W1, W2, ..., Wy} Then, foralli > § it
holds

8
vw vw vw
W=y WW
j=1

(c) The filtration W" = (W?w)ieNo is of finite type.

1

Proof 1Tt is clear from our definitions, that

W" C WY, foralli e No, 1eWy" andW=|JW".

ieNp
On use of Lemma 1.8.3 (c) it follows immediately that

W;’wwj.“’ C W}’_’fj foralli, j € No.

So the family (W;" := {d € W | deg""(d) < i}), o, constitutes indeed a filtration
on the K -algebra W.
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Now, leti, j € No, letd € W;" and let e € W'". Then by Lemma 1.8.3 (d) we
have

deg"(de — ed) = deg"" ([d, e]) < deg""(d) + deg""(e) =1 <i+j - 1,
so that
de —ed e W', .

This proves, that our filtration is commutative (see Definition 1.3.3).
(a) Set

S={i=12,....,nJv #0}andT:={j =1,2,...,n | w; #0} and
S:={1,2,...,n}\Sand T :={1,2,...,n}\T.
Let v, u € Njj. Then
v-v+w-pu=0ifandonlyif v; =0 foralli € Sand u; = Oforall j € T.

But this means that
vw Vi alj
W= > K I X'
W)ies (1)) jer €S, jeT
= K[X,',aj | V; =0, w; =O].
It remains to show, that this latter ring is a commutative polynomial algebra in
all the variables X; and 9; for which either v; = 0 or else w; = 0. In view of
Theorem 1.7.1 it suffices to show that X;0; = 9;X; forall i, j with v; = v; = 0.
But as (vg, wg) # (0,0) forall k = 1,2, ..., n (see Definition and Remark 1.8.2

(A)), this is clear by the Heisenberg relations (see Proposition 1.5.4 (b)).
(b) Leti > 4. Let

vi= (U, v, .., 00, o= (R, (2, ..., i) € N with
o :=deg" (X ") =v-v+w-pu<i

We aim to show that

8
Vo VWpdW |
XVo" e Yy WI'W", = M.
j=1
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If o <Othisisclearasi > 0 impliesi > 1, so that
rw vw rw rw rw
Wy =W, W," CW"W,_, C M.

So, let 0 > 0. Then either

(1) thereissome p € {1,2,...,n} withv, > 0and v, > 0, or else,
(2) thereissome g € {1,2,...,n} with wy, > O and gy > 0.

In the above case (1) we can write

n
X"9% = X,d, withd := (] x;~7)a".
k=1
As deg”” (X)) = vp < 8 and deg"¥(d) = 0 — v, it follows that

X3! = Xpd € Wy, Wl C W, W C M.

i-v, =

In the above case (2) we may first assume, that we are not in the case (1). This means
in particular that either v, = 0 or v, = 0, hence v,v,; = 0, so that

deg"™ (X, 8,) = wy < 6.
Now, in view of the Heisenberg relations, we may write
- 5
X"0" = Xy 9ge with e := [ [ xv [T oy .
S#q k=1

As vyv, = 0, we have deg”” (e) = 0 — wy, and it follows that

X"" = X, 05 € Wy W,

o—w

, S Wy, W <M.

i—wg =
But this shows, what we were aiming for, hence that
X"0" € M wheneverv-v+w-u <i.
But this means that
$
rw rw rw
WM =3 WrwY,
j=1

and hence proves statement (b).
(c) This is an immediate consequence of statements (a) and (b) (see Definition
and Remark 1.3.4 (C)).
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Definition 1.8.5 Let the notations and hypotheses be as in Theorem 1.8.4. In
particular, let

(1,02, ooy o), (Wi, wa, . wy)) = (v, w) € Nj x Nj
be a weight. Then, the filtration

W = (W), = (1d € W | deg™ (@) <)) oy,

is called the filtration induced by the weight (v, w). Generally, we call weighted
filtrations all filtrations which are induced in this way by a weight.

Definition and Remark 1.8.6 (A) We consider the strings
0:=(0,0,...,0), 1:=(,1,...,1)eNj
and a differential form d € W. We define the standard degree or just the degree

deg(d) of d as the weighted degree with respect to the weight (1, 1) € Nj x Nj,
hence

deg(d) := deg“(d).
Observe that

deg(d) := sup{|v| + [u| | (v, ) € supp(d)}.

The corresponding induced weighted filtration

W = L = (1), = (1 € W | deg) = ).,

is called the standard degree filtration or just the degree filtration of W.
(B) Keep the notations and hypotheses of part (A). The order of the differential
operator d is defined by

ord(d) := deg(n(d).
Observe that

ord(d) = sup{|ul | (v, u) € supp(d)}.

The corresponding induced weighted filtration

W =W = (W), = (1d € W ord(d) < i),y

is called the order filtration of W.
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Now, as an immediate application of Theorem 1.8.4 we obtain:

Corollary 1.8.7 Let the notations be as in Convention 1.8.1. Then it holds

(a) The degree filtration erg is very good.
(b) The order filtration W‘.’rd is good and Wgrd = K[X1, X2,..., Xyl

Proof In the notations of Theorem 1.8.4 (b) we have
§(1,1) =1and §(0,1) = 1.
Moreover, by Theorem 1.8.4 (a) we have
W' = K and W' = K[X1, X2, ..., X,]

This proves our claim (see Definition and Remark 1.3.4 (C)).
Exercise 1.8.8

(A) Show that the degree filtration is the only very good filtration on W.
(B) Write down all weights (v, w) € Njj x Nj for which the induced filtration W
is good.

1.9 Weighted Associated Graded Rings

This section is devoted to the study of the associated graded rings of weighted
filtrations of standard Weyl algebras. We shall see, that these are all naturally
isomorphic to polynomial rings.

Convention 1.9.1 Again, throughout this section we fix a positive integer n, a field
K of characteristic 0 and consider the standard Weyl algebra

W =W(K,n) =K[X,X>,...,X,,01,02,..., 0]
In addition, we introduce the polynomial ring
P:: K[YlaYZa'-'7YnazlaZZa'-'aZn]

in the indeterminates Y1, Y>,...,Y,, Z1, Z>, ..., Z, with coefficients in the
field K.

Definition and Remark 1.9.2 (A) Fix a weight (v, w) € Njj x Njj and consider
the induced weighted filtration W," . To write down the corresponding associated
graded ring, we introduce the following notation:

GV — @ G;jw — erfm (W) = @ ergw (W)l

ieNyp ieNyp
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(B) Keep the above notations and hypotheses. For each j € Z we introduce the
notations:

vw
Hs/

={w,w) eNg xNj [v-v+w-pu<j};
I = {(v, ) € NG x Nj [ v-v+w-p = j}.
Fix some i € Nj. Observe that

G =W,

=( @ kx)/( P Kkx"")

v welly el
=[C @ «kxe( P kx])/( P Kx").
el w,wel el

As a consequence, we get an isomorphism of K-vector spaces

eV D Kxo =G

(v,wyel}
such that
g (XV0") = (X " + W) e W /W™, = G;" forall (v, n) € I
In particular we can say:

The family ((X9")* :=&; " (X"9")) w is a K-basis of G; "

el

We call this basis the standard basis of G;w. Its elements are called standard basis
elements of the associated graded ring G'".

(C) Keep the previously introduced notation. We add a few more useful
observations on standard basis elements. First, observe that we may write

@ (X"9")* € Gyl 1y, forall (v, 1) € Nj x Nj.

(b) X € G, and 9% e Gy, foralli, j € {1,2,...,n}.

Moreover, by the observations made in part (B) we also can say that all standard
basis elements form a K -basis of the whole associated graded ring, thus:

(c) The family ((X”B”)*)(U’M)ENngg is a K -basis of G'.
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Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 1.3.1 (B)) we get
the following product formula

@ "9 = ([T X = 04)" = TT= (X)) = 07)" =
(x7)" (7).

Exercise and Definition 1.9.3 (A) We fix a weight (v, w) € Nj x Nj. As in

Definition and Remark 1.9.2 (A) we use again the notation

]va

= ={,w) eNgxNy|v-v+w- pu=i}

and consider the K -subspace

P := @ Ky'z' cPforallieN.
(v.wyel’y

of our polynomial ring P = K[Y1, Y>, ..., Yy, Z1, Z2, ..., Z,]. Prove the follow-
ing statements:
(a) K cPy”;
(b) P;’“’P;“’ c P}’Ufj forall i, j € Ny.

w
() P= @ieNO P

(B) Let the hypotheses and notations be as in part (A). Conclude that

the family (wa) X defines a grading of the ring P.

ieN,

We call this grading the grading induced by the weight (v, w) € Nj x Nj. If we
endow our polynomial ring with this grading we write it as PV, thus

vw
P=P"=PP".
ieNyp

Theorem 1.9.4 (Structure of Weighted Associated Graded Rings) Ler (v, w) €
Ny x Nj be a weight. Then there exists an isomorphism of K-algebras, which
preserves gradings (see Convention, Reminders and Notations 1.1.1 (I)).

77vw S P = pUw i) Gvw
given by

Yi = n""(Y;) =X}, foralli =1,2,...,n;
Zj—n""(Z)) = 87, forall j =1,2,...,n.
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Proof According to the universal property of the polynomial ring P there is a unique
homomorphism of K -algebras

v P — G
such that
Y > n"(Y;) = X7, foralli =1,2,...,n;
Zi—n""(Z)) = 8}‘, forall j =1,2,...,n.
In view of the product formula of Definition and Remark 1.9.2 (C) we obtain
n"(Y'Z"*) = (X"9")" forall v, u € Nj.

In particular n** yields a bijection between the monomial basis of the polynomial
ring P and the standard basis of the associated graded ring G**. So, n*" is indeed
an isomorphism. But moreover, for each i € Ny it also follows that n* yields an
bijection between the monomial basis of the subspace P?w C P and the standard
basis of G;}w. But this means, that n"" preserves the gradings.

In Lemma 1.8.3 (c) we have seen that weighted degrees are sub-additive, which
means that deg”" (de) < deg"”(d) + deg"" (e) for all d, e € W. As an application
of Theorem 1.9.4 we now shall improve on this and show, that weighted degrees are
indeed additive, which means that the above inequality is in fact always an equality.

Corollary 1.9.5 (Additivity of Weighted Degrees) Let (v, w) € Nj x Njj be a
weight and let d, e € W. Then

deg"™ (de) = deg”™ (d) + deg” (e).
Proof If d = 0 or e = 0 our claim is clear. So let d, ¢ # 0. We have
i :=deg"(d) € Ny and j := deg""(e).
We use again the notation
17 :={(v, ) e N} x Nj [ v-v+w-pu=k}forallk € Ny
and set

M = @ KX"3"* and N := @ K XM,

(v el v wel’
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We then may write

d =a+rwitha € M\ {0} and deg"" (r) < i;
e=>b+ s witha € N \ {0} and deg"(s) < j.

We thus have
de=ab+ (as +rb+rs)

By what we know already about degrees we have deg"" (as +rb+rs) < i+ j (see
Lemma 1.8.3 (a), (¢)). So, in view of Lemma 1.8.3 (a) it suffices to show that

deg"(ab) =i+ j.
To do so, we write

a= Z () X", with c{®) € K \ {0} forall (v, ) € supp(a) and
(v,u)esupp(a)

_ b) v qu p (b) ;o
b= > ey XV 9", with ey, € K\ {0} forall (v/, u') € supp(b).
(', ") esupp(b)

It follows that

ab = > c@ B xvauxvgu

ViV
(v.w)esupp(a) and (v, ') esupp(b)

By Exercise 1.6.4 (A) and in the notation of Notation and Remark 1.6.3 (C), it
follows that

XVt xVor — xvvgnti ¢ > K X*9*
(k) EM v+ )

for all (v, ) € supp(a) and all (v/, u’) € supp(b). Observe that
w+v,u+pu)e ]Ivzlfﬂ for all (v, u) € supp(a) and all (v/, ') € supp(b).
So, by Definition and Remark 1.8.2 (B)(c) it follows that

deg™ (X" X" 9" — X"H R <t
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for all (v, u) € supp(a) and all (v, u’) € supp(b). If we set

h:= Z cl(f’l)i ib)u XUtV gutn

(v,u)esupp(a),(v', ;') €supp(b)
and on repeated use of Lemma 1.8.3 (a) and (b) we thus get
deg"V(ab — h) =

deg”"| 2 e (XA XY 9 — X gr ) < i )

(v,w)esupp(a), (v, ') esupp(b)
So, we may write
ab = h + u with deg’” (u) < i + j.
By Lemma 1.8.3 (a) it thus suffices to show that deg’™ (h) =i + j. As

h= 3 DD X e (B KX
(v,n)esupp(a), (v, ') €supp(b) (u,u)eﬂ“;’ﬂ.

It suffices to show that 2 # 0. To do so, we consider the two polynomials

f= Z cfffl)LY”Z” e P/ and
(v, ;) esupp(a)

. ) v ou! vw

g:= Z cv,’M,Y Z e]P’j .

(v, ') esupp(b)

As supp(a) and supp(d) are non-empty, and all coefficients of f and g are non-zero,
we have f # 0 and g # 0. As IPis an integral domain. it follows that fg # 0. We set

vw
(h+Wz+/ 1)6W1+//Wt+/ 1= Gi+j’
so that
(b)
e Y ey

(v,u)esupp(a),(v', ') esupp(b)

Applying the isomorphism

nvw P = PV =, QVW
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of Theorem 1.9.4, we now get

0#n™(fey =n"([ > coyzil Y D rzv)

(v, ) €supp(a) (v, )esupp(b)

=n"( > ey, Y 2

(v,p)esupp(a), (v, ") esupp(b)

- (®) + et
— Z ‘()al)L ¢ M/n (YV Vg M)
(v,p)esupp(a), (v, ") esupp(b)

- ey
(v,p)esupp(a), (v, ") esupp(b)
But this clearly implies that i # 0.
Corollary 1.9.6 (Integrity of Standard Weyl Algebras) The standard Weyl
algebra W is an integral domain:
Ifd,e e W\ {0}, thende # 0.
Proof Apply Theorem 1.9.4 and keep in mind that an element of W vanishes if and
only if its degree (with respect to any weight) equals —oo
Exercise 1.9.7
(A) We fix a weight (v, w) € Nj x Nj and set

rv:={v-v4+w-plv,neNgh

Prove the following statements

(@) 0e '™ C Ny.
(b) Ifi, j € IV, theni + j € I'V™.
© G"#£0& P £0&ieY.

'’ is called the degree semigroup associated to the weight (v, w).
B) Letn = 1, v = (p) and w = (gq), where p,q € N are two distinct prime
numbers. Determine I"">* and the standard bases of all K -vector spaces
P?w and G;)w fori e 'Y,

at least for some specified pairs like (p, q) = (2, 3), (2,5),(5,7), ...
(C) Show, that the ring Endg (K[Xl, X2, ..., Xn]) is not an integral domain.
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1.10 Filtered Modules

Now, we aim to consider finitely generated left-modules over standard Weyl
algebras: the so-called D-modules. Our basic aim is to endow such modules with
appropriate filtrations, which are compatible with a given weighted filtration of the
underlying Weyl algebra. This will allow us to define associated graded modules
over the corresponding associated graded ring of the Weyl algebra—hence over a
weight graded polynomial ring. We approach the subject in a more general setting.

Definition and Remark 1.10.1 (A) Let K be a field and let A = (A, A,) be a
filtered K-algebra. Let U be a left-module over A. By a filtration of U compatible
with A, or just an A,-filtration of U we mean a family

Ue = (Uiez
such that the following conditions hold:

(a) Each U; is a K -vector subspace of U;

(b) U; CUjyqforalli € Z;

© U =Usez Us;

(d) A;jUj C Ujyjforalli € Ngandall j € Z.

In requirement (d) we have used the standard notation

AiUj:= Y Kfuforalli e Noandall j € Z,
(fiu)eA;xU;

which we shall use from now on without further mention. If an A,-filtration U, of
U is given, we say that (U, U,) or—by abuse of language—that U is a A, filtered
A-module or just that U is a filtered A-module.

(B) Keep the notations and hypotheses of part (A) and let U, = (U;);cz be a
filtered A-module. Observe that

For all i € Z the K-vector space U, is a left Ag-submodule of U.

(C) We say that two A,-filtrations UV, UP are equivalent if there is some
r € Ny such that

@ U cuf cul foralli e Z.

Later, we shall use the following observation.
Assume that the above condition (a) holds, let i € N and let a € A;. Then
we have
() aU” c US),_|
keN

0-
(e9) (eY) . 2r+177(2) 2
(©) an QUHF1 forall jeZ = a* Uj ng+(2r+l)i—l

forall jeZ = a*Uj” cUY)

k(=1 for all j € Z and all

forall j €Z.
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To prove statement (b), we assume that an(l) - U]('Er)i—l for all j € Z and proceed
by induction on k. If £ = 0 our claim is obvious. If £ > 0, we may assume by

) . 1,01 1 . .
induction that a* 1U} ) - U](Jr)(kfl)(ifl) for all j € Z, so that indeed

M _y®

kpr() _ k—1g7(1) (1)
a’U;" =aa”U;" C al S Ujsw-ni-n+i- = Yjsri-1

jHEk=D(E-1) =

forall j € Z,

and this proves statement (b). If we apply statement (b) with k = 27+ 1 and observe
condition (a), we get

2

241772~ 2r41y,(D) )

a” U Ca UL S UL oo S Ui arr@rni-n
_ 7 _ 7@ ) .
=Ujararicorviot = Uiarivion = U oryniog forall j € Z,

and this proves statement (c).

Remark and Definition 1.10.2 (A) Let K be a field and let A = (A, A,) be a
filtered K-algebra and let U = (U, U,) be an A,-filtered A-module. We consider
the corresponding associated graded ring

Gr(A) = Gra,(4) = @D Ai/Ai 1.

ieNp

and the K-vector space

Gr(U) = Gry,(U) = @ Ui/ U;1.
i€Z

For all i € Z we also use the notation
Gr(U); = Gry,(U); :=U; /Uiy,

so that we may write

Gr(U) = Gry, (U) = @ Gru, (U):.
i€Z

(B)Leti € No,let j € Zlet f, f' € A; andlet g, g’ € U; such that

h:=f—feAi_jandk:=g—g €U;_.



56 M. Brodmann

It follows that
fe—f'g=re—(f—h(g—k = fk+hg—hk
€AU;1+Ai1U;j+A;1Uj
S Uirj-1 +Ujri—) +Ui-n+G-1 € Uitj-1.

Soin U1/ Uit j—1 = Gry,(U)i+; C Gry, (U) we get the relation

fe+Uitj—1=f'g +Uiyj-1.

This allows to define a Gry, (A)-scalar multiplication on the K-space Gry, (U)
which is induced by

(f+A-—DE+Uj1) = feg+Uj

foralli € No,all j € Z,all f € A; g € U;. More generally, if r, s € No, t € Z,

.
f=>_fi. with fi € A; and fi = (fi + Ai_1) € Gra,(A); foralli =0,1,....7,
i=0

and

t+s
g = Z gj, withg; e Ujand g; = (g; + Uj_1) € Gry,(U);

j=t

forall j=¢t,t+1,...,t+s,

then
r—+t+s r—+t+s
fe= 3 Y fie=3 Y (figi+ Ui,
k=t i+j=k k=t i+j=k

(C) Keep the above notations and hypotheses. With respect to our scalar
multiplication on Gry, (U) we have the relations

GrA_(A),'GI‘U_(U)j - GrU.(U),'Jrj foralli, j € Z.

So, the K -vector space Gry, (U) is turned into a graded Gr 4, (A)-module

Gry, (U) = (Gry, (U), (Gry,(U))iez) = @GTU.(U)i
i€eZ
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by means of the above multiplication. We call this Grg, (A)-module Gry, (U) the
associated graded module of U with respect to the filtration U,. From now on, we
always furnish Gry, (U) with this structure of graded Gr4, (A)-module.

Definition 1.10.3 Let K be a field and let A = (A, A,) be a filtered K-algebra.
Assume that the filtration A, is commutative, so that the corresponding associated
graded ring

Gr(A) = Gra,(A) = @) Ai/Ai 1
ieNp

is commutative.
Moreover, let U = (U, U,) be an A,-filtered A-module and consider the corre-
sponding associated graded module

Gr(U) = Gry,(U) = @ Ui/ U;-1.
i€Z

in addition, consider the annihilator ideal

Anng;,, (4)(Gry, (1)) := {f € Gra,(A) | fGry, (U) =0}

of the Gry, (A)-module Gry, (U). We define the characteristic variety Vy,(U) of
the A,-filtered A-module U = (U, U,) as the prime variety of the annihilator ideal
of Gry, (U), hence

Vu,(U) := Var(Anngy,, (4)(Gry, (U))) € Spec(Gra, (A)).

We also call this variety the characteristic variety of the left A-module U with
respect to the Ao-filtration U, or just the characteristic variety of U with respect
to U,.

Proposition 1.10.4 (Equality of Characteristic Varieties for Equivalent Filtra-
tions) Let K be a field and let A = (A, A,) be a filtered K -algebra. Assume that
the filtration A, is commutative (see Definition 1.3.3). Let U be an A-module which
is endowed with two equivalent A,-filtrations U"Y and U, Then

VU.(I) ) = VU.(z) ).

Proof We have to show that

\/AnnGrA. (A) (GrU.(l) (U)) = \/AnnGrA_ (A) (GI‘U.(z) (U))
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By symmetry, it suffices to show that

\/AnnGrA. (4) (GrU.(l) (U)) - \/AnnGrA_ (A) (GI‘U.(z) (U))

In view of the fact that the formation of radicals of ideals is idempotent, it suffices
even to show that

AnnGrA. (A) (GrU.(l) (U)) - \/AnnGrA. (A) (GrU.(z) (U))

As GrU(1>(U ) is a graded Gryu, (A)-module, its annihilator is a graded ideal of
Grga, (A). So, it finally is enough to show, that

ae \/AnnGrA_ ) (Gry@ (U)) foralli € Ng and all a € Anngy,, (4)(Gr,o (U));.

So, fix some i € Ny and some
a € AnnGrA.(A)(GrU_(l)(U)),' - GI‘A.(A),' = A;j/Ai_1.

We chose some a € A; witha =a + Aj—1 € Aj/A;_1.. Forall j € Z we have in
GrUa) (U) the relation

aU{" + U},

1 1 1 1
=@+ AW UL =aWP1UD) = aGryw ), =0,

and hence

v cul),

e ( forall j € Z.

According to our hypotheses we find some r € Ny such that U ,gr cU 152) cU ,Sr)r
for all k € Z. By Definition and Remark 1.10.1 (C)(c) we therefore have

2r+1U(2) C U(z)

ity forall j € Z.

. : 2 (2)
So, for all j € Z we get in Uj+(2r+1)i/Uj+(2r+1)i—1 = GrU.(2)(U)j+(2r+1)i the
relation:

2 2 2 2
@ MGy, (U); = @ + Agrani-0WU UP) a M UP U 1 =0.

J+Qr+1)i—

This shows that a* ™' € Anng,, (4)(Gr,, (U)) and hence that indeed

ae \/AnnGrA. (A) (GI‘U.(z) (U))
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So, provided (A, A,) is a commutatively filtered K-algebra (see Defini-
tion 1.3.3), the characteristic variety of an A,-graded A-module (U, U,) depends
only on the equivalence class of the filtration U,. This allows us to define in
an intrinsic way the notion of characteristic variety of a finitely generated (left-)
module over the filtered ring A. We work this out in the following combined exercise
and definition.

Exercise and Definition 1.10.5 (A) Let (A, A,) be a filtered K -algebra and let U
be a (left) module over A.

Let V € U be a K-subspace such that U = AV.

Prove the following claims:

(@) A;V =0foralli <0.
(b) The family A,V := (Ai V)ieZ is an A,-filtration of U.

The above filtration A,V is called the A,-filtration of U induced by the subspace V.
(B) Let the notations and hypotheses be as in part (A). Assume in addition that

s :=dimg (V) < o0.

Prove that

(a) U is finitely generated as an A-module;

(b) A;V is afinitely generated (left-) module over Ag.

(c) The graded Gry4, (A)-module Gra,y (U) is generated by finitely many elements
81,82:---,85 € GI'A.V(U)().

Keep in mind that we can always find a vector space V' € U of finite dimension

with AV = U if the A-module U is finitely generated.

(C) Let the notations and hypotheses be as above. Let v yv@ C U be two
K -subspaces such that

AVD = AV = U and dimg (VP), dimg (VP) < o0.

Prove that

(a) The two induced A,-filtrations AV and A, V@ are equivalent.
(b) If the filtration A, is commutative, it holds

Vavaor(U) =V, yo (U).

(D) Keep the above notations and hypotheses. Assume that the filtration A, is
commutative and that the (left) A-module U is finitely generated. By what we have
learned by the previous considerations, we find a K-subspace V. C U of finite
dimension such that AV = U, and the characteristic variety V4,y (U) of U with
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respect to the induced filtration A,V is independent of the choice of V. So, we may
just write

Va,(U) :=Vu,v(U),

and we call V4, (U) the characteristic variety of U with respect to the (commuta-
tive !) filtration A, of A. This is the announced notion of intrinsic characteristic
variety.

(E) Keep the above notations. Assume that the filtration A, is of finite type
(see Definition and Remark 1.3.4 (C)) and that the (left) A-module U is finitely
generated. The A, filtration U, of U is said to be of finite type if

(a) There is some jo € Z suchthat U; = O forall j < jo;
(b) There is an integer o such that:

(1) Uj is finitely generated as a (left) Ag-module for all j < o and
@ Ui=3% ., AjUi—jforalli > 0.

In this situation o is again called a generating degree of the A,-filtration U,
(compare Definition and Remark 1.3.4 (C)). Prove that in this situation, we have

o
AioUs CUi =Y Ai_jU; S Ai_jyU, foralli > o.
Jj=Jjo

As U, is a finitely generated Ap-module, we may chose a K-subspace V. C U
such that

dimg (V) < oo and AgV = Us,.
Prove that for this choice of V we have:
U = AV and the filtrations U, and A,V are equivalent.

As a consequence it follows by Proposition 1.10.4 and the observations made in part
(D), that

Vu,(U) = V4, (U) for each A,-filtration U, which is of finite type.

1.11 D-Modules

Convention 1.11.1 (A) As in Sect. 1.9, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W:=W(K,n) =K[X1,X>,...,X,,01,02,...,04].
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In addition, we consider the polynomial ring
P:: K[Y11Y21'-'7Y}’thsZ2s'-'szn]

in the indeterminates Yi, Y2, ..., Y., Z1, Z2, ..., Z, with coefficients in the
field K.

(B) Let (v,w) € Nj x Nj be a weight. We consider the induced weighted
filtration W, "' and also the corresponding associated graded ring.

G™ = QB G;" := Grypw (W) = QB Gryyow (W),

ieNyp ieNyp

(see Definition and Remark 1.9.2 (A)).
(C) Moreover, we shall consider the polynomial ring

P=P"=PP".

ieNp

furnished with the grading induced by our given weight (v, w) (see Exercise and
Definition 1.9.3 (B)), as well as the canonical isomorphism of graded rings (see
Theorem 1.9.4):

PP =P > G

Definition and Remark 1.11.2 (A) By a D-module we mean a finitely generated
left module over the standard Weyl algebra W.

(B) Let U be a D-module. If U, is a W filtration of U, we may again introduce
the corresponding associated graded module of U with respect to the filtration U,
(see Definition 1.10.3):

Gry,(U) =P Ui/ Ui,

i€eZ

which is indeed a graded module over the associated graded ring G'". But, in fact,
we prefer to consider Gry, (U) as a graded P**-module by means of the canonical

isomorphism ¥ : P = P"* —— G,

(C) Keep the notations and hypotheses of part (B). Then, we may again consider
the characteristic variety of U with respect to the filtration U,, but under the
previous view, that Gry, (U) is a graded module over the graded polynomial ring
P = P'™. So, we define this characteristic variety by

V., (U) := Var(Annpw (Gry, (U))) = Var((n”) ™' [Anngw (Gry, (U))]) € Spec(P).
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Observe in particular, that the ideal
Annpw (Gry, (U)) = (")~ [Anngw (Gry, (U))] < P

is graded.

(D) Finally, as U is finitely generated, we may again chose a finite dimensional
K -subspace V € U such that WV = U, and then consider the induced filtration
We" V of U and the corresponding intrinsic characteristic variety (see Exercise and
Definition 1.10.5 (D)) of U with respect to the weight (v, w), hence:

VY (U) 1= Vi (U) = Vg, (U).

Example 1.11.3 (A) Keep the above notations and let

d:= Z cX"3" € W\ {0} and § := deg"”(d).
(v,u)€supp(d)

with cl(f,? e K \ {0} for all (v, ) € supp(d). We also consider the so-called leading

differential form of d with respect to the weight (v, w), which is given by

Y = > WX 9" e W {0}.
(v,u)esupp(d):v-v+w-u=4§

Moreover, we introduce the polynomial

o= > Dy’ z" e P\ {0},
(v, ) esupp(d):v-v+w-u=4§

Now, consider the cyclic left W-module
U :=W/Wd, theelement | := (1 +W,;)/W,; € U and the K-subspace K1 C U.
Endow U with the W, " -filtration (see Exercise and Definition 1.10.5 (A)):

Us := WK1 = (Ui := (W" + Wd)/Wd);ez.

(B) Keep the above notations and hypotheses. Observe first, that for all i € Z we
may write

Ui/Uim1 = W, /(W) 4+ (Wd NW;™)).
By the additivity of weighted degrees (see Corollary 1.9.5) we have

Wd NnW}" = W;"d foralli € Z.
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So, we obtain
Gry, (V)i = Ui/ Ui—y = W /(W}", + W}",d) for all i € No.

i—

Consequently, there is a surjective homomorphism of graded G -modules

7 G = PW" /W = Gry,(U) = @ W /(W + W d).

11— 11—

i€Z i€Z
If we set
R = Y WY e WY /WY = Gy
it follows that

Annguw (Gry, (U)) = Ker(m) = €D (W;", + W;"sd)/W}"|
i€Z

= D (W, + W) W = G,
i€Z

Consequently we get
Gry,(U) = G /G h"".

AsnP"(fP%) = 1" and if we consider Gry, (U) as a graded PV -module by means
of n”", we thus may write

Gry, (U) = P*/P" f*" and Annp(Gry, (U)) =P f*".
In particular we obtain:
Vu,(U) = V" (U) = V" (W/Wd) = Var(P f*") < Spec(P).

Exercise 1.11.4

(A) Letn = 1, K = R and let d := X‘f + 812 — X%Bf Determine the two
characteristic varieties

VY (W/Wd) for (v, w) = (1, 1) and (v, w) = (0, 1).

(B) To make more apparent what you have done in part (A), determine and sketch
the real traces

Vi (W/Wd) := {(y,2) e R* | (Y1 — y, Z1 — 2)K[Y1, Z1] € V" (W/Wd)}

for (v, w) = (1, 1) and (v, w) = (0, 1). Comment your findings.
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Now, we shall establish the fact that D-modules are finitely presentable. To
do so we first will show that standard Weyl algebras are left Noetherian (see
Conventions, Reminders and Notations 1.1.1 (G) and (H)). We begin with the
following preparation.

Definition and Remark 1.11.5 (A) Let / € W be a left ideal. We consider the
following K -subspace of G"":

G™() = (I W +W;" )/ W", < P W /WY =G

ieNp ieNp

It is immediate to see, that GV (I) € G"" is graded ideal. We call this ideal the
graded ideal induced by I in G*.

(B) Let the notations and hypotheses as in part (A). It is straight forward to see,
that the family

Y= (1nw")._,

is a filtration of the (left) W-module I, which we call the filtration induced by W," .
Observe, that for all i € Z we have a canonical isomorphism of K -vector spaces

G™(I); := (INW;" + W™ ) /W™ = InW" /InW; Y = 1" /1% = Grjo (1);.

i-1—

It is easy to see, that these isomorphisms of K-vector spaces actually give rise to a
canonical isomorphism of graded G'"-modules

GY™(I) := @ (A NW™) + W) Wi, = ED I /1" = Grjuo (D).
i€Z i€Z
So, by means of this canonical isomorphism we may identify

G (1) = Gr (D).

Lemma 1.11.6 Let I, J C W be two left ideals with I C J. Then we can say:

(a) There is an inclusion of graded ideals G’ (1) C G"(J) in the graded ring
G"™.

) IfGY () =G"™(J), then I = J.

Proof (a): This is immediate by Definition and Remark 1.11.5 (A).

(b): Assume that / C J. Then, there is a least integer i € Ng such that

Y =10wW" 7™ =7nw".
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As Iivivl = J;:wl it follows that

G"™(I); = I /1™, is not isomorphic to 1" /I, = G"™ (J);,

so that indeed
G*™(I) £ G"™(J).
Theorem 1.11.7 (Noetherianness of Weyl Algebras) The Weyl algebra W is left

Noetherian.

Proof Otherwise W would contain an infinite strictly ascending chain of left ideals
1M C 1@ ¢ [® C ... Butthen, by Lemma 1.11.6 we would have an infinite
strictly ascending chain GV (1(1) cG"™ (I?) cG"™ (I3) C --- of ideals in the
Noetherian ring G'* = P"" = P, a contradiction.

Corollary 1.11.8 (Finite Presentability of D-Modules) Each D-module U
admits a finite presentation

W — W — U — 0.

Proof This follows immediately by Theorem 1.11.7 and the observations made in
Conventions, Reminders and Notations 1.1.1 (H).

Example 1.11.9 (A) Consider the polynomial ring U := K[X1, X2, ..., X,]. As
W € Endg (K[X1, X2, ..., X,1) = Endg (U),

this polynomial ring can be viewed in a canonical way as a left module over W, the
scalar being multiplication given by

d-f:=d(f)foralld e Wandall f € U.
As f -1 = fforall f € U it follows that
U=Wly.
So, the W-module U := K[X1, X2, ..., X,] is generated by a single element, and

hence in particular a D-module.
(B) Keep the previous notations and hypotheses. Observe that

n
dwy = @ Kkxvo
i=1

v, neNG:pu#£0
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and hence
n n
W=K[X1,X2,....X,]© Y Woi=U& ) Wo.
i=1 i=l1
We thus have an exact sequence of K-vector spaces

n
0—>ZW3,~—>WL>U—>0,

i=1
in which W — U is the canonical projection map given by

r(X*0H) = !Xv’ ifu =0,
0, if u#0
Our aim is to show:
W -5 Uisa homomorphism of left W-modules.
To do so, it suffices to show that for all v, u, v', " € Nj it holds

n(dd’) = drn(d’), whered := X"9" andd’ := X" 3" .

If w = ' =0, we have

M. Brodmann

ndd) = (X'X") =x(X"") = X" = XX = X"=(X") = dn(d").

If w = 0and ' # 0 we have

w(dd) =7 (X"X ") = n(X"T9") =0 = X"x(X"9") = dn(d").

So, let u # 0. By the Product Formula of Proposition 1.6.2 we have
dd' = XVt X" g = x gt g,
with

§ = Z )\'ka-l—V/—kaH.-‘rp,/—k
keNg:0<k=<p,v’
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and
=T o=

Assume first, that u’ # 0. Then we have
n(X”*“/a’“““’) =0and n(X“*”/’ka"*“,’k) =0forall k € Nj with0 <k < p,v".
It thus follows, that
m(dd')y =0 =d0 =dn(X"9") = dn(d).
So, finally let &' = 0. Then dd’ = X"+ 3" + s, and
[T TTpso 0 = X" i <0
0, otherwise.
So, by what we have learned in Exercise 1.6.6 (B), we have
s = X"9"(x").
As s is a K-multiple of a monomial in the X;’s we have 7 (s) = s. It thus follows
w(dd) = x (X" 9") 4 (s) =5 = X 0" (XV) = X 9" X" = dn(d').

This proves, that 7 is indeed a homomorphism of left W-modules.

(C) Keep the previous notations and hypotheses. Then, according the above
observations, we have an exact sequence of left W-modules

0—>W"i>Wi>U—>O,

in which 4 is given by
n
(dladZa '-'7dn) = h(dladZa '-'7dn) = Zdlal-
i=1

This sequence clearly constitutes a presentation of the left W-module U (see Con-
ventions, Reminders and Notations 1.1.1 (H)) and the corresponding presentation
matrix for U is the row
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Exercise 1.11.10 (A) We consider the polynomial ring U = K[X1, X2, ..., X,]
canonically as a D-module, as done in Example 1.11.9. Fix a weight (v, w) € Nj x
Ng. Consider the K-subspace K C U, observe that WK = U and endow U with
the induced filtration

Ue := WIVK.
Show, that there is an isomorphism of graded P-modules
Gry, (U) = Gryywg (U) = U",
where
U' =@ U with U == Y KX"foralli € Ny
ieNy v-v=i

is the polynomial ring U endowed with the grading associated to the weight v € Njj.
Determine the characteristic variety

VY™ (U) C Spec(P).

(B) Keep the notations and hypotheses of part (A). Show, the left W-module U is
simple: If V. C U is a proper left W-submodule, then V = 0. (Hint: Let f € U \ {0}
be of degree r and assume that v = (v1, va, ..., v,) € supp(f) with Z:’:I Vi =r
and show that 3" € K \ {0}. Conclude that W f = U.)

Remark and Definition 1.11.11 (A) We furnish the polynomial ring K[X1, X7,
.., X1 with its canonical structure of D-module (see Example 1.11.9). We now
consider a ring ./ with the following properties

(1) &/ is commutative;
(2) < is aleft W-module;
3) K[X1, X2, ..., X,] € & is aleft submodule.

In this situation, we call .« a ring of good functions in X1, X5, ..., X, over K.
The idea covered by this concept is that for all d € W and all f € the product
df € of should be viewed as the result of the application of the differential operator
d to the function f. Therefore, one often writes

d(f):=df foralld e Wandall f € /.

(B) Let the notations and hypotheses be as in part (A). By a system of polynomial
differential equations in </ we mean a system of equations

di(fi) +dia(f2)+...+di-(fr) =0
Ao (f1) +doa(f2) +...+day(fr) =0

dsl(fl) + ds2(f2) +...+ dsr(fr) =0
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with r, s € N such that
dij e Wand f; € o/ foralli, j e Nwithi <sand j <r.

The above system of differential equations can be understood as a linear system of
equations over the ring <. We namely may consider the matrix

dirdiz ... diy
P dyy dy ... doy i
dsl ds2 dsr

Then, the above system may be written in matrix form as

f 0
a2 = |°
5] \o

We call & the matrix of differential operators associated to our system of linear
differential equations. So, systems of differential equations correspond to matrices
with entries in a standard Weyl algebra.

(C) Keep the previous notations and hypotheses, then the matrix of differential
operators Z € WS*" gives rise to an exact sequence of left W-modules

0— W 2w ™2y, 0.

In particular Uy is a D-module and the previous sequence is a finite presentation of
Ug. We call this presentation the presentation induced by the matrix & and we call
Ug the D-module defined by the matrix Y—or the D-module associated with our
system of differential equations. So, each system of differential equations defines
a D-module. Obviously, one is particularly interested in the solution space of our
system of differential equations, hence in the K-vector space

fi 0

f 0
So( ) i={(fi, oo Sy e 12 [T =] |

£ \o

Observe, that Sg (7)) is a K-subspace of .o7”.
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Proposition 1.11.12 Lerr, s € N, let

dirdiz ... dir
_ dri dyy ... doy Jp—
ds1 dsp ... dsy

be a matrix of differential operators, consider the induced presentation

0—>W‘Yhi>@W’n:—n>@U@—>0

and the corresponding solution space S (7).

Foralli =1,2,...,rlete; .= (51',/);-:1 € W” be the i-th canonical basis element.
Then, there is an isomorphism of K -vector spaces

¢y : Homy (Ug, o) =, So),
given by
m > eg(m) = (m(w(e)), m(w(e2)), ..., m(w(e,))) for allm € Homy (Ug, ).
Proof Observe, that there is indeed a K -linear map
¢ :=¢g : Homw(Ug, &) — "
given by
m = eg(m) = (m(w(e1)), m(m(e2)), ..., m(n(e))) forall m € Homy (Ug, ).
If e(m) = 0, then m(w(e;)) = O foralli = 1,2,...,r. As & is surjective, the
elements w(e;) (i = 1,2,...,r) generate the left W-module U = Ug. So, it
follows that m = 0 and this proves, that the map ¢ is injective.
It remains to show that
S(Homw(U@, ,Q/)) = Sg ().
To do so, let
bj =0 €W (=1,2,...,9)

be the canonical basis elements of W*.
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First, let m € Homyy(Ug, 7). We aim to show, that (m) € Sg(</). We have to
show, that the column

81 m(er)
glz 2 m(.ez)
8s m(e,)

vanishes. Foreachi = 1,2, ..., s we can write Z;zl dijej =b;2 = h(b;), and
hence get indeed

gi =Y dijmm(ep) =m()_ dijm(e)) =m(x(Y_dije;)) = m(mw(h(b)))

j=1 j=1 j=l1
=m(0) =0.

Conversely, let (f1, f2, ..., fr) € Sg(&7), so that Z;zl dij fi = 0. We aim to

show that (f1, f2,..., fr) € S(HomW(U, Jz%)).
To this end, we consider the homomorphism of left W-modules

,
k: W' — o, givenby (uy,uz,...,u;) > Zujfj.
j+1

Observe that
,
k(h(bi)) = k(b,’@) = k(dil, dl'2, ey d,’r) = Zd,’jfj =0foralli = 1, 2, e, S
j=1
It follows that k o & = 0. Therefore k induces a homomorphism of left W-modules

m:U — &, suchthatm o = k.

It follows that m(r(e;)) = k(e;) = f; forall j = 1,2, ..., r. But this means that
(f1, f2r ..., fr) = €(m) € e(Homw (U, )).

Exercise 1.11.13 (A) Letn = 1, K = R and let &/ := € °°(R) be set of smooth
functions on R. Fix d € W = W(R, 1) = R[X, 9] and consider the matrix ¥ =
(d) € W*1. Determine

Uy, Sg()and V""" (Ug)
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for all weights (v, w) = (v, w) € Ny x Np \ {(0, 0)} and for
d=93, d=03*>—-1, d=9d—x>andd =93>+ cd —bwithc,b e R\ {0}.
B)Letn,m € N, & := K[X1, X», ..., X, ] and consider the matrix

m
81
m
9= | | ewr
ay'
Determine

Uy, Sg()and V'I(Uy).

1.12 Grobner Bases

In this section, we introduce and treat Grobner bases of left ideals in standard Weyl
algebras with respect to so-called admissible orderings of the set of elementary
differential operators. What we get is a theory very similar to the theory of Grobner
bases of ideals in polynomial rings. A theory many readers may be familiar with
already. Indeed a great deal of what we shall present in the sequel could also
be deduced from the theory of Grobner in polynomial rings. Nevertheless, we
prefer to introduce the subject in a self contained way so that readers who are
not familiar with Grobner in polynomial rings can follow our approach without
further prerequisites. As for Grobner bases in (commutative) polynomial rings and
their applications, there are indeed many introductory and advanced textbooks and
monograph. So, we mention only a sample of possible references for this subject,
namely [1, 6, 19, 25, 26, 30, 36] and [42].

In general, Grobner bases are intimately related to Division Theorems, which
generalize Euclid’s Division Theorem for univariate polynomial rings over a field.
Grobner bases and Division Theorems for rings of linear differential operators were
introduced by Briancon and Maisonobe [14] in the univariate case and by Castro-
Jiménez [21] in the multivariate case. Two more recent basic references in the field
of are the textbook of Bueso,Gomez-Torricellas and Verschoren [20] and the PhD
thesis [31] of Levandovskyy.

The main goal of the present section is to prove that left ideals in Weyl algebras
admit so-called universal Grobner bases. This existence result can actually be
proved in the more general setting of admissible algebras. Readers, who are
interested in this, should consult for example Boldini’s thesis [10] or else [38], [41]
or [43].
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Convention 1.12.1 (A) As previously, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W:=W(K,n) =K[X1,X>,...,X,,01,02,...,04].
Moreover, we consider the polynomial ring
P:: K[YlaYZa'-'7YnazlaZZa'-'aZn]

in the indeterminates Y1, Y>,...,Y,, Z1, Z>, ..., Z, with coefficients in the
field K.
(B) In addition, we fix the isomorphism of K -vector spaces

@ : W — Pgivenby X"9" > Y"Z" forall v, u € Nj.

Moreover we respectively consider the set E of all elementary differential operators
in W and the set M of all monomials in P, thus:

E:={X"8" | v,u e Ng}and M :={Y"Z" | v, u € Nj} = @ (E).

In a first step we now introduce some basic notions of our subject, namely:
admissible orderings (of the set E of elementary differential operators, leading (ele-
mentary) differential operators and (in the polynomial ring PP) leading monomials
and leading terms. Mainly for those readers who have not met these concepts in
the framework of polynomial rings, we shall add below a number of examples and
exercises on these new notions.

Definition, Reminder and Exercise 1.12.2 (A) (Total Orderings) Let S be any set.
A total ordering of S is a binary relation <C § x § such that for all a, b, ¢ € § the
following requirements are satisfied:

(a) (Reflexivity) a < a.

(b) (Antisymmetry) If a < bandb < a,thena = b.
(¢) (Transitivity) If a < band b < c,thena < c.
(b) (Totality) Eithera < borb < a.

We write TO(S) for the set of total orderings on S.
If <e TO(S) and a, b € S, we write

a<bifa<banda#b, b=>aifa<b, b>aifa<b.

(B) (Well Orderings) Keep the above notations and hypotheses. A total ordering
<e TO(S) is said to be a well ordering of S, if it satisfies the following additional
requirement:

(e) (Existence of Least Elements) For each non-empty subset 7 C S there is an
elementt € T suchthatt <¢ forallt' € T.
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In the situation mentioned in statement (e), the element r € T—if it exists at all—is
uniquely determined by 7' and called the least element or the minimum of T with
respect to < and denoted by min<(7"), thus

t =minc(T)ift € Tandt < ¢ forallt' € T.

We write WO(S) for the set of all well orderings of S.

(C) (Admissible Orderings) A total ordering <€ TO(E) of the set of all
elementary differential operators is called an admissible ordering of E if it satisfies
the following requirements:

(a) (Foundedness)1 < XV3" forall v, u € Njj
(b) (Compatibility) For all A, 2/, k, k', v, u € Njj we have the implication:

If X*9% < X9, then X TV tr < x M 4vgeHn
We write AO(E) for the set of all admissible orderings of E.
Prove the following facts:
(© Tfv, v, !, a A i, k', € NI with X% < X”'0 and X*9¥ < X* 9%, then
XAyt o Mgt
(d) AO(E) € WO(E).

(D) (Leading Elementary Differential Operators and Related Concepts) From
now on, for all d € W, we use the notation

Supp(d) := {X"3" | (v, ) € supp(d)}.

Keep the above notations and hypotheses. If <€ AO(E) and d € W\ {0}, we define
the leading elementary differential operator of d with respect to < by:

LE<(d) := max<Supp(d),
so that
LE<(d) € Supp(d) and e < LE<(d) for all e € Supp(d).

Moreover, we define the leading coefficient LC<(d) of d with respect to < as
the coefficient of d with respect to LE<(d), and the leading differential operator
LD<(d) of d with respect to < as the product of the leading elementary differential
operator with the leading coefficient, so that:

(a) LC<(d) € K \ {0} with LE<(d — LC<(d)LE<(d)) < LE<(d).

(b) LD(d) = LC<(d)LE<(d).
(¢) LE<(d — LD<(d)) < LE<(d).
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Finally, we define the leading monomial and the leading term of d with respect to
< respectively by

LM< (d) := ®(LE<(d)) and LT<(d) := @(LD<(d)) = LC<(d)LM<(d).

Prove the following statements:

(d) Ifd, e € W\ {0}, with d # —e, then LE<(d 4 ¢) < max<{LE<(d), LE<(e)},
with equality if and only if LD<(d) # —LD<(e).

The previously introduced notions are of basic significance for this and the
next section. So, we hope to illuminate their meaning in the following series of
examples and exercises, which were already announced prior to the definition of
these concepts.

Examples and Exercises 1.12.3 (A) (Well Orderings) Keep the above notations
and hypotheses. Prove the following statements:

(a) Let ¢ : Ng —> Nj x Nfj be a bijective map. Show that the binary relation
<y C E x E defined by

X"k <, X" & o w0 <97 (v, )

forall v, u, v', u’ € Nj is a well ordering of E.

(b) Show that in the notations of exercise (a) the well ordering <, is discrete, which
means that the set {e € E | e <, d} is finite for all 4 € E.

(c) Show, that there uncountably many discrete well orderings of E.

(d) Letn =1, set X1 =: X, 91 =: 0 and define the binary relation < on the set of
elementary differential operators E = {X"9" | v, u € Np} by

/
X"9% < x”' 0" if either {* = " OT el
v=1v'and u < u’
for all v, u € Np. Show, that < is a non-discrete well ordering of E.
(B) (Admissible Orderings) Keep the above notations and hypotheses.
(a) We define the binary relation <exC [ x [E by setting (again forall v, u, v/, u’ €
Np):

X 0" <jex XV 9" if cither
(1) v=vand u = i/, or

(2 v=vand3je{1,2,...,n}: [u; <M’j and x = uj, Yk < j], orelse
(3) 3i €{1,2,...,n}: [v; < v/ and v = v}, Vk <i].
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(b)
(©
(d)

(e)
®

(€]
(h)
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Prove that <jexe AO(E). The admissible ordering <jex is called the lexico-
graphic ordering of the set of elementary differential operators.

Setn =1, X1 =: X, 91 =: 0 and write down the first 20 elementary differential
operators d € E = {XV9* | v, u € Np} with respect to the ordering <jex.
Solve the similar task as in exercise (b), but with n = 2 instead of n = 1 and
with 30 instead of 20.

We define another binary relation <geglex< E x E by setting

deg(d) < deg(e) orelse

d <deglex ¢ if either
deg(d) = deg(e) and d <y e.

Show, that <geglex€ AO(E). This admissible ordering is called the degree-
lexicographic ordering of the set of elementary differential operators.

Solve the previous exercises (b) and (c) but this time with the ordering <geglex-
We introduce a further binary relation <gegreviex< [ x I by setting (again for
allv, u,v', u" e Nj):

/ o, .
X"k =degrevlex X" 9" if either

(1) deg(X0") < deg(X”/a"/), or else
(2) deg(Xx¥o") = deg(X”/a"/) and either
i) v=vand u = i/, or
(i) w = p' and Ji € {1,2,...,n}: [v,- > viand vy = v, Vk > i],or
else

(i) 3j € {1,2,...,n}: [Mj > /’L/j and g =M;{,Vk > j].
Prove, that <gegreviex€ AO(E). This admissible ordering is called the degree-
reverse-lexicographic ordering of the set of elementary differential operators.
Solve the previous exercise (e) but with <gegreviex instead of <geglex-

An admissible ordering of the set M = {YVZ" | v, u € N{j} of all monomials
in PP is a total ordering of M which satisfies the requirements

(1) (Foundedness) 1 < m forall m € M.
(2) (Compatibility) For all m, m’ and t € M we have the implication:

Ifm <m', thenmt < m't.
For any <e AO(E) we define the binary relation <¢ C M x M by setting

m<em < & m)<® '(m) forallm,m € M.
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Prove, that <¢ € AO(M) and that there is indeed a bijection

11

op : AO(E) — AOM), givenby <t><g¢ .

The names given in the previous exercises (a), (d) and (f) to the three admissible
orderings of E introduced in these exercises are “inherited from the “classical*
designations used in polynomial rings, via the above bijection.

(1) Prove, that <geglex and <gegreviex are both discrete in the sense of exercise (A)
(b), where as <j¢x is not.

(C) (Leading Elementary Differential Operators and Related Concepts) Keep the
previous notations and hypotheses.

(@) Letn = 1,set X1 =: X, 01 =: 0,Y; =: Y and Z; =: Z. Write down the
leading elementary differential operator, the leading differential operator, the
leading coefficient, the leading monomial and the leading term of each of the
following differential operators, with respect to each of the admissible orderings
<lex> Zdeglex and <degrevlex:

(1) 5X% +4Xx49 —2X23% + X9* — 39°.
(2) 9* —4X0° +6X2%0% —4Xd + X*.
(3) 812 _ X537 _I_X785 _ X983 + XlZ.

(b) Letn = 2 solve the task corresponding to exercise (a) above for the differential

operators

(1) X7X3+20)93.
(2) X3X30%203 — 9795,
() XX+ X4 +9f + 05 withk e N.
The next proposition will play a crucial role for our further considerations. it
tells us essentially, that “leading differential operators behave as leading terms of

polynomials®. It is precisely this property, which will allow us to introduce a fertile
notion of Grobner bases for left ideals in Weyl algebras.

Proposition 1.12.4 (Multiplicativity of Leading Terms) Let <€ AO(E) and let
d,e € W\ {0}. Then it holds

(a) LT<(de) = LT<(d)LT<(e).
(b) LM<(de) = LM< (d)LM<(e).

Proof The product formula for elementary differential operators of Proposi-
tion 1.6.2 yields that

LE<(X"9" X" a*) = X" 9" forall v, v/, u, 1’ € Np.
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We may write

d= ) cDx'o"ande= Y o XV"
(v,p)esupp(d) (v, ) €supp(e)
with ¢\%), cﬁ, € K\ {0} forall (v, n) € supp(d) and all (', ') € supp(e). With

appropriate pairs (v?, 1 ©) € supp(d) and (v, /@) € supp(e) we also may
write

LE<(d) = X" 8"” and LE<(¢) = X""” """ hence also

d
LC=(d) = ¢{{0) o and LC=(e) = c\5% o+

Now, bearing in mind the previous observation on leading elementary differential
operators we may write

_ (d) (e) oy
de = Z ey X ke, X" M
(v,w)€supp(d), (v, ') Esupp(e)

- 3 cDels) XV o x g
(v,u)esupp(d), (v, ") €supp(e)

= Z [CEIQC§§L,XV+V gutr 4 rw,w,]’
(v,w)esupp(d), (v, ') Esupp(e)

with ryy,, € W, such that for all (v, u) € supp(d) and all (v, ') € supp(e) it
holds

LES (rVV/lLl/L/) < XV+|)’3H'+,LU’ whenever Fou’ ! ;ﬁ 0.
By Definition, Reminder and Exercise 1.12.2 (C)(c) we have

xv gt xv @@ au@e® o
(v, ), (', 1)) € supp(d) x supp(e) \ {((V”, @), O, W O))}.
By Definition, Reminder and Exercise 1.12.2 (D)(d) it now follows easily that
LE<(de) = X"+ g1 +#” ang

d
LC<(de) = cg(gm(mcg?%,@ = LC=(d)LC<(e).
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We thus obtain

LM (de) = QD(XU(O)+U/(0)8M(0)+M/(0)) _ Yv(0)+v/(0)zlu(0)+'u/(0) _ YU(O) ZM(O)YU/(O)ZM’(O)

= o(x"" 9”0 (x”""9"”) = & (LE< (@) (LE<(e)) = LM< (d)LM< e).
But now it follows

LT-(de) = LC<(de)LM<(de) = LC<(d)LC<(e)LM<(d)LM< (e)
= LC<(d)LM<(d)LC<(¢e)LM<(e) = LT<(d)LT<(e).

The next result may be understood as an extension of the classical division

algorithms of Euclid for univariate polynomials to the case of differential operators.
It was first proved in 1984 by Briangon-Maisonobe in the univariate case and by
Castro-Jiménez in the multivariate case.
Those readers, who are familiar with the Buchberger algorithm in multivariate
polynomial rings will realize that our result corresponds to the division algorithm in
multi-variate polynomial rings. Observe in particular that—as in the case of multi-
variate polynomials—we will divide “by a family of denominators” and that the
presented division procedure depends on an admissible ordering.

Proposition 1.12.5 (The Division Property, Briancon-Maisonobe [14] and
Castro-Jiménez [21]) Let <€ AO(E), let d € W and let F C W be a
finite set. Then, there is an element r € W and a family (qf)fer € WF such
that (in the notations of Convention 1.12.1 (B) and Definition, Reminder and
Exercise 1.12.2 (D))

@ d=3 repqrf+r;
(b) @(s) ¢ PLM<(f) forall f € F\ {0} and all s € Supp(r).
(¢) LE<(grf) <LE<(d) forall f € F withqy f #0.

Proof We clearly may assume that FF C W \ {0}. If d = 0, we choose r = 0 and
qr = Oforall f € F. Assume, that our claim is wrong, and let U C W be the
non-empty set of all differential operators d € W which do not admit a presentation
of the requested form. As <€ WO(E) and U C W \ {0}, we find some d € U
such that

LE-(d) = min<{LE<(u) | u € U}.

We distinguish the following two cases:

(1) There is some f € F such that LM< (d) € PLM<(f).

(2) LM<(d) ¢ U er PLM<(f).

In the case (1) we find some e € [E such that LM< (d) = ®(e)LM<(f) and so we
can introduce the element

LC-(/) ef e W.
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Ifd’ =0, we set

r=0, qf:= ng((;f))e, and g = Oforall f' € F\ {f}.
But then
LC-(d
- LC;((f))ef =qrf+r

is a presentation of d with the requested properties.
So, let d’ # 0. Observe, that by Proposition 1.12.4 (a) we can write

LC<(d) ef) = LC<(d) LT-(ef) = LC<(d)
LC<(f) LC<(f) LC<(f)
LC<(d)LM<(e)LM<(f) = LC<(d)®(e)LM<(f) = LC<(d)LM<(d) = LT<(d).

LT ( LT<(e)LT<(f) =

If follows that LD < (Iigf ((% ef ) = LD<(d), and hence by Definition, Reminder and

Exercise 1.12.2 (D)(d) we obtain that
LE-(d") < LE<(d) = min<{LE(u) | u € U}.

Therefore, d’ ¢ U and so we find an element r’ € W and a family (Cl}v)f’e reWFr
such that

@' d = Y frer q}.,f’ +r;
(b) &(s’) ¢ PLM<(f’) forall f' € F andall s’ € Supp(r).
(c) LES(q},f’) < LE<(d') forall f' € F with q}, #0.

Now, we set
r:=r"and gy := q./f’ if f'# f.
= ;= LC<(d .
9p+cpe iff=f"
As
LC-(d
LE<(C]}/f/) < LE< (d/) < LE<(d) and LE<( S( )e) = LE<(e) < LE<(d),
- - - SLC<() - -
we get
LC<(d)

LE<(qfF) = LE<((q} + )f) < LE<(d).

e
LC<(f)
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Now, it follows easily, that the requirements (a),(b) and (c) of our proposition are
satisfied in the case (1).
So, let us assume that we are in the case (2). We set

d' :=d —LD=(d).

If d = 0 we have d’ = LD<(d) and it suffices to choose g s := 0 forall f € F and
r=d.

So, let d’ # 0. Then, we have LE<(d’) < LE<(d) (see Definition, Reminder and
Exercise 1.12.2 (D)(c)), so that again d’ ¢ U. But this means once more, that we get
elements r’ and q}, € W (for all f’ € F) such that the above conditions (a)’, (b)’

and (c)’ are satisfied. Now, we set
r:=r'+LD<(d) and g5 := g forall f € F.

As supp(r) < supp(r’) U {LE<(d)} and LE< grf) < LE(d") < LE<(d) for all
f € F with gy # 0 the requirements (a),(b) and (c) are again satisfied for the
suggested choice.

Now, we are ready to introduce the basic notion of this section: the concept of
Grobner basis.

Definition, Reminder and Exercise 1.12.6 (A) (Monomial Ideals) Anideal I C P
is called a monomial ideal if there is aset S C M = {Y"Z" | v, u € N{j} such that

1= ZPS.

ses
Show that in this situation for all m € M \ {0} we have

(a) If m = Zle fisi with 51,82, ...,8 € Sand fi, f2,..., fi € P, then there is
somei € {1,2,...,t} and some n; € supp(f;) such that m = n;s;.
(b) m € I if and only if there are n € M and some s € S such that m = ns.

(B) (Leading Monomial Ideals) Let <e AO(E) and T C W. Then, the ideal

LMI(T) := Z PLM<(d)
deT\{0}

is called the leading monomial ideal of T with respect to <.
Prove that for all m € M, we have the following statements.

(@ Ifm =Y ;_, fiLM<(t;) with t1, 15, ..., 1, € T and fi, f2,..., fy € P, then
there is some i € {1,2,...,s} and some n; € supp(f;) such that #; # 0 and
m = niLMS(li).

(b) m € LMI<(T) if and only if there are elements ¥ € E and ¢t € T such that
m = LM< (u)LM<(?).
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(C) (Grobner Bases) Let <€ AO(E) and let L € W be a left ideal. A Grobner
basis of L with respect to < (or a <-Grobner basis of L) is a subset G € L such
that

#G < 0o and LMI< (L) = LMI=(G).

Prove the following facts:

(a) If G is a <-Grobner basis of L and G € H C L with #H < oo, then H is a
<-Grobner basis of L.

(b) If G is a <-Grobner basis of L, then for each d € L \ {0} there is some u € E
and some g € G \ {0} such that

LM< (d) = LM< ()LM= (g) = LM< (ug).

(c) If G is a <-Grobner basis of L, then for eachd € L\ {0} there is some monomial
m =Y"Z" € P and some g € G \ {0} such that

LM< (d) = mLM<(g).

Now, we prove that Grobner bases always exist, and that they deserve the
name of “basis“, as they generate the involved left ideal. Clearly, these statements
correspond precisely to well known facts in multi-variate polynomial rings. After
having established the announced existence and generating property of Grobner
bases, we shall add a few examples and exercises on the subject.

Proposition 1.12.7 (Existence and Generating Property of Grobner Bases) Let
<e AO(E) and let L € W be a left ideal. Then the following statements hold.

(a) L admits a <-Grobner basis.
(b) If G is any <-Grobner basis of L, then L = deG Wg.

Proof

(a): This is clear as the ideal LMI<(L) is generated by finitely many elements of
the form LM<(g) with g € L.

(b): Let G € L be a <-Grobner basis of L and assume that deG Wg C L. As
<€ WO(E), we find some e € L\ }_,.; Wg such that

LE(e) = m<in{LE§(d) |d e L\ Z Wg}.
- geG

By Definition, Reminder and Exercise 1.12.6 (C)(b) we find some u € E and
some g € G such that

LM< (e) = LM< ()LM<(g).
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Setting

_ L)
- LC<(®)

we now get on use of Proposition 1.12.4 (a) that

LT<(e) = LC<(e)LM<(e) = LC<(e)LM<(#)LM<(g)
LC<(e)

1
= LC<(e)LT< (M)LC<(g) LT-(g) = LCo (o) LT (u)LT<(g)

= —LT<(v)LT<(g) = —LT<(vg).

Ase ¢ Y .o Wgandg € G, we have

e—i—vgeL\ZWg.
geG

In particular e 4+ vg # 0. So by Definition, Reminder and Exercise 1.12.2
(D)(d) it follows that

LE<(e 4+ vg) < LE<(e) = m<in{LE5(d) |delL\ Z Wel.
- geG

But this is a contradiction.
Now, we add the previously announced examples and exercises.

Examples and Exercises 1.12.8 (A) (Leading Monomial Ideals) Keep the above
notations and hypotheses. Prove the following statements:

(a) Letd € W\ {0} and <e AO(E). Prove that LMI<(Wd) is a principal ideal.
() Letn = 1, X; =: X and 9; =: 9. Set L := W(X? — 3) + W(X9) and
determine LMI< (L) for <:==<jex, <deglex and <:==gegrevlex-

(B) (Grobner Bases) Keep the above notations and hypotheses. Prove the following
statements:

(a) Letthe notations be as in exercise (a) of part (A) and prove that {cd} is a <-
Grobner basis of Wd for all ¢ € K \ {0}, and that any singleton <-Grobner
bases of Wd is of the above form.

(b) Let the notations and hypotheses be as in exercise (b) of part (A) and
compute a <-Grobner basis for <:==<jex, <deglex aNd <:==degreviex

We now head for another basic result on Grobner bases, which says that these
bases enjoy a certain restriction property. This will be an important ingredient in our
treatment of Universal Grobner bases. We begin with the following preparations.
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Notation 1.12.9 (A) For any set S € W we write (see also Definition, Reminder
and Exercise 1.12.2 (D)):

supp(S) = U supp(s) and Supp(S) := U Supp(s).

seS seS

(B) Let <e TO(E) (see Definition, Reminder and Exercise 1.12.2 (A)) andlet T C
E. We write <[7 for the restriction of < to T, thus—if we interpret binary
relations on a set S as subsets of § x S:

<lr = <N(T xT), sothat :d <[re<d<eforalld,ecT.

Proposition 1.12.10 (The Restriction Property of Grobner Bases) Ler L C W
be a left ideal. Let <, <'€ AO(E) and let G be a <-Grobner basis of L. Assume that

<Isupp@@ = ='Isupp(@) -
Then G is also a <'-Grobner basis of L.

Proof Let d € L \ {0}. We have to show that LM</(d) € LMI</(G). We may
assume that 0 ¢ G. If we apply Proposition 1.12.5 to the ordering <’, we find an
element r and a family (gg)geG € WG such that

() d=3pegas8+7;
(2) @(s) ¢ PLM</(g) forall g € G and all s € Supp(r).
(3) LE</(ge8) <' LE</(d) forall g € G with g4 # 0.

Our immediate aim is to show that »r = 0. Assume to the contrary that r # 0. As
r € L and G is a <-Gro6bner basis of L, we get LM<(r) € LMI<(G). So, there
is some g € G such that LM< (r) = mLM<(g) for some m € M (see Definition,
Reminder and Exercise 1.12.6 (C)(c)). As <Isupp(G) = =< Isupp(s) it follows that

@ (LT<(r)) = LM<(r) € PLM/(g).

As LT<(r) € Supp(r), this contradicts the above condition (2). Therefore r = 0.
But now, we may write

d= )" qgg. whithG* :={g € G |q, #0).
geG*

By the above condition (3) we have LE</(g,g) <’ LE«(d) for all g € G*. So,
there is some g € G* such that LE</(d) = LE</(g,g) (see Definition, Reminder
and Exercise 1.12.2 (D)(d)), and hence LM</ (d) = LM</ (ggg). Thus, on use of
Proposition 1.12.4 (b) we get indeed

LM/(d) = LM</(g4)LM</(g) € LMI</(G).

Now, we shall introduce the central concept of this section.
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Definition 1.12.11 (Universal Grobner Bases) Let L € W be a left ideal. A
universal Grobner basis of L is a (finite) subset G C W which is a <-Grobner basis
for all <e AO(E).

Universal Grobner bases have been studied by Sturmfels [41] in the polynomial
ring K[X1, X2, ..., X,;]—and indeed this notion can be immediately extended
to the Weyl algebra W. Grobner bases for left ideals in the Weyl algebra were
introduced by Assi, Castro-Jiménez and Granger [3] and also by Saito et al. [38].

Clearly, our next aim should be to show, that universal Grobner bases always
exist. There are indeed various possible ways to prove this. Here, we shall do this
by a topological approach which relies on an idea of Sikora [40], and which can
be found in greater generality in Boldini’s thesis [11]. We approach the subject
by first introducing a natural metric on the set of total orderings of all elementary
differential operators. Then, we make the reader prove in a series of exercises, that
we get a complete metric space in this way.

Definition, Exercise and Convention 1.12.12 (A) (The Natural Metric on the Set
TO(E)) For all i € Z we introduce the notation

E; :={e e E|deg(e) <i} = {X"9" | [v| + |u| < i}.
We define a map
dist : TO(E) x TO(E) — R, given by forall <, <'e TO(E) by

dist(= </) o—sup{reNo|<[g, = S/fEr}’ if 5755/,
ist(<, <) =
B 0, if <=<’.

Prove that
(a) Forall <, <€ TO(E) and all » € Ny we have

1
dist(<, <) < o ifandonly if <|g,,, = <'Ig.,, -

(b) The map dist : TO(E) x TO(E) — R is a metric on TO(E).

From now on, we always endow TO(E) with this metric and the induced Hausdorff

topology.
(B) (Completeness of the Metric Space TO(E)) Let (<;);en, be a Cauchy

sequence in TO(E). This means:

. 1
For all r € Ny there is some n(r) € Ny such that dist(<;, <;) < or for all i, j > n(r).
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We introduce the binary relation <C E x E given for all d, e € E by
d <eifandonlyifd <; e foralli > 0.

Prove the following statements:

(@) If r e No,d,e € E;y1,and i, j > n(r), thend <; eif and only if d <; e.
(b) Ifr e No,d,e € E,y1,and i > n(r), thend <; eif and only if d < e.

(c) <e TO(E).

(d) If r € Ng, and i > n(r), then dist(<;, <) <
(e) lim; o <;==<.

(f) TO(E) is a complete metric space.

1
2

Now, we are ready to prove the basic ingredient of our existence proof for
universal Grobner bases.

Proposition 1.12.13 (Compactness of the Space of Total Orderings) The space
TO(E) is compact.

Proof Let (<i)ien, be a sequence in TO(E). It suffices to show, that (<;);en,
has a convergent subsequence. Bearing in mind Definition, Exercise and Conven-
tion 1.12.12 (B)(f) (or (e)), it suffices to find a subsequence of (<;);ecn, Which is
a Cauchy sequence. Observe that all the sets [, are finite. We want to construct a
sequence (Sy),en, of infinite subsets S, C N such that for all s € Ny we have

(1) Ss41 CSs.
2) <jlg,y, = =klg,,, forall j, k eS;.

We construct the members S, of the sequence (S,),cn, by induction r. As E; is
finite, we can find an infinite set Sg € Ny such that requirement (2) is satisfied with
s = 0. Now, let r > 0 and assume that the sets Sp, S1, ..., S, are already defined
such that requirement (1) holds for all s < r and requirement (2) holds forall s < r.
As E,; is finite, we find an infinite subset S, | C S, (which hence satisfies
requirement (1) for s = r) such that requirement (2) is also satisfied with s = r + 1.
This completes the step of induction and hence proves that a sequence (S, ),cn, With
the requested properties exists.

Now, we may choose a sequence (ix)ken, in No, such that

ir <iry1andi, € S, forall r € Ny.
In particular it follows that
fij []Er+1 = fik []Er+1 for all ja k =>r

and hence (see Definition, Exercise and Convention 1.12.12 (A)(a))

. 1 ,
dist(<i;, <i) < ,, forall j k= r.
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So, the constructed subsequence (<; )ken, of our original sequence (<;);en, is
indeed a Cauchy sequence.

What we need indeed to prove our main result, is the compactness of subspace
of admissible orderings in the topological space of total orderings.

Proposition 1.12.14 (Compactness of the Space of Admissible Orderings) The
set AO(E) is a closed subset of TO(IE) and hence compact.

Proof Let (<;);eN, be sequence in AO(IE), which converges in TO(E) and let

im0 <; =

IA

We aim to show, that <e AO(E). According to Definition, Reminder and Exer-
cise 1.12.2 (C), we must show, that for all A, X/, k, k', v, u € Ng the following
statements hold.

(1) 1< XYM,
(2) If X*8% < X* 9% then X Hvokth < xV+var'tu

So, fix A, A, k,k’,v,u € Nj. Then we find some »r € Ny such that all the
elementary differential operators which occur in (1) and (2) belong to E, 1. Now,
we find some i € Ny such that dist(<;, <) < 21,, hence such that <[g,,, =
<ilg,,;- As <j€ AO(E) the required inequalities hold for <;. But then, by the

coincidence of < and <; on E, 1, they hold also for <.

Now, after having established the following auxiliary result, we are ready to
prove the announced main result.

Lemma 1.12.15 Let L C W be a left ideal and let G C L be a finite subset. Then,
the set

UL(G) :={<e AO(E) | G isa < — Grobner basis of L}

is open in AO(E).

Proof We may assume that Uz (G) is not empty and choose <e Uy (G). We find
some r € Ny with supp(G) C E,+;. Let <’€ AO(E) such that dist(<, <') < 21,.
So, we obtain that <[g,,, = <'[g,,, and hence in particular that <[suppiG) =
<'['supp(G)- By Proposition 1.12.10 it follows that G is a <’-Grobner basis of L and
hence that <’e Uz (G). But this means, that the open neighborhood

1
}

{<'e AO(E) | dist(<', ) < o

of < belongs to Uy (G).
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Theorem 1.12.16 (Existence of Universal Grobner Bases) FEach left ideal L of
W admits a universal Grébner basis.

Proof Let L C W be a left ideal. For each <€ AO(E) we choose a <-Grobner basis
G < of L. In the notations of Lemma 1.12.15 we have <e U (G<). So, by this same
Lemma the family

(UL(GS))geAO(E)

is an open covering of AO(E). By Proposition 1.12.14 we thus find finitely many
elements

515 527 AR Sre AO(IE)

such that
.
AOE) = JUL(G<).
i=1

Let <€ AO(E). Then <€ U (G<;) forsomei € {1,2,...,r}. Therefore G<, is a
<-Grobner basis of L. So | J;_; G<, is a Grobner basis of L for all <€ AO(E).

As a first application of the previous existence result we get the following
finiteness result.

Corollary 1.12.17 (Finiteness of the Set of Leading Monomial Ideals) Let L C
W be a left ideal. Then the set

{LMI<(L) |<€ AO(E)}

of all leading monomial ideals of L with respect to admissible orderings of E is
finite.

Proof Let G C L be a universal Grobner basis of L. Then we have
(LMI<(L) |<€ AO(E)} = {LMI<(G) |<€ AO(E)}.
Therefore

#{LMI<(L) |<€ AO(B)} <#{) P®(h) | H < supp(G)}
heH

<#{H C supp(G)} = 2"PP(@)
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1.13 Weighted Orderings

This section is devoted to the study of admissible orderings which are compatible
with a given weight and the related notion of weighted (admissible) ordering. Such
weighted orderings were first studied by Assi, Castro-Jiménez and Granger [3] and
by Saito et al. [38].

In relation to these weighted orderings, we shall introduce the fundamental notion
of symbol of a differential operator with respect to a given weight. We will see,
that these symbols, which are indeed polynomials, behave again multiplicatively.
Moreover, we shall see that the symbols of all members of a Grobner basis of a given
left ideal generate the so-called induced ideal of the given left ideal. Our ultimate
goal is to prove, that the number of characteristic varieties of given D-module with
respect to all weights is finite. Moreover, we shall prove a certain stability result for
characteristic varieties found in Boldini’s thesis [11], which is published in [12].

Notation 1.13.1 (A) As previously, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W:: W(Kvn) = K[Xlsts ---7Xn1817821 "'18}’1]7
the polynomial ring
P:: K[Y11Y21'-'7Y}’thsZ2s'-'szn]

in the indeterminates Y1, Y, ..., Yy, Z1, Zo, ..., Z, with coefficients in the field
K and the isomorphism of K -vector spaces

ol :Wi P, X"9" > YVZ" forallv, u € Nj.
(B) We also write
2 :={(w,w) e Ny x Nj | (vi, w;) #(0,0)foralli =1,2,...,n} C Nj x N
for the set of all weights. If
w=,w) e R

we also use the suffix w instead of the suffix vw in all the previously introduced
notations. So we write for example

W =W,  deg”(d) :=deg"(d), P*:=P",
Observe, that
w+aelandsw € 2 forall w,a € 2 and all s € N,

where the arithmetic operations are performed in N(z)".
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Now, we introduce the concept of admissible orderings which are compatible
with a given weight.

Definition and Exercise 1.13.2 (A) (Weight Compatible Orderings) We fix a
weight and an admissible ordering of the set [E of elementary differential operators
in W (see Definition, Reminder and Exercise 1.12.2 (C)):

w=(v,w) € 2 and < AO(E).

We say that < is compatible with the weight w = (v, w) € §2 (or w-compatible), if
forall d, e € E we have:

If deg®(d) < deg®(e), thend < e.

So, < is compatible with @ = (v, w) if and only if for all v, 11, V', u" € Nfj we have
the following implication:

If vo + pw < v'v+ 1w, then X' o* < X" 9%
We set
AO®(E) = AO"(E) := {<c AO(E) | < is compatible with @ = (v, w)}.

(B) (Weighted Admissible Orderings) Keep the notations and hypotheses of part
(A). We define a new binary relation

<O—<"WCExE

on E, by setting, for all d, e € E:

3 w w
4 <0 eif either  deg”(d) < deg®(e)
orelse deg®”(d) = deg”(e) andd < e.

Prove that for each weight ® = (v, w) € £2 and each <e AO(E) the following
statements hold.

(a) <“e AO“(E).

(b) (=) = =

() <€ AO®(E)ifandonlyif < = <.

The admissible ordering <“€ AO(E) is called the w-weighted ordering associated

to <.

Another important concept, which was already mentioned in the introduction to
this section, is the notion of symbol of a differential operator. We now will introduce
this notion after a few preparatory steps.
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Definition and Exercise 1.13.3 (A) Let w = (v, w) € £2,leti € Ny and let

d= Z cWX"3" € W with ¢!?) € K\ {0} forall (v, 1) € supp(d).
(v, €supp(d)
We set
supp; (d) := {(v, ) € supp(d) | vv + pw = i}.
and

dw :de = Z CI()?L)XVB'LL.

1 1

(v,v)esupp; (d)

Prove that for all d,e € W, all i, j € Ny and for all weights w = (v, w) € §2 the
following statements hold:

(a) Ifi > deg®(d), thend;” = 0.

(b) d’ =)}

(©) d+e)) =d’+e .

(d) Ifd,e #0,i := deg”(d) and j := deg®(e), then

supp;y ;(de) = {(v+1', ju+1) | (v, ) € supp;’(d) and (', 1t') € supp] (e)}.

(e) Ifd,e #0,i :=deg®”(d) and j := deg®(e), then

@D, (&) yv+v u+u
(de)l+j Z Con V,UX J

(v.p)esupp;’ (d), (', ') €supp; (e)

(B) Keep the notations and hypotheses of part (A). We set

o (d)=o(d)= >  cDyrzr.

(v.v)esupp; (d)

Prove on use of statements (a)—(e) of part (A) that for all d,e € W, alli, j € Ny
and for all weights w = (v, w) € §2 the following statements hold:

@ o’(d) :=0;"(d}").

(b) If i > deg”(d), then 5" (d) = 0.
©) 0, °(d) =0, (d).

@) o°(d +e) =’ d) + 0. (e).
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(C) (The Symbol of a Differential operator with Respect to a Weight) Keep the
notations of part (A), (B). We define the = (v, w)-symbol of the differential
operator d € W by

o) {0 ifd =0,
Gdegw(d)(d) ifd #0.

Prove that for all d, e € W \ {0} the following statements hold.

(@) o?(d) = dﬁ(dffegm(d)) = o‘”(d:fegm(d)(d)).

®) 6°(d+¢) = o®(d) +0o%(e) if deg®(d) = deg”(e) = deg”(d + e)
o®(d) if deg”(d) > deg®(e).

First, we now prove that symbols behave well with respect to products of
differential operators.

Proposition 1.13.4 (Multiplicativity of Symbols) Let v = (v, w) € £2 and let
d,e €¢ W. Then

o“(de) = o“(d)o®(e).

Proof If d = 0 or e = 0, our claim is obvious. So, let d,e # 0. We write i :=
deg”(d) and j := deg®(e). Observe that deg®(de) = i + j. So, by Definition and
Exercise 1.13.3 (A)(e) we have

o®(de) = o

irj(de) = ®((de)?)+j)

= o )3 elfhel, X g
(v.p)esupp; (d). (V) esupp (e)
- )3

(v.p)esupp; (d). (V. ) esupp (e)
d b
=( > Dz > vzt
(v,p,)esupp;u(d) (u’,,u’)esuppj.) (e)
= qﬁ(dj”)cb(ej’) = aiw(d)a;u(e) =o?(d)o®(e).
In Definition and Remark 1.11.5 we have seen, that each left ideal L of the
standard Weyl algebra W induces a graded ideal in the associated graded ring with

respect to a given weight. These induced ideals will play a crucial role in our future
considerations. We just revisit now these ideals.
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Reminder, Definition and Exercise 1.13.5 (A) (Induced Graded Ideals) Let L C
W be a left ideal, let ® = (v, w) € £2 be a weight and let us consider the w-graded
ideal (see Definition and Remark 1.11.5)

G®(L) := @ (LAWY + W) /W = GBL?/L;”_1 = Gr;o(L) € G(W),
i€’ i€’
where
L? =LNW?:=(LNW)

ieNy

is the filtration induced on L by the weighted filtration W, . We now consider the
w-graded ideal of P“ = P given by

G”(L) = ") 1 (G*(L)),
where
n'v =n“’:IP’=IP"”i>Gw.

is the canonical isomorphism of graded rings of Theorem 1.9.4. We call G” (L) the
(w-graded) ideal induced by L in IP.

(B) Let the notations and hypotheses be as part (A). Fix i € Ny and consider the
i-th w-graded part

G"(L) =G (W) NE = 01*) ' (GY)
of the ideal Gw(L) C P. Prove the following statements:
(a) Letd € L withdeg®(d) =i andletd :=d + Wf)_l € G®(L);. Then it holds
1)1 (d) = 2(d) = 0°(d) € G"(L);.
(b) Eachelement 2 € G(L); \ {0} can be written as

h=0%(d), withd € L and deg®(d) = i.

(C) (The Induced Exact Sequence Associated to a Left Ideal with Respect to a
Weight) Keep the above notations and hypotheses. Prove the following statements:

(a) There is a short exact sequence of graded P“-modules
0 — G”(L) — G“ —> Gryo(W/L) — 0,

where 1 := 1 + L € W/L and W¢ K 1 is the w -filtration induced on the cyclic
D-module W/L by its subspace K 1.
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(b) Annp(Grye ., (W/L)) = G*(L).
(©) VO(W/L) = Var(G”(L)).
We call this sequence the short exact sequence associated to the left ideal L with

respect to the weight w.

Now, we are ready to formulate and to prove a result which we already announced
in the introduction to this section. It relates the symbols of the members of a Grobner
bases of a left ideal with the induced ideal with respect to a given weight.

Proposition 1.13.6 (Generation of the Induced Ideal by the Symbols of a
Grobner Basis) Let w € 2, let L € W be a left ideal, let <€ AO(E) and let
G be a <“-Grobner basis of L. Then it holds

@) G*(L) =Y e Po ().
(b) For each h € Gw(L) \ {0} there is some g € G \ {0} and some monomial
m = Y'Z" € P such that

LM< (@' (h)) = mLM< (@7 (6 (g))).

Proof (a): As the ideal Gw(L) C P is graded, it suffices to show, that for each
i € Npandeachh € Gw(L),- \ {0} we have hh € deG Po®(g). So, fix i € Ny and

assume that h ¢ deG Po®(g) for some h € G”(L); \ {0}. Then, by Reminder,
Definition and Exercise 1.13.5 (B)(b), the set

G :={ceL|deg’(c)=iando”(e) ¢ Y Po”(g))
geG

is not empty. Choose d € & such that
LE<o(d) = min<o{LE<w(e) | € € &}.

As G is a <“-Grobner basis of L we find some ¢ € G and some u € E such
that LM <o (d) = LM<e(ug) (see Definition, Reminder and Exercise 1.12.6 (C)(b)).
With

LC<o(d)
V= u
LC<o(g)

it follows that LE<e (d) = LE<« (vg), hence
LD_o(d) = LC<o(d)LE<w(d) = LC<o(d)LE<o(ug) = LD=o(vg)

and deg®” (vg) = i. So, by Definition, Reminder and Exercise 1.12.2 (D)(d) we may
conclude that either

(1) deg®”(d —vg) < i,orelse
(2) deg®(d —vg) =i and LE<o(d — vg) < LE<w(d).
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In the case (1) we have (see Definition and Exercise 1.13.3 (C)(b) and Proposi-
tion 1.13.4)

0“(d)=0“(d — (d —vg)) =0“(vg)) =0”(V)o”(g) € Z Po®(g)
geG

and hence get a contradiction.
So, assume that we are in the case (2). As d — vg € L it follows by our choice of d,
that 0 (d — vg) € deG Po“(g). Observe that we have

i = deg®(d — vg) = deg”(vg) = deg”(d) = deg”((d — vg) + vg).
So, by Definition and Exercise 1.13.3 (C)(b) and by Proposition 1.13.4 we have

o”(d) = 0“((d — vg) + vg) = 0“(d — vg) + o (vg)

=0(d —vg) + 0“ ()0 (g) € Y Po®(g),
geG

and this is again a contradiction.
(b): We find some i € Ny such that LM< (®~!(h)) = LM< (@' (h? (h))). As
the ideal G” (L) € P* is graded, we have h?)(h) eG” (L). So we may assume, that

h € Gw(L)i \ {0}. Now, by Reminder, Definition and Exercise 1.13.5 (B), we find
some d € L with deg®”(d) =i and o~ (h) = dl.w, whence

LM< (07! (W) = LM< (d;") = LM<o(d).

As G is a <“-Grobner basis of L, we find some g € G \ {0} with deg®(g) = j
and some monomial m = YVZ" € P such that (see Definition, Reminder and
Exercise 1.12.6 (C)(c) and also Definition and Exercise 1.13.3 (C)(a))

LMo (d) = mLM<o(g) = mLM<(g}) = mLM<(® ' (07 (2))),

and so we get our claim.

Now, we are ready to prove our first basic finiteness result. It says that the set of
all induced ideals of a given left ideal in the Weyl algebra is finite.

Corollary 1.13.7 (Finiteness of the Set of Induced Ideals) Let L C W be a left
ideal. Then, the following statements hold:

(a) #H{G"(L) | w € 2} < oo.
(b) #{V2(W/L) | w € 2} < c0.
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Proof (a): Let G be an universal Grobner basis of L. Then, by Proposition 1.13.6,
for each w € £2 we have Gw(L) = deG Po“(g). Foreach g € G we write

g= Z cl()i) XVok.
(v,p)€supp(g)
Then, for each w € §2 we have
0°(8) = P(8yeg () = > cyrzr.
(VI ESUPP 0 (8)
Therefore
#o(g) | @ € 2} < #{H C supp(g)} = 27PP®).

It follows that

#HG (L) =) Po”(g) |we 2} < #(0°(8)) geg €PC lw € 2) <
geG
< l_[ o#supp(g) — H#supp(G)
geG

(b): This follows immediately from statement (a) on use of Reminder, Definition
and Exercise 1.13.5 (C)(c).

The second statement of the previous result says that a given cyclic D-module
has only finitely many characteristic varieties, if w runs through all weights. Our
first main theorem says, that this finiteness statement holds indeed for arbitrary D-
modules. To prove this, we first have to investigate the behavior of characteristic
varieties in short exact sequences of D-modules. This needs some preparations.

Exercise and Definition 1.13.8 (A) Let w € £2 and let
0—Q0—>U-S5P—0

be an exact sequence of D-modules. Let V € U be a finitely generated K-vector
subspace such that U = WV. We endow Q with the filtration

Qo = (' WIV)), -

Prove the following statements:

(a) Foreachi € Ny there is a K-linear map

Ut Qi/Qic1 — WYV/WY V. g+ Qici = u(g) + W, V.
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(b) Foreachi € Ny there is a K -linear map
m  WIV/WE V — W)W m(V), g+ WV 2@+ W, 7(V).
(c) Foreachi € Ny it holds
7 (W (V) = Q) + W, V.

(d) Foreachi e Ny there is a short exact sequence of K-vector spaces

0— Qi/Qi1 —> WV/W vV Z5 Wor(V)/We m(V) —> 0.

(B) (The Graded Exact Sequence associated to a Short Exact Sequence of D-
Modules) Keep the hypotheses and notations of part (A). Prove the following
statements:

(a) Foreachi € Ny there is a short exact sequence of K-vector spaces

0 —> Gro,(Q)i — Gryyey (U = Gryyo . (v)(P)i —> 0.

(b) There is an exact sequence of graded P“-modules

0 —> Grg,(Q) — Gryey, (U) = Gryeo ) (P) — 0,

with ¢ := @ieNn tiand T = @ieNo ;.

The exact sequence of statement (b) is called the exact sequence induced by the

exact sequence 0 — Q 5 U5 P Oandthe generating vector space V of U.
(C) Keep the previous notations and hypotheses. Prove the following
statements:

(a) For each finitely generated K-vector subspace T C Q with Q = WT and
V C «(T), the two filtrations Qo and We T of Q are equivalent.

(b) Var(Annp(Gro,(Q))) = V°(Q).

Now, we can prove the crucial result, needed to extend the previous finiteness
statement for characteristic varieties from cyclic to arbitrary D-modules.

Proposition 1.13.9 (Additivity of Characteristic Varieties) Ler w € §2 and let
0—Q0—>U-S5P—0
be an exact sequence of D-modules. Then it holds

Ve(U) =V(Q) UV?(P).
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Proof We fix a finitely generated K-vector subspace V. C U with WV = U
and consider the corresponding induced short exact sequence (see Exercise and
Definition 1.13.8 (B))

0 — Grp,(Q) SN GerV(U) BN er?n(V)(P) — 0.
On use of Exercise and Definition 1.13.8 (C)(b) we obtain
V() = Var(Annp(Grye, (U)))
= Var(Annp(Grp, (Q))) U Var(Annp(GrW?n(V)(P))) = V?(Q) UV®(P).

Now, we are ready to prove the announced first main theorem of this section.

Theorem 1.13.10 (Finiteness of the Set of Characteristic Varieties) Ler U be a
D-module. Then

#HVU) | w € 2} < o0.
Proof We proceed by induction on the number » of generators of U. If r = 1 we

have U = W/L for some left ideal L € W. In this case, we may conclude by
Corollary 1.13.7 (b). So, let » > 1. Then, we find a short exact of D-modules

0— Q0 v L p_—o0
such that Q and P are generated by less than r elements. By induction, we have
#HV(Q) | w € 2} < coand #{V?(P) | w € 22} < o0.
By Proposition 1.13.9 we also have
{VeWU) lw € 2} ={V*(QUV?(P) | w € 2},
hence

#HVOWU) |0 € 2) <#HV(Q) |w e 2} +#V?(P) | 0 € 2} < 0.

As already announced in the introduction to this section, our ultimate goal is to
establish a certain stability result for characteristic varieties of a given D-module.
To pave the way for this, we perform a number of preparatory considerations, which
are the subject of the exercises to come.

Definition and Exercise 1.13.11 (A) (Leading Forms) We consider the polynomial
ring P. Let

f= > vzt eP withclf) e K\ {0} forall (v, 1) € supp(f).
(v,n)€supp(f)
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We set

supp; (f) := {(v, w) € supp(f) | v + pw = i}

and consider the i — th homogeneous component of f with respect to w, thus the
polynomial

== >0 dDyvze

(v,v)€supp;’(f)

The leading form of f with respect to the weight w is defined by

LEo(f) m :o if f =0,
S ()i #0.

Prove that for all f, g € P, all i, j € Ny and for all weights w = (v, w) € £2 the
following statements hold:

(a) Ifi > deg®(f), then f” = 0.

) f7 =1

© (f+8)y =f"+g

@ ()7 =X i 1788 -

(e) LF”(fg) = LF*(f)LF*(g).

(f) LF(f) = f if and only if f is homogeneous with respect to the w-grading of P.
(g) Ifd e W, then 6®(d) = LF“’(@(d)).

(B) (Leading Form Ideals) Keep the notations and hypotheses of part (A). If
S C P is any subset, we define the leading form ideal of S with respect to w by

LFI?(S) := ) PLF*(f).

fes

Let S € T C P and <€ AO(E). Prove the following statements:

(a) LFI®(S) C LFI®(T).

(b) If for each t € T \ {0} there is some monomial m = Y"Z"* € M C P and
some s € S such that LM<o(®7'(t)) = mLM<o(®~!(s)), then LFI*(S) =
LFI®(T).

(c) For eachideal I C P it holds

VLFI?(I) = \/ LFI®(V1).

(d) If 1, J C P are ideals, then

(1) LFI?(I N J) € LFI®(I) N LFI®(I) and LFI®(I)LFI®(J) € LFI®(1J);
(2) +/LFI?(I N J) = «/LFI?(I) N LFI®(J) = /LFI*(I) N v/LFI?(J).
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The announced Stability Theorem for Characteristic Varieties we are heading
for, concerns the behavior of characteristic varieties under certain changes of the
involved weights. To prepare this new type of considerations, we suggest the
following exercise.

Exercise 1.13.12 (A) Prove that for alld € W, all i, j € Ny, all s € N and for
all weights @ = (a,b),w = (v, w) € £2 the following statements hold (For the
unexplained notations see Definition and Exercise 1.13.3):

(2) supp([d;’17) = supp; (d) (" supp; ().

(b) supp([d'1%) < supp’ 13 (d).

(c) Ifi > deg”(d), j > deg"‘(d;”) and s > deg®(d) — j, then the inclusion of
statement (b) becomes an equality.

(d) If i > deg”(d), j > deg”(d;”) and s > deg”(d) — j, then

w0 a+sw
;] =djysi -

(B) Prove on use of statements (a)—(d) of part (A) that foralld € W, all i, j € No,
all s € N and for all weights w = (v, w), @ = (a, b) € £2 the following statements
hold:

o, o ) W, g
@ 05 (d;) = X wyesupp @nsuppay Con Y 28 = 07 ().
(b) Ifi > deg”(d), j > deg“(diw) and s > deg*(d) — j, then

at+sw

[0, (@)1} = 057 (d).

The next two auxiliary results are of fairly technical nature. But they will play a
crucial role in the proof of our Stability Theorem.

Lemma 1.13.13 Leto,w € £2, letd € W\ {0} and let s € N such that
s > deg®(d) — deg® (c“(d)).

Then, the following statements hold:

(a) deg*t?(d) = deg® (a“’(d)) + sdeg®(d).
(b) LF* (a“’(d)) = 0% (d).

Proof We write
i :=deg”(d) and j := deg® (a“’(d)).
Observe, that 0”(d) = 0,”(d) = ®(d;"), so that

Jj = deg® (o‘”(d)) = deg“(diw) and also s > deg®(d) — j.
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Now, by Exercise 1.13.12 (B)(b) we obtain

LF*(0°(d)) = [0} ()]} = a/‘.":;j‘“(d).

It remains to show that
j+si =deg*?(d).

As LF*(c®(d)) # 0 we have afiéw(d) # 0 and hence j + si < deg®™?(d) (see

Definition and Exercise 1.13.3 (B)(b)).

Assume that j + si > deg®™*®(d). Then, we may write deg® ™5“(d) = k + si, with
k > j. It follows, that s > deg®(d) — k. On application of Exercise 1.13.12 (B)(b)
we get that

[0 ()]} = oy (d) = 0 F(d) #0.

As k > j = deg” (aw(d)) we have [al.w (d)]‘,f = 0 (see Definition and
Exercise 1.13.11 (A)(a)). This contradiction completes our proof.
Lemma 1.13.14 Let L C W be a left ideal, let o, w € $2, let <€ AO(E) and let G
be a (<*)?-Grobner basis of L. Then

LFI*(G”(L)) = LFI*({c“(g) | g € G}).
Proof By Reminder, Definition and Exercise 1.13.5 (B)(a) we have

Si={0“(®) g€ G\ G (L) =T

If we apply Proposition 1.13.6 (b) with <“ instead of <, we see that for all 1 €
T there is some monomial m = Y'Z"* € M C P and some s € § such that
LM« (@~ 1(t)) = mLMz«(®~!(s)). By Definition and Exercise 1.13.11 (B)(b) it
follows that

LFI* (G‘”(L)) = LFI*(S) = LFI*(T) = LFI*({c“(g) | g € G}).

Now, we are ready to formulate and to prove the announced stability result.

Theorem 1.13.15 (Stability of Induced Graded Ideals, Boldini [11, 12]) Let
L C W be a left ideal and let o € S2. Then, there exists an integer s = s(o, L) € Ng
such that for all s € Nwith s > s and all v € §2 we have

LFI*(G” (L)) = G* ™ (L).
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Proof Let G be a universal Grobner basis of L. Then, by Lemma 1.13.14, for each
w € §2 we have

LFI*(G”(L)) = LFI*({o“(g) | g € G}) = Z PLF* (0 (g)).
geCG

Now, we set
s := max{deg®(g) | g € G\ {0}}.

By Lemma 1.13.13 it follows that LF* (6*(g)) = 0***“(g) for all s € N with
s>s,allw e 2 andall g € G\ {0}. So, forall s € Nwiths > s and all w € £2
we have

LFI*(G"(L)) = Y _Po“t*(g).
geG

If we apply Proposition 1.13.6 (a) with o + sw instead of w we also get
Ga+sw(L) — Z Paa+sw(g)

geG

forall s € N with s > s and all € §2. This completes our proof.

Notation 1.13.16 If 3 C Spec(PP) is a closed set we denote the vanishing ideal of
3 by I3, thus:

I3:=()p=+J, forallideals J € P with 3 = Var(J).
pe3

Theorem 1.13.17 (Stability of Characteristic Varieties, Boldini [11, 12]) Let U
be a D-module, and let o € S2. Then, there exists an integer s = s(«, U) € Ny such
that for all s € Nwith s > s and all w € §2 we have

Var(LFI* (Iye(u))) = V°U).
Proof We proceed by induction on the number  of generators of U. First, letr = 1.

Then we have U = W/L for some left ideal L € W. By Theorem 1.13.15 we find
some s € Ny such that for all s € N with s > s and all w € §2 we have

LFI*(G”(L)) = G* ™ (L).

By Reminder, Definition and Exercise 1.13.5 (C)(c) we have

Vot-i—sa)(U) — Var(Ga-’_Sw(L)) and IV“’(U) = \/Gw(L)
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By Definition and Exercise 1.13.11 (B)(c) we thus get

\/LFI"‘ (Fvowy) = \/ LFI (\/ G“(L)) = \/LFI“ (G" (L)),

so that indeed—for all s € N with s > s and all w € £2—we have

at+sw

Var(LFI"‘ (Iw(U))) = Var(LFI"‘ (Gw(L)) = VaI(G (L)) = Verse).
Now, let » > 1. Then, we find a short exact of D-modules
0—Q0—>U-5P—0

such that Q and P are generated by less than r elements. By induction, we thus find
anumber s € N, such that for all w € £2 and all s € N with s > s it holds

Var(LFI* (Iyo(g))) = V**®(Q) and Var(LFI* (Iye(p))) = V*T“(P).
By Proposition 1.13.9 we have
VEFeOU) = Ve e(Q) U Ve (p)
and hence, moreover
Iyow) = Ivo@)uve(g) = Ive(g) N Ive(p).

By Definition and Exercise 1.13.11 (B)(d)(2) it follows from the last equality that

\/LFI“(IW(U)) = \/LFI“(IVw(Q)) N \/LFI“(Iw(p)).
Therefore
Var(LFI* (Iye (7)) = Var(LFI* (Iye(g))) U Var(LFI* (Iye(p))).
It follows, that
Var (LFI* (Iyo())) = VOH9(Q) U VI ?(P) = VOHe(U)

forall w € £2 and all s € N with s > s. This completes the step of induction and
hence proves our claim.

To formulate our Stability Theorem in a more geometric manner, we introduce
the following notion.
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Definition 1.13.18 (The Critical Cone) Let 3 C Spec(lP) be a closed set. Then,
the critical cone of 3 is defined as

CCone(3) := Var(LFI' (I3)),

where 1 = (1, 1) € £2 denotes the standard weight.

On use of the introduced terminology, we now can define our Stability Theorem
as follows.

Corollary 1.13.19 (Affine Deformation of Characteristic Varieties to Critical
Cones, Boldini [11, 12]) Let U be a D-module. Then, there is an integer s =
s(U) € Ng such that for all v € 2 and all s € N with s > s it holds

V() = CCone(V*(V)).

Proof This is immediate by Theorem 1.13.17.

1.14 Standard Degree and Hilbert Polynomials

In this section, we give an outlook to the relation between D-modules and
Castelnuovo-Mumford regularity, which we mentioned in the introduction. We shall
consider a situation, which is exclusively related to the standard degree filtration
We = W(.leg = Wil of the underlying Weyl algebra W. Having in mind to approach
the bounding result for the degree of defining equations of characteristic varieties
mentioned in the introduction, we shall restrict ourselves to consider D-modules
U endowed with filtrations VW, induced by a finite-dimensional generating vector
space V of U.

Preliminary Remark 1.14.1 (A) Let n € N, let K be a field of char-

acteristic 0 and consider the standard Weyl algebra W = W(K,n) =
K[X1, X2, ..., Xn, 01, 02, ..., 0y]. Moreover let .o/ be a ring of smooth functions
in X1, X2, ..., X, over K (see Remark and Definition 1.11.11 (A)). One concern

of Analysis is to study whole families of differential equations. So for fixed r, s € N
one chooses a family T C W**7 of matrices of differential operators. Then one
studies all systems of equations (see Remark and Definition 1.11.11 (B))

S 0
f2 0 .
9 =|.1], withZ eF.
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(B) Let the notations and hypotheses by as in part (A). One aspect of the
above approach is to study the behavior of the characteristic varieties VI°8(2) :=
deeg (U _@) with respect to the degree filtration (see Definition and Remark 1.8.6
and Definition and Remark 1.11.2 (D)) of the D-module Uy defined by the matrix
2 (see Remark and Definition 1.11.11 (C)) if this latter runs through the family F.
The goal of this section is to prove that the degree of hypersurfaces which cut out
set-theoretically the characteristic variety V94¢8(2) is bounded, if Z runs through
appropriate families F.

Below, we recall a few notions from Commutative Algebra.

Reminder, Definition and Exercise 1.14.2 (Hilbert Functions, Hilbert Polyno-
mials and Hilbert Coefficients for Modules Over Very Well Filtered Algebras)
(A) Let K be a field and let R = P;y, Ri be a homogeneous Noetherian
K -algebra (see Conventions, Reminders and Notations 1.1.1 (I) for this notion),
so that Rp = K and R = K][x1,x2,...,x,] with finitely many elements
X1, X2,...,Xr € Ry. Moreover, let M = @iez M; be a finitely generated graded
R-module. Then we denote the Hilbert function of M by hps, so that hp (i) =
dimg (M;) for alli € Z. We denote by Py;(X) the Hilbert polynomial of M, so that
hpy (i) = Py (i) foralli > 0. Keep in mind that dim(M) = dim (R/AnnR(M))
and

dim(M) — 1, if dim(M) >0

deg(Pum (X)) = !—oo, if dim(M) < 0.

The Hilbert polynomial Py (X) has a binomial presentation:

dim(M)—1 .
X +dim(M) —k—1
Py (X) = /; (—l)kek(M)< (M) — k- 1 ) (ex(M) € Z. eg(M) > 0).

The integer ex (M) is called the k-th Hilbert coefficient of M. If dim(M) > O,
eo(M) > O is called the multiplicity of M. Finally let us also introduce the
postulation number of M, thus the number pstin(M) = sup{i € Z | hy(i) #
Py (@)}

(B) Now, let (A, A,) be a very well filtered K-algebra (see Definition and
Remark 1.3.4 (A)). Let U be a finitely generated (left) A-module. Chose a vector
space V. C U of finite dimension such that AV = U. Then, the graded
Gra, (A)-module Gry,y (U) is generated by finitely many homogeneous elements
of degree 0 (see Exercise and Definition 1.10.5 (B)(c)). So, by part (A) this
graded module admits a Hilbert function hy a,v := hGry,y ) With hy a,v (@) =
dimg (Gra,y(U);) for all i € Z, the Hilbert function of U with respect to the
filtration induced by V. Moreover, by part (A), the module Gra,y(U) admits a
Hilbert polynomial, thus a polynomial Py a,v(X) = Por,,,@w)(X) € QIX1
with Ay a,v (i) = Py,a,v(i) for all i > 0. We call this polynomial the Hilbert
polynomial of U with respect to the filtration induced by V. Keep in mind that
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according to part (A) we have da,(U) := dim (Gra,v(U)) = dim (V4,(U)).
Moreover the polynomial Py, 4,v (X) has a binomial presentation:

da, (U)—1
_ Nk X +da,(U)—k—1
Py a,v(X) = g (=D*ex (U, A.V)< da(U) —k — 1 ) (ex(U, AJV) € 7).

The integer ex (U, A.V) is called the k-th Hilbert coefficient of U with respect
to the filtration induced by V. Finally, keep in mind, that by part (A) we have
eo(U, AV) > 0if da,(U) > 0. In this situation the number ey (U, A,V) is called
the multiplicity of U with respect to the filtration induced by V. For the sake of
completeness, we set eg(U, AsV) := 0 if da,(U) < 0. Finally, according to part
(A) we define the postulation number of U with respect to the filtration induced by
V:

pstlng 4,y (U) := pstin(Gra,v (U)) :=sup{i € Z | hy,a,v (i) # Py a,v (@)}

(C) Keep the notations and hypotheses of part (B) and assume that d4,(U) > 0.
Prove the following claims.

(a) There is a polynomial Qg 4,v(X) € Q[X] such that:

(1) deg(Qu,a.v (X)) =da, (U),

(2) A(Qu.a,v(X)) := Qu.a,v(X) — Qu.a,v(X — 1) = Py a,v(X) and
(3) dimg (A;V) = Qu.a,v (i) foralli > 0.

(4) Foreacht € Z the polynomial Qp a,v (X + 1) € Q[X] has leading term

eo(U, AV) xdaeU)
da,(U)! '

(Hint: Observe that for all i € N we have dimg (A;V) = Zi':o dimg
(Gra,v (U)j) = Yo hv,au (1))
(b) The multiplicity e4, (U) := ep(U, A4 V) is the same for each finite dimensional
K-subspace V C U with AV = U.
(Hint: Let VY, V) < U be two finite dimensional K -subspaces such that
AV = AV@ = U. Use Exercise and Definition 1.10.5 (C)(a) and Definition
and Remark 1.10.1 (C)(a) to find some r € Ny such that for all i € Z it holds
A, VD A VD C A, VD Then apply (a).)
D)Let A =W = K[X1,X2,...,X,,01,02,...,0,] and let A, = W, =
Wll be the standard degree filtration of W (see Definition and Remark 1.8.6). Let

U = K[X1, X2, ..., X,] be the D-module of Example 1.11.9. Compute the two
polynomials Py 4,k (X) and Qu a4,k (X).

The next Exercise and Remark intends to present the Bernstein Inequality and
the related notion of holonomic D-module. For those readers, who aim to learn
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more about these important subjects, we recommend to consult one of [7-9, 24, 37]
or [38].

Exercise and Remark 1.14.3 (A) Endow the Weyl algebra
WZW(Kan) = K[XlaXZa'-'aXn7315827-'-58n]

with its standard degree filtration W, := W‘.ieg (see Definition and Remark 1.8.6).
If d € W write deg(d) for the standard degree deg“(d) of d. Use Exercise 1.6.4
(D) to prove the following statement:

Ifd €e W\ K, then there is some i € {1, 2, ..., n} such that
deg([X;, d]) = deg(d) — 1 or else deg([9;, d]) = deg(d) — 1.

(B) (The Bernstein Monomorphisms) Keep the notations of part (A) and let U
be a non-zero D-module over the Weyl algebra W. Let V. € U be a K-vector
space of finite dimension and endow U with the induced filtration U, := W,V (see
Exercise and Definition 1.10.5 (A),(B) and Definition and Remark 1.11.2 (D)). Let
k € Np, let d € W with deg(d) = kand leti € {1, 2, ..., n}. Prove the following
statement

(a) If k > 0and dUy = 0, then [X;, d|Uy—1 = [0;, d]Ur—; = 0.
Use part (A) and statement (B)(a) to prove the following claim by induction on k:

(b) For each k € Ny there is aK -linear injective map ¢y : Wy — Homg (U, Uax),
given by ¢y (d)(u) := du, foralld € Wy and all u € Uy.

(Hint: The existence of the linear map ¢y is easy to verify. The injectivity of ¢y is
obvious. If £ > 0 and ¢y is not injective, part (A) and statement (B)(b) imply that
¢r—1 is not injective.)

(C) (The Bernstein Inequality) Keep the previous notations. Use statement (B)(b)
to prove

(a) Forall k € Ny it holds (*12") < dimg (Ur)dimg (Ua).

(Hint: Determine dimg (W) for all k € Ny and keep in mind that for any
two K-vector spaces S, 7T of finite dimension one has dim(HomK (S, T)) =
dimg (S)dimg (T).)

Use statement (a) and Reminder, Definition and Exercise 1.14.2 (C)(a) to prove
Bernstein’s Inequality:

(b) If U #0, then dwy, (U) = dWl.I(U) >n.

(D) (Holonomic D-Modules) Keep the above notations. It is immediate from
the definition, that one always has the inequality dw,(U) < 2n. The D-module
U is called holonomic if dw,(U) < n, hence if U = 0 or else (by Bernsteins’
Inequality) U # 0 and dw,(U) = n. Holonomic D-modules are of particular
interest and play a crucial role in many applications of D-modules. The result of
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Reminder, Definition and Exercise 1.14.2 (D) shows that the (simple!) D-module
U =K[Xy, X2, ..., X,] be the D-module of Example 1.11.9 is holonomic.
Use Proposition 1.13.9 to prove the following result:

(@) f0 — Q — U — P — 0is an exact sequence of D-modules, then U
is holonomic if and only Q and P are holonomic.

Accepting without proof the fact that all simple D-modules are holonomic, one can
prove by statement (a) that a D-module U is holonomic if and only if it is of finite
length, hence if and only if it admits a finite ascending chain 0 = Uy C U; C --- C
U;—1 € U; = U of submodules, such that U; /U;_1 is simple foralli = 1, ..., 1.

We now recall some basics facts on Local Cohomology Theory. As a reference
we suggest [18].

Reminder 1.14.4 (Local Cohomology Modules) (A) Let R be a commutative
Noetherianring and let a C R be an ideal. The a-forsion submodule of an R-module
M is given by

I's(M) = U O:yahH= lim;HomR(R/a", M).

nENO

Observe, that the assignment M +— [4(M) gives rise to a covariant left-exact
functor of R-modules (indeed a sub-functor of the identity functor)—called the
a-torsion functor—so that for each short exact sequence of R-modules 0 —
N — M — P —> 0 we naturally have an exact sequence 0 — I4(N) —
Tq(M) — T'q(P). '

If i € Ny, the i-th local cohomology functor H| (e) with respect to the ideal a can
be defined as the i-th right derived functor R’ T4 (o) of the a-torsion functor, so that
for each R-module M one has:

HI(M) = %' Ty(M) = liszxt’k(R/a", M).

For each short exact sequence of R-modules) — N — M — P — 0 there
is a natural exact sequence of R-modules

0 — HYX(N) — H)(M) — H(P) — H)(N) — H!M) — H!(P) —
—> HX(N) —> H2(M) —> HX(P) — H(N) — HX(M) — HJ(P)---,
the cohomology sequence associated to the given short exact sequence. In particular,

local cohomology commutes with finite direct sums.
Moreover, we have

(a) If /a = \/Z§=1 Rx; for some elements x1, x3, ..., X, € R, then HA(M) =0
for alli > r and all R-modules M.
(b) H (M) =0foralli > dim(M) and all (finitely generated) R-modules M.
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(B) (Graded Local Cohomology) Assume from now on, that the ring R of part
(A) is (positively) graded and that the ideal a C R is graded, so that

R=EP Rjanda= P a;, witha; =anR; (¥jeNy.
j€Np jeNy

It M = @kez My is a graded R-module then, for each i € Ny, the local
cohomology module of M with respect to a carries a natural grading:

Hi(M) = P H{(M),.

JEZ

Moreover, if h : M — N is a homomorphism of graded R-modules, then the
induced homomorphism in cohomology H.(M) —> H.(N) is a homomorphism
of graded R modules. f 0 — N — M — P — 0 is an exact sequence of
graded R-modules, then so is its associated cohomology sequence (see part (A)).

(O) (Graded Local Cohomology with Respect to the irrelevant Ideal) Let R =
@D cn, Rj be as in part (B). The irrelevant ideal of R is defined by

Ry =R,

jeN

The graded components of local cohomology modules of finitely generated graded
R modules with respect to the irrelevant ideal Ry behave particularly well,
namely:

(a) Leti € Npandlet M = P jez M be a finitely generated graded R-module.
Then:

(1) HI"e+ (M) is a finitely generated Ro-module for all j € Z.
() H,"e+ (M); = 0forall j > 0.

Bearing in mind what we just said in Part (C), we no can introduce the
cohomological invariant which plays the crucial rdle in this section: Castelnuovo-
Mumford regularity. As a reference we suggest Chapter 17 of [18].

Reminder, Remark and Exercise 1.14.5 (Castelnuovo-Mumford Regularity)
(A) Keep the notations and hypotheses of Reminder, Definition and Exer-
cise 1.14.2(A) and of Reminder 1.14.4. For each finitely generated graded module
M = @<z, M; over the homogeneous Noetherian K-algebra R = ey, Rj =
K[x1,x2,...,x,] and for each k € Ny by Reminder 1.14.4 (A)(a),(b) and (C)(a)(2)
we now can define the Castelnuovo-Mumford regularity at and above level k of
M by

regk(M) =supf{ai(M)+i|i >k} =max{a;(M)+i|i=kk+1,...,dim(M)}
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with
ai(M) := sup{j € Z | Hp, (M); # 0} forall i € N,

where H I’Ih (M) denotes the j-th graded component of the i-th local cohomology
module H1ie+ (M) = Py, H1ie+ (M), of M with respect to the irrelevant ideal
Ry = @jeN Rj =Y,,_; Rxy (see Reminder 1.14.4 (B),(C)).

Keep in mind that the Castelnuovo-Mumford regularity of M is defined by

reg(M) :=reg®(M) = sup{a; (M) +i | i € No} = max{a;(M)+i|i=0,1,...,dim(M)}
and keep in mind the fact that
reg! (M) = reg(M /g, (M)) and Pumyrg, o (X) = Py (X).
(B) Keep the notations and hypotheses of part (A). Let

gendeg(M) :=inf{m € Z | M = Z RMy} (< reg(M))

k<m

denote the generating degree of M. Keep in mind, that the ideal Anng(M) C R is
homogeneous. Use the previous inequality to prove the following claims:

(a) If b € Z such that reg(AnnR M )) < b, there are elements

fi, ooy fs € Anng(M) N (UR,-) with Var(Anng (M)) = ﬂVar(f,-).

(C) We recall a few basic facts on Castelnuovo-Mumford regularity.

(@) Ifr e Nand R = K[T1, T», ..., T,] is a polynomial ring over the field K, then
reg(R) = reg(K[T1, Ta, ..., T;]) = 0.

(b) f0 — N — M — P — 0 is a short exact of finitely generated graded
R -modules, then we have the equality reg(N) < max{reg(M), reg(P) + 1}.

(c) Ifr e Nand if MDD, MP ... M are finitely generated graded R-modules,
then we have the equality reg( P;_; M) = max{reg(MD) | i =1,2,...,r}.

(D) We mention the following bounding result (see Corollary 17.4.2 of [18]):

(@) Let R = (Pcy, Rj be a Noetherian homogeneous ring (see Conventions,
Reminders and Notations 1.1.1 (I) for this notion) such that Ry is Artinian and
local. Let W = P ;z W; be a finitely generated graded R-module and let
P € Q[X]\{0}. Then, there is an integer G such that for each R-homomorphism
f : W — M of finitely generated graded R-modules, which is surjective in
all large degrees and such that Py; = P, we have reg' (M) < G.
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Use the bounding result of statement (a) to prove the following result.

(b) There is a function B : N% x Q[X] —> Z such that for each choice of r, r € N,
for each field K, for each homogeneous Noetherian K -algebra R = P, Ri
with Ag(1) < t and each finitely generated graded R-module M = B, ., M;
with M = RMy and h;(0) < r we have

reg! (M) < B(t,r, Py).

Another bounding result, which we shall use later is (see Corollary 6.2 of [17]):

(c) Let R = K[T1, T2, ..., T;] be a polynomial ring over the field K, furnished
with its standard grading. Let f : W — V be a homomorphism of finitely
generated graded R-modules such that V' # 0 is generated by u homogeneous
elements of degree 0. Then

reg(Im(f)) < [max{gendeg(W),reg(V) + 1} + u + 1]2”1.

We now prove a special case of Theorem 3.10 of [16].

Proposition 1.14.6 Letr € N, let R := K[T}, T», ..., T,] be the polynomial ring
over the field K and let M = P M, be finitely generated graded R-module
with M = RMy. Then

neNy

reg(Anng(M)) < [reg(M) + hy (0> + 217 + 1.
Proof Observe first, that we have an exact sequence of graded R-modules
0 — Anng(M) — R = Homg (M, M), with x — &(x) := xIdy, forall x € R.
Moreover, there is an epimorphism of graded R-modules
7RO 5 pm— 0.

So, with g := Homg (s, Idys) we get an induced monomorphism of graded R-
modules

0 —> Homg(M, M) -%» HomR(RhM(O), M) = MmO
So, we get a composition map
fi=goe:R— M"™O = v withIm(f) = Im(¢) = R/Anng(M).

Now, observe that gendeg(R) = 0 (see Reminder, Remark and Exercise 1.14.5
(C)(a)), reg(V) = reg(M) (see Reminder, Remark and Exercise 1.14.5 (C)(c)) and
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that V is generated by /7 (0)> homogeneous elements of degree 0. So, by Reminder,
Remark and Exercise 1.14.5 (D)(c) we obtain

reg(R/Anng(M)) = reg(Im(f)) < [reg(M) + hy (02 + 2] .

On application of Reminder, Remark and Exercise 1.14.5 (C) (b) to the short exact
sequence of graded R-modules

0 — Anng(M) — R — R/Anng(M) — 0

and keeping in mind that reg(R) = 0, we thus get indeed our claim.

Exercise 1.14.7 Let the notations and hypotheses be as in Proposition 1.14.6. Show
that

(a) reg(Anng(M/Ig, (M))) < [reg" (M) + hy (0> + 212 + 1.
Var(Anng(M)),  if dimg(M) > 0

(b) Var(Anng(M/Tg, (M))) = :@ if dimg (M) =0
’ R - ’

Notation, Remark and Exercise 1.14.8 (A) Let B : N(% x Q[X] —> Z be the
bounding function introduced in Reminder, Remark and Exercise 1.14.5 (D)(b).
We define a new function

F:N*xQIX] —> Zby F(t.r, P) = [B(t.r, P)y+r>427 +1  (t.r €N, P € QIX]).

(B) Let the notations as in part (A). Use Proposition 1.14.6, Reminder, Remark
and Exercise 1.14.5 (B) and Exercise 1.14.7 to show that for each field K, for each
choice of r, ¢t € N, for each polynomial ring R = K[T1, T, ..., T;] and for each
finitely generated graded R-module M = (P, .y, Mn With M = RMy, hp(0) < r
and Py = P, we have the following statements:

(a) reg(AnnR(M/FR+ (M))) < F(,r, P).

(b) There are homogeneous polynomials fi, f2,..., fs € Anng (M /TR, (M))
with
(1) deg(fi) < F(t,r, P)foralli =1,2,...,s.
(2) Var(Anng(M)) = Var(fi, f2. ..., fs) = i Var(fi).

No, we are ready to prove the main result of this section.

Theorem 1.14.9 (Boundedness of the Degrees of Defining Equations of Charac-
teristic Varieties, Compare [16]) Letn € N, let K be a field of characteristic 0,
let U be a D-module over the standard Weyl algebra

WZW(K,H) :K[X17X27-'-5Xn817825'-'73}’!]
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andlet V C U be a K -subspace withdimg (V) <r < ocoand U = WV. Moreover,
let

F:N’xQ[X]— Z

be the bounding function defined in Notation, Remark and Exercise 1.14.8 (A). Keep

in mind that the degree filtration Wgeg of W (see Definition and Remark 1.8.6) is
very good (see Corollary 1.8.7 (a)) and let

Py ey € Qrx]

be the Hilbert polynomial of U induced by V with respect to the degree filtration

erg (see Reminder, Definition and Exercise 1.14.2 (B)).
Then, there are homogeneous polynomials

fiufo,.. s €eP=K[Y1,Y2,....Ys, 21, 2>,...,2Z,]

such that

(a) deg(f;) < F(2n,r, Py, yiee)-

(b) Viyaee (U) = Var(fi, fo. ... f5) = (Ni=y Var(fi).
Proof Observe that (see Definition and Remark 1.11.2)

waeg (U) = Var (Al’ll’l]p (erileg v U )) .

Now, we may conclude by Notation, Remark and Exercise 1.14.8 (B)(b), applied
to the graded P-module Gr. wleey (U) and bearing in mind that—by Exercise and
Definition 1.10.5 (B)(c)—thls latter graded module is generated in degree 0.

Conclusive Remark 1.14.10 (A) Keep the above notations. To explain the mean-
ing of this result, we fix r,s € N and we fix a polynomial P € Q[X]. For any
matrix

di diz ... diy
9 _ d21 d22 cee d2}" c WSX}"
dsl ds2 dsr

of polynomial partial differential operators we consider the induced epimorphism
of D-modules

w4 Uy — 0,
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consider the K -subspace
K= (W% cw’
and set
Vg :=n9(K").

Then, referring to our Preliminary Remark 1.14.1 we consider the family of systems
of differential equations

F=F:={2eW>* | P

U@,erg\/@ = P}

whose canonical Hilbert polynomial PU equals P. As an immediate

deg
2, We “Vg
application of Theorem 1.14.9 we can say

The degree of hypersurfaces which cut out set-theoretically the characteristic variety
V98 (D) is bounded, if 9 runs through the family FF .

Clearly, our results give much more, as they bound the invariant
reg(Annp [ergeg Vo (U2)/Tp., (Gryyaee Vo U)])

along the class F?.

(B) Our motivation to prove Theorem 1.14.9 was a question arising in relation

with the PhD thesis [5], namely: Does the Hilbert function (with respect to an
appropriate filtration) of a D-module U over a standard Weyl algebra W bound the
degrees of polynomials which cut out set-theoretically the characteristic variety of
U? This leads to the question, whether the Hilbert function 4, of a graded module
M which is generated over the polynomial ring K[X1, X», ..., X,] by finitely many
elements of degree 0 bounds the (Castelnuovo-Mumford) regularity reg(Anng (M))
of the annihilator Anng (M) of M. This latter question was answered affirmatively
in the Master thesis [39] and lead to the article [16].
Theorem 1.14.9 above actually improves what has been shown in [16] and in
Theorem 14.6 of [15]. There it is shown, that the degrees of the polynomials
fi, f2s,..., fs € P which occur in Theorem 1.14.9 are bounded in terms of
n and the Hilbert function hy a,v = har,,, ) (see Reminder, Definition and
Exercise 1.14.2 (B)). More precisely, in these previous results, the degrees in
question are bounded in terms of n, hy a,v(0) and the postulation number (see
Reminder, Definition and Exercise 1.14.2 (A))

psting, y (U) :=sup{i € Z | hy,a,v (i) # Pu.a,v(0)} = pstin(Gla,v (U)

of U with respect to the filtration A, V. Theorem 1.14.9 shows, that the postulation
number pstln,, (U) is not needed to bound the degrees we are interested in.
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(C) We thank the referee for having pointed out to us, that Aschenbrenner and
Leykin [2] have proved a result, which is closely related to Theorem 1.14.9 and
which furnishes a bound on the degree of the elements of Grobner bases of a left
ideal I € W of our Weyl algebra. More precisely, if w € §2 (see Notation 1.13.1),
if d € N and if 7 is generated by elements whose w-weighted degree deg® (e) does

not exceed d, then / admits a <“-Grobner basis consisting of elements whose w-
. 2 2n—1
weighted degree does not exceed the bound 2(”12 +d )2 .

As the Castelnuovo-Mumford regularity reg(a) of a graded ideal in the polynomial
ring a € K[X1,x2,...,X,] over a field K is an upper bound for the degree

of the polynomials occurring in some Grobner basis of a, the mentioned result
n—2
in [2] corresponds to the “classical® regularity bound reg(a) < (dendeg(a))2

for graded ideals in the polynomial ring (see [23, 27, 28], but also [17] and [22]).
Via Grobner bases and Macaulay’s Theorem for Hilbert Functions (see [26], for
example), this latter regularity bound on its turn, is also related to the module
theoretic form of Mumford’s regularity bound ([18], Corollary 17.4.2), we were
using as an important tool in the proof of Theorem 1.14.9 (see Reminder, Remark
and Exercise 1.14.5 (D)(a)).
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Chapter 2 )
Inverse Systems of Local Rings Shethie

Juan Elias

Abstract Matlis duality and the particular case of Macaulay correspondence
provide a dictionary between the Artin algebras and their inverse systems. Inspired
in a result of Emsalem we translate the problem of classification of Artin algebras
to a problem of linear system of equations on the inverse systems.

The main purpose of these notes is to use this result to classify Artin Gorenstein
algebras with Hilbert function {1, 3, 3, 1}, level algebras and compressed algebras.
The main results presented in these notes were obtained in collaboration with MLE.
Rossi.

2.1 Introduction

These notes are based on a series of lectures given by the author at the Vietnam
Institute for Advanced Study in Mathematics, Hanoi, during the period February §—
March 7,2014. The aim of these three lectures was to present some recent results on
the classification of Artin Gorenstein and level algebras by using the inverse system
of Macaulay. These notes are not a review on the known results of Macaulay’s
inverse systems. See [12, 20-23] and [11] for further details on inverse systems.
Let R = K[[x1, . ..x,] be the ring of the formal series and let S = K[y, ..., y,]
be a polynomial ring. Macaulay established a one-to-one correspondence between
the Gorenstein Artin algebras A = R/I and cyclic submodules (F) of the
polynomial ring S. This correspondence is a particular case of Matlis duality
because the injective hull of k as R-module is isomorphic to S. The structure of
S as R-module is defined, depending on the characteristic of the residue field k,
by derivation or by contraction. Macaulay’s correspondence establish a dictionary
between the algebraic-geometric properties of Artin Gorenstein algebras A and the
algebraic properties of its inverse system F or the geometric properties of the variety
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defined by F = 0. See [13] for the extension to higher dimensions of Macaulay’s
correspondence.

In the second chapter we review the main results on injective modules. We prove
the existence on the injective hull of a ring and we prove Matlis’ duality for a
complete ring. The main references used in this chapter are: [28] and [27].

In the third chapter we study Macaulay’s correspondence that is a particular case
of Matlis’ duality. In the main result of this we prove that S is the injective hull of
the residue field of the R-module k. From this result and Matlis’ duality we deduce
Macaulay’s correspondence. We end the chapter computing the Hilbert function of
a quotient A = R/I in terms of its inverse system. The main references used in this
chapter are: [18, 20-23] and [25].

The fourth chapter is devoted to give a quick introduction to Artin Gorenstein,
level and compressed algebras. We only quote the results needed to achieve the main
goal of these notes. The main references used in this chapter are: [20] and [21].

The fifth chapter is the core of these notes. We present the main results obtained
in collaboration with M.E. Rossi on the classification of Artinian Gorenstein
algebras, level algebras and compressed algebras, [12] and [11]. After a short review
of the classification of Artin algebra we show the difficulty of the problem of the
classification of Artin algebras recalling some results obtained in collaboration with
Valla, [14] and [15].

Inspired in a result of Emsalem, [16], we translate the problem of classification
of Artin algebras to a problem of linear systems of equations. The study of
these systems of equations permits to establish the main result of this paper,
Theorem 2.5.10. We end the chapter by giving a complete analytic classification of
Artin Gorenstein algebras with Hilbert function {1, 3, 3, 1} by using the Weierstrass
form of an elliptic plane curve. The main references used in this chapter are: [12, 20]
and [11].

In Sect. 2.6 we consider the problem of computing the Betti numbers of an ideal
I by considering only its inverse system without computing the ideal /. The main
open problem is to characterize the complete intersection ideals in terms of their
inverse systems. In this chapter we focus the study on the computation of the last
Betti number (i.e. the Cohen-Macaulay type) and the first Betti number (i.e. the
minimal number of generators)

In the last chapter we show that some results of the chapter four cannot be
generalized and we present several explicit computations of the minimal number
of generators of some families of Artin Gorenstein and level algebras.

In these notes we omit reviewing some recent interesting results on the rationality
of the Poincaré series of an Artin Gorenstein algebra, on the smoothability of the
Artinian algebras, and the applications of these results to the study of the geometric
properties of Hilbert schemes, see for instance [4, 5] and their reference’s list.

The examples of this paper are done by using the Singular library [7, 8], and
Mathematica®.
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2.2 Injective Modules: Matlis’ Duality

Given a commutative ring R we denote by R_mod, resp. R_mod.Noeth,
R_mod.Artin, the category of R-modules, resp. category of Noetherian R-
modules, Artinian R-modules.

Definition 2.2.1 (Injective Module) Let R be a commutative ring and let E be an
R-module. E is injective if and only if Homg(-, E) is an exact functor.

Since for all R-module E the contravariant functor Homg (-, E) is right exact,
we have that E is injective if and only for all injective morphism 2 : M — N
and for all morphism f : M — E, where M and N are R-modules, there exists a
morphism g : N —> E making the following diagram commutative:

In the following result we collect some basic properties of injective modules.
Proposition 2.2.2

(i) If a R-module E is injective, then every short exact sequence splits:
0O—wE—M-—N—0

(ii) If an injective module E is a submodule of a module M, then E is a direct
summand of M, in other words, there is a complement S with M = S @ E.
(iii) If (Ej)ey is a family of injective R-modules, then ]_[jej Ej is also an injective
module.
(iv) Every direct summand of an injective R-module is injective.
(v) A finite direct sum of injective R-modules is injective.

Now that we have showed some of the properties of the injective modules, we
need to find an easier way to check the injectivity of a module. This criterion is the
following:

Proposition 2.2.3 (Baer’s Criterion) A R-module E is injective if and only if
every homomorphism f : I — E, where I is an ideal of R, can be extended to R.

Proof First, if E is injective, then, as I is a submodule of R, the existence of an
extension g of f is just a a straight consequence of the injectivity of E.

Consider that we have the following diagram, where M is a submodule of a R-
module N:
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We may assume that M is a submodule of N. Let us consider the set X =
{(M',ghIM c M' C N, g|y = f}. Note that X # @ because (M, f) € X.
Now we put a partial order in X, (M’, g') < (M"”, g'), which means that M’ c M"
and g” extends g’. It is easy to see that any chain in X has an upper bound in X (just
take the union). By Zorn’s Lemma we have that there is a maximal element (Mo, go)
of X. If My = N we are done, so we can assume that there is some b € N that is
not in My. Define I = {r € R : r.b € My}, which is clearly an ideal of R. Now
define i : I — E by h(r) = go(r.b). By hypothesis, there is a map ~2* extending .
Finally define M1 = My + (b) and g1 : M1 — E by

g1(ap + br) = golao) +r - h*(1),

where ap € Mo and r € R. Notice that if ap + r.b = a;, + r".b then (r — r')b =
a,—ap € Mo and (r —r’) € I. Therefore, go((r — r')b) and h(r — r’) are defined
and we have:

golag —ao) = go((r —r"b) =h(r —r")y = h*(r —r") = (r =1y - H*(1).

Thus, go(ag) —go(ao) = r-h*(1)—r’-h*(1) and this shows that go(ag)+r'-h*(1) =
go(ag) +r - *(1).

Clearly, g1(ap) = go(ap) for all ap € My, so that the map g; extends go. We
conclude that (Mo, go) < (M1, g1) and My # M|, contradicting the maximality of
(Mo, go). Therefore, My = N, the map go is a lifting of f and then E is injective.

Proposition 2.2.4 If R is a Noetherian ring and (E;) jey is a family of injective
R-modules, then @jej Ej is an injective R-module.

Proof By the Baer criterion, it suffices to complete the diagram

EBjeJ Ej

where [ is an ideal of R. If x € @j Ej, then x = (e;), where e; € E;. Since R
is noetherian, [/ is finitely generated. There exists a finite set S such that Im(f) C
@ses Es. But we already know that the finite direct sums are injective. Hence, there
is a homomorphism g’ : R — @;csE;. Finally, composing g’ with the inclusion of
DsesEs into @ ey E; completes the given diagram.
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Next step is to show that any R-module is a sub-module of an injective module,
for this end we have to recall the basics of divisible modules.

Definition 2.2.5 (Divisible Modules) Let M be an R-module over a ring R and let
r € R\Z(R) and m € M. We say that m is divisible by r if there is some m’ € M
withm = rm’. In general, we say that M is a divisible module if for all » € R\Z(R)
and for all m € M we have that m is divisible by .

Proposition 2.2.6 Every injective module E is divisible.

Proof Assume that E is injective. Lete € E anda € R\Z(R), we mustfind x € E
with e = ax. Define f : (a) - E by f(ra) = rm. Observe that this map is well
defined because a is not a zero divisor. Since E is injective we have the following
diagram:

0 —— (@) — R
i

where f extends f. In particular, m = f(a) = f(a) = a f(1). So, the x that we
needis x = f(1).

Proposition 2.2.7 Let R be a principal ideal domain and M an R-module. Then
we have that M is divisible if and only if M is injective.

Proof We are going to use Baer’s criterion. Assume that f : I — E is a
homomorphism where I is a non zero ideal. By hypothesis, I = (a) for some
non zero a € I. Since E is divisible, there is some e € E with f(a) = ae. Define
h: R — E by h(s) = se. Itis easy to check that /& is a homomorphism, moreover,
it extends f. Thatis, if s = ra € I, we have that h(s) = h(ra) = rae = rf(a) =
f(ra). Therefore, by Baer’s criterion, E is injective.

Lemma 2.2.8 Let R be a ring. Then:

(i) For all G abelian groups, Homyz (R, G) is an R-module.
(ii) If G is injective as a Z-module, then Homz(R, G) is R-injective.

Proof

(i) This statement is clear, because the addition is as usual, and with the mul-
tiplication by elements of R, we define (rf)(x) = f(rx) if r € R and
f € Homz(R, G).

(ii) If we have a monomorphism g : M; — M; and a homomorphism f : M| —
Homgz (R, G), we have to find an extension from M, to Homz (R, G). But if we
have that f, we can also define a homomorphism f’ between M and G in the
following way, f/(m1) = (f(m1))(1). Is an homomorphism because f is also
an homomorphism. So, as G is injective, we can find an extension of f’, namely
f’. With this map, we can define the extension we wanted f(mz) : R — G
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where f(m2)(r) = f’/(rmy). The way that we constructed the map assure us
that is an homomorphism and that extends f.

Theorem 2.2.9 Let R be a ring and M an R-module. Then there exists an R-
injective module E and a monomorphism f : M — E. In other words, any module
M can be embedded as a submodule of an injective module.

Proof Since M is a Z-module we have that M = Z)/H for a suitable subgroup
H of ZD, Notice that Z) ¢ Q) as abelian groups,so M ¢ G = Q)/H. But
as Q is divisible, we have that also G is divisible. Hence M < G, where G is an
injective abelian group. So from the last Lemma we deduce that Homz (R, G) is an
R-injective module. Then we have the exact sequence of R-modules

0 — Homgz(R, M) —> E = Homy(R, G).

Next step is to embed M in E; it is enough to show that the linear map f : M —
Homgz (R, M), defined by f(m)(r) = rm if r € R, is injective. If f(m)(r) = O for
all r € R, we have that f(m)(1) =m = 0.

Definition 2.2.10 (Proper Essential Extensions) Let R be aring andlet N C M
be R-modules. We say that M is an essential extension of N if for any non-zero
submodule U of M one has U N N # 0. An essential extension M of N is called
properif N # M.

Proposition 2.2.11 Let R be a ring.

(i) An R-module N is injective if and only if it has no proper essential extensions.

(ii) Let N C M be an essential extension. Let E be an injective module containing
N. Then there exists a monomorphism ¢ : M —> E extending the inclusion
NCM.

Proof

(i) Let’s assume that N is injective and let N C M be an essential extension.
Since N is injective, N is a direct summand of M, Proposition 2.2.2. Let S be
the complement of N in M, Proposition 2.2.2. Then N NS = 0 and so, the
extension N C M is essential, so S = 0 and N = M. Conversely, suppose that
N has no proper essential extensions. Let E be an injective module containing
N, Theorem 2.2.9. Let us consider the set of submodules M C E such that
M N N = 0. This set is not empty 0 € X and it is inductively ordered. By
Zorn’s Lemma there is a maximal element L € X,so N =N + L/L C E/L.
This extension is essential. Let K be an R-module L C K C E such that
K/LN(N+L)/L =0.Hence KN (N + L) =0,s0 KN N = 0. From the
maximality of L we deduce K = L. Since N has no proper essential extensions
we obtain E = N + L. On the otherhand we have LNN =0,s0 E = N® L.
From Proposition 2.2.2 we get that N is injective.

(ii) Since E is injective there exists a homomorphism ¢ : M —> E extending the
inclusion N C M. If ker(¢) # O then ker(¢p) N M # 0 because the extension
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N C M is essential. Let 0 # x € ker(¢) N M then we get a contradiction:
x=¢x)=0.

Definition 2.2.12 Let be R a ring and M an R-module. An injective hull of M is
an injective module E g (M) such that M C Er(M) is an essential extension.

Proposition 2.2.13 Let R be a ring and let M be an R-module.

(i) M admits an injective hull. Moreover, if M C I and I is injective, then a

maximal essential extension of M in I is an injective hull of M.

(ii) Let E be an injective hull of M, let I be an injective R-module, ando : M — 1

a monomorphism. Then there exists a monomorphism ¢ : E — [ such that the
following diagram is commutative, where i is the inclusion:

M—l>
la

@
1

In other words, the injective hulls of M are the “minimal” injective modules
in which M can be embedded.

E

(iii) If E and E’ are injective hulls of M, then there exists an isomorphism ¢ : E —

E’ such that the following diagram commutes:

N

®
E —— FE’

Proof

@

(i)

We know by Theorem 2.2.9 that we can embed M into an injective module /.
Now consider .7 to be the set of all essential extensions N with M C N C I.
Applying Zorn’s Lemma to this set yields to a maximal essential extension
M C E suchthat E C I. We claim that E has no proper essential extensions
and because of Proposition 2.2.11 we can say that E will be injective and
therefore it will be the injective hull we are looking for. Assume that E has a
proper essential extension E’. Since I is injective, there exists ¢ : E/ — [
extending the inclusion E C I. Suppose keryy = 0; then Imyy C [ is an
essential extension of M (in ) properly containing E, which contradicts the
fact that £ is maximal. On the other hand, since v extends the inclusion E C
I we have E Nkery = 0. But this contradicts with the essentiality of the
extension E C E’. And then we have the result we were looking for.

Since [ is injective, @ can be extended to an homomorphism ¢ : E — [.
We have that ¢|yy = «, and so M Nkergp = kera = 0. Thus, since the
extension M C E is essential, we even have ker¢ = 0 and therefore ¢ is a
monomorphism.
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(iii) By (ii) there is a monomorphism ¢ : E — E’ such that ¢|y equals the
inclusion M C E’. Then, as Im¢ = E because of the injectivity, Im¢ is
also injective and hence a direct summand of E’. However, since the extension
M C E’ is essential, ¢ is exhaustive because there can’t be direct summands
different than the total. Therefore, ¢ is an isomorphism.

Remark We can use this proposition to build an injective resolution, E}(M) of
a module M. We let E©(M) = Egr(M) and denote the embedding by 9~!. Now
suppose that the injective resolution has been constructed till the i-th step:

0 1 5i—1

0 —— EM) . EY(M) 2 .. —— EFY M) —— E'(M)

We define then Eit! = Eg(Coker 8'~1), and 9 is defined as the inclusion.

Definition 2.2.14 Let (R, m, k) be a local ring. Given an R-module M the Matlis
dual of M is MV = Homg (M, Eg(K)). We write (—)¥ = Homg(—, Eg(Kk)), which
is a contravariant exact functor from the category R_mod into itself.

Proposition 2.2.15 Let (R, m,K) be a local ring. Then (=)" is a faithful functor.
Furthermore, if M is a R-module of finite length, then Lg(M") = Lgr(M). If R is in
addition an Artin ring then Lg(Eg(K)) = £gr(R) < 0.

Proof We have to show that if M is a nonzero R-module then M is nonzero. Let’s
take a non-zero cyclic submodule R/a of M. Since a C m we have the maps

M < R/a— R/m = k.

Notice that k¥ = Homg (K, Eg (K)) = k. Applying the functor (—)" to this diagram
we get

MY — (R/a)” < kY =K,

implying that M is nonzero.

Let M be a finite length R-module, we use induction on £(M) to prove Lg(M) =
Lr(MY). If £g(M) = 1, then M is a simple R-module and thus M = R/m = k.
Thus £z (M) = £g(k) = 1. For the general case, pick a simple submodule S C M.
We apply (—)" to the short exact sequence:

0—S—M-—>M/S—0

Since S = Kk, we have £(SY) = 1. Now, by induction, £g (M /S)Y) = £r(M/S) =
£r(M) — 1. We conclude then £gr(M") = £r(M).

Let us assume that R is Artin, so £g(R) < oo. From the first part we get
Cr(ER(K)) = LR(R) < o0.
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Proposition 2.2.16 Let R be a ring, a an ideal of R and M a R-module annihilated
by a. Then, if E = Er(M):

EpjaM)={e € E : ae=0}=(0:g a)

Proof Both M and (0 :g a) are annihilated by a and thus can be thought as R/a-
modules. Clearly M C (0 :g a) C E. Since all R/a-submodule of (0 :g a) is
also a R-submodule of E, necessarily (0 :g a) is an essential extension on M. So
now we need to check that (0 :g a) is injective. So let us consider a diagram of
R/a-modules:

0:pa)

We have to prove that thereis g : B —> 0 :g a) such that f = g oi. But as we can
think these modules as R-modules, we can replace (0 :g a) by E and, since E is
injective, we can extend the diagram and make the diagram commutative. But this
commutativity implies that Im(g) C (0 :g a) and therefore the original diagram
also commutes.

Corollary 2.2.17 Let (R, m,K) be a local ring and E = Eg(K). Let a be an ideal
of R. Then:

(i) Erja(k) = (0 :g a)
(ii) E = U= Eg/m (K)

Now it’s time to prove some technical results with the assumption that we need,
the completeness of the Noetherian local ring.

Lemma 2.2.18 Let (R, m, K) be a complete Noetherian local ring and E = Eg(K).
Then:

(i) RY = Eand EY = R.
(ii) For every R-module M the natural map M — MY induce isomorphisms
R — R and E — EYV.

Proof

(i) It is well known that RV = Homg(R, E) = E. Now let’s prove EY = R.
Assume first that R is Artinian. Consider the map 6 : R — EY = Homg(E, E)
which sends an element r € R to the homothety defined by r. Since £(R) =
£(EY), Proposition 2.2.15, we only need to prove that 6 is injective. Suppose
that r E = 0. Then, by the last Corollary, Eg,(K) = (0 :g (r)) = E, and, by
the same argument, £(E) = £(R/(r)). This implies that £(R) = £(R/(r)), then
r=0.
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Assume now that R is Noetherian and complete. We consider the map 6 :
R — EY = Homg(E, E) as above, we will prove that § is an isomorphism.
Let’s write R, = R/m' for each t. By the last corollary E; := Eg, (k) =
(0 :g m"). Let ¢ € Homg(E, E) = EV. Itis clear that ¢(E;) C E; and thus
¢ € Homg, (E;, E;). Since R; is Artinian we have ¢ is a homothety defined by
anelementr, € R,. The fact E; C E, ) implies thatr, —r,4+1 € m’ forallz > 1.
In consequence, r = (r;); € R = R and r, =r+m forall t > 1. We claim
that ¢ is given by multiplication by 7. This follows from the fact that E = U, E;
and that ¢(e) = r;e for all e € E;. Moreover, r is uniquely determined by ¢,
and we conclude that 6 is bijective.

(ii) We consider the natural homomorphism y : M — MY = Homg(Homg(M,
E), E) given by y(m)(¢) = ¢(m). Fisrt we prove that y : R — RYY is an
isomorphism. This map is the composition of the two isomorphisms given in
part i) R = EY = (RY)Y. In fact, if r € R, the map R = E" sends r to
multiplication by r, i, : E — E. Now the map EY = (RY)" sends &, to
defined by «, (¢) = h,(¢(1)) = ¢ (r),so o, = y(r). The case of E is analogous
to this one.

Proposition 2.2.19 Let (R, m,K) be a complete Noetherian local ring and E =
Eg (k).

(i) There is an order-reversing bijection L between the set of R-submodules of E
and the set of ideals of R given by: if M is a submodule of E then (E/M)¥ =
M+ = (:g M), and (R/I) = I+ = (0:¢ I) foranideal I C R,
(ii) E is an Artinian R-module,
(iii) an R-module is Artinian if and only if it can be embedded in E" for some
neN.

Proof (i) Since M C M=+ we have to prove that M-+ C M. Consider the exact
sequence

O—>M—>EL>E/M—>O,

dualizing with respect E, we get an injective homomorphism, Lemma 2.2.18,

1
v 0

0— (E/M)" — EY = R.

Hence every g € (E/M)" is mapped to an r € R such that (0~ o 7¥)(g) = r, or
equivalently g o 7 = 7¥(g) = h, = 0(r) where h, : E —> E is the homothety
defined by r. Since g o 7 (M) = g(0) = 0 we get rM = 0,s0 (E/M)" C M*.
On the other hand if » € M~ then we can consider the map ¢ : E/M —> E
such that g(x) = rx for all x € E. It is easy to see that (G 7V)(g) = r, so

o~ laV
(E/M)" = M*. Letx € E\ M then thereis g € (E/M)" such that g(x) # 0,
Lemma 2.2.18. From the above isomorphism we deduce that there is r € M such
that rx # 0. This shows that MY C M and then M = M"Y
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Let / be an ideal of R. As in the previous case we have I C I+, From the
natural exact sequence

0—1—R-R/I—0,
we get an injective homomorphism, Lemma 2.2.18,

1
zv 0

0— (R/I) =5 RY = E.

As in the previous case 6! o 7V maps (R/I)" to I*+. Let r € R\ I then there is
g € (R/I)Y such that g(r) # 0, Lemma 2.2.18. Hence x = g(1) € I+ and rx # 0,
ie.r ¢ (0:g x).Since [+ = Myer(0:r x) we get I+t ¢ Iand then I = [+,
(ii) Since R is Noetherian, by (i) we get that E is Artinian.
(iii) We consider the set X of kernels of all homomorphisms F : M — E", for
all n € N. This is a set of submodules of M. Since M is Artininan there is a minimal
element ker(F) of X, where F : M —> E” for some n € N. Assume that ker(F) #
0 and pick 0 # x € ker(F). From Proposition2.2.15 thereis o0 : M — E such that
o(x) # 0. Let us consider F* : M — E"*! defined by F*(y) = (F(y), 5 (y)).
Since ker(F*) & ker(F) we get a contradiction with the minimality of ker(F).
Assume that M is a submodule of E” for some integer n. From (ii) we get that
M is an Artin module.

In the next result we will prove Matlis’ duality, see [28] Theorem 5.20.

Theorem 2.2.20 (Matlis Duality) Let (R, m,K) be a complete Noetherian local
ring, E = Er(K) and let M be a R-module. Then:

(i) If M is Noetherian then M is Artinian.
(ii) If M is Artinian then M is Noetherian.
(iii) If M is either Noetherian or Artinian then MV~ = M.
(iv) The functor (—)V is a contravariant, additive and exact functor.
(v) The functor (=)Y is an anti-equivalence between R_mod.Noeth and
R_mod.Artin (resp. between R_mod.Artin and R_mod.Noeth). It holds
(=) o (—)Y is the identity functor of R_mod.Noeth (resp. R_mod.Artin).

Proof

(i) Let’s consider a presentation of M

Rln Rﬂ M 0

Since (—)V is exact, it induces an exact sequence:

O Mv (Rn)v (RWI)\/

Thus M"Y can be seen as a submodule of (R")Y = (RY)" = E",
Lemma 2.2.18. Since E is Artinian as we saw in the previous corollary,
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so is E" and hence also M. Applying the functor (—)¥ again we get a
commutative diagram:

(RWL)V\/ (Rn)\/\/ MV\/ O

| ]

R™ R" M 0

whose rows are exact. Since we proved that in this context R — R is an
isomorphism, M = MY

(i) We proved that M < E™ for some n € N. Since E is Artinian, so is E" /M
and thus E"/M — E™ for some m € N. In consequence, we have an exact
sequence:

0 M E" E™

As before, if we apply (—)" we have an exact sequence:

(Em)\/ (En)v MV 0

and MV can be seen as a quotient of (E")Y = (EY)" = R", where the
isomorphism is the one we proved in Lemma 2.2.18. This implies that MV is
Noetherian.

(iii) Finally, we apply the functor (—)V to the last exact sequence we obtain the
commutative diagram

0 M\/V (En)\/\/ (Em)\/\/
O M EVl E"l

And again, since E — E“V is an isomorphism, M = M"YV
(iv) This is a consequence of the previous statements.

2.3 Macaulay’s Correspondence

Let k be an arbitrary field. Let R = K[[x1, ... x,] be the ring of the formal series
with maximal ideal m = (x1,---,x,) and let § = K[y1, ..., y,] be a polynomial
ring, we denote by u = (x1, ..., x,) the homogeneous maximal ideal of S.

It is well known that R is an S-module with the standard product. On the other
hand, S can be considered as R-module with two linear structures: by derivation and
by contraction.
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If char (k) = 0, the R-module structure of S by derivation is defined by

RxS — S

!

(lgé&)gy57a B>a

(x9, yﬁ) = x¢ oy/S =

0, otherwise

where forall o, B € N, ool = [/_; ;!
If char (k) > 0, the R-module structure of S by contraction is defined by:

RxS — S
YW B>«
(xo‘,yﬂ) = x“oyﬁz

0, otherwise
o, B eNt
Proposition 2.3.1 For any field k there is a R-module homomorphism

o :(S,der) — (S, cont)

y¢ ol y®

If char (K) = O then o is an isomorphism of R-modules.

Proof For proving the first statement it is enough to show that
o(x% o yP) = x% (yP).
This is easy:

ﬂ!

oGtor) =0 ((/3 “ oy

pa)_ P B
)—(ﬂ_a)!((ﬂ )lyP =)

=By =1"00(yf)

If char (k) = 0 then the inverse of o is y* — (1/a!)y*

Given a family of polynomials F;, j € J, we denote by (F;, j € J) the
submodule of S generated by F;, j € J, i.e. the k-vector subspace of S generated
by x* o Fj, j € J,and « € N". We denote by (F;, j € J)k the k-vector space
generated by Fj, j € J.

In the next result we compute the injective hull of the residue field of a power
series ring, [18, 25].
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Theorem 2.3.2 Let R = K[[x1, . ..x,] be the n-dimensional power series ring over
a field k. If K is of characteristic zero then

Er(K) = (S,der) = (S, cont).
If Kk is of positive characteristic then
Er(K) = (S, cont).

Proof We write E = Eg (k). From Corollary 2.2.17 we get

E=JO:;mh) =] E g i, (&)

i>0 i>0

Hence the problem is reduced to the computation of E, Jmi, k) CE.

Notice that S<;—1 = {f € S | deg(f) < i — 1} C S is an sub-R-module
of S, with respect to the derivation or contraction structure of S, and that S<;_1 is
annihilated by m’IR. Hence S<;—1 isan R/ m’k -module. For any characteristic of the
ground field k the extensionk C S<;—1 := {f € § | deg(f) < i — 1} is essential.
Infact,let0 # M C S<ij—1 bea sub-R/m"R-module then it holds 1 € M.

From Theorem 2.2.13 there exists L = E /iy (K) such that

kCcS<1CL= ER/miR(k)-
Since, Proposition 2.2.15,
Lengthy i (Eg i (K)) = Lengthy i (R Jmiy)
= Lengthg i (S<i—1)

from the last inclusions we get S<; | = Ej Jmiy (k). Hence

Eg(k) = U S<i1=S.

i>0

From the previous results we can recover the classical result of Macaulay, [23],
for the power series ring, see [16, 21].

If I C R is an ideal, then (R/I)Y is the sub-R-module of S that we already
denote by I+, see Proposition 2.2.19,

It ={geS|Iog=0}



2 Inverse Systems of Local Rings 133

this is the Macaulay’s inverse system of /. Given a sub-R-module M of S then dual
M is an ideal of R that we already denote by (S/M)=, see Proposition 2.2.19,

MYt ={feR | fog=0 forall g e M}.

We will write sometimes this module as M+ = Anng(M).

Proposition 2.3.3 (Macaulay’s Duality) Ler R = Kk[xi,...x,] be the n-
dimensional power series ring over a field K. There is a order-reversing bijection
L between the set of finitely generated sub-R-submodules of S = K[[y1,...ynl
and the set of m-primary ideals of R given by: if M is a submodule of S then
M+t = (0:r M), and I+ = (0 :5 I) foran ideal I C R.

Proof The one-to-one correspondence is a particular case of Proposition 2.2.19.
Theorem 2.2.20 gives the one-to-one correspondence between finitely generated
sub- R-submodules of S and m-primary ideals of R.

Remark Macaulay proved more as we will see later on. Trough this correspondence
Macaulay proved that Artin Gorenstein k-algebras A = R/I of socle degree s
correspond to R-submodules of S generated by a polynomial F of degree s, see
Proposition 2.4.4.

Let A = R/I be an Artin quotient of R, we denote by n = m// the maximal
ideal of A. The socle of A is the colon ideal Soc(A) = 0 :4 n, notice that Soc(A)
is a k-vector space subspace of A. We denote by s(A) the socle degree of A, that
is the maximum integer j such that n/ # 0. The (Cohen-Macaulay) type of A is
t(A) := dimg Soc(A).

The Hilbert function of A = R/ is by definition

L n!
HFA(I) = dlmk <ni+1> s

the multiplicity of A is the integer ¢(A) := dimy (A) = dimy I+, Propositions 2.3.3
and 2.2.19. Notice that s(A) is the last integer such that HF4 (i) # 0 and that
e(A) =Y ;_yHF4(i). The embedding dimension of A is HF4(1).

Example 2.3.4 Let F = y3 + xy + x> € R = K[x, y]| be a polynomial. We
consider the R-module structure of S = k[x, y] defined by the contraction o. Then
(F) = (F, y*+x, y+x, x, 1)icand dimy ((F)) = 5. We have that I = Anng((F)) =
(xy —y3, x> —xy),i.e. I is a complete intersection ideal of R. The Hilbert function
of AisHF4 = {1,2,1,1},s0¢(A) =5and s(A) =3

The associated graded ring to A is the graded k-algebra ring grn(A) =
®i=on’ /n'*1. Notice that the Hilbert function of A and its associated graded ring
grn(A) agrees. We denote by I* the homogeneous ideal of S generated by the initial
forms of the elements /. It is well known that gr, (A) = S/I* as graded k-algebras,
in particular grn (A); = (S/I*); foralli > 0.
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We denote by S<; (resp. S<;, resp. S;), i € N, the k-vector space of polynomials
of S of degree less or equal (resp. less, resp. equal to) to i, and we consider the
following k-vector space

by e [0S+ 840
S<i
Proposition 2.3.5 Foralli > 0 it holds
HF 4 (i) = dimg(I1);.

Proof Let’s consider the following natural exact sequence of R-modules

n! A A
0Oo— .., — .. — . —0.
nt+l nt+l ni

Dualizing this sequence we get

0— (I+mHt — (I +mthHht — (;H) —0

so we get the following sequence of k-vector spaces:

I*NS< _ItNS<+ 8

(I +mi)L T Iin S<i—1 S<i

< ni >v2 (I+mi+l)J_

nitl
From Proposition 2.2.15 we get the claim.

Consider the map

() : RxS — k
(F,G) = (FoG)(0)

In the next result we collect some results on (|) that we will use later on.
Proposition 2.3.6

1. (|) is a bilinear non-degenerate map of k-vector spaces.
2. If I is an ideal of R then

I"={GeS|{|G)=0)

3. (]) induces a bilinear non-degenerate map of k-vector spaces

R
(|):I><Ii—>k
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4. We have an isomorphism of K-vector spaces:
SY ~ gL
( I+ )i =)

We will denote by * the duality defined by exact pairing (|), notice that (R/I)*
=t

foralli > 0.

Ifi = (i1,---,ip) € N*"is a integer n-pla we denote by 9;(G), G € S, the
derivative of G with respect to yil e y,’;”, ie. 0;(G) = (xi' cxmyeG.

Let £2 = {w;} be the canonical basis of R/m**! as a k-vector space consisting
of the standard monomials x* ordered by the deg-lex order with x| > - -- > x, and,
then the dual basis with respect to * is the basis £2* = {®}} of S<; where

1
Nk o
(x%) =)

infact wj o 0f = (w; | w}) = &;j, where §;; =0ifi # jand §; = 1.

2.4 Gorenstein, Level and Compressed Algebras

Definition 2.4.1 An Artin ring A is Gorenstein if #(A) = 1; A is an Artin level
algebra if Soc(A) = m*, where s is the socle degree of A.

Proposition 2.4.2 Let A = R/I be an Artin ring, the following conditions are
equivalent:

(i) A is Gorenstein,
(ii) A= EA(K) as R-modules,
(iii) A is injective as A-module.

Proof Assume (i). Since the extension k = Soc(A) C A is essential we have the
A-module extensions, Proposition 2.2.11 (ii),

k = Soc(A) C A C Ea(k).
so A = E4(k), Proposition 2.2.15. Since S = Ex(K) is an injective R-module, (ii)
implies (iii).
Assume that A is injective as A-module. From Proposition 2.2.13 (ii) we get the
A-module extensions

kC Ex(k) C A,

from Proposition 2.2.15 we get (i).
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Given an R-module M we denote by p (M) the minimal number of generators
of M.

Proposition 2.4.3 Let A = R/I be an Artinian local ring. Then

IJ_
Soc(A)Y =
m

oll’
In particular the Cohen-Macaulay type of A is
1(A) = dim (I /mo IY) = pr(I™h).

Proof Let’s consider exact sequence of R-modules

0 —> Soc(A) = (0:4 1) —> A “5™) gn
dualizing this sequence we get
aH" = 1+ — Soc(A)Y — 0
where o (fi, -+, fu) = >_j_; Xi o f;. Hence
I+ I+
S A v = =
oc(4) (x1,...,x) 01+ mo [+

Since 7 (A) = dimg(Soc(A)) = dimg(Soc(A)Y) = M(IJ-), Proposition 2.2.15.

Given a polynomial F € § of degree r we denote by top(F) the degree r form
of F where r = deg(F).

Proposition 2.4.4 Let I be an m-primary ideal of R. The quotient A = R/I is an
Artin level algebra of socle degree s and Cohen-Macaulay type t if and only if I+
is generated by t polynomials Fy, --- , F; € S such that deg(F;) =s,i=1,--- ,t,
and top(F1), - - - , top(Fy) are K-linear independent forms of degree s. In particular,
A = R/I is Gorenstein of socle degree s if and only if I+ is a cyclic R-module
generated by a polynomial of degree s.

Proof Assume that A is an Artin level algebra of socle degree s and Cohen-
Macaulay type ¢. In particular Soc(A) =n®* =m* + /I so

IJ_
Soc(A)Y = .
IJ‘ N S5371

From the last result we get

molt =1tNS< .
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From this identity we deduce that IV is generated by ¢ polynomials Fy, - -- , F; of
degree s and top(F}), - - - , top(F;) are k-linear independent.

Assume that I+ = (Fy, -+, Fy) such that deg(F;) = s,i = 1,--- ,t, and that
top(F1), - - - , top(Fy) are k-linear independent forms of degree s. Hence Fi, --- , F;

is a minimal system of generators of I, in particular ug(I+) = r and from the
last result we have that 7 is the Cohen-Macaulay type of A. Furthermore, since
deg(F;) =s,i =1,---,t, we have

molt =1tnso ;.

From the last result we deduce Soc(A) = n’, i.e. A is Artin level of socle degree s.
In the last section we will prove the following result, see Proposition 2.6.3,
Corollary 2.4.5 Let A = R/I be an Artin algebra of embedding dimension two.
Then
nw) =t(R/I)+ 1.

A is Gorenstein if and only if I is a complete intersection.

The initial degree of A = R/I is the integer r such that / € m” and I ¢ m"*!.
The socle type of A is the sequence 0 (A) = (0,...,00-1,0/,...,05,0,0,...), s
is the socle degree of A, with

) (0:n)Nni
o; = dlmk . .
(0:n) Nnit!
Notice that oy > 0 and 0; = 0 for j > s,. See [20] for some conditions on a

sequence of integers to be the socle type of an Artin algebra

Remark An Artin algebra of socle degree s and Cohen-Macaulay type ¢ is level if
and only if 0; = O for j # s and oy = t. The Artin algebra is Gorenstein if and
onlyifo; =0for j #sandos, = 1.

We say that the Hilbert function HF4 is maximal in the class of Artin level
algebras of given embedding dimension and socle type, if for each integer i,
HF4 (i) = HFp(i) for any other Artin algebra B in the same class. The existence
of a maximal HF4 was shown for graded algebras by Iarrobino [20]. In the general
case by Froberg and Laksov [17], by Emsalem [16], by Iarrobino and the author of
this notes in [10] in the local case.

Definition 2.4.6 An Artin algebra A = R/I of socle type o is compressed if and
only if it has maximal length e(A) = dimkx A among Artin quotients of R having
socle type o and embedding dimension 7.
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The maximality of the Hilbert function characterizes compressed algebras as
follows. If A is an Artin algebra of socle type o, it is known that for i > 0,

HF 4 (i) < min{dimg S;, o; dimg So + 0741 dimg S + - - - 4+ o5 dimg Ss—; }.

Accordingly with [20], Definition 2.4. B, we can rephrase the previous definition in
terms of the Hilbert function.

Definition 2.4.7 A local k-algebra A of socle degree s, socle type o and initial
degree r is compressed it

> ou(dimg S,—;) ifi >r
HF4 () =
dimy S; otherwise.

In particular a level algebra A of socle degree s, type ¢ and embedding dimension n
is compressed if

HFA(i)zmin{<n+l:_l), z(”“_l:_l)}.
l S —1

If t+ = 1 and the above equality holds then A is called compressed Gorenstein
algebra or also extremal Gorenstein algebra.

It is clear that compressed algebras impose several restrictive numerical condi-
tions on the socle sequence o (see [20, Definition 2.2]). For instance if r is the initial
degree of A, then

o1 = max{0, dimy S, 1 — Y (0, dimy S, -—1)}. 2.1)

u=r

If s > 2(r — 1), then it is easy to see that 0,1 = 0 because dimg S;—_(-—1) >
dimy S,_;. This is the case if A is Gorenstein.
The following result was proved in [20, Proposition 3.7 and Corollary 3.8].

Proposition 2.4.8 A compressed local algebra A = R/ whose dual module I+ is
generated by F1, ..., F; of degrees dy, ..., d; has a compressed associated graded
ring grn(A) whose dual module is generated by the leading forms of Fi, ..., F;.
Conversely if gro(A) is compressed, then A is compressed and o (A) = o (gry(A)).

It is well known that if gr,, (A) is Gorenstein then A is Gorenstein. On the other
hand, if A is Gorenstein then gr,(A) is no longer Gorenstein. In order to study the
associated graded ring to A Iarrobino considered the following construction. For
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a=0,---,5 — 1,5 = s(A), consider the homogeneous ideals of gr,(A)
C(a) =P Clay
i>0

(0 ‘A nerlfafi) N ni

Cla)i = (0:4 nerlfafi) Nnitl

C grn(A);

This defining a decreasing filtration of ideals of grn(A)
grm,(A)=C0)2C(1)>2---2C(s) =0

Notice thatifa > 1 then C(a); = Oforalli > s—aand C(0); =O0foralli > s+1

Definition 2.4.9 (Iarrobino’s (Q-Decomposition of gr,(A)) For all a =
0,---,s — 1 we consider the gry, (A)-module

0(@a) = C(a)/Cla +1).

Since the Hilbert function of A and gr,(A) agree we have the larrobino’s Shell
decomposition of HF 4:

s—1

HF, = ) HFg(
a=0

Proposition 2.4.10 If A is Artin Gorenstein then Q(a) is a reflexive gry(A)-
module:

Homy (Q(a)i, K) = Q(a)s—a—i

i=0,---,5 —a. Inparticular, HF g4 is a symmetric function w.r.t *,%.

Example 2.4.11 (Shell Decomposition) Assume that HF = {1,m,n, 1} is the
Hilbert function of an Artin Gorenstein algebra A = R/I The Shell decomposition
of HF is, s = 3,

i 0 1 23
HF, |l m nl
HFQ(O) 1 n nl
HFQ(l) Om—n00
HFp[0 0 00

som > n. In fact, all function {1, m, n, 1}, m > n, is the Hilbert function of an Artin
Gorenstein algebra Theorem 2.5.11. Notice that from Macaulay’s characterization
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of Hilbert functions we get that {1, m, n, 1} is the Hilbert function of an Artin
algebraiff 1 <n < ("), [3, 30].

The following result is due to De Stefani, [6], it is a generalization of some results
of Iarrobino.

Proposition 2.4.12 Let A = R/I be an Artin level algebra of socle degree s and
Cohen-Macaulay type t. Then

(i) QQ0) = gra(A)/C(1) is the unique (up to iso) graded level quotient of grn (A)
with socle degree s and Cohen-Macaulay type t.

(ii) Let F1,---, F; € S be generators of I+ such that such that deg(F;) = s,
i = 1,---,t and top(F1), - - ,top(Fy) are K-linear independent forms of
degree s, Proposition 2.4.4. Then Q(0) = R/(top(F1), - - - ,top(Ft))J‘.

(iii) The associated graded ring gry(A) is an Artin level algebra of socle degree s
and Cohen-Macaulay type t iff grn(A) = Q(0).

As corollary we get:

Proposition 2.4.13 Let A = R/I be an Artin Gorenstein algebra of socle degree
s. Then the following conditions are equivalent:

(i) gra(A) is Gorenstein,
(ii) gra(A) = Q(0),

(iii) HF 4 is symmetric.

2.5 Classification of Artin Rings

It is known that there are a finite number of isomorphism classes for e < 6.
J. Briangon [2] proved this result for n = 2, k = C; G. Mazzola [24] fork = k and
char(K) # 2, 3; finally B. Poonen [26] proved the finiteness for any k = k. On the
other hand D.A. Suprunenko [31] proved that if k infinite, there are infinite number
of isomorphism classes for e > 7.

The problem of classification is in general very hard. For instance, before the
paper [12], an open problem was the classification of Artin algebras with Hilbert
function {1, m, n, 1}, even if A is Gorenstein.

Other families that has been classified are the almost stretched algebras, [14, 15].
We say that a Artin Gorenstein algebra A = R/I is Almost Stretched if m? is
minimally generated by two elements or equivalently, the Hilbert function of A is

t—1 s—t

—— ——
HFAZ{lanaza“'52517"'71}

We assume that 3 <t + 1 <. We say that A is of type (s, ).
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In the following result we present the possible analytic types of almost stretched
algebras, [14, 15] and [9]. In fact, we proved more: we determined the pairwise
analytic types of almost stretched algebras. We omit describing it here.

Theorem 2.5.1 Let A = R/I be an Almost Stretched algebra of type (s, t) with
3<t+1<s.

If there is not r such that2(r +1) =s —t + 1 ors > 3t — 1 then I is isomorphic
to one of the following ideals:

Io1, I 1, - .o, Ininfr—1,5—1),1-

Assume that s < 3t — 2 and let r be the integer such that 2(r + 1) =s —t + 1, then
I is isomorphic to one of the following ideals:

Ioi, ... L1, Lrv1,15 - -5 Iminfr—1,5—1),1
{Ir,a}aek*s {Ir,a+x1}aek*s ey {Ir,a+xrr72}46k*

Where 1, ; is the ideal generated by
) 1 ‘.

{(XixX M<izjen (i, jy(,2) 1X) — X3 13<j<n, X3 — xf+ X2 — 2X) e xixo
Example 2.5.2 ([15]) Let A be an Artin Gorenstein algebra with Hilbert function
{1,2,2,2,1, 1, 1}. Then the analytic types are represented by
1. I = (% —xy—x* x3y)

2. b= —-xy—xtxy)
3. I. = (y*> — x2y — cx*, x3y), c e k*
The moduli space, see [19] has two isolated points and a punctured affine line.

The main result of this section shows that some Artin algebras are isomorphic to
their associated graded ring. J. Emsalem called these algebras “canonically graded”.

Definition 2.5.3 (Emsalem) An Artin local algebra A = R/I is canonically
graded if A is analytically isomorphic to gr, (A) = R/I*R.

Notice that there are non-canonically graded algebras, for instance:

Example 2.5.4 ([15]) Let A be an Artin Gorenstein algebras with HFy =
{1,2, 3,2, 1} then A is is isomorphic to one and only one of the following quotients
of R = K[[x1, x2]]:

LI = (xf %)),

2. I = (x},x7 +x3), and

3. = (x?,x% — xf’).

Notice: 13* = (x‘l‘, x%) = Iy and I} 2¢ I3, i.e. R/I3 is not canonically graded.

From now on we assume that the ground field k is of characteristic zero.
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If L is a submodule of S generated by a sequence G := Gji,...,G; of
polynomials of S, then we will write

AG = R/ Ann(L).

Given a form G of degree s and an integer ¢ < s, we denote by A?(G) the
("7,1:17(1) X (";:“q) matrix whose columns are the coordinates of 9; (G), |i| = g,
with respect to (x£)* = }\yL, |L| = 5 — q. We will denote by (L,i) the
corresponding position in the matrix A?(G). In the following L + i denotes the
sum in N".

Proposition 2.5.5 ([11]) Let G € S =K[y1, - - - , yu] be a form of degree s. Then

HF 4, (s — i) = rank (A'(G)) < min{<n —1+s —i>, (n —1 +i>}

n—1 n—1

fori =0, ---,s. The equality holds if and only if Ag is compressed.
Given an integeri < s, then

Al(G) :'L' A.&‘*i (G)

where * denotes the transpose matrix.

Notice that from the last result and Proposition 2.3.5 it is easy to deduce an
alternative proof of the fact that a graded Gorenstein algebra Ag has symmetric
Hilbert function.

Let A be a graded level algebra. We can define for all integers i < s the block
matrix

AN (Gy)
ANG) = : (2.2)
AN(Gy)

T < (M

whichis a 7 ( ) matrix. We get the following result.

Proposition 2.5.6 Let A = Ag be a compressed algebra of socle degree s and
Cohen-Macaulay type type t. Then for everyi = 1,...,s

HF 4 (i) = rank(A'(G[s])) = min{(n -+ ">’ ,(n —1+4s-— ,)} .

n—1 n—1

Proof By Proposition 2.4.8 we know that gr,(A) is level compressed of socle
degree s and type . Since gr,(A) is level if and only if gr,(A) >~ Q(0) =
§/(top(G))*, the result follows by Proposition 2.5.5.
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Given a k-algebra C, quotient of R, we will denote by Auz(C) the group of the
automorphisms of C as a k-algebra and by Autk(C) as a k-vector space. Since R is
complete ¢ € Aut(R) is determined by

p(x;)) €Em

i=1,---,n,1i.e. ¢ acts by substitution of x; by ¢(x;).

For any ¢ € Autx(R/m* 1) we may associate a matrix M (¢) with respect to the
basis 2 of size r = dimg(R/m’*t!) = (":”) already defined at the end of Sect.
2.5. Given I and J ideals of R such that m**! C I, J, there exists an isomorphism
of k-algebras

¢:R/I - R/J
if and only if ¢ is canonically induced by a k-algebra automorphism of R/m**!
sending I/m**! to J/m**!. In particular ¢ is an isomorphism of k-vector spaces.
Dualizing

9" (R/D* — (R/D*

is an isomorphism of the k-vector subspaces where (R/1)* ~ I+ and (R/J)* ~ J+
of S<; according to the exact paring (2.3.6). Hence * M (¢) is the matrix associated
to ¢* with respect to the basis £2* of S<;.

We denote by Z the subgroup of Autx(S<s) (automorphisms of S<; as a k-
vector space) represented by the matrices * M (¢) of G, (k) with ¢ € Aut (R/m’ 1,
For all p > 1, I, denotes the identity matrix of order ("er 71). By Emsalem, [16,
Proposition 15], the classification, up to analytic isomorphism, of the Artin local k-
algebras of multiplicity e, socle degree s and embedding dimension 7 is equivalent
to the classification, up to the action of Z, of the k-vector subspaces of S<; of
dimension e, stable by derivations and containing the k-vector space S<;.

Let F = Fy,..., F;, respectively G = Gy, ..., G, be polynomials of degree s.
Let ¢ € Aut(R/m**+1), from the previous facts we have

¢(AF) = Ag ifand onlyif (¢*)"'((F)r) = (G)r. 2.3)

If ;i = bjjo} +...bj;of € S<, then we will denote the row vector of the
coefficients of the polynomial with respect to the basis £2* by

[Filex = (bi1, ..., bir).
If there exists ¢ € Aut(R/m’*t!) such that

[Gile+M(¢) = [Filo+, for everyi =1,...,¢, then ¢(AF) = Ag 2.4)
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Let g5, be an automorphism of R/m**! such that ¢,_, = Id modulo m?*!,
with 1 < p <, thatis

Ys—p(xj) =x; + Z a;./xi + higher terms (2.5)
lil=p+1
forj=1,...,nand aij € k for each n-uple i such that |i| = p+ 1. In the following
n+
we will denote a := (al, |i| = p+ 1;--- ;a”, |i| = p+ 1) e k"G,
The matrix associated to ¢s_ ,, say M (¢s—p), is an element of G/, (k), r = (Z’Ii),

with respect to the basis £2 of R/m”l. We write M (¢s—p) = (B j)o<i,j<s Where
Bijisa (") x (”+~J(_l) matrix of the coefficients of monomials of degree i

appearing in <p(x~/) where j = (ji1,..., ju) such that |j| = j. It is easy to verify
that:

0,0<i<j<s,orj=1,i=1,---,s,
Bij=11Li,i=j=0,---,s,

0, j=s—p,---,s—1i=j+1,---,s, and (i, j) # (5,5 — p).
The matrix M (¢s—p) has the following structure

1l 0 -~ 10| O 0 (0|0
0l h 0 (0] O 0 |0

0
M((Ps—p) =

0|Bpr1a| O L,| 0 |o

0 Bpi22/0| 0 |L—pt1|O

0o ... . . : 0 |-.|0

0| Bs.1 Bso |...|Bss—p| O |...|
The entries of Byy1,1, Bp42,2, ..., By s—p are linear forms in the variables aij, with
lil=p+1,j=1,---,n. We are mainly interested in By ;_, which is a ("+§71) X
("Jri:i*l) matrix whose columns correspond to x with |W| = s — p and the rows

correspond to the coefficients of x© with |L| = s in ¢(x").
Let F,G be polynomials of degree s of P and let ¢;_, be a k-algebra

isomorphism of type (2.5) sending Ar to Ag. We denote by F[j] (respectively
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G[j]) the homogeneous component of degree j of F (respectively of G), that is
F=F[s]+ Fls—1]1+...(G=G[s]+G[s—1]4+...).
By (2.4) we have

[GlaM(ps—p) = [Fla+, (2.6)

in particular we deduce

[Gls — plles + [Gls]l@+Bss—p, ] =5 — P,
[Fljlle: = (2.7
(Gl 1ax j=s—p+1,-- s

We are going to study [G[s]]o+ By s—p. Let [;] be the vector of the coordinates
of G[s] w.r.t. 2%, i.e.

1 .
Glsl= Y i '

lil=s

the entries of [G[s]] e+ By s—p are bi-homogeneous forms in the components of [e; ]

anda = (al.l, ...,a!) suchthat |i| = p + 1 of bi-degree (1, 1). Hence there exists a
matrix M5 ~PI(G[s]) of size ("_}:SI_” ) x n('rl:’f ) and entries in the K[c;] such that
“([i1Bs 5—p) = MU ~PU(Gs]) "a (2.8)

where ‘a denotes the transpose of the row-vector a. We are going to describe the
entries of MU~P1(G[s]). We label the columns of M~P1(G[s]) with the set of

indexes (j,i), j = 1,---,n, |i| = p + 1, corresponding to the entries of a =
@ lil=p+1;-ahlil=p+1) ekGD.

Foreveryi =1, -, n, we denote S;) the set of monomials x* of degree p such
that x € x; (x;, -+, x,)P~", hence #(S%) = (P*;j’f*").

Lemma 2.5.7 The matrix M ~P)(G[s]) has the following upper-diagonal struc-
ture

Ml*
0 MZ*
werGsy =z |l
0 |0 |0 |Mu—1|*
0 |0 |0 |0 M,

where M is a matrix of size (S_f:;t'f_j) X (Ztll’), j = 1,---,n, defined as

Jollows: the entries of M j are the entries of M [s=P1(G[s]) corresponding to the rows
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W e log(Ssj_p) and columns (j, 1), |i| = p + 1. We label the entries of M; with
respect to these multi-indices. Then it holds:

(i) forall W = (wy,--- , wy) € log(S]_,) and i, |i| = p+1,
wi AP GIsD w—s1.i) = Miaw, 1,0y

. . j+1

(it) forall j=1,---,n—1, W €log(S;_,),

M1, (w,(j+1,9) = Wj+1 M (L,j,%)

withL=68;+W —§j41,
From the last result we get the key result of this chapter.

Corollary 2.5.8 If s < 4 then rank (MY5~—PY(G[s])) is maximal if and only if
rank (AP (G[s))) is maximal.

Proof Notice that MS~P1(G[s]) has an upper-diagonal structure where the rows
of the diagonal blocks M are a subset of the rows of the first block matrix M.
Let us assume that the number of rows of M; is not bigger than the number of
columns of M1, as a consequence the same holds for M; with j > 1. Then we can
compute the rank of MI5~P1(G[s]) by rows, so rank (M~Pl(G[s])) is maximal
if and only if rank (APT1(G[s])) is maximal. Since M is a (S_p_z"’") X (”'H’)

s—p—1 n—1
matrix, if ("t;’i Iz) = ("rh 72) < ("P) we get the result. This inequality is
equivalentton+s—p—2 <n+p,ie.s <2p+2,since p > 1 we get thats < 4.

We may generalize the previous facts to a sequence G = Gi,...,G; of
polynomials of degree s of S. Let ¢, be a k-algebra isomorphism of type (2.5)
sending A to Ag where F = Fi, ..., F;. In particular we assume that, as in (2.6),

[Grlo=M(ps—p) = [Frla+,

for every r = 1,...,t. We deduce the analogues of (2.7) and we restrict our
interest to

[Glslle*BE_,
where

Bs,s—p
B@l‘ —

s,s—p "

Bss—p

obtained by gluing ¢ times the matrix By _, and where [G[s]]o+ is the row
(IGr[slle+ : r = 1,...,1). In accordance with (2.8), it is defined the matrix
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A}ZI'S’P](G, [s]) of size ("7::?7”) x n(Zt’l’) and entries depending on [G[s]]e+ such
that

“([G[s1l@*Bs.s—p) = M¥~PYG,[s]) "a
If we define

MB=PI(G[s])
MB=PIGs)) = : (2.9)
MUB=PI(G,[s])

which is a t("f}:ifp ) x n("*F) matrix, we get

([Glslle-BEl_,) = ME~PI(Gls)) "a. (2.10)
The matrix M*~P1(G[s]) has the same shape of M*~P1(G[s]), already described
in Lemma 2.5.7 and its blocks correspond to suitable submatrices of (APTY(Gs])
(see (2.2)). Hence we have an analogue to (2.7) for the level case

[G,ls — pllgs +a “(MS~PNG[s)), j=s—p,
[Fr[jllex =
[GrLj1]g+ j=s—p+1,--,s
2.11)

forallr =1,...,1.
In the next result we generalize the main result of [12].

Theorem 2.5.9 Let A be an Artin compressed Gorenstein local K-algebra. If s < 4
then A is canonically graded.

Proof Let A be an Artin compressed Gorenstein local k-algebra of socle degree
s > 2 and embedding dimension n. Then A = Ag with G € § a polynomial of
degree s and gr, (A) = S/ Ann(G[s]) is a compressed Gorenstein graded algebra
of socle degree s > 2 and embedding dimension n (see Proposition 2.4.8).

The main result of [12] shows that if s < 3 then A is canonically graded. Let
us assume s = 4, then the Hilbert function is {1, n, ("J{l), n, 1}. Because Agja)
is a compressed Gorenstein algebra with the same Hilbert function of A, we may
assume G = G[4] + G[3]. In fact S7, S» C (G[4]) g because of (2.5.6) and, as a

consequence, it is easy to see that (G[4] 4+ G[3])r = (G[4] + G[3]+ G[2]+.. )R-
We have to prove that there exists an automorphism ¢ € Aut(R/m>) such that

AGg = Agl4]-
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We consider forevery j =1,...,n

p3(xj) =x; + Z al.jxi + higher terms
li|=2

IfAr = (p3_1(Ac;), then from (2.7) and (2.8) we get

[F[31le* = [G[3lle+ +a (MBYG[4])
(2.12)
[F[4]]lex = [G[4]]ex

where a = (ail, ..., a}'). By Proposition 2.5.6 and Corollary 2.5.8, we know that

the matrix M31(G[4]) has maximal rank and it coincides with the number of rows,
so there exists a solution a € K" of (2.12) such that F[3] = 0 and F[4] = G[4].

The aim is now to list classes of local compressed algebras of embedding
dimension n, socle degree s and socle typeo = (0, ...,0/—1,07,...,05,0,0,...)
which are canonically graded. Examples will prove that the following result cannot
be extended to higher socle degrees. This result extends the main result of [12]
and [6].

Theorem 2.5.10 Let A = R/I be an Artin compressed K-algebra of embedding
dimension n, socle degree s and socle type o. Then A is canonically graded in the
following cases:

(1) s <3,
(2) s=4andey =1,
(3) s=4andn = 2.

Proof Since a local ring with Hilbert function {1, n, t} is always graded, we may
assume s > 3.

If s = 3 and A is a compressed level algebra, then A is canonically graded
by De Stefani [6]. If A is not necessarily level, but compressed, then by (2.1) the
socle type is {0, 0, 02, 03} and the Hilbert function is {1, n, ha, 03} where hy, =
min{dimg R>, 0o + o3n}. Then we may assume that in any system of coordinates
I+ is generated by e; quadratic forms and e3 polynomials G1, ..., G, of degree
3. Then the result follows because R/ Anng(G1, ..., G4;) is a 3-level compressed
algebra of type o3 and hence canonically graded.

Let us assume s = 4 and o4 = 1. We recall that if A is Gorenstein, then the result
follows by Theorem 2.5.9. Since A is compressed, then by (2.1) the socle type is
(0,0,0, 03, 1). This means that /1 is generated by e3 polynomial of degree 3 and
one polynomial of degree 4. Similarly to the above part, because S<y € (I*)*, I+
can be generated by o3 forms of degree 3 and one polynomial of degree 4. As before
the problem is reduced to the Gorenstein case with s = 4 and the result follows.

Assume s = 4 and n = 2. If o4 = 1, then we are in case (2). If o4 > 1, because
A is compressed, the possible socle types are: o; = (0,0,0,0,7) withi =2,---,5
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and since A is compressed, the corresponding Hilbert function is {1, 2, 3,4, i}. In
each case A is graded because the Hilbert function forces the dual module to be
generated by forms of degree four.

As a corollary of the last result we get [12].

Theorem 2.5.11 Let A be an Artinian Gorenstein K-algebra with Hilbert function
{1, n, m, 1}. Then the following conditions are equivalent:

(i) A is canonically graded,
(ii) m = n,
(iii) A is compressed.

From this result we can deduce

Corollary 2.5.12 ([12]) The classification of Artinian Gorenstein local k-algebras
with Hilbert function HF 4 = {1, n, n, 1} is equivalent to the projective classification
of the hypersurfaces V (F) C P{'{_l where F is a degree three non degenerate form
in n variables.

Next we will recall the classification of the Artin Gorenstein algebras for n =
1,2,3,[12].

If n = 1, then it is clear that A = Kk[[x]]/ (x*), so there is only one analytic
model. If n = 2 we have the following result:

Proposition 2.5.13 ([12]) Let A be an Artinian Gorenstein local K -algebra with
Hilbert function HF 4 = {1,2,2, 1}. Then A is isomorphic to one and only one of
the following quotients of R = K[[x1, x2]]:

| Model A = R/I|Inverse system F| Geometry of C = V(F) C Pll( |
| (X?, X%) | y%yz |D0uble point plus a simple point|
| (x1x2, Xf - x%’) | yf’ - y;’ | Three distinct points |

Finally, for n = 3 first we have to study with detail the classification of plane
curves, in particular, the elliptic curves, see for instance [29]. Any plane elliptic
cubic curve C C ]P’lz( is defined, in a suitable system of coordinates, by a Weierstrass’
equation, [29],

Wab @ ¥3y3 = yi +ay1y; + by;

with a, b € k such that 4a> 4 27b% # 0. The j invariant of C is

3

i(a,b) = 1728
j(a.®) 4a3 4 27b2

Itis well known that two plane elliptic cubic curves C; = V(W ;) C P2,i=1,2,
are projectively isomorphic if and only if j (a1, b1) = j(az, b2).
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For elliptic curves the inverse moduli problem can be done as follows. We denote
by W () the following elliptic curves with j as moduli : W (0) = y2y; + y2y2 — y3,
W(1728) = y3y3 — y1¥3 — y3, and for j # 0, 1728

W)= — 1728)(y§y3 + y1iy2y3 — yf) + 36y1y32 + y&?-

We will show by using the library INVERSE-SYST . LIB that:

Proposition 2.5.14 Let A be an Artin Gorenstein local k-algebra with Hilbert
function HFy = {1,3,3,1}. Then A is isomorphic to one and only one of the
following quotients of R = K[[x1, x2, x3]] -

Model for A = R/1 Inverse system F Geometry of C=V (F) C]Pﬁ
(xlz, xzz, x32) Y1y2 )3 Three independent lines
(x%, X1X3, x3x§, xg, x32 + x1x2) 2 (y1y2 — y%) Conic and a tangent line
(x%, x%, x% + 6x1x72) v3(y1y2 — y%) Conic and a non-tangent line
(x%, X1X2, x% + x% — 3x1x3) y§y3 - ylz(y1 +y3) Irreducible nodal cubic
(x%, X1X2, X1X3, xg, x? + 3x22x3) y22y3 — y? Irreducible cuspidal cubic
(xg, xf + 3x§x3, X1X3, x% —xx3| W) = ygyl + y2y§ — yf Elliptic curve j =0
—|—x§, X1Xx2)
(x% + x1x3, xX1X2, )cl2 — Sx%) W(1728) = y§y3 — ylyg — yf Elliptic curve j = 1728
I1(j) = (x2(x2 —2x1), Hj, G;) W(j), j#0,1728 Elliptic curve with j#0, 1728

with:
Hj = 6jx1x; — 144(j — 1728)x1x3 + 72(j — 1728)x2x3 — (j — 1728)%x3, and
Gj = jx? —12(j — 1728)x1x3 + 6(j — 1728)xpx3 + 144(j — 1728)x3;

1(j1) = 1(j2) ifand only if ji = ja.

Proof Let us assume that F is the product of the linear forms Iy, I», I3. If I1, 15,3
are k-linear independent we get the first case. On the contrary, if these linear forms
are k-linear dependent, we deduce that F is degenerate. Let us assume that F is the
product of a linear form / and an irreducible quadric Q. According to the relative
position of V (/) and V (Q) we get the second and the third case.

Let F be a degree three irreducible form. The first seven models can be obtained
from the corresponding inverse system F by using the command idealAnn of [8].
For the last case see [8].

2.6 Computation of Betti Numbers

In this chapter we address the following problem: How can we compute the Betti
numbers of I in terms of its Macaulay’s inverse system L = I without computing
the ideal 7? This is a longstanding problem in commutative algebra that has been
considered by many authors, see for instance [22], Chap. 9, Problem L. For instance,
if A = R/I is an Artin Gorenstein local ring then its inverse system is a polynomial



2 Inverse Systems of Local Rings 151

F on the variables xi, ..., x, of degree the socle degree of A. In this chapter we
compute the Betti numbers of A in terms of the polynomial F instead of computing
I and then to compute the Betti numbers of A = R/I.

Let I be an m-primary ideal of R. Let F, be a minimal free resolution of the
R-module R/1

Fe O—>Fn=Rﬂ”—>...—>F1=Rﬂ1—>IE‘0=R—>R/I—>0,

the p-th Betti number of R/I is B,(R/I) = rank g(IF,), 1 < p < n. Tensoring I,
by the R-module k we get the complex

F, ®r k 0—kPr — ... K\ —k=k—0.
Since [y is a minimal resolution we get that the morphisms of e @ k are zero, so
Bp(R/1T) = dim(Tory (R/1,K)),

p =1,...,n. Let us now consider Koszul’s resolution of R defined by the regular

sequence X, ..., X

n 1
dVl n
Ke 02K, =ARS .. —K=AR-DK=R—k—0

We consider the R-basis of R": ¢; = (0,...,1¢,...,0) € R",i = 1,...,n; for
all 1 <iyp < --- <ip < n weset €iy,...i, =€) N...e, € /\p R". Since the set
€il,ips 1 <i; <---<ip <n,forma R-basis of K, we define the morphism

dp K, — K,

by dpeiy,....i,) = 25 (=1 " xi;ei ;i € Kp—1. Notice that the basis

.....

€il,oips 1 < iy < --- < ip =< n, this defines an isomorphism of R-modules

% RG) : : i
AP R" = R, such that ¢, (ej,..., i) = Vi, | S i1 < - <ip < nis
the element of R(P) with all entries zero but the (i1, ..., i,)-th thatit is equal to 1.

We denote by A, the associated matrix to d;, with respect the above bases of RG)

and R(PL), notice that the entries of A, are zeroor +x;,i =1,...,n.
We can compute Torﬁ (R/1,K) by considering the complex R/I Qg K,

R/I ®r K, 0— R/DW — ... — (R/DD — R/I — k —> 0.
We denote again by d,, the morphism Idg,; ® rd), then

ker(dp)

R _ _
Tor® (R/1,k) = Hp(R/I ®r Ka) = im(dyon)
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for p =1, ..., n. If we consider the dual of R/l ®r K, with respect to E we get,
L=1I"
(R/I ®r K,) 0—wk—L— LYV — .. .LW —0.

Notice that, if h = (ki i), 1 <ij <--- <ip_1 <n) e L&) then

di(h) = “Ay(h). (2.13)

Proposition 2.6.1 Let L C S be a finitely generated sub-R-module of S of
dimension e = dimg(L). If I = Anng(L) C R then

By(R/I) = e<2) — dimy (im(d})) — dim (im(d’; 1))

forp=1,...,n

Proof Since L is a finitely dimensional k-vector space and the duallzing functor *
is exact and additive we get
ker(d; )

Bp(R/T) = dimy ( () ) = dimy ker(d?_ ;) — dimy im(d).

On the other hand dimk(ker(d; L)) = e(Z) — dimk(im(d; +1)) so from these
identities we get the claim.

Next step is to compute the Betti numbers effectively. For all + > 0 let W; be
the set of standard monomials x%, « € N", of degree at most ¢ ordered by the
local deg-rev-lex ordering with x, < --- < x1. For instance, forn = 3 andt = 2,
Wy = {x%, X3X2, X3X1, x%, X2X1, x12, x3,Xx2,x1, 1}.Forall p =1, ..., n we consider

the following set .#, , of linearly independent elements of rRG

x% in the (i1, ..., 1p)-th component,

mot;il,m,ip =

0 otherwise,

n

deg(e) <s,1 <ij <--- <ip < n.Notice that #(.# ) = (”+S)(;).
Assume that s = deg(L). Given a k-basis wy, ..., w, of L we consider the

following K-basis, say B, of L.
w; in the (i1, ..., ip)-th component,

0 otherwise,
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i=1,...,e,1 =iy <--- <ip < n. We denote by A;(L) the matrix such that

is a matrix of (”;IH) (Z) rows and e(p'il) columns and the entries are zero or +x;,

i =1,...,n. Then we have:

Proposition 2.6.2 For any finitely generated R-module L and 1 < p < n we have
dimk(im(d;)) = rank (A;(L)).

Ife = dimg(L) and I = Anng(L) C R then
Bp(R/I) = e(Z) — rank (A;(L)) — rank (A[JJF_H(L)).

forp=1,...,n.

From this result we get that the determination of the Betti number 8,(R/I)
involves the computation of the rank of A;;(L), p = 1,...,n. Recall that these
matrices are huge, see the comments before last result, so they are difficult to
manage. Moreover, this method of computation of Betti numbers implies the
computation or election of a k-basis of L. This is not possible if we want to consider
a general L or the deformations of L, see Example 2.6.7.

In the next result we compute the Cohen-Macaulay type of R/I and we partially
recover the classical result of Macaulay. In the second part, case n = 2, we prove
a well known result of Serre that can be deduced from Hilbert-Burch structure
theorem, i.e. the class of codimension two complete intersection ideals coincides
with the class of codimension two Gorenstein ideals.

Proposition 2.6.3 Let L be a finitely generated R-module of S of dimension e. Then
the Cohen-Macaulay type of R/I, I = Anng(L), is

t(R/I) =dimg(L/mo L) = pugr(L).
In particular, for n = 2 then
w(d)=t(R/I)+ 1.

In particular, I is a complete intersection if and only if R/I is Gorenstein.

Proof The first result is Proposition 2.4.3.
Assume that n = 2. Then the complex (R/I ®r Kq)* is

dg df d; d3
O—>k—>L—>L2—>L—’>0,
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and im(d3) = m o L. From Corollary 2.6.1 with p = 1 we get
() =2e¢ —(e—1) —dimgk(mo L) =dimx(L/mo L)+ 1 =1t(R/I)+ 1,

so I is a complete intersection ideal, i.e. u (/) = 2, if and only if +(R/I) = 1, i.e.
R/I is Gorenstein.

Given a finitely generated sub- R-module L of S we denote by L :g m the sub-R-
module of S formed by the polynomials 4 € S such that m o &~ C L. Notice that if
L C S<sthen L :g m C S<s41 and, in particular, dimk (L :5 m) < oo. We consider
the k-vector space morphism induced by d}

dik,s DS<sl —> ng
with

T,s(h)z(xloh,-..,xnoh)

forall h € S<s41. Itis easy to provethat L :g m = (diks)_l(L”).

Proposition 2.6.4 Let L C S be a finitely generated sub-R-module of S of
dimension e = dimg (L) and degree s = deg(L). If I = Anng(L) C R then

uU)=dn—D+<n+;+v—dmmmMﬁﬁ+Lﬁ-
Proof If we write V = L" then we have
dimy (L :5 m) = dimy ((d} )" (V)
= dimk((di"s)_l(v Nim(df () = dimg(V Nim(df ) + 1
because dimg (ker(¢s)) = 1, so
dimy (L :s m) = dim (V) + dimk(im(di*’s)) - dimk(im(dfs) +V)+1
= n.e + dimk(S<s41) — 1 — dimg (im(d{ ) + V) + 1

= ne+ (") — dimg(im(@; ) + V).

Claim p(I) = dimg (L :s m/L).
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Proof of the Claim Let us consider the exact sequence of R-modules

I R R
00— — — — 0
m/ m/ 1

dualizing this sequence we get the exact sequence on S-modules
I *
0—>L—>(mI)J‘—>< ) — 0.
m/

Hence

dimg (/)" = dimg((mD)*) — dimy(L)
= dimg(R/mI) — dimx(R/I)

= dimy(I/mI) = p(I)

by Nakayama’s lemma. In particular, we get u (/) = dimg ((ml )t/ L) . Last step is
to prove that (mI)t = L :5 m. Given a polynomial 7 € S then h € (mI)*t if and
only if 0 = (mI)oh =1 o (moh), so (mI)~ is the set of polynomial % such that
moh C L,ie (ml)* =L :gm.

From the Claim we get

. . n+s+1 o
wn(l) =dimg(L :5 m) —dimg(L) = n.e+ —dimg(im(d; ,) + V) —e,
n &
SO

1) = (n — e + (” +:l * 1) — dimy (im(d} ) + V).

Next we will compute dimg (im(d f ;) + L") by considering a matrix that we are

going to define. We denote by M the n("+*) x (("+S+1) - 1)-matrix such that the

n n
i-th column, i € [1, ("JFZH) — 1], consists in the coordinates of x;, o x%,..., x; o x%

with respect the base W, where x is the i-th monomial of Wy .
Let L C S be a finitely generated R-module of dimension e and degree s. We
pick a basis wy, ..., w, of L and we consider the following basis, say B, of L":

(O,...,u]),-,...,O) € L"forj = 1,...,n,i = 1,...,e. We denote by B(L)

the n(":‘v) X (n.e)-matrix, such that the columns consists of the coordinates of the
elements of B with respect.#; 1. Finally, M(L) is the n(":‘v) X (("+fl+l) -1+ n.e)
block matrix

M(L) = (M | B(L));
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notice that
dimy (im(df ;) + L") = rank (M(L)).

If we want to consider a general L C S, see for instance Example 2.6.7, we have
to avoid considering a basis of L. Let F7, ..., F; be a system of generators of L as
R-module. Then consider the following system of generators of L as k-vector space
x%o F; forall @ € N" of degree less or equal to s = deg(L) and foralli =1,...,r.
We consider now the following system of generators, say B, of L":

J
0,...,x%0F;,...,00 e L"

for j = 1,...,n, & € N with deg(a) < 5. We denote by BT (L) the n(n-ril—s) %

r (":S)-matrix, such that the columns are the coordinates of the system of generators
B with respect .#; 1. This (lazy) method generates a matrix

L(L) = M | BT(L))

with (”+;+1) —1+nr (”;ZH) columns and n (”;IH) rows. Notice that the rank of M((L)
and IL(L) agree. Since the rank of M is ("JFZH) — 1 there is a dimension ("t‘;“) -1

square invertible matrix G such that

GSMS = <IZd)

where Id is the identity matrix of dimension ("*™') — 1 and Z is the
(n(”“) — (”J”H) + 1) X (("+fl+1) — 1) zero matrix. We denote by L*(L),

n n
resp. M*(L), the sub-matrix of G L(L), resp. GsM(L), consisting of the last

n("“) — (”J”H) + 1 rows and the last nr ("H), resp. n.e, columns. Hence we have
n n n

Proposition 2.6.5 Let L be a degree s finitely generated sub-R-module of S.
Then

(i) rank (M((L)) = rank (L(L)) and rank (M*(L)) = rank (L*(L)),
(ii) rank (M(L)) = rank (M* (L)) + ("*+1) = 1.

Remark Recall that AT(L) is a matrix of n(" :Y) rows and e columns. If we mimic
the construction of the matrix M* (L) in the definition of A;“(L), i.e. considering a

system of generators of L instead a k-basis of L, we get a matrix with n(":l”) rows
and nr (”;IH) columns. Notice that M* (L) is a smaller matrix: has n (":S) — ("+fl+1) +
1 rows and nr (") columns.
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In the next result we compute more efficiently the minimal number of generators
of an ideal by considering the matrix M*(L).

Theorem 2.6.6 Let L C S be a finitely generated sub-R-module of S of dimension
e = dimg (L) and degree s = deg(L). If | = Anng(L) C R then

w(I) = e(n — 1) + 1 — rank (M*(L)).

In particular, I is a complete intersection if and only if rank M*(L)) = (e — 1)

(n—1).
Proof The statement follows from Propositions 2.6.4 and 2.6.5.

Example 2.6.7 Letn = 2 and consider a general polynomial of degree two
F =cg+ cs5x1 4+ c4xp + C3x12 + cox1x2 + clx%.

We assume that A = R/I, I = Ann((F)), is an Artinian Gorenstein ring of
embedding dimension two, in particular ©(/) = 2. Hence the Hilbert function of A
is {1,2, 1}. IL(F) is the 12 x (9 4+ 2.6)-matrix:

100000000||c; 0 0
010000000(c; 0 0
001000000(|c3 0 0
000010000|/cy e c1
000001000||cs c3 2
Lepy_ | 000000010l es s

010000000[0 0 0
001000000
000100000
000001000
000000100
000000001

S oo oo
[=leBeRele)
[==leleleNe)

]
]
3
cq ¢ €]
€5 €3 €2
(;6 L'S (;4 L'3 (;2 L'l

S oo oo Cococ oo
(==l el el = =lheileiie]
oo o oo ococ oo
[=eBeBeBel Rl =R =]
S oo oo ocoCococ oo

,3
w
Q
(5]
coocococool ococoococo
=)
=)

oS O O O O
oS oo oo
S O O OO
S OO OO Oy
[=Relelele-]

The matrix IL*(F) is

—c5¢3—c2000c4¢2¢1000
L*(F)=| =2 0 0 000c; 0 0000
—c30 0 000 00000

after elementary transformations, the rank of L*(F) agrees with the rank of

€5 C4 C3 €2 C1
cec1 000
c3c 000

Since the embedding dimension of A is two the rank of this matrix is 3. Hence
rank (M*(F)) = 3 and by Proposition 2.6.6 u(I) =4 — 3 + 1 = 2, as expected,
Proposition 2.4.3.



158 J. Elias
2.7 Examples

In this chapter we present several explicit examples proving that some results cannot
be improved. We also give some explicit computations of the matrices introduced
in chapter 5 and some explicit commutations of the minimal number of generators
following the results of Chapter 6.

The following example shows that Theorem 2.5.9 fails if A is Gorenstein of socle
degree s = 4, but not compressed, i.e. the Hilbert function is not maximal.

Example 2.7.1 ([15]) Let A be an Artin Gorenstein local k-algebra with Hilbert
function HF4 = {1,2,2,2, 1}. The local ring is called almost stretched and a
classification can be found in [15]. In this case A is isomorphic to one and only
one of the following rings :

(@) A= R/I with I = (xl, ) C R = K[[x1, x2]], and I+ = (ylyz) In this case
A is canonically graded,

(b) A= R/Iwith] = (x}, —x} +x3) € R = K[[x1, x2]], and It = (y3y> +»3).
The associated graded ring is of type (a) and it is not isomorphic to R/I. Hence
A is not canonically graded.

(¢) A=R/Iwithl = (x}4x3,x3) € R =K[[x1,x2]], and I'* = (y1y2(y} —y3)).
In this case A is graded.

The following example shows that Theorem 2.5.9 cannot be extended to com-
pressed Gorenstein algebras of socle degree s = 5.

Example 2.7.2 ([11]) Let us consider the ideal
The quotient A = R / 1 is a compressed Gorenstein algebra with HF4 =
{1,2,3,3,2, 1}, I* = (xl, ) and I+ = (yly2 yg). Assume that there exists an
analytic isomorphism ¢ of R mapping / into 7*. It is easy to see that the Jacobian
matrix of ¢ is diagonal because (/ L = (yf y%). We perform the computations
modulo (xp, x2)5, so we only have to consider the following coefficients of ¢

px1) =ax; + ...

@(x2) = bxy + ixl2 + jx1x2 + kx% +...

where a, b are units, i, j, k € k. After the isomorphism x; — 1/axy, xo — 1/bx2,
we may assume a = b = 1. Then we have

I* =) = (xl,xz 2x1xz + 3lx1x2 + 3]x1x2 + 3kx2) modulo (xp, xz)
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Hence there exist @ € K, 8 € R such that
xg — 2xfxz + 3ixixs + 3jx1x§’ + 3kxy = ax| + ﬁx% modulo (x1, x2)°.
From this equality we deduce @ = 0 and
2x3x2 = x3(x2 + 3ix? + 3jx1x2 4 3kx3 — Bxa)  modulo (x1, x2)°,

a contradiction, so I is not isomorphic to 7*.

Let ¢ as above sending [ into I*. If we denote by (z;)i=1.. ¢ the coordinates of
a homogeneous form G[5] of degree 5 in y;, y» with respect to §£2*, then the matrix
M@(G[5]) (s = 5, p = 1) has the following shape

4z14z04z3 0 0 O
3220323324 71 22 23
2723 274 225 222 223 224
Z4 25 26 323 374 325
0 0 O 4z44z5 4z6

In our case G[5] = yf’ y%, so all z; are zero but z3 = 12, hence the above matrix has
rank 4 and it has not maximum rank given by Corollary 2.5.8. Since all the rows are
not zero except the last one, it is easy to see that F[4] = yg is not in the image of
MBI(G[5]), as (2.7) requires.

The following example shows that Theorem 2.5.10 cannot be extended to
compressed type 2 level algebras of socle degree s = 4.

Example 2.7.3 ([11]) Let us consider the forms G[4] = y%y2y3, Gyl4] =
Y1y3y3 + y2y3 in S = K[y1, y2, y3] of degree 4 and define in R = K[[x1, x2, x3]]
the ideal

I = Ann(G1[4] + y3, Ga[4)).

Then A = R/I is a compressed level algebra with socle degree 4, type 2 and Hilbert
function HF4 = {1, 3, 6, 6, 2}. We prove that A is not canonically graded.

We know that I* = Ann(G1[4], G2[4]) and we prove that A and gr,(A) are not
isomorphic as k-algebras. Let ¢ an analytic isomorphism sending I to I*, then it is
easy to see that ¢ = I3 modulo (x1, x2, x3)2. The matrix M[3](G1[4], G1[4]) is of
size 20 x 18 and, accordingly with (2.7), we will show that yg’ is not in the image of
MPY(G1[4], Gol4D).
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Let Fi[4], F2[4] be two homogeneous forms of degree 4 of R = K[y1, y2, ¥3].
We denote by (zij )i=1,...,15 the coordinates of F;[4] with respect the basis 2%, j =
1, 2. Then the 20 x 18 matrix MB!(F|[4], F>[4]) has the following shape, see (2.9),

3zi 31% 31% 37} 32l 31% 00 0 0 0 0|0 0 0 0 0 O
22) 2} 2:k 2ah 2gd 2eb 2 ) Wl Zd G 4 jo o0 0 0 0 o0
21% ZZ% ZZ(I) ZZé ZZé 21}0 0O 0 0 O 0 0 z% zé z% ZJ‘ z% Z(l)
I ) 1 1 1 1 1 1 1 1 1 ) )
5 T A e i s il B R S B B
ZS Z§ Zlg ZIZ ZP ZI4 13 Z ‘76 ZX 19 Zl() 221 241 ZSI Zl Zgl 29
Zg 29 Zjp %13 %14 %50 0 0 0O 0 0 |2z3 2z5 2zg 2zg 2zg 2z
00 0 0 0 0 3@} 3z% 3z% zzil 3ziz 3zi3 00 0 0 0 0
1 1 1 1 1
0O 0 0 0 O O 2215 2218 ng 22,112 22,113 21114 141 zl zgl zlll zllz er;
0 0 0 0 0 0 |zg 29 219 213 214 215|225 223 229 22y, 2213 2z,
000 0 0 0 0|0 0 0 0 0 0|3 3232, 32zly 32d, 32l
3zi 3z§ 3z 3z§ 32 3z§ 000 0 0 0|0 0 0 0 0 0
22.% 22.% 223 22.% 2z 22? z% Z% z% Z% Z% z% 02 02 02 02 02 02
22,23 22,25 2226 2;8 229 22210 02 02 02 02 02 02 1 3 3 Iy 5 g
EREE LSS LN
Zg Zg 2.29 Ziz z 3 Z£4 Z; ZS ZG ZX 29 Zl() 122 242 152 Z72 182 13
Zg 25 270 %13 %14 %1510 0 0 0O 0 0 |223 225 2z¢g 225 225 2z
00 0 0 0 0 |32 3z§ 31§ 322, 3zi2 31i3 000 0 0 0 0
0 0 0 0 0 0 |2z5 2zg 225 227, 2213 227, z% z% z§ z%l z% z%;
2 2 2 2 2 5.2 2 2
0 0 0 0 0 0 |zg zg 279 273 214 215|285 223 225 22y, 2273 227,
000 0 0 0 0[]0 0 0 0 0 0 |3223z 32} 33, 325, 33

It is enough to specialize the matrix to our case for proving that yg’ is not in the
image of MBI(G[4], G2[4]).

Next we will show how to apply the main result of the chapter six, Theorem 2.6.6.
We assume that the ground field k is infinite.

Example 2.7.4 Artin Graded Level algebras of type 2.

Let F,G be two forms of degree three of S = Kk[x1, x2, x3]. We write
I = Anng((F, G)). Then L*({F, G)) is a 26 x 120 matrix in the coefficients of
F, c1,...,c10, and the coefficients of G, ci1, ..., cp9. This matrix has rank 17
considered as matrix with entries in the field K of fractions of ¢y, ..., ¢p9. This
means that for generic ¢y, ..., ¢y the matrix IL*((F, G)) has rank 17. Moreover,
there is a 17 x 17 submatrix of L*((F, G)) whose determinant is non-zero in K

Dy = ci(cs5c7 — c3c8)(cic12 — c2¢11)G4Gg

where G4 is a form of degree 4 on cy,...,c10 and Gg is a form of degree 8
on ciy, ..., c20. The condition cic12 — cacy1 # 0 implies that F, G are linearly
independent over k, so A = R/I is an Artin level algebra of socle degree three and
type 2. If the determinant, say D3, of the matrix

C9 C8§ Cq
€7 C6 C3
C6 C5 C2

is non-zero, the embedding dimension of A is three.
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Let now consider the k-vector space V generated by x; o F,i = 1,2, 3; x; o G,
i = 1,2,3. The dimension of V equals HF4(2) and agrees with the rank of the
following matrix

€10 €9 €8 €7 C6 C5
€20 €19 C18 €17 C16 C15
€9 €7 C6 C4 C3 C2
€19 €17 C16 C14 C13 C12
g C6 C5 €3 C2 (]
C18 €16 C15 C13 €12 €11

If the determinant D3 of this matrix is non-zero then the Hilbert function of A is
{1, 3, 6,2}. Hence, if D1DyD3 # 0 then A is a compressed Artin level algebra
of type 2, socle degree 3, embedding dimension 3 and Hilbert function {1, 3, 6, 2}.
From Theorem 2.6.6 we get

w(l) =212 — rank (L*((F, G))) + 1 =8

as Boij conjecture predicts, [1, Section 3.2].

Let ]P)ﬁ X ]P)ﬁ be the space parameterizing the pairs (F, G) up to scalars in each
component. Since D1 D D3 is bi-homogeneous form of degree 26 on (cq, ..., c10)
and (c11, ..., 20), in this example we have shown a principal non-empty subset
U = ]P’ﬁ X ]P)ﬁ \ V(D1D3Ds3) parameterizing a family of compressed Artin level
algebra of type 2, socle degree 3, embedding dimension 3 and Hilbert function
{1,3,6,2}.

Example 2.7.5 Artin Gorenstein algebras with Hilbert function {1, 4, 4, 1}.

Let us consider a general polynomial F of degree 3 of R = K[[x1, x2, x3, x4].
We write I = (F)*. Then L*(F) is a 71 x 140 matrix in the coefficients of F, say
c1,...,c35. This matrix has rank 25 considered as matrix with coefficients in the
field K of fractions of ¢y, ..., c35. Hence for generic values of c1, ..., ¢35 the ring
A = R/I is a compressed Gorenstein algebra with Hilbert function {1, 4, 4, 1}, and
the matrix IL* (F) has rank 25 so

w()=310-25+1=6

as it was expected, [1].

Example 2.7.6 Artin Gorenstein algebras with Hilbert function {1, 3, 3, 1}.

In this example we assume that the ground field k is algebraically closed. In
[12] we prove that all Artin Gorenstein algebra A = R/I with Hilbert function
{1, n, n, 1} is isomorphic to its associated graded ring. Hence in the case n = 3
we may assume that /- is generated by a form F in x{, x, x3 of degree three. In
[12, Proposition 3.7 ] we classify such algebras in terms of the geometry of the
projective plane cubic C defined by F. Next we will compute the minimal number
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of generators of [ in the case that C is non-singular by using the main theorem of
this paper.
Let is consider the Legendre form attached to C, A # 0, 1,
Uy = x3x3 — x1(x1 — x2)(x1 — Ax3)

the j-invariant of C is

o g GF =t 1)
JR) =276 1y

L*(U,) is a 20 x 24-matrix, after elementary transformations we get that the rank
of L*(U,,) is 10 plus the rank of the 4 x 4 square matrix

A+1 —A‘ 0 0

=3 A+1 0 0
W =

0 0 A+1 =2

0 0 | -3 A+1

The determinant of W is
det(K) = (A2 — A + 1)2.

Hence if j(A) # O then u(/) = 2.8 — (10+4) + 1 = 3, i.e. [ is a complete
intersection, as we get in [12, Proposition 3.7]. If j(A) = 0, i.e. C is the elliptic
Fermat curve, then one gets rank (W) = 2 for all roots of det(W) = 0. Hence
n()=2.8—(10+2)+ 1 =15 as we getin [12, Proposition 3.7].
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Chapter 3 )
Lectures on the Representation Type Sheiie
of a Projective Variety

Rosa M. Miré-Roig

Abstract In these notes, we construct families of non-isomorphic Arithmetically
Cohen Macaulay (ACM for short) sheaves (i.e., sheaves without intermediate
cohomology) on a projective variety X. The study of such sheaves has a long and
interesting history behind. Since the seminal result by Horrocks characterizing ACM
sheaves on P" as those that split into a sum of line bundles, an important amount of
research has been devoted to the study of ACM sheaves on a given variety.

ACM sheaves also provide a criterium to determine the complexity of the
underlying variety. This complexity is studied in terms of the dimension and
number of families of undecomposable ACM sheaves that it supports, namely, its
representation type. Varieties that admit only a finite number of undecomposable
ACM sheaves (up to twist and isomorphism) are called of finite representation type.
These varieties are completely classified: They are either three or less reduced points
in P2, P", a smooth hyperquadric X C P", a cubic scroll in P*, the Veronese surface
in P or a rational normal curve.

On the other extreme of complexity we find the varieties of wild represen-
tation type, namely, varieties for which there exist r-dimensional families of
non-isomorphic undecomposable ACM sheaves for arbitrary large ». In the case
of dimension one, it is known that curves of wild representation type are exactly
those of genus larger or equal than two. In dimension greater or equal than two few
examples are know and in these notes, we give a brief account of the known results.

3.1 Introduction

These notes grew out of a series of lectures given by the author at the Vietnam
Institute for Advanced Study in Mathematics (VIASM), Hanoi, during the period
February 8—March 7, 2014. In no case do I claim it is a survey on the representation
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type of a projective variety. Many people have made important contributions without
even being mentioned here and I apologize to those whose work I made have
failed to cite properly. The author gave three lectures of length 120 min each. She
attempted to cover the basic facts on the representation type of a projective variety.
Given the extensiveness of the subject, it was not possible to go into great detail in
every proof. Still, it was hoped that the material that she chose will be beneficial and
illuminating for the participants, and for the reader.

The projective space P" holds a very remarkable property: the only undecom-
posable vector bundle & without intermediate cohomology (i.e., H' (P", &£(t)) = 0
fort € Z and 1 < i < n), up to twist, is the structural line bundle Op=. This is the
famous Horrocks’ Theorem, proved in [30]. Ever since this result was stated, the
study of the category of undecomposable arithmetically Cohen-Macaulay bundles
(i.e., bundles without intermediate cohomology) supported on a given projective
variety X has raised a lot of interest since it is a natural way to understand the
complexity of the underlying variety X. Mimicking an analogous trichotomy in
Representation Theory, in [17] it was proposed a classification of ACM projective
varieties as finite, tame or wild (see Definition 3.2.10) according to the complexity
of their associated category of ACM vector bundles and it was proved that this
trichotomy is exhaustive for the case of ACM curves: rational curves are finite,
elliptic curves are tame and curves of higher genus are wild. Unfortunately very
little is known for varieties of higher dimension and in this series of lectures I will
give a brief account of known results.

The result due to Horrocks (cf. [30]) which asserts that, up to twist, Opn is
the only one undecomposable ACM bundle on P"* and the result due to Knorrer
(cf. [34]) which states that on a smooth hyperquadric X the only undecomposable
ACM bundles up to twist are Oy and the spinor bundles S match with the general
philosophy that a “simple” variety should have associated a “simple” category of
ACM bundles. Following these lines, a cornerstone result was the classification of
ACM varieties of finite representation type, i.e., varieties that support (up to twist
and isomorphism) only a finite number of undecomposable ACM bundles. It turned
out that they fall into a very short list: P"*, a smooth hyperquadric Q C P", a cubic
scroll in P*, the Veronese surface in P°, a rational normal curve and three or less
reduced points in P2 (cf. [7, Theorem C] and [18, p. 348]).

For the rest of ACM varieties, it became an interesting problem to give a criterium
to split them into a finer classification, i.e. it is a challenging problem to find out the
representation type of the remaining ones. So far only few examples of varieties of
wild representation type are known: curves of genus g > 2 (cf. [17]), del Pezzo
surfaces and Fano blow-ups of points in P"* (cf. [45], the cases of the cubic surface
and the cubic threefold have also been handled in [10]), ACM rational surfaces on P4
(cf. [44]), any Segre variety unless the quadric surface in P3 (cf. [15, Theorem 4.6])
and non-singular rational normal scrolls S(ag, - - - , ax) € PN N = Zf:o (a;) + k,
(unless Pkl — g 0, ---,0, 1), the rational normal curve S(a) in P?, the quadric
surface S(1, 1) in P? and the cubic scroll S(1, 2) in P*) (cf. [40, Theorem 3.8 ]).

Among ACM vector bundles & on a given variety X, it is interesting to spot
a very important subclass for which its associated module &,H%(X, &(r)) has the
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maximal number of generators, which turns out to be deg(X)rk(&). This property
was isolated by Ulrich in [51], and ever since modules with this property have
been called Ulrich modules and correspondingly Ulrich bundles in the geometric
case (see [21] for more details on Ulrich bundles). The search of Ulrich sheaves
on a particular variety is a challenging problem. In fact, few examples of varieties
supporting Ulrich sheaves are known and, in [21], Eisenbud and Schreier asked the
following question: Is any projective variety the support of an Ulrich sheaf? If so,
what is the smallest possible rank for such a sheaf? Moreover, the recent interest
in the existence of Ulrich sheaves relies among other things on the fact that a d-
dimensional variety X C P" supports an Ulrich sheaf (bundle) if and only if the cone
of cohomology tables of coherent sheaves (resp. vector bundles) on X coincides
with the cone of cohomology tables of coherent sheaves (resp. vector bundles) on
P4 [19, Theorem 4.2]. It is therefore a meaningful question to find out if a given
projective variety X is of wild representation type with respect to the much more
restrictive category of its undecomposable Ulrich vector bundles. We will prove
that all smooth del Pezzo surfaces as well as all Segre varieties unless P! x P! are
of wild representation type and wildness is witnessed by Ulrich bundles.

Next we outline the structure of these notes. In Sect.3.2, we introduce the
definitions and main properties that are going to be used throughout the paper;
in particular, a brief account of ACM varieties, ACM vector bundles and Ulrich
bundles on projective varieties is provided.

In Sect.3.3, we determine the representation type of any smooth del Pezzo
surface S. To this end, we have to construct families of undecomposable ACM
bundles of arbitrary high rank and dimension. Our construction will rely on the
existence of level set of points on S and the existence of level set of points on §
is related to Mustata’s conjecture for a general set of points on a projective variety.
Roughly speaking, Mustatd’s conjecture predicts the graded Betti number of a set
Z of general points on a fixed projective variety X. In Sect.3.3.1, we will address
this latter conjecture and we will prove that it holds for a general set of points Z
on a smooth del Pezzo surface provided the cardinality of Z falls in certain strips
explicitly described. In Sect. 3.3.30, we perform the construction of large families
of simple Ulrich vector bundles on del Pezzo surfaces obtained blowing up s < 8
points in P2. These families are constructed as the pullback of the kernel of certain
surjective morphisms

Op(1)? — Op2(2)°

with chosen properties. It is worthwhile to point out that in the case of del Pezzo
surfaces with very ample anticanonical divisor, we can show that these families
of vector bundles could also be obtained through Serre’s correspondence from a
suitable general set of level points on the del Pezzo surface.

In Sect. 3.4, we are going to focus our attention on the case of Segre varieties
X, ons © PN N = ]_[‘Zzl(ni + 1) —1for1 < ny,...,ns. Itis a classical result
that the quadric surface P! x P! C IP? only supports three undecomposable ACM
vector bundles, up to shift: Opi,p1, Opipi (1,0) and Opi1 ,pi1 (0, 1). For the rest of
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Segre varieties we construct large families of simple (and, hence, undecomposable)
Ulrich vector bundles on them and this will allow us to conclude that they are of wild
representation type. Up to our knowledge, they will be the first family of examples of
varieties of arbitrary dimension for which wild representation type is witnessed by
means of Ulrich vector bundles. In this section, we first introduce the definition and
main properties of Segre varieties needed later. Then, we pay attention to the case of
Segre varieties X, , € PN N := nm+n-+m, for2 < n, m and to the case of Segre
varieties of the form Xy, n,.. n, € PN N = ]_[le(m +1)—1,for2 <ny,---,ng.
We construct families of arbitrarily large dimension of simple Ulrich vector bundles
on them by pulling-back certain vector bundles on each factor. This will allow us to
conclude that they are of wild representation type. Finally, we move forward to the
case of Segre varieties of the form X, »,...», € PN N = ]_[le(nl + 1) — 1, for
eitherny = lands >3 orn; = 1,5 = 2 and np > 2. In this case the families of
undecomposable Ulrich vector bundles of arbitrarily high rank will be obtained as
iterated extensions of lower rank vector bundles.

In Sect. 3.5, we could not resist to discuss some details that perhaps only the
experts will care about, but hopefully will also introduce the non-expert reader to a
subtle subject. We analyze how the representation type of a projective variety change
when we change the polarization. Our main goal will be to prove that for any smooth
ACM projective variety X C P” there always exists a very ample line bundle . on
X which naturally embeds X in PR XD~ 454 variety of wild representation type.

Throughout the lectures I mentioned various open problems. Some of them and
further related problems are collected in the last section of these notes.

Notation Throughout these notes K will be an algebraically closed field of
characteristic zero, R = K|[xg, x1, -, Xp], m = (xg, ..., x,) and P* = Proj(R).
Given a non-singular variety X equipped with an ample line bundle &x (1), the line
bundle &x (1)®! will be denoted by @x (I). For any coherent sheaf & on X we are
going to denote the twisted sheaf & ® O (1) by &(I). As usual, H (X, &) stands for
the cohomology groups, h (X, &) for their dimension, ext’ (&, .%) for the dimension
of Ext! (&, ) and H.(X, &) = ®;czH (X, £(1)) (or simply H.&).

Given closed subschemes X C P", we denote by Ry the homogeneous coordi-
nate ring of X defined as K[xo, ..., x,]/I(X). As usual, the Hilbert function of X
(resp. the Hilbert polynomial of X) will be denoted by Hx () (resp. Px(t) € Q[t])
and the regularity of X is defined to be the regularity of 7 (X), i.e.,reg(X) < m if and
only if H! (P", Ix(m —i)) = 0 fori > 1. Moreover, we know that Px (1) = Hx(¢)
for any t > regX — 1 + § — n where § is the projective dimension of Ry. Finally,
AHx (t) denotes the difference function, i.e., AHx (t) = Hx(t) — Hx(t — 1).
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3.2 Preliminaries

In this section, we set up some preliminary notions mainly concerning the defini-
tions and basic results on ACM schemes X C P" as well as on ACM sheaves and
Ulrich sheaves & on X needed in the sequel.

Definition 3.2.1 A subscheme X < P” is said to be arithmetically Cohen-
Macaulay (briefly, ACM) if its homogeneous coordinate ring Ry = R/I(X) is a
Cohen-Macaulay ring, i.e. depth(Ry) = dim(Ry).

Thanks to the graded version of the Auslander-Buchsbaum formula (for any
finitely generated R-module M):

pd(M) = n + 1 — depth(M),

we deduce that a subscheme X € P” is ACM if and only if pd(Rx) = codim X.
Hence, if X € P" is a codimension ¢ ACM subscheme, a graded minimal free
R-resolution of 7 (X) is of the form:

0—F 2 S 2 Fy— Ry — 0 3.1
with Fp = Rand F; = ®;R(—i — j)?®), 1 < i < c. The integers b;; (X) are
called the graded Betti numbers of X and they are defined as

bij(X) = dimg Tor' (R/1(X), K)i+ ;.

We construct the Betti diagram of X writing in the (i, j)-th position the Betti number
bij(X). In this setting, minimal means that img; C mF;_;. Therefore, the free
resolution (3.1) is minimal if, after choosing basis of F;, the matrices representing
¢; do not have any non-zero scalar.

Remark For non ACM schemes X C P" of codimension ¢ the graded minimal free
R-resolution of Ry is of the form:

0—F, B F, 25 2 Y B — Ry — 0
with Fy = R, F; = @/ R(~n), 1 <i < p,andc < p <n,

Notice that any zero-dimensional variety is ACM. For varieties of higher
dimension we have the following characterization that will be used in this paper:

Lgmma 3.2.2 (cf. [39], p-23) IfdimX > 1, then X C P" is ACM if and only if
H,(Ix) := &rezH'(P", Ix(1)) =0 for 1 <i < dimX.
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Example 3.2.3

. Any complete intersection variety X C P" is ACM.

. The twisted cubic X C IP? is an ACM curve.

. The rational quartic C C IP3 is not ACM since H!(P3, I¢(1)) # 0.

. Segre Varieties are ACM varieties.

. Any standard determinantal variety X C [P defined by the maximal minors of a
homogeneous matrix is ACM.

Definition 3.2.4 If X C P" is an ACM subscheme then, the rank of the last free
R-module in a minimal free R-resolution of /(X) is called the Cohen-Macaulay
type of X.

WD AW =

Definition 3.2.5 A codimension ¢ subscheme X of P" is arithmetically Gorenstein
(briefly AG) if its homogeneous coordinate ring Ry is a Gorenstein ring or,
equivalently, its saturated homogeneous ideal, /(X), has a minimal free graded R-
resolution of the following type:

0—> R(=1) — &' R(—=ne_1 ;) —> ...... — @ R(—ny ;) — I(X) — 0.

In other words, an AG scheme is an ACM scheme with Cohen-Macaulay type 1.

Definition 3.2.6 Let (X, Ox (1)) be a polarized variety. A coherent sheaf & on X is
Arithmetically Cohen Macaulay (ACM for short) if it is locally Cohen-Macaulay
(i.e., depthé; = dimOx , for every point x € X) and has no intermediate
cohomology:

H.(X,&) =0 forall i =1,...,dimX — I.

Notice that when X is a non-singular variety, which is going to be mainly
our case, any coherent ACM sheaf on X is locally free. For this reason we are
going to speak often of ACM bundles (since we identify locally free sheaves with
their associated vector bundle). ACM sheaves are closely related to their algebraic
counterpart, the maximal Cohen-Macaulay modules:

Definition 3.2.7 A graded Ry-module E is a Maximal Cohen-Macaulay module
(MCM for short) if depthE = dimE = dimRy.

Indeed, it holds:

Proposition 3.2.8 Let X C P be an ACM scheme. There exists a bijection between
ACM sheaves & on X and MCM Ryx-modules E given by the functors E — E and
& — HYU(X, &).

The study of ACM bundles has a long and interesting history behind and it is well
known that ACM sheaves provide a criterium to determine the complexity of the
underlying variety. Indeed, this complexity can be studied in terms of the dimension
and number of families of undecomposable ACM sheaves that it supports. Let us
illustrate this general philosophy with a couple of examples (the simplest examples
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of varieties we can deal with have associated a simple category of undecomposable
vector bundles).

Example 3.2.9

1. Horrocks Theorem asserts that on P" a vector bundle & is ACM if and only
if it splits into a sum of line bundles. So, up to twist, there is only one
undecomposable ACM bundle on P"*: &pr (cf. [30]).

2. Knorrer’s theorem states that on a smooth hyperquadric 9, c P"*! any ACM
vector bundle & splits into a sum of line bundles and spinor bundles. So, up to
twist and dualizing, there are only two undecomposable ACM bundles on Q7,1
(0 9,,,, and the spinor bundle X'); and three undecomposable ACM bundles on
02, (Og,, and the spinor bundles ¥_ and X' )(cf. [34]).

Recently, inspired by an analogous classification for quivers and for K -algebras
of finite type, it has been proposed the classification of any ACM variety as being
of finite, tame or wild representation type (cf. [17] for the case of curves and [9] for
the higher dimensional case). Let us recall the definitions:

Definition 3.2.10 Let X < PV be an ACM scheme of dimension 7.

1. We say that X is of finite representation type if it has, up to twist and
isomorphism, only a finite number of undecomposable ACM sheaves.

2. X is of tame representation type if either it has, up to twist and isomorphism,
an infinite discrete set of undecomposable ACM sheaves or, for each rank r, the
undecomposable ACM sheaves of rank r form a finite number of families of
dimension at most n.

3. X is of wild representation type if there exist /[-dimensional families of non-
isomorphic undecomposable ACM sheaves for arbitrary large /.

One of the main achievements in this field has been the classification of varieties
of finite representation type (cf. [7, Theorem C], and [18, p. 348]); it turns out that
they fall into a very short list: three or less reduced points on P2, a projective
space, a non-singular quadric hypersurface X C P”, a cubic scroll in P*, the
Veronese surface in P> or a rational normal curve. As examples of a variety of
tame representation type we have the elliptic curves, the Segre product of a line
and a smooth conic naturally embedded in P>: V162,2) P! x P! < P8 (cf. [23])
and the quadric cone in P3 (cf. [8, Proposition 6.1]). Finally, on the other extreme
of complexity lie those varieties that have very large families of ACM sheaves. So
far only few examples of varieties of wild representation type are known: curves
of genus g > 2 (cf. [17]), smooth del Pezzo surfaces (see Sect. 3.3 of these notes)
and Fano blow-ups of points in P" (cf.[45], the cases of the cubic surface and the
cubic threefold have also been handled in [10]), ACM rational surfaces on P* (cf.
[44]), Segre varieties other than the quadric in IP3 (see Sect. 3.4 of these notes or [15,
Theorem 4.6]), rational normal scrolls other than P, the rational normal curve in
IP", the quadric in I3 and the cubic scroll in P* [40, Theorem 3.8] and hypersurfaces
X C P" of degree > 4 [50, Corollary 1].
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The problem of classifying ACM varieties according to the complexity of the
category of ACM sheaves that they support has recently attired much attention and,
in particular, the following problem is still open (for ACM varieties of dimension
> 2):

Problem 3.2.11 Is the trichotomy finite representation type, tame representation
type and wild representation type exhaustive?

Very often the ACM bundles that we will construct will share another stronger
property, namely they have the maximal possible number of global sections; they
will be the so-called Ulrich bundles. Let us end this section recalling the definition
of Ulrich sheaves and summarizing the properties that they share and that will be
needed in the sequel.

Definition 3.2.12 Given a polarized variety (X, 0 X (1)), a coherent sheaf & on X
is said to be initialized if

HO(X, &(—1)) =0 but HO(X, &) # 0.
Notice that when & is a locally Cohen-Macaulay sheaf, there always exists an
integer k such that &;,,;; := & (k) is initialized.

Definition 3.2.13 Given a projective scheme X C P”" and a coherent sheaf & on X,
we say that & is an Ulrich sheaf if & is an ACM sheaf and hO(& i) = deg(X)rk(&).

The following result justifies the above definition:

Theorem 3.2.14 Let X C P" be an integral ACM subscheme and let & be an ACM
sheaf on X. Then the minimal number of generators m(&) of the associated MCM
Rx-module Hg (&) is bounded by

m(&) < deg(X)rk(&).

Therefore, since it is obvious that for an initialized sheaf &, h°(&) < m(&), the
minimal number of generators of Ulrich sheaves is as large as possible. MCM
Modules attaining this upper bound were studied by Ulrich in [51]. A complete
account is provided in [21]. In particular we have:

Theorem 3.2.15 Let X € PN be an n-dimensional ACM variety and let & be an
initialized ACM coherent sheaf on X. The following conditions are equivalent:

1. & is Ulrich.
2. & admits a linear Opn -resolution of the form:

0— Opv (=N +n)"N" — ... > Opn (=D — ﬁg?\, — & — 0.

3. H(&(—=i)) =0fori > 0and H(&(—i — 1)) =0 fori < n.
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4. For some (resp. all) finite linear projections w : X — P, the sheaf 7.& is the
trivial sheaf 0%, for some t.

In particular; initialized Ulrich sheaves are 0-regular and therefore they are globally
generated.

Proof See [21, Proposition 2.1]. O

The search of Ulrich sheaves on a particular variety is a challenging problem. In
fact, few examples of varieties supporting Ulrich sheaves are known and, in [21, p.
543], Eisenbud, Schreyer and Weyman leave open the following problem

Problem 3.2.16

1. Is every variety (or even scheme) X C P" the support of an Ulrich sheaf?
2. If so, what is the smallest possible rank for such a sheaf?

Recently, after the Boij-Soderberg theory has been developed, the interest on
these questions have grown up due to the fact that it has been proved [19,
Theorem 4.2] that the existence of an Ulrich sheaf on a smooth projective variety X
of dimension n implies that the cone of cohomology tables of vector bundles on X
coincide with the cone of cohomology tables of vector bundles on P".

In these series of lectures we are going to focus our attention on the existence of
Ulrich bundles on smooth del Pezzo surfaces and on Segre varieties, providing the
first example of wild varieties of arbitrary dimension whose wildness is witnessed
by means of the existence of families of simple Ulrich vector bundles of arbitrary
high rank and dimension.

3.3 The Representation Type of a del Pezzo Surface

In this section, we are going to construct ACM bundles and Ulrich bundles on
smooth del Pezzo surfaces, and to determine their representation type. So, let us
start recalling the definition and main properties of del Pezzo surfaces.

Definition 3.3.1 A del Pezzo surface is defined to be a smooth surface X whose
anticanonical divisor — Ky is ample. Its degree is defined as K)Z( If —Kx is very
ample, X will be called a strong del Pezzo surface.

Example 3.3.2 As examples of del Pezzo surfaces we have:

1. A smooth cubic surface X C P°.

2. A smooth quartic surface X C P* complete intersection of two quadrics.

3. Let Y be the blow up of P? at 0 < s < 6 general points. Consider its embedding
in P°~ through the very ample divisor —Ky and call X c P?~ its image. X is
a del Pezzo surface.

The classification of del Pezzo surfaces is known and we recall it for seek of
completeness.
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Definition 3.3.3 A set of s different points {py, ..., ps} on P2 with s < 81is in
general position if no three of them lie on a line, no six of them lie on a conic and
no eight of them lie on a cubic with a singularity at one of these points.

Theorem 3.3.4 Let X be a del Pezzo surface of degree d. Then 1 < d <9 and

1. Ifd =9, then X is isomorphic to P? (and —Kp2 = 3 Hpo gives the usual Veronese
embedding in P°).

2. Ifd = 8, then X is isomorphic to either P! x P! or to a blow-up of P? at one
point.

3. If71>d > 1, then X is isomorphic to a blow-up of P* at 9 — d closed points in
general position.

Conversely, any surface described under 1.,2.,3 is a del Pezzo surface of the
corresponding degree.

Proof See, for instance, [37, Chapter 1V, Theorems 24.3 and 24.4], and [16,
Proposition 8.1.9]. O

Lemma 3.3.5 Let X be the blow-up of P2 on 0 < s < 8 points in general position.

Let ey € Pic(X) be the pull-back of a line in P2, e; the exceptional divisors, i =

1,...,s and Kx be the canonical divisor. Then:

1. Ifs <6, —Kx = 3eg — Y ;_, ei is very ample and its global sections yield a
closed embedding of X in a projective space of dimension

dimH(X, Ox(—Kx)) — 1 =K% =9 —s.
2. If s =7, —Kx is ample and generated by its global sections.
3. if s =8, —Kx is ample and —2K x is generated by its global sections.
Proof See, for instance, [35, Proposition 3.4]. O

The construction of ACM bundles and Ulrich bundles on smooth del Pezzo
surfaces is closely related (via Serre’s correspondence) to the existence of level set
of points.

Definition 3.3.6 A 0-dimensional scheme Z on a surface X C P" is said to be level
of type p if the last graded free module in its minimal graded free resolution has
rank p and is concentrated in only one degree. Dualizing, this is equivalent to say
that all minimal generators of the canonical module Kz of Z have the same degree.

Example 3.3.7 Let Z be a set of 29 general points on a smooth quadric surface
Q C P3. The ideal I (Z) of Z has a minimal graded free resolution of the following

type:
0 —> R(—-8)* — R(-1*® R(-6)® — R(=5) ® R(=2) —> 1(Z) —> 0.

Therefore, Z is level of type 4.
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The existence of level set of points on a smooth del Pezzo surface is related to
Mustatd’s conjecture which we will discuss in next subsection and its proof will
strongly rely on the fact that we know the minimal resolution of the coordinate ring
of a del Pezzo surface X C P9, Indeed, according to [29, Theorem 1], the minimal
free resolution of the coordinate ring of a del Pezzo surface X C P4 has the form:

0— R(—d) — R(—d+2)%3% — .. — R(-2) — R —> Rx — 0
3.2)

where

—1 -2
ozizic.l — d for 1 <i<d-3.
i+1 i—1

Notice that X turns out to be AG and, in particular, o; = og_p—; foralli =
1,...,d — 2. The Hilbert polynomial and the regularity of a del Pezzo surface X
can be easily computed using the exact sequence (3.2) and we have

Px(r) = Czl(r2 +r)+1 and reg(X) = 3.

3.3.1 Mustata’s Conjecture for a Set of General Points on a del
Pezzo Surface

In [46], Mustata predicted the minimal free resolution of a general set of points Z in
an arbitrary projective variety X; he proved that the first rows of the Betti diagram
of Z coincide with the Betti diagram of X and that there are two extra nontrivial
rows at the bottom. Let us recall it.

Theorem 3.3.8 Let X C P" be a projective variety with d = dim(X) > 1,
reg(X) = m and with Hilbert polynomial Px. Let s be an integer with Px(r — 1) <
s < Px(r) for somer > m + 1 and let Z be a set of s general points on X. Let

O—-F,—>F_1—>-—F—>F —R—>Rx—>0

be a minimal graded free R-resolution of Rx. Then Rz has a minimal free R-
resolution of the following type

0—> F, @ R(—r —n+ )1 @ R(—r — n)bnr —
i —> B ®R(—r — 1)h2,r—l ® R(—r — 2)h2,, N

Fi ® R(—r)?"~1 @ R(—r — 1)’ — R — Rz — 0.
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Moreover, if we set Qi r(s) = bi+1,r-1(Z) — bi ,(Z2),

d—1
—1—-1
Qir(s) = ;(—1)l<n i1 )Al+1Px(V +1) — (?)(S — Px(r —1)).

Conjecture 3.3.9 The minimal resolution conjecture (MRC for short) says that
bit17-1-bi,=0fori=1,--- ,n—1.

Example 3.3.10 Let S C P* be a smooth del Pezzo surface of degree 4. S is the
complete intersection of 2 hyperquadrics in P*, reg(S) = 3 and Pg(x) = 2x> +
2x 4+ 1. Let Z C S be a set of 45 general points on S. We have Pg(4) =41 <45 <
Ps(5) = 61.

The Betti diagram of Z looks like:

0 1 2 3 4
0 _ _ _ _
1 - 2 - - -
2 _ _ _ _
3 _ - - _ _
4 - 16 40 28
5 _ _ _ _

The first three rows of the Betti diagram of Z coincide with the Betti diagram of
S and there are two extra nontrivial rows without ghost terms.

Related to it there exist two weaker conjectures that deal only with a part of the
minimal resolution of a general set of points:

1. The Ideal Generation Conjecture (IGC for short) which says that the minimal
number of generators of the ideal of a general set of points will be as small as
possible; this conjecture can be translated in terms of the Betti numbers saying
that

b1,b2,—1=0.
2. On the other extreme of the resolution the Cohen-Macaulay type Conjecture
(CMC for short) controls the ending terms of the MFR and says that the canonical

module Ext (R/I(Z), R(—n — 1)) has as few generators as possible, i.e,

bnfl,rbn,rfl =0.
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Remark

1. When X = P”" the above conjecture coincides with the MRC for points
in P" stated in [36] which says that this resolution has no ghost terms, i.e,
biy1,r—1bi, = 0 for all i. The MRC for points in " is known to hold for n < 4
(see [4, 25] and [52]) and for large values of s for any n (see [28]) but it is false
in general. Eisenbud, Popescu, Schreyer and Walter showed that it fails for any
n>6,n#9 (see [20]).

2. Regarding Mustatd conjecture, in [27] Giuffrida, Maggioni and Ragusa proved
that it holds for any general set of points when X is a smooth quadric surface
in P3. In [43, Proposition 3.10], the authors showed that it holds for any general
set of s > 19 points on a smooth cubic surface in P3 and, in [38], Migliore
and Patnott have been able to prove it for sets of general distinct points of any
cardinality on a cubic surface X C P3 given that X is smooth or it has at most
isolated double points.

The goal of this subsection is to prove MRC for a set Z of general points on a
smooth del Pezzo surface X, when the cardinality |Z| of Z falls in certain interval
explicitly described later. As corollary we prove IGC and CMC for a set Z of general
points on a del Pezzo surface X provided |Z| > Px(3).

As a main tool we use the theory of liaison. Roughly speaking, Liaison Theory
is an equivalence relation among schemes of the same dimension and it involves the
study of the properties shared by two schemes X and X, whose union X1UX, = X
is either a complete intersection (CI-liaison) or an arithmetically Gorenstein scheme
(G-liaison). Knowing that two sets of points are G-linked, this technique will allow
us to pass from the minimal resolution of the ideal of one of them to the resolution
of the other one (mapping cone process) and vice versa.

Definition 3.3.11 Two subschemes X and X, of P" are directly Gorenstein linked
(directly G-linked for short) by an AG scheme G C P" if I(G) C I(X1) N 1(X>y),
[[(G): I(X1)] =1(X2)and [I(G) : [(X2)] = I(X1). We say that X is residual
to X1 in G. When G is a complete intersection we talk about a C/-link.

When X; and X» do not share any component, being directly G-linked by an AG
scheme G is equivalentto G = X1 U X».

Definition 3.3.12 Two subschemes X, X» C P" are in the same CI-liaison class
(resp. G-liaison class) if there exists X1 = Zy, Z1, ..., Z; = X7 closed subschemes
in P" such that Z; and Z;;; are directly linked by a complete intersection
(arithmetically Gorenstein) X; C P".

See [33] for more details on G-liaison.
Usually it is not easy to find out AG schemes to work with. The following
theorem gives a useful way to construct them.

Definition 3.3.13 A subscheme X <C P7 satisfies the condition G, if every
localization of R/I(X) of dimension < r is a Gorenstein ring. G, is sometimes
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referred to as “Gorenstein in codimension < r”, i.e. the non locally Gorenstein
locus has codimension > r + 1. In particular, G is generically Gorenstein.

Theorem 3.3.14 Let S C P"* be an ACM scheme satisfying condition G1. Denote
by K the canonical divisor and by Hg a general hyperplane section of S. Then any
effective divisor in the linear system |mHgs — K| is AG.

Proof See [33, Lemma 5.4]. O

The main feature of G-liaison that is going to be exploited in this paper is that
through the mapping cone process it is possible to pass from the free resolution of a
scheme X to the free resolution of its residual X, on an AG scheme. We have

Lemma 3.3.15 Let V1, Vo C P" be two ACM schemes of codimension c directly
G-linked by an AG scheme W. Let the minimal free resolutions of 1 (V1) and I (W)
be

. de_
0—F 2 Fr % nS vy —o
and
0 —> R(—1) =5 Gey Z28 .61 5 T(W) —s 0,

respectively. Then the contravariant functor Hom(—, R(—t)) applied to a free
resolution of I1(Vy)/1(W) gives a (non necessarily minimal) resolution of 1 (V3):

0— F)/(—=t) — F/(-)® G{(—1t) — ...

— FY(-)® Gl (1) —> [ (Vo) — 0.

In order to achieve the main result of this subsection, we define for any del Pezzo
surface X C P? of degree d the so-called critical values:

d—2

d , 2—d
m(r):= r°+r )

=424
, n(r):= _r +r
2 2 2

Notice that
Px(r—1) <m(r) <n(r) < Px(r).

Our first aim is to find out the minimal graded free resolution and to prove MRC
conjecture for these two specific cardinalities m (r) and n(r) of general set of points
on a del Pezzo surface X. Since the structure of our proof requires that X contains at
least a line L and moreover that the elements of the linear system |L + r H| satisfy
condition G in order to apply the theory of generalized divisors, we need to exclude
the following two particular cases: X = P? and X = P! x P! proved in [48, Chapter
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II]. Therefore, in this subsection X C P4 will stand for any del Pezzo surface except
the two aforementioned sporadic cases. We also set the following notation.

1. L is any line on X.

2. H denotes a general hyperplane section of X.

3. If C is a curve on X, Hc will be a general hyperplane section of C and K¢ the
canonical divisor on C.

The strategy of the proof is as follows: firstly, we will establish the result for
m(2) = d + 2 points which gives the starting point for our induction process.
Secondly, using G-liaison, we prove that if m(r) general points on any del Pezzo
surface satisfy MRC then so do n(r) general points. Next we observe that if n(r)
general points on X have the expected minimal free resolution then n(r) + 1 general
points do as well. And, finally, we show that if n(r) + 1 general points on a del
Pezzo surface satisfy MRC then so do m(r + 1).

Since the shape of the minimal free resolution of the homogeneous ideal / (X) of
a del Pezzo surface of degree 3 (i.e., a cubic surface) is slightly different from that
of a del Pezzo surface of degree d > 4 we need to consider apart the two cases. We
only sketch the proofs in the case of degree d > 4 and we leave as exercise the case
of degree 3.

Lemma 3.3.16

(a) Let X C P? be any del Pezzo surface of degree d > 4 and take C € |(r +€)H|,
r > 2,¢e € {0, 1}. Then, any effective divisor G in the linear system |r Hc| is
AG and it has a minimal free resolution of the following form:

0— R(-2r—d—¢&) — R(—2r —d +2 — g)%-3
O R(—r —d)?* @ R(—r —d — 1)*
— ...— M; — ... —> R(—2r —¢)
® R(—r —2)79% @ R(—r — 3)*™
—> M :=R(-r)* @®R(-r — 1)) — I(G|X) — 0

where M; == R(=2r —i +1—¢&)% 2@ R(—r —i) %1 @ R(—r —i — )%~
Jori=3,....d—2anda; =i({)) = ({})for1 <i<d-3.

(b) Let X C P3 be a del Pezzo surface of degree 3 and take C € |(r + €)H|,
r > 2,¢e € {0, 1}. Then, any effective divisor G in the linear system |r Hc| is

AG and it has a minimal free resolution of the following form:

0 — R(=2r—3—¢) —> R(=2r —&) ® R(—r —3)> * @ R(—r — 4)°
—> R(-r)**®R(—r — 1)* — I(G|X) — 0.
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Proof A curve C € |(r + ¢)H| has saturated ideal I (C|X) = Hg(ﬁx(—r —&)).
From the exact sequence (3.2) we have:

0 — Opa(—d) = Opa(—d +2)%3 —> .- - Opa(=2)¥' - Opa — Ox — 0
(3.3)

with o = i (97]) — (477) for 1 < i < d — 3. Twisting (3.3) with Opa (—r — ¢) and
taking global sections we get the minimal graded free resolution of I (C|X):

0— R(-r—d—¢) — ...— R(—r — (i + )% —
eo. —> R(-r —2—-8)%* — R(-r —¢) — I(C|X) — 0.
Now we apply the horseshoe lemma to the exact sequence
0 — I(X) — I(C|PY) — I(C|X) — 0
to obtain the minimal free resolution of I (C|P9):

0— R(-r—d—¢) — R(-r—d+2—e)*3®dR(—d) — ...
> Ty = R(—r — i — )% ® R(—(i + 1))*% —> ...

—> R(=r — &) ® R(-2)*" — I1(C|P?) —> 0.
This sequence shows that C C P? is an AG variety with canonical module
Kc =Rc(r—1+¢).

Therefore I (G|C) = H,?(ﬁc (—r)) = Kc(—2r+1—¢€). Now, we apply the functor
Hom(—, R(—d — 1)) to the previous sequence and we get a minimal free resolution
of K¢:

0—> R(—d—1)—> Rr—d—1+8) @ R(—d + %3 — .

— T/ — ...— R-D®Rr -3+ — Rr—1+¢) — Kc — 0
where T/ :=T,” .(—d — 1) = R(r —i — )%~ @ R(—i)*2fori =3,...,d — 2.
If we twist the previous sequence by —2r + 1 — ¢ we get the minimal resolution of
I1(G|C):

0— R(-2r—d—¢) — R(-r—d)® R(-2r —d+2—&)*3 —
e —>T/(2r+1—¢)— ...

—> R(=2r — &) ® R(—r —2)*' — R(-r) — I(G|C) — 0.
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Finally, we apply the horseshoe lemma to the short exact sequence
0— I(C|X) — I(G|X) — I(G|C) — 0

to recover the resolution of 7 (G|X) and we finish the proof. |
Lemma 3.3.17

(a) Let X C P? be a del Pezzo surface and let L C X be a line on it. Take C € |L+
rH|,r > 2, and let G be any effective divisor in the linear system |2r Hc — K¢ |.
Then, G is AG and the minimal free resolution of I1(G|C) has the following
form:

0— R(—2r—d—1) — R(=2r —d + 1" @R(—r—d)dfl s
— R(=2r — )% @ R(—r —i — D) tein
s R(=2r — 1) @ R(—r — 3)a2)Feus

—> R(=r = 1) ® R(—r —2) —> I(G|C) — 0

witho; = i({ ) = ({2]) for1 <i <d —3.

(b) Let X C 3 be an integral cubic surface and let L € X be a line on it. Take
Cel|L+rH| r =2, andlet G be any effective divisorin |2r Hc — Kc|. Then,
G is AG and the minimal free resolution of 1 (G|C) has the following form:

0 —> R(=2r —4) —> R(=2r — 1) ® R(—r — 3)?
—> R(—r — ) ® R(-r —2) — I(G|C) —> 0.

Proof Let L C X be any line. Its ideal as a subvariety of P4 has a resolution:
0—> R(—d+1) —> ... — R(=DT) — . 5 R=D?' — 1(L) —> 0.

Applying the mapping cone process to 0 — I(X) — I(L) — I(L|X) — 0 we
get
0 —> R(—d) ® R(—d + 1) —> ... —> R(—i)("1 D+ai-
— ... — R-DT' S 1LIX)— 0

with o; = i(97)) — (¢7}) for 1 <i < d — 3. Therefore, C € |L + r H| has the
following minimal graded free resolution
0= R(—r —d)® R(—r —d + 1) = --- — R(—r — i){"i DFei-1

o> R(=r =D S 1C1x) = o. (3.4)
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Now the horseshoe lemma applied to 0 — I(X|PY) — I(C) - I(C|X) — 0
gives us

0—> R(—r —d)® R(—r —d + 1) —> R(—r —d +2)@-D+-3 g R(—d) —> ..
— R(—r — )T @ R(— (i + 1)
— ... —> R(~=r = D4l @ R(=2)*1 — [(C) —> 0.
Since C is ACM we can apply Hom(—, R(—d — 1)) to get a resolution of K¢:
0—> R(—d —1) — R(—d + )" & R(r —d)'~ —
B R ()
s R = 3)l@)H3 g R(Z1) — RO — 1) ® R —2) —> K¢ — 0.
Finally, since G € |2r Hc — K¢| we have:
0— R(=2r—d—1)— R(=2r —d+ D" ® R(-r —d)* ' —
o= R(=2r — )%~ @ R(—r — i — DD ¥ea-izn

s R(=2r — )@ R(—r — 3+ L R(—r — 1)@ R(—r — 2)
— I(G|C) —> 0.

Now we fix the starting point of the induction.
Lemma 3.3.18 A general set Z of m(2) = d + 2 points on any del Pezzo surface
X C P? has a minimal free resolution of the following type:
0 — R(—d —2) — R(-d)V' — ...

—> R(-3)"” — R(-2* ' — 1(Z1X) — 0

with

1

d—1-1 d
vi= Z(—l)l< o )Al+1HX(2+l) - <,-)(’"(2) — Hx(1)).

=0

Proof It follows from the fact that a general set Z of d 4 2 points on X is in linearly
general position (i.e., any subset of Z of d 4 1 points spans P%). O

Fix an integer r > 2 and let Z,,() and Z, be general sets of points on X of
cardinality m(r) and n(r), respectively. We will see that they are directly G-linked
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by an effective divisor G in |r Hc| with C a curve in the linear system |r Hx|. Recall
that we have:

Px(r—1) <m(r) <n(r) < Px(r).

Let us start with a general set Z,,() of m(r) points. Since h(Ox (r)) > m(r) there
exists a curve C in the linear system |r Hx| such that Z,,) lies on C. On the other
hand, the inequality n(r) > p,(C) allows us to apply Riemann-Roch Theorem for
curves and assure that there exists an effective divisor Z,,(,y of degree n(r) such that
Zn(ry + Zu(r) 18 linearly equivalent to a divisor r Hc.

Since this construction can also be performed starting from a general set Z,,,)
of n(r) points we see that a general set of m(r) points is G-linked to a general set
of n(r) points and vice versa. Therefore as a direct application of the mapping cone
process we get

Proposition 3.3.19 Fix r > 2 and assume that the ideal 1(Z;|X) of m(r)
general points on a del Pezzo surface X C P? has the minimal free resolution

0—> R(—r —d)" ™' — R(=r —d +2)V-1v-1 — .

— R(=r = 1)1 — RN — 1(Z]X) — 0

with vir—1 = Y l_o(=DH*TN A Py + 1) — (4)m(r) — Px(r — 1)). Then
the ideal I(Z,|X) of n(r) general points has the minimal free resolution

0 —> R(—r —d) @ V=1 — R(—r —d + D)fa-1r —

— R(—r =22 — R(—r)"' — I(Zy()|X) — 0

with Bi.r = Yi_o(= D () A P (r 4+ 1) + () (@) — Px(r — 1)),
Vice versa, if n(r) general points on a del Pezzo surface X C P? have the
expected resolution then m(r) general points do as well.

Lemma 3.3.20 Let X C P9 be any del Pezzo surface. Fixr > 2 and assume that the
ideal I1(Z,,(|X) of a set Z,y of n(r) general points on X C P? has the expected
minimal free graded resolution. Then a set of n(r) + 1 general points do as well.

Proof Since I(Z,)|X) has the expected minimal free resolution, it is generated by
r 4+ 1 forms of degree r without linear relations. Take a general point p € X and
set Z := Z,) U {p}. Since I(Z|X) C I(Z,)|X), we can take the r generators
of 1(Z|X) in degree r to be a subset of the generators of I(Z,)|X) in degree r;
in particular, they do not have linear syzygies. We must add d generators of degree
r + 1 in order to get a minimal system of generators of /(Z|X). Hence the first
module in the minimal free resolution of 7(Z|X) is R(—r)" & R(—r — 1)? which
forces the remaining part of the resolution. O
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Proposition 3.3.21 Let X C P4 be a del Pezzo surface. Fix r > 2 and assume that
the ideal 1(Z | X) of p(r) := n(r) + 1 general points on X has the minimal free
resolution

0— R(—r — )9 V" — R(—r —d + 1)%-1v — .

—> R(—r —2)2" — R(=r) @ R(—r — 1) — I(Z)(»)|X) — 0

with
1
Siy = (D" (d -l I)A”le(r +1)+ (d) (p(r) — Hx(r — 1)).
1=0 i—l l

Then the ideal I(Z,+1)|X) of m(r + 1) general points has the minimal free
resolution

00— R(-r—d—-1 — R(—r —d + 1)V&-1r — .

—> R(—r =2)"?" — R(—r — D"+ [(Z, i1y X) — 0

with
1
Vir = Z(—l)l(d - 1)Al+1Hx(r +1410)— (C.l)(m(r + 1) — Hx(r).
= i—1 i

Proof Let Z ;) be a set of p(r) general points with resolution as in the statement.
Let us consider the linear system |L + rH|. Since, dim |L + rH| > dim|rH| =
Px(r) — 1 > p(r), we can find a curve C € |L + rH| passing through these
p(r) points. Notice that deg(C) = 1+ rd and p,(C) = d(}) + r. Since p(C) <
m(r + 1) we can find an effective divisor Z,,(4+1) of degree m(r + 1) such that
Z ) and Zy, 1y are G-linked by a divisor of degree p(r) +m(r + 1) = dr* +
dr +2 =deg(2r Hc — K¢). This allows us to find the resolution of I (Z,,+1)|X).
First we find the minimal free resolution of /(Z,|C) using the exact sequence
0— I(CIX) — I(Zph|X) — I(Zpp)|C) — 0, the resolution of 1(C|X) given
in (3.4) and the mapping cone process. It turns out to be:

0 —> R(—r —d) @D+ 5 R(—r —d + 1)%-1r — .
— R(=r =2)*" — R(=r)" ® R(=r = 1) — I(Zp|C) — 0.

Since we know the minimal free resolution of 7/ (G|C) (see Lemma 3.3.17) we
apply the mapping cone process to the sequence 0 — I(G|C) — I(Zp)|C) —
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I(ZpH|G) — 0to get

0—> R(=2r—d—1)—> R(—r —d)4 V" g R(—2r —d + D™ —> ...
— R(—r — )% @ R(=2r — i 4+ 1)%-i+1 —
—> R(—r = 2)2" — R(=r)" —> I(Zp(»)|G) —> 0.
(0 — R(—=2r—4) - R(-r=3)*2®R(-2r—1) > R(-r—2)%2r — R(-r)" —

I(Z,HG) — 0ifd = 3).
Finally we obtain the minimal free resolution of I (Z,(,+1)):

0— R(—=r—d—-1)
—> R(—r —d + )% —s R(—r —d +2)"2" @ R(—d) —
coi—> R(—r = )" @ R(—=)% —> ...
— R(—r — DD+ g R — [(Zprs1) — O
(0 — R(-=r—4)" — R(~=r=2)"2" — R(=r—D¥@R(=3) = [(Zni+1)) = 0

if d = 3) from which it is straightforward to recover the predicted resolution of
I(Zn+1)1X). o

We are ready to prove the MRC for n(r) and m(r) general points on a del Pezzo
surface:

Theorem 3.3.22 Let X C P9 be a del Pezzo surface. We have:

1. Let Z,(vy € X be a general set of n(r) points, r > 2. Then the minimal graded
free resolution of 1(Z, | X) has the following form:

0— R(—r —d) 4" Dr=1 & R(—r —d + )Pty — R(—r —d +2)fi-2r —

o> R(—r = 2)P2r — R — 1(Z,y|X) —> 0.

where

1

-1
Bir = Z(—l)l“<n L )A”lHX(r +0)+ C’)(n(r) — Hx(r — 1)).

=0

2. Let Zy ) € X be a general set of m(r) points, r > 2. Then its minimal graded
free resolution has the following form:

0—> R(—r —d)" ™' — R(—r —d +2)V¢-1r-1 —

— R(—r — )1 — R(—r)“4=D 5 [(Zp|X) — 0
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with
! n—1—1 n
Vir—1 = g(—l)l< . )AZ'HPX(r +1) — <i>(m(r) — Px(r — 1)).

In particular, Mustatd’s conjecture works for n(r) and m(r), r > 4, general
points on a del Pezzo surface X C P.

Proof Lemma 3.3.18 establishes the result for a set of m(2) general points, the
starting point of our induction process. Therefore, the result about the resolution
of I(Z,|X) and I(Z,|X) follows using Lemma 3.3.20, Propositions 3.3.19
and 3.3.21 and applying induction. O

Next lemma controls how the bottom lines of the Betti diagram of a set of general
points on a projective variety change when we add another general point.

Lemma 3.3.23 Let X C P" be a projective variety with dim(X) > 2, reg(X) = m
and with Hilbert polynomial Px. Let s be an integer with Px(r — 1) <s < Px(r)
for somer > m + 1, let Z be a set of s general points on X andlet P € X \ Z bea
general point. We have

1. bi y—1(Z) = bj —1(Z U P) for every .
2. bi(Z) < b;ir(ZU P) foreveryi.

Proof See [46, Proposition 1.7]. O

Now, we prove the main result of this subsection, namely, the MRC holds for a
general set of points Z on a smooth del Pezzo surface when the cardinality of Z
falls in the strips of the form [Px (r — 1), m(r)] or [n(r), Px(r)], r > 4.

Theorem 3.3.24 Let X C P9 be a del Pezzo surface. Let r be such that r
reg(X) + 1 = 4. Then for a general set of points Z on X such that Px(r — 1)
|Z| <m(r)orn(r) <|Z| < Px(r) the MRC is true.

Proof See [48, Chapter II], for the cases of X = P2 and X = P! x P'. So
let X be any other smooth del Pezzo surface. Let Z’ be a general set of points
of cardinality |Z’| = n(r) and add general points to Z’ in order to get a set of
points Z of cardinality n(r) < |Z| < Px(r). By Theorem 3.3.22 we have that
biy—1(Z") = 0foralli = 2,...,d. Therefore we can apply Lemma 3.3.23 to
deduce that b; ,_1(Z) = O forall i = 2,...,d. Thus, by semicontinuity, MRC
holds for a general set of | Z| points.

Now if |Z| < m(r), we can add general points to Z in order to have a general set
Z' including Z and such that |Z’| = m(r). Again from the previous Theorem we
have that b; ,(Z’) = 0 foralli = 1,...,d — 1. So we can use again Lemma 3.3.23
to deduce that b; ,(Z) = Oforalli = 1,...,d — 1 and therefore MRC holds
for Z. O

=
=

Example 3.3.25 Let Y be the blow up of P? at 4 general points. Consider its
embedding in P> through the very ample divisor —Ky and call X C P’ its image.
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X is a del Pezzo surface of degree 5, reg(X) = 3, Px(t) = ‘21(t2 + 1) + 1 and its
homogenous ideal has a minimal free R-resolution of the following type:

0 —> R(—5) — R(-3)°> — R(=2)> — I(X) —> 0.
Let Z C X be a set of 79 general points on X. We have Px(5) = 76 < 79 <
m(6) = 81 < n(6) = 99 < Px(6) = 106. By Theorem 3.3.24, the minimal free
resolution of 7 (Z) has the following shape:
0— R(—11)°® R(—10)'" — R(-9) — R(—8)'*’ ® R(-5)
— R(-D'Y ¢ R(-3)> — R(—6) ® R(-2)°> — 1(Z) —> 0.

Therefore, the Betti diagram of Z looks like:

0 1 2 3 4 5
0 - _ - _
1 _ _ _ _
2 _ _ _ _ _
3 _ _ _ _ _ _
4 _ _ _ _ _ _
5 - 27 100 135 75 10
5 - - - - - 3

The first three rows of the Betti diagram of Z coincide with the Betti diagram of
X and there are two extra nontrivial rows without ghost terms.

As a consequence of Theorem 3.3.22 we prove that the number of generators of
the ideal of a general set of points on a del Pezzo surface is as small as possible and
so it is the number of generators of its canonical module as well. In fact, we have:

Theorem 3.3.26 Let X C P? be a del Pezzo surface. Then for a general set of
points Z on X such that |Z| > Px(3) the Cohen-Macaulay type Conjecture and the
Ideal Generation Conjecture are true.

Proof Let Z be a general set of points on our del Pezzo surface X. If it is the case
thatn(r) < |Z| < m(r + 1) the result has been proved on the previous theorem. So
we can assume that m(r) < |Z| < n(r) for some r. We know that the MRC holds
for a general set | Z’| of n(r) points on X, Z € Z’ and in particular b; ,(Z') = 0.
Applying Lemma 3.3.23 inductively we see that b; ,(Z) = 0. Analogously, since
MRC holds for a general set Z” of m(r) points, by ,—1(Z") = 0 with Z” C Z.
Applying once again the same Lemma we see that by ,—1(Z) = 0. O

In the particular case of the cubic surface, since the minimal free resolution of its
points has length three, we recover one of the main results of [42] (see also [43]):
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Theorem 3.3.27 Let X C P3 be a integral cubic surface (i.e., a del Pezzo surface
of degree three). Then the Minimal Resolution Conjecture holds for a general set of
points on X of cardinality > Px(3) = 19.

3.3.2 Ulrich Bundles on del Pezzo Surfaces

In this subsection, we will construct large families of ACM vector bundles on
smooth del Pezzo surfaces with the maximal allowed number of global sections
(the so-called Ulrich bundles) and conclude that all smooth del Pezzo surfaces are
of wild representation type. This result generalizes a previous result of Pons-Llopis
and Tonini [49] (see also [10]) which states that the cubic surface S C P3 is of wild
representation type.

The proof for the degree 8 smooth del Pezzo surface X C P? isomorphic to
P! x P! (i.e. the Segre product of two conics naturally embedded in P3: Vo2 "
P! x P! < P8) is slightly different and the reader can consult [48]. So, from now
on when speaking of a smooth del Pezzo surface we will understand the blow up of
P2 at s < 8 points in general position.

Following notation from [22], let us consider K-vector spaces A and B of
respective dimension a and b. Set V = HO(P™, Opn (1)) and let M = Hom(B, A ®
V) be the space of (a x b)-matrices of linear forms. M is an affine space of dimension
ab(m+1).Itis well-known that there exists a bijection between the elements ¢ € M
and the morphisms ¢ : B ® Opn — A ® Opn(1). Taking the tensor with Opn (1)
and considering global sections, we have morphisms

Ho(¢(1)) : HO(P™, Opn (1)?) — HO(P™, Opn (2)%).

The following result tells us under which conditions the aforementioned morphisms
¢ and HO (¢ (1)) are surjective:

Proposition 3.3.28 Fora > 1, b > a + m and 2b > (m + 2)a, the set of elements
¢ € M suchthat ¢ : BQ Opn — AQ Opn (1) and HO(¢(1)) : HO(P™, Opm (1)?) —
HO(P™, Opm (2)) are surjective forms a non-empty open dense subset of the affine
variety M that we will denote by V.

Proof See [22, Proposition 4.1]. O

Fix m = 2 and for a givenr > 2, set a := r, b := 2r. Take an element ¢ of the
non-empty subset Vo € M provided by Proposition 3.3.28 and consider the exact
sequence

0— 7 — op” Y 6,27 — 0. (3.5)
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It follows immediately that .% is a vector bundle of rank r, being kernel of a

surjective morphism of vector bundles. Let X := Bl (P?) 5 P2 be the low up of
P> at 0 < s < 8 points in general position. Pulling-back the exact sequence (3.5)
we obtain the exact sequence:

0 — 7*F —> Ox(ep)’ 24 Ox(2ep)* — 0. (3.6)

We can prove:

Proposition 3.3.29 Ler X =5 P2 be the low up of P> at 0 < s < 8 points in
general position and let r > 2. Let F be the vector bundle obtained as the kernel
of a general surjective morphism between ﬁpz(l)zr and Op2(2)":

0— 7 — o (D 29 6o 2y — 0. 3.7)

Then, the vector bundles & obtained pulling-back %, dualizing and twisting by
H:=3e0—Y i e

0 — Ox(—2eq+ H)" i) Ox(—ey + H)¥ LN EH) = @*F)*(H) — 0
(3.8)

are simple (hence, undecomposable) vector bundles of rank r on X.
Proof See [45, Corollary 4.5]. O

The Chern classes of &(H) can be easily computed and we get:

H?r2+ (2 — H)r

c1(&(H)) =rH and c(&(H)) = )

Let us check that &(H) is an initialized Ulrich bundle. For this, we need the
following computations.

Remark (Riemann-Roch for Vector Bundles on a del Pezzo Surface) Let X be a del
Pezzo surface. Since X is a rational connected surface we have x(0x) = 1. In
particular, the Riemann-Roch formula for a vector bundle & on X of rank r has the
form

£(&) = 01(5)(01(25) — Kx) =@

Remark The Euler characteristic of the involved vector bundles can be computed
thanks to the Riemann-Roch formula:

9—s

3
X(Ox(=2e0+1H) = 12— +s

;L 3.9)
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9

_ 3_
X(Ox(=eo+1H) =" I

[ 3.10
5 (3.10)

x(E(UH)) =2rx(Ox(—eg +1H)) —rx(Ox(—2e0 + 1 H))
(3.11)
— 9rgsrl2 4 9r;srl‘

Proposition 3.3.30 Ler X be a del Pezzo surface. The bundles &(H) given by the
exact sequence (3.8) are initialized simple Ulrich bundles. Moreover, in the case of
a blow-up of <7 points, they are globally generated.

Proof First of all, notice that HO(&*) = H2*(&(—H)) = 0. Therefore,
H2(&(tH)) = 0, for all + > —1. On the other hand, since H2(Ox(—2¢p)) =
HO(Ox(2eg — H)) = 0 and h' (Ox(—ep)) = —x(Ox(—ep)) = 0 we obtain from
the long exact sequence of cohomology associated to (3.8) that H' (&) = 0. Since
¥ (&) = 0, we also conclude that HY(&) = 0 and therefore H*(&(tH)) = 0 for
all ¥ < 0. Moreover, since we also have that x(&(—H)) = 0, we obtain that
HY(&(—H)) = 0.

We easily check that HY(&(H)) # 0 which together with the vanishing
HO(&(tH)) = 0 for all r < 0 implies that & (H) is initialized.

We tensor by & the exact sequence

0— Ox(—H) — Ox — Oy — 0
and we consider the cohomology sequence associated to it. We get
0 =H"&) — H%& ) — HY(E(—H)) = 0.

This shows that Ho(éﬁy(—tH)) = 0 for all + > 0. Then we can use this last fact
together with the long exact sequence associated to

0 — &(—(t+1DH) —> E(—tH) —> Ejpy(—tH) — 0

to show inductively that H' (&(—tH)) = 0 forall r > 0.
In order to complete the proof we need to consider two different cases:

1. X is the blow-up of s < 7 points on P? in general position. In this case, by
Lemma 3.3.5, H is ample and generated by its global sections. Since we have
just seen that &(H) is O-regular with respect to H we can conclude that &(H) is
ACM and globally generated. Moreover, h’(&(H)) = x(&(H)) = (9 — s)r =
H?r,ie., &(H) is an Ulrich bundle.

2. X is the blow-up of 8 points on P? in general position. In this case, the argument
is slightly more involved, since H is ample but not very ample. Fortunately 2 H is
ample and globally generated. First of all, since the points are in general position,
HO(Ox(—ep + H)) = 0 and from the exact sequence (3.8) we get the following
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exact sequence:

0 — H%&(H)) — HY (Ox(=2e0 + H)")
—s H' (Ox(—ep + H)*") — HY(E(H)) —> 0.

From this sequence and the fact that h!(Ox(—2eq + H)) = —x(Ox(—2ey +
H)) = 5 and h'(Ox(—ey + H)) = —x(Ox(—eo + H)) = 2 we are forced
to conclude that h%(&(H)) = r and H'(&(H)) = 0. Now, from what we have
gathered up to now, we can affirm that & (H) is 1-regular with respect to the very
ample line bundle 2H and therefore, H'(&(H +2tH)) = 0 forallt > 0. In
order to deal with the cancelation of the remaining groups of cohomology, it will
be enough to show that £ (2H) is 1-regular with respect to 2H, i.e., it remains to
show that H'(&(2H)) = 0. In order to do this consider the exact sequence (the
cancelation of HO(Ox (—eg+ 2H)) is due to the fact that the points are in general
position):

0 — HY&(2H)) — HY (Ox(—2ep + 2H)")
— HY (Ox(—ep + 2H)*) — H (&(2H)) —> 0.

Once again, we control the dimension of these vector spaces:

h'(@" Ox (~2e0 +2H)) = —rx(Ox(~2eo +2H)) = 9r
and

h' (@ Ox(—eo + 2H)) = —2rx (Ox(—eo + 2H)) = 6r.

Therefore we are forced to have h%(&(2H)) = 3r and H (&(2H)) = 0. Notice
that in this case &(3H) is globally generated.
O

As an immediate consequence we get:

Theorem 3.3.31 Let X C P? be a smooth del Pezzo surface of degree d. Then for
any r > 2 there exists a family of dimension r* + 1 of simple initialized Ulrich
bundles of rank r on X. In particular, del Pezzo surfaces are of wild representation
type.

Proof See [45, Theorem 4.9]. |

In the last part of this subsection we consider the case of strong del Pezzo surfaces
X, i.e. smooth del Pezzo surfaces with anticanonical divisor very ample. In this case,
—Kx provides an embedding X C ]P’d, with d = K)z( Let R := Klxg,...,x4]
be the graded polynomial ring associated to P¢. Using our results on Mustati’s
conjecture explained in the previous subsection, we are going to show that the
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(r* + 1)-dimensional family of rank r initialized Ulrich bundles given in Theo-

rem 3.3.31 could also be obtained through a version of Serre correspondence from

2 —_ .
a general set of 4" +(22 D boints on X.

More precisely, as a particular case of Theorem 3.3.24, we have the following
result:

Theorem 3.3.32 Let X C P? be a strong del Pezzo surface of degree d embedded
in P4 by its very ample anticanonical divisor. Let Zmry C X be a general set of

m(r) = ;(drz +©2=d)r)

points, r > 2. Then the minimal graded free resolution (as a R-module) of the
saturated ideal of Z,, () in X has the following form:
0— R(—r —d)" ' — R(—r —d +2)%4-1r-1 — .
— R(=r — )1 — R(=r)“4"V 5 [(Zyh1X) — 0 (3.12)

with

1
d—1-1 d
Vir-1 = Z(—l)l( . )Al+1PX(V +0)— (.)(m(r) — Px(r — 1)).
P i—1 i
Theorem 3.3.33 Let X C IP? be a strong del Pezzo surface of degree d.
1. If £(H) is an Ulrich bundle of rank r > 2 given by the exact sequence (3.8), then
there is an exact sequence

0— 0" — &H) — [(ZIX)(rH) — 0

where Z is a zero-dimensional scheme of degree m(r) = c2(&(H)) = %(dr2 +
2 —d)r) and h°(I(Z|X)(r — 1)H) = 0.

2. Conversely, for general sets Z of m(r) = 1/2(dr>+ (2 —d)r) points on X, r > 2,
we recover the initialized Ulrich bundles given by the exact sequence (3.8) as an
extension of [(Z|X)(r H) by ﬁ;{l.

Proof

1. As &(H) is globally generated, r — 1 general global sections define an exact
sequence of the form

0— 0% ' — &H) — 1(Z|X)(D) — 0
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where D = ¢1(&(H)) = rH is a divisor on X and Z is a zero-dimensional
scheme of length

2
r(E(H)) = dr+ (2 d)r.
2
Moreover, since & (H) is initialized, h°(I (Z|X)(r — 1)H) = 0.

2. Let Z be a general set of points of cardinality m(r) with the minimal free
resolution of (3.12). Let us denote by Ry and Rz the homogeneous coordinate
ring of X and Z. It is well-known that for ACM varieties, there exists a bijection
between ACM bundles on X and Maximal Cohen Macaulay (MCM from now
on) graded Rx-modules sending & to Hg (&). From the exact sequence

0— I(ZIX) — Rx — Rz — 0

we get Ext! (1(Z|X), Rx(—1)) = Ext’(Rz, Rx(—1)) = Kz where K7 denotes
the canonical module of Rz (the last isomorphism is due to the fact that Rx(—1)
is the canonical module of X and the codimension of Z in X is 2). Dualizing the
exact sequence (3.12), we obtain a minimal resolution of K z:

. — R(r =371l — R(r — 1)’ ' — Kz — 0.

This shows that Kz is generated in degree 1 — r by r — 1 elements. These
generators provide an extension

0— Ry ' — F — I(ZIX)(r) — 0 (3.13)

via the isomorphism Kz = Ext' (1(Z|X), Rx(—1)). F turns out to be a MCM
module because Ext!(F, Kx) = 0 (this last cancelation follows by applying
Homg, (—, Kx) to (3.13)). If we sheafiffy the exact sequence (3.13) we obtain
the sequence

0— 0" — F — 1(ZIX)(r) — 0

where F is an ACM vector bundle on X. Using the exact sequence (3.12)
we can see that H'(I(Z|X)(r — DH) = 0 and h°U(Z|X)(rH)) = (d —
Dr + 1. Therefore F is an initialized Ulrich bundle (i.e. hO(F ) = dr). By
Theorem 3.2.15, F will be globally generated.

It only remains to show that for a generic choice of Z,) C X, the
associated bundle .Z = F just constructed belongs to the family (3.8). Since
Z is an initialized Ulrlch bundle of rank r with the expected Chern classes,
the problem boils down to a dimension counting. We need to show that the
dimension of the family of vector bundles obtained through this construction
from a general set Z,,(,) is r? 4 1. Since this dimension is given by the formula
dimHilh™")(X) — dim Grass(h’(.%#), r — 1), an easy computation taking into
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account that dimHil/b"")(X) = 2m(r) and that dim Grass(h®(%),r — 1) =
(r — 1)(dr — r + 1) gives the desired result. |

As anice application we get:

Theorem 3.3.34 Let X be a smooth del Pezzo surface of degree d. Then for any
r > 2 there exists a family of dimension r*> 4 1 of simple Ulrich bundles of rank r

240
with Chern classes ¢y = rH and c» = 4" +r2(2 D,

So, we conclude:

Theorem 3.3.35 Smooth del Pezzo surfaces X C P are of wild representation
type.

3.4 The Representation Type of a Segre Variety

Fix integers 1 < nj,--- ,ngandset N := ]_[le(n,' +1) — 1. The goal of this section
is to prove that all Segre varieties X, . . C PV unless the quadric surface in P3
support families of arbitrarily large dimension and rank of simple Ulrich (and hence
ACM ) vector bundles. Therefore, they are all unless P! x P! of wild representation
type. To this end, we will give an effective method to construct ACM sheaves (i.e.
sheaves without intermediate cohomology) with the maximal permitted number of
global sections, the so-called Ulrich sheaves, on all Segre varieties X, ... ,, other
than P! x P!. To our knowledge, they will be the first family of examples of varieties
of arbitrary dimension for which wild representation type is witnessed by means of
Ulrich bundles.

Let us start this section recalling the definition of Segre variety and the basic
properties on Segre varieties needed later on. Given integers 1 < ny,---,ng, we
denote by

)
Onpoomy P P X X P — PN, N:l—[(n,-—l—l)—l

i=1

the Segre embedding of P! x - -- x P"s. The image of oy, ... », is the Segre variety
Dty 2= Onp g (P x oo x P1s)y € PNUN = [['_;(n; + 1) — 1. Notice
that in terms of very ample line bundles, this embedding is defined by means of
Opris..xpns (1, -+, 1),

The equations of the Segre varieties are familiar to anyone who has studied
Algebraic Geometry. Indeed, if we let T be the (n] + 1) x --- x (ng + 1) tensor
whose entries are the homogeneous coordinates in PV, then it is well known that
the ideal of X, ... ,,, is generated by the 2 x 2 minors of 7. Moreover, we have
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Proposition 3.4.1 Fix integers 1 < ny,---,ng and denote by Xy, ... o, < PN,
N =T[Ti_,(ni + 1) — 1, the Segre variety. It holds:

1 dim(Xy,, ... p,) = > i_;ni,

_ iy n)!
2. deg(Zy, .n,) = Hf:ll("i)!’
3. Xy, ony iSACM, and

4. I1(Xy,,... n,) is generated by (N;rz) - [T, ("‘;rz) hyperquadrics.

Example 3.4.2
1. We consider the Segre embedding

01,1 ‘P! x P! — P3
((a, b), (c,d)) — (ac,ad, bc, bd).

Set X1 = 01,1(191 X IP’l). If we fix coordinates x, y, z, ¢ in P3, we have:
I(X11) = (xt —yz),dim(X,1) = 2,deg(X,1) = 2 and Pic(X 1) = Z2.
2. We consider the Segre embedding

02,3 (P2 x P3 — pl!
((a’ b’ C)a (da e, f’ g)) = (ada ae, afa aga Tt Cg)

Set X3 = 0'2,3(P2 X ]Pf’). If we fix coordinates x¢ ¢, X0,1, - , X2,3 in Pl
we have: Y>3 is an ACM variety and its ideal /(X5 3) is generated by 18
hyperquadrics. In fact, 3, 3 is a determinantal variety defined by the 2 x 2 minors
of the matrix

X0,0 X0,1 X0,2 X0,3
M = x1,0x1,1 X1,2 X1,3

X2,0 X2,1 X2,2 X2,3
Moreover, dim(X> 3) = 5, deg(X>,3) = 10 and Pic(X> 3) = Z2.
Let p; denote the i-th projection of P! x - - - x P"’s onto P, There is a canonical
isomorphism Z° — Pic(X),, ... »,), given by

(ala T aS) d ﬁz‘nl‘,,,m (ala Ty aS) = pT(ﬁ]P’"l (al)) ® e ® IJ?f(ﬁ]PmY (aS))'

For any coherent sheaves &; on P, we set £1 X - - - K & 1= pT(&1) ® - - - ® p; (&).
We will denote by 77; : P x -+ - x P — X; :=P" x .- X Pl x - x P"s the
natural projection and given sheaves & and .% on X; and P", respectively, & X .7
stands for 7 (&) ® p; (.#). By the Kiinneth’s formula, we have

H (Zuy e 6 RF) = D H(Xi. 6) @ HI @™, 7).
p+q=¢t
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While given a coherent sheaf JZ on X, .. ., J€(t) stands for 5 @
(25 >N (AR O B

Let us start by determining the complete list of initialized Ulrich line bundles on
Segre varieties Zy, ... o, € PN, N = [];_,(n; + 1) — 1. First of all, notice that it
follows from Horrocks’ Theorem [30] that

Lemma 3.4.3 The only initialized Ulrich bundle on P" is the structural sheaf Opn.
The list of initialized Ulrich line bundles on X, ... ,, € P¥, N = [T (i +
1) — 1, is given by

Proposition 3.4.4 Let Xy, .. o, CPN, N =[[\_;(n; + 1) — 1, be a Segre variety.
Then there exist s! initialized Ulrich line bundles on Xy, ... ,,. They are of the form

Zx; W Opr; (Z ng),
kot

where £, is a rank one initialized Ulrich bundle on the Segre variety X; =
Sy, S PV N = ]_[1<,<3 (nj + 1) — 1. More explicitly, the initialized

Ulrich line bundles on Xy, ... n, are oftheform ﬁg a @i, ..., ag) where, if we
order the coefficients 0 = a;) <---<a; <--- < a,s then aj, = 215j<k nj;.

Proof The existence of this set of initialized Ulrich line bundles is a straightforward
consequence of [21, Proposition 2.6]. In order to see that this list is exhaustive,
let us consider an initialized Ulrich line bundle . := & S e s (ai, ..., as) with
aj, <---<aj, <---<aj,.Given that Z is initialized, it holds that q;, = 0. Since
Z is ACM, we have

k .
HZ=1" (s L(— T _ini, — 1) =0

fork =1,...,s — 1. In particular, using Kiinneth’s formula, it holds

k

l_[h"ll (P, Oy (ayy— Z5_yni;—1)- ]—[ hO(P"t, Oy (aiy— Z5_yni;—1)) =0,
=1 I=k+1
from where it follows that, by induction, a;,,, < b;,, = Xi< <k for k =
1,...,s — 1 (and b;, := 0). But, on the other hand, since an easy computation
shows that

iz ni)!
[Tz ()

we are forced to havea,-j = bij forj=1,...,s. O

W (D1, nys O5y) oy (b1, b)) = = deg(Zny, - n,)

Corollary 3.4.5 O, , (a,b) is aninitialized Ulrich line bundle on %y, ,, if and only
if (a, b) = (0, n) or (m, 0).
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It is natural to ask if we could use these initialized Ulrich line bundles as a bricks
to construct initialized Ulrich bundles of higher rank. The answer strongly depends
on the values of n;. Assume for a while thati = 2, take n = n1, m = ny and assume
n < m. The main difference between the case n = 1 and 1 < n comes from:

Exty, (0(m,0),00,n)#0sn=1and m > 2.

So, if 1 = n < m, we can construct a rank 2 undecomposable Ulrich bundle &
on Y, , taking a non-trivial extension 0 # e € Extlzn . (O(m,0), 00, n)):

0— 00,n) > & — O(m,0) - 0.

Iterating the process we will be able to construct Ulrich bundles of higher rank. If
2 < n < m we will need an alternative construction. So, we will distinguish to
cases:

1. Case 1: 2 < ny,---, ny.
2. Case2: 1 =ny <no,---,ng.

3.4.1 Representation Type of Xy, .... n, 2 < Ry, -+, Ny

The goal of this subsection is the construction of families of arbitrarily large
dimension of simple (and, hence, undecomposable) Ulrich vector bundles on Segre
varieties Xy, ... n, CPN,N =[[_ (i + 1) — 1, for2 <ny,--- , ny.

For any 2 < m and any 1 < a, we denote by &}, , any vector bundle on P given
by the exact sequence

0= Epa— Opn(1H)"0 D G 22 g (3.14)

where ¢ € V,, and V), is the non-empty open dense subset of the affine scheme
M = Hom(6 % G (1)24) provided by Proposition 3.3.28.

Note that &), , has rank ma and in the next Proposition we summarize the
properties of these vector bundles needed later:

Proposition 3.4.6 With the above notation we have:
1.

0 fort <0,

0/ mm _
h*(P", &n.a(t)) = {a((m + 2)("“;“) _ 2(’”+rfl+2)) for t > 0.
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0 fort < —2ort >0,
h (P", &pa(0) = { am fort = —1,
2a fort = —2.

3. hi(P", & a) =0forallt € Zand2 <i <m — 1.
4. W (P™", Epna(t)) =0 fort > —m — 1.
5. Ep.q is simple.

Proof

1.-4. Since ¢ € V,, by Proposition 3.3.28, HO(¢ (1)) is surjective. But, since
the K -vector spaces HO(P", Opm (1) +2%) and HO(P™, Opm (2)>¢) have the
same dimension, H(¢ (1)) is an isomorphism and therefore Ho(é”m,a) = 0.
A fortiori, Ho(é”m,a(t)) = 0 for t+ < 0. On the other hand, again by the
surjectivity of HO(¢ (1)), H!'(&.4) = 0. Since it is obvious that H (&, (1 —
i)) = 0 fori > 2 it turns out that &, , is 1-regular and in particular,
H!(&,.4(t)) = 0 for ¢ > 0. The rest of cohomology groups can be easily
deduced from the long exact cohomology sequence associated to the exact
sequence (3.14).

5. It follows from Kac’s theorem (see [31, Theorem 4]) arguing as in [45,
Proposition 3.4] that &, 4 is simple. O

We are now ready to construct families of simple (hence undecomposable) Ulrich
bundles on the Segre variety X, ,, € P" 4" 2 < n_m, of arbitrary high rank
and dimension and to conclude that Segre varieties X, ,, are of wild representation
type. The main ingredient on the construction of simple Ulrich bundles on X, ,, €
prmtntm 3 < n < m, will be the family of simple vector bundles &, , on P™
given by the exact sequence (3.14) as well as the vector bundles of p-holomorphic
forms of P", Qﬂfn = AP Qﬂﬁn, where .Q]Ilw, is the cotangent bundle. The values of
W (.an (1)) are given by the Bott’s formula (see, for instance, [47, p. 8]).

Theorem 3.4.7 Fix integers 2 < n < m and let X, , C P pe the Segre
variety. For any integer a > 1 there exists a family of dimension a*(m*+2m—4)+1
of initialized simple Ulrich vector bundles F = Qg;z(n — DR Enan—1) of
rank am(}).

Proof Let .7 be the vector bundle §2p5, h-1DHK Em.a(n — 1) for &, 4 a general
vector bundle obtained on P from the exact sequence (3.14). The first goal is to
prove that .% is ACM, namely, we should show that H! (Znm, FQ0s,, (1) =0
forl <i <n+m—1andt € Z. By Kiinneth’s formula

H (Zpm. F®03,,, t.0) = @ HP@". 28 (1—1+0)@HI(P", &n.a(n—1+1)).

p+q=i
(3.15)
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According to Bott’s formula the only non-zero cohomology groups of £, 2(n —
1+1¢) are:

HO(]P”,.QI?,,,_Z(n—1~|—t)) for t>0and n>3 or t > —1 and n =2,
H"2(P", Q%72 — 1 +1)) for t = —n+1,

5

H'(P", 287 2(n — 1 +1))  for 1 < —n—2.

On the other hand, by Lemma 3.4.6, the only non-zero cohomology groups of
Emaln —1+1) are:

HO(P™, &pa(n — 1 +1)) for t > —n+2,
H'(P", &pa(n —141)) for —n—1<1t < —n,
H"(P", &nan —1+1)) for t <—n—m—1.

Therefore, using (3.15), we get
H (Zym F ®0x,,(t,1) =0 for | <i<n+m—1 and 1 € Z.

Since for n > 3 HO(P", 2, %(n — 2)) = 0 and for n = 2 HO(P", &,,) = 0
(Lemma 3.4.6), .% is an initialized ACM vector bundle on X, ;,,. Let us compute the
number of global sections. Recall that, by Bott’s formula, ho P, .Qf;,,,_ 2(n - 1)) =

("erl). Hence:

hO(F) = h(Zpm, 20 2(n — 1) R Epa(n — 1))
=h'(P", 2, (n — 1)HhOP™, & a(n — 1))
— (n+1)a((m + 2)(m+n) _ 2(m+n+1 )

_ a(z(m+2>(m+n>!(n+15’? ’ 2(m+n+"f>!(n+1>!)
= minl(n—1)12! ml(n+ D (n—1)12!
= a( n!(m+n)! (n+1)(m+2)72(m+n+1))
- 2!(n—2)!m!n(! 0 n—1
_ n\ m+n\mn—
= a() "

n\ (m+n
= a(Z)( m )m
= 1k(Z)deg(Xy )

where the last equality follows from the fact that deg(X), ,,) = (m;") and k(%) =

rk(En,a) Tk (25 Dy =am (5). Therefore, .# is an initialized Ulrich vector bundle on
X,.m. With respect to simplicity, we need only to observe that

Hom(Z, %) = HY(Z, m, 7' ® F)
= HOP", 20720 — 1)Y @ 20720 — 1))
QHO(P™, &pa(n — 1)V ® Epa(n — 1))

and use the fact that Q{le_ 2 and &m.a are both simple.
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It only remains to compute the dimension of the family of simple Ulrich bundles
F = 2p, 2n—-1K &m.a(n—1) on X, ;. Since they are completely determined by

(m+2)a
Opnm

a general morphism ¢ € M := Hompn ( , Opn (1)29), this dimension turns

out to be:
: : (m+2)a . 2a
dimM — dimAut(Op,, ) — dimAut(Opn (1)) + 1
=2a°m+2)(m+1) —a’m+2)2—4a®>+1=a*>m?> +2m —4) + 1

which proves what we want. O

Corollary 3.4.8 For any integers 2 < n, m, the Segre variety X, ,, C Pwmtn+m jg
of wild representation type.

Notice that in Theorem 3.4.7 we were able to construct simple Ulrich vector
bundles on X, ,, < PV for some scattered ranks, namely for ranks of the form
am (g), a > 1. The next goal will be to construct simple Ulrich bundles on X, ,, C

prmtntm 2 < n < m, of the remaining ranks r > m(3).

Theorem 3.4.9 Fix integers 2 < n < m and let X, ,, C P"FHM be the Segre
variety. For any integerr > m(g), setr = am(g) +Lwitha > 1and0 < £ < m(;)—
1. Then, there exists a family of dimension a*(m*+2m —4)+1+ Z(am(n;rl) —¥)
of simple (hence, undecomposable) initialized Ulrich vector bundles 4 on Xy, », of

rank r.

Proof Note that for any r > m(;), there exists a > 1 and m(g) —1>¢>0,such
thatr = am (;) + £. For such a, consider the family &, of initialized Ulrich bundles
of rank am (;) given by Theorem 3.4.7. Notice that

dim 2, = a*(m> +2m — 4) + 1.

Hence it is enough to consider the case £ > 0. To this end, for any £ > 0 we
construct the family &, ¢ of vector bundles ¢ given by a non-trivial extension

e:0—>F >4 0x,,0,n" -0 (3.16)
where 7 € P, and ¢ = (e1,...,er) € Ext!(0g,,0,n' 7)) =
Ext' (¢ 5 (0,1), F Y withey, ..., e linearly independent.

Since

ext!(Ox,,,(0,n), F) = h'(Zy m, 2872 (n — H K E(-1))
=h'P", 24, *(n — 1)) - K1 (@™, &£(-1))
= ("3 )am

> m(3)

such extension exists.
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It is obvious that ¢, being an extension of initialized Ulrich vector bundles,
is also an initialized Ulrich vector bundle. Let us see that ¢ is simple, i.e.,
Hom(¥,¥) = K. If we apply the functor Hom(—, ¢) to the exact sequence (3.16)
we obtain:

0 — Hom(0s, , (0, )¢, %) — Hom(¥,¥) — Hom(Z,¥).
On the other hand, if we apply Hom(.#, —) to the same exact sequence we have
0 - K =Hom(¥#, ) - Hom(¥,¥) — Hom(¥#, 07>, ,, (0, n)"). (3.17)
But

Hom(Z, O, ,, (0,n)) = Ext"*" (0, . (0, n), F(—n — 1, —m — 1))
=H"" (S, F(—n —1,—m —n — 1))
= H"(P", 9552(—2)) H"P", E(—m —2)) =0

(3.18)

by Serre’s duality and Bott’s formula. This implies that Hom(.%, ¥) = K.

Finally, using the fact that Hom(0, ,, (0, n), %) = HY(.Z (0, —n)) = 0 and
applying the functor Hom(Cs, ,, (0, n), -) to the short exact sequence (3.16), we
obtain

0 —> Hom(Cs, , (0,n),%) — Hom(Osx,,, (0,n), 05, (0,m)") = K*
-2, Bxt' (05, , (0.n), F) —> Ext' (05, , (0.1).9).

Since, by construction, the image of ¢ is the subvector space generated by ey, ..., ¢
it turns out that ¢ is injective and in particular Hom(0’s, ,, (0, n), ¢) = 0. Summing
up, Hom(¥4,¥) = K, i.e., ¢ is simple.

It only remains to compute the dimension of %, ;. Assume that there exist vector
bundles %, %' € &, giving rise to isomorphic bundles, i.e.:

0> 7 2 9 % 05, 0.0 > 0
il

0> 7 2 g L og 0.0 > 0.

Since by (3.18), Hom( F, s, ,, (0, n)) = 0, the isomorphism i between ¢ and ¢’
lifts to an automorphism f of Oy, (0, n)¢ such that fa = Bi which allows us to
conclude that the morphism ij; : % — ¥’ factorizes through .%’ showing up the
required isomorphism from % to .%’.
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Therefore, since dim Hom(.%, ¥4) = 1, we have

dim &, ¢ = dim &, + dim Grass(¢, Extl(ﬁgm 0, n), F))
= dim 2, + ¢ dimExt! (0x, ,, (0,n), F) — £2
= a?(m® +2m —4) + 1 + Lam("}") — 0.

O

As a by-product of the previous results we can extend the construction of simple
Ulrich bundles on X, ,,, n > 2, to the case of Segre embeddings of more than two
factors and get:

Theorem 3.4.10 Fix integers 2 < ny < --- < ns and let Xy, ., < PN N =
[Ti_i (i +1) — 1 be a Segre variety. For any integer r > ny (")), setr = ana('y') +¢

witha > 1and 0 < £ < nz("zl) — 1. Then there exists a family of dimension
az(n%+2n2—4)+1—i—@(anz("l;rl)—é) of simple (hence, undecomposable) initialized

Ulrich vector bundles on Xy, n, < PN of rank r.

Proof By Theorem 3.4.7 we can suppose that s > 3. Therefore, by Eisenbud et
al. [21, Proposition 2.6], the vector bundle of the form J7 := ¢ X £ (n| + n2),
for ¢ belonging to the family constructed in Theorem 3.4.9 and . an Ulrich line
bundle on P x --. x P as constructed in Proposition 3.4.4, is an initialized
simple Ulrich bundle. In order to show that in this way we obtain a family of the
aforementioned dimension it only remains to show that whenever 4 % ¢’ then
2 H, orequivalently G X Opns ... pns Z G X Opns ... prs . But if there exists
an isomorphism

¢ G Oprs ... pns S 9K OP3 %...xPrs
¢ would also be an isomorphism between
74(4 B Opns ...xprs) =9 and 7'[*(%/ X Opr3 x...xpns ) = %

in contradiction with the hypothesis. O

Corollary 3.4.11 For any integers 2 < ny,--- , ng, the Segre variety Xy, . ., <
PN, N = [T;_, (ni + 1) — 1 is of wild representation type.

3.4.2 Representation Type of Xy, n,...n, 1 =11 <na, -+, ng

In this subsection we are going to focus our attention on the construction of simple
Ulrich bundles on Segre varieties of the form X, ,,, . n, PN for either n; = 1
and s > 3orn; = 1 and np > 2. We are going to show that they also are of wild
representation type. Opposite to the Segre varieties that we studied in the previous
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ey

not be obtained as products of vector bundles constructed on each factor, but they
will be obtained directly as iterated extensions.

ey

integer, 2 < r < (XZ_,n; — 1) [[{_o(ni + 1). Then:

1. There exists a family A, of rank r initialized simple Ulrich vector bundles & on
X given by nontrivial extensions

0— Ox(O0, 1,1 +ny,...., 1+ X )n) — &

— Ox(Zi_,ni, 0,n2, ..., 2 n) ™ — 0 (3.19)

with first Chern class c1 (&) = (r — 1) X} _,n;, 1, 1+rna, ..., 1 +r(2i€_21n,~)).

=

2. There exists a family I'y of rank r initialized simple Ulrich vector bundles 7 on
X given by nontrivial extensions

0— Ox(O0,14+n3, 1,1 4+n+n3, ..., 1+ n) — F

— ﬁX(E;‘:zn,-, n3,0,n+n3,..., Eliv=_21n,')r71 — 0 (3.20)

with first Chern class ¢\ (F) = ((r —1) X7 _,n;, 1+rn3, 1,..., 1 +r(21t:21n,-)).

Proof To simplify we set

o = O0x(0,1,1+na, ..., 1+ 2 ny),

B = Ox(Z_yn;i,0,n, ..., T ny),

¢ = Ox(0,1+n3, 1,1 +n2+n3, ..., 1+ In;), and
9 = ﬁx(zf=2ni, n3,0,ny +ns, ..., Ef:_;n,)

We are going to give the details of the proof of statement 1. since statement 2.
is proved analogously. Recall that by Proposition 3.4.4, &/ and Z are initialized
Ulrich line bundles on X. On the other hand, the dimension of Ext! (A, o) can be
computed as:

dimExt' (%8, @) = h' (X, Ox (- Z_,n;, 1,..., 1))
=h!(P!, Op1 (— X7 _,ni)) [T, hO(P, Opni (1))
= (Z_,ni — D[ + 1.
So, exactly as in the proof of Theorem 3.4.9, if we take £ ({ = r — 1) linearly
independent elements e, .. ., ¢ in Ext! (B, ), 1 <tl< (X ,ni—1) ]_[‘Zzz(ni +

1) — 1, these elements provide with an element e := (ey, ..., e7) of Ext! (%', o) =
Ext' (4, o/)¢. Then the associated extension

0— o — & — B —0 (3.21)

gives arank ¢ 4 1 initialized simple Ulrich vector bundle. O
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Remark

1. With the same technique, using other initialized Ulrich line bundles, it is
possible to construct initialized simple Ulrich bundles of ranks covered by
Theorem 3.4.12 with different first Chern class.

2. Notice that for s = 2, we have constructed rank » simple Ulrich vector bundles
on Xy, C P2m+1 < ;2 as extensions of the form:

0— 0x,,0,1) — & — Ox,, (m,00" — 0.

ey

ny > 2 and keep the notation introduced in Theorem 3.4.12. We have:

1. For any two non-isomorphic rank 2 initialized Ulrich bundles & and &' from the
family Aj obtained from the exact sequence (1), it holds that Hom(&, &) = 0.
Moreover, the set of non-isomorphic classes of elements of Ay is parameterized
by

PExt (B, ) = P (Z10y..n Osy,, Ly (=D nin 1o 1))
i=2

and, in particular, it has dimension (X7_,n; — 1) [ +1)—1.
2. For any pair of bundles & € Ay and F € I3 obtained from the exact
sequences (1) and (2), it holds that Hom(&, %) = 0 and Hom(%#, &) = 0.

Proof The first statement is a direct consequence of Proposition [49, Proposition
5.1.3]. Regarding the second statement, it is a straightforward computation applying
the functors Hom(.%, —) and Hom(&’, —) to the short exact sequences (1) and (2)
respectively, and taking into account that there are no nontrivial morphisms among
the vector bundles &7, &, €, 9. O

In the next Theorem we are going to construct families of increasing dimension
of simple Ulrich bundles for arbitrary large rank on the Segre variety X ,,... ,,. In
case s > 3 we can use the two distinct families of rank 2 and rank 3 Ulrich bundles
obtained in Theorem 3.4.12 to cover all the possible ranks. However, when s = 2,
since there exists just a unique family, we will have to restraint ourselves to construct
Ulrich bundles of arbitrary even rank. In any case, it will be enough to conclude that
these Segre varieties are of wild representation type.

Theorem 3.4.14 Consider the Segre variety X1 p,.. .0, < PV for either s > 3 or

weeslly
ny > 2.

1. Then for any r = 2t, t > 2, there exists a family of dimension

@t = D)(EZ_ni = D[ [+ 1 =3¢ —1)
=2

of initialized simple Ulrich vector bundles of rank r.
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2. Let us suppose that s > 3 and nyp = 1. Then for anyr = 2t + 1, t > 2, there
exists a family of dimension > (t — )((X_i_,ni — D3 +2) [[[_4(ni + 1) — 1)
of initialized simple Ulrich vector bundles of rank r.

3. Let us suppose that s > 3 and ny > 1. For any integer r = an3("22) + £ >
n3(”22) witha > 1land 0 < £ < nj3 ("22) — 1, there exists a family of dimension
az(ng +2n3 —4) + £ + l(ans (”2;1) — £) of simple (hence, undecomposable)
initialized Ulrich vector bundles of rank r.

Proof

1. Let r = 2t be an even integer and set
s
a:=ext! (B, o) = (Z_on; — 1) 1_[(11,' +1)
i=2

with & and % defined as in the proof of Theorem 3.4.12. Denote by U the
open subset of P“x 2. xP? P? = PExt' (B, o)) = A, parameterizing
closed points [&7, - -+ , &] € P*x 2. xP% such that & 2 & fori # j (ie.
U is P4x 2. xP? minus the small diagonals). Given [&], -+, &;] € U, by
Lemma 3.4.13, the set of vector bundles &7, - - - , & satisfy the hypothesis of
Proposition [49, Proposition 5.1.3] and therefore, there exists a family of rank r
simple Ulrich vector bundles & parameterized by
P(Ext' (&, &1)) x --- x P(Ext' (&, &-1)
and given as extensions of the form

0— @& — & — & —> 0.

Next we observe that if we consider [£7, - - - , &;] # [51’, -++,&/1 € U and the
corresponding extensions

0— @_|& — & — & — 0,
and

0— @18 — & — & —0
then Hom(&, &’) = 0 and in particular & % &’. Therefore, we have a
family of non-isomorphic rank r simple Ulrich vector bundles & on X ,,.. a,

parameterized by a projective bundle P over U of dimension

dimP = (¢ — Ddim(P(Ext (&, &))) + dim U.
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Applying the functor Hom(—, &7) to the short exact sequence (1) we obtain:
0 — Hom(«/, &) = K —> Ext! (%, &) — BExt! (&, &) — Ext' (7, &) = 0.
On the other hand, applying Hom (%, —) to the same exact sequence we have
0 = Hom(%, &) —> Hom(%#, #) = K — Ext'(%, o) = K“
— Bxt'(%, &) — Ext' (%, B) = 0.
Summing up, we obtain ext! (&, &1) = a — 2 and so
dmP=(¢—-1)(@a—-3)+ta=Q2t—1)a—-3t—1).

2. Now, let us suppose that s > 3 andnp = 1 and take r = 2¢ + 1, ¢ > 2. Let
&, ..., &1 bet—1 non-isomorphic rank 2 Ulrich vector bundles from the exact
sequence (1) and let .% be a rank 3 Ulrich bundle from the exact sequence (2).
Again, by Lemma 3.4.13, this set of vector bundles satisfies the hypothesis of
[49, Proposition 5.1.3] and therefore, there exists a family G of rank r simple
Ulrich vector bundles & parameterized by

P(Ext! (61, 7)) x -+ x P(Ext' (-1, F))
and given as extensions of the form
0— F — & — &6 — 0.
It only remains to compute the dimension of the family
dimG = (r — 1)dim(P(Ext' (&, .%))).
Let us fix the notation

b:=ext!(B,%) = h' (P!, Opi (— Y}, n))O (P!, Op1 (1 + n3)) [T_y O (P, Opni (1))
=i n — Dy +2) [Ty + 1).

Applying the functor Hom(—, %) to the short exact sequence (1) we obtain:
0 = Hom(«, %) — Ext'(8, #) — Ext' (&, F) — Ext' (&, F).
On the other hand, applying Hom(%, —) to the short exact sequence (2) we have
0 = Hom(#, 2) — Ext!(%, %) = k* — Ext!(%, 7) — Ext! (%, 2) = 0.

Summing up, we obtain ext! (&1, .#) > b and therefore dimG > (r — 1)(b — 1).
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3. It follows from Theorem 3.4.9 and [21, Proposition 2.6]. O

Corollary 3.4.15 The Segre variety X1 n,..n, €PN, N =2[[I_,(n; + 1) — 1, for
s >3 ors =2andny > 2 is of wild representation type.

Putting together Corollaries 3.4.8,3.4.11 and 3.4.15, we get

Theorem 3.4.16 All Segre varieties Xy, ny..ny € PV, N = [[I_;(ni + 1) — 1,
are of wild representation type unless the quadric surface in P3 (which is of finite
representation type).

Slightly generalizing the arguments of this section we can extend the last
Theorem and determine the representation type of any non-singular rational normal
scroll. Scrolls are fascinating varieties which have been largely studied in Algebraic
Geometry. Let us recall one of their possible definitions. To this end, we fix
& = @ﬁ.‘zoﬁpl (a;) arank k + 1 vector bundle on P!, where 0 < ag < ... < ai, and
ar > 0. Let P(&) = P(Sym(&)) > P! be the projectivized vector bundle and
let Op(g)(1) be its tautological line bundle. Then Op ) (1) is generated by global
sections and defines a birational map P(&) — PN, N = Zf:o a; + k. We write
S(&) or S(ap, . . ., ax) for the image of this map, which is a variety of dimension
k 4 1 and degree ¢ := Y°5_ a;.

Definition 3.4.17 A rational normal scroll is one of these varieties S(&); i.e. it is
the image of the map

o: P x Pk — PV
given by
06, Y10, 1] - s 1) = (x“oto,x“‘)*lyto, R ,x“ktk,x“kflytk, e Y% )

where 0 <ag <...<ag,and a; > 0.

The most familiar examples of rational normal scrolls are Pd =~ S@O,...,0,1),
the rational normal curve S(a) of degree a in P4, the quadric S(1, 1) C PP? and the
cubic scroll S(1,2) c P*.

There is a beautiful geometric description of rational normal scrolls. In PV, take
k + 1 complementary linear spaces L; = P% with0 < ag < ... < ag, and a; > 0.
In each L; choose a rational normal curve C,; and an isomorphism ¢; : Pl — Cq
(¢; is constant when a; = 0). Then the variety

Sao, ....a) = | J (do(p), - . du(p)) c PV

peP!

is a rational normal scroll of dimension k + 1 and degree ¢ := Zf:o a; in Perk,
Notice that rational normal scrolls are varieties of minimal degree.
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This geometric description will allow us to describe the homogeneous ideal of
S(ag, ..., ax).Indeed,if S(ag, ..., ar) C PN N = Zf:o a; +k is arational normal
scroll defined by rational normal curves C,, C L; = P4, we choose coordinates
X9, ,Xgo, s XK ,X’(jk in PV such that X}, - ,th, are homogeneous
coordinates in L;. Then, we consider the 2 x ¢ matrix with two rows and k + 1
catalecticant blocks

0 0 k k
Ma a0 = X8 Xa%—l X2 Xakk—l .
D CTRED CAENERD CRETED ¢
It is well known that the ideal of S(ao, ..., axr) is generated by the maximal minors

of Myy,... 4, and we have:

Proposition 3.4.18 Let S(ag, ...,ar) C PN with N = Y¥_ja; +k 0 < ag <
... < ag, and a; > 0 be a rational normal scroll. Set ¢ := Zf:o a;. It holds:

1. dim(S(ao, ..., ar)) = k + 1 and deg(S(ao, ...,ar)) = Zf:O a;.

2. S(ao, ...,ar) is ACM and 1(S(ay, ..., ax)) is generated by (;) hyperquadrics.

3. S(ao, ..., ax) is non-singular if and only if ap > 0 (so, a; > 0 forall 0 <i <k)
or S(ag, ..., ar) = S, ---,0,1) = Pk,

Since we are not interested in P* (according to Horrocks Theorem there is, up
to twist, only one ACM bundle in P, namely, Opr) and we will only deal with
non-singular rational scrolls, we will assume 0 < a;, 0 < i < k. It holds

Theorem 3.4.19 All rational normal scrolls S(ag, - -+ ,ar) TPV, N = ]_[‘;:1 (n; +
1) — 1, are of wild representation type unless Pt = S(0, --- , 0, 1), the rational
normal curve S(a) in P?, the quadric surface S(1,1) in IP3 and the cubic scroll
S(1,2) in P* which are of finite representation type.

Proof See [40, Theorem 3.8]. O

3.5 Does the Representation Type of a Projective Variety
Depends on the Polarization?

The representation type of an ACM variety X C P" strongly depends on the
chosen embedding and the goal of this section will be to prove that on an ACM
projective variety X C P" there always exists a very ample line bundle . on X
which naturally embeds X in PXD)-1 55 5 variety of wild representation type
(cf. Theorem 3.5.4). As immediate consequence we will have many new examples
of ACM varieties of wild representation type.

Let us start with a precise example to illustrate such phenomena.
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Example 3.5.1

1. The Segre product of two lines naturally embedded in IP? is an example of ACM
surface of finite representation type, i.e., @ (1,1)| : P! x P! < P3 is a variety
of finite representation type. Indeed, according to Knorrer any hyperquadric
Q, C P"lis of finite representation type [34] and, up to twist, the only
undecomposable ACM bundles on P! x P! ¢ P3 are: Opipi, Opipi(1,0)
and ﬁpl P! (O, 1)

2. The Segre product of two smooth conics naturally embedded in IP® is an example
of variety of wild representation type, i.e., ¢|52,2) : P! x P! < P8 is an
example of ACM surface of wild representation type. Indeed, any smooth del
Pezzo surface is of wild representation type (see Theorem 3.3.35).

3. The Segre product of a line and a smooth conic naturally embedded in P° is an
example of smooth ACM surface of tame representation type, i.€., ¢|¢(1,2)| : P! x
P! < P is a variety of tame representation type. Indeed, all continuous families
of undecomposable ACM bundles are one-dimensional (see [23, Theorem 1]).

This leads to the following problems:
Problem 3.5.2

1. Given an ACM variety X C P" , is there an integer Nx such that X can be
embedded in PVX as a variety of wild representation type?
2. If so, what is the smallest possible integer Nx ?

We will answer affirmatively Problem 3.5.2 (1) and provide an upper bound for
Nx. In other words, we will prove that for any smooth ACM projective variety
X C P" there is an embedding of X into a projective space PVX such that the
corresponding homogeneous coordinate ring has arbitrary large families of non-
isomorphic undecomposable graded Maximal Cohen-Macaulay modules. Actually,
it is proved that such an embedding can be obtained as the composition of the
“original” embedding X C P" and the Veronese 3-uple embedding v3 : P —

]P’(n;})_l. The idea will be to construct on any ACM variety X C P” of dimension
d > 2 irreducible families .# of vector bundles & of arbitrarily high rank and
dimension with the extra feature that any & € % satisfy Hi (X, &(t)) = 0 for all
teZand2 <i <d-—1and Hl(X, &(t)) = 0forall r # —1, —2. Therefore, X
embedded in Pho(ﬁx GN-1 through the very ample line bundle O (s), s > 3, is of
wild representation type.

Let X be a smooth ACM variety of dimension d > 2 in P" with a minimal free
R-resolution of the following type:

0—F 2 F " 2 Y F— Ry —0 (3.22)

withc=n—d, Fp= Rand F; = @fi:IR(—n;), l<i<e.
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For any 2 < n and any 1 < a, we denote by &, , any vector bundle on P" given
by the exact sequence

0= & a— O™ g 202 S 0 (3.23)

where ¢ € V, being V, the non-empty open dense subset of the affine scheme
M = Hom(Opn (1)"+24 | Gpa (2)%%) provided by Proposition 3.3.28.

From now on, for any 2 < n and any 1 < a, we call fn{(a the non-empty
irreducible family of general rank na vector bundles & on X C P” sitting in an
exact sequence of the following type:

0—> & — Ox(1)tDa EA Ox(2)** = 0. (3.24)

Proposition 3.5.3 Let X C P" be a smooth ACM variety of dimension d > 2. With
the above notation, we have:

1. A general vector bundle & € ﬂn{(a satisfies

HL& =0 for2<i<d-—1,
HY(X, &) =0for t# —1, 2.
2. A general vector bundle & € ﬂn{(a
3. ﬂn}fa is a non-empty irreducible family of dimension a®>(n* + 2n — 4) + 1 of
simple (hence undecomposable) rank an vector bundles on X.

is simple.

Proof

1. Since H (X, &(t)) = 0forallt € Zand2 <i <d—1,and H (X, &(t)) = 0 for
t # —1, —2 are open conditions, it is enough to exhibit a vector bundle & € ﬂn{(a
verifying these vanishing. Tensoring the exact sequence (3.23) with Ox, we get

0— &:=E.4Q Ox — Ox(1)"D 5 05 (2)% - 0. (3.25)

Taking cohomology, we immediately obtain H' (X, &(t)) = O for all ¢ € Z and
2 <i <d — 1. On the other hand, we tensor with &, , the exact sequence (3.22)
sheafiffied

c Pe c— — Pe—1
0 —> & O (—n%) 25 & Opn (-7 X5
Bl Opn(—n}) B> Opn 25 0x — 0
and we get

0— & £ a(-nS) L5 &6, 0 (nH I I gl

s
=1 éan,a(_nlj) —

LN @flzlgn,a(—n}) A e B 6 =800 Ox — 0. (3.26)
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Set J# = ker(¢;), 0 < i < ¢ — 2. Cutting the exact sequence (3.26) into short
exact sequences and taking cohomology, we obtain
o> H (P, 60(1) > H' (X, 6(1) > BB, (1) — -+,

oo B B 6 a(n 4+ 1) > BEE@T, A (0) > BRE, A 0) > -

o BTN, B2 6 (-0 4 1) > BTN, H3(1)
— HC(P", Ay (t) — -+ -,

s B @ G0 (-0 4 1) = HEPT, Ao (1)

— HH @, &l GG +0) > o

Using Proposition 3.4.6, we conclude that HY (X, &) =0fort # —1, —2.

2. A general vector bundle & € ﬁ,ffa sits in an exact sequence

0 &5 ox()™ L oy - 0

and to check that & is simple is equivalent to check that & is simple. Notice
that the morphism £ : Ox(—2)?* — Ox(—1)"*24 appearing in the exact
sequence

0 Ox(-2% L oy (- £ £v g (3.27)
is a general element of the K -vector space
M = Hom(ﬁx(_z)m’ ﬁX(_l)(rH»Z)a) ~ gntl ® K2a ® K (nt+2)a

because Hom(Ox(—2), Ox(—1)) = HY(X, Ox(1)) = H'P", Op (1)) =
K1 Therefore, f¥ : Ox(—2)** — Ox(—1)"+24 is represented by a (n +
2)a x 2a matrix A with entries in H*(P", & (1)). Since Aut(Ox (—1)+24) =
GL((n + 2)a) and Aut(Ox(—2)>?) = GL(2a), the group GL((n + 2)a) x
G L(2a) acts naturally on M by

GL((n+2)a) x GLQ2a) x M — M
(81,82, A) — gy 'Ag.

Forall A € M and A € K*, (A d;+42)a, M da,) belongs to the stabilizer of A
and, hence, dimg Stab(A) > 1. Since (2a)*+(n+2)%a*—2a(n+1)(n+2)a < 0,
it follows from [31, Theorem 4] that dimg Stab(A) = 1. We will now check that
&Y is simple. Otherwise, there exists a non-trivial morphism ¢ : &Y — &V and
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composing with g¥ we get a morphism
p=¢og’: Ox(—1)"D - gv,

Applying Hom(Ox (—1)"+24 ) to the exact sequence (3.27) and taking into
account that

Hom(Ox (—1)"4 0x (—2)*") = Ext' (Ox (~ 1), 0 (~2)*) =0

we obtain Hom(Ox (—1)"124 gy (—1)"+D4) = Hom(Ox(—1)"1t2e &Y.
Therefore, there is a non-trivial morphism a € Hom(Ox(—1)t2a,
Ox (—1)™+t2a) induced by ¢ and represented by a matrix B # pld €
Mat(,4+2)a x (n4+2)a (K) such that the following diagram commutes:

0 —= Ox(=2)2 — s Ox(=Htda L © 5

e T s

0 —= Ox(=2)2" —— Ox(-Hrtde 5 v — 5 0
vV gv

where C € Maty,«2,(K) is the matrix associated to &s" Oy (~2)2- Then the pair
(C, B) # (uld, nld) verifies AC = BA. Let us consider an element ¢ € K
that does not belong to the set of eigenvalues of B and C. Then the pair (B —
ald,C —ald) € GL((n 4 2)a) x GL(2a) belongs to Stab(f) and therefore
dimg Stab(f) > 1 which is a contradiction. Thus, & is simple.

3. It only remains to compute the dimension of y,fa. Since the isomorphism class

of a general vector bundle & € ﬁ,ffa associated to a morphism ¢ € M =

Hom(ﬁ)((n +2)a, Ox (1)?*) depends only on the orbit of ¢ under the action of
GL((n 4+ 2)a) x GL(2a) on M, we have:

dimZ, = dimM — dimAu(60 %) — dimAut(Ox (1)29) + 1
=22 +2(m+ D) —d?>(n+2)2 —4a’+1=a?>m?+2n—4) + 1.

O

As an immediate consequence of the above result we can answer affirmatively
Problem 3.5.2 (1) and provide an upper bound for Nx. Indeed, we have:

Theorem 3.5.4 Let X C P" be a smooth ACM variety of dimension d > 2. The
very ample line bundle Ox (s), s > 3, embeds X in P (Ox6)-1 g5 4 variety of wild
representation type.

Proof See [41, Theorem 3.4]. |

Corollary 3.5.5 The smallest possible integer Nx such that X embeds as a variety
of wild representation type is bounded by Nx < ("'3”’) -1
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Proof See [41, Corollary 3.5]. O

3.6 Open Problems

In this section we collect the open problems that were mentioned in the lectures, and
add some more.

1.

Does Mustatd’s conjecture holds for a set of general points on a smooth surface
S of degree d in P3?

The answer is yes if d = 2 (see [27]) or d = 3 (see Theorem 3.3.27).

More general, does Mustatd’s conjecture holds for a set of general points on a
smooth hypersurface X of degree d in P"?

To my knowledge these two problems are open.

Fix a projective variety X C P". As we have seen in these notes ACM
bundles on X provide a criterium to determine the complexity of X. Indeed,
the complexity is studied in terms of the dimension and number of families
of undecomposable ACM bundles that it supports. Mimicking an analogous
trichotomy in representation theory, it was proposed a classification of ACM
projective varieties as finite, tame or wild representation type. We would like
to know:

Is the trichotomy finite representation type, tame representation type and wild
representation type exhaustive?

The answer is yes for smooth ACM curves. In fact, an ACM curve is of finite
representation type if its genus g(C) = 0, of tame representation type if
g(C) = 1, and of wild representation type if g(C) > 2. For ACM varieties
of dimension > 2 the answer is not known.

In Sect. 3.5, we have seen that the representation type of an ACM projective
variety strongly depends on the embedding and we have proved that given an
ACM variety X C P", there is an integer Nx such that X can be naturally
embedded in PVX as a variety of wild representation type. So, the following
question arise in a natural way:

Given an ACM projective variety X, what is the smallest possible Ny such that
X embeds in PV¥ as a variety of wild representation type?

In Sect. 3.4, we saw that all Segre varieties X, ... », C PV N = ]_[‘Zzl(ni +
1) — 1 are of wild representation type unless P! x P!; it follows from Sect. 3.5
that the Veronese embedding vy : P" —> P('lzd)_l, d > 3, embeds P" into
]P’(ngd)*l as a variety of wild representation type. So we are led to pose the
following question:

Let G (k, n) be the Grassmannian variety which parameterizes linear subspaces
of P* = P(V) of dimension k. Embed G (k, n) into IP’(Zﬂ)*l using Pliicker
embedding.

n+1
IsG(k,n) C ]P’(kil) L= pAktlyya variety of wild representation type?
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5. In Sect. 3.3, we have constructed Ulrich bundles on smooth del Pezzo surfaces
and, in Sect. 3.4, on Segree varieties. Nevertheless few examples of varieties
supporting Ulrich sheaves are known. In [21, p. 43], Eisenbud, Schreyer and
Weyman leave open the following interesting problems:

(a) Isevery variety (or even scheme) X C P" the support of an Ulrich sheaf?
(b) If so, what is the smallest possible rank for such a sheaf?

6. In Sect.3.3.1, we have addressed Mustata’s conjecture for a general set of
points on a del Pezzo surface. As a main tool we have used Liaison Theory
and we will end these notes with a couple of open problems/questions on this
fascinating Theory.

(a) Does any zero-dimensional scheme Z C P” belong to the G-liaison class
of a complete intersection? In other words, is it glicci?

(b) More general, is any ACM scheme X C P" glicci?

(c) Find new graded R-modules invariant under G-liaison.

These notes and list of open problems were written for a course held in
2014. Some of these questions have been studied and even solved. For seek of
completeness we add a list of recent results on the subject where the reader could
find more information.

Problem 1 has been solved for a set of general points on a smooth surface § C P
of degree 4 and remains open for a set of general points on a smooth surface S of
degree d > 4 in P3 (see [6]).

For more information on Problem 2 the reader could read [32] and [24]. For the
existence of homogeneous ACM (resp. Ulrich) bundles on Grassmannians G (k, n)
and on flag manifolds F(ki,--- , k), as well as for the representation type of
G (k, n) the reader can see [13, 14] and [12].

Finally, new contributions to Problem 6 could be found, for instance, in [1-3, 5,
11] and [26].
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Chapter 4 )
Simplicial Toric Varieties Which Are Shethie
Set-Theoretic Complete Intersections

Marcel Morales

Abstract We say that a polynomial ideal / is set-theoretically generated by a family
of elements fi, ..., fx in I if the radical of I coincides with the radical of the ideal
generated by fi, ..., fr. Over an algebraically closed field, the smallest number
among all such possible k is the minimal number of equations needed to define
the zero set of /. To find this number is a classical problem in both Commutative
Algebra and Algebraic Geometry. This problem is even not solved for the defining
ideals of toric varieties, whose zeros are given parametrically by monomials. In
this lecture notes we study set-theoretically generation of the defining ideals of
simplicial toric varieties, which are defined by the property that the exponents of the
parametrizing monomials span a simplicial complex. We review and improve most
of results on simplicial toric varieties which are set-theoretic complete intersections,
previously obtained by the author in collaboration with M. Barile and A. Thoma.

4.1 Introduction

In the beginning of Algebraic Geometry, varieties were described by equations.
However, such description is ambiguous. In order to be more precise, the notion
of ideal (defining a variety) was introduced. But if we define a variety as the zero
set of a polynomial ideal, there is still ambiguity because different ideals can have
the same zero set. The famous Hilbert Nullstellensatz helps us to understand this

phenomenon better.
More precisely, let S := K[Xi,..., X,] be a polynomial ring over a field
K. Let A’Il( be the affine n-dimensional space over K. Given a set fi,..., fx of

polynomials, the zero set

Z(fi,.... fi) ={P €Al | fi(P)=0Vi=1,....k}
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is called an algebraic set. It is also the zero set Z(I) of the ideal I = (fi, ..., fk).
For any subset Y C A, we define the ideal of Y by

I(Y)={feS| f(P)=0VP eY}.

For an algebraic set V, the ideal 7 (V) is called the defining ideal of V. It is clear
thatif 7 (V) = (f1,..., fy), then V.= N]_, Z(f;), i.e. V is the intersection of the
hypersurfaces Z( f;). However, there are many ways to define V as an intersection
of hypersurfaces. An important problem in Algebraic Geometry is to determine the
minimum number of equations needed to define an algebraic set V set-theoretically,
that is the minimal number s such that V = N;_, Z( f;) for a family of s polynomials
fi.--., fs € K[X1, ..., Xn]. An important tool in the study of this problem is:

Theorem 4.1.1 (Hilbert’s Nullstellensatz) Let K be an algebraically closed field.
Then for any family of polynomials f1, ..., fs, we have

I(Z(f1,.... f) =rad(f1,..., fs).

This result leads to the following definition.

Definition 4.1.2 The arithmetical rank of an algebraic set V C A’ is the number
ara(V)y =min{k| 3f1,..., fr e S: (V) =rad (f1,..., f)},

and the arithmetical rank of an ideal [ is
ara(I) = min{k| 3f1,..., fr € S:radl =rad(f1,..., fi)}.

Let ]P)’Il( be the projective n-dimensional space over K. Similarly, one can define
an algebraic set in ]P"}{l as the zero set of a family of homogeneous polynomials
in S. For any subset ¥ C ]P”;{l, one define /(Y) to be the ideal generated by the
homogeneous polynomials f € K[Xj, ..., X,] vanishing on Y. Then we also have
the homogeneous Hilbert Nullstellensatz, and we can define the arithmetical rank of
an algebraic set in P or of a homogeneous ideal in K[Xo, ..., X,].

Thus, if K is an algebraically closed field, we have ara(Z(l)) = ara(l) for
any ideal / (homogeneous or not). However, it is more convenient to work over any
field K and on set-theoretic generation of ideals. From now on, when we consider
affine or projective algebraic sets, we only take care of their defining ideals. For an
arbitrary ideal I, we always have the following inequalities:

ht(I) < ara(l) < p(1).
Here, ht(I) denotes the height and (/) the minimal number of generators of 1.

When h(I) = ara(I), the ideal I as well as the algebraic set V = Z([) is called
a set-theoretic complete intersection (s.t.c.i). When ht(I) = n([l), it is called a
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complete intersection. It is called an almost set-theoretic complete intersection if
ara(l) < ht(I) + 1.

In this lecture notes we focus on toric ideals and toric varieties whose precise
definition will be given in Sect. 4.2. Toric ideals and toric varieties play an important
role in both Commutative Algebra and Algebraic Geometry because they serve
as models for general algebraic varieties. Toric ideals are generated by binomials.
Moreover, each binomial is a difference of two monomials with coefficients equal
to 1. A rather systematic study of binomial ideals (i.e. generated by binomials) was
done by Eisenbud and Sturmfels in [7]. There are numerous publications on minimal
generation of a binomial ideal or of its radical, see, for example, [12] Chapter V and
[1,2,4,9,10, 13-15, 19, 22].

The binomial arithmetical rank bar(I) of a binomial ideal I is the smallest
integer s for which there exist binomials fi, ..., fy in S such that rad(l) =
rad(f1, ..., fs). This intermediate invariant is, on one side, easier to compute. On
the other side, it gives an upper bound for the arithmetical rank of a binomial ideal
I as we always have:

ht(I) <ara(l) < bar(I) < u(I).

Using binomial arithmetic rank, one has obtained many results on set-theoretic
complete intersections. In this lecture notes we review, and sometimes improve,
some of these results.

The main results are (see Sects. 4.2, 4.3 for the used notations):

1. In characteristic p > 0, every simplicial toric affine or projective variety with
almost full parametrization is a set-theoretic complete intersection. This extends
previous results by Hartshorne [10], Moh [13], and Barile et al. [2].

2. In any characteristic, every simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection. We give a more
transparent proof of this result, which is due to Barile et al. [2].

3. Let V(p, q,r) be the projective toric curve in ]P’% with parametrization

w=u,x=u"Pv,y=u"N,z7=1".

Then V(p, q,r) in P3 is a set-theoretic complete intersection for r > 0.
4. Let p,qo,q1, - .., qn-1 be positive integers. Let V(p, qo,q1, -..,qn—2) C Py
be the projective toric curve with parametrization
w = ul?,
x = ud-2"PyP,
y = ydn-2790y%0,

71 = u‘]n—z—ﬂhvbh’

vqn72 A
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Let V1i(p,q0,q1s---sqn-2,qn-1) C IP”I‘(H be the projective curve defined by

w = uqnfl’
X = u‘]n—l—PvP,
y = u‘bzfl —4q0 qu ,

71 = u‘]n—l—ﬂhvbh’

In—2 = u‘]n—l—%—z in—z ,

Zn—1 = vqnfl A

Let ged (p,qn—2) =1, p' = p/l,q" = qn—2/1. Assume that g,—1 > p'q'(q’ —
D +4q'l.If V(p,qo,q1, - ..qn_2) is a set-theoretic complete intersection, then

sois Vi(p,qo,q1, .- qn-2,qn-1)-

Moreover, the proofs presented here are constructive. It should be mentioned
that there is no general way to study set-theoretically generation of ideals. This is
not surprising because one can not give an answer to this most famous problem on
this subject, which deals a very simple case of projective curve in ]P’%:

Question 4.1.3 Assume that K is a field of characteristic 0. Let V (1, 3, 4) be the
projective toric curve with parametrization

w=u*x=ul y=u"r? =10

Is V(1, 3, 4) a set-theoretic complete intersection?

4.2 Definition of Toric Varieties by Parametrization,
Semigroups or Lattices

There are several ways to introduce a toric variety, which is associated with a set of
nvectors aj = (@i 1,...,aim) €Z",i=1,...,n.

1. Parametrization. A foric variety V. C K" is a variety having a following
parametrization of the form

xp = u®,
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. ai1 aj, . . . .
where u® = w," ---u,™, i = 1,...,n, are monomials in a polynomial

ring K[uj,...,uy,]. Sometimes we simply say that V is parametrized by
udl, .y,

2. Semigroups. The coordinate ring of the above toric variety is isomorphic to the
subring K[u*, o € X4] C Kluy,...,un]. This subring can be considered as
the semigroup ring K[X'4] of the semigroup

Ys=Naj;+...+Na, CcZ".

Note that K[X'4] is a domain and that dim K[X 4] = rank A, where A is the
m X n matrix whose i-th column vector is a;.

There is a canonical surjective map ¥ : S = K[X1,..., X,] = K[X4]. Let
Iy = ker¥. Then 1,4 is the defining ideal of the toric variety in S. One calls 74
a toric ideal.

We give now a short proof of the fact that /4 is generated by binomials.
Observe that

* For any non zero monomial M € S its image ¥ (M) is non zero.

* For any monomials M1, M € S, if W (M) = ¥ (M3) then M1 — M € 4.

* For any non zero monomials M1, My € S, if (M) # ¥ (M>) then any
linear combination oW (M;) + BY¥ (M>) with («, B) € (K%)* is non zero.

Let F = Zf’:l a;M; € Iy, where o;j € K* and M; is a nonzero monomial,
i =1,...,t. By the observation above we may assume that ¥ (M;) = ¥ (M)
foranyi, j = 1,..., . Itis clear that this implies ) ;_, o; = 0 and consequently
o) =—Y i_,a;.Hence F = Y i_, a; (M; — M)). That shows that the toric ideal
1, is generated by binomials of the type M — N, where M, N are monomials with
coefficients 1 without common divisor.

3. Lattice of relations. Note that any vector « € Z" can be uniquely written as
a=oy —a_,withay,a_ € N*suchas (avy)i(e¢—); =0foralli =1,...,n.
Let

Ly:={aeZ"| X% — X% € 14}.

Then L4 C Z" is a subgroup of finite rank. We call it the lattice of relations
associated to I4. It is easy to see that L4 C Z" is the set of integer solutions of
the linear system AX = 0.

In general, given a subgroup of finite rank (lattice) L C Z", we can define the
ideal I;, C S generated by the binomials X*+ — X%~, o € L. Itis called the lattice
ideal associated to L. We call L saturated if dv € L forsomed € Z \ {0}, v € Z",
implies v € L.

Remark The lattice of relations of a toric ideal 1,4 is saturated and has the property

I, = Ia.
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For any vector ¢ € Z", we set Fy := X%t — X% . Note that Fy is a reduced
binomial, that is it can’t be factored by a monomial.

Lemma 4.2.1 Let 14 be a toric ideal and vy, . .., Ve a basis of La. Let Fy, € 14 be
the binomial associated to vi. Then

Z(Fyyy ..., Fy) DK = V(a4 N(KH".

Proof We have only to prove the inclusion Z(Fy,, ..., Fy,) N (K*)" C V(14).
Let P € Z(Fy,, ..., Fy,) N (K*)". Then Fy,(P) =0, ..., Fy,(P) =0.Let F
14 be any reduced binomial then there exist v € L 4 such that F = X¥+—X"-. Since

Vi, ..., Vp is a basis of L4, we can write v = «1Vvy + - - - + «, v, for some integers
aj.Let P = (x1,...,x,) € (K*)". We have x"i+ —xVi- =0fori =1,...,r. Since
P = (x1,...,x) € (K*)", this is equivalent to x¥' = 1 fori = 1,...,r, which
implies x%%i = 1fori = 1,...,r. Hence 1 = x 2=t Vi = x¥,and so F(P) = 0.

The following result [7, Corollary 2.6] gives an exact relationship between binomial
ideals and toric ideals.

Theorem 4.2.2 Let K be an algebraically closed field. A binomial ideal is toric if
and only if it is prime.

For simplicity, we say that a binomial ideal is a set-theoretic complete intersec-
tion of binomials if bar (I) = ht (I). We have the following theorem from [16].

Theorem 4.2.3 Let K be a field of characteristic zero. A toric ideal is a set-
theoretic complete intersection of binomials if and only if it is a complete inter-
section.

By virtue of this theorem, we always assume that our toric ideal is not a complete
intersection in the rest of the lecture notes.

4.3 Simplicial Toric Varieties Which Are Set-Theoretic
Complete Intersections

Most of the results on set-theoretic complete intersections in this lecture notes
concern the following class of toric varieties.

Let eq, ..., ey denote the elements of the canonical basis of Z". Let a; =
@i1,..-,ain),i =1,...,r, benon zero vectors in N".
Definition 4.3.1 Let A be a matrix with column vectors d;eq, ..., dyen, a1, ..., ar,

where d; ..., d, € N*, thatis

d 0 ...0a1...am1
A= 0 d... 0a2...ar2

0 0 ...dpajp...arn
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Then 14 is called the simplicial toric ideal associated to A and its affine variety
Va = V(I4) in K™ is called an affine simplicial toric variety.

In this case, the dimension of the affine semigroup ring K[X4] is n. Note that
V4 has codimension r > 2 in K"+ and has the following parametrization:

_ 4
Xy =uj,
d,

Xp = u,",

_arl al.n
yl —_ ul s Up )
_ . arl ar,n
Yre=Uuy - Up s,

One can define a projective simplicial toric variety similarly as above. For that
we need to assume thatdy = --- = d, =degu® foralli =1,...,r.

For any vector v € Z™, we set supp (v) = {j € {1, ..., m} | v; # 0} and call it
the support of v.

Definition 4.3.2 We say that the parametrization of Vy is full if supp aj = supp a;j
fori, j =1, ..., r. The parametrization of V4 is almost full if suppay C suppaz C
-+ C suppar.

Note that when working with full or almost full parametrization we may always
assume that suppa, = {1, ..., m}.

In this section we extend the results on simplicial varieties with full parametriza-
tion of [2] to those with almost full parametrization. Namely, we will prove the
following results.

1. In characteristic p > 0, any simplicial toric affine or projective variety
with almost full parametrization is a set-theoretic complete intersection (see
Theorem 4.3.8).

2. In any characteristic, any simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection (see Theo-
rem 4.3.11).

4.3.1 Lattice of Relations of Simplicial Toric Varieties

As we said above for toric ideals 74 the lattice L4 is the set of integer solutions
of the linear system AX = 0. That is the problem of finding binomials in /4 is
equivalent to finding solutions of AX = 0 or more generally of AX = b. For any
matrix with integer coefficients A, we set | A | to be the greatest common divisor
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of all its maximal minors. We say that the matrix A, has full rank if at least one
of its maximal minors is non null. Suppose that A has full rank. If there exists one
column vector for which some integer multiple belongs to the lattice generated by
the other column vectors, we can delete this column vector preserving our search
of solutions for the equation AX = b. That means that we can assume that all the
maximal minors are non zero.

We have the following basic lemma in Number Theory (see [11], or for a modern
presentation, [23, p. 51]):

Lemma 4.3.3 Assume that |A| # 0. The linear Diophantine system AX = b has an
integer solution if and only if |A| # 0 and |A| = |Ab|, where Ab is the augmented
matrix.

Another important ingredient is given by the chapter IV of [5] about basis of

Lattices. We learn in this chapter that we can find triangular basis of a lattice that

we will describe thanks to Lemma 4.3.3 in the case of simplicial toric varieties.
With the notations of Definition 4.3.1, foralli = 0..., r, let A; be the matrix:

di 0 ...0a1...a1

A = 0 dy... 0a12...ai2

0 0 ...dyajp...ain
We denote by dj the ith column vector of A foralli =1, ..., n, and by aj the (n +
i)th column vector of A foralli = 1,...,r. We set D[y, ..., j,] the determinant
of the n x n submatrix consisting of the columns of A with the indices ji, ..., jn,

where {ji, ..., jo}isann-subsetof {1,2,...,n+r}. Foralli =0,...,rlet|A;| :=
ged{D[j1,...,junl : 1 < j1 < jo < -+ < jy, < n+i}; for the sake of simplicity
we set g; = |A;|. Moreover, let §; = gj—1/gi, foralli =1,...,r.

Let us remark that any integer solution o of the linear system A;Z = 0
gives rise to a binomial, more precisely, let write « = g + y, with suppf C
{1,2,...,n},suppy C {n+ L,n+ 2,...,n + i}, then the binomial Fy,g =
xﬂ+y7+ — x/S*yV* in the variables x, ..., x,, 1, ..., y; belongs to I4.

In our situation we have the following corollary of Lemma 4.3.3 which can be
seen as a generalization of [15, Remark 2.1.2]:

Theorem 4.3.4 Keep the above notations. Then

1. Foranyi =1, ...,r, the linear Diophantine system A;_1Z = Oaj has an integer
solution if and only if 6 € ¢;Z.
2. The lattice Ly C Z"""" of rank r has a triangular basis:

{(w1,51,1),0,...,0), (W2,52,1),52,2),0,...,0), ...,

(We, St 1)5 8(r,2) +« > S(rr)) }s

where wy, ..., wr € Z"" and s(; ;) = ;.
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3. Let sy = (51,1),0,...,0),81 = (52,10,52,2,0,...,0),...,8 = (¢,
$(r2)> - Sy Fori € {1, ..., r} we have the reduced binomials

Fyis = M; — Niyj' € I,

where M;, N; are monomials in K[x1, ..., Xn, Y1, ..., Yi—1]-
4. Z(Fwitsys -+ - Fwpgs,) N (K" C V.
Proof

1. We have go = dopd; ...d, and for all 1 <i < r, the numbers g;_; are non null.
On the other hand it holds:

g =gcd{gi—1,Dlj1,..., ja—t,n+il: 1 S ji<jpp<---<jun<n+i-1}

“4.1)
which yields
i—1 DlJj1,.-., ju=1, ) . . . .
1=gcd{gl 1, L1 Jn—1 n+l]:15]1<Jg<~-~<1,,§n+1—1},
8i 8i
4.2)

|[A;i—1,0ai| = gcd{gi—1,0D[j1,..., jn-1,n+i]l:1 < jx <n+i—1}

[—1 . . . . .
= gcd{(g;r )8, ODlj1, .., ju—t,n+il: 1 < jx <n+i—1}

1

1 DIl jutan i . .
:gigcd{(glg'l),@ L g" 1n+l]:1§]k§n+z—l}
1 1

Hence |A;_1, faj|gi—1 = |A;—1] if and only if

i Dlj1,..., jn—1,n+1i . .
ging{(glil),Q o It ]31§]k§”l+l—1}=gi71,

8i 8i

or equivalently

D[jla-'-ajn—lan+i]

1

ged {¢;, 0 l<jr<n+i-1}=¢.

Using (2) it implies that |A;_1, faj|gi—1 = |A;—1| if and only if 6 € {;Z.

2. By the first part, for every i € {1,...,r} the Diophantine system A;,_1X = {;a;
always has a solution. This means that the vector ¢;a; can be expressed as a linear
combination of the vectors dy, ..., dy, a;, ..., aj_1 with integer coefficients,
i.e., one has

Giai = wqnd1 + -+ Wi ndn + 5G, a1+ -+ SG—1,i—DAi—1, 4.3)
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for some integers w,j, ..., s, ). Setting for every i € {l,...,r} wj =
(w(i,l), ceey w(,-,n)), we have that

{(Ww1,5(1,1),0,...,0), (W2,52,1),52,2,0,...,0), ...,
(Wr, S(}",l)a S(}",2)a DR s(r,r))},
is a triangular basis of L 4.
3. The expression (3) gives us monomials M;, N; in K[x1, ..., X5, Y1,..., Yi—1]

such that Fy, 15, := M; — N;y;".
4. Follows from the above items and Lemma 4.2.1.

Triangular basis will give us some particular binomials which will play an
important role in our proofs.

Remark For the sake of simplicity we shall set s = (s1,...,8-1), ¥y =
1y -++5 Yr—1). In particular, if (w,s,#) € Ly, then t € {-Z and, conversely,
for all multiples 7 of ¢, thereis s € 7'~ w € 7" such that (w, s, 1) € Lj4.
Forall s € Z'~!, we can write s = s+ —s_. Fix an element (w, s, s,) € L. Let
w = w4 — w_. Then the binomial corresponding to (w, s, s,) € L4 is
Sr . S— _W_

YA =yt

provided s, < 0; otherwise it is
yS+ y;&:er+ _ ys,xw, .
Remark Let

J:IAmK[-xla-'-axnayla'-'ayr—l]'

Then J is the defining ideal of the simplicial toric variety of codimension r — 1
having the following parametrization:

-

Xy =uj,
d,

Xp = u,",
ah,i al,n

Y1 = Uy Un
ar—1,1 Ar—1,n

Yr—1 = Uy st Up .

Note that if the parametrization of the variety defined by 14 is full (resp. almost full),
then the parametrization of the variety defined by J satisfies the same property.
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4.3.2 Simplicial Toric Varieties in Characteristic p > 0

We introduce one more piece of notation. Let M, M, be monomials, and let 4 =
M7 — M. For all positive integers g we set

" =Ml — mi.

Lemma 4.3.5 Let J = I4NK[x1,...,Xn, Y1,---,Yr—1], and § > 0 an integer for
which there is a binomial

I
fr — yfrls _ysaxll ___x’lln c IA-
Then for any binomial h in 15 we have
W e . o).

Proof Let h € 14 be a binomial. Since /4 is a prime ideal, we may assume that

h=yi’g— g

for some monomials g1, g» € K[x1, ..., X4, Y1, ..., Yr—1]- Then
h® — yf’pag‘f _ gg
I
= (7 + 0% )e) — 85
€, fr).

Lemma 4.3.6 Suppose that suppay = {1, ..., m}. For all sufficiently large integers
8 > O there is a binomial

I
fr=yid — yox)' cxln e 1y

Proof Let § > 0. There is 8’ such that (s', —¢,) € Ker®. Hence there are integers
rls ..,y such that for all i

r—1
> s'jaji = Gari =rid;
j=1

for all i. Multiplying this relation by § > 0 we get

r—1
Z‘SS//“/J —¢éar; = 8rl-/d,'
Jj=1
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forall i. Let d = lem{dy, ..., d,}. Replacing 8s’j by its residue s; modulo d, we
get a relation

r—1
> sjaji — &dar; = rid;.
J

Thus, if § is sufficiently large, we will have r; < O for all i. Then f, = yf’a -

ySx; "o xy ™ € I4 as required.

As an immediate consequence we have:

Corollary 4.3.7 Suppose that suppay = {1, ..., m}. Let p be a prime number. For
any sufficiently large integer m there is a binomial

m
I
fr :yfrp —ysxll ---x,l," € l4.

The next theorem improves [2, Theorem 1], where the case of full parametriza-
tion was considered.

Theorem 4.3.8 Suppose that char K = p > 0. Then every simplicial toric variety
having an almost full parametrization is a set-theoretic complete intersection.

Proof We proceed by induction on » > 1. Since the polynomial ring
K[x1,...,xn, y1]1is an UFD the claim is true forr = 1.

Suppose that > 2 and the claim is true in codimensionr — 1. Let & € I4 be a
binomial, then by Corollary 4.3.7 and Lemma 4.3.6, for m sufficiently large we get

w" = nP" e (f, ).

By the induction hypothesis the ideal J is set-theoretically generated by r — 1
binomials fi, ..., fr—1. Hence some power of 4 lies in (f1, ..., fr).

Remark Note that the proof of the preceding result yields an effective and recursive
construction of the defining equations of a simplicial toric variety having almost full
parametrization over any field K of characteristic p > 0.

Exercise 4.3.9 Assume that K is a field of characteristic p. Let V(1, 3, 4) be the
projective toric curve in P> with parametrization

w=u*x=ul,y=u"r? z=10"

1. Write the matrix A corresponding to V (1, 3, 4).

2. Use Theorem 4.3.4 to find a triangular basis of the Lattice L 4.

3. Give f1, f2 such thatrad (f1, f2) = I(V (1,3, 4)) showing that in characteristic
p, V(1,3,4) is a set-theoretic complete intersection.
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4.3.3 Almost Set-Theoretic Complete Intersections

We have studied the case where the field K is of characteristic p > 0, so now we
assume that the field K is algebraically closed of characteristic 0, since we will use
the Hilbert’s Nullstellensatz.

In this section we show that simplicial toric varieties having a full parametriza-
tion are almost set-theoretic complete intersections.

If the parametrization of V4 is full we will improve the triangular basis of 14
founded in Theorem 4.3.4.

Lemma 4.3.10 Let V4 be a simplicial toric variety. If the parametrization of V4 is
full, then for every i =2, ..., r there exists a binomial

Mi Vil Vi, Mi,1 Mi,i—2 i
Fi=yt =gy e,

and there also exists a binomial

V1,1 V1,n

Fr=y' —x" o ey,

for some strictly positive integers |, (i j and v; j.

Proof 1In this proof, foralli = 1,..., n, dj will denote the ith column vector of A
andforalli =1, ..., r, a; will denote the (n + i)th column vector of A.

Set p = ged(dy, ...,d,) and g; = ged (w,a;1,...,a;,) foralli = 1,...,r.
Foralli = 1,...,randall j = 1,...,nlet p;; = a; ju/d;jq;. Then, for all
i =1,...,r,one has that

Gi = y;li/qi —xfi’l . -~x,€i'" € IA.

It is easy to see that {1 = u/q1, then for i = 1 the preceding formula yields the
required binomial Fj.

As we have seen in Theorem 4.3.4, for all i = 1,...,r the vector {;a; can
be expressed as a linear combination of the vectors dy, ..., dp, ay, ..., aj_1 with
integer coefficients, i.e., one has

Gai =wqndy + -+ windn +5G, a1+ -+ SG—1,i—Dai—1, 4.2)

for some integers wy; j), ..., S, ;) and this expression gives us monomials M;, N;
in K[x1,...,Xn, Y1, ..., Yi—1] such that M; — N,-yfi € 14.

Now suppose that the parametrization of V4 is full. From the binomial G; we
see that for each a; there exist positive integers po; = w/qi, pj1,.-.,Pjn Such
that pjaj = pj1dy + --- + pj ndn. Furthermore, for all 1 < j < i — 2 there
exists a positive integer v; such that, after adding all the zero vectors v;(p; 1dy +
--++ pjndn — p;a;j) to the right-hand side of (2), the new coefficient —pu; ; of aj
is negative for all j = 1,...,i — 2. There also exists a large positive integer v;_i
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such that after adding the zero vector v;_1(p;—18i—1 — (Pi—1,1d1 + - - - + pi—1,ndn))
on the right-hand side of the new equation, for all j = 1, ..., n the new coefficient
—v;,j of dj is negative and the new coefficient u; of aj_q is positive. It follows that
foralli =2...,r we have a binomial

7 Vil Vin M1 Miji-2 &
Fi=yily—xexayp 7y Ty € a

Theorem 4.3.11 Assume that K is algebraically closed field of characteristic 0. Let
V4 be a simplicial toric variety having a full parametrization. Thenr < bar(I4)) <
r+ 1. Infact bar (I14) = r + 1 unless 14 is a complete intersection.

Proof Consider the r binomials Fp, F2, ..., F» which were defined in Lemma 3
and let F,;; be any binomial monic in y,, for example G,. We claim that Iy =
rad (F1, ..., Fr11).

By virtue of Hilbert Nullstellensatz the claim is proved once it has been
shown that every point x = (x1,..., Xz, ¥1,..., yr) Which is a common zero of
Fi,..., F,11in K™ is also a point of V4. First of all note that if x; = 0 for some
index k, then y; = O for all indices j. It is then easy to find u1, ..., u, € K which
allow us to write x as a point of V4. Now suppose that x; # 0 for all indices &,
Fi(x) =0,..., Fr+1(x) = 0, we have inductively that y; # 0, ..., y, # 0. So we
can assume that all the coordinates of x are non zero. Note that the vectors in L4
corresponding to Fi, F», ..., F, form a triangular basis of L 4, hence by applying
Theorem 4.3.4 we have that x is a point of V4.

Exercise 4.3.12 Assume that K is an algebraically closed field of characteristic 0.
Let V (1, 3, 4) be the projective toric curve in P? with parametrization
w=u*x=ud', y=ut? z=20"

Use Exercise 4.3.9 and the above section to give Fi, F», F3 binomials such that
rad (Fy, F2, F3) = I1(V(1,3,4)).

4.4 Equations in Codimension 2

This section is an English shorten version of the results in [15].
In this section we suppose that r = 2, i.e., V4 is a simplicial toric variety of
codimension 2 in K2, The parametrization of V4 now is:

dy
X1 =uy,

Xp=u,",
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_ar al.n
yl —_ ul o Up )
_az azn
y2 —_ ul o Up )

where the vectors ag, a2 may have zero components.

4.4.1 The Lattice Associated in Codimension Two

In this section, we introduce the reduced lattice associated to V4, which determines
the associated lattice L 4, in this particular case.

Consider the morphism of groups:

&7 — LA Z X --- X L]dyZ (s, p) — (sb1 — pc1,...,8b, — pcy)
Definition 4.4.1 The reduced lattice associated to V4 is

Ker(®) :={(s, p) € 7? | sbj — pci =0mod d;, Vi =1, ...,n}.

Remark Ker(®) is not the lattice of V4 in the sense given in Sect.4.3, but it

determines the lattice of V4. For any i = 1, ..., n there exists integers numbers
l; such that sb; — pc; = l;d;. To the vector (s, p) € Ker(®) corresponds the
vectors (—I1, ..., —I,, s, —p) in the Lattice L 4. As a consequence, we associate to

the vector (s, p) € Ker(®) with s > 0 a binomial F(_;; .. 1, s,—p) € 14 and we
call it the binomial associated to (s, p). Reciprocally, any vector (w, s, —p) € Ly,
with s > 0, determines a unique (s, p) € Ker(®P).

Proposition 4.4.2 We will define a fan decomposition of K er (@) in R%, i.e. we will

determine a family of vectors €_1, €0, ..., €mt+1 € Ker(®) N Zi such that €;, €;41
is a base of Ker(®), with det (¢, €j+1) > 0.

Proof We use the notion of base adapted to a lattice used in [5] p. 67. This allows
us to determine a base €_1, €y of Ker(®). Precisely e_1 = (s_1, 0), o = (0, po)
where s_1 is the smallest positive integer s # 0 such that (s, 0) € Ker(®) and pg
is the smallest positive integer p # 0 such that there is a vector (s, p) € Ker(P),
s is unique defined such that so < s_i.

Consider Euclide’s algorithm, with negative rest, for the computation of the
greatest common divisor, ged (s—1, o):

S—1 =4150 — §1

S0 = g2851 — 82

Sm—1 = dm+15m
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Sm+1 =0
Vigi>2, s >0.
Let us define the sequence: p; (—1 <i <m + 1), by p_1 =0and:
Pi+1 = pigi+1 — pi—1, (0 <i <m).

We set €; = (s;, pi). By induction it is easy to check that s; p;+1 — Si+1pi = pos—1
forall —1 <i < m + 1, completing the proof.
In particular we have defined two sequences {s;}, {p;}.

Example 4.4.3 Let consider the projective monomial curve with parametrization:
X=s5"0y=5Pz=50w=1"9

The lattice Ker (®) is given by the vectors (s, p) such that (r, r’, s, p) is an integer
solution of the system:
7s —3p = 10r
s—"Tp =10+
Note that the Lattice La is given by the vectors (—r, —r', s, —p) such that

(s, p, r,r’) is an integer solution of the above system.
‘We have the following table

! Si Pi Ti ’,‘/ qi
—1 10 0 7 3 0
0 9 1 6 2 0
1 8 2 5 1 2
2 7 3 4 0 2
3 6 4 3 —1 2
4 5 5 2 -2 2
5 4 6 1 -3 2
6 3 7 0 —4 2
7 2 8 —1 -5 2
8 1 9 -2 -6 2
9 0 10 -3 -7 2
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Corollary4.4.4 Fori = —1,...,m + 1 we set ¢ = (si, pi). With the above
notations, the vectors
€mtls---r€0,€1,€-1 —€0,...,€_1—(q1 —Deg =€9—€1,...,€0— (g2 — Dey
— €] —€2,...,
€m—2 — (mel —Dep—1 =€n-1 —€m, ..., €m—1 — (Qm — Dep

=€m — €m+1, —€m+1

are a fan decomposition of Ry x R. The determinant of two consecutive vectors is
—P0oS—1.

Proof The conclusion is a consequence of the above Proposition, since :

det(e;—1 — jei, €i—1 — (j + 1)e;) = —det(e;_1, €).

The fan decomposition of Ry x R is represented in Fig. 4.1:

Corollary 4.4.5 The set of binomials associated to the vectors

€m+1s---,€0,€_1,€6_1 —€Q,...,€_1 —(q1 — 1Deg
=€) —€1,...,60 — (g — ey =€1 — €2, ...,
em—2—(Gm-1—Deém_1 =€m_1—€m, ..., em—1—(qm—1)em = € —€mt1, —€m+1

is a Universal Grobner Basis of 14.

Fig. 4.1 Fan decomposition  €m+1

€1

~€m+1
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4.4.2 Effective Computation of the Fan Associated
to the Universal Grobner Basis of 14

We can assume that d;, b;, ¢; are coprime.
Lemma 4.4.6 Foranyi let §; = gcd (d;, b;), and
@ : 7> — L)d;Z (s, p) — (sbj — pci)
Then Ker(®;) is a Z—free submodule of 7* generated by the vectors (d;/8;,0),

(Si,0, 6i) where §; g is the unique integer such that s; ob; — (8;)c; = 0 mod d; and
0 <3io <di/s.

The proof is elementary. We have the following consequence:

Lemma 4.4.7 Let

pi = ged(di/81,di/8i) , xi = ged (81, 6i),
i = ged ((815i,0)/(xi) — (8is1,0)/ (Xi), pi),
s_1 =lem(d;/é1,...,dy/6n), p—1 =0, and
po = lema<j<u ((pi/ki)lem(81, 8;)).

Then K er® is a subgroup of Z* generated by the vectors: (s—1, p—1) (so, po) where
S0 is the unique integer such that:

0<so <lem(d/61,...,d,/6,) and
Vie{l,...,n} so =si0po/di mod d;/b;.

For the proof we refer to [15].

Definition 4.4.8 We define the sequences of integers {s;}, {p;} as in Proposi-
tion 4.4.2. That is {s;} is defined by Euclid algorithm and {p;} by p_; = 0 and:

Pi+1 = pigi+1 — pi—1, (0 < i <m).
Forall j € {1,..., n} we define the sequences {r; ;} by

rj,,'z(s,'bj—p,'Cj)/dj —1<i<m+4+1,1<j<n.
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Lemma 4.4.9

1) The sequences {si}, {pi},{rji}, 1 < j =< n satisfy the following recurrent
relations:
Vit2 = git2Vi41 — Vi for =1 <i <m — 1.
2) rj-1=51bi/di N1 < j<n
3) Forany index i such that —1 <i < m, we have:

[) SiPi+1 — Si+1Pi = S—1P0
1) Si+17j,i — Sitji+1 = S—1poCi/d;

[i0) pi41rj,i — PiTji+1 = S—1pobi/d;

Lemma 4.4.10 For all j the sequences {s;}, {r;} are strictly decreasing, and the
sequence {p;} is strictly increasing.

Definition 4.4.11

1) Let D; be the line with equation sb; — pc; = 0. By changing if necessary the
order of the variables x; we can assume that the slopes of the lines D; are in
increasing order.

2) Let v (resp. u ) the unique integer such that 7, > 0 > 7y yy1, (resp. 7y, >
0> rn,,u.Jrl)-

3) Suppose that u # v. For 1 <i < p — v let k; be the smallest integer j <n — 1
such thatr;,4; < 0. We setk, 41 =n.

Lemma 4.4.12 We have:
i) —1<v<u<m,
ii) letl <i <pu—v.Ifl <k;thenr;4; <O0andifl > k; thenr;,4+; >0,
iii) ifrj+1 =0thenry ,y1 =0, and
iv) w=vifandonlyifrj, <Oforall j €{l,...,n}andu > v+ 1.
Theorem 4.4.13 ([15]) Let V4 be a simplicial toric variety of codimension 2. V4
is arithmetically Cohen-Macaulay if and only if u = v. If V4 is not arithmetically

Cohen-Macaulay the ideal 14 is minimally generated by the binomials associated
to the vectors

€y, €pt1 , €y — €y,
€ —2€p41 5 ..., €y — Qui2€ptl 5 Ept2,

€u—1—2€u .o L €1 —qQui1€u s €ptl.

The proof consist to check that the mentioned binomials are a Grobner basis of /4.
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Example 4.4.14 We consider again the Toric variety of Example 4.4.3, with
parametrization

X=s"Y=5rPz=5%w=1"
Its defining ideal is generated by the polynomials:

Fi=27"-Yw*,
FhL=YZ-XW,
F=Y*w? - x75,
Fy =Y W? - X275,
Fs =YW — x37%,
Fo=Y"—Xx*73.
Theorem 4.4.15 [15] Let V4 be a simplicial toric variety of codimension 2. Assume

that V4 is arithmetically Cohen-Macaulay that is i = v. The ideal 14 is generated
by three binomials F,, Fe,,,, Fe,—¢,,, associated to the vectors

€y, €Ev41, € — €p41.

That is

s v Fn,v
Fe,=2" — yPx " ox"",

v

— uDPvl . SSul . TLvtl T+l
Fe,,, =y AR .o Xp ,
— S Sutly, Dokl =Py LT v+l Tnv=In,v+1
Fey—e,p1 =2 y X ce Xy .

Infact Fe,, Fe,, |, Fe,—¢,,, are the 2 X 2 minors of the matrix

v v

xl . _x;n' ypv st_sv+l

M= ,
— —TIlv+1 —Inv+l
ypv+1 Py st+1 -xl v+ X n,v+

Moreover 14 is a complete intersection if and only if either p, = 0 or sy,4+1 = 0.

Exercise 4.4.16 Let K be any field. Let V (1, 3, 4) be the projective toric curve in
IP? with parametrization
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. Draw the fan decomposition of V (1, 3, 4).

. Use Theorem 4.4.13 to find a minimal generating set F1, F>, F3, F4 of the ideal
I4.

3. Use the fact that we have an explicit formulation of Ker(®), and so of Ly,

together with the fan decomposition to prove directly Theorem 4.4.13 for this

example. (Hint. Binomials are represented by plane vectors.)

N —

The material developed in this section help to understand not only generators but
also syzygies for codimension two simplicial toric ideals. See for example [6].

4.5 Almost-Complete Intersections and Set-Theoretic
Complete Intersections
From now on, we assume that the field K is algebraically closed of characteristic 0,

since we will use the Hilbert’s Nullstellensatz.

4.5.1 Almost-Complete Intersections: The General Case

Lemma 4.5.1 Assume that we have r binomials in K[x1, ..., Xn, Y1, .., Yrl:
Fio= " =52y ),
By = 3 =y P (),

Fy = 35—y P s,

1 /3r 11 ﬁr lrhr L (),

Fr = yfr_l
— yPr Br.
Fro= 30—y, ),

where hi(x), ..., h, (x) are monomials in xi, ..., X,, p1 > 2222 Bk.1, and for
J=2,....1,pj >Zk 1,3k] Let o = py - -+ pr. Then we have

Z] ZOlJUﬂ]l

F = F?, mod (F,..., F),

with

Z( 1)k< ) Vi1 52ky;3%k “yfr,kht;tl.khgz,k ._.h‘;r,k’
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where all exponents are non negative integer numbers such that 0 < 8 < pj,
aj0=20j0=008j,=0forj=2,...,r, k=0,...,0,and yo1 > y1,1 > -+ >
Yo.1 = 0.

Proof We have

o
. o\ (o—kp1 KB, kB1.r
O =35y @) = Z(—l)"@y{“ P k),
k=0

Let 1 x = k, we define o2k, 62, by the relation
a1kf12 =2 xp2 + 8k, a2k >0, 0<8 < p2.

Note that a0 = 0, hence ap 90 = 620 = 0, and o1 = o, hence ap, =
(0/p2)B1,2, 82,0 = 0. By using F» we get:

o
Fla _ Z(_l)k (Z)yiak)mﬂtz.kﬂz,l y‘;z’k o y§ﬁ1.3+012,k,32.3 .
k=0

+ yfﬂl,r+062,kﬂ2,rh<ié1,k (x) mod F.
We define a3 i, 63« by the relation:
ay B3+ o2 fr3 =303+ 03k, a3 >0, 0 <83, < p3.

Note that @30 = §3,0 = 0, and 83, = 0. By using F3 we get:

o
k(O . (0=k)p1+ariBi+az Bz Sk 83, kB +on kBt i Bar
Fla ZZ(_D (k)yl 140k Po1+a3 k 31y22ky33k___yr 1 2,k P2 3,kP3

k=0

A1,k 7 02k
x hy " hy

modulo the ideal (7, F3). We can inductively define the numbers o x, 6; x by the
relation:

kB jtoaife it taj—1kBj-1,j = @jkpj+8jk 2jk =0, 0 =<3k < pj.
Note thataj o =60 =0, and 6 » = 0. Hence

o
0\ (—=bpi+XiajkBit 5 8, 5, o0
Fo = Z(_l)k <k)y1 j=2 kB yzz,ky33,k ey ,kh‘fl,kh‘;z,k .
k=0

x h5™ mod (Fa, ..., Fy).
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It is easy to prove by induction that
Vk=0,....,0 =1, 0 <ajit1 —orx <1.

Hence

r r
(@ —kpi+ Y ajiBji— (@ —k—=Dpi+ Y 1B

j=2 j=2

.
=p1+ Z(aj,k —ajk+1)Bj
j=2

r r r
> Zﬁm + Z(aj,k —ajk+1)Bj1 = Z(l +ajk—ajr+1)Bj1 =0

j=2 j=2 j=2

Y e B

We can factor by y; and finally get

o
B o
FO = ylsz @jobji (Z(_l)k (k)yi/k.lyglkyg}.k o yfr.kh‘fl,k hgz.k o h‘;r.k)
k=0
mod (F», ..., F}).

with y 1 > Vit1,1-

Theorem 4.5.2 Let V4 be a simplicial toric variety. Let

P TTE 3

Fy = 35—y P o),

P

Fy = 3 =y P s,

Fror =y =y yPein, ),
Fro= 3 =y (o),

N _ 2 N1
R Y TYCI PRy WS

ber + 1 binomialsin I4 C K[x1,...,Xn, Y1, ..., Yrl, where h1(x), ..., h-(x) are

monomials in X1, ..., Xp, pP1 > Dy Pk,1, and for j =2,....r, pj > Z,J(;i Bk, j-
Note that if fori = 1, ...,r, F; corresponds to the vector v; in the lattice L 4, then
Fy 1 corresponds to the vector vy +- - -+ v,. Suppose that [ = J+ (F1, ..., Fry1)
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and J Crad (Fy, ..., Frq1). Then, Iy =rad (Fy, ..., F;, Ff’); in particular V4 is
a set-theoretic complete intersection.

Proof Since

~
o

Fo =y 22 P ES od (B, F),

and /4 is a prime ideal, we have that ff’ € I4. So we only need to prove that if
P=(x1,..c,Xn, Y1y ves V1) isazeroosz,...,F,,ff’, then P is also a zero of
1,4. We note that Ff(P) = 0. Since J C rad (F1, ..., Fr41), we have H(P) =0
forany H € J. So we only have to check that F,1(P) = 0.

Note that fori =1, ..., r, p; # 0. Let examine the terms of F,1(P). We have
four cases:

1. Suppose that h;(P) = 0 forsome i = 1, ..., r. Since F;(P) = 0, we have y; =
0.1f p; — Z;{;ll Bk.i > 0, we have F,1(P) =0.1If p; — 22;11 Bri=0,letl <
k1 <i—1 be the smallest integer such that B, ; # 0. Since Fy, (P) = 0 we have
Vi, = 0.1f py, —Z";l:_ll Brk; > 0, wehave F, 1 (P) = 0.If p, —Z";l:_ll Bk =
0, there exists 1 = ky < k1 — 1 such that By, x, # 0, a contradiction.

2. If y; =0, then F7 (P) = 0 implies &;(P) = 0 for some i, so we are done.

3. If y; = Oforsome j > 1,leti > 1 be the biggest one such that y; = 0. Then
from F;(P) = 0 we have either h; (P) = 0, or y; = 0. We are done.

4 Ifforalli = 1,...,r, hj(P) #0and y; # 0. Fori = 1,...,r, assume that
F; corresponds to the vector v; in the lattice L4, then F,1j corresponds to the
vector vy + ...+ v,. Since F;(P) = 0 fori = 1,...,r, the assertion follows
trivially.

The following examples are applications of the above Theorem 4.5.2.

Example 4.5.3 Let V be the projective toric curve in P* with parametrization

w =t7,x =s7,y =t3s4,z =t4s3

,a = tzss.
Then I (V) is generated by

2

2 3
Fvlza _-x27Fv2:y _aZ,FU3:Z _yavav1+U2+v3:yZ_xw'

Example 4.5.4 Let V be the toric surface in K* with parametrization

w=t'x=5",y=1s,z=1>",a =155

Then I (V) is generated by

3 2 5 3 3.3 4
Fy=y —az,Fy,=a"—xz, Fy; =27 —xaw, Fy 440, =Y 2 — X w.
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Example 4.5.5 Let V be the projective toric surface in P> with parametrization

9

xX=s ,w=t9,v=u9,y=t4s4u,z=t5s2u2

ca =15
Then I (V) is generated by

Fy, = y2 —az, Fy, = a’ — wxz, Fy, = - vwzya, Fy4vy, = yz4 —vw?a®.

Example 4.5.6 Let V be the projective toric curve in P* with parametrization

xX=u,
w= ’Ull,
y = ubv’,
z=u"v?,
a = M3U8

Then the ideal I (V) is generated by:

Fy =y’ —wxz,

Fy, = —wa + 27,

Fy, = —xy+ a?,
Fyj oy tos = —w’x® + yzaz-

1(V) is a set-theoretic complete intersection.
We can compute F;‘l modulo Fy,, Fy,, and we get:

Ffl = y(y11 - 4y8wxz + 6y5w3xzz - 4y2w4x3za + w®x) modulo (Fyy, Fu3).

Let F := y'!' —4y8wxz + 6y w3x?z — 4y>w*x3za + wdx>. Our theorem says that
I(V) =rad (Fy,, Fy;, F).

Example 4.5.7 Let the projective surface V with parametrization

15 15 15 4.2.9

x=s,w=t ,v=u’,y=1tsu 6

5

,z=t6s3u ,a:tlos .

We have
1(V) = (%a — 23,y — vz2 wix — a®, —va + y2).

Note that if y2a — z> corresponds to a vector v1, y* — vz? corresponds to a vector
vy, then —va + yz corresponds to the vector vo — v1. So V is a stci.
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Example 4.5.8 Let V be the projective toric curve in P* with parametrization

x=s,w=r,y=r*,z=05"a=1.

The ideal 1 (V) is generated by
2 2 2
Xy —a“,—wx +az,—ya+2z°,—wa+yz,y — wz.

It is a Gorenstein projective curve in P*. We prove now that I (V) is a set-theoretic
complete intersection. We follow the ideas of Brezinsky [3]:

First note that z(—wa + yz) = y(—ya + z°) + a(y> — wz) implies —wa + yz €
rad (xy — a?, —wx + az, —ya + z%, y> — wz). Next if a®> — xy corresponds to a
vector vy, Z2 — ya corresponds to a vector vy, y2 — wz corresponds to a vector v3,
then az — wx corresponds to the vector v + vy + v3, so by our Theorem 4.5.2,
rad (xy — a?, —wx +az, —ya+ z2, y2 —wz) =rad (xy — a?, —ya—+ Z2, y2 —wz).

Now let 1, ..., a5 be any positive numbers, o := o] + --- + a5 > 0. Let us
consider the variety W:

x = s5a’
w = tSa’

— t4a @
7= t3as2a’
a= t2as3a’

b= t5a2+4a3+3a4+2a5s5a1+a3+2a4+3a5

Then W is a set-theoretic complete intersection. Note that the ideal 7 (W) is gener-
ated by: xy —a?, —wx +az, —ya+z2, —wa+yz, y> —wz, b —x¥ w2 y*3z%4q%s,
I(W) =rad (xy — a?, —ya + 72, y> — wz, b* — x¥ w2 y*37%44%),

Example 4.5.9 Let V be the projective toric curve in IP3, with parametrization

w=1t"x=s",y=15,z=r%".

V4 is arithmetically Cohen-Macaulay. Let V be the projective toric curve in P*, with
parametrization
9

w=1t’x=35",y=1,z=1% a=1%>

Its ideal is generated by five elements: —y3 +w?a, —y2a +w?z, —wx + yaz, a’—
yz, —xy + z? but is not Gorenstein, However we can still apply the method used
by Brezinsky [3]. First note that a(—y2%a + w?z) = y*(yz — a?) + z(—y? + w?a)
implies by studying both cases when a = 0 or when a # 0 that —y?a + w?z €
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rad (xy — a®, —wx +az, —ya + z%, > — wz). Secondly if —y> + w?a corresponds
to a vector vy, a’ — yz corresponds to a vector vy, —xy + z? corresponds to a
vector v3, then —w?x + yaz corresponds to the vector v + v + v3, so by our
Theoremi?'_.z, rad (—y® + w?a, —y*a +w’z, —w?x + yaz, a®> — yz, —xy+7°) =

rad (—y* + w?a)*, a* — yz, —xy + 2%).
We have the following open question:

Question 4.5.10 : Let V be the toric variety with parametrization

d

w=t ,)Czsd,y:sal,zzsaz

and let V] be the toric variety with parametrization

aj+ay
w=tlx=sy=sM =5 a=5 2,

where we assume that al;az has integer coordinates. We know by Theorem 4.5.12,
that if V is arithmetically Cohen-Macaulay then it is a set-theoretic complete
intersection. Can we say if (V) is a set-theoretic complete intersection?

We can answer to this question in Theorem 4.6.2 if one of the components of aj +a;
is odd.

Example 4.5.11 Let the projective curve with parametrization

w=r,x=s,y=1sz=1s"

it is arithmetically Cohen-Macaulay. The projective curve with parametrization

w = ts,x = ss,y = t3s2,z = t1s4,a = t2s3

is Gorenstein and generated by five elements.

4.5.2 Almost-Complete Intersections, The Codimension
Two Case

In this subsection we apply Theorem 4.5.2 in the case of simplicial monomial
varieties of codimension two which are arithmetically Cohen-Macaulay:

Theorem 4.5.12 Let V4 be a simplicial toric variety of codimension 2, such that is
arithmetically Cohen-Macaulay. Then V4 is a set-theoretic complete intersection.
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Proof By Theorem 4.4.15, the defining ideal of a simplicial monomial variety of
codimension two arithmetically Cohen-Macaulay, is generated by three elements

ry, In,
F:ZSM — ypli_xl M..._xnnﬂ7

s T, u+1 —Tn,u+1
G:yPuH _Zu+1x1 ¢ Ce Xy, ¢ ,

H = 75 SutlyPuti=Pu xIl»lf’LuH ___x;n,ufrn,wl’
for some positive integer exponents with s,, > S,41, Pu+1 > Pu.

It is clear that we can apply the Theorem 4.5.2. Indeed let F; be the polynomial
obtained from (z** — yPrx"1)Putl by reduction modulo G. Thatis FPrtl = AG +
zPrSut1) Fy Then I = rad (G, Fy).

Example 4.5.13 Let V4 be the projective toric surface in P> with parametrization

v =ul®,
x =50,
w =11
y=1rs,
z= t4s2u4,
a = t2S6I/l2
The ideal 1,4 is generated by:
3

Fy, =727 —vwa,

Fy, = a? — Xz,

Fy, = —y* + wx,

2 2
Fv1+U2+U3 =vy —azc.

Then 14 is a set-theoretic complete intersection. In fact we can compute Fjl modulo
Fy,, Fy;, and we get:

Ffl = 12(1)411)4)c2 — 4v3wlax? + 6v*w?x 2 — dvwaz’ + z“) mod (Fy,, Fy,).
Let F := v*w*x? — 4v’waxz? + 6v>w?xz> — 4vwaz’ 4 z'!. By Theorem 4.5.2

we have I (V) =rad (Fy,, Fy;, F).
Another proof: Let us consider the variety W:
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5

w=t,
z =t2su2,
a=tsu.

By the trick developed in Sect.4.6.1, Iy = (I(W) + (y? — xw)). I(W) has
codimension 2 and is arithmetically Cohen-Macaulay. Hence I (W) is a set-theoretic
complete intersection and so is /4.

Remark For an arithmetically Cohen-Macaulay projective curve, the shape of the
equations and the above theorem was known, by Stuckrad and Vogel [22] and by
Robbiano and Valla [19]. For an arithmetically Cohen-Macaulay simplicial toric
variety of codimension two, in [15] it was proved that its equations are given by the
2 x 2 minors of a 2 x 3 matrix, so the above theorem can be also proved by using
[22], or the next theorem. Our proof is simpler, it gives us the ideal I up to radical
in one step, while the next theorem needs several steps.

Theorem 4.5.14 ([19]) Let R be a commutative ring with identity, let m, n be non
negative integers, and let J be the ideal generated by the 2 x 2 minors of the matrix
m
M = (;n bd C), with entries in R. Then we can construct two elements f, g €
e
J, such that

rad (J) =rad (f, g).

4.6 Some Set-Theoretic Complete Intersection Toric Varieties

4.6.1 Tricks on Toric Varieties

The following theorem was originally stated and proved in [14], in the case
of numerical semigroups, but it can be extended in general and the proofs are
unchanged.

Theorem 4.6.1 Let H be the semigroup of N generated by ay, ..., an. Let Iy C
Klx1,...,x,] be the toric ideal associated to H.

1. Letl € N* and HY pe the iemigroup generated bylay, ..., lay_1, ay. Then the
ideal I is generated by f(x1,...,xn) == f(x1,..., Xp—1, xfl), where f runs
over all the generators of 1.

2. Letly,...,l, e NI =11 +---+1, > 0, let H(ll """ )be the semigroup

generated by lay, ..., lag_1,lan, anyy = hay + --- + l,an. If [ is relatively
. I Iy
prime to a component of ap41 then IHal,...,zn) = Iy + ()cflJrl — xll - xy) C

Klxi, ..., xnq1]
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The following theorem follows from [14], Lemmas 1.3, 1.4, and 1.5. See also [21]
Corollary 2.5 and [16] Theorem 2.6.

Theorem 4.6.2

1. If Iy is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection then the same property holds for I 5.

2. If Iy is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection and | is relatively prime to a component of apy1 then the

We deduce a positive answer to Question 4.5.10 if one of the components of a1 + a;
is odd. The following example shows that the hypothesis [ is relatively prime to a
component of a,1 is necessary. We thank Mesut Sahin to pointed us this problem.

Example 4.6.3 Consider the projective surface with parametrization

9

x:sg,wzt ,v:ug,zzz‘sszu2

,a = t3s4u2.

It is a complete intersection but the projective surface with parametrization

9

x:s,w=t9,v=u9,y=t4s3u2 2

, X = ’s%u ,a = 3s*u?
is not arithmetically Cohen-Macaulay. Its defining ideal is generated by six ele-
ments.

These tricks can be applied to the projective case using the following

Theorem 4.6.4 Let H be the semigroup of N™ generated by ay, . . ., an, which are
not necessarily homogeneous with respect to the standard graduation. Suppose that
Iy =rad(F1, ..., Fy). Let d = max{degay, ..., degay,}, where dega; is the sum of

its components. Let Hy be the semigroup in "' generated by by, . .., byy1, where
fori =1,...,n, by = aj + (d — degaj)em 1 and bpy1 = demy1. Let x,41 be a
new variable and let Flh, R Frh be the homogenization of F1, ..., F, with respect
to Xn+1-

Let P = (x1,...,Xn, Xn+1) be a zero oth, R Frh If x,41 = 0 implies that

F(P) =0forall F € I, then Iy, =rad (F!', ..., FM.

Proof For projective closure and parametrization of toric varieties we refer to [4].
Let V4 be the zero set of Iy, then the projective closure V is the zero set of 1 Z and
since both ideals / 1/'-117 Iy, , are prime of the same height they coincide. This implies
that rad (F!', ..., F") C In,.

Let P = (x1, ..., Xn, Xm+1) be a zero of Fh .., Frh. By hypothesis, if x,,11 =
Othen P € V.If x;41 #0then P € Vsince VN (xp+1 =1) ={(Q, 1) | Q € V},
by general arguments on the projective closure.
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Example 4.6.5 Let V4 be the affine surface with parametrization

7,)7 — I3S2

b=t7,x=s ,z=t4s3,a=t2s5,
V be the projective surface with parametrization

b=t7,x =s7,w=u7,y=t3s2u2,z=t4s3,a=t2s5.

Then
1(V) = (=a* + xz, 2% — xab?, —az® + xb%, y" — x*b),
and
(V) = (—a® + xz, 2% — xab?, —az® + x?b%, y7 — w?x?p?).

Applying the proof of Theorem 4.5.2, we have that V is a set-theoretic complete
intersection. Indeed, let Fy, = 2t —xab?, Fy, = a? — xz then Fyiqvy, = az’ — x2b*
and F}, = z2(z' — 2z%ab’x + b*x) mod Fy,. Hence I (V) = rad (—a® + xz,2" —

273ab%x 4+ b*x3, y7 — x?b3).

4.6.2 Toric Curves in P3

In this section we consider curves, that is V4 is a simplicial toric variety of
dimension 1 in K3. The parametrization of V4 is:

x =P,
y =9,

.
z=1",

where p < g < r are positive integers. We simply denote this curve by V or
V(p.q,r).Let V be the projective toric curve in P3, with parametrization

w=u",

x =u""PP,
y = u "y,

z="1".

We simply denote this curve by V(p, g, r).
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Theorem 4.6.6 ([20]1) Let a, b, p, q, r be natural integer numbers such that r =
ap +bq.If b > a(q — p — 1)+ 1, then V(p, q,r) is a set-theoretic complete
intersection. Moreover V (p, q,r) is the zero set of the polynomials F1 := x9 —
yPwi=P Py = ((z — x%yP)D)h where (H)yr—ya means substitution when

possible x4 by yP, and H" is the homogenization of H with respect to w.

yP=x1

Proof This proof is more or less the proof given by Sahin [20].
Let us consider

gq—1
(Z_xayb)q =Zq+Z(—1)k<q> q— k ka kb_l_xqa qb
k
k=1
By setting ka = sxq + rr,with 0 < s;, 0 < r; < g, we can write

((z—x”yh)q)yp=xq _Zq+Z( 1) ( ) q—k X' Vk[?+kh+yl7a+qb.

Note thatfork =1,...,9g —1,q —k+ry +skp + kb < q — k + ka + kb, so it is
enough to check the conditiong —k + ka+ kb < pa+qgbfork =0,...,q — 1.
This is equivalentto g — k + ka — pa < gb+ kb =q —k+ (g —k)(b — 1), 1.e.,
equivalentto (k — p)a < (¢ —k)(b—1)fork =0, ..., g — 1. This last condition is
equivalentto (k — p)a < (g —k)(b—1)fork=p+1,...,qg — 1. We remark that
ifb—1>a(g—p—1),then(k—pla<alg—p—1) <b—1<(qg—kb-1).
We can write:

q—1
((z—x”yh)q)ylfzxq = Z(_l)k< )Zq kx’kka'i-kh r—(q— k+rk+vk+kb)_|_y

By the preceding discussion ¢ —k + ry + skp+kb < g—k +ka+kb < r
if b—1 > a(g — p — 1). In conclusion the exponent of w in the monomial
74k xTySkkbyr—(q—k+7itsiHkb) g strictly positive.

LetP=(w:x:y:2) € Z(F1, F2). If w =0, then F>(P) = 0 implies y = 0,
and F1(P) = O implies x = 0. Hence P = (0: 0: 0 : 1) belongsto V. If w # 0,
we can assume that w = 1. Hence Fj(P) = 0 implies that there exists v € K such
that x = v?, y = v? and F>(P) = 0 implies (z — v")? = 0, which finally implies
z="";thatis P = (1 : v? : v? : v") belongsto V.

The next theorem uses a trick that improves Sahin’s theorem in some cases:
Theorem 4.6.7 ([17])

1. Let p,q,r be natural integer numbers and V (p, q,r) be the projective toric
curve in P3, with parametrization (u”, u” ~PvP, u"~9v%,v"). Suppose that r =
ap + bq, witha,b € N,
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a. ifp=landd<a<qgq—-1,b>q —a, or
b.ifp>land0<a<qg—1,b>(q—a—1)p,

then V(p, q,r) is a set-theoretic complete intersection. Moreover V (p, q, 1) is
the zero set of the polynomials Flh = x4 — yPwi=P F!' where th is obtained
from ((z — x“yb)‘f)xq,yp, by a trick, explained in the proof.

2. Let | be a natural number, let V(lp,lq,r) be the projective toric curve in P3.
Suppose thatr = ap + bq, witha,b € N,

a. ifp=land0<a<qg—-1,b>qg—a—1+1, or
b.ifp>land0<a<qg—1,b>g—a—p+1L,b>(@q—a—1)p,
then V (Ip,lq,r) is a set-theoretic complete intersection. Moreover V (Ip,lq,r)
is the zero set of the polynomials Flh = x99 — yPwi™P Fy where
Fa(w, x,y,z) = (Fa(x, v, 2))", by the trick developed in Sect. 4.6.1.
Proof We prove only the first claim, the second claim follows from the proof of the
first and the trick developed in Sect.4.6.1. The proof is more or less the one given
in [17].
Let us consider

qg—1
(@ —xy")7 =27+ Z(—l)q_k (i)zkx(q_k)“y(q_k)h + x99yb,
k=1

By setting (¢ — k)a = k(¢ — a) + g(a — k) and by using y? = x4, we get the
polynomial

gq—1
. —k (4 k k(g—a) r—k(b+p) | r
F = 749 —1)4k q P ,
2=z + E (=D <k>z X y +y

k=1
Fork =1, ...,q—1,the exponentof x in F; is x*@= which is strictly positive.
Fork =1,...,9 — 1, the exponent of y in F> is y”k(bﬂ’) which is positive if and

onlyif b > (¢ —a — 1)p. Finally degF> = rifandonlyifb >qg —a — p + 1.

It is easy to show that these conditions are equivalent to
l.ifp=land0<a<g—-1,b>¢g —a,or
2.ifp>land0<a<qg—-1,b>(qg—a—1)p.

We also remark that the affine curve V(p, g, r) is a complete intersection by the

trick developed in Sect. 4.6.1, so is clear that V(p, g, r) is a set-theoretic complete
intersection defined by (Fy, F?).
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Now we can prove that V (p, g, r) is a set-theoretic complete intersection defined
by (Fh, th), where

Flh = x4 — yPylP,
q—1

F2h =y 4 Z(_l)qfk (i)zkxk(qa)yrk(b+p)wk(b+p+aq1 + yr‘
k=1

LetP=(w:x:y:2) € Z(Fy, F»). If w =0 then Fi(P) = 0 implies x = 0, and
F>(P) = 0 implies y = 0. Hence P = (0 : 0 : 0 : 1) and it is clear that it belongs
to V. If w # 0, we can assume that w = 1, the claim follows from the fact that
V(p, q,r) is a set-theoretic complete intersection defined by (Fi, F»).

Remark We can compare the bounds on b given in Theorems 4.6.6 and 4.6.7. We
assume that) <a <qg — 1

1. If p = 1 then the bound given by Theorem 4.6.7 is better, thatis b > g — a.

2. If p > 1 and p < a then the bound given by Theorem 4.6.7 is better, that is
b>(q—a—1p,

3.If p > 1 and p > a then the bound given by Theorem 4.6.6 is better, that is
b>algq—p—1)+1.

Proof We need a proof.

l.LIfp=1lg—a<al@—-1-1)+1<@—1D@g-1) >0.
2 Iftp>1(g—a—Dpzal@—p—-D+1& (p—a)g—1) =1

Note also that the bound given in Theorem 4.6.7 is the best one given by the methods
used, but the bound given by Theorem 4.6.6 is not the best obtained by the methods
used. We sometimes can get better bounds by applying the proof of Theorem 4.6.6.

Theorem 4.6.8 Suppose that ged (p,q) = 1. We set p' = p/l,q' = q/L. If r >
p'q' (g — 1)+ q'l, then V(p, q,r) is a set-theoretic complete intersection.

In particular given two positive numbers p, q there is only a finite number of
positive integers r for which we don’t know if the projective toric curve V (p, q,r)
in P3 is a set-theoretic complete intersection.

Proof The Frobenius number for the semigroup generated by p’, ¢’ is (p’' — 1) (¢’ —
1),sincer > p'q’(q¢'" — 1) +q'l = (p’ — 1)(¢’ — 1), we have that r belongs to the
semigroup generated by p’, ¢/, and we can find a, b integers such that r = ap’ +
bq',0 <a < gq—1,b > 1. We will check the conditions for b in Theorem 4.6.7.

1. Suppose that b < ¢’ —a — p’ — [, then
r=ap' +bq' <r=ap'+q'(¢'—a—p'-D=q'(q'—p' =D —alg' - p)
<q'q -p -0,

andqg'(¢' — p' =1 < p'q'(¢' — 1) + ¢l is equivalent to ¢’ < p'q’, so we get a
contradiction.
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2. Suppose that b < (¢' —a — 1)p’, then

r=ap +bq' <r=ap' +4'((¢'—a—1Dp)=4q'((¢' = Dp)—alq’ - p)
<pd@-1=<pq@ -1D+4q,

we get again a contradiction.

We conclude that the conditions for b in Theorem 4.6.7 are satisfied, hence
V(p, q,r) is a set-theoretic complete intersection.

Example 4.6.9 Let V (1, 2, r) be the projective toric curve in 3. Then V is a set-
theoretic complete intersection for all integers r > 3, by applying the proof of the
above theorem.

Example 4.6.10 Let V (1, 3, r) be the projective toric curve in P3. Then V is a set-
theoretic complete intersection for all integers r > 5, by applying the proof of the
above theorem.

Remark that in this case the only unsolved example is the famous projective
quartic V (1, 3, 4).

Example 4.6.11 Let V (1, 4, r) be the projective toric curve in P3. Then V is a set-
theoretic complete intersection for all integers r € {7, 8, 10, ...}. By applying the
proof of the above theorem, we get that r € {7, 10, 11, 13, ...}. Now by a direct
computation using [15], we get that V' is a complete intersection for r = 8, 12.

The unsolved cases are V(1,4,5), V(1,4,6) and V(1,4,9).

Example 4.6.12 Let V (2, 3, r) be the projective toric curve in P3. Then V is a set-
theoretic complete intersection for all integers r > 4. By applying the proof of the
above theorem, we get thatr € {4,7, 8,10, 11, 12, ...}. Now by direct computation
using [15], we get that V is a arithmetically Cohen-Macaulay for r = 5 and a
complete intersection for r = 6, 9.

4.6.3 Toric Curves in P"

Let K be an algebraically closed field. In this subsection we consider curves in K",

that is V(p, q0, q1, - - -, gun—2) is an affine simplicial toric variety of dimension 1.
The parametrization of V := V(p, qo0, q1, - - - gn—2) is:
x = VP,
y = v,
71 = v?,
In—2 = anfZ.
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Theorem 4.6.13 Let p, qo,q1, - - -

M. Morales

, qn—2 be positive integers. Let V(p, qo, q1, - - -,

gn—2) be the projective toric curve in P"* with parametrization

w
X

y

<1

in-2

Suppose that V(p,qo,q1, - - -
defined by Fi, ...
by

1 =

in-2 =

in—-1 =

— uqn72’
— uqn727pvp,
= 9279040 ,

= yIn—27491 41 ,

— in—z A

,qn—2) Is a set-theoretic complete intersection,
,Fo_1. Let g1 € N, and V1 the projective curve defined

udn=1,
udn=1=PyP

udn=1=40 )90
udn=1=41 41

uqnfl —4n-2 in—z ,

v‘hl—l i

Ifgn—1 = ap + bgu—2, with0 <a < qu—2—1,b> g2 —awhenp =1,0r0 <

a<qn2—1,b>(qn—2—a—1)pwhenp > 1, then Vi(p, qo, q1, - - .

> qdn—2, Qn—l)

is a set-theoretic complete intersection.
In particular, let gcd (p, gn—2) = 1. We set p' = p/l,q' = qn—2/l. If gn—1 >

P'q'(q — 1)+ q'l, then Vi(p,qo,q1,...

intersection.

,qn—2, qn—1) is a set-theoretic complete

Proof By the hypothesis V is a set-theoretic complete intersection, defined by

Fi, ...
by Fi, ...

Gn—2—1

, F,,—1. We will prove that Vq is a set-theoretic complete intersection, defined
, Fu—1, F,,, where F, is the polynomial

n=2 . Gn1—Gn— o=k (dn=2\ Kk _k(gy_2—a) gn—1—k(b+p)
Znn—lqu 1=Gn-2 4. Z (—1)2 ( i )Zn—lx (Gn—2 a)Znﬂ_2

k=1

x wkb+pra—gn—2—1) 4 7M1

n—2"
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obtained from ((z,—1 — x“zﬁ )2, —— by the trick used in the proof of the
Theorem 4.6.7. Note that also by Theorem 4.6.7, all exponents are positive with our

hypothesis.
Firstnote that F;, € I(V1).Let P = (w, x, y,21,...,2n—1) € V1. If w = O then
from the parametrization we getx = y =z = --- = z,_2 = 0, hence F,,(P) = 0.

If w # 0, we can assume that w = 1, there exists v € K such that
X = Up,y — UqO’Zl — Uql’ e Zn—l = anfl.

Ifv=0tenx =y =2z=.--=2z,-1 =0,and F,(P) = 0. If v # 0,
we can perform the trick used in the proof of the Theorem 4.6.7, and we get that
Fa(P) = (zn—1 — x2)_)I"> = 0.

Secondly we prove that Fy, ..., F,—1 € [(V)1.Fori =1,...,n—1,F; € I(V).
This implies Fl.dEh e I(V), where Fl.dEh is the dehomogenized polynomial, that is

setting w = 1 in F;, hence F; (1, v?, v, v?', ..., v1-2) =0, so Fl.dd’ e I(Vy) and
finally F; € I(V1). As a conclusion, the zero set of Fy, ..., F,_1, F, is included
inVjy.

Third, we have to prove that if P = (w,x,y,21,...,2,—1) 1S a zero of

Fi,...,Fy_1, Fy,then P € V. Let P = (w, x, y,21,...,2n—2), Since F1(P') =
- = F,_1(P") = 0, there exist u, v € K such that

w = qu*z, X = u%z—z—[’v[” y = MCIn—z—‘IULIO’
71 = u‘1n727(11vql e Zpn = v‘[n72‘

Suppose that w = 0,thenx =y =z =-.- = z,_3 = 0. Hence F,,(P) = 0 implies
Zn—2 = 0, thatis P = (0, ..., 0, 1), which is a point of V1. Suppose that w # 0,
we can assume that w = 1, hence there exists v € K such that

X = Up,y — UqO’Zl — Uql,---,Zn—z — anfZ.

In particular x9-2 = (vP)In-2 = Z572. From Fy(P) = 0, we get (zn_1 —
xazz_z)q’Hz = 0, that is Zn—1 = xazz_z = pin-1,

Example 4.6.14 Consider the projective curve V(p, qo0, q1, - - ., qn—2). Let g,—1 =
bqn—> for a natural number b > 2. Then Vi(p, qo0,q1,--.,qgn-2,qn—1) is the
zero set of I(V(p,qo,q1,-..,qn—2)) and Fh .= z,,_lwh_1 — szr In par-
ticular if V(p, qo,q1,...,qn—2) is a set-theoretic complete intersection, then
Vi(p,qo,91,---,q9n—2,qn—1) 1s a set-theoretic complete intersection.

Example 4.6.15 Let V(1,2,3,r) be the projective toric curve in P* with
parametrization

w = ur’ x = ur71v17 y = ur72v27 71 = ur73v3’ = v



254 M. Morales

Then V is a set-theoretic complete intersection for all integers r > 4. By the above
theorem we have that V (1, 2, 3, r) is a set-theoretic complete intersection for r > 5.
The case r = 4 was done in [19]. Note that the case r = 5 follows also from [8].
This example was independently studied in [18].

Example 4.6.16 Let V(1,3,5,r) be the projective toric curve in P* with
parametrization

w = ur’ x = ur71v17 y = ur73v37 71 = ur75v5’ = v

Then by using the Theorem 4.6.7 V is a set-theoretic complete intersection for all
integers r € {9, 13, 14,17, 18, 19,21, 22, .. .}, and by Example 4.6.14, for all » =
5b,b > 2.

The trick used above can be improved. Let us consider the following example.
Let V(1,3,5,11) be the projective toric curve in P4, then V(,3,5,11) is a set-
theoretic complete intersection on I (V (1, 3,5)) and F, where F is obtained from
(z2 — ¥?21)° = 0 working modulo y°> — Z?.

In conclusion the only unknown cases are for r = 6, 7, §, 12.

Example 4.6.17 Let V (2,3, 5, r) be the projective toric curve in P*. We have seen
in Example 4.6.14, that V (2, 3, 5, r) is a set-theoretic complete intersection for r =
5b, b > 2. By using the method in Theorem 4.6.6, we can see that V (2,3, 5,r) is
a set-theoretic complete intersection for r = 12 4 5b, 14 + 5b, and by using the
methods in Theorem 4.6.7, that V' (2, 3, 5, r) is a set-theoretic complete intersection
for r = 8 + 5b, 16 4+ 5b. In conclusion V (2, 3,5, r) is a set-theoretic complete
intersection for all positive integers, except possibly for r € {6, 7, 11}. Note that the
case V(2,3,5,9) was solved in [24].

Theorem 4.6.18 Let p, qo0, q1, - - - , qn—2 be positive integers. Let V be the projec-
tive toric curve in P, with parametrization

w = uqan’

X = uqn—Z*PvP’

y = udn—2-490 qu ,
71 = udn—2749191 ,
Zn_2 = aniz.

Fori =0,...,q,-3letged (p, q;) =1;. We set p' = p/l,q; = qi/l;. Suppose that
fori=1,....n—=2,q; > q/_(qg_, —D(@G,_y—p' —1)+q/_,li. Then V is a
set-theoretic complete intersection.

Proof The proof is by induction, the case n = 3 is Theorem 4.6.8. The case n — 1
implies n follows from Theorem 4.6.13. In the case where [; = 1 for all i we
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have that fori = 1,...,n — 2, there exist positive integers a;, b; such that g; =
aip’ +big/_,,0 <a; <q/_, — 1.V is the zero set of the polynomials

Fp:=x% — yPy®~P Fp ..., Fy_1,

where F;_j is obtained, by applying the trick used in the proof of Theorem 4.6.7,
from

. ai bi ygi—1yh
((zi —x lziil) ' )Z{’,l:xqi’l’

where (H),r—,40 means substitution when possible x?° by y?, and H" is the
homogenization of H with respect to w.
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