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Preface

This collection of notes is based on four lectures given during the programme
Commutative Algebra at the Vietnam Institute of Advanced Study in Mathematics
in the winter semester 2013–2014. The lectures provide introductions to recent
research topics in Commutative Algebra, which are related to Algebraic Geometry
and other fields. The topics were chosen to represent different aspects of the use
of the basic tools of Commutative Algebra. The notes are mainly self-contained,
with the hope that students with advanced backgrounds in algebra can get through
and absorb different techniques and ideas in Commutative Algebra before settling
on concrete research problems. They can also be used separately as courses for
graduate students, depending on the level and interest of the students.

The first lecture, by M. Brodmann, offers an introduction to the theory of
rings of differential operators and their modules, also known as Weyl algebras
andD-modules. These concepts relate Non-commutative Algebra and Commutative
Algebra with Algebraic Geometry and Analysis in a very appealing way. The lecture
presents this theory from the viewpoint of Commutative Algebra and is aimed at
an audience having only a basic background in Commutative Algebra. The main
feature is therefore not to explain everything about Weyl algebras and D-modules,
but only the relevant aspects which are directly related to Commutative Algebra,
such as the characteristic variety via the theory of filtered algebras and modules. The
last part also contains some recent results on the stability, deformation and defining
equations of the characteristic variety. The material is developed systematically
and is accompanied by examples and exercises. These notes are well suited for an
undergraduate course.

The second lecture, by J. Elias, is a short introduction to the theory of inverse
systems and its application in the classification of Artinian Gorenstein rings. The
classification of Artinian rings (rings of finite length) up to analytic isomorphism
is a basic problem in Commutative Algebra and Algebraic Geometry. This problem
is even open for Artinian Gorenstein rings, when the ring is an injective module
over itself. Inverse systems provide an important tool in Commutative Algebra,
establishing a beautiful correspondence between Artinian Gorenstein quotient rings
and certain polynomials via derivations. The notes give a thorough introduction to
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vi Preface

the theory of injective modules and inverse systems and show how to use these
tools to classify Artinian Gorenstein rings and to compute their Betti numbers. The
presented material combines several basic techniques of Commutative Algebra and
could be used for a graduate course.

The third lecture, by R.M. Miró-Roig, is on the complexity of the structure of
projective varieties. This complexity can be measured by the representation type,
which is the dimension and the number of families of indecomposable arithmetically
Cohen–Macaulay sheaves (i.e. sheaves without intermediate cohomology) on the
underlying variety. This is a fascinating topic of Algebraic Geometry, which requires
an advanced background in Commutative Algebra. The notes cover the basic facts
on this and related subjects such as moduli spaces of sheaves, liaison theory,
minimal resolutions and Hilbert schemes of points. Many interesting results are
presented on arithmetically Cohen–Macaulay sheaves and bundles having natural
extremal algebraic properties, and several examples of varieties of wild represen-
tation type are given. The exposition is self-contained and features numerous open
problems and promising ideas for further investigation. It may serve as a graduate
course in Algebraic Geometry.

The last lecture, by M. Morales, addresses a classical problem of both Commu-
tative Algebra and Algebraic Geometry, namely, how many equations are needed
to define an algebraic variety set-theoretically. This seemingly simple problem is
wide open even for toric varieties, which are given parametrically by monomials.
The notes provide an extensive survey on this problem in the case of simplicial toric
varieties, which are defined by the property that the exponents of the parametrizing
monomials span a simplicial complex. One can use arithmetical and combinatorial
tools (semigroups, lattices) to obtain satisfactory results for large classes of sim-
plicial toric varieties. The material is presented in a systematic way and can easily
be followed by any reader with some basic background in Commutative Algebra.
These notes are recommended as a first course for anyone who wants to see the
interaction between algebra, combinatorics and geometry. They can be used as a
starting point for graduate studies in Commutative Algebra.

Hanoi, Vietnam Nguyen Tu CUONG
14 October 2017 Le Tuan HOA

Ngo Viet TRUNG
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Chapter 1
Notes on Weyl Algebra and D-Modules

Markus Brodmann

Abstract Weyl algebras, sometimes called algebras of differential operators, are a
fascinating and important subject, which relates Non-Commutative and Commuta-
tive Algebra, Algebraic Geometry and Analysis in very appealing way. The theory
of modules over Weyl algebras, sometimes called D-modules, finds application in
the theory of partial differential equations, and thus has a great impact to many fields
of Mathematics. In our course, we shall give a short introduction to the subject,
using only prerequisites from Linear Algebra, Basic Abstract Algebra, and Basic
Commutative Algebra. In addition, in the last two sections, we present a few recent
results.

1.1 Introduction

The present notes base on two short courses:

(1) Introduction to Weyl Algebras: five Twin Lessons, Thai Nguyen University of
Science TNUS (Thai Nguyen, Vietnam), November 1–10, 2013.

(2) Weyl Algebras, Universal Gröbner Bases, Filtration Deformations and Char-
acteristic Varieties of D-Modules: four Twin Lessons, Vietnam Institute for
Advanced Study in Mathematics VIASM (Hanoi, Vietnam), November 12–26,
2013.

They were also the base for a third course:

(3) Introduction to Weyl Algebras and D-Modules: four Lessons and two Tuto-
rial Sessions, “Workshop on Local Cohomology”, St. Joseph’s College Irin-
jalakuda, Kerala (India), June 20–July 2, 2016.

M. Brodmann (�)
Universität Zürich, Institut für Mathematik, Zürich, Switzerland
e-mail: brodmann@math.uzh.ch

© Springer International Publishing AG, part of Springer Nature 2018
N. Tu CUONG et al. (eds.), Commutative Algebra and its Interactions
to Algebraic Geometry, Lecture Notes in Mathematics 2210,
https://doi.org/10.1007/978-3-319-75565-6_1
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2 M. Brodmann

These notes aim to give an approach to Boldini’s stability and deformation results
for characteristic varieties [11, 12] and to the bounding result [16] for the degrees of
defining equations of characteristic varieties, including a self-contained introduction
to the needed background on Weyl Algebras and D-modules. In particular, these
notes should not be understood as an independent or complete introduction to the
field of Weyl algebras and D-modules, which could replace one of the existing
textbooks or monographs like [8, 9, 13, 24, 29, 37] or [38]: Too many core subjects
are not treated at all or only marginally in these notes, as they are not needed on the
way to our final results.

So, a few basic topics which are lacking in these notes—and which ought to be
considered as indispensable in a complete introduction to the field—are:

– a systematic study of Bernstein’s Inequality and holonomicD-modules (we treat
these subjects only briefly in Exercise and Remark 1.14.3),

– Bernstein’s result on singularities of generalized Γ -functions and Bernstein-Sato
polynomials,

– weighted filtrations with negative weights,
– the sheaf theoretic and cohomological aspect,
– the analytic aspect.

Another subject which is not treated in our notes are Lyubeznik’s finiteness
results for local cohomology modules of regular local rings in characteristic 0 (see
[33] and also [34]), which brought a break-through in Commutative Algebra, as they
base on the use of (holonomic)D-modules—and hence present a very important link
between these two fields.

These notes are divided up in 14 sections:

1. Introduction
2. Filtered Algebras
3. Associated Graded Rings
4. Derivations
5. Weyl Algebras
6. Arithmetic in Weyl Algebras
7. The Standard Basis
8. Weighted Degrees and Filtrations
9. Weighted Associated Graded Rings

10. Filtered Modules
11. D-Modules
12. Gröbner Bases
13. Weighted Orderings
14. Standard Degree and Hilbert Polynomials

Sections 1.1–1.9 were the subject of the introductory course (1) at TNUS. In our
course (2) at the VIASM we gave an account on all 14 sections, and discussed a few
applications (to the Gelfand-Kirillow dimension of D-modules for example), which
are not contained in these notes. In the course (3) at St. Joseph’s College we treated
Sects. 1.1–1.9 and 1.14.
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Our suggested basic reference is Coutinho’s introduction [24], although we
do not follow that introduction and we partly use our own terminology and
notations. We start in a slightly more general setting, than Coutinho, and so also
we recommend the references [4, 10, 11, 32] and [35]. Files of [10] and [11] are
available on request at the author. For readers who have already some background
in the subject, we recommend as possible references [8, 9, 13, 29, 37], or the first
part of the PhD thesis [11].

Finally, we aim to fix a few notations and make a few conventions which
we shall keep throughout these notes. We do this on a fairly elementary level,
according to the original intention of the short course (1): To give a first introduction
to the subject to an audience having only some background in Linear Algebra
and basic Abstract Algebra. Only in Sect. 1.14 we will need some background
from Commutative Algebra, notably Hilbert functions and -polynomials, Local
Cohomology and Castelnuovo-Mumford regularity. We shall give brief reminders
on these more advanced preliminaries in Sect. 1.14.

Conventions, Reminders and Notations 1.1.1 (A) (General Notations) By Z,Q

and R we respectively denote the set of integers, of rationals and of real numbers.
We also write

R≥0 := {x ∈ R | x ≥ 0} and R>0 := {x ∈ R | x > 0}

for the set of non-negative respectively of positive real numbers. Moreover, we use
the following notations for the set of non-negative respectively the set of positive
integers:

N0 := Z ∩ R≥0 and N := Z ∩ R>0 = N0 \ {0}.

If S ⊂ R we form the supremum and infimum sup(S) resp. inf(S) within the set
R ∪ {−∞,∞}, using the convention that sup(∅) = −∞ and inf(∅) = ∞.

Empty sums and empty products are respectively understood to be 0 or 1. We
thus set

−1∑

i=0

xi := 0 and
−1∏

i=0

xi := 1 with x1, x2, · · · ∈ R.

(B) (Rings) All rings R are understood to be associative, non-trivial and unital, so
that they have a unit-element 1 = 1R ∈ R \ {0} and the following properties hold

(a) 0x = x0 = 0 and 1x = x1 = x for all x ∈ R;
(b) x(yz) = (xy)z, x(y+ z) = xy+xz and (x+y)z = xz+yz for all x, y, z ∈ R.

Rings need not be commutative.
If R is a ring, a subring of R is a subset R0 ⊆ R, such that 1R ∈ R0 and x+y, xy ∈
R0 whenever x, y ∈ R0. If R0 ⊆ R is a subring and S ⊆ R is an arbitrary subset,
we write R0[S] for the subring of R generated by R0 and S, hence for the smallest
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subring ofR which containsR0 and S. Thus,R0[S] is the intersection of all subrings
of R which contain R0 and S, and may be written in the form

R0[S] = {
r∑

i=1

kr∏

j=1

ai,j | r, k1, . . . , kr ∈ N, ai,j ∈ R0 ∪ S,∀i ≤ r,∀j ≤ ki}.

If a1, a2, . . . , ar is a finite collection of elements of R, we set

R0[a1, a2, . . . , ar ] := R0[{a1, a2, . . . , ar}].

(C) (Homomorphisms of Rings) All homomorphisms of rings are understood to
be unital, and hence are maps h : R −→ S, with R and S rings, such that

(a) h(x + y) = h(x)+ h(y) and h(xy) = h(x)h(y) for all x, y ∈ R;
(b) h(1R) = 1S .

Clearly, the identity map IdR : R −→ R is a homomorphism of rings, and
the composition of homomorphisms of rings is again a homomorphism of rings.
An isomorphism of rings is a homomorphism of rings admitting an inverse
homomorphism. A homomorphism of rings is an isomorphism, if and only if it
is bijective.

(D) (K-Algebras) All fields are considered as commutative. If K is a field, a
K-algebra is understood to be a ring A together with a homomorphism of rings
ε : K −→ A such that

ε(c)a = aε(c) for all c ∈ K and all a ∈ A.

As the ring A is non-trivial, the homomorphism ε : K −→ A is injective. So, we
can and do always embed K into A by means of ε and thus identify c with ε(c) for
all c ∈ K . Hence we have

c := ε(c) = c1A = 1Ac and ca = ac for all c ∈ K and all a ∈ A.

Keep in mind, that a K-algebra A is a K-vector space in a natural way.
(E) (Homomorphisms of K-Algebras) Let K be a field. A homomorphism of

K-algebras h : A −→ B is a map with K-algebras A and B such that:

(a) h : A −→ B is a homomorphism of rings;
(b) h(c) = c for all c ∈ K .

Observe, that a homomorphism of K-algebras is also a homomorphism of K-vector
spaces.

(F) (Modules) We usually shall consider unital left-modules, hence modules M
over a ring R, such that

x(m+ n) = xm+ xn, (x + y)m = xm+ ym, (xy)m = x(ym) and 1m = m
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for all x, y ∈ R and all m,n ∈ M . We shall refer to left-modules just as modules.
By a homomorphism of R-modules we mean a map h : M −→ N, with M and N

both R-modules, such that

(a) h(m+ n) = h(m)+ h(n) for all m,n ∈ M.

(b) h(xm) = xh(m) for all x ∈ R and all m ∈ M.

A submodule of a R-module M is a subset N ⊆ M, such that m + n ∈ N and
xm ∈ N whenever m,n ∈ N and x ∈ R. Clearly 0 := {0} and M are submodules
of M .
If h : M −→ N is a homomorphism of R-modules, the kernel Ker(h) := {m ∈
M | h(m) = 0} of h is a submodule of M and the image Im(h) := h(M) of h is a
submodule of N.

A sequence of (homomorphisms of) R-modules

M0
h0−→ M1

h1−→ M2 · · ·Mi−1
hi−1−→ Mi

hi−→ Mi+1 · · ·Mr−1
hr−1−→ Mr

is said to be exact if Ker(hi) = Im(hi−1) for all i = 1, 2, . . . , r − 1. A short exact

sequence of R-modules is an exact sequence of the form 0 −→ M
h−→ N

l−→
P −→ 0, meaning that h is injective, l is surjective and Ker(l) = Im(h).

The annihilator of an R-module M is defined as the left ideal of R consisting of all
elements which annihilate M , thus:

AnnR(M) := {x ∈ R | xM = 0}.

(G) (Noetherian Modules and Rings) Let R be a ring. A left R-module is said to
be Noetherian, if it satisfies the following equivalent conditions

(i) Each left submodule N ⊆ M if finitely generated, and hence of the form N =∑r
i=1 Rni with r ∈ N0 and n1, n2, . . . , nr ∈ N .

(ii) Each ascending sequence N0 ⊆ N1 ⊆ · · ·Ni ⊆ Ni+1 ⊆ · · · of left submodules
Ni ⊆ M ultimately becomes stationary and thus satisfies Ni0 = Ni0+1 =
Ni0+2 = . . . for some i0 ∈ N0.

We say that the ring R is left Noetherian if it is Noetherian as a left module.
Keep in mind the following facts:

(a) If 0 −→ N −→ M −→ P −→ 0 is an exact sequence of left R-modules then
M is Noetherian if and only N and P are both Noetherian.

(b) If M and N are two Noetherian left R-modules, then their direct sum M ⊕N is
Noetherian, too.

(c) If R is left Noetherian, a left R-module M is Noetherian if and only if it is
finitely generated.
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(H) (Modules of Finite Presentation) Let R be a ring. A left R-module M is said
to be of finite presentation if there is an exact sequence of left R-modules

Rs h−→ Rr −→ M −→ 0 with r, s ∈ N0.

In this situation, the above exact sequence is called a (finite) presentation of M and

Rs h−→ Rr is called a presenting homomorphism for M .
Keep in mind, that the presenting homomorphism is given by a matrix with entries
in R, more precisely: There is a matrix

A =

⎛

⎜⎜⎜⎝

a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
...

as1 as2 . . . asr

⎞

⎟⎟⎟⎠ ∈ Rs×r such that

h(x1, x2, . . . , xs) = (x1, x2, . . . , xs)A =
( s∑

i=1

xiai1,

s∑

i=1

xiai2, . . . ,

s∑

i=1

xiair
)

for all (x1, x2, . . . , xs) ∈ Rs . This matrix A is called a presentation matrix for M .
Note the following facts:

(a) A left R-module M of finite presentation is finitely generated.
(b) If R is left Noetherian, then each finitely generated left R-module is of finite

presentation.

(I) (Graded Rings and Modules) A (positively) graded ring is a ring R together
with a family (Ri)i∈N0 of additive subgroups Ri ⊆ R such that

(1) R =⊕i∈N0
Ri ;

(2) 1 ∈ R0;
(3) for all i, j ∈ N0 and all a ∈ Ri and all b ∈ Rj it holds ab ∈ Ri+j .

In this situation we also refer to R =⊕i∈N0
Ri as (positively) graded R0-algebra.

If a ∈ Ri \ {0}, we call a a homogeneous element of degree i.
Let R′ = ⊕

i∈N0
R′i be a second graded ring. A homomorphism of graded rings

is a homomorphism f : R −→ R′ of rings which respects gradings, hence such
that f (Ri) ⊆ R′i for all i ∈ N0. Clearly, the identity map IdR : R −→ R

of a graded ring as well as the composition of two homomorphisms of graded
rings is a homomorphism of graded rings. An isomorphism of graded rings is a
homomorphism of graded rings which admits an inverse which is a homomorphism
of graded rings—or, equivalently—a bijective homomorphism of graded rings.
The (positively) graded ring R = ⊕

i∈N0
Ri is called a homogeneous ring if it is

generated over R0 by homogeneous elements of degree 1, hence if (in the notation
introduced in part (B)) we have R = R0[R1].
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A graded (left) module over the graded ring R is a left R-module together with a
family (Mj )j∈Z of additive subgroups Mj ⊆ M such that

(1) M =⊕j∈ZMj ;
(2) For all i ∈ N0, all j ∈ Z, all a ∈ Ri and all m ∈ Mj it holds am ∈ Mi+j .

A homomorphism of graded (left) modules is a homomorphism h : M −→ N

of R-modules, in which M = ⊕
j∈ZMj and N = ⊕

j∈ZNj are both graded
and h(Mj ) ⊆ Nj for all j ∈ Z. Clearly, the identity map of a graded R-
module and the composition of two homomorphisms of gradedR-modules are again
homomorphisms of graded R-modules. An isomorphism of graded R-modules is a
homomorphism of graded R-modules which admits an inverse which is a homo-
morphism of graded R-modules—or, equivalently—a bijective homomorphism of
graded R-modules.

(K) (Prime Varieties) Let R be a commutative ring. We denote the prime
spectrum of R, hence the set of all prime ideals in R, by Spec(R). If a ⊆ R is
an ideal, we denote by Var(a) the prime variety of a, thus

Var(a) := {p ∈ Spec(R) | a ⊆ p}.

Let

√
a := {a ∈ R | ∃n ∈ N : an ∈ a}.

denote the radical ideal of a. Keep in mind the following facts:

(a) Var(a) = Var(
√
a).

(b) If a, b ⊆ R are ideals, then Var(a) = Var(b) if and only if
√
a = √b.

(L) (Krull Dimension) Let R be as in part (K) and let M be a finitely generated
R-module. Then, the (Krull) dimension dimR(M) of M is defined as the supremum
of the lengths of chains of prime ideals which can be found in the prime variety of
the annihilator of M:

dimR(M) := sup{r ∈ N0 | ∃p0, . . . , pr ∈ Var
(
AnnR(M)

)
with pi−1 � pi

for i = 1, . . . , r}.

In particular, the (Krull) dimension dim(R) of R is the dimension of the R-
module R:

dim(R) = sup{r ∈ N0 | ∃p0, . . . , pr ∈ Spec(R) with pi−1 � pi for i = 1, . . . , r}.

Before giving a formal acknowledgement, the author likes very much to express
his gratitude toward his Vietnamese fellow mathematicians, who gave him the
chance to visit the Country so many times, to teach several invited short courses,
to present talks and to discuss on Mathematics at various Universities since his
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first visit of Vietnam in 1996. He also looks back with pleasure to the many visits
of Vietnamese mathematicians in Zürich as well as the numerous mathematical
cooperations and the many personal friendships which resulted from them.
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1.2 Filtered Algebras

We begin with a few general preliminaries, which will pave our way to introduce
and to treat Weyl algebras and D-modules. Our first preliminary theme are filtered
algebras over a field. It will turn out later, that this concept is of basic significance
for the theory of Weyl algebras.

Definition and Remark 1.2.1 (A) Let K be a field and let A be K-algebra (see
Conventions, Reminders and Notations 1.1.1 (D)). By a filtration of A we mean a
family

A• = (Ai)i∈N0

such that the following conditions hold:

(a) Each Ai is a K-vector subspace of A;
(b) Ai ⊆ Ai+1 for all i ∈ N0;
(c) 1 ∈ A0;
(d) A =⋃i∈N0

Ai ;
(e) AiAj ⊆ Ai+j for all i, j ∈ N0.

In requirement (e) we have used the standard notation

AiAj :=
∑

(f,g)∈Ai×Aj

Kfg for all i, j ∈ N0,
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which we shall use from now on without further mention. To simplify notation, we
also often set

Ai = 0 for all i < 0

and then write our filtration in the form

A• = (Ai)i∈Z.

If a filtration of A is given, we say that (A,A•) or—by abuse of language—that A
is a filtered K-algebra.

(B) Keep the notations and hypotheses of part (A) and let A• = (Ai)i∈Z be a
filtered K-algebra. Observe that we have the following statements:

(a) A0 is a K-subalgebra of A.
(b) For all i ∈ Z the K-vector space Ai is a left- and a right- A0-submodule of A.

Example 1.2.2 (The Degree Filtration of a Commutative Polynomial Ring) Let
n∈N and let A = K[X1,X2, . . . , Xn] be the commutative polynomial algebra over
the field K in the indeterminates X1,X2, . . . , Xn. Then clearly A is a K-space over
its monomial basis:

A = K[X1,X2, . . . , Xn] =
⊕

ν1,ν2,...,νn∈N0

KX
ν1
1 X

ν2
2 . . . Xνn

n =
⊕

ν∈Nn
0

KXν,

where we have used use the standard notation

Xν := X
ν1
1 X

ν2
2 . . . Xνn

n , for ν := (ν1, ν2 . . . νn) ∈ N
n
0.

So, each f ∈ A can be written as

f =
∑

ν∈Nn
0

c(f )ν Xν

with a unique family

(
c(f )ν

)
ν∈Nn

0
∈
∏

ν∈Nn
0

K = KN
n
0 ,

whose support

supp(f ) = supp
(
(c(f )ν

)
ν∈Nn

0

) := {ν ∈ N
n
0 | c(f )ν �= 0}
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is finite. We also introduce the notation

|ν| =
n∑

i=1

νi , for ν = (ν1, ν2, . . . , νn) ∈ N
n
0 .

Then, with the usual convention of Conventions, Reminders and Notations 1.1.1 (A)
we may describe the degree of the polynomial f ∈ A by

deg(f ) := sup{|ν| | c(f )ν �= 0} = sup{|ν| | ν ∈ supp(f )}.

Now, for each i ∈ N0 we introduce the K-subspace Ai of A which is given by

Ai := {f ∈ A | deg(f ) ≤ i} =
⊕

ν∈Nn
0 with |ν|≤i

KXν.

With the usual convention that u + (−∞) = −∞ for all u ∈ Z ∪ {−∞}, we have
the obvious relation

deg(fg) = deg(f )+ deg(g) for all f, g ∈ A = K[X1,X2, . . . , Xn].

From this it follows easily:

The family A• =
(
Ai := {f ∈ A | deg(f ) ≤ i})

i∈N0

is a filtration of A. This filtration is called the degree filtration of the polynomial
algebra A = K[X1,X2, . . . , Xn].

Clearly filtrations also may occur in non-commutative algebras. The next
example presents somehow the “generic occurrence” of this.

Example 1.2.3 (The Degree Filtration of a Free Associative Algebra) Let n ∈ N,
let K be a field and let A = K〈X1,X2, . . . , Xn〉 be the free associative algebra
over K in the indeterminates X1,X2, . . . , Xn. We suppose in particular that (see
Conventions, Reminders and Notations 1.1.1 (D))

cXi = Xic for all c ∈ K and all i = 1, 2, . . . , n,

and hence

cf = f c for all c ∈ K and all f ∈ A.

Let i ∈ N0. If

σ = (σ1, σ2, . . . , σi) ∈ {1, 2, . . . , n}i
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is a sequence of length i with values in the set {1, 2, . . . , n} we write

Xσ :=
i∏

j=1

Xσj = Xσ1Xσ2 . . . Xσi .

Then, with the usual convention that the product
∏

j∈∅Xj of an empty family of
factors equals 1 and using the notation

Sn :=
{{1, 2, . . . , n}i | i ∈ N0

}

we can write A as a K-space over its monomial basis as follows:

A = K〈X1,X2, . . . , Xn〉
=
⊕

i∈N0

⊕

(σ1,σ2...σi )∈{1,2,...,n}i
KXσ1Xσ2 . . . Xσi

=
⊕

i∈N0

⊕

σ∈{1,2,...,n}i
KXσ

=
⊕

σ∈Sn
KXσ .

Clearly, as in the case of a commutative polynomial ring, each f ∈ Amay be written
in the form

f =
∑

σ∈Sn
c(f )σ Xσ

with a unique family

(
c(f )σ

)
σ∈Sn ∈

∏

σ∈Sn
K = KSn,

whose support

supp(f ) = supp
(
(c(f )σ )σ∈Sn

) := {σ ∈ Sn | c(f )σ �= 0}
is finite. We also introduce the notion of length of a sequence σ ∈ Sn by setting

λ(σ ) := i, if σ ∈ {1, 2, . . . , n}i .

Now, we may define the degree of an element f ∈ A by

deg(f ) := sup{λ(σ) | c(f )σ �= 0} = sup{λ(σ ) | σ ∈ supp(f )}.
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For each i ∈ N0 we introduce a K-subspace Ai of A, by setting

Ai := {f ∈ A | deg(f ) ≤ i} =
⊕

σ∈Sn withλ(σ)≤i
KXσ .

We obviously have the relation

deg(fg) ≤ deg(f )+ deg(g) for all f, g ∈ A = K〈X1,X2, . . . , Xn〉.

Moreover, it is easy to see:

The family A• =
(
Ai = {f ∈ A | deg(f ) ≤ i})

i∈N0

is a filtration of A. This filtration is called the degree filtration of the free associative
K-algebra A = K〈X1,X2, . . . , Xn〉.

Later, our basic filtered algebras will be Weyl algebras. These are non-
commutative too, but they also admit the notion of degree and of degree filtration.
From the point of view of filtrations, these algebras will turn out to be “close to
commutative”, as we shall see later. To make this more precise, we will introduce
the notion of associated graded ring with respect to a filtration in the next section.

1.3 Associated Graded Rings

Remark and Definition 1.3.1 (A) Let K be a field and let A = (A,A•) be a
filtered K-algebra. We consider the K-vector space

Gr(A) = GrA•(A) =
⊕

i∈N0

Ai/Ai−1.

For all i ∈ N0 we also use the notation

Gr(A)i = GrA•(A)i := Ai/Ai−1,

so that we may write

Gr(A) = GrA•(A) =
⊕

i∈N0

GrA•(A)i.

(B) Let i, j ∈ N0, let f, f ′ ∈ Ai and let g, g′ ∈ Aj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Aj−1.
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It follows that

fg − f ′g′ = fg − (f − h)(g − k) = f k + hg − hk

∈ AiAj−1 + Ai−1Aj + Ai−1Aj−1 ⊆
⊆ Ai+(j−1) + Aj+(i−1) + A(i−1)+(j−1) ⊆ Ai+j−1.

So in Ai+j /Ai+j−1 = GrA•(A)i+j ⊂ GrA•(A) we get the relation

fg + Ai+j−1 = f ′g′ + Ai+j−1.

This allows to define a multiplication on the K-space GrA•(A) which is induced by

(f+Ai−1)(g+Aj−1) := fg+Ai+j−1 for all i, j ∈ N0, all f ∈ Ai and all g ∈ Aj .

With respect to this multiplication, the K-vector space GrA•(A) acquires a structure
of K-algebra.
Observe that, if r, s ∈ N0 and

f =
r∑

i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and, moreover

g =
s∑

j=0

gj , with gj ∈ Aj and gj = (gj + Aj−1) ∈ GrA•(A)j for all j = 0, 1, . . . , s,

then

f g =
r+s∑

k=0

∑

i+j=k
figj =

r+s∑

k=0

∑

i+j=k
(figj + Ai+j−1).

(C) Keep the above notations and hypotheses. Observe in particular, that GrA•(A)0
is a K-subalgebra of GrA•(A), and that there is an isomorphism of K-algebras

GrA•(A)0 ∼= A0.

Moreover, with respect to our multiplication on GrA•(A) we have the relations

GrA•(A)iGrA•(A)j ⊆ GrA•(A)i+j for all i, j ∈ N0.

So, the K-vector space GrA•(A) is turned into a (positively) graded ring

GrA•(A) =
(
GrA•(A), (GrA•(A)i)i∈N0

) =
⊕

i∈N0

GrA•(A)i
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by means of the above multiplication. We call this ring the associated graded ring
of A with respect to the filtration A•. From now on, we always furnish GrA•(A)
with this multiplication.

Example and Exercise 1.3.2 (A) Let n ∈ N, let K be a field and consider the
commutative polynomial ring A = K[X1,X2, . . . , Xn]. Show that A has the
following universal property within the category of all commutative K-algebras:

If B is a commutative K-algebra and φ : {X1,X2, . . . , Xn} −→ B is a map, then
there is a unique homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) =
φ(Xi) for all i = 1, 2, . . . , n.

Show also, thatA has the following relational universal property within the category
of all associative K-algebras:

If B is an associativeK-algebra and φ : {X1,X2, . . . , Xn} −→ B is a map such that
φ(Xi)φ(Xj ) = φ(Xj )φ(Xi) for all i, j ∈ {1, 2, . . . , n}, then there is a unique
homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) = φ(Xi) for all
i = 1, 2, . . . , n.

(B) Now, furnish A = K[X1,X2, . . . , Xn] with its degree filtration (see
Example 1.2.2). Then, on use of the above universal property of A it is not hard
to show that there is an isomorphism of K-algebras

K[X1,X2, . . . , Xn]
∼=−→ GrA•(A),

given by Xi �→ (Xi+A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A) for all i = 1, 2 . . . , n.

We now introduce a class of filtrations, which will be of particular interest for
our lectures.

Definition 1.3.3 Let K be a field and let A = (A,A•) be a filtered K-algebra. The
filtration A• is said to be commutative if

fg − gf ∈ Ai+j−1 for all i, j ∈ N0 and for all f ∈ Ai and all g ∈ Aj .

It is equivalent to say that the associated graded ring GrA•(A) is commutative. In
this situation, we also say that (A,A•) is a commutatively filtered K-algebra.

Later, in the case of Weyl algebras, we shall meet various interesting commu-
tative filtrations—and precisely this makes these algebras to a subject which is
intimately tied to Commutative Algebra. We now shall define three special types
of commutative filtrations, which will play a particularly important rôle in Weyl
algebras.

Definition and Remark 1.3.4 (A) Let (A,A•) be a filtered K-algebra. The filtra-
tion A• is said to be very good if it satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 = K;
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(c) dimK(A1) <∞;
(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances and on use of the notation introduced in Conventions,
Reminders and Notations 1.1.1 (B) we clearly have

dimK(A1/A0) = dimK

(
GrA• (A)1

) = dimK(A1)−1 <∞ and GrA•(A) = K[GrA•(A)1].

So, in this situation, the associated graded ring GrA•(A) is a commutative homo-
geneous (thus standard graded) Noetherian K-algebra (see Conventions, Reminders
and Notations 1.1.1 (I)). If A• is a very good filtration of A, we say that (A,A•)—or
briefly A—is a very well-filtered K-algebra.

(B) Let (A,A•) be a filtered K-algebra. The filtration A• is said to be good if it
satisfies the following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) A1 is finitely generated as a (left-)module over A0;
(d) Ai = A1Ai−1 for all i ∈ N.

Under these circumstances we clearly have

A0 ∼= GrA•(A)0 is commutative and Noetherian

A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[GrA•(A)1].
So, in this situation, the associated graded ring GrA•(A) is a commutative homoge-
neous Noetherian A0-algebra (see Conventions, Reminders and Notations 1.1.1 (I)).
If A• is a good filtration of A, we say that (A,A•)—or briefly A—is a well-filtered
K-algebra.
Clearly, a very well-filtered K-algebra is also well-filtered. (C) Let (A,A•) be a
filtered K-algebra. The filtration A• is said to be of finite type if it satisfies the
following conditions:

(a) The filtration A• is commutative;
(b) A0 is a K-algebra of finite type;
(c) There is an integer δ ∈ N such that Aj is finitely generated as a (left-)module

over A0 for all j ≤ δ and
(d) Ai =∑δ

j=1 AjAi−j for all i > δ.

In this situation, we call the number δ a generating degree of the filtration A•. Under
these circumstances we clearly have

Ai =
∑

1≤j1,...,js≤δ:j1+···+js=i
Aj1 · · ·Ajs , (∀i ∈ N)

A0 ∼= GrA•(A)0 is commutative and Noetherian
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A1/A0 = GrA•(A)1 is a finitely generated A0-module, and

GrA•(A) = GrA•(A)0[
δ∑

i=1

GrA•(A)i].

So, in this situation, the associated graded ring GrA•(A) is a commutative Noethe-
rian graded A0-algebra, which is generated by finitely many homogeneous elements
of degree ≤ δ. If A• is a filtration of A, which is of finite type, we say that (A,A•)
is a filtered algebra of finite type.
Clearly, a well-filtered K-algebra is also finitely filtered. Moreover, if A• is of finite
type and δ = 1, the filtration A• is good.

Example and Exercise 1.3.5 (A) Let n ∈ N, let K be a field and consider the
commutative polynomial ring A = K[X1,X2, . . . , Xn], furnished with its degree
filtration. Then, it is easy to see, that A = K[X1,X2, . . . , Xn] is a very well filtered
K-algebra.

(B) Let n ∈ N, let K be a field and consider the commutative polynomial ring
A = K[X1,X2, . . . , Xn]. Let m ∈ {0, 1, . . . , n − 1} and consider the subring
B := K[X1,X2, . . . , Xm] ⊂ A, so that A = B[Xm+1,Xm+2, . . . , Xn]. For
each polynomial f = ∑

ν c
(f )
ν Xν ∈ A we denote by degB(f ) the degree of f

with respect to the indeterminates Xm+1,Xm+2, . . . , Xn, hence the degree of f
considered as a polynomial in these indeterminates with coefficients in B. Thus
we may write

degB(f ) = sup{
n∑

i=1

wiνi | (ν1, ν2, . . . , νn) ∈ supp(f )}

where

w1 = w2 = · · · = wm = 0 and wm+1 = wm+2 = · · · = wn = 1.

Show, that by

Ai := {f ∈ A | degB(f ) ≤ i} for all i ∈ N0

a good filtration A• on A is defined and that there is a canonical isomorphism of
graded B-algebras

A = B[Xm+1,Xm+2, . . . , Xn] ∼= GrA•(A),

where A = B[Xm+1,Xm+2, . . . , Xn] is endowed with the standard grading with
respect to the indeterminates Xm+1, . . . , Xn, hence with the grading given by
deg(Xi) = 0 if 1 ≤ i ≤ m and deg(Xi) = 1 for m < i ≤ n.
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(C) Let n ∈ N, with n > 1, let K be a field and consider the free associative K-
algebra A = K〈X1,X2, . . . , Xn〉, furnished with its degree filtration A•. For each
i ∈ {1, 2, . . . , n}, let

Xi := (Xi + A0) ∈ A1/A0 = GrA•(A)1 ⊂ GrA•(A).

Show that

XiXj = XjXi if and only if i = j.

(D) Let the notations and hypotheses be as in part (C). Show that A =
K〈X1,X2, . . . , Xn〉 has the following universal property in the category of K-
algebras:

If B is a K-algebra and φ : {X1,X2, . . . , Xn} −→ B is a map, there is a unique
homomorphism of K-algebras φ̃ : A −→ B such that φ̃(Xi) = φ(Xi) for all
i = 1, 2, . . . , n.

Use this to show, that there is a unique homomorphism of (graded) K-algebras
(which must be in addition surjective)

φ̃ : A � GrA•(A), such that Xi �→ Xi := (Xi + A0) ∈ A1/A0 = GrA•(A)1.

(E) Let (A,A•) be a filtered K-algebra, let r ∈ N and let i1, i2, . . . , ir ∈ N0. We
define inductively

Ai1Ai2 . . . Air =
r∏

j=1

Aij :=
{
Ai1, if r = 1,
(∏r−1

j=1 Aij

)
Air , if r > 1.

In particular, if i ∈ N0 we set

(Ai)
r :=

r∏

j=1

Ai.

Assume now, that the filtration A• is good and prove that

Ar = (A1)
r and AiAj = Ai+j for all r ∈ N and all i, j ∈ N0.

Assume that the filtration A• is of finite type and has generating degree δ. Prove that

Ai =
∑

ν0,ν1,...,νδ∈N0:i=∑δ
j=0 jνj

δ∏

j=0

A
νj
j for all i ∈ N0.
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1.4 Derivations

Filtered K-algebras and their associated graded rings are one basic ingredient of the
theory of Weyl algebras. Another basic ingredient are derivations (or derivatives).
The present section is devoted to this subject.

Definition and Remark 1.4.1 (A) Let K be a field, let A be a commutative K-
algebra and let M be an A-module. A K-derivation (or K-derivative) on A with
values in M is a map d : A −→ M such that:

(a) d is K-linear: d(αa + βb) = αd(a)+ βd(b) for all α, β ∈ K and all a, b ∈ A.
(b) d satisfies the Leibniz Product Rule: d(ab) = ad(b)+ bd(a) for all a, b ∈ A.

We denote the set of all K-derivations on A with values in M by DerK(A,M), thus:

DerK(A,M) := {d ∈ HomK(A,M) | d(ab) = ad(b)+ bd(a) for all a, b ∈ A}.
To simplify notations, we also write

DerK(A,A) =: DerK(A).

(B) Keep in mind, that HomK(A,M) carries a natural structure of A-module, with
scalar multiplication given by

(ah)(x) := a(h(x)) for all a ∈ A, all h ∈ HomK(A,M) and all x ∈ A.

It is easy to verify:

DerK(A,M) is a submodule of the A-module HomK(A,M).

With our usual convention (suggested in Conventions, Reminders and Nota-
tions 1.1.1 (D)) that we identify c ∈ K with c1A ∈ A, the rules (a) and (b)
of part (A) imply d(c) = d(c1) = cd(1) and d(c1) = 1d(c) + cd(1), hence
d(c) = d(c)+ cd(1) = d(c)+ d(c), thus

d(c) = 0 for all c ∈ K and all d ∈ DerK(A,M) : “Derivations vanish on constants.”

Next, we shall look at the arithmetic properties of derivations and gain an impor-
tant embedding procedure for modules of derivations of K-algebras of finite type.

Exercise and Definition 1.4.2 (A) Let K be a field, let A be a commutative K-
algebra and let M be an A-module. Let d ∈ DerK(A,M), let r ∈ N, let
ν1, ν2, . . . , νr ∈ N and let a1, a2, . . . , ar ∈ A. Use induction on r to prove the
Generalized Product Rule

d
( r∏

j=1

a
νj
j

) =
r∑

i=1

νia
νi−1
i

(∏

j �=i
a
νj
j

)
d(ai)
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and the resulting Power Rule

d(ar) = rar−1d(a) for all a ∈ A.

(B) Let the notations and hypotheses be as in part (A). Assume in addition that
A = K[a1, a2, . . . , ar ]. Let e ∈ DerK(A,M). Use what you have shown in part
(A) together with the fact that e and d are K-linear to prove that the following
uniqueness statement holds:

e = d if and only if e(ai) = d(ai) for all i = 1, 2, . . . , r.

(C) Yet assume that A = K[a1, a2, . . . , ar ]. Prove that there is a monomorphism
(thus an injective homomorphism) of A-modules

ΘM
a = ΘM

(a1,a2,...,ar )
: DerK(A,M) −→ Mr, given by d �→ (

d(a1), d(a2), . . . , d(ar )
)
.

This monomorphism ΘM
a is called the embedding of DerK(A,M) in Mr with

respect to a := (a1, a2, . . . , ar ).
(D) Let the notations and hypotheses be as in part (C). Assume that M is finitely

generated. Prove, that the A-module DerK(A,M) is finitely generated.

Now, we turn to derivatives in polynomial algebras, a basic ingredient of Weyl
algebras.

Exercise and Definition 1.4.3 (Partial Derivatives in Polynomial Rings) (A)
Let n ∈ N, let K be a field and consider the polynomial algebraK[X1,X2, . . . , Xn].
Fix i ∈ {1, 2, . . . , n}. Then, using the monomial basis ofK[X1,X2, . . . , Xn]we see
that there is a unique K-linear map

∂i = ∂

∂Xi

: K[X1,X2, . . . , Xn] −→ K[X1,X2, . . . , Xn]

such that for all ν = (ν1, ν2, . . . , νn) ∈ N
n
0 we have

∂i(X
ν) = ∂

∂Xi

( n∏

j=1

X
νj
j

) =
{
νiX

νi−1
i

∏
j �=i X

νj
j , if νi > 0

0, if νi = 0.

(B) Keep the notations and hypotheses of part (A). Let

μ = (μ1, μ2, . . . , μn), ν = (ν1, ν2, . . . , νn) ∈ N
n
0

and prove that

∂i
(
XμXν

) = Xμ∂i
(
Xν
)+Xν∂i

(
Xμ
)
.
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Use the K-linearity of ∂i to conclude that

∂i = ∂

∂Xi

∈ DerK
(
K[X1,X2, . . . , Xn]

)
for all i = 1, 2 . . . , n.

The derivation ∂i = ∂
∂Xi

is called the i-th partial derivative in K[X1,X2, . . . , Xn].
As we shall see in the proposition below, the embedding introduced in Exercise

and Definition 1.4.2 (C) takes a particularly favorable shape in the case of
polynomial algebras. The exercise to come is aimed to prepare the proof for this.

Exercise 1.4.4 (A) Let the notations and hypotheses be as in Exercise and Defini-
tion 1.4.3. For all i, j ∈ Z let δi,j denote the Kronecker symbol, so that

δi,j =
{

1, if i = j,

0, if i �= j.

Check that

∂i(Xj ) = δi,j , for all i, j ∈ {1, 2 . . . , n}.
(B) Keep the above notations and hypotheses. Show that

(a) For each i ∈ {1, 2, . . . , n} it holds K[X1,X2, . . . , Xi−1,Xi+1, . . . , Xn] ⊆
Ker(∂i) with equality if and only if Char(K) = 0.

(b) K ⊆⋂n
i=1 Ker(∂i) with equality if and only if Char(K) = 0.

Proposition 1.4.5 (The Canonical Basis for the Derivations of a Polynomial
Ring) Let n ∈ N, let K be a field and consider the polynomial algebra
K[X1,X2, . . . , Xn]. Then the canonical embedding of DerK

(
K[X1,X2, . . . , Xn]

)

into K[X1,X2, . . . , Xn]n with respect to X1,X2, . . . , Xn (see Exercise and Defini-
tion 1.4.2 (C)) yields an isomorphism of K[X1,X2, . . . , Xn]-modules

Θ := ΘX1,X2,...,Xn : DerK
(
K[X1,X2, . . . , Xn]

) ∼=−→ K[X1,X2, . . . , Xn]n,
given by

d �→ Θ(d) := ΘX1,X2,...,Xn(d) =
(
d(X1), d(X2), . . . , d(Xn)

)
,

for all d ∈ DerK
(
K[X1,X2, . . . , Xn]

)
.

In particular, the n partial derivatives ∂1, ∂2, . . . , ∂n form a free basis of the
K[X1,X2, . . . , Xn]-module DerK

(
K[X1,X2, . . . , Xn]

)
, hence

DerK
(
K[X1,X2, . . . , Xn]

) =
n⊕

i=1

K[X1,X2, . . . , Xn]∂i.
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Proof According to Exercise and Definition 1.4.2 (C), the map Θ is a monomor-
phism of K[X1,X2, . . . , Xn]-modules. By what we have seen in Exercise 1.4.4 (A)
we have

Θ(∂i) =
(
δi,1, δi,2, . . . , δi−1,i , δi,i , δi,i+1, . . . , δi,n

) = (δi,j
)n
j=1 =: ei

for all i = 1, 2, . . . , n. As the n elements

ei =
(
δi,j
)n
j=1 ∈ K[X1,X2, . . . , Xn]n with i = 1, 2, . . . , n

form the canonical free basis of the K[X1,X2, . . . , Xn]-module K[X1,X2, . . . ,

Xn]n our claims follow immediately.

1.5 Weyl Algebras

Now, we are ready to introduce Weyl algebras. We first remind a few facts on
endomorphism rings of commutative K-algebras and relate these to modules of
derivations.

Reminder and Remark 1.5.1 (A) Let K be a field and let A be a commutative
K-algebra and let M be an A-module. Keep in mind, that the A-module

EndK(M) := HomK(M,M)

carries a natural structure of K-algebra, whose multiplication is given by composi-
tion of maps, thus:

fg := f ◦ g, hence (fg)(m) := f (g(m)) for all f, g ∈ EndK(M) and all m ∈ M.

The module EndK(M) endowed with this multiplication is called the K-
endomorphism ring of M . Observe, that this endomorphism ring is not commutative
in general.

(B) Keep the above notations and hypothesis. Then, we have a canonical
homomorphism of rings

εM : A −→ EndK(M) given by a �→ εM(a) := aidM for all a ∈ A,

where idM : M −→ M is the identity map on M , so that

εM(a)(m) = am for all a ∈ A and all m ∈ M.

It is immediate to verify that this canonical homomorphism is injective if M = A:

The canonical homomorphism εA : A −→ EndK(A) is injective.
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We therefore call the map εA : A −→ EndK(A) the canonical embedding of A into
its K-endomorphism ring and we consider A as a subalgebra of EndK(A) by means
of this canonical embedding. So, for all a ∈ A we identify a with εA(a).

Remark and Definition 1.5.2 (A) Let K be a field and let A be a commutative K-
algebra. By the convention made in Reminder and Remark 1.5.1 we may consider
A as a subalgebra of the endomorphism ring EndK(A). We obviously also have
DerK(A) ⊆ EndK(A). So using the notation introduced in Conventions, Reminders
and Notations 1.1.1 (B), we have may consider the K-subalgebra

WK(A) := K[A ∪ DerK(A)] = A[DerK(A)] ⊆ EndK(A).

of the K-endomorphism ring of A which is generated by A and all derivations on A
with values in A. We call WK(A) the Weyl algebra of the K-algebra A.

(B) Keep the hypotheses and notations of part (A). Assume in addition, that the
commutativeK-algebraA is of finite type, so that we find some r ∈ N0 and elements
a1, a2, . . . , ar ∈ A such that

A = K[a1, a2, . . . , ar ].

Then according to Exercise and Definition 1.4.2 (D), the A-module DerK(A) is
finitely generated. We thus find some s ∈ N0 and derivations d1, d2, . . . , ds ∈
DerK(A) such that

DerK(A) =
s∑

i=1

Adi.

A straight forward computation now allows to see, that

WK(A) = K[a1, a2 . . . , ar, d1, d2, . . . , ds] ⊆ EndK(A).

In particular we may conclude, that the K-algebra WK(A) is finitely generated.
(C) Keep the above notations and let n ∈ N. The n-th standard Weyl algebra

W(K, n) over the field K is defined as the Weyl algebra of the polynomial ring
K[X1,X2, . . . , Xn], thus

W(K, n) := WK

(
K[X1,X2, . . . , Xn]

) ⊆ EndK
(
K[X1,X2, . . . , Xn]

)
.

Observe, that by Proposition 1.4.5 and according to the observations made in part
(B) we may write

W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂1, ∂2, . . . , ∂n] ⊆ EndK
(
K[X1,X2, . . . , Xn]

)
.
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The elements of W(K, n) are called polynomial differential operators in the
indeterminatesX1,X2, . . . , Xn over the field K . They are allK-linear combinations
of products of indeterminates Xi and partial derivatives ∂j .
The differential operators of the form

Xν∂μ := X
ν1
1 . . . Xνn

n ∂
μ1
1 . . . ∂μn

n =
n∏

i=1

Xνi

n∏

j=1

∂μj ∈W(K, n)

with

ν := (ν1, . . . , νn), μ := (μ1, . . . , μn) ∈ N
n
0

are called elementary differential operators in the indeterminates X1,X2, . . . , Xn

over the field K .

We now aim to study the structure of standard Weyl algebras. One of the main
goals we are heading for is to find an appropriate ”monomial basis“ in each of
these algebras. We namely shall see later that the previously introduced elementary
differential operators form a K-basis of the standard Weyl algebra W(K, n),
provided K is of characteristic 0. To pave our way to this fundamental result, we
first of all have to prove that in standard Weyl algebras certain commutation relations
hold: the so-called Heisenberg relations. To establish these relations, we begin with
the following preparations.

Remark and Exercise 1.5.3 (A) If K is a field and B is a K-algebra, we introduce
the Poisson operation, that is the map

[•, •] : B × B −→ B, defined by [a, b] := ab− ba for all a, b ∈ B.

Show, that the Poisson operation has the following properties:

(a) [a, b] = −[b, a] for all a, b ∈ B.
(b) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 for all a, b, c ∈ B.
(c) [αa + α′a′, βb + β ′b′] = αβ[a, b] + αβ ′[a, b′] + α′β[a′, b] + α′β ′[a′, b′]

for all α, α′, β, β ′ ∈ K and all a, a′, b, b′ ∈ B.

Observe in particular, that statement (a) says that the Poisson operation is anti-
commutative, whereas statement (c) says that this operation is K-bilinear. We call
[a, b] the commutator of a and b.

(B) Now, let K be a field, let A be a commutative K-algebra and consider the
Weyl algebra WK(A) := A[DerK(A)]. Show that the following relations hold:

(a) [a, b] = 0 for all a, b ∈ A.
(b) [a, d] = −d(a) for all a ∈ A and all d ∈ DerK(A).
(c) [d, e] ∈ DerK(A) for all d, e ∈ DerK(A).
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(C) Let the notations and hypotheses be as in part (B). Let d, e ∈ DerK(A), let
r ∈ N, let ν1, ν2, . . . , νr ∈ N and let a1, a2, . . . , ar ∈ A. Use statement (c) of part
(B) and the Generalized Product Rule of Exercise and Definition 1.4.2 (A) to prove
that

[d, e](
r∏

j=1

a
νj
j

) =
r∑

i=1

νia
νi−1
i

(∏

j �=i
a
νj
j

)[d, e](ai).

Proposition 1.5.4 (The Heisenberg Relations) Let n ∈ N, and let Kbe a field.
Then, in the standard Weyl algebra

W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]

the following relations hold:

(a) [Xi,Xj ] = 0, for all i, j ∈ {1, 2, . . . , n};

(b) [Xi, ∂j ] = −δi,j , for all i, j ∈ {1, 2, . . . , n};

(c) [∂i, ∂j ] = 0, for all i, j ∈ {1, 2, . . . , n}.
Proof

(a) This is clear on application of Remark and Exercise 1.5.3 (B)(a) with a = Xi

and b = Xj .
(b) If we apply Remark and Exercise 1.5.3 (B)(b) with a = Xi and d = ∂j , and

observe that ∂j (Xi) = δj,i = δi,j we get our claim.
(c) Observe that for all i, k ∈ {1, 2, . . . , n} we have ∂i(Xk) ∈ {0, 1} ⊆ K . So for

all i, j, k ∈ {1, 2, . . . , n} we obtain (see Definition and Remark 1.4.1 (B)):

[∂i, ∂j ](Xk) = ∂i
(
∂j (Xk)

)− ∂j
(
∂i(Xk)

) ∈ ∂i(K)+ ∂j (K) = {0} + {0} = {0}.

Now, we get our claim by Exercise and Definition 1.4.2 (B) and Remark and
Exercise 1.5.3 (B) (c) and (C).

The Heisenberg relations are of basic significance for the arithmetic in standard
Weyl algebras. Before we show that the elementary differential operators provide a
basis for a standard Weyl algebra we shall study the arithmetic of these algebras.
In particular, in the next section we shall prove a product formula for elementary
differential operators, which will be of basic significance. We shall do this in
a slightly more general setting, namely just for K-algebras ”mimicking“ the
Heisenberg relations. The next exercise is aimed to prepare this.

Exercise 1.5.5 (A) Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a1, . . . , an, d1, d2, . . . , dn ∈ B
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be elements mimicking the Heisenberg relations, which means:

(1) [ai, aj ] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj ] = −δi,j , for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj ] = 0, for all i, j ∈ {1, 2, . . . , n}.
Let μ, ν ∈ N0. To simplify notations, we set

0bk := 0 for all b ∈ B and all k ∈ Z.

prove the following statements (using induction on μ and ν):

(a) a
μ
i a

ν
j = aνj a

μ
i ;

(b) d
μ
i d

ν
j = dνj d

μ
i ;

(c) d
μ
i a

ν
j = aνj d

μ
i for all i, j ∈ {1, 2, . . . , n} with i �= j .

(d) dia
ν
i = aνi di + νaν−1

i for all i ∈ {1, 2, . . . , n}.
(B) Keep the notations and hypotheses of part (A). For all (λ1, λ2, . . . , λn) ∈ N

n
0

and each sequence (b1, b2, . . . , bn) ∈ Bn we use again our earlier standard notation

λ := (λ1, λ2, . . . , λn) and bλ := b
λ1
1 b

λ2
2 . . . bλnn =

n∏

i=1

b
λi
i .

Now, let

μ := (μ1, μ1, . . . , μn), ν := (ν1, ν2, . . . , νn), and

μ′ := (μ′1, μ′1, . . . , μ′n), ν′ := (ν′1, ν′2, . . . , ν′n) ∈ N
n
0.

Prove that the following relations hold

(a) aνdμ =∏n
i=1 a

νi
i

∏n
j=1 d

μj

j =∏n
i=1 a

νi
i d

μi

i .

(b) (aνdμ)(aν
′
dμ

′
) = (∏n

i=1 a
νi
i

∏n
j=1 d

μj

j

)(∏n
i=1 a

ν ′i
i

∏n
j=1 d

μ′j
j

) =
∏n

i=1 a
νi
i d

μi

i a
ν ′i
i d

μ′i
i .

1.6 Arithmetic in Weyl Algebras

As announced above, we now aim to do some Arithmetic in standard Weyl algebras.
This means in particular, that we make explicit a number of computations in the
hope that readers who up to now were mainly faced with commutative rings, get
fascinated by the complexity of the arithmetic in Weyl algebras.
The following arithmetical Lemma is formulated in a more general framework,
namely in a situation, which “mimicks” the Heisenberg relation. If we specialize
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this Lemma to standard Weyl algebras, we get a most important formula, which
expresses the product of two elementary differential operators as a Z-linear
combination of elementary differential operators. This will also give us an explicit
presentation of the commutator [d, e] (see Remark and Exercise 5.3 (A)) of two
elementary differential operators d and e. As a further application we will get the
Reduction Principle for arbitrary products of elementary differential operators and
thus pave our way to the standard basis presentation of Weyl algebras, which we
shall introduce in the next section.
We prove the announced Lemma in a setting which is more general than just the
framework of Weyl algebras, because in this form it will help us to prove the
universal property of Weyl algebras formulated in Corollary 1.7.5. This property
is an analogue of the (relational) universal property of commutative polynomial
algebras (see Example and Exercise 1.3.2 (A)) or of free associative algebras (see
Example and Exercise 1.3.5 (D)).

Lemma 1.6.1 Let n ∈ N, let K be a field, let B be a K-algebra and let

a1, a2, . . . , an, d1, d2, . . . , dn ∈ B

such that:

(1) [ai, aj ] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [ai, dj ] = −δi,j , for all i, j ∈ {1, 2, . . . , n};
(3) [di, dj ] = 0, for all i, j ∈ {1, 2, . . . , n}.
Then, the following statements hold:

(a) For all μ, ν ∈ N0 and all i ∈ {1, 2, . . . , n} we have

d
μ
i a

ν
i =

min{μ,ν}∑

k=0

(
μ

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i .

(b) Let

μ := (μ1, μ1, . . . , μn), ν := (ν1, ν2, . . . , νn), and

μ′ := (μ′1, μ′1, . . . , μ′n), ν′ := (ν′1, ν′2, . . . , ν′n) ∈ N
n
0 .

Set

I := {k := (k1, k2, . . . , kn) ∈ N
n
0 | ki ≤ min{μi, ν

′
i} for i = 1, 2, . . . , n},

and let

λk := [
n∏

i=1

(
μi

ki

)
] × [

n∏

i=1

ki−1∏

p=0

(ν′i − p)].
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Then, we have the relation

(aνdμ)(aν
′
dμ

′
) := (

n∏

i=1

a
νi
i

n∏

j=1

d
μj

j )

n∏

i=1

a
ν ′j
i

n∏

j=1

d
μ′j
i )

=
n∏

i=1

a
νi+ν ′i
i

n∏

i=1

d
μi+μ′i
i +

∑

k∈I\{0}
λk

n∏

i=1

a
νi+ν ′i−ki
i

n∏

i=1

d
μi+μ′i−ki
i

= aν+ν ′dμ+μ
′ +

∑

k∈I\{0}
λka

ν+ν ′−kdμ+μ
′−k.

Proof (a) To simplify matters we use the notation

0bk := 0 for all b ∈ B and all k ∈ Z

already introduced in the previous Exercise 1.5.5 (A). Then, it suffices to show that

d
μ
i a

ν
i =

μ∑

k=0

(
μ

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i .

We proceed by induction on μ. The case μ = 0 is obvious. The case μ = 1 is clear
by Exercise 1.5.5 (A)(d). So, let μ > 1. By induction we have

d
μ−1
i aνi =

μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−1−k
i .

It follows on use of Exercise 1.5.5 (A)(d) and the Pascal formulas for the sum of
binomial coefficients, that

d
μ
i a

ν
i = di(d

μ−1
i aνi ) = di(

μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−1−k
i )

=
μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)(dia
ν−k
i )d

μ−1−k
i

=
μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)
(
aν−ki di + (ν − k)aν−k−1

i

)
d
μ−1−k
i

=
μ−1∑

k=0

[
(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i

+
(
μ− 1

k

) k−1∏

p=0

(ν − p)(ν − k)aν−k−1
i d

μ−1−k
i ]
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=
μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i

+
μ−1∑

k=0

(
μ− 1

k

) k∏

p=0

(ν − p)aν−k−1
i d

μ−1−k
i

=
μ−1∑

k=0

(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i +

μ∑

k=1

(
μ− 1

k − 1

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i

= aνi d
μ
i +

μ−1∑

k=1

(
μ− 1

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i +

+
μ−1∑

k=1

(
μ− 1

k − 1

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i +

μ−1∏

p=0

(ν − p)a
ν−μ
i

= aνi d
μ
i +

μ−1∑

k=1

[
(
μ− 1

k

)
+
(
μ− 1

k − 1

)
]
k−1∏

p=0

(ν − p)aν−ki d
μ−k
i +

μ−1∏

p=0

(ν − p)a
ν−μ
i

= aνi d
μ
i +

μ−1∑

k=1

(
μ

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i +

μ−1∏

p=0

(ν − p)a
ν−μ
i

=
μ∑

k=0

(
μ

k

) k−1∏

p=0

(ν − p)aν−ki d
μ−k
i .

(b) According to Exercise 1.5.5 (B)(a),(b), the previous statement (a) and Exer-
cise 1.5.5 (A)(a),(b) and (c) we may write

(aνdμ)(aν
′
dμ

′
) := (

n∏

i=1

a
νi
i

n∏

j=1

d
μj

j

)( n∏

i=1

a
ν ′i
i

n∏

j=1

d
μ′j
j

) =
n∏

i=1

a
νi
i d

μi

i a
ν ′i
i d

μ′i
i

=
n∏

i=1

a
νi
i

(
d
μi

i a
ν ′i
i

)
d
μ′i
i

=
n∏

i=1

a
νi
i [

min{μi ,ν
′
i}∑

k=0

(
μi

k

) k−1∏

p=0

(ν′i − p)a
ν ′i−k
i d

μi−k
i ]dμ′ii

=
n∏

i=1

(

min{μi ,ν
′
i}∑

k=0

(
μi

k

) k−1∏

p=0

(ν′i − p)a
νi+ν ′i−k
i d

μi+μ′i−k
i ]
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=
∑

k:=(k1,k2,...,kn)∈I

n∏

i=1

((μi

ki

) ki−1∏

p=0

(ν′i − p)a
νi+ν ′i−ki
i d

μi+μ′i−ki
i

)

=
∑

k∈I

( n∏

i=1

(
μi

ki

))( n∏

i=1

ki−1∏

p=0

(ν′i − p)
) n∏

i=1

a
νi+ν ′i−ki
i d

μi+μ′i−ki
i

=
∑

k∈I

( n∏

i=1

(
μi

ki

))( n∏

i=1

ki−1∏

p=0

(ν′i − p)
) n∏

i=1

a
νi+ν ′i−ki
i

n∏

i=1

d
μi+μ′i−ki
i

=
n∏

i=1

a
νi+ν ′i
i

n∏

i=1

d
μi+μ′i
i +

∑

k∈I\{0}
λk

n∏

i=1

a
νi+ν ′i−ki
i

n∏

i=1

d
μi+μ′i−ki
i

= aν+ν ′dμ+μ
′ +

∑

k∈I\{0}
λka

ν+ν ′−kdμ+μ
′−k.

As an application we now get the announced product formula for elementary
differential operators.

Proposition 1.6.2 (The Product Formula for Elementary Differential Opera-
tors) Let n ∈ N, let K be a field and consider the standard Weyl algebra

W(K, n) = K[X1,X2, . . . Xn, ∂1, ∂2 . . . , ∂n].

Moreover, let

μ := (μ1, μ1, . . . , μn), ν := (ν1, ν2, . . . , νn) and

μ′ := (μ′1, μ′1, . . . , μ′n), ν′ := (ν′1, ν′2, . . . , ν′n) ∈ N
n
0.

Set

I := {k := (k1, k2, . . . , kn) ∈ N
n
0 | ki ≤ min{μi, ν

′
i} for i = 1, 2, . . . , n},

and let

λk :=
( n∏

i=1

(
μi

ki

))( n∏

i=1

ki−1∏

p=0

(ν′i − p)
)
.



30 M. Brodmann

Then, we have the equality

(Xν∂μ)(Xν ′∂μ
′
) := (

n∏

i=1

X
νi
i

n∏

j=1

∂
μj

j

)( n∏

i=1

X
ν ′i
i

n∏

j=1

∂
μ′j
j

)

=
n∏

i=1

X
νi+ν ′i
i

n∏

i=1

∂
μi+μ′i
i +

∑

k∈I\{0}
λk

n∏

i=1

X
νi+ν ′i−ki
i

n∏

i=1

∂
μi+μ′i−ki
i

= Xν+ν ′∂μ+μ
′ +

∑

k∈I\{0}
λkX

ν+ν ′−k∂μ+μ
′−k.

Proof It suffices to apply Lemma 1.6.1 (b) with ai := Xi and di := ∂i for i =
1, 2 . . . , n.

Now, we can prove the main result of the present section. To formulate it, we
introduce another notation and suggest a further exercise.

Notation and Remark 1.6.3 (A) Let n ∈ N and let

κ := (κ1, κ2, . . . , κn) and λ := (λ1, λ2, . . . , λn) ∈ N
n
0 .

We write

κ ≤ λ if and only if κi ≤ λi for i = 1, 2, . . . , n

and

κ < λ if and only if κ ≤ λ and κ �= λ.

(B) Keep the notations of part (A). Observe that

κ ≤ λ if and only if λ− κ ∈ N
n
0

and

κ < λ if and only if λ− κ ∈ N
n
0 \ {0}.

(C) We now introduce a few notations, which we will have to use later very
frequently. Namely, for

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ N
n
0

we set

M(α, β) := {(α − k, β − k) | k ∈ N
n
0 \ {0} with k ≤ α, β}
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and

M(α, β) := {(α − k, β − k) | k ∈ N
n
0 with k ≤ α, β} =M(α, β) ∪ {(α, β)}.

Moreover, we write

M≤(α, β) := {(λ, κ) ∈ N
n
0 ×N

n
0 | λ ≤ ν and κ ≤ μ for some (ν, μ) ∈ M(α, β)}.

Observe that

M(α, β) ⊆M≤(α, β).

Exercise 1.6.4 (A) Let n ∈ N, let K be a field and consider the standard Weyl
algebra

W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].
In addition, let

μ := (μ1, μ1, . . . , μn), ν := (ν1, ν2, . . . , νn) and

μ′ := (μ′1, μ′1, . . . , μ′n), ν′ := (ν′1, ν′2, . . . , ν′n) ∈ N
n
0.

Moreover, let the sets

M(ν + ν′, μ+ μ′) ⊂M(ν + ν ′, μ+ μ′) ⊂ N
n
0 ×N

n
0

be defined according to Notation and Remark 1.6.3 (C). Prove that

(Xν∂μ)(Xν ′∂μ
′
)−Xν+ν ′∂μ+μ

′ ∈
∑

(λ,κ)∈M(ν+ν ′,μ+μ′)
ZXλ∂κ.

and

(Xν∂μ)(Xν ′∂μ
′
) ∈

∑

(λ,κ)∈M(ν+ν′,μ+μ′)
ZXλ∂κ.

(B) Let the notations be as in part (A) and let the set

M(ν + ν′, μ+ μ′) ⊂ N
n
0 × N

n
0

be defined according to Notation and Remark 1.6.3 (C). Prove that

[
Xν∂μ,Xν ′∂μ

′] ∈
∑

(λ,κ)∈M(ν+ν ′,μ+μ′)
ZXλ∂κ .
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(C) To give a more precise statement than what was just said in part (B), keep the
notations of Proposition 1.6.2 and set in addition

I
′ := {k′ := (k′1, k′2, . . . , k′n) ∈ N

n
0 | k′i ≤ min{μ′i , νi} for i = 1, 2, . . . , n}.

Use the product formula of Proposition 1.6.2 to show that

[
Xν∂μ,Xν ′∂μ

′] =
∑

k∈I\{0}
λkX

ν+ν′−k∂μ+μ
′−k −

∑

k′∈I′\{0}
λk′X

ν+ν ′−k′∂μ+μ
′−k′ .

(D) Let i ∈ {1, , 2, . . . , n} and consider the n-tuple ei := (δi,j )
n
j=1 =

(0, . . . , 0, 1, 0, . . . , 0) ∈ N
n
0 . Use what you have shown in part (C) to prove the

following statements

(a)
[
Xi,X

ν∂μ
] =

{
−μiX

v∂μ−ei , if μi > 0;
0 , if μi = 0.

(b)
[
∂i,X

ν∂μ
] =

{
νiX

v−ei ∂μ , if νi > 0;
0 , if νi = 0.

Theorem 1.6.5 (The Reduction Principle) Let n ∈ N, let K be a field and
consider the standard Weyl algebra

W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

Let r ∈ N, let

ν(i) := (ν
(i)
1 , ν

(i)
2 , . . . , ν(i)n ) and μ(i) := (μ

(i)
1 , μ

(i)
2 , . . . , μ(i)

n ) ∈ N
n
0, for i = 1, 2, . . . , r

and abbreviate

ν :=
r∑

i=1

ν(i), μ :=
r∑

i=1

μ(i).

Moreover, let the set

M :=M≤
(
ν,μ

) ⊂ N
n
0 × N

n
0

be defined according to Notation and Remark 1.6.3 (C). Then, we have

r∏

i=1

Xν(i)∂μ
(i) −Xν∂μ ∈

∑

(κ,λ)∈M
ZXλ∂κ.
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Proof We proceed by induction on r . The case r = 1 is obvious. The case r =
2 follows from Proposition 1.6.2, more precisely from its consequence proved in
Exercise 1.6.4 (A) (see also Notation and Remark 1.6.3 (C)) . So, let r > 2. We set

ν′ :=
r−1∑

i=1

ν(i), μ′ :=
r−1∑

i=1

μ(i) and M
′ :=M≤

(
ν′, μ′

)
.

By induction we have

� :=
r−1∏

i=1

Xν(i)∂μ
(i) −Xν ′∂μ

′ ∈
∑

(λ′,κ ′)∈M′
ZXλ′∂κ

′ =: N.

By the case r = 2 we have (see once more Notation and Remark 1.6.3 (C) and
Exercise 1.6.4 (A))

σ := (Xν′∂μ
′)
Xν(r)∂μ

(r) − Xν∂μ ∈
∑

(λ,κ)∈M
ZXλ∂κ =:M.

As

r∏

i=1

Xν(i)∂μ
(i) −Xν∂μ = σ + �Xν(r)∂μ

(r)

,

it remains to show that

�Xν(r)∂μ
(r) ∈ M.

Observe that

�Xν(r)∂μ
(r) ∈ NXν(r)∂μ

(r) =
∑

(λ′,κ ′)∈M′
ZXλ′∂κ

′
Xν(r)∂μ

(r)

.

Observe also that

(λ′ + ν(r), κ ′ + μ(r)) ∈M for all (λ′, κ ′) ∈M
′,

so that in the notation introduced in Notation and Remark 1.6.3 (C) we have

M(λ′ + ν(r), κ ′ + μ(r)) ⊆M for all (λ′, κ ′) ∈M
′.
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Hence, on application of Exercise 1.6.4 (A) it follows that

Xλ′∂κ
′
Xν(r)∂μ

(r) ∈
∑

(λ,κ)∈M(λ′+ν(r),κ ′+μ(r))

ZXλ∂κ ⊆
∑

(λ,κ)∈M
ZXλ∂κ = M,

and this shows that indeed �Xν(r)∂μ
(r) ∈ M .

Now, in the next section, we can show that the elementary differential operators
form a K-basis of the standard Weyl algebra W(K, n), provided the field K has
characteristic 0. To prepare this, we add an additional exercise.

Exercise 1.6.6 (A) Let n∈N and consider the polynomial ringK[X1,X2, . . . , Xn].
Moreover, let

μ := (μ1, μ1, . . . , μn), and ν := (ν1, ν2, . . . , νn) ∈ N
n
0.

Fix i ∈ {1, 2, . . . , n} and prove by induction on μi , that

∂
μi

i

(
Xν
) = ∂

μi

i

( n∏

j=1

X
νj
j

) =
{∏μi−1

k=0 (νi − k)X
νi−μi

i

∏
j �=i X

νj
j , if νi ≥ μi;

0, if νi < μi.

(B) Let the notations and hypotheses be as in part (A) and use what you have
shown there to prove that

∂μ
(
Xν
) =

n∏

i=1

∂
μi

i

( n∏

j=1

Xνj
)

=
{∏n

i=1
∏μi−1

k=0 (νi − k)X
νi−μi

i , if νi ≥ μi for all i ∈ {1, 2, . . . , n};
0, if νi < μi for some i ∈ {1, 2, . . . , n}.

=
{∏n

i=1
∏μi−1

k=0 (νi − k)Xν−μ, if ν ≥ μ;
0, otherwise.

1.7 The Standard Basis

Now, we are ready to prove the fact that over a base field of characteristic 0 the
elementary differential operators form a vector space basis of the standard Weyl
algebra.

Theorem 1.7.1 (The Standard Basis) Let n ∈ N and let K be a field of
characteristic 0. Then, the elementary differential operators

Xν∂μ =
n∏

i=1

X
νi
i

n∏

i=1

∂
μi

i with μ := (μ1, μ2, . . . , μn) and ν := (ν1, ν2, . . . , νn) ∈ N
n
0
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form a K-vector space basis of the standard Weyl algebra

W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

So, in particular we can say

(a) W(K, n) = ⊕
ν,μ∈Nn

0
KXν∂μ = ⊕

μ1,μ2,...,μn,ν1,ν2,...,νn∈N0
K
∏n

i=1

X
νi
i

∏n
i=1 ∂

μi

i .
(b) Each differential operator d ∈W(K, n) can be written in the form

d =
∑

ν,μ∈Nn
0

c(d)ν,μX
ν∂μ

with a unique family

(
c(d)ν,μ

)
ν,μ∈Nn

0
∈
∏

ν,μ∈Nn
0

K = KN
n
0×Nn

0 ,

whose support

supp(d) = supp
(
(c(d)ν,μ)ν,μ∈Nn

0

) := {(ν, μ) ∈ N
n
0 × N

n
0 | c(d)ν,μ �= 0}

is a finite set. We thus can write

d =
∑

(ν,μ)∈supp(d)

c(d)ν,μX
ν∂μ .

Proof We first show, that the elementary differential operators generate W(K, n) as
a K-vector space, hence that

W(K, n) =
∑

ν,μ∈Nn
0

KXν∂μ =:M.

Observe, that by definition each element d of W(K, n) is a K-linear combination
of products of elementary differential operators. But by the Reduction Principle of
Theorem 1.6.5 each product of elementary differential operators is contained in the
K-vector space M .
It remains to show, that the elementary differential operators are linearly indepen-
dent among each other. Assume to the contrary, that there are linearly dependent
elementary differential operators in W(K, n). Then, we find a positive integer
r ∈ N, families

μ(i) := (μ
(i)
1 , μ

(i)
2 , . . . , μ(i)

n ), ν(i) := (ν
(i)
1 , ν

(i)
2 , . . . , ν(i)n ) ∈ N

n
0, (i = 1, 2, . . . , r)
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with

(μ(i), ν(i)) �= (μ(j), ν(j)) for all i, j ∈ {1, 2, . . . , r} with i �= j,

and elements

c(i) ∈ K \ {0} (i = 1, 2, . . . , r),

such that

d :=
r∑

i=1

c(i)Xν(i)∂μ
(i) = 0.

We may assume, that

|μ(r)| = max{|μ(i)| | i = 1, 2, . . . , r}

and that for some s ∈ {1, 2, . . . , r} we have

μ(i) �= μ(r) for all i < s and μ(i) = μ(r) for all i ≥ s.

Then, it follows easily by what we have seen in Exercise 1.6.6 (B), that

Xν(i)∂μ
(i)(

Xμ(r)) =
{∏n

j=1 μ
(r)
j !Xν(r) , if s ≤ i ≤ r

0, if i < s.

So, we get

0 = d
(
Xμ(r)) =

r∑

i=1

c(i)Xν(i)∂μ
(i)(

Xμ(r)) =
r∑

i=s
c(i)

n∏

j=1

μ
(r)
j !Xν(i) .

As Char(K) = 0, and as the monomials Xν(i) are pairwise different for i = s, s +
1, . . . , r , the last sum does not vanish, and we have a contradiction.

Definition and Remark 1.7.2 (A) Let the notations and hypotheses be as in Theo-
rem 1.6.5. We call the basis of W(K, n) which consists of all elementary differential
operators the standard basis. If we present a differential operator d ∈W(K, n) with
respect to the standard basis and write

d =
∑

ν,μ∈Nn
0

c(d)ν,μX
ν∂μ
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as in statement (b) of Theorem 1.6.5, we say that d is written in standard form. The
support of a differential operator d in W(K, n) is always defined with respect to the
standard form as in statement (b) of Theorem 1.7.1. We therefore call the support of
d also the standard support of d .

(B) Keep the above notations and hypotheses. It is a fundamental task, to write
an arbitrarily given differential operator d ∈ W(K, n) in standard form. This task
actually is reduced by the Reduction Principle of Theorem 1.6.5 to make explicit
the coefficients of the differences

Δν(•)μ(•) :=
r∏

i=1

Xν(i)∂μ
(i) −X

∑r
i=1 ν

(i)

∂
∑r

i=1 μ
(i) ∈

∑

(λ,κ)∈M
ZXλ∂κ.

This task can be solved by a repeated application of the Product Formula of Propo-
sition 1.6.2 or—directly—by a repeated application of the Heisenberg relations.
Clearly, this is a task which usually is performed by means of Computer Algebra
systems.

We now prove the following application, a result on supports, which will turn out
to be useful in the next section.

Proposition 1.7.3 (Behavior of Supports) Let n ∈ N, let K be a field of
characteristic 0 and consider the differential operators

d, e ∈W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

For all (α, β) ∈ N
n
0 ×N

n
0 , let the sets

M(α, β) ⊂M(α, β) ⊂ N
n
0 × N

n
0

be defined according to Notation and Remark 1.6.3 (C). Then, we have

(a)
(
supp(d)∪supp(e)

)\(supp(d)∩supp(e)
) ⊆ supp(d+e) ⊆ supp(d)∪supp(e).

(b) supp(cd) = supp(d) for all c ∈ K \ {0}.
(c) supp(de) ⊆⋃(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)M(ν + ν′, μ+ μ′).
(d) supp

([d, e]) ⊆⋃(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)M(ν + ν′, μ+ μ′).

Proof (a), (b) These statements follow in a straight forward way from our definition
of support, and we leave it as an exercise to perform their proof.

(c) In the notations of Theorem 1.7.1 we write

d =
∑

(ν,μ)∈supp(d)

c(d)ν,μX
ν∂μ and e =

∑

(ν′,μ′)∈supp(e)

c
(e)

ν′,μ′X
ν ′∂μ

′
.
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it follows that

de =
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′X
ν∂μXν′∂μ

′
.

But according to Exercise 1.6.4 (A) we have

supp
(
Xν∂μXν′∂μ

′) ⊆M(ν+ν ′, μ+μ′) for all (ν, μ) ∈ supp(d) and all (ν ′, μ′) ∈ supp(e).

Now, our claim follows easily on repeated application of statements (a) and (b).
(d) As in the proof of statement (c) we can write

de =
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν ′,μ′X
ν∂μXν ′∂μ

′

and, similarly

ed =
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′X
ν ′∂μ

′
Xν∂μ.

It follows that

[
de, ed

] = de − ed

=
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′X
ν∂μXν′∂μ

′

−
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′X
ν ′∂μ

′
Xν∂μ

=
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′
(
Xν∂μXν ′∂μ

′ −Xν′∂μ
′
Xν∂μ

)

=
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)ν,μc
(e)

ν′,μ′
[
Xν∂μ,Xν′∂μ

′]
.

By Exercise 1.6.4 (B) we have

supp
([
Xν∂μ,Xν′∂μ

′]) ⊆M(ν + ν′, μ+ μ′)

for all (ν, μ) ∈ supp(d) and all (ν′, μ′) ∈ supp(e).

Now, statement (d) follows easily on repeated application of statements (a) and (b).
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Exercise 1.7.4

(A) Let n ∈ N, let K be a field of characteristic 0 and consider the standard Weyl
algebra

W =W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].

Prove in detail statements (a) and (b) of Proposition 1.7.3.
(B) Let the notations and hypotheses be as in part (A). Present in standard form the

following differential operators:

∂2
1X

2
1 −X1∂1X1 − 1, ∂2

1X
2
1∂

2
1 − ∂1X

2
1, ∂2X1X2∂1 + ∂1X1X2 ∈W(K, n).

(C) Keep the notations of part (A), but assume that n = 1 and Char(K) = 2.
Compute ∂1(X

ν
1) for all ν ∈ N0 and comment your findings in view of the

Standard Basis Theorem.
(D) Keep the notations of part (A), let

d =
∑

(ν,μ)∈supp(d)

c(d)ν,μX
ν∂μ ∈W,

(
c(d)ν,μ ∈ K \ {0},∀(ν, μ) ∈ supp(d)

)

(see Theorem 1.7.1) and let i ∈ {1, 2, . . . , n}. Use Exercise 1.6.4 (D) to prove
the following equalities:

(a)
[
Xi, d

] = −∑(ν,μ)∈supp(d):μi>0 μic
(d)
ν,μX

ν∂μ−ei .

(b)
[
∂i, d

] =∑(ν,μ)∈supp(d):νi>0 νic
(d)
ν,μX

ν−ei ∂μ.

Conclude that

(c) d = 0 ⇔ ∀i ∈ {1, 2, . . . , n} : [Xi, d
] = [∂i, d

] = 0.

As another application of the Standard Basis Theorem we now can prove

Corollary 1.7.5 (The Universal Property of Weyl Algebras) Let n ≥ 2 and let
the notations and hypotheses be as in Theorem 1.7.1. Let B be a K-algebra and let

φ : {X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n} −→ B

be a map ”which respects the Heisenberg relations“ and hence satisfies the
requirements

(1) [φ(Xi), φ(Xj )] = 0, for all i, j ∈ {1, 2, . . . , n};
(2) [φ(Xi), φ(∂j )] = −δi,j , for all i, j ∈ {1, 2, . . . , n};
(3) [φ(∂i), φ(∂j )] = 0, for all i, j ∈ {1, 2, . . . , n}.
Then, there is a unique homomorphism of K-algebras

φ̃ :W(K, n) −→ B
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such that

φ̃(Xi) = φ(Xi) and φ̃(∂i ) = φ(∂i) for all i = 1, 2, . . . , n.

Proof According to Theorem 1.7.1 there is a K-linear map

φ̃ :W(K, n) −→ B given by

φ̃
(
Xν∂μ

) =
n∏

i=1

φ(Xi)
νi

n∏

i=1

φ(∂i)
μi for all

μ = (μ1, μ2, . . . , μn) and ν = (ν1, ν2, . . . , νn) ∈ N
n
0 .

Next, we show, that the previously defined K-linear map φ̃ is multiplicative, and
hence satisfies the condition that

φ̃(de) = φ̃(d)φ̃(e) for all d, e ∈W(K, n).

As the multiplication maps

W(K, n)×W(K, n) −→W(K, n), (d, e) �→ de and B ×B −→ B, (a, b) �→ ab

are both K-bilinear, it suffices to verify the above multiplicativity condition in the
special case where

d := Xν∂μ and e := Xν ′∂μ
′

with

μ := (μ1, μ2, . . . , μn), ν := (ν1, ν2, . . . , νn) and

μ′ := (μ′1, μ′2, . . . , μ′n), ν′ := (ν′1, ν′2, . . . , ν′n) ∈ N
n
0.

But this can be done by a straight forward computation, on use of the Product
Formula of Proposition 1.6.2 and on application of Lemma 1.6.1 with

ai : φ(Xi) and di := φ(∂i) for all i = 1, 2, . . . , n.

It remains to show, that φ̃ : W(K, n) −→ B is the only homomorphism of K-
algebras which satisfies the requirement that

φ̃(Xi) = φ(Xi) and φ̃(∂i ) = φ(∂i) for all i = 1, 2, . . . , n.
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But indeed, if a map φ̃ satisfies this requirement and is multiplicative, it must be
defined on the elementary differential operators as suggested above. This proves the
requested uniqueness.

Exercise 1.7.6

(A) Let n ∈ N, let K be a field of characteristic 0. Show, that there is a unique
automorphism of K-algebras

α :W(K, n)
∼=−→W(K, n) with α(Xi) = ∂i and α(∂i) = −Xi for all i = 1, 2, . . . , n.

(B) Keep the notations and hypotheses of part (A). Present in standard form all
elements α(Xν

i ∂
μ
i ) ∈W(K, n) with μ, ν ∈ N0.

1.8 Weighted Degrees and Filtrations

In this section we introduce and investigate a particularly nice class of filtrations of
the standard Weyl algebras, the so-called weighted filtrations. To do so, we first will
introduce the related notion of weighted degree of a differential operator.

Convention 1.8.1 Throughout this section we fix a positive integer n, a field K of
characteristic 0 and we consider the standard Weyl algebra

W :=W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]

Definition and Remark 1.8.2 (A) By a weight we mean a pair

(v,w) = ((v1, v2, . . . , vn), (w1, w2, . . . , wn)
) ∈ N

n
0 × Nn

0

such that

(vi , wi) �= (0, 0) for all i = 1, 2, . . . , n.

For

a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ R
n

we frequently shall use the scalar product

a · b :=
n∑

i=1

aibi.



42 M. Brodmann

(B) Fix a weight (v,w) ∈ N
n
0 × N

n
0. We define the degree associated to the weight

(v,w) (or just the weighted degree) of a differential form d ∈W by

degvw(d) := sup{v · ν +w · μ | (ν, μ) ∈ supp(d)}.
with the usual convention that sup(∅) = −∞.
Observe that by our definition of weight, for all d ∈ W and all μ, ν ∈ N0—and
using the notations of Notation and Remark 1.6.3 (C)– we can say:

(a) degvw(d) ∈ N0 ∪ {−∞} with degvw(d) = −∞ if and only if d = 0.
(b) If λ ≤ ν and κ ≤ μ for all (λ, κ) ∈ supp(d), then

degvw(d) ≤ v · ν +w · μ.
(c) If supp(d) ⊆M≤(ν, μ), then

degvw(d) < v · ν +w · μ.

(C) Keep the notations and hypotheses of part (B). We fix some non-negative integer
i ∈ N0 and set

W
vw

i := {d ∈W | degvw(d) ≤ i}.
Observe, that we also may write

W
vw

i =
⊕

ν,μ∈Nn
0:v·ν+w·μ≤i

KXν∂μ.

Lemma 1.8.3 Let (v,w) ∈ N
n
0×N

n
0 be a weight and let d, e ∈W. Then we have

(a) degvw(d + e) ≤ max{degvw(d), degvw(e)}, with equality if degvw(d) �=
degvw(e);

(b) degvw(cd) = degvw(d) for all c ∈ K \ {0}.
(c) degvw(de) ≤ degvw(d)+ degvw(e);
(d) degvw

([d, e]) < degvw(d)+ degvw(e).

Notice: In statement (c) actually equality holds. We shall prove this later (see
Corollary 1.9.5).

Proof (a) The stated inequality is clear by the second inclusion of the following
relation (see Proposition 1.7.3 (a)):

(
supp(d) ∪ supp(e)

) \ (supp(d) ∩ supp(e)
) ⊆ supp(d + e) ⊆ supp(d) ∪ supp(e).

It remains to establish the stated equality if degvw(d) �= degvw(e). It suffices to treat
the case in which degvw(d) < degvw(e). In this case, there is some

(ν, μ) ∈ supp(e) \ supp(d) with v · ν +w · μ = degvw(e).
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By the first of the previous inclusions we have (ν, μ) ∈ supp(d + e) and hence

degvw(d + e) ≥ v · ν +w · μ = degvw(e).

By the already proved inequality degvw(d + e) ≤ max{degvw(d), degvw(e)} it
follows that degvw(d + e) = degvw(e).

(b) This is obvious.
(c) This follows easily by Proposition 1.7.3 (c) and Definition and Remark 1.8.2

(B) (b).
(d) This follows in a straight forward manner by Proposition 1.7.3 (d) and

Definition and Remark 1.8.2 (B) (c).

Theorem 1.8.4 (Weighted Filtrations) Let

(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

) = (v,w) ∈ N
n
0 × N

n
0

be a weight. Then, the family

W
vw• := (Wvw

i = {d ∈W | degvw(d) ≤ i})
i∈N0

is a commutative filtration of the K-algebra W =W(K, n).
Moreover, the following statements hold.

(a) W
vw

0 = K[Xi, ∂j | vi = 0, wj = 0], so that Wvw

0 is a commutative polynomial
algebra in the variables Xi and ∂j for which either vi = 0 or else wj = 0.

(b) Let δ = δ(vw) = max{v1, v2, . . . , vn,w1, w2, . . . , wn}. Then, for all i > δ it
holds

W
vw

i =
δ∑

j=1

W
vw

j W
vw

i−j .

(c) The filtration W
vw• = (Wvw

i

)
i∈N0

is of finite type.

Proof It is clear from our definitions, that

W
vw

i ⊆W
vw

i+1 for all i ∈ N0, 1 ∈W
vw

0 and W =
⋃

i∈N0

W
vw

i .

On use of Lemma 1.8.3 (c) it follows immediately that

W
vw

i W
vw

j ⊆W
vw

i+j for all i, j ∈ N0.

So the family
(
W

vw

i := {d ∈W | degvw(d) ≤ i})
i∈N0

constitutes indeed a filtration
on the K-algebra W.
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Now, let i, j ∈ N0, let d ∈W
vw

i and let e ∈W
vw

j . Then by Lemma 1.8.3 (d) we
have

degvw
(
de − ed

) = degvw
([d, e]) ≤ degvw(d)+ degvw(e)− 1 ≤ i + j − 1,

so that

de − ed ∈W
vw

i+j−1.

This proves, that our filtration is commutative (see Definition 1.3.3).
(a) Set

S := {i = 1, 2, . . . , n | vi �= 0} and T := {j = 1, 2, . . . , n | wj �= 0} and

S := {1, 2, . . . , n} \ S and T := {1, 2, . . . , n} \ T.

Let ν,μ ∈ N
n
0. Then

v · ν +w · μ = 0 if and only if νi = 0 for all i ∈ S and μj = 0 for all j ∈ T.

But this means that

W
vw

0 =
∑

(νi)i∈S,(μj )j∈T

K
∏

i∈S,j∈T
X
νi
i ∂

μj

j

= K[Xi, ∂j | vi = 0, wj = 0].

It remains to show, that this latter ring is a commutative polynomial algebra in
all the variables Xi and ∂j for which either vi = 0 or else wj = 0. In view of
Theorem 1.7.1 it suffices to show that Xi∂j = ∂jXi for all i, j with vi = vj = 0.
But as (vk,wk) �= (0, 0) for all k = 1, 2, . . . , n (see Definition and Remark 1.8.2
(A)), this is clear by the Heisenberg relations (see Proposition 1.5.4 (b)).

(b) Let i > δ. Let

ν := (ν1, ν2, . . . , νn), μ := (μ1, μ2, . . . , μn) ∈ N
n
0 with

σ := degvw
(
Xν∂μ

) = v · ν + w · μ ≤ i.

We aim to show that

Xν∂μ ∈
δ∑

j=1

W
vw

j W
vw

i−j =: M.
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If σ ≤ 0 this is clear as i > 0 implies i ≥ 1, so that

W
vw

0 =W
vw

0 W
vw

0 ⊆W
vw

1 W
vw

i−1 ⊆ M.

So, let σ > 0. Then either

(1) there is some p ∈ {1, 2, . . . , n} with vp > 0 and νp > 0, or else,
(2) there is some q ∈ {1, 2, . . . , n} with wq > 0 and μq > 0.

In the above case (1) we can write

Xν∂μ = Xpd, with d := (
n∏

k=1

X
νk−δk,p
k

)
∂μ.

As degvw(Xp) = vp ≤ δ and degvw(d) = σ − vp it follows that

Xν∂μ = Xpd ∈W
vw
vp W

vw
σ−vp ⊆W

vw
vp W

vw

i−vp ⊆ M.

In the above case (2) we may first assume, that we are not in the case (1). This means
in particular that either vq = 0 or νq = 0, hence vqνq = 0, so that

degvw(X
νq
q ∂q) = wq ≤ δ.

Now, in view of the Heisenberg relations, we may write

Xν∂μ = X
νq
q ∂qe with e :=

∏

s �=q
Xνs
s

n∏

k=1

∂
μk−δk,q
k .

As vqνq = 0, we have degvw(e) = σ −wq , and it follows that

Xν∂μ = X
νq
q ∂qe ∈W

vw
wqW

vw
σ−wq

⊆W
vw
wqW

vw

i−wq
⊆ M.

But this shows, what we were aiming for, hence that

Xν∂μ ∈ M whenever v · ν +w · μ ≤ i.

But this means that

W
vw

i ⊆M =
δ∑

j=1

W
vw

j W
vw

i−j

and hence proves statement (b).
(c) This is an immediate consequence of statements (a) and (b) (see Definition

and Remark 1.3.4 (C)).
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Definition 1.8.5 Let the notations and hypotheses be as in Theorem 1.8.4. In
particular, let

(
(v1, v2, . . . , vn), (w1, w2, . . . , wn)

) = (v,w) ∈ N
n
0 × N

n
0

be a weight. Then, the filtration

W
vw• = (Wvw

i

)
i∈N0

= ({d ∈W | degvw(d) ≤ i})
i∈N0

is called the filtration induced by the weight (v,w). Generally, we call weighted
filtrations all filtrations which are induced in this way by a weight.

Definition and Remark 1.8.6 (A) We consider the strings

0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1) ∈ N
n
0

and a differential form d ∈ W. We define the standard degree or just the degree
deg(d) of d as the weighted degree with respect to the weight (1, 1) ∈ N

n
0 × N

n
0,

hence

deg(d) := deg11(d).

Observe that

deg(d) := sup{|ν| + |μ| | (ν, μ) ∈ supp(d)}.

The corresponding induced weighted filtration

W
deg• :=W

11• =
(
W

11
i

)
i∈N0

= ({d ∈W | deg(d) ≤ i})
i∈N0

is called the standard degree filtration or just the degree filtration of W.
(B) Keep the notations and hypotheses of part (A). The order of the differential

operator d is defined by

ord(d) := deg01(d).

Observe that

ord(d) = sup{|μ| | (ν, μ) ∈ supp(d)}.

The corresponding induced weighted filtration

W
ord• :=W

01• =
(
W

01
i

)
i∈N0

= ({d ∈W | ord(d) ≤ i})
i∈N0

is called the order filtration of W.
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Now, as an immediate application of Theorem 1.8.4 we obtain:

Corollary 1.8.7 Let the notations be as in Convention 1.8.1. Then it holds

(a) The degree filtration W
deg• is very good.

(b) The order filtration W
ord• is good and W

ord
0 = K[X1,X2, . . . , Xn].

Proof In the notations of Theorem 1.8.4 (b) we have

δ(1, 1) = 1 and δ(0, 1) = 1.

Moreover, by Theorem 1.8.4 (a) we have

W
11
0 = K and W

01
0 = K[X1,X2, . . . , Xn]

This proves our claim (see Definition and Remark 1.3.4 (C)).

Exercise 1.8.8

(A) Show that the degree filtration is the only very good filtration on W.
(B) Write down all weights (v,w) ∈ N

n
0×N

n
0 for which the induced filtration W

vw•
is good.

1.9 Weighted Associated Graded Rings

This section is devoted to the study of the associated graded rings of weighted
filtrations of standard Weyl algebras. We shall see, that these are all naturally
isomorphic to polynomial rings.

Convention 1.9.1 Again, throughout this section we fix a positive integer n, a field
K of characteristic 0 and consider the standard Weyl algebra

W :=W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].
In addition, we introduce the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]
in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the
field K .

Definition and Remark 1.9.2 (A) Fix a weight (v,w) ∈ N
n
0 × N

n
0 and consider

the induced weighted filtration W
vw• . To write down the corresponding associated

graded ring, we introduce the following notation:

G
vw =

⊕

i∈N0

G
vw

i := Gr
W

vw•
(
W
) =

⊕

i∈N0

Gr
W

vw•
(
W
)
i
.
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(B) Keep the above notations and hypotheses. For each j ∈ Z we introduce the
notations:

I
vw

≤j := {(ν, μ) ∈ N
n
0 ×N

n
0 | v · ν +w · μ ≤ j };

I
vw

=j := {(ν, μ) ∈ N
n
0 × N

n
0 | v · ν +w · μ = j }.

Fix some i ∈ N0. Observe that

G
vw

i =W
vw

i /W
vw

i−1

= (
⊕

(ν,μ)∈Ivw≤i
KXν∂μ

)/( ⊕

(ν,μ)∈Ivw≤i−1

KXν∂μ
)

= [(
⊕

(ν,μ)∈Ivw≤i−1

KXν∂μ)⊕ (
⊕

(ν,μ)∈Ivw=i
KXν∂μ)

]
/
( ⊕

(ν,μ)∈Ivw≤i−1

KXν∂μ
)
.

As a consequence, we get an isomorphism of K-vector spaces

ε
vw

i :
⊕

(ν,μ)∈Ivw=i
KXν∂μ

∼=−→ G
vw

i

such that

ε
vw

i

(
Xν∂μ

) = (Xν∂μ +W
vw

i−1

) ∈W
vw

i /W
vw

i−1 = G
vw

i for all (ν, μ) ∈ I
vw

=i .

In particular we can say:

The family
(
(Xν∂μ)∗ := ε

vw

i (Xν∂μ)
)
(ν,μ)∈Ivw=i is a K-basis of Gvw

i .

We call this basis the standard basis of Gvw

i . Its elements are called standard basis
elements of the associated graded ring G

vw .
(C) Keep the previously introduced notation. We add a few more useful

observations on standard basis elements. First, observe that we may write

(a) (Xν∂μ)∗ ∈ G
vw
v·ν+w·μ for all (ν, μ) ∈ N

n
0 × N

n
0.

(b) X∗i ∈ G
vw
vi and ∂∗j ∈ G

vw
wj

for all i, j ∈ {1, 2, . . . , n}.
Moreover, by the observations made in part (B) we also can say that all standard
basis elements form a K-basis of the whole associated graded ring, thus:

(c) The family
(
(Xν∂μ)∗

)
(ν,μ)∈Nn

0×Nn
0

is a K-basis of Gvw.
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Finally, as the associated graded ring is commutative, and keeping in mind how the
multiplication in this ring is defined (see Remark and Definition 1.3.1 (B)) we get
the following product formula

(d) (Xν∂μ)∗ = (∏n
i=1 X

νi
i

∏n
j=1 ∂

μj
)∗ = ∏n

i=1

(
X∗i
)νi ∏n

j=1

(
∂∗j
)μj =:(

X∗
)ν(

∂∗
)μ.

Exercise and Definition 1.9.3 (A) We fix a weight (v,w) ∈ N
n
0 × N

n
0. As in

Definition and Remark 1.9.2 (A) we use again the notation

I
vw

=i := {(ν, μ) ∈ N
n
0 ×N

n
0 | v · ν +w · μ = i}

and consider the K-subspace

P
vw

i :=
⊕

(ν,μ)∈Ivw=i
KY νZμ ⊆ P for all i ∈ N0.

of our polynomial ring P = K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]. Prove the follow-
ing statements:

(a) K ⊆ P
vw

0 ;
(b) P

vw

i P
vw

j ⊆ P
vw

i+j for all i, j ∈ N0.

(c) P =⊕i∈N0
P
vw

i .

(B) Let the hypotheses and notations be as in part (A). Conclude that

the family
(
P
vw

i

)
i∈N0

defines a grading of the ring P.

We call this grading the grading induced by the weight (v,w) ∈ N
n
0 × N

n
0. If we

endow our polynomial ring with this grading we write it as Pvw, thus

P = P
vw =

⊕

i∈N0

P
vw

i .

Theorem 1.9.4 (Structure of Weighted Associated Graded Rings) Let (v,w) ∈
N
n
0 × N

n
0 be a weight. Then there exists an isomorphism of K-algebras, which

preserves gradings (see Convention, Reminders and Notations 1.1.1 (I)).

ηvw : P = P
vw

∼=−→ G
vw

given by

Yi �→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;
Zj �→ ηvw(Zj ) := ∂∗j , for all j = 1, 2, . . . , n.
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Proof According to the universal property of the polynomial ring P there is a unique
homomorphism of K-algebras

ηvw : P −→ G
vw

such that

Yi �→ ηvw(Yi) := X∗i , for all i = 1, 2, . . . , n;
Zj �→ ηvw(Zj ) := ∂∗j , for all j = 1, 2, . . . , n.

In view of the product formula of Definition and Remark 1.9.2 (C) we obtain

ηvw
(
Y νZμ

) = (Xν∂μ
)∗ for all ν,μ ∈ N

n
0 .

In particular ηvw yields a bijection between the monomial basis of the polynomial
ring P and the standard basis of the associated graded ring G

vw. So, ηvw is indeed
an isomorphism. But moreover, for each i ∈ N0 it also follows that ηvw yields an
bijection between the monomial basis of the subspace P

vw

i ⊆ P and the standard
basis of Gvw

i . But this means, that ηvw preserves the gradings.

In Lemma 1.8.3 (c) we have seen that weighted degrees are sub-additive, which
means that degvw(de) ≤ degvw(d) + degvw(e) for all d, e ∈ W. As an application
of Theorem 1.9.4 we now shall improve on this and show, that weighted degrees are
indeed additive, which means that the above inequality is in fact always an equality.

Corollary 1.9.5 (Additivity of Weighted Degrees) Let (v,w) ∈ N
n
0 × N

n
0 be a

weight and let d, e ∈W. Then

degvw(de) = degvw(d)+ degvw(e).

Proof If d = 0 or e = 0 our claim is clear. So let d, e �= 0. We have

i := degvw(d) ∈ N0 and j := degvw(e).

We use again the notation

I
vw

=k := {(ν, μ) ∈ N
n
0 × N

n
0 | v · ν + w · μ = k} for all k ∈ N0

and set

M :=
⊕

(ν,μ)∈Ivw=i
KXν∂μ and N :=

⊕

(ν,μ)∈Ivw=j
KXν∂μ.
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We then may write

d = a + r with a ∈ M \ {0} and degvw(r) < i;
e = b + s with a ∈ N \ {0} and degvw(s) < j.

We thus have

de = ab + (as + rb + rs)

By what we know already about degrees we have degvw(as+ rb+ rs) < i+ j (see
Lemma 1.8.3 (a), (c)). So, in view of Lemma 1.8.3 (a) it suffices to show that

degvw(ab) = i + j.

To do so, we write

a =
∑

(ν,μ)∈supp(a)

c(a)ν,μX
ν∂μ, with c(a)ν,μ ∈ K \ {0} for all (ν, μ) ∈ supp(a) and

b =
∑

(ν′,μ′)∈supp(b)

c
(b)

ν ′,μX
ν ′∂μ

′
, with c

(b)

ν′,μ′ ∈ K \ {0} for all (ν′, μ′) ∈ supp(b).

It follows that

ab =
∑

(ν,μ)∈supp(a) and (ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν′,μX
ν∂μXν ′∂μ

′
.

By Exercise 1.6.4 (A) and in the notation of Notation and Remark 1.6.3 (C), it
follows that

Xν∂μXν′∂μ
′ −Xν+ν′∂μ+μ

′ ∈
∑

(λ,κ)∈M(ν+ν′,μ+μ′)
KXλ∂κ

for all (ν, μ) ∈ supp(a) and all (ν′, μ′) ∈ supp(b). Observe that

(ν + ν′, μ+ μ′) ∈ I
vw

=i+j for all (ν, μ) ∈ supp(a) and all (ν′, μ′) ∈ supp(b).

So, by Definition and Remark 1.8.2 (B)(c) it follows that

degvw
(
Xν∂μXν ′∂μ

′ −Xν+ν ′∂μ+μ
′)
< i + j
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for all (ν, μ) ∈ supp(a) and all (ν′, μ′) ∈ supp(b). If we set

h :=
∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν′,μ′X
ν+ν ′∂μ+μ

′
.

and on repeated use of Lemma 1.8.3 (a) and (b) we thus get

degvw(ab − h) =
degvw[

∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν′,μ′(X
ν∂μXν′∂μ

′ −Xν+ν ′∂μ+μ′)] < i + j.

So, we may write

ab = h+ u with degvw(u) < i + j.

By Lemma 1.8.3 (a) it thus suffices to show that degvw(h) = i + j . As

h =
∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν ′,μ′X
ν+ν ′∂μ+μ

′ ∈
⊕

(ν,μ)∈Ivw=i+j
KXν∂μ

It suffices to show that h �= 0. To do so, we consider the two polynomials

f :=
∑

(ν,μ)∈supp(a)

c(a)ν,μY
νZμ ∈ P

vw

i and

g :=
∑

(ν′,μ′)∈supp(b)

c
(b)

ν′,μ′Y
ν ′Zμ′ ∈ P

vw

j .

As supp(a) and supp(b) are non-empty, and all coefficients of f and g are non-zero,
we have f �= 0 and g �= 0. As P is an integral domain. it follows that fg �= 0. We set

h∗ := (h+W
vw

i+j−1) ∈W
vw

i+j /W
vw

i+j−1 = G
vw

i+j ,

so that

h∗ =
∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν ′,μ′
(
Xν+ν ′∂μ+μ

′)∗
.

Applying the isomorphism

ηvw : P = P
vw

∼=−→ G
vw
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of Theorem 1.9.4, we now get

0 �= ηvw(fg) = ηvw
([ ∑

(ν,μ)∈supp(a)

c(a)ν,μY
νZμ

][ ∑

(ν′,μ′)∈supp(b)

c
(b)

ν′,μ′Y
ν ′Zμ′])

= ηvw
( ∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν ′,μ′Y
ν+ν ′Zμ+μ′)

=
∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν ′,μ′η
vw
(
Y ν+ν′Zμ+μ′)

=
∑

(ν,μ)∈supp(a),(ν′,μ′)∈supp(b)

c(a)ν,μc
(b)

ν ′,μ′
(
Xν+ν ′∂μ+μ

′)∗ = h∗.

But this clearly implies that h �= 0.

Corollary 1.9.6 (Integrity of Standard Weyl Algebras) The standard Weyl
algebra W is an integral domain:

If d, e ∈W \ {0}, then de �= 0.

Proof Apply Theorem 1.9.4 and keep in mind that an element of W vanishes if and
only if its degree (with respect to any weight) equals −∞.

Exercise 1.9.7

(A) We fix a weight (v,w) ∈ N
n
0 ×N

n
0 and set

Γ v,w := {v · ν +w · μ | ν,μ ∈ N
n
0}.

Prove the following statements

(a) 0 ∈ Γ vw ⊆ N0.

(b) If i, j ∈ Γ vw, then i + j ∈ Γ vw .
(c) G

vw

i �= 0 ⇔ P
vw

i �= 0 ⇔ i ∈ Γ vw.

Γ v,w is called the degree semigroup associated to the weight (v,w).
(B) Let n = 1, v = (p) and w = (q), where p, q ∈ N are two distinct prime

numbers. Determine Γ v,w and the standard bases of all K-vector spaces

P
vw

i and G
vw

i for i ∈ Γ vw,

at least for some specified pairs like (p, q) = (2, 3), (2, 5), (5, 7), . . .
(C) Show, that the ring EndK

(
K[X1,X2, . . . , Xn]

)
is not an integral domain.
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1.10 Filtered Modules

Now, we aim to consider finitely generated left-modules over standard Weyl
algebras: the so-called D-modules. Our basic aim is to endow such modules with
appropriate filtrations, which are compatible with a given weighted filtration of the
underlying Weyl algebra. This will allow us to define associated graded modules
over the corresponding associated graded ring of the Weyl algebra—hence over a
weight graded polynomial ring. We approach the subject in a more general setting.

Definition and Remark 1.10.1 (A) Let K be a field and let A = (A,A•) be a
filtered K-algebra. Let U be a left-module over A. By a filtration of U compatible
with A• or just an A•-filtration of U we mean a family

U• = (Ui)i∈Z

such that the following conditions hold:

(a) Each Ui is a K-vector subspace of U ;
(b) Ui ⊆ Ui+1 for all i ∈ Z;
(c) U =⋃i∈Z Ui ;
(d) AiUj ⊆ Ui+j for all i ∈ N0 and all j ∈ Z.

In requirement (d) we have used the standard notation

AiUj :=
∑

(f,u)∈Ai×Uj

Kfu for all i ∈ N0 and all j ∈ Z,

which we shall use from now on without further mention. If an A•-filtration U• of
U is given, we say that (U,U•) or—by abuse of language—that U is a A• filtered
A-module or just that U is a filtered A-module.

(B) Keep the notations and hypotheses of part (A) and let U• = (Ui)i∈Z be a
filtered A-module. Observe that

For all i ∈ Z the K-vector space Ui is a left A0-submodule of U.

(C) We say that two A•-filtrations U(1)• , U(2)• are equivalent if there is some
r ∈ N0 such that

(a) U
(1)
i−r ⊆ U

(2)
i ⊆ U

(1)
i+r for all i ∈ Z.

Later, we shall use the following observation.
Assume that the above condition (a) holds, let i ∈ N and let a ∈ Ai . Then

we have

(b) aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈Z ⇒ akU

(1)
j ⊆ U

(1)
j+k(i−1) for all j ∈Z and all

k ∈ N0.
(c) aU

(1)
j ⊆ U

(1)
j+i−1 for all j ∈Z ⇒ a2r+1U

(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈Z.
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To prove statement (b), we assume that aU(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z and proceed

by induction on k. If k = 0 our claim is obvious. If k > 0, we may assume by
induction that ak−1U

(1)
j ⊆ U

(1)
j+(k−1)(i−1) for all j ∈ Z, so that indeed

akU
(1)
j = aak−1U

(1)
j ⊆ aU

(1)
j+(k−1)(i−1) ⊆ U

(1)
j+(k−1)(i−1)+(i−1) = U

(1)
j+k(i−1)

for all j ∈ Z,

and this proves statement (b). If we apply statement (b) with k = 2r+1 and observe
condition (a), we get

a2r+1U
(2)
j ⊆ a2r+1U

(1)
j+r ⊆ U

(1)
j+r+(2r+1)(i−1) ⊆ U

(2)
j+2r+(2r+1)(i−1)

= U
(1)
j+2r+2ri−2r+i−1 = U

(2)
j+2ri+i−1 = U

(2)
j+(2r+1)i−1 for all j ∈ Z,

and this proves statement (c).

Remark and Definition 1.10.2 (A) Let K be a field and let A = (A,A•) be a
filtered K-algebra and let U = (U,U•) be an A•-filtered A-module. We consider
the corresponding associated graded ring

Gr(A) = GrA•(A) =
⊕

i∈N0

Ai/Ai−1.

and the K-vector space

Gr(U) = GrU•(U) =
⊕

i∈Z
Ui/Ui−1.

For all i ∈ Z we also use the notation

Gr(U)i = GrU•(U)i := Ui/Ui−1,

so that we may write

Gr(U) = GrU•(U) =
⊕

i∈Z
GrU•(U)i.

(B) Let i ∈ N0, let j ∈ Z let f, f ′ ∈ Ai and let g, g′ ∈ Uj such that

h := f − f ′ ∈ Ai−1 and k := g − g′ ∈ Uj−1.
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It follows that

fg − f ′g′ = fg − (f − h)(g − k) = f k + hg − hk

∈ AiUj−1 + Ai−1Uj + Ai−1Uj−1

⊆ Ui+(j−1) + Uj+(i−1) + U(i−1)+(j−1) ⊆ Ui+j−1.

So in Ui+j /Ui+j−1 = GrU•(U)i+j ⊂ GrU•(U) we get the relation

fg + Ui+j−1 = f ′g′ + Ui+j−1.

This allows to define a GrA•(A)-scalar multiplication on the K-space GrU•(U)

which is induced by

(f + Ai−1)(g + Uj−1) := fg + Ui+j−1

for all i ∈ N0, all j ∈ Z, all f ∈ Ai g ∈ Uj . More generally, if r, s ∈ N0, t ∈ Z,

f =
r∑

i=0

fi, with fi ∈ Ai and fi = (fi + Ai−1) ∈ GrA•(A)i for all i = 0, 1, . . . , r,

and

g =
t+s∑

j=t
gj , with gj ∈ Uj and gj = (gj + Uj−1) ∈ GrU• (U)j

for all j = t, t + 1, . . . , t + s,

then

f g =
r+t+s∑

k=t

∑

i+j=k
figj =

r+t+s∑

k=t

∑

i+j=k
(figj + Ui+j−1).

(C) Keep the above notations and hypotheses. With respect to our scalar
multiplication on GrU•(U) we have the relations

GrA•(A)iGrU•(U)j ⊆ GrU•(U)i+j for all i, j ∈ Z.

So, the K-vector space GrU•(U) is turned into a graded GrA•(A)-module

GrU•(U) = (GrU•(U), (GrU•(U)i)i∈Z
) =

⊕

i∈Z
GrU•(U)i
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by means of the above multiplication. We call this GrA•(A)-module GrU•(U) the
associated graded module of U with respect to the filtration U•. From now on, we
always furnish GrU•(U) with this structure of graded GrA•(A)-module.

Definition 1.10.3 Let K be a field and let A = (A,A•) be a filtered K-algebra.
Assume that the filtration A• is commutative, so that the corresponding associated
graded ring

Gr(A) = GrA•(A) =
⊕

i∈N0

Ai/Ai−1

is commutative.
Moreover, let U = (U,U•) be an A•-filtered A-module and consider the corre-
sponding associated graded module

Gr(U) = GrU•(U) =
⊕

i∈Z
Ui/Ui−1.

in addition, consider the annihilator ideal

AnnGrA• (A)
(
GrU•(U)

) := {f ∈ GrA•(A) | fGrU•(U) = 0}

of the GrA•(A)-module GrU•(U). We define the characteristic variety VU•(U) of
the A•-filtered A-module U = (U,U•) as the prime variety of the annihilator ideal
of GrU•(U), hence

VU•(U) := Var
(
AnnGrA• (A)(GrU•(U))

) ⊆ Spec(GrA•(A)).

We also call this variety the characteristic variety of the left A-module U with
respect to the A•-filtration U• or just the characteristic variety of U with respect
to U•.

Proposition 1.10.4 (Equality of Characteristic Varieties for Equivalent Filtra-
tions) Let K be a field and let A = (A,A•) be a filtered K-algebra. Assume that
the filtration A• is commutative (see Definition 1.3.3). Let U be an A-module which
is endowed with two equivalent A•-filtrations U(1)• and U(2)• . Then

V
U
(1)• (U) = V

U
(2)• (U).

Proof We have to show that

√
AnnGrA• (A)

(
Gr

U
(1)• (U)

) =
√

AnnGrA• (A)
(
Gr

U
(2)• (U)

)
.
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By symmetry, it suffices to show that

√
AnnGrA• (A)

(
Gr

U
(1)• (U)

) ⊆
√

AnnGrA• (A)
(
Gr

U
(2)• (U)

)
.

In view of the fact that the formation of radicals of ideals is idempotent, it suffices
even to show that

AnnGrA• (A)
(
Gr

U
(1)• (U)

) ⊆
√

AnnGrA• (A)
(
Gr

U
(2)• (U)

)
.

As Gr
U
(1)• (U) is a graded GrA•(A)-module, its annihilator is a graded ideal of

GrA•(A). So, it finally is enough to show, that

a ∈
√

AnnGrA• (A)
(
Gr

U
(2)• (U)

)
for all i ∈ N0 and all a ∈ AnnGrA• (A)

(
Gr

U
(1)• (U)

)
i
.

So, fix some i ∈ N0 and some

a ∈ AnnGrA• (A)
(
Gr

U
(1)• (U)

)
i
⊆ GrA•(A)i = Ai/Ai−1.

We chose some a ∈ Ai with a = a + Ai−1 ∈ Ai/Ai−1.. For all j ∈ Z we have in
Gr

U
(1)• (U) the relation

aU
(1)
j +U

(1)
j+i−1 = (a+Ai−1)(U

(1)
j /U

(1)
j−1) = a(U

(1)
j /U

(1)
j−1) = aGr

U
(1)• (U)j = 0,

and hence

aU
(1)
j ⊆ U

(1)
j+i−1 for all j ∈ Z.

According to our hypotheses we find some r ∈ N0 such that U(1)
k−r ⊆ U

(2)
k ⊆ U

(1)
k+r

for all k ∈ Z. By Definition and Remark 1.10.1 (C)(c) we therefore have

a2r+1U
(2)
j ⊆ U

(2)
j+(2r+1)i−1 for all j ∈ Z.

So, for all j ∈ Z we get in U
(2)
j+(2r+1)i/U

(2)
j+(2r+1)i−1 = Gr

U
(2)• (U)j+(2r+1)i the

relation:

a2r+1GrU•(U)j = (a2r+1 + A(2r+1)i−1)(U
(2)
j /U

(2)
j−1) ⊆ a2r+1U

(2)
j /U

(2)
j+(2r+1)i−1 = 0.

This shows that a2r+1 ∈ AnnGrA• (A)
(
Gr

U
(2)• (U)

)
and hence that indeed

a ∈
√

AnnGrA• (A)
(
Gr

U
(2)• (U)

)
.
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So, provided (A,A•) is a commutatively filtered K-algebra (see Defini-
tion 1.3.3), the characteristic variety of an A•-graded A-module (U,U•) depends
only on the equivalence class of the filtration U•. This allows us to define in
an intrinsic way the notion of characteristic variety of a finitely generated (left-)
module over the filtered ringA. We work this out in the following combined exercise
and definition.

Exercise and Definition 1.10.5 (A) Let (A,A•) be a filtered K-algebra and let U
be a (left) module over A.

Let V ⊆ U be a K-subspace such that U = AV.

Prove the following claims:

(a) AiV = 0 for all i < 0.
(b) The family A•V :=

(
AiV

)
i∈Z is an A•-filtration of U .

The above filtration A•V is called the A•-filtration of U induced by the subspace V .
(B) Let the notations and hypotheses be as in part (A). Assume in addition that

s := dimK(V ) <∞.

Prove that

(a) U is finitely generated as an A-module;
(b) AiV is a finitely generated (left-) module over A0.
(c) The graded GrA•(A)-module GrA•V (U) is generated by finitely many elements

g1, g2, . . . , gs ∈ GrA•V (U)0.

Keep in mind that we can always find a vector space V ⊆ U of finite dimension
with AV = U if the A-module U is finitely generated.

(C) Let the notations and hypotheses be as above. Let V (1), V (2) ⊆ U be two
K-subspaces such that

AV (1) = AV (2) = U and dimK(V
(1)), dimK(V

(2)) <∞.

Prove that

(a) The two induced A•-filtrations A•V (1) and A•V (2) are equivalent.
(b) If the filtration A• is commutative, it holds

VA•V (1)(U) = VA•V (2)(U).

(D) Keep the above notations and hypotheses. Assume that the filtration A• is
commutative and that the (left) A-module U is finitely generated. By what we have
learned by the previous considerations, we find a K-subspace V ⊆ U of finite
dimension such that AV = U , and the characteristic variety VA•V (U) of U with
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respect to the induced filtration A•V is independent of the choice of V . So, we may
just write

VA•(U) := VA•V (U),

and we call VA•(U) the characteristic variety of U with respect to the (commuta-
tive !) filtration A• of A. This is the announced notion of intrinsic characteristic
variety.

(E) Keep the above notations. Assume that the filtration A• is of finite type
(see Definition and Remark 1.3.4 (C)) and that the (left) A-module U is finitely
generated. The A• filtration U• of U is said to be of finite type if

(a) There is some j0 ∈ Z such that Uj = 0 for all j ≤ j0;
(b) There is an integer σ such that:

(1) Uj is finitely generated as a (left) A0-module for all j ≤ σ and
(2) Ui =∑j≤σ AjUi−j for all i > σ .

In this situation σ is again called a generating degree of the A•-filtration U•
(compare Definition and Remark 1.3.4 (C)). Prove that in this situation, we have

Ai−σUσ ⊆ Ui =
σ∑

j=j0

Ai−jUj ⊆ Ai−j0Uσ for all i > σ.

As Uσ is a finitely generated A0-module, we may chose a K-subspace V ⊆ U

such that

dimK(V ) <∞ and A0V = Uσ .

Prove that for this choice of V we have:

U = AV and the filtrations U• and A•V are equivalent.

As a consequence it follows by Proposition 1.10.4 and the observations made in part
(D), that

VU•(U) = VA•(U) for each A•-filtration U• which is of finite type.

1.11 D-Modules

Convention 1.11.1 (A) As in Sect. 1.9, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W :=W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].



1 Notes on Weyl Algebra and D-Modules 61

In addition, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the
field K .

(B) Let (v,w) ∈ N
n
0 × N

n
0 be a weight. We consider the induced weighted

filtration W
vw• and also the corresponding associated graded ring.

G
vw =

⊕

i∈N0

G
vw

i := Gr
W

vw•
(
W

vw
) =

⊕

i∈N0

Gr
W

vw•
(
W

vw
)
i
.

(see Definition and Remark 1.9.2 (A)).
(C) Moreover, we shall consider the polynomial ring

P = P
vw =

⊕

i∈N0

P
vw

i .

furnished with the grading induced by our given weight (v,w) (see Exercise and
Definition 1.9.3 (B)), as well as the canonical isomorphism of graded rings (see
Theorem 1.9.4):

ηvw : P = P
vw

∼=−→ G
vw.

Definition and Remark 1.11.2 (A) By a D-module we mean a finitely generated
left module over the standard Weyl algebra W.

(B) Let U be a D-module. If U• is a Wvw• -filtration of U , we may again introduce
the corresponding associated graded module of U with respect to the filtration U•
(see Definition 1.10.3):

GrU•(U) =
⊕

i∈Z
Ui/Ui−1,

which is indeed a graded module over the associated graded ring G
vw. But, in fact,

we prefer to consider GrU•(U) as a graded P
vw-module by means of the canonical

isomorphism ηvw : P = P
vw

∼=−→ G
vw.

(C) Keep the notations and hypotheses of part (B). Then, we may again consider
the characteristic variety of U with respect to the filtration U•, but under the
previous view, that GrU•(U) is a graded module over the graded polynomial ring
P = P

vw . So, we define this characteristic variety by

VU•(U) := Var
(
AnnPvw (GrU•(U))

) = Var
(
(ηvw)−1[AnnGvw (GrU•(U))

]) ⊆ Spec(P).
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Observe in particular, that the ideal

AnnPvw
(
GrU•(U)

) = (ηvw)−1[AnnGvw

(
GrU•(U)

)] ⊆ P
vw

is graded.
(D) Finally, as U is finitely generated, we may again chose a finite dimensional

K-subspace V ⊆ U such that WV = U , and then consider the induced filtration
W

vw• V ofU and the corresponding intrinsic characteristic variety (see Exercise and
Definition 1.10.5 (D)) of U with respect to the weight (v,w), hence:

V
vw(U) := V

W
vw• (U) = V

W
vw• V (U).

Example 1.11.3 (A) Keep the above notations and let

d :=
∑

(ν,μ)∈supp(d)

c(d)νμX
ν∂μ ∈W \ {0} and δ := degvw(d),

with c
(d)
νμ ∈ K \ {0} for all (ν, μ) ∈ supp(d). We also consider the so-called leading

differential form of d with respect to the weight (v,w), which is given by

hvw :=
∑

(ν,μ)∈supp(d):v·ν+w·μ=δ
c(d)νμX

ν∂μ ∈W \ {0}.

Moreover, we introduce the polynomial

f vw :=
∑

(ν,μ)∈supp(d):v·ν+w·μ=δ
c(d)νμ Y

νZμ ∈ P \ {0}.

Now, consider the cyclic left W-module

U :=W/Wd, the element 1 := (1+Wd)/Wd ∈ U and the K-subspace K1 ⊆ U.

Endow U with the Wvw• -filtration (see Exercise and Definition 1.10.5 (A)):

U• :=W
vw• K1 = (Ui := (W

vw

i +Wd)/Wd)i∈Z.

(B) Keep the above notations and hypotheses. Observe first, that for all i ∈ Z we
may write

Ui/Ui−1 =W
vw

i /(W
vw

i−1 + (Wd ∩W
vw

i )).

By the additivity of weighted degrees (see Corollary 1.9.5) we have

Wd ∩W
vw

i =W
vw

i−δd for all i ∈ Z.
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So, we obtain

GrU•(U)i = Ui/Ui−1 =W
vw

i /
(
W

vw

i−1 +W
vw

i−δd
)

for all i ∈ N0.

Consequently, there is a surjective homomorphism of graded G
vw-modules

π : Gvw =
⊕

i∈Z
W

vw

i /W
vw

i−1 � GrU•(U) =
⊕

i∈Z
W

vw

i /
(
W

vw

i−1 +W
vw

i−δd
)
.

If we set

h
vw := hvw +W

vw

δ−1 ∈W
vw

δ /W
vw

δ−1 = G
vw

δ

it follows that

AnnGvw

(
GrU•(U)

) = Ker(π) =
⊕

i∈Z

(
W

vw

i−1 +W
vw

i−δd
)
/W

vw

i−1

=
⊕

i∈Z

(
W

vw

i−1 +W
vw

i−δh
vw
)
/W

vw

i−1 = G
vwh

vw
.

Consequently we get

GrU•(U) ∼= G
vw/Gvwh

vw
.

As ηvw(f vw) = h
vw

and if we consider GrU•(U) as a graded P
vw-module by means

of ηvw, we thus may write

GrU•(U) ∼= P
vw/Pvwf vw and AnnP

(
GrU•(U)

) = Pf vw.

In particular we obtain:

VU•(U) = V
vw(U) = V

vw
(
W/Wd

) = Var(Pf vw) ⊆ Spec(P).

Exercise 1.11.4

(A) Let n = 1, K = R and let d := X4
1 + ∂2

1 − X2
1∂

2
1 . Determine the two

characteristic varieties

V
vw(W/Wd) for (v,w) = (1, 1) and (v,w) = (0, 1).

(B) To make more apparent what you have done in part (A), determine and sketch
the real traces

V
vw

R
(W/Wd) := {(y, z) ∈ R

2 | (Y1 − y,Z1 − z)K[Y1, Z1] ∈ V
vw(W/Wd)}

for (v,w) = (1, 1) and (v,w) = (0, 1). Comment your findings.
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Now, we shall establish the fact that D-modules are finitely presentable. To
do so we first will show that standard Weyl algebras are left Noetherian (see
Conventions, Reminders and Notations 1.1.1 (G) and (H)). We begin with the
following preparation.

Definition and Remark 1.11.5 (A) Let I ⊆ W be a left ideal. We consider the
following K-subspace of Gvw:

G
vw(I) :=

⊕

i∈N0

(
I ∩W

vw

i +W
vw

i−1

)
/W

vw

i−1 ⊆
⊕

i∈N0

W
vw

i /W
vw

i−1 = G
vw.

It is immediate to see, that Gvw(I) ⊆ G
vw is graded ideal. We call this ideal the

graded ideal induced by I in G
vw .

(B) Let the notations and hypotheses as in part (A). It is straight forward to see,
that the family

Ivw• := (I ∩W
vw

i

)
i∈Z

is a filtration of the (left) W-module I , which we call the filtration induced by Wvw• .
Observe, that for all i ∈ Z we have a canonical isomorphism of K-vector spaces

G
vw(I)i :=

(
I ∩Wvw

i +W
vw

i−1

)
/W

vw

i−1
∼= I ∩Wvw

i /I ∩Wvw

i−1 = I
vw

i /I
vw

i−1 = GrIvw• (I )i .

It is easy to see, that these isomorphisms of K-vector spaces actually give rise to a
canonical isomorphism of graded G

vw-modules

G
vw(I) :=

⊕

i∈Z

(
(I ∩W

vw

i )+W
vw

i−1

)
/W

vw

i−1
∼=
⊕

i∈Z
I
vw

i /I
vw

i−1 = GrI vw• (I).

So, by means of this canonical isomorphism we may identify

G
vw(I) = GrI vw• (I).

Lemma 1.11.6 Let I, J ⊆W be two left ideals with I ⊆ J . Then we can say:

(a) There is an inclusion of graded ideals G
vw(I) ⊆ G

vw(J ) in the graded ring
G
vw.

(b) If Gvw(I) = G
vw(J ), then I = J .

Proof (a): This is immediate by Definition and Remark 1.11.5 (A).
(b): Assume that I � J . Then, there is a least integer i ∈ N0 such that

I
vw

i = I ∩W
vw

i � J
vw

i = J ∩W
vw

i .
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As Ivwi−1 = J
vw

i−1 it follows that

G
vw(I)i ∼= I

vw

i /I
vw

i−1 is not isomorphic to I
vw

i /I
vw

i−1
∼= G

vw(J )i,

so that indeed

G
vw(I) �= G

vw(J ).

Theorem 1.11.7 (Noetherianness of Weyl Algebras) The Weyl algebra W is left
Noetherian.

Proof Otherwise W would contain an infinite strictly ascending chain of left ideals
I (1) � I (2) � I (3) � · · · . But then, by Lemma 1.11.6 we would have an infinite
strictly ascending chain G

vw(I (1)) � G
vw(I (2)) � G

vw(I (3)) � · · · of ideals in the
Noetherian ring G

vw ∼= P
vw = P, a contradiction.

Corollary 1.11.8 (Finite Presentability of D-Modules) Each D-module U

admits a finite presentation

W
s −→W

r −→ U −→ 0.

Proof This follows immediately by Theorem 1.11.7 and the observations made in
Conventions, Reminders and Notations 1.1.1 (H).

Example 1.11.9 (A) Consider the polynomial ring U := K[X1,X2, . . . , Xn]. As

W ⊆ EndK
(
K[X1,X2, . . . , Xn]

) = EndK(U),

this polynomial ring can be viewed in a canonical way as a left module over W, the
scalar being multiplication given by

d · f := d(f ) for all d ∈W and all f ∈ U.

As f · 1 = f for all f ∈ U it follows that

U =W1U .

So, the W-module U := K[X1,X2, . . . , Xn] is generated by a single element, and
hence in particular a D-module.

(B) Keep the previous notations and hypotheses. Observe that

n∑

i=1

W∂i =
⊕

ν,μ∈Nn
0 :μ �=0

KXν∂μ
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and hence

W = K[X1,X2, . . . , Xn] ⊕
n∑

i=1

W∂i = U ⊕
n∑

i=1

W∂i .

We thus have an exact sequence of K-vector spaces

0 −→
n∑

i=1

W∂i −→W
π−→ U −→ 0,

in which W
π−→ U is the canonical projection map given by

π
(
Xν∂μ

) =
{
Xν, if μ = 0,

0, if μ �= 0
.

Our aim is to show:

W
π−→ U is a homomorphism of left W-modules.

To do so, it suffices to show that for all ν,μ, ν′, μ′ ∈ N
n
0 it holds

π(dd ′) = dπ(d ′), where d := Xν∂μ and d ′ := Xν′∂μ
′
.

If μ = μ′ = 0, we have

π(dd ′) = π
(
XνXν ′) = π

(
Xν+ν ′) = Xν+ν ′ = XνXν ′ = Xνπ

(
Xν′) = dπ(d ′).

If μ = 0 and μ′ �= 0 we have

π(dd ′) = π
(
XνXν′∂μ

′) = π
(
Xν+ν′∂μ

′) = 0 = Xνπ
(
Xν ′∂μ

′) = dπ(d ′).

So, let μ �= 0. By the Product Formula of Proposition 1.6.2 we have

dd ′ = Xν∂μXν′∂μ
′ = Xν+ν ′∂μ+μ

′ + s,

with

s :=
∑

k∈Nn
0:0<k≤μ,ν ′

λkX
ν+ν′−k∂μ+μ′−k
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and

λk =
( n∏

i=1

(
μi

ki

))( n∏

i=1

ki−1∏

p=0

(ν′i − p)
)
.

Assume first, that μ′ �= 0. Then we have

π
(
Xν+ν′∂μ+μ

′) = 0 and π
(
Xν+ν′−k∂ν+ν′−k

) = 0 for all k ∈ N
n
0 with 0 < k ≤ μ, ν′.

It thus follows, that

π(dd ′) = 0 = d0 = dπ
(
Xν′∂μ

′) = dπ(d ′).

So, finally let μ′ = 0. Then dd ′ = Xν+ν ′∂μ + s, and

s =
{∏n

i=1
∏μi−1

p=0 (ν
′
i − p)Xν+ν ′−μ, if μ ≤ ν′;

0, otherwise.

So, by what we have learned in Exercise 1.6.6 (B), we have

s = Xν∂μ
(
Xν ′).

As s is a K-multiple of a monomial in the Xi ’s we have π(s) = s. It thus follows

π(dd ′) = π
(
Xν+ν ′∂μ

′)+ π(s) = s = Xν∂μ
(
Xν′) = Xν∂μXν ′ = dπ(d ′).

This proves, that π is indeed a homomorphism of left W-modules.
(C) Keep the previous notations and hypotheses. Then, according the above

observations, we have an exact sequence of left W-modules

0 −→W
n h−→W

π−→ U −→ 0,

in which h is given by

(d1, d2, . . . , dn) �→ h(d1, d2, . . . , dn) =
n∑

i=1

di∂i .

This sequence clearly constitutes a presentation of the left W-module U (see Con-
ventions, Reminders and Notations 1.1.1 (H)) and the corresponding presentation
matrix for U is the row

∂ :=

⎛

⎜⎜⎜⎝

∂1

∂2
...

∂n

⎞

⎟⎟⎟⎠ ∈W
n×1.
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Exercise 1.11.10 (A) We consider the polynomial ring U = K[X1,X2, . . . , Xn]
canonically as a D-module, as done in Example 1.11.9. Fix a weight (v,w) ∈ N

n
0 ×

N
n
0. Consider the K-subspace K ⊂ U , observe that WK = U and endow U with

the induced filtration

U• :=W
vw• K.

Show, that there is an isomorphism of graded P-modules

GrU•(U) = GrWvwK(U) ∼= Uv,

where

Uv :=
⊕

i∈N0

U
v

i with U
v

i :=
∑

v·ν=i
KXν for all i ∈ N0

is the polynomial ring U endowed with the grading associated to the weight v ∈ N
n
0.

Determine the characteristic variety

V
vw(U) ⊆ Spec(P).

(B) Keep the notations and hypotheses of part (A). Show, the left W-moduleU is
simple: If V � U is a proper left W-submodule, then V = 0. (Hint: Let f ∈ U \ {0}
be of degree r and assume that ν = (ν1, ν2, . . . , νn) ∈ supp(f ) with

∑n
i=1 νi = r

and show that ∂ν ∈ K \ {0}. Conclude that Wf = U.)

Remark and Definition 1.11.11 (A) We furnish the polynomial ring K[X1,X2,

. . . , Xn] with its canonical structure of D-module (see Example 1.11.9). We now
consider a ring A with the following properties

(1) A is commutative;
(2) A is a left W-module;
(3) K[X1,X2, . . . , Xn] ⊆ A is a left submodule.

In this situation, we call A a ring of good functions in X1,X2, . . . , Xn over K .
The idea covered by this concept is that for all d ∈ W and all f ∈ the product
df ∈ A should be viewed as the result of the application of the differential operator
d to the function f . Therefore, one often writes

d(f ) := df for all d ∈W and all f ∈ A .

(B) Let the notations and hypotheses be as in part (A). By a system of polynomial
differential equations in A we mean a system of equations

d11(f1)+ d12(f2)+ . . .+ d1r (fr ) = 0

d21(f1)+ d22(f2)+ . . .+ d2r (fr ) = 0

...

ds1(f1)+ ds2(f2)+ . . .+ dsr(fr ) = 0
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with r, s ∈ N such that

dij ∈W and fj ∈ A for all i, j ∈ N with i ≤ s and j ≤ r.

The above system of differential equations can be understood as a linear system of
equations over the ring A . We namely may consider the matrix

D :=

⎛
⎜⎜⎜⎝

d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

⎞
⎟⎟⎟⎠ ∈W

s×r .

Then, the above system may be written in matrix form as

D

⎛
⎜⎜⎜⎝

f1

f2
...

fr

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎟⎠ .

We call D the matrix of differential operators associated to our system of linear
differential equations. So, systems of differential equations correspond to matrices
with entries in a standard Weyl algebra.

(C) Keep the previous notations and hypotheses, then the matrix of differential
operators D ∈W

s×r gives rise to an exact sequence of left W-modules

0 −→W
s hD−→W

r πD−→ UD −→ 0.

In particular UD is a D-module and the previous sequence is a finite presentation of
UD . We call this presentation the presentation induced by the matrix D and we call
UD the D-module defined by the matrix D—or the D-module associated with our
system of differential equations. So, each system of differential equations defines
a D-module. Obviously, one is particularly interested in the solution space of our
system of differential equations, hence in the K-vector space

SD (A ) := {(f1, f2, . . . , fr ) ∈ A r | D

⎛

⎜⎜⎜⎝

f1

f2
...

fr

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0
0
...

0

⎞

⎟⎟⎟⎠}.

Observe, that SD (A ) is a K-subspace of A r .
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Proposition 1.11.12 Let r, s ∈ N, let

D =

⎛
⎜⎜⎜⎝

d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

⎞
⎟⎟⎟⎠ ∈W

s×r

be a matrix of differential operators, consider the induced presentation

0 −→W
s h=hD−→ W

r π=πD−→ UD −→ 0

and the corresponding solution space SD (A ).
For all i = 1, 2, . . . , r let ei := (δi,j )

r
j=1 ∈W

r be the i-th canonical basis element.
Then, there is an isomorphism of K-vector spaces

εD : HomW

(
UD ,A

) ∼=−→ SD (A ),

given by

m �→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . , m(π(er ))

)
for all m ∈ HomW

(
UD ,A

)
.

Proof Observe, that there is indeed a K-linear map

ε := εD : HomW

(
UD ,A

) −→ A r

given by

m �→ εD(m) :=
(
m(π(e1)),m(π(e2)), . . . , m(π(er ))

)
for all m ∈ HomW

(
UD ,A

)
.

If ε(m) = 0, then m(π(ei )) = 0 for all i = 1, 2, . . . , r . As π is surjective, the
elements π(ei ) (i = 1, 2, . . . , r) generate the left W-module U = UD . So, it
follows that m = 0 and this proves, that the map ε is injective.
It remains to show that

ε
(
HomW

(
UD ,A

)) = SD (A ).

To do so, let

bj := (δj,k)
s
k=1 ∈W

s (j = 1, 2, . . . , s)

be the canonical basis elements of Ws .
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First, let m ∈ HomW

(
UD ,A

)
. We aim to show, that ε(m) ∈ SD (A ). We have to

show, that the column

⎛
⎜⎜⎜⎝

g1

g2
...

gs

⎞
⎟⎟⎟⎠ := D

⎛
⎜⎜⎜⎝

m(e1)

m(e2)
...

m(er )

⎞
⎟⎟⎟⎠

vanishes. For each i = 1, 2, . . . , s we can write
∑r

j=1 dij ej = biD = h(bi ), and
hence get indeed

gi =
r∑

j=1

dijm(π(ej )) = m
( r∑

j=1

dijπ(ej )
) = m

(
π(

r∑

j=1

dij ej )
) = m

(
π(h(bi ))

)

= m(0) = 0.

Conversely, let (f1, f2, . . . , fr ) ∈ SD (A ), so that
∑r

j=1 dijfj = 0. We aim to
show that (f1, f2, . . . , fr ) ∈ ε

(
HomW(U,A )

)
.

To this end, we consider the homomorphism of left W-modules

k :Wr −→ A , given by (u1, u2, . . . , ur ) �→
r∑

j+1

ujfj .

Observe that

k(h(bi )) = k(biD) = k(di1, di2, . . . , dir) =
r∑

j=1

dijfj = 0 for all i = 1, 2, . . . , s.

It follows that k ◦ h = 0. Therefore k induces a homomorphism of left W-modules

m : U −→ A , such that m ◦ π = k.

It follows that m(π(ej )) = k(ej ) = fj for all j = 1, 2, . . . , r . But this means that
(f1, f2, . . . , fr ) = ε(m) ∈ ε

(
HomW(U,A )

)
.

Exercise 1.11.13 (A) Let n = 1, K = R and let A := C∞(R) be set of smooth
functions on R. Fix d ∈ W = W(R, 1) = R[X, ∂] and consider the matrix D =
(d) ∈W

1×1. Determine

UD , SD (A ) and V
v,w(UD )
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for all weights (v,w) = (v,w) ∈ N0 ×N0 \ {(0, 0)} and for

d = ∂, d = ∂2 − 1, d = ∂ − x2 and d = ∂2 + c∂ − b with c, b ∈ R \ {0}.

(B) Let n,m ∈ N, A := K[X1,X2, . . . , Xn] and consider the matrix

D :=

⎛

⎜⎜⎜⎝

∂m1
∂m2
...

∂mn

⎞

⎟⎟⎟⎠ ∈W
n×1.

Determine

UD , SD (A ) and V
11(UD ).

1.12 Gröbner Bases

In this section, we introduce and treat Gröbner bases of left ideals in standard Weyl
algebras with respect to so-called admissible orderings of the set of elementary
differential operators. What we get is a theory very similar to the theory of Gröbner
bases of ideals in polynomial rings. A theory many readers may be familiar with
already. Indeed a great deal of what we shall present in the sequel could also
be deduced from the theory of Gröbner in polynomial rings. Nevertheless, we
prefer to introduce the subject in a self contained way so that readers who are
not familiar with Gröbner in polynomial rings can follow our approach without
further prerequisites. As for Gröbner bases in (commutative) polynomial rings and
their applications, there are indeed many introductory and advanced textbooks and
monograph. So, we mention only a sample of possible references for this subject,
namely [1, 6, 19, 25, 26, 30, 36] and [42].
In general, Gröbner bases are intimately related to Division Theorems, which
generalize Euclid’s Division Theorem for univariate polynomial rings over a field.
Gröbner bases and Division Theorems for rings of linear differential operators were
introduced by Briançon and Maisonobe [14] in the univariate case and by Castro-
Jiménez [21] in the multivariate case. Two more recent basic references in the field
of are the textbook of Bueso,Gómez-Torricellas and Verschoren [20] and the PhD
thesis [31] of Levandovskyy.
The main goal of the present section is to prove that left ideals in Weyl algebras
admit so-called universal Gröbner bases. This existence result can actually be
proved in the more general setting of admissible algebras. Readers, who are
interested in this, should consult for example Boldini’s thesis [10] or else [38], [41]
or [43].
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Convention 1.12.1 (A) As previously, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W :=W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n].
Moreover, we consider the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]
in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the
field K .

(B) In addition, we fix the isomorphism of K-vector spaces

Φ :W ∼=−→ P given by Xν∂μ �→ Y νZμ for all ν,μ ∈ N
n
0 .

Moreover we respectively consider the set E of all elementary differential operators
in W and the set M of all monomials in P, thus:

E := {Xν∂μ | ν,μ ∈ N
n
0} and M := {YνZμ | ν,μ ∈ N

n
0} = Φ(E).

In a first step we now introduce some basic notions of our subject, namely:
admissible orderings (of the set E of elementary differential operators, leading (ele-
mentary) differential operators and (in the polynomial ring P) leading monomials
and leading terms. Mainly for those readers who have not met these concepts in
the framework of polynomial rings, we shall add below a number of examples and
exercises on these new notions.

Definition, Reminder and Exercise 1.12.2 (A) (Total Orderings) Let S be any set.
A total ordering of S is a binary relation ≤⊆ S × S such that for all a, b, c ∈ S the
following requirements are satisfied:

(a) (Reflexivity) a ≤ a.
(b) (Antisymmetry) If a ≤ b and b ≤ a, then a = b.
(c) (Transitivity) If a ≤ b and b ≤ c, then a ≤ c.
(b) (Totality) Either a ≤ b or b ≤ a.

We write TO(S) for the set of total orderings on S.
If ≤∈ TO(S) and a, b ∈ S, we write

a < b if a ≤ b and a �= b, b ≥ a if a ≤ b, b > a if a < b.

(B) (Well Orderings) Keep the above notations and hypotheses. A total ordering
≤∈ TO(S) is said to be a well ordering of S, if it satisfies the following additional
requirement:

(e) (Existence of Least Elements) For each non-empty subset T ⊆ S there is an
element t ∈ T such that t ≤ t ′ for all t ′ ∈ T .
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In the situation mentioned in statement (e), the element t ∈ T—if it exists at all—is
uniquely determined by T and called the least element or the minimum of T with
respect to ≤ and denoted by min≤(T ), thus

t = min≤(T ) if t ∈ T and t ≤ t ′ for all t ′ ∈ T .

We write WO(S) for the set of all well orderings of S.
(C) (Admissible Orderings) A total ordering ≤∈ TO(E) of the set of all

elementary differential operators is called an admissible ordering of E if it satisfies
the following requirements:

(a) (Foundedness) 1 ≤ Xν∂μ for all ν,μ ∈ N
n
0

(b) (Compatibility) For all λ, λ′, κ, κ ′, ν, μ ∈ N
n
0 we have the implication:

If Xλ∂κ ≤ Xλ′∂κ
′
, then Xλ+ν∂κ+μ ≤ Xλ′+ν∂κ ′+μ.

We write AO(E) for the set of all admissible orderings of E.
Prove the following facts:

(c) If ν, ν ′, μ,μ′, λ, λ′, κ, κ ′,∈ N
n
0 with Xν∂μ ≤ Xν ′∂μ

′
andXλ∂κ < Xλ′∂κ

′
, then

Xλ+ν∂κ+μ < Xλ′+ν ′∂κ ′+μ′ .

(d) AO(E) ⊆ WO(E).

(D) (Leading Elementary Differential Operators and Related Concepts) From
now on, for all d ∈W, we use the notation

Supp(d) := {Xν∂μ | (ν, μ) ∈ supp(d)}.
Keep the above notations and hypotheses. If≤∈ AO(E) and d ∈W \ {0}, we define
the leading elementary differential operator of d with respect to ≤ by:

LE≤(d) := max≤Supp(d),

so that

LE≤(d) ∈ Supp(d) and e ≤ LE≤(d) for all e ∈ Supp(d).

Moreover, we define the leading coefficient LC≤(d) of d with respect to ≤ as
the coefficient of d with respect to LE≤(d), and the leading differential operator
LD≤(d) of d with respect to ≤ as the product of the leading elementary differential
operator with the leading coefficient, so that:

(a) LC≤(d) ∈ K \ {0} with LE≤(d − LC≤(d)LE≤(d)
)
< LE≤(d).

(b) LD≤(d) = LC≤(d)LE≤(d).
(c) LE≤

(
d − LD≤(d)

)
< LE≤(d).
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Finally, we define the leading monomial and the leading term of d with respect to
≤ respectively by

LM≤(d) := Φ
(
LE≤(d)

)
and LT≤(d) := Φ

(
LD≤(d)

) = LC≤(d)LM≤(d).

Prove the following statements:

(d) If d, e ∈ W \ {0}, with d �= −e, then LE≤(d + e) ≤ max≤{LE≤(d),LE≤(e)},
with equality if and only if LD≤(d) �= −LD≤(e).

The previously introduced notions are of basic significance for this and the
next section. So, we hope to illuminate their meaning in the following series of
examples and exercises, which were already announced prior to the definition of
these concepts.

Examples and Exercises 1.12.3 (A) (Well Orderings) Keep the above notations
and hypotheses. Prove the following statements:

(a) Let ϕ : N0 −→ N
n
0 × N

n
0 be a bijective map. Show that the binary relation

≤ϕ⊆ E× E defined by

Xν∂μ ≤ϕ X
ν′∂μ

′ ⇔ ϕ−1(ν, μ) ≤ ϕ−1(ν, μ)

for all ν,μ, ν ′, μ′ ∈ N
n
0 is a well ordering of E.

(b) Show that in the notations of exercise (a) the well ordering≤ϕ is discrete, which
means that the set {e ∈ E | e ≤ϕ d} is finite for all d ∈ E.

(c) Show, that there uncountably many discrete well orderings of E.
(d) Let n = 1, set X1 =: X, ∂1 =: ∂ and define the binary relation ≤ on the set of

elementary differential operators E = {Xν∂μ | ν,μ ∈ N0} by

Xν∂μ ≤ Xν ′∂μ
′

if either

{
ν < ν′ or else

ν = ν′ and μ < μ′

for all ν,μ ∈ N0. Show, that ≤ is a non-discrete well ordering of E.

(B) (Admissible Orderings) Keep the above notations and hypotheses.

(a) We define the binary relation≤lex⊆ E×E by setting (again for all ν,μ, ν ′, μ′ ∈
N
n
0):

Xν∂μ ≤lex X
ν ′∂μ

′
if either

(1) ν = ν′ and μ = μ′, or
(2) ν = ν′ and ∃j ∈ {1, 2, . . . , n} : [μj < μ′j and μk = μ′k,∀k < j

]
, or else

(3) ∃i ∈ {1, 2, . . . , n} : [νi < ν′i and νk = ν′k,∀k < i
]
.
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Prove that ≤lex∈ AO(E). The admissible ordering ≤lex is called the lexico-
graphic ordering of the set of elementary differential operators.

(b) Set n = 1, X1 =: X, ∂1 =: ∂ and write down the first 20 elementary differential
operators d ∈ E = {Xν∂μ | ν,μ ∈ N0} with respect to the ordering≤lex.

(c) Solve the similar task as in exercise (b), but with n = 2 instead of n = 1 and
with 30 instead of 20.

(d) We define another binary relation ≤deglex⊆ E× E by setting

d ≤deglex e if either

{
deg(d) < deg(e) or else

deg(d) = deg(e) and d ≤lex e.

Show, that ≤deglex∈ AO(E). This admissible ordering is called the degree-
lexicographic ordering of the set of elementary differential operators.

(e) Solve the previous exercises (b) and (c) but this time with the ordering≤deglex.
(f) We introduce a further binary relation ≤degrevlex⊆ E × E by setting (again for

all ν,μ, ν′, μ′ ∈ N
n
0):

Xν∂μ ≤degrevlex X
ν′∂μ

′
if either

(1) deg
(
Xν∂μ

)
< deg

(
Xν′∂μ

′)
, or else

(2) deg
(
Xν∂μ

) = deg
(
Xν′∂μ

′)
and either

(i) ν = ν ′ and μ = μ′, or
(ii) μ = μ′ and ∃i ∈ {1, 2, . . . , n} : [νi > ν′i and νk = ν′k,∀k > i

]
, or

else
(iii) ∃j ∈ {1, 2, . . . , n} : [μj > μ′j and μk = μ′k,∀k > j

]
.

Prove, that ≤degrevlex∈ AO(E). This admissible ordering is called the degree-
reverse-lexicographic ordering of the set of elementary differential operators.

(g) Solve the previous exercise (e) but with ≤degrevlex instead of ≤deglex.
(h) An admissible ordering of the set M = {Y νZμ | ν,μ ∈ N

n
0} of all monomials

in P is a total ordering of M which satisfies the requirements

(1) (Foundedness) 1 ≤ m for all m ∈M.
(2) (Compatibility) For all m,m′ and t ∈ M we have the implication:

If m ≤ m′, then mt ≤ m′t .

For any ≤∈ AO(E) we define the binary relation ≤Φ⊆M×M by setting

m ≤Φ m′ ⇔ Φ−1(m) ≤ Φ−1(m′) for all m,m′ ∈ M.
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Prove, that ≤Φ∈ AO(M) and that there is indeed a bijection

•Φ : AO(E)
∼=−→ AO(M), given by ≤�→≤Φ .

The names given in the previous exercises (a), (d) and (f) to the three admissible
orderings of E introduced in these exercises are ”inherited“ from the ”classical“
designations used in polynomial rings, via the above bijection.

(i) Prove, that ≤deglex and ≤degrevlex are both discrete in the sense of exercise (A)
(b), where as ≤lex is not.

(C) (Leading Elementary Differential Operators and Related Concepts) Keep the
previous notations and hypotheses.

(a) Let n = 1, set X1 =: X, ∂1 =: ∂ , Y1 =: Y and Z1 =: Z. Write down the
leading elementary differential operator, the leading differential operator, the
leading coefficient, the leading monomial and the leading term of each of the
following differential operators, with respect to each of the admissible orderings
≤lex,≤deglex and ≤degrevlex:

(1) 5X6 + 4X4∂ − 2X2∂3 +X∂4 − 3∂6.
(2) ∂4 − 4X∂3 + 6X2∂2 − 4X∂ +X4.
(3) ∂12 − X5∂7 +X7∂5 −X9∂3 + X12.

(b) Let n = 2 solve the task corresponding to exercise (a) above for the differential
operators

(1) X3
1X

2
2 + 2∂3

1∂
2
2 .

(2) X2
1X

3
2∂

2
1∂

3
2 − ∂4

1∂
6
2 .

(3) Xk
1 +Xk

2 + ∂k1 + ∂k2 with k ∈ N.

The next proposition will play a crucial role for our further considerations. it
tells us essentially, that ”leading differential operators behave as leading terms of
polynomials“. It is precisely this property, which will allow us to introduce a fertile
notion of Gröbner bases for left ideals in Weyl algebras.

Proposition 1.12.4 (Multiplicativity of Leading Terms) Let ≤∈ AO(E) and let
d, e ∈W \ {0}. Then it holds

(a) LT≤(de) = LT≤(d)LT≤(e).
(b) LM≤(de) = LM≤(d)LM≤(e).

Proof The product formula for elementary differential operators of Proposi-
tion 1.6.2 yields that

LE≤
(
Xν∂μXν ′∂μ

′) = Xν+ν ′∂μ
′+μ′ for all ν, ν ′, μ,μ′ ∈ N

n
0.
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We may write

d =
∑

(ν,μ)∈supp(d)

c(d)νμX
ν∂μ and e =

∑

(ν′,μ′)∈supp(e)

c
(e)

ν ′μ′X
ν′∂μ

′

with c
(d)
νμ , c

(e)

ν ′μ′ ∈ K \ {0} for all (ν, μ) ∈ supp(d) and all (ν ′, μ′) ∈ supp(e). With

appropriate pairs (ν(0), μ(0)) ∈ supp(d) and (ν′(0), μ′(0)) ∈ supp(e) we also may
write

LE≤(d) = Xν(0)∂μ
(0)

and LE≤(e) = Xν ′(0)∂μ
′(0)
, hence also

LC≤(d) = c
(d)

ν(0)μ(0) and LC≤(e) = c
(e)

ν ′(0)μ′(0) .

Now, bearing in mind the previous observation on leading elementary differential
operators we may write

de =
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)νμX
ν∂μc

(e)

ν′μ′X
ν ′∂μ

′

=
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

c(d)νμ c
(e)

ν ′μ′X
ν∂μXν ′∂μ

′

=
∑

(ν,μ)∈supp(d),(ν′,μ′)∈supp(e)

[
c(d)νμ c

(e)

ν′μ′X
ν+ν ′∂μ+μ

′ + rνν′μμ′
]
,

with rνν ′μμ′ ∈ W, such that for all (ν, μ) ∈ supp(d) and all (ν′, μ′) ∈ supp(e) it
holds

LE≤(rνν′μμ′) < Xν+ν ′∂μ+μ′ , whenever rνν ′μμ′ �= 0.

By Definition, Reminder and Exercise 1.12.2 (C)(c) we have

Xν+ν ′∂μ+μ
′
< Xν(0)+ν ′(0)∂μ

(0)+μ′(0) , for all

(
(ν, μ), (ν′, μ′)

) ∈ supp(d)× supp(e) \ {((ν(0), μ(0)), (ν′(0), μ′(0))
)}.

By Definition, Reminder and Exercise 1.12.2 (D)(d) it now follows easily that

LE≤(de) = Xν(0)+ν′(0)∂μ
(0)+μ′(0) and

LC≤(de) = c
(d)

ν(0)μ(0)c
(e)

ν′(0)μ′(0) = LC≤(d)LC≤(e).
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We thus obtain

LM≤(de) = Φ
(
Xν(0)+ν ′(0) ∂μ(0)+μ′(0)) = Yν

(0)+ν ′(0)Zμ(0)+μ′(0) = Yν
(0)
Z
μ(0)

Y ν
′(0)

Z
μ′(0)

= Φ
(
Xν(0)∂

μ(0))
Φ
(
Xν′(0) ∂μ

′(0)) = Φ
(
LE≤(d)

)
Φ
(
LE≤(e)

) = LM≤(d)LM≤(e).

But now it follows

LT≤(de) = LC≤(de)LM≤(de) = LC≤(d)LC≤(e)LM≤(d)LM≤(e)

= LC≤(d)LM≤(d)LC≤(e)LM≤(e) = LT≤(d)LT≤(e).

The next result may be understood as an extension of the classical division
algorithms of Euclid for univariate polynomials to the case of differential operators.
It was first proved in 1984 by Briançon-Maisonobe in the univariate case and by
Castro-Jiménez in the multivariate case.
Those readers, who are familiar with the Buchberger algorithm in multivariate
polynomial rings will realize that our result corresponds to the division algorithm in
multi-variate polynomial rings. Observe in particular that—as in the case of multi-
variate polynomials—we will divide “by a family of denominators” and that the
presented division procedure depends on an admissible ordering.

Proposition 1.12.5 (The Division Property, Briançon-Maisonobe [14] and
Castro-Jiménez [21]) Let ≤∈ AO(E), let d ∈ W and let F ⊂ W be a
finite set. Then, there is an element r ∈ W and a family (qf )f∈F ∈ W

F such
that (in the notations of Convention 1.12.1 (B) and Definition, Reminder and
Exercise 1.12.2 (D))

(a) d =∑f∈F qf f + r;
(b) Φ(s) /∈ PLM≤(f ) for all f ∈ F \ {0} and all s ∈ Supp(r).
(c) LE≤(qf f ) ≤ LE≤(d) for all f ∈ F with qf f �= 0.

Proof We clearly may assume that F ⊂ W \ {0}. If d = 0, we choose r = 0 and
qf = 0 for all f ∈ F . Assume, that our claim is wrong, and let U � W be the
non-empty set of all differential operators d ∈W which do not admit a presentation
of the requested form. As ≤∈ WO(E) and U ⊂ W \ {0}, we find some d ∈ U

such that

LE≤(d) = min≤{LE≤(u) | u ∈ U}.
We distinguish the following two cases:

(1) There is some f ∈ F such that LM≤(d) ∈ PLM≤(f ).
(2) LM≤(d) /∈ ⋃f∈F PLM≤(f ).

In the case (1) we find some e ∈ E such that LM≤(d) = Φ(e)LM≤(f ) and so we
can introduce the element

d ′ := d − LC≤(d)
LC≤(f )

ef ∈W.
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If d ′ = 0, we set

r = 0, qf := LC≤(d)
LC≤(f )

e, and qf ′ = 0 for all f ′ ∈ F \ {f }.

But then

d = LC≤(d)
LC≤(f )

ef = qf f + r

is a presentation of d with the requested properties.
So, let d ′ �= 0. Observe, that by Proposition 1.12.4 (a) we can write

LT≤
( LC≤(d)

LC≤(f )
ef
) = LC≤(d)

LC≤(f )
LT≤(ef ) = LC≤(d)

LC≤(f )
LT≤(e)LT≤(f ) =

LC≤(d)LM≤(e)LM≤(f ) = LC≤(d)Φ(e)LM≤(f ) = LC≤(d)LM≤(d) = LT≤(d).

If follows that LD≤
( LC≤(d)

LC≤(f ) ef
) = LD≤(d), and hence by Definition, Reminder and

Exercise 1.12.2 (D)(d) we obtain that

LE≤(d ′) < LE≤(d) = min≤{LE≤(u) | u ∈ U}.

Therefore, d ′ /∈ U and so we find an element r ′ ∈W and a family (q ′
f ′)f ′∈F ∈W

F

such that

(a)′ d ′ =∑f ′∈F q ′
f ′f

′ + r ′;
(b)′ Φ(s′) /∈ PLM≤(f ′) for all f ′ ∈ F and all s′ ∈ Supp(r ′).
(c)′ LE≤(q ′f ′f

′) ≤ LE≤(d ′) for all f ′ ∈ F with q ′
f ′ �= 0.

Now, we set

r := r ′ and qf :=
{
q ′
f ′ if f ′ �= f,

q ′f + LC≤(d)
LC≤(f ) e if f = f ′.

As

LE≤(q ′f ′f
′) ≤ LE≤(d ′) < LE≤(d) and LE≤

( LC≤(d)
LC≤(f )

e
) = LE≤(e) ≤ LE≤(d),

we get

LE≤(qf F ) = LE≤
(
(q ′f +

LC≤(d)
LC≤(f )

e)f
) ≤ LE≤(d).
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Now, it follows easily, that the requirements (a),(b) and (c) of our proposition are
satisfied in the case (1).

So, let us assume that we are in the case (2). We set

d ′ := d − LD≤(d).

If d ′ = 0 we have d ′ = LD≤(d) and it suffices to choose qf := 0 for all f ∈ F and
r = d .
So, let d ′ �= 0. Then, we have LE≤(d ′) < LE≤(d) (see Definition, Reminder and
Exercise 1.12.2 (D)(c)), so that again d ′ /∈ U . But this means once more, that we get
elements r ′ and q ′

f ′ ∈ W (for all f ′ ∈ F ) such that the above conditions (a)′, (b)′

and (c)′ are satisfied. Now, we set

r := r ′ + LD≤(d) and qf := q ′f for all f ∈ F.

As supp(r) ⊆ supp(r ′) ∪ {LE≤(d)} and LE≤(qf f ) ≤ LE(d ′) ≤ LE≤(d) for all
f ∈ F with qf �= 0 the requirements (a),(b) and (c) are again satisfied for the
suggested choice.

Now, we are ready to introduce the basic notion of this section: the concept of
Gröbner basis.

Definition, Reminder and Exercise 1.12.6 (A) (Monomial Ideals) An ideal I ⊆ P

is called a monomial ideal if there is a set S ⊂M = {YνZμ | ν,μ ∈ N
n
0} such that

I =
∑

s∈S
Ps.

Show that in this situation for all m ∈M \ {0} we have

(a) If m = ∑t
i=1 fisi with s1, s2, . . . , st ∈ S and f1, f2, . . . , ft ∈ P, then there is

some i ∈ {1, 2, . . . , t} and some ni ∈ supp(fi) such that m = nisi .
(b) m ∈ I if and only if there are n ∈M and some s ∈ S such that m = ns.

(B) (Leading Monomial Ideals) Let ≤∈ AO(E) and T ⊂W. Then, the ideal

LMI≤(T ) :=
∑

d∈T \{0}
PLM≤(d)

is called the leading monomial ideal of T with respect to ≤.
Prove that for all m ∈ M, we have the following statements.

(a) If m = ∑s
i=1 fiLM≤(ti) with t1, t2, . . . , ts ∈ T and f1, f2, . . . , fs ∈ P, then

there is some i ∈ {1, 2, . . . , s} and some ni ∈ supp(fi) such that ti �= 0 and
m = niLM≤(ti).

(b) m ∈ LMI≤(T ) if and only if there are elements u ∈ E and t ∈ T such that
m = LM≤(u)LM≤(t).
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(C) (Gröbner Bases) Let ≤∈ AO(E) and let L ⊆ W be a left ideal. A Gröbner
basis of L with respect to ≤ (or a ≤-Gröbner basis of L) is a subset G ⊆ L such
that

#G <∞ and LMI≤(L) = LMI≤(G).

Prove the following facts:

(a) If G is a ≤-Gröbner basis of L and G ⊆ H ⊆ L with #H < ∞, then H is a
≤-Gröbner basis of L.

(b) If G is a ≤-Gröbner basis of L, then for each d ∈ L \ {0} there is some u ∈ E

and some g ∈ G \ {0} such that

LM≤(d) = LM≤(u)LM≤(g) = LM≤(ug).

(c) IfG is a≤-Gröbner basis ofL, then for each d ∈ L\{0} there is some monomial
m = Y νZμ ∈ P and some g ∈ G \ {0} such that

LM≤(d) = mLM≤(g).

Now, we prove that Gröbner bases always exist, and that they deserve the
name of ”basis“, as they generate the involved left ideal. Clearly, these statements
correspond precisely to well known facts in multi-variate polynomial rings. After
having established the announced existence and generating property of Gröbner
bases, we shall add a few examples and exercises on the subject.

Proposition 1.12.7 (Existence and Generating Property of Gröbner Bases) Let
≤∈ AO(E) and let L ⊆W be a left ideal. Then the following statements hold.

(a) L admits a ≤-Gröbner basis.
(b) If G is any ≤-Gröbner basis of L, then L =∑g∈GWg.

Proof

(a): This is clear as the ideal LMI≤(L) is generated by finitely many elements of
the form LM≤(g) with g ∈ L.

(b): Let G ⊆ L be a ≤-Gröbner basis of L and assume that
∑

g∈GWg � L. As
≤∈ WO(E), we find some e ∈ L \∑g∈GWg such that

LE(e) = min≤ {LE≤(d) | d ∈ L \
∑

g∈G
Wg}.

By Definition, Reminder and Exercise 1.12.6 (C)(b) we find some u ∈ E and
some g ∈ G such that

LM≤(e) = LM≤(u)LM≤(g).
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Setting

v := −LC≤(e)
LC≤(g)

u

we now get on use of Proposition 1.12.4 (a) that

LT≤(e) = LC≤(e)LM≤(e) = LC≤(e)LM≤(u)LM≤(g)

= LC≤(e)LT≤(u)
1

LC≤(g)
LT≤(g) = LC≤(e)

LC≤(g)
LT≤(u)LT≤(g)

= −LT≤(v)LT≤(g) = −LT≤(vg).

As e /∈∑g∈GWg and g ∈ G, we have

e + vg ∈ L \
∑

g∈G
Wg.

In particular e + vg �= 0. So by Definition, Reminder and Exercise 1.12.2
(D)(d) it follows that

LE≤(e + vg) < LE≤(e) = min≤ {LE≤(d) | d ∈ L \
∑

g∈G
Wg}.

But this is a contradiction.

Now, we add the previously announced examples and exercises.

Examples and Exercises 1.12.8 (A) (Leading Monomial Ideals) Keep the above
notations and hypotheses. Prove the following statements:

(a) Let d ∈W\{0} and≤∈ AO(E). Prove that LMI≤(Wd) is a principal ideal.
(b) Let n = 1, X1 =: X and ∂1 =: ∂ . Set L := W(X2 − ∂) +W(X∂) and

determine LMI≤(L) for ≤:=≤lex,≤deglex and ≤:=≤degrevlex.

(B) (Gröbner Bases) Keep the above notations and hypotheses. Prove the following
statements:

(a) Let the notations be as in exercise (a) of part (A) and prove that {cd} is a≤-
Gröbner basis of Wd for all c ∈ K \ {0}, and that any singleton≤-Gröbner
bases of Wd is of the above form.

(b) Let the notations and hypotheses be as in exercise (b) of part (A) and
compute a ≤-Gröbner basis for ≤:=≤lex,≤deglex and ≤:=≤degrevlex

We now head for another basic result on Gröbner bases, which says that these
bases enjoy a certain restriction property. This will be an important ingredient in our
treatment of Universal Gröbner bases. We begin with the following preparations.
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Notation 1.12.9 (A) For any set S ⊆ W we write (see also Definition, Reminder
and Exercise 1.12.2 (D)):

supp(S) :=
⋃

s∈S
supp(s) and Supp(S) :=

⋃

s∈S
Supp(s).

(B) Let ≤∈ TO(E) (see Definition, Reminder and Exercise 1.12.2 (A)) and let T ⊂
E. We write ≤�T for the restriction of ≤ to T , thus—if we interpret binary
relations on a set S as subsets of S × S:

≤�T := ≤ ∩(T × T ), so that : d ≤�T e⇔ d ≤ e for all d, e ∈ T .

Proposition 1.12.10 (The Restriction Property of Gröbner Bases) Let L ⊆ W

be a left ideal. Let≤,≤′∈ AO(E) and let G be a≤-Gröbner basis of L. Assume that

≤�Supp(G) = ≤′�Supp(G) .

Then G is also a ≤′-Gröbner basis of L.

Proof Let d ∈ L \ {0}. We have to show that LM≤′(d) ∈ LMI≤′(G). We may
assume that 0 /∈ G. If we apply Proposition 1.12.5 to the ordering ≤′, we find an
element r and a family (qg)g∈G ∈W

G such that

(1) d =∑g∈G qgg + r;
(2) Φ(s) /∈ PLM≤′(g) for all g ∈ G and all s ∈ Supp(r).
(3) LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G with qg �= 0.

Our immediate aim is to show that r = 0. Assume to the contrary that r �= 0. As
r ∈ L and G is a ≤-Gröbner basis of L, we get LM≤(r) ∈ LMI≤(G). So, there
is some g ∈ G such that LM≤(r) = mLM≤(g) for some m ∈ M (see Definition,
Reminder and Exercise 1.12.6 (C)(c)). As≤�Supp(G) = ≤′�Supp(G) it follows that

Φ
(
LT≤(r)

) = LM≤(r) ∈ PLM≤′(g).

As LT≤(r) ∈ Supp(r), this contradicts the above condition (2). Therefore r = 0.
But now, we may write

d =
∑

g∈G∗
qgg, whith G∗ := {g ∈ G | qg �= 0}.

By the above condition (3) we have LE≤′(qgg) ≤′ LE≤′(d) for all g ∈ G∗. So,
there is some g ∈ G∗ such that LE≤′(d) = LE≤′(qgg) (see Definition, Reminder
and Exercise 1.12.2 (D)(d)), and hence LM≤′(d) = LM≤′(qgg). Thus, on use of
Proposition 1.12.4 (b) we get indeed

LM≤′(d) = LM≤′(qg)LM≤′(g) ∈ LMI≤′(G).

Now, we shall introduce the central concept of this section.
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Definition 1.12.11 (Universal Gröbner Bases) Let L ⊆ W be a left ideal. A
universal Gröbner basis of L is a (finite) subset G ⊂W which is a ≤-Gröbner basis
for all ≤∈ AO(E).

Universal Gröbner bases have been studied by Sturmfels [41] in the polynomial
ring K[X1,X2, . . . , Xn]—and indeed this notion can be immediately extended
to the Weyl algebra W. Gröbner bases for left ideals in the Weyl algebra were
introduced by Assi, Castro-Jiménez and Granger [3] and also by Saito et al. [38].

Clearly, our next aim should be to show, that universal Gröbner bases always
exist. There are indeed various possible ways to prove this. Here, we shall do this
by a topological approach which relies on an idea of Sikora [40], and which can
be found in greater generality in Boldini’s thesis [11]. We approach the subject
by first introducing a natural metric on the set of total orderings of all elementary
differential operators. Then, we make the reader prove in a series of exercises, that
we get a complete metric space in this way.

Definition, Exercise and Convention 1.12.12 (A) (The Natural Metric on the Set
TO(E)) For all i ∈ Z we introduce the notation

Ei := {e ∈ E | deg(e) ≤ i} = {Xν∂μ | |ν| + |μ| ≤ i}.

We define a map

dist : TO(E)× TO(E) −→ R, given by for all ≤,≤′∈ TO(E) by

dist(≤,≤′) :=
{

2−sup{r∈N0|≤�Er = ≤′�Er }, if ≤�=≤′,
0, if ≤=≤′ .

Prove that

(a) For all ≤,≤′∈ TO(E) and all r ∈ N0 we have

dist(≤,≤′) < 1

2r
if and only if ≤�Er+1 = ≤′�Er+1 .

(b) The map dist : TO(E)× TO(E) −→ R is a metric on TO(E).

From now on, we always endow TO(E) with this metric and the induced Hausdorff
topology.

(B) (Completeness of the Metric Space TO(E)) Let (≤i )i∈N0 be a Cauchy
sequence in TO(E). This means:

For all r ∈ N0 there is some n(r) ∈ N0 such that dist(≤i ,≤j ) < 1

2r
for all i, j ≥ n(r).
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We introduce the binary relation ≤⊆ E× E given for all d, e ∈ E by

d ≤ e if and only if d ≤i e for all i � 0.

Prove the following statements:

(a) If r ∈ N0, d, e ∈ Er+1, and i, j ≥ n(r), then d ≤i e if and only if d ≤j e.
(b) If r ∈ N0, d, e ∈ Er+1, and i ≥ n(r), then d ≤i e if and only if d ≤ e.
(c) ≤∈ TO(E).
(d) If r ∈ N0, and i ≥ n(r), then dist(≤i ,≤) ≤ 1

2r .
(e) limi→∞ ≤i=≤.
(f) TO(E) is a complete metric space.

Now, we are ready to prove the basic ingredient of our existence proof for
universal Gröbner bases.

Proposition 1.12.13 (Compactness of the Space of Total Orderings) The space
TO(E) is compact.

Proof Let (≤i )i∈N0 be a sequence in TO(E). It suffices to show, that (≤i )i∈N0

has a convergent subsequence. Bearing in mind Definition, Exercise and Conven-
tion 1.12.12 (B)(f) (or (e)), it suffices to find a subsequence of (≤i )i∈N0 which is
a Cauchy sequence. Observe that all the sets Er are finite. We want to construct a
sequence (Sr )r∈N0 of infinite subsets Sr ⊆ N0 such that for all s ∈ N0 we have

(1) Ss+1 ⊆ Ss .
(2) ≤j �Es+1 = ≤k�Es+1 for all j, k ∈ Ss .

We construct the members Sr of the sequence (Sr )r∈N0 by induction r . As E1 is
finite, we can find an infinite set S0 ⊆ N0 such that requirement (2) is satisfied with
s = 0. Now, let r > 0 and assume that the sets S0,S1, . . . ,Sr are already defined
such that requirement (1) holds for all s < r and requirement (2) holds for all s ≤ r .
As Er+2 is finite, we find an infinite subset Sr+1 ⊆ Sr (which hence satisfies
requirement (1) for s = r) such that requirement (2) is also satisfied with s = r + 1.
This completes the step of induction and hence proves that a sequence (Sr )r∈N0 with
the requested properties exists.
Now, we may choose a sequence (ik)k∈N0 in N0, such that

ir < ir+1 and ir ∈ Sr for all r ∈ N0.

In particular it follows that

≤ij �Er+1 = ≤ik�Er+1 for all j, k ≥ r

and hence (see Definition, Exercise and Convention 1.12.12 (A)(a))

dist(≤ij ,≤ik ) <
1

2r
for all j, k ≥ r.
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So, the constructed subsequence (≤ik )k∈N0 of our original sequence (≤i )i∈N0 is
indeed a Cauchy sequence.

What we need indeed to prove our main result, is the compactness of subspace
of admissible orderings in the topological space of total orderings.

Proposition 1.12.14 (Compactness of the Space of Admissible Orderings) The
set AO(E) is a closed subset of TO(E) and hence compact.

Proof Let (≤i )i∈N0 be sequence in AO(E), which converges in TO(E) and let

limi→∞ ≤i = ≤ .

We aim to show, that ≤∈ AO(E). According to Definition, Reminder and Exer-
cise 1.12.2 (C), we must show, that for all λ, λ′, κ, κ ′, ν, μ ∈ N

n
0 the following

statements hold.

(1) 1 ≤ Xν∂μ.
(2) If Xλ∂κ ≤ Xλ′∂κ

′
then Xλ+ν∂κ+μ ≤ Xλ′+ν∂κ

′+μ.

So, fix λ, λ′, κ, κ ′, ν, μ ∈ N
n
0. Then we find some r ∈ N0 such that all the

elementary differential operators which occur in (1) and (2) belong to Er+1. Now,
we find some i ∈ N0 such that dist(≤i ,≤) < 1

2r , hence such that ≤�Er+1 =
≤i�Er+1 . As ≤i∈ AO(E) the required inequalities hold for ≤i . But then, by the
coincidence of ≤ and ≤i on Er+1, they hold also for ≤.

Now, after having established the following auxiliary result, we are ready to
prove the announced main result.

Lemma 1.12.15 Let L ⊂W be a left ideal and let G ⊆ L be a finite subset. Then,
the set

UL(G) := {≤∈ AO(E) | G is a ≤ − Gröbner basis of L}

is open in AO(E).

Proof We may assume that UL(G) is not empty and choose ≤∈ UL(G). We find
some r ∈ N0 with supp(G) ⊆ Er+1. Let ≤′∈ AO(E) such that dist(≤,≤′) < 1

2r .
So, we obtain that ≤�Er+1 = ≤′�Er+1 and hence in particular that ≤�Supp(G) =
≤′�Supp(G). By Proposition 1.12.10 it follows that G is a ≤′-Gröbner basis of L and
hence that ≤′∈ UL(G). But this means, that the open neighborhood

{≤′∈ AO(E) | dist(≤′,≤) < 1

2r
}

of ≤ belongs to UL(G).
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Theorem 1.12.16 (Existence of Universal Gröbner Bases) Each left ideal L of
W admits a universal Gröbner basis.

Proof Let L ⊆W be a left ideal. For each≤∈ AO(E) we choose a≤-Gröbner basis
G≤ of L. In the notations of Lemma 1.12.15 we have≤∈ UL(G≤). So, by this same
Lemma the family

(
UL(G≤)

)
≤∈AO(E)

is an open covering of AO(E). By Proposition 1.12.14 we thus find finitely many
elements

≤1,≤2, . . . ,≤r∈ AO(E)

such that

AO(E) =
r⋃

i=1

UL(G≤i ).

Let ≤∈ AO(E). Then ≤∈ UL(G≤i ) for some i ∈ {1, 2, . . . , r}. Therefore G≤i is a
≤-Gröbner basis of L. So

⋃r
i=1 G≤i is a Gröbner basis of L for all ≤∈ AO(E).

As a first application of the previous existence result we get the following
finiteness result.

Corollary 1.12.17 (Finiteness of the Set of Leading Monomial Ideals) Let L ⊆
W be a left ideal. Then the set

{LMI≤(L) |≤∈ AO(E)}

of all leading monomial ideals of L with respect to admissible orderings of E is
finite.

Proof Let G ⊆ L be a universal Gröbner basis of L. Then we have

{LMI≤(L) |≤∈ AO(E)} = {LMI≤(G) |≤∈ AO(E)}.

Therefore

#{LMI≤(L) |≤∈ AO(E)} ≤ #{
∑

h∈H
PΦ(h) | H ⊆ supp(G)}

≤ #{H ⊆ supp(G)} = 2#supp(G).
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1.13 Weighted Orderings

This section is devoted to the study of admissible orderings which are compatible
with a given weight and the related notion of weighted (admissible) ordering. Such
weighted orderings were first studied by Assi, Castro-Jiménez and Granger [3] and
by Saito et al. [38].
In relation to these weighted orderings, we shall introduce the fundamental notion
of symbol of a differential operator with respect to a given weight. We will see,
that these symbols, which are indeed polynomials, behave again multiplicatively.
Moreover, we shall see that the symbols of all members of a Gröbner basis of a given
left ideal generate the so-called induced ideal of the given left ideal. Our ultimate
goal is to prove, that the number of characteristic varieties of given D-module with
respect to all weights is finite. Moreover, we shall prove a certain stability result for
characteristic varieties found in Boldini’s thesis [11], which is published in [12].

Notation 1.13.1 (A) As previously, we fix a positive integer n, a field K of
characteristic 0 and consider the standard Weyl algebra

W :=W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n],
the polynomial ring

P := K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]
in the indeterminates Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn with coefficients in the field
K and the isomorphism of K-vector spaces

Φ :W ∼=−→ P, Xν∂μ �→ Y νZμ for all ν,μ ∈ N
n
0 .

(B) We also write

Ω := {(v,w) ∈ N
n
0 × N

n
0 | (vi , wi) �= (0, 0) for all i = 1, 2, . . . , n} ⊂ N

n
0 ×N

n
0

for the set of all weights. If

ω = (v,w) ∈ Ω

we also use the suffix ω instead of the suffix vw in all the previously introduced
notations. So we write for example

W
ω• :=W

vw• , degω(d) := degvw(d), P
ω := P

vw, . . .

Observe, that

ω + α ∈ Ω and sω ∈ Ω for all ω, α ∈ Ω and all s ∈ N,

where the arithmetic operations are performed in N
2n
0 .
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Now, we introduce the concept of admissible orderings which are compatible
with a given weight.

Definition and Exercise 1.13.2 (A) (Weight Compatible Orderings) We fix a
weight and an admissible ordering of the set E of elementary differential operators
in W (see Definition, Reminder and Exercise 1.12.2 (C)):

ω = (v,w) ∈ Ω and ≤∈ AO(E).

We say that ≤ is compatible with the weight ω = (v,w) ∈ Ω (or ω-compatible), if
for all d, e ∈ E we have:

If degω(d) < degω(e), then d < e.

So, ≤ is compatible with ω = (v,w) if and only if for all ν,μ, ν ′, μ′ ∈ N
n
0 we have

the following implication:

If νv + μw < ν′v + μ′w, then Xν∂μ < Xν ′∂μ
′
.

We set

AOω(E) = AOvw(E) := {≤∈ AO(E) | ≤ is compatible with ω = (v,w)}.

(B) (Weighted Admissible Orderings) Keep the notations and hypotheses of part
(A). We define a new binary relation

≤ω=≤vw⊆ E× E

on E, by setting, for all d, e ∈ E:

d ≤ω e if

{
either degω(d) < degω(e)

or else degω(d) = degω(e) and d < e.

Prove that for each weight ω = (v,w) ∈ Ω and each ≤∈ AO(E) the following
statements hold.

(a) ≤ω∈ AOω(E).
(b) (≤ω)ω = ≤ω.
(c) ≤∈ AOω(E) if and only if ≤ = ≤ω.

The admissible ordering ≤ω∈ AO(E) is called the ω-weighted ordering associated
to ≤.

Another important concept, which was already mentioned in the introduction to
this section, is the notion of symbol of a differential operator. We now will introduce
this notion after a few preparatory steps.
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Definition and Exercise 1.13.3 (A) Let ω = (v,w) ∈ Ω , let i ∈ N0 and let

d =
∑

(ν,μ)∈supp(d)

c(d)νμX
ν∂μ ∈W with c(d)νμ ∈ K \ {0} for all (ν, μ) ∈ supp(d).

We set

suppωi (d) := {(ν, μ) ∈ supp(d) | νv + μw = i}.

and

d
ω

i = d
vw

i :=
∑

(ν,ν)∈suppωi (d)

c(d)νμX
ν∂μ.

Prove that for all d, e ∈ W, all i, j ∈ N0 and for all weights ω = (v,w) ∈ Ω the
following statements hold:

(a) If i > degω(d), then dωi = 0.
(b) d

ω

i = (d
ω

i )
ω

i .
(c) (d + e)

ω

i = d
ω

i + e
ω

i .
(d) If d, e �= 0, i := degω(d) and j := degω(e), then

suppωi+j (de) = {(ν+ν ′, μ+μ′) | (ν, μ) ∈ suppωi (d) and (ν′, μ′) ∈ suppωj (e)}.

(e) If d, e �= 0, i := degω(d) and j := degω(e), then

(de)
ω

i+j =
∑

(ν,μ)∈suppωi (d),(ν
′,μ′)∈suppωj (e)

c(d)νμ c
(e)

ν′μ′X
ν+ν ′∂μ+μ

′
.

(B) Keep the notations and hypotheses of part (A). We set

σ
ω

i (d) := Φ
(
d
ω

i

) =
∑

(ν,ν)∈suppωi (d)

c(d)νμY
νZμ.

Prove on use of statements (a)–(e) of part (A) that for all d, e ∈ W, all i, j ∈ N0
and for all weights ω = (v,w) ∈ Ω the following statements hold:

(a) σ
ω

i (d) := σ
ω

i (d
ω

i ).
(b) If i > degω(d), then σ

ω

i (d) = 0.
(c) σ

ω

i (d) = σ
ω

i (d
ω

i ).
(d) σ

ω

i (d + e) = σ
ω

i (d)+ σ
ω

i (e).
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(C) (The Symbol of a Differential operator with Respect to a Weight) Keep the
notations of part (A), (B). We define the ω = (v,w)-symbol of the differential
operator d ∈W by

σω(d) :=
{

0 if d = 0,

σ
ω

degω(d)(d) if d �= 0.

Prove that for all d, e ∈W \ {0} the following statements hold.

(a) σω(d) = Φ(d
ω

degω(d)) = σω
(
d
ω

degω(d)(d)
)
.

(b) σω(d + e) =
{
σω(d)+ σω(e) if degω(d) = degω(e) = degω(d + e)

σω(d) if degω(d) > degω(e).

First, we now prove that symbols behave well with respect to products of
differential operators.

Proposition 1.13.4 (Multiplicativity of Symbols) Let ω = (v,w) ∈ Ω and let
d, e ∈W. Then

σω(de) = σω(d)σω(e).

Proof If d = 0 or e = 0, our claim is obvious. So, let d, e �= 0. We write i :=
degω(d) and j := degω(e). Observe that degω(de) = i + j . So, by Definition and
Exercise 1.13.3 (A)(e) we have

σω(de) = σ
ω

i+j (de) = Φ
(
(de)

ω

i+j
)

= Φ
( ∑

(ν,μ)∈suppωi (d),(ν
′,μ′)∈suppωj (e)

c(d)νμ c
(e)

ν′μ′X
ν+ν ′∂μ+μ

′)

=
∑

(ν,μ)∈supp
ω

i (d),(ν
′,μ′)∈supp

ω

j (e)

c(d)νμ c
(e)

ν ′μ′Y
ν+ν′Zμ+μ′

= (
∑

(ν,μ)∈suppωi (d)

c(d)νμ Y
νZμ

)( ∑

(ν′,μ′)∈suppωj (e)

c
(e)

ν ′μ′Y
ν ′Zμ′)

= Φ(d
ω

i )Φ(e
ω

j ) = σ
ω

i (d)σ
ω

j (e) = σω(d)σω(e).

In Definition and Remark 1.11.5 we have seen, that each left ideal L of the
standard Weyl algebra W induces a graded ideal in the associated graded ring with
respect to a given weight. These induced ideals will play a crucial role in our future
considerations. We just revisit now these ideals.
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Reminder, Definition and Exercise 1.13.5 (A) (Induced Graded Ideals) Let L ⊂
W be a left ideal, let ω = (v,w) ∈ Ω be a weight and let us consider the ω-graded
ideal (see Definition and Remark 1.11.5)

G
ω(L) :=

⊕

i∈Z

(
(L∩Wω

i )+W
ω

i−1

)
/W

ω

i−1
∼=
⊕

i∈Z
L
ω

i /L
ω

i−1 = GrLω• (L) ⊆ G
ω(W),

where

Lω• = L ∩W
ω• :=

(
L ∩W

ω

i

)
i∈N0

is the filtration induced on L by the weighted filtration W
ω• . We now consider the

ω-graded ideal of Pω = P given by

G
ω
(L) := (ηω)−1(

G
ω(L)

)
,

where

ηvw = ηω : P = P
ω

∼=−→ G
ω.

is the canonical isomorphism of graded rings of Theorem 1.9.4. We call G
ω
(L) the

(ω-graded) ideal induced by L in P.
(B) Let the notations and hypotheses be as part (A). Fix i ∈ N0 and consider the

i-th ω-graded part

G
ω
(L)i = G

ω
(L) ∩ P

ω

i = (ηω)−1(
G
ω

i

)

of the ideal G
ω
(L) ⊆ P. Prove the following statements:

(a) Let d ∈ L with degω(d) = i and let d := d +W
ω

i−1 ∈ G
ω(L)i . Then it holds

(ηω)−1(d) = Φ(d
ω

i ) = σω(d) ∈ G
ω
(L)i.

(b) Each element h ∈ G
ω(L)i \ {0} can be written as

h = σω(d), with d ∈ L and degω(d) = i.

(C) (The Induced Exact Sequence Associated to a Left Ideal with Respect to a
Weight) Keep the above notations and hypotheses. Prove the following statements:

(a) There is a short exact sequence of graded P
ω-modules

0 −→ G
ω
(L) −→ G

ω −→ Gr
W

ω•K1(W/L) −→ 0,

where 1 := 1+ L ∈W/L and W
ω•K1 is the ω -filtration induced on the cyclic

D-module W/L by its subspace K1.
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(b) AnnP
(
Gr

W
ω•K1(W/L)

) = G
ω
(L).

(c) V
ω(W/L) = Var

(
G
ω
(L)
)
.

We call this sequence the short exact sequence associated to the left ideal L with
respect to the weight ω.

Now, we are ready to formulate and to prove a result which we already announced
in the introduction to this section. It relates the symbols of the members of a Gröbner
bases of a left ideal with the induced ideal with respect to a given weight.

Proposition 1.13.6 (Generation of the Induced Ideal by the Symbols of a
Gröbner Basis) Let ω ∈ Ω , let L ⊆ W be a left ideal, let ≤∈ AO(E) and let
G be a ≤ω-Gröbner basis of L. Then it holds

(a) G
ω
(L) =∑g∈G Pσω(g).

(b) For each h ∈ G
ω
(L) \ {0} there is some g ∈ G \ {0} and some monomial

m = Y νZμ ∈ P such that

LM≤
(
Φ−1(h)

) = mLM≤
(
Φ−1(σω(g))

)
.

Proof (a): As the ideal G
ω
(L) ⊆ P

ω is graded, it suffices to show, that for each
i ∈ N0 and each h ∈ G

ω
(L)i \ {0} we have h ∈∑g∈G Pσω(g). So, fix i ∈ N0 and

assume that h /∈ ∑g∈G Pσω(g) for some h ∈ G
ω
(L)i \ {0}. Then, by Reminder,

Definition and Exercise 1.13.5 (B)(b), the set

S := {e ∈ L | degω(e) = i and σω(e) /∈
∑

g∈G
Pσω(g)}

is not empty. Choose d ∈ S such that

LE≤ω(d) = min≤ω{LE≤ω(e) | e ∈ S}.
As G is a ≤ω-Gröbner basis of L we find some g ∈ G and some u ∈ E such
that LM≤ω(d) = LM≤ω(ug) (see Definition, Reminder and Exercise 1.12.6 (C)(b)).
With

v := LC≤ω(d)

LC≤ω(g)
u

it follows that LE≤ω(d) = LE≤ω(vg), hence

LD≤ω(d) = LC≤ω(d)LE≤ω(d) = LC≤ω(d)LE≤ω(ug) = LD≤ω(vg)

and degω(vg) = i. So, by Definition, Reminder and Exercise 1.12.2 (D)(d) we may
conclude that either

(1) degω(d − vg) < i, or else
(2) degω(d − vg) = i and LE≤ω(d − vg) < LE≤ω(d).
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In the case (1) we have (see Definition and Exercise 1.13.3 (C)(b) and Proposi-
tion 1.13.4)

σω(d) = σω(d − (d − vg)) = σω(vg)) = σω(v)σω(g) ∈
∑

g∈G
Pσω(g)

and hence get a contradiction.
So, assume that we are in the case (2). As d − vg ∈ L it follows by our choice of d ,
that σω(d − vg) ∈∑g∈G Pσω(g). Observe that we have

i = degω(d − vg) = degω(vg) = degω(d) = degω
(
(d − vg) + vg

)
.

So, by Definition and Exercise 1.13.3 (C)(b) and by Proposition 1.13.4 we have

σω(d) = σω
(
(d − vg)+ vg

) = σω(d − vg)+ σω(vg)

= σω(d − vg)+ σω(v)σω(g) ∈
∑

g∈G
Pσω(g),

and this is again a contradiction.
(b): We find some i ∈ N0 such that LM≤

(
Φ−1(h)

) = LM≤
(
Φ−1(h

ω

i (h))
)
. As

the ideal G
ω
(L) ⊆ P

ω is graded, we have hωi (h) ∈ G
ω
(L). So we may assume, that

h ∈ G
ω
(L)i \ {0}. Now, by Reminder, Definition and Exercise 1.13.5 (B), we find

some d ∈ L with degω(d) = i and Φ−1(h) = d
ω

i , whence

LM≤
(
Φ−1(h)

) = LM≤(dωi ) = LM≤ω(d).

As G is a ≤ω-Gröbner basis of L, we find some g ∈ G \ {0} with degω(g) = j

and some monomial m = Y νZμ ∈ P such that (see Definition, Reminder and
Exercise 1.12.6 (C)(c) and also Definition and Exercise 1.13.3 (C)(a))

LM≤ω(d) = mLM≤ω(g) = mLM≤(gωj ) = mLM≤
(
Φ−1(σ

ω

j (g))
)
,

and so we get our claim.

Now, we are ready to prove our first basic finiteness result. It says that the set of
all induced ideals of a given left ideal in the Weyl algebra is finite.

Corollary 1.13.7 (Finiteness of the Set of Induced Ideals) Let L ⊆ W be a left
ideal. Then, the following statements hold:

(a) #{Gω
(L) | ω ∈ Ω} <∞.

(b) #{Vω(W/L) | ω ∈ Ω} <∞.
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Proof (a): Let G be an universal Gröbner basis of L. Then, by Proposition 1.13.6,
for each ω ∈ Ω we have G

ω
(L) =∑g∈G Pσω(g). For each g ∈ G we write

g =
∑

(ν,μ)∈supp(g)

c(g)νμX
ν∂μ.

Then, for each ω ∈ Ω we have

σω(g) = Φ(g
ω

degω(g)
) =

∑

(ν,μ)∈suppω
degω(g)

(g)

c(g)νμY
νZμ.

Therefore

#{σω(g) | ω ∈ Ω} ≤ #{H ⊆ supp(g)} = 2#supp(g).

It follows that

#{Gω
(L) =

∑

g∈G
Pσω(g) | ω ∈ Ω} ≤ #{(σω(g)

)
g∈G ∈ P

G | ω ∈ Ω} ≤

≤
∏

g∈G
2#supp(g) = 2#supp(G).

(b): This follows immediately from statement (a) on use of Reminder, Definition
and Exercise 1.13.5 (C)(c).

The second statement of the previous result says that a given cyclic D-module
has only finitely many characteristic varieties, if ω runs through all weights. Our
first main theorem says, that this finiteness statement holds indeed for arbitrary D-
modules. To prove this, we first have to investigate the behavior of characteristic
varieties in short exact sequences of D-modules. This needs some preparations.

Exercise and Definition 1.13.8 (A) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Let V ⊆ U be a finitely generated K-vector
subspace such that U =WV . We endow Q with the filtration

Q• :=
(
ι−1(W

ω

i V )
)
i∈N0

.

Prove the following statements:

(a) For each i ∈ N0 there is a K-linear map

ιi : Qi/Qi−1 −→W
ω

i V /W
ω

i−1V, q +Qi−1 �→ ι(q)+W
ω

i−1V.
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(b) For each i ∈ N0 there is a K-linear map

πi :Wω

i V/W
ω

i−1V −→W
ω

i π(V )/W
ω

i−1π(V ), q+W
ω

i−1V �→ π(q)+W
ω

i−1π(V ).

(c) For each i ∈ N0 it holds

π−1(
W

ω

i−1π(V )
) = ι(Q)+W

ω

i−1V.

(d) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ Qi/Qi−1
ιi−→W

ω

i V /W
ω

i−1V
πi−→W

ω

i π(V )/W
ω

i−1π(V ) −→ 0.

(B) (The Graded Exact Sequence associated to a Short Exact Sequence of D-
Modules) Keep the hypotheses and notations of part (A). Prove the following
statements:

(a) For each i ∈ N0 there is a short exact sequence of K-vector spaces

0 −→ GrQ•(Q)i
ιi−→ Gr

W
ω• V (U)i

πi−→ Gr
W

ω• π(V )(P )i −→ 0.

(b) There is an exact sequence of graded P
ω-modules

0 −→ GrQ•(Q)
ι−→ Gr

W
ω• V (U)

π−→ Gr
W

ω• π(V )(P ) −→ 0,

with ι :=⊕i∈N0
ιi and π :=⊕i∈N0

πi .

The exact sequence of statement (b) is called the exact sequence induced by the

exact sequence 0 → Q
ι→ U

π→ P → 0 and the generating vector space V of U .
(C) Keep the previous notations and hypotheses. Prove the following

statements:

(a) For each finitely generated K-vector subspace T ⊆ Q with Q = WT and
V ⊆ ι(T ), the two filtrations Q• and W

ω• T of Q are equivalent.
(b) Var

(
AnnP(GrQ•(Q))

) = V
ω(Q).

Now, we can prove the crucial result, needed to extend the previous finiteness
statement for characteristic varieties from cyclic to arbitrary D-modules.

Proposition 1.13.9 (Additivity of Characteristic Varieties) Let ω ∈ Ω and let

0 −→ Q
ι−→ U

π−→ P −→ 0

be an exact sequence of D-modules. Then it holds

V
ω(U) = V

ω(Q) ∪ V
ω(P ).
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Proof We fix a finitely generated K-vector subspace V ⊆ U with WV = U

and consider the corresponding induced short exact sequence (see Exercise and
Definition 1.13.8 (B))

0 −→ GrQ•(Q)
ι−→ Gr

W
ω• V (U)

π−→ Gr
W

ω• π(V )(P ) −→ 0.

On use of Exercise and Definition 1.13.8 (C)(b) we obtain

V
ω(U) = Var

(
AnnP(Gr

W
ω• V (U))

)

= Var
(
AnnP(GrQ•(Q))

) ∪ Var
(
AnnP(Gr

W
ω• π(V )(P ))

) = V
ω(Q) ∪ V

ω(P ).

Now, we are ready to prove the announced first main theorem of this section.

Theorem 1.13.10 (Finiteness of the Set of Characteristic Varieties) Let U be a
D-module. Then

#{Vω(U) | ω ∈ Ω} <∞.

Proof We proceed by induction on the number r of generators of U . If r = 1 we
have U ∼= W/L for some left ideal L ⊆ W. In this case, we may conclude by
Corollary 1.13.7 (b). So, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we have

#{Vω(Q) | ω ∈ Ω} <∞ and #{Vω(P ) | ω ∈ Ω} <∞.

By Proposition 1.13.9 we also have

{Vω(U) | ω ∈ Ω} = {Vω(Q) ∪V
ω(P ) | ω ∈ Ω},

hence

#{Vω(U) | ω ∈ Ω} ≤ #{Vω(Q) | ω ∈ Ω} + #{Vω(P ) | ω ∈ Ω} <∞.

As already announced in the introduction to this section, our ultimate goal is to
establish a certain stability result for characteristic varieties of a given D-module.
To pave the way for this, we perform a number of preparatory considerations, which
are the subject of the exercises to come.

Definition and Exercise 1.13.11 (A) (Leading Forms) We consider the polynomial
ring P. Let

f =
∑

(ν,μ)∈supp(f )

c(f )νμ Y
νZμ ∈ P with c(f )νμ ∈ K \ {0} for all (ν, μ) ∈ supp(f ).
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We set

suppωi (f ) := {(ν, μ) ∈ supp(f ) | νv + μw = i}
and consider the i − th homogeneous component of f with respect to ω, thus the
polynomial

f
ω

i = f
vw

i :=
∑

(ν,ν)∈suppωi (f )

c(f )νμ Y
νZμ.

The leading form of f with respect to the weight ω is defined by

LFω(f ) :=
{

0 if f = 0,

f
ω

degω(f ) if f �= 0.

Prove that for all f, g ∈ P, all i, j ∈ N0 and for all weights ω = (v,w) ∈ Ω the
following statements hold:

(a) If i > degω(f ), then f
ω

i = 0.
(b) f

ω

i = f
ω

i (f
ω

i ).
(c) (f + g)

ω

i = f
ω

i + g
ω

i .
(d) (fg)

ω

i =
∑

j+k=i f
ω

j g
ω

k .

(e) LFω(fg) = LFω(f )LFω(g).
(f) LF(f ) = f if and only if f is homogeneous with respect to the ω-grading of P.
(g) If d ∈W, then σω(d) = LFω

(
Φ(d)

)
.

(B) (Leading Form Ideals) Keep the notations and hypotheses of part (A). If
S ⊂ P is any subset, we define the leading form ideal of S with respect to ω by

LFIω(S) :=
∑

f∈S
PLFω(f ).

Let S ⊆ T ⊆ P and ≤∈ AO(E). Prove the following statements:

(a) LFIω(S) ⊆ LFIω(T ).
(b) If for each t ∈ T \ {0} there is some monomial m = Y νZμ ∈ M ⊂ P and

some s ∈ S such that LM≤ω

(
Φ−1(t)

) = mLM≤ω

(
Φ−1(s)

)
, then LFIω(S) =

LFIω(T ).
(c) For each ideal I ⊆ P it holds

√
LFIω(I) =

√
LFIω(

√
I ).

(d) If I, J ⊆ P are ideals, then

(1) LFIω(I ∩ J ) ⊆ LFIω(I) ∩ LFIω(I) and LFIω(I)LFIω(J ) ⊆ LFIω(IJ );
(2)

√
LFIω(I ∩ J ) = √LFIω(I) ∩ LFIω(J ) = √LFIω(I) ∩√LFIω(J ).
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The announced Stability Theorem for Characteristic Varieties we are heading
for, concerns the behavior of characteristic varieties under certain changes of the
involved weights. To prepare this new type of considerations, we suggest the
following exercise.

Exercise 1.13.12 (A) Prove that for all d ∈ W, all i, j ∈ N0, all s ∈ N and for
all weights α = (a, b), ω = (v,w) ∈ Ω the following statements hold (For the
unexplained notations see Definition and Exercise 1.13.3):

(a) supp
([dωi ]αj

) = suppωi (d)
⋂

suppαj (d).

(b) supp
([dωi ]αj

) ⊆ suppα+sωj+si (d).
(c) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d) − j , then the inclusion of

statement (b) becomes an equality.
(d) If i ≥ degω(d), j ≥ degα

(
d
ω

i ) and s > degα(d)− j , then

[dωi ]αj = d
α+sω
j+si .

(B) Prove on use of statements (a)–(d) of part (A) that for all d ∈W, all i, j ∈ N0,
all s ∈ N and for all weights ω = (v,w), α = (a, b) ∈ Ω the following statements
hold:

(a) σ
α

j (d
ω

i ) =
∑

(ν,μ)∈suppωi (d)∩suppαj (d)
c
(d)
νμY

νZμ = σ
ω

i (d
α

j ).

(b) If i ≥ degω(d), j ≥ degα(dωi ) and s > degα(d)− j , then

[σω

i (d)]αj = σ
α+sω
j+si (d).

The next two auxiliary results are of fairly technical nature. But they will play a
crucial role in the proof of our Stability Theorem.

Lemma 1.13.13 Let α,ω ∈ Ω , let d ∈W \ {0} and let s ∈ N such that

s > degα(d)− degα
(
σω(d)

)
.

Then, the following statements hold:

(a) degα+sω(d) = degα
(
σω(d)

)+ sdegω(d).
(b) LFα

(
σω(d)

) = σα+sω(d).

Proof We write

i := degω(d) and j := degα
(
σω(d)

)
.

Observe, that σω(d) = σ
ω

i (d) = Φ(d
ω

i ), so that

j = degα
(
σω(d)

) = degα(dωi ) and also s > degα(d)− j.
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Now, by Exercise 1.13.12 (B)(b) we obtain

LFα
(
σω(d)

) = [σω

i (d)]αj = σ
α+sω
j+si (d).

It remains to show that

j + si = degα+sω(d).

As LFα
(
σω(d)

) �= 0 we have σα+sω
j+si (d) �= 0 and hence j + si ≤ degα+sω(d) (see

Definition and Exercise 1.13.3 (B)(b)).
Assume that j + si > degα+sω(d). Then, we may write degα+sω(d) = k + si, with
k > j . It follows, that s > degα(d) − k. On application of Exercise 1.13.12 (B)(b)
we get that

[σω

i (d)]αk = σ
α+sω
k+si (d) = σα+sω(d) �= 0.

As k > j = degα
(
σω(d)

)
we have [σω

i (d)]αk = 0 (see Definition and
Exercise 1.13.11 (A)(a)). This contradiction completes our proof.

Lemma 1.13.14 Let L ⊆W be a left ideal, let α,ω ∈ Ω , let ≤∈ AO(E) and let G
be a (≤α)ω-Gröbner basis of L. Then

LFIα
(
G
ω
(L)
) = LFIα

({σω(g) | g ∈ G}).

Proof By Reminder, Definition and Exercise 1.13.5 (B)(a) we have

S := {σω(g) | g ∈ G \ {0}} ⊆ G
ω
(L) =: T

If we apply Proposition 1.13.6 (b) with ≤α instead of ≤, we see that for all t ∈
T there is some monomial m = Y νZμ ∈ M ⊂ P and some s ∈ S such that
LM≤α

(
Φ−1(t)

) = mLM≤α

(
Φ−1(s)

)
. By Definition and Exercise 1.13.11 (B)(b) it

follows that

LFIα
(
G
ω
(L)
) = LFIα(S) = LFIα(T ) = LFIα

({σω(g) | g ∈ G}).

Now, we are ready to formulate and to prove the announced stability result.

Theorem 1.13.15 (Stability of Induced Graded Ideals, Boldini [11, 12]) Let
L ⊆W be a left ideal and let α ∈ Ω . Then, there exists an integer s = s(α,L) ∈ N0
such that for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
G
ω
(L)
) = G

α+sω
(L).



102 M. Brodmann

Proof Let G be a universal Gröbner basis of L. Then, by Lemma 1.13.14, for each
ω ∈ Ω we have

LFIα
(
G
ω
(L)
) = LFIα

({σω(g) | g ∈ G}) =
∑

g∈G
PLFα

(
σω(g)

)
.

Now, we set

s := max{degα(g) | g ∈ G \ {0}}.
By Lemma 1.13.13 it follows that LFα

(
σω(g)

) = σα+sω(g) for all s ∈ N with
s > s, all ω ∈ Ω and all g ∈ G \ {0}. So, for all s ∈ N with s > s and all ω ∈ Ω

we have

LFIα
(
G
ω
(L)
) =

∑

g∈G
Pσα+sω(g).

If we apply Proposition 1.13.6 (a) with α + sω instead of ω we also get

G
α+sω

(L) =
∑

g∈G
Pσα+sω(g)

for all s ∈ N with s > s and all ω ∈ Ω . This completes our proof.

Notation 1.13.16 If Z ⊆ Spec(P) is a closed set we denote the vanishing ideal of
Z by IZ, thus:

IZ :=
⋂

p∈Z
p = √J , for all ideals J ⊆ P with Z = Var(J ).

Theorem 1.13.17 (Stability of Characteristic Varieties, Boldini [11, 12]) Let U
be a D-module, and let α ∈ Ω . Then, there exists an integer s = s(α,U) ∈ N0 such
that for all s ∈ N with s > s and all ω ∈ Ω we have

Var
(
LFIα

(
IVω(U))

) = V
α+sω(U).

Proof We proceed by induction on the number r of generators of U . First, let r = 1.
Then we have U ∼= W/L for some left ideal L ⊆ W. By Theorem 1.13.15 we find
some s ∈ N0 such that for all s ∈ N with s > s and all ω ∈ Ω we have

LFIα
(
G
ω
(L)
) = G

α+sω
(L).

By Reminder, Definition and Exercise 1.13.5 (C)(c) we have

V
α+sω(U) = Var

(
G
α+sω

(L)
)

and IVω(U) =
√
G
ω
(L).
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By Definition and Exercise 1.13.11 (B)(c) we thus get

√
LFIα

(
IVω(U)

) =
√

LFIα
(√

G
ω
(L)
) =

√
LFIα

(
G
ω
(L)
)
,

so that indeed—for all s ∈ N with s > s and all ω ∈ Ω—we have

Var
(
LFIα

(
IVω(U))

) = Var
(
LFIα

(
G
ω
(L)
) = Var

(
G
α+sω

(L)
) = V

α+sω(U).

Now, let r > 1. Then, we find a short exact of D-modules

0 −→ Q
ι−→ U

π−→ P −→ 0

such that Q and P are generated by less than r elements. By induction, we thus find
a number s ∈ N0, such that for all ω ∈ Ω and all s ∈ N with s > s it holds

Var
(
LFIα(IVω(Q))

) = V
α+sω(Q) and Var

(
LFIα(IVω(P ))

) = V
α+sω(P ).

By Proposition 1.13.9 we have

V
α+sω(U) = V

α+sω(Q) ∪ V
α+sω(P )

and hence, moreover

IVω(U) = IVω(Q)∪Vω(Q) = IVω(Q) ∩ IVω(P ).

By Definition and Exercise 1.13.11 (B)(d)(2) it follows from the last equality that

√
LFIα

(
IVω(U)

) =
√

LFIα
(
IVω(Q)

) ∩
√

LFIα
(
IVω(P )

)
.

Therefore

Var
(
LFIα(IVω(U))

) = Var
(
LFIα(IVω(Q))

) ∪ Var
(
LFIα(IVω(P ))

)
.

It follows, that

Var
(
LFIα(IVω(U))

) = V
α+sω(Q) ∪ V

α+sω(P ) = V
α+sω(U)

for all ω ∈ Ω and all s ∈ N with s > s. This completes the step of induction and
hence proves our claim.

To formulate our Stability Theorem in a more geometric manner, we introduce
the following notion.



104 M. Brodmann

Definition 1.13.18 (The Critical Cone) Let Z ⊆ Spec(P) be a closed set. Then,
the critical cone of Z is defined as

CCone(Z) := Var
(
LFI1(IZ)

)
,

where 1 = (1, 1) ∈ Ω denotes the standard weight.

On use of the introduced terminology, we now can define our Stability Theorem
as follows.

Corollary 1.13.19 (Affine Deformation of Characteristic Varieties to Critical
Cones, Boldini [11, 12]) Let U be a D-module. Then, there is an integer s =
s(U) ∈ N0 such that for all ω ∈ Ω and all s ∈ N with s > s it holds

V
1+sω(U) = CCone

(
V
ω(U)

)
.

Proof This is immediate by Theorem 1.13.17.

1.14 Standard Degree and Hilbert Polynomials

In this section, we give an outlook to the relation between D-modules and
Castelnuovo-Mumford regularity, which we mentioned in the introduction. We shall
consider a situation, which is exclusively related to the standard degree filtration
W• =W

deg• =W
11• of the underlying Weyl algebra W. Having in mind to approach

the bounding result for the degree of defining equations of characteristic varieties
mentioned in the introduction, we shall restrict ourselves to consider D-modules
U endowed with filtrations VW• induced by a finite-dimensional generating vector
space V of U .

Preliminary Remark 1.14.1 (A) Let n ∈ N, let K be a field of char-
acteristic 0 and consider the standard Weyl algebra W = W(K, n) =
K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]. Moreover let A be a ring of smooth functions
in X1,X2, . . . , Xn over K (see Remark and Definition 1.11.11 (A)). One concern
of Analysis is to study whole families of differential equations. So for fixed r, s ∈ N

one chooses a family F ⊆ W
s×r of matrices of differential operators. Then one

studies all systems of equations (see Remark and Definition 1.11.11 (B))

D

⎛
⎜⎜⎜⎝

f1

f2
...

fr

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎟⎠ , with D ∈ F.



1 Notes on Weyl Algebra and D-Modules 105

(B) Let the notations and hypotheses by as in part (A). One aspect of the
above approach is to study the behavior of the characteristic varieties Vdeg(D) :=
V
W

deg•
(
UD
)

with respect to the degree filtration (see Definition and Remark 1.8.6
and Definition and Remark 1.11.2 (D)) of the D-module UD defined by the matrix
D (see Remark and Definition 1.11.11 (C)) if this latter runs through the family F.
The goal of this section is to prove that the degree of hypersurfaces which cut out
set-theoretically the characteristic variety V

deg(D) is bounded, if D runs through
appropriate families F.

Below, we recall a few notions from Commutative Algebra.

Reminder, Definition and Exercise 1.14.2 (Hilbert Functions, Hilbert Polyno-
mials and Hilbert Coefficients for Modules Over Very Well Filtered Algebras)
(A) Let K be a field and let R = ⊕

i∈N0
Ri be a homogeneous Noetherian

K-algebra (see Conventions, Reminders and Notations 1.1.1 (I) for this notion),
so that R0 = K and R = K[x1, x2, . . . , xr ] with finitely many elements
x1, x2, . . . , xr ∈ R1. Moreover, let M = ⊕i∈ZMi be a finitely generated graded
R-module. Then we denote the Hilbert function of M by hM, so that hM(i) :=
dimK(Mi) for all i ∈ Z. We denote by PM(X) the Hilbert polynomial of M , so that
hM(i) = PM(i) for all i � 0. Keep in mind that dim(M) = dim

(
R/AnnR(M)

)

and

deg
(
PM(X)

) =
{

dim(M)− 1, if dim(M) > 0

−∞, if dim(M) ≤ 0.
.

The Hilbert polynomial PM(X) has a binomial presentation:

PM(X) =
dim(M)−1∑

k=0

(−1)kek(M)

(
X + dim(M) − k − 1

dim(M) − k − 1

) (
ek(M) ∈ Z, e0(M) ≥ 0

)
.

The integer ek(M) is called the k-th Hilbert coefficient of M . If dim(M) > 0,
e0(M) > 0 is called the multiplicity of M . Finally let us also introduce the
postulation number of M , thus the number pstln(M) := sup{i ∈ Z | hM(i) �=
PM(i)}.

(B) Now, let (A,A•) be a very well filtered K-algebra (see Definition and
Remark 1.3.4 (A)). Let U be a finitely generated (left) A-module. Chose a vector
space V ⊆ U of finite dimension such that AV = U . Then, the graded
GrA•(A)-module GrA•V (U) is generated by finitely many homogeneous elements
of degree 0 (see Exercise and Definition 1.10.5 (B)(c)). So, by part (A) this
graded module admits a Hilbert function hU,A•V := hGrA•V (U) with hU,A•V (i) :=
dimK

(
GrA•V (U)i

)
for all i ∈ Z, the Hilbert function of U with respect to the

filtration induced by V . Moreover, by part (A), the module GrA•V (U) admits a
Hilbert polynomial, thus a polynomial PU,A•V (X) := PGrA•V (U)(X) ∈ Q[X]
with hU,A•V (i) = PU,A•V (i) for all i � 0. We call this polynomial the Hilbert
polynomial of U with respect to the filtration induced by V . Keep in mind that
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according to part (A) we have dA•(U) := dim
(
GrA•V (U)

) = dim
(
VA•(U)

)
.

Moreover the polynomial PU,A•V (X) has a binomial presentation:

PU,A•V (X) =
dA• (U)−1∑

k=0

(−1)kek
(
U,A•V

)(X + dA• (U)− k − 1

dA• (U)− k − 1

) (
ek(U,A•V ) ∈ Z

)
.

The integer ek(U,A•V ) is called the k-th Hilbert coefficient of U with respect
to the filtration induced by V . Finally, keep in mind, that by part (A) we have
e0(U,A•V ) > 0 if dA•(U) > 0. In this situation the number e0(U,A•V ) is called
the multiplicity of U with respect to the filtration induced by V . For the sake of
completeness, we set e0(U,A•V ) := 0 if dA•(U) ≤ 0. Finally, according to part
(A) we define the postulation number of U with respect to the filtration induced by
V :

pstlnU,A•V (U) := pstln(GrA•V (U)) := sup{i ∈ Z | hU,A•V (i) �= PU,A•V (i)}.

(C) Keep the notations and hypotheses of part (B) and assume that dA•(U) > 0.
Prove the following claims.

(a) There is a polynomial QU,A•V (X) ∈ Q[X] such that:

(1) deg
(
QU,A•V (X)

) = dA•(U),
(2) Δ

(
QU,A•V (X)

) := QU,A•V (X)−QU,A•V (X − 1) = PU,A•V (X) and
(3) dimK(AiV ) = QU,A•V (i) for all i � 0.
(4) For each t ∈ Z the polynomial QU,A•V (X + t) ∈ Q[X] has leading term

e0(U,A•V )
dA•(U)! XdA• (U).

(Hint: Observe that for all i ∈ N we have dimK(AiV ) = ∑i
j=0 dimK(

GrA•V (U)j
) =∑i

j=0 hU,A•(j)
)
.)

(b) The multiplicity eA•(U) := e0(U,A•V ) is the same for each finite dimensional
K-subspace V ⊆ U with AV = U.

(Hint: Let V (1), V (2) ⊂ U be two finite dimensional K-subspaces such that
AV (1) = AV (2) = U. Use Exercise and Definition 1.10.5 (C)(a) and Definition
and Remark 1.10.1 (C)(a) to find some r ∈ N0 such that for all i ∈ Z it holds
Ai−rV (1) ⊆ AiV

(2) ⊆ Ai+rV (1). Then apply (a).)

(D) Let A = W = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n] and let A• = W• =
W11• be the standard degree filtration of W (see Definition and Remark 1.8.6). Let
U = K[X1,X2, . . . , Xn] be the D-module of Example 1.11.9. Compute the two
polynomials PU,A•K(X) and QU,A•K(X).

The next Exercise and Remark intends to present the Bernstein Inequality and
the related notion of holonomic D-module. For those readers, who aim to learn
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more about these important subjects, we recommend to consult one of [7–9, 24, 37]
or [38].

Exercise and Remark 1.14.3 (A) Endow the Weyl algebra

W =W(K, n) = K[X1,X2, . . . , Xn, ∂1, ∂2, . . . , ∂n]

with its standard degree filtration W• := W
deg• (see Definition and Remark 1.8.6).

If d ∈ W write deg(d) for the standard degree deg11(d) of d. Use Exercise 1.6.4
(D) to prove the following statement:

If d ∈W \K, then there is some i ∈ {1, 2, . . . , n} such that
deg
([Xi, d]

) = deg(d)− 1 or else deg
([∂i, d]

) = deg(d)− 1.

(B) (The Bernstein Monomorphisms) Keep the notations of part (A) and let U
be a non-zero D-module over the Weyl algebra W. Let V ⊆ U be a K-vector
space of finite dimension and endow U with the induced filtration U• :=W•V (see
Exercise and Definition 1.10.5 (A),(B) and Definition and Remark 1.11.2 (D)). Let
k ∈ N0, let d ∈ W with deg(d) = k and let i ∈ {1, 2, . . . , n}. Prove the following
statement

(a) If k > 0 and dUk = 0, then [Xi, d]Uk−1 = [∂i , d]Uk−1 = 0.

Use part (A) and statement (B)(a) to prove the following claim by induction on k:

(b) For each k ∈ N0 there is aK-linear injective map φk :Wk−→HomK(Uk,U2k),

given by φk(d)(u) := du, for all d ∈Wk and all u ∈ Uk.

(Hint: The existence of the linear map φk is easy to verify. The injectivity of φ0 is
obvious. If k > 0 and φk is not injective, part (A) and statement (B)(b) imply that
φk−1 is not injective.)

(C) (The Bernstein Inequality) Keep the previous notations. Use statement (B)(b)
to prove

(a) For all k ∈ N0 it holds
(
k+2n

2n

) ≤ dimK(Uk)dimK(U2k).

(Hint: Determine dimK(Wk) for all k ∈ N0 and keep in mind that for any
two K-vector spaces S, T of finite dimension one has dim

(
HomK(S, T )

) =
dimK(S)dimK(T ).)
Use statement (a) and Reminder, Definition and Exercise 1.14.2 (C)(a) to prove
Bernstein’s Inequality:

(b) If U �= 0, then dW•(U) = d
W

1,1•
(U) ≥ n.

(D) (Holonomic D-Modules) Keep the above notations. It is immediate from
the definition, that one always has the inequality dW•(U) ≤ 2n. The D-module
U is called holonomic if dW•(U) ≤ n, hence if U = 0 or else (by Bernsteins’
Inequality) U �= 0 and dW•(U) = n. Holonomic D-modules are of particular
interest and play a crucial role in many applications of D-modules. The result of
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Reminder, Definition and Exercise 1.14.2 (D) shows that the (simple!) D-module
U = K[X1,X2, . . . , Xn] be the D-module of Example 1.11.9 is holonomic.
Use Proposition 1.13.9 to prove the following result:

(a) If 0 −→ Q −→ U −→ P −→ 0 is an exact sequence of D-modules, then U

is holonomic if and only Q and P are holonomic.

Accepting without proof the fact that all simple D-modules are holonomic, one can
prove by statement (a) that a D-module U is holonomic if and only if it is of finite
length, hence if and only if it admits a finite ascending chain 0 = U0 � U1 � · · · �
Ul−1 � Ul = U of submodules, such that Ui/Ui−1 is simple for all i = 1, . . . , l.

We now recall some basics facts on Local Cohomology Theory. As a reference
we suggest [18].

Reminder 1.14.4 (Local Cohomology Modules) (A) Let R be a commutative
Noetherian ring and let a ⊂ R be an ideal. The a-torsion submodule of anR-module
M is given by

Γa(M) :=
⋃

n∈N0

(0 :M an) ∼= lim→
n

HomR(R/a
n,M).

Observe, that the assignment M �→ Γa(M) gives rise to a covariant left-exact
functor of R-modules (indeed a sub-functor of the identity functor)—called the
a-torsion functor—so that for each short exact sequence of R-modules 0 −→
N −→ M −→ P −→ 0 we naturally have an exact sequence 0 −→ Γa(N) −→
Γa(M) −→ Γa(P ).
If i ∈ N0, the i-th local cohomology functor Hi

a(•) with respect to the ideal a can
be defined as the i-th right derived functor RiΓa(•) of the a-torsion functor, so that
for each R-module M one has:

Hi
a(M) = RiΓa(M) ∼= lim→

n
ExtiR(R/a

n,M).

For each short exact sequence of R-modules 0 −→ N −→ M −→ P −→ 0 there
is a natural exact sequence of R-modules

0 −→ H 0
a (N) −→ H 0

a (M) −→ H 0
a(P ) −→ H 1

a (N) −→ H 1
a (M) −→ H 1

a (P ) −→
−→ H 2

a (N) −→ H 2
a (M) −→ H 2

a(P ) −→ H 3
a (N) −→ H 3

a (M) −→ H 3
a (P ) · · · ,

the cohomology sequence associated to the given short exact sequence. In particular,
local cohomology commutes with finite direct sums.
Moreover, we have

(a) If
√
a =

√∑r
i=1 Rxi for some elements x1, x2, . . . , xr ∈ R, then Hi

a(M) = 0
for all i > r and all R-modules M.

(b) Hi
a(M) = 0 for all i > dim(M) and all (finitely generated) R-modules M.
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(B) (Graded Local Cohomology) Assume from now on, that the ring R of part
(A) is (positively) graded and that the ideal a ⊆ R is graded, so that

R =
⊕

j∈N0

Rj and a =
⊕

j∈N0

aj , with aj = a ∩ Rj (∀j ∈ N0).

If M = ⊕
k∈ZMk is a graded R-module then, for each i ∈ N0, the local

cohomology module of M with respect to a carries a natural grading:

Hi
a(M) =

⊕

j∈Z
Hi

a(M)j .

Moreover, if h : M −→ N is a homomorphism of graded R-modules, then the
induced homomorphism in cohomology Hi

a(M) −→ Hi
a(N) is a homomorphism

of graded R modules. If 0 −→ N −→ M −→ P −→ 0 is an exact sequence of
graded R-modules, then so is its associated cohomology sequence (see part (A)).

(C) (Graded Local Cohomology with Respect to the irrelevant Ideal) Let R =⊕
j∈N0

Rj be as in part (B). The irrelevant ideal of R is defined by

R+ :=
⊕

j∈N
Rj .

The graded components of local cohomology modules of finitely generated graded
R modules with respect to the irrelevant ideal R+ behave particularly well,
namely:

(a) Let i ∈ N0 and let M = ⊕j∈ZMj be a finitely generated graded R-module.
Then:

(1) Hi
R+(M)j is a finitely generated R0-module for all j ∈ Z.

(2) Hi
R+(M)j = 0 for all j � 0.

Bearing in mind what we just said in Part (C), we no can introduce the
cohomological invariant which plays the crucial rôle in this section: Castelnuovo-
Mumford regularity. As a reference we suggest Chapter 17 of [18].

Reminder, Remark and Exercise 1.14.5 (Castelnuovo-Mumford Regularity)
(A) Keep the notations and hypotheses of Reminder, Definition and Exer-
cise 1.14.2(A) and of Reminder 1.14.4. For each finitely generated graded module
M = ⊕j∈ZMj over the homogeneous Noetherian K-algebra R = ⊕j∈N0

Rj =
K[x1, x2, . . . , xr ] and for each k ∈ N0 by Reminder 1.14.4 (A)(a),(b) and (C)(a)(2)
we now can define the Castelnuovo-Mumford regularity at and above level k of
M by

regk(M) := sup{ai(M)+ i | i ≥ k} = max{ai(M)+ i | i = k, k+ 1, . . . , dim(M)}
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with

ai(M) := sup{j ∈ Z | Hi
R+(M)j �= 0} for all i ∈ N0,

where Hi
R+(M)j denotes the j -th graded component of the i-th local cohomology

module Hi
R+(M) = ⊕

k∈ZHi
R+(M)k of M with respect to the irrelevant ideal

R+ :=⊕j∈N Rj =∑r
m=1 Rxm (see Reminder 1.14.4 (B),(C)).

Keep in mind that the Castelnuovo-Mumford regularity of M is defined by

reg(M) := reg0(M) = sup{ai(M)+ i | i ∈ N0} = max{ai (M)+ i | i = 0, 1, . . . , dim(M)}

and keep in mind the fact that

reg1(M) = reg(M/ΓR+(M)) and PM/ΓR+ (M)(X) = PM(X).

(B) Keep the notations and hypotheses of part (A). Let

gendeg(M) := inf{m ∈ Z | M =
∑

k≤m
RMk}

( ≤ reg(M)
)

denote the generating degree of M . Keep in mind, that the ideal AnnR(M) ⊆ R is
homogeneous. Use the previous inequality to prove the following claims:

(a) If b ∈ Z such that reg
(
AnnR(M)

) ≤ b, there are elements

f1, f2, . . . , fs ∈ AnnR(M) ∩ (
⋃

i≤b
Ri

)
with Var

(
AnnR(M)

) =
s⋂

i=1

Var(fi).

(C) We recall a few basic facts on Castelnuovo-Mumford regularity.

(a) If r ∈ N and R = K[T1, T2, . . . , Tr ] is a polynomial ring over the field K , then
reg(R) = reg

(
K[T1, T2, . . . , Tr ]

) = 0.
(b) If 0 −→ N −→ M −→ P −→ 0 is a short exact of finitely generated graded

R -modules, then we have the equality reg(N) ≤ max{reg(M), reg(P )+ 1}.
(c) If r ∈ N and if M(1),M(2), . . . ,M(r) are finitely generated graded R-modules,

then we have the equality reg
(⊕r

i=1 M
(i)
) = max{reg(M(i)) | i = 1, 2, . . . , r}.

(D) We mention the following bounding result (see Corollary 17.4.2 of [18]):

(a) Let R = ⊕
j∈N0

Rj be a Noetherian homogeneous ring (see Conventions,
Reminders and Notations 1.1.1 (I) for this notion) such that R0 is Artinian and
local. Let W = ⊕

j∈ZWj be a finitely generated graded R-module and let
P ∈ Q[X]\{0}.Then, there is an integerG such that for each R-homomorphism
f : W −→ M of finitely generated graded R-modules, which is surjective in
all large degrees and such that PM = P, we have reg1(M) ≤ G.
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Use the bounding result of statement (a) to prove the following result.

(b) There is a function B : N2
0×Q[X] −→ Z such that for each choice of r, t ∈ N,

for each field K , for each homogeneous Noetherian K-algebra R =⊕i∈N0
Ri

with hR(1) ≤ t and each finitely generated graded R-module M = ⊕i∈ZMi

with M = RM0 and hM(0) ≤ r we have

reg1(M) ≤ B
(
t, r, PM

)
.

Another bounding result, which we shall use later is (see Corollary 6.2 of [17]):

(c) Let R = K[T1, T2, . . . , Tr ] be a polynomial ring over the field K , furnished
with its standard grading. Let f : W −→ V be a homomorphism of finitely
generated graded R-modules such that V �= 0 is generated by μ homogeneous
elements of degree 0. Then

reg
(
Im(f )

) ≤ [max{gendeg(W), reg(V )+ 1} + μ+ 1
]2r−1

.

We now prove a special case of Theorem 3.10 of [16].

Proposition 1.14.6 Let r ∈ N, let R := K[T1, T2, . . . , Tr ] be the polynomial ring
over the field K and let M = ⊕

n∈N0
Mn be finitely generated graded R-module

with M = RM0. Then

reg
(
AnnR(M)

) ≤ [reg(M)+ hM(0)2 + 2]2r−1 + 1.

Proof Observe first, that we have an exact sequence of graded R-modules

0 −→ AnnR(M) −→ R
ε−→ HomR(M,M), with x �→ ε(x) := xIdM, for all x ∈ R.

Moreover, there is an epimorphism of graded R-modules

π : RhM(0) −→ M −→ 0.

So, with g := HomR(π, IdM) we get an induced monomorphism of graded R-
modules

0 −→ HomR(M,M)
g−→ HomR

(
RhM(0),M

) ∼=MhM(0).

So, we get a composition map

f := g ◦ ε : R −→ MhM(0) =: V, with Im(f ) = Im(ε) ∼= R/AnnR(M).

Now, observe that gendeg(R) = 0 (see Reminder, Remark and Exercise 1.14.5
(C)(a)), reg(V ) = reg(M) (see Reminder, Remark and Exercise 1.14.5 (C)(c)) and
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that V is generated by hM(0)2 homogeneous elements of degree 0. So, by Reminder,
Remark and Exercise 1.14.5 (D)(c) we obtain

reg
(
R/AnnR(M)

) = reg
(
Im(f )

) ≤ [reg(M)+ hM(0)2 + 2
]2r−1

.

On application of Reminder, Remark and Exercise 1.14.5 (C) (b) to the short exact
sequence of graded R-modules

0 −→ AnnR(M) −→ R −→ R/AnnR(M) −→ 0

and keeping in mind that reg(R) = 0, we thus get indeed our claim.

Exercise 1.14.7 Let the notations and hypotheses be as in Proposition 1.14.6. Show
that

(a) reg
(
AnnR(M/ΓR+(M))

) ≤ [reg1(M)+ hM(0)2 + 2]2r−1 + 1.

(b) Var
(
AnnR(M/ΓR+(M))

) =
{

Var
(
AnnR(M)

)
, if dimR(M) > 0

∅, if dimR(M) = 0.

Notation, Remark and Exercise 1.14.8 (A) Let B : N2
0 × Q[X] −→ Z be the

bounding function introduced in Reminder, Remark and Exercise 1.14.5 (D)(b).
We define a new function

F : N2×Q[X] −→ Z by F(t, r, P ) := [B(t, r, P )+r2+2]2r−1+1
(
t, r ∈ N, P ∈ Q[X]).

(B) Let the notations as in part (A). Use Proposition 1.14.6, Reminder, Remark
and Exercise 1.14.5 (B) and Exercise 1.14.7 to show that for each field K , for each
choice of r, t ∈ N, for each polynomial ring R = K[T1, T2, . . . , Tt ] and for each
finitely generated graded R-module M =⊕n∈N0

Mn with M = RM0, hM(0) ≤ r

and PM = P, we have the following statements:

(a) reg
(
AnnR(M/ΓR+(M))

) ≤ F(t, r, P ).
(b) There are homogeneous polynomials f1, f2, . . . , fs ∈ AnnR

(
M/ΓR+(M)

)

with

(1) deg(fi) ≤ F(t, r, P ) for all i = 1, 2, . . . , s.
(2) Var

(
AnnR(M)

) = Var(f1, f2, . . . , fs) =⋂s
i=1 Var(fi).

No, we are ready to prove the main result of this section.

Theorem 1.14.9 (Boundedness of the Degrees of Defining Equations of Charac-
teristic Varieties, Compare [16]) Let n ∈ N, let K be a field of characteristic 0,
let U be a D-module over the standard Weyl algebra

W =W(K, n) = K[X1,X2, . . . , Xn∂1, ∂2, . . . , ∂n]
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and let V ⊆ U be a K-subspace with dimK(V ) ≤ r <∞ andU =WV . Moreover,
let

F : N2 ×Q[X] −→ Z

be the bounding function defined in Notation, Remark and Exercise 1.14.8 (A). Keep
in mind that the degree filtration W

deg• of W (see Definition and Remark 1.8.6) is
very good (see Corollary 1.8.7 (a)) and let

P
U,W

deg• V
∈ Q[X]

be the Hilbert polynomial of U induced by V with respect to the degree filtration
W

deg• (see Reminder, Definition and Exercise 1.14.2 (B)).
Then, there are homogeneous polynomials

f1, f2, . . . , fs ∈ P = K[Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn]

such that

(a) deg(fi) ≤ F
(
2n, r, P

U,W
deg•
)
.

(b) V
W

deg• (U) = Var(f1, f2, . . . , fs) =⋂s
i=1 Var(fi).

Proof Observe that (see Definition and Remark 1.11.2)

V
W

deg• (U) = Var
(
AnnP(Gr

W
deg• V

(U)
)
.

Now, we may conclude by Notation, Remark and Exercise 1.14.8 (B)(b), applied
to the graded P-module Gr

W
deg• V

(U) and bearing in mind that—by Exercise and
Definition 1.10.5 (B)(c)—this latter graded module is generated in degree 0.

Conclusive Remark 1.14.10 (A) Keep the above notations. To explain the mean-
ing of this result, we fix r, s ∈ N and we fix a polynomial P ∈ Q[X]. For any
matrix

D =

⎛

⎜⎜⎜⎝

d11 d12 . . . d1r

d21 d22 . . . d2r
...

...
...

ds1 ds2 . . . dsr

⎞

⎟⎟⎟⎠ ∈W
s×r

of polynomial partial differential operators we consider the induced epimorphism
of D-modules

W
r πD−→ UD −→ 0,
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consider the K-subspace

Kr = (Wdeg
0

)r ⊂W
r

and set

VD := πD (K
r).

Then, referring to our Preliminary Remark 1.14.1 we consider the family of systems
of differential equations

F = F
P := {D ∈W

s×r | P
UD ,W

deg• VD
= P }

whose canonical Hilbert polynomial P
UD ,W

deg• VD
equals P . As an immediate

application of Theorem 1.14.9 we can say

The degree of hypersurfaces which cut out set-theoretically the characteristic variety
V

deg(D) is bounded, if D runs through the family F
P .

Clearly, our results give much more, as they bound the invariant

reg
(
AnnP

[
Gr

W
deg• VD

(UD )/ΓP+(Gr
W

deg• VD
(UD )

])

along the class FP .
(B) Our motivation to prove Theorem 1.14.9 was a question arising in relation

with the PhD thesis [5], namely: Does the Hilbert function (with respect to an
appropriate filtration) of a D-module U over a standard Weyl algebra W bound the
degrees of polynomials which cut out set-theoretically the characteristic variety of
U? This leads to the question, whether the Hilbert function hM of a graded module
M which is generated over the polynomial ring K[X1,X2, . . . , Xr ] by finitely many
elements of degree 0 bounds the (Castelnuovo-Mumford) regularity reg(AnnR(M))

of the annihilator AnnR(M) of M . This latter question was answered affirmatively
in the Master thesis [39] and lead to the article [16].
Theorem 1.14.9 above actually improves what has been shown in [16] and in
Theorem 14.6 of [15]. There it is shown, that the degrees of the polynomials
f1, f2, , . . . , fs ∈ P which occur in Theorem 1.14.9 are bounded in terms of
n and the Hilbert function hU,A•V = hGrA•V (U) (see Reminder, Definition and
Exercise 1.14.2 (B)). More precisely, in these previous results, the degrees in
question are bounded in terms of n, hU,A•V (0) and the postulation number (see
Reminder, Definition and Exercise 1.14.2 (A))

pstlnA•V (U) := sup{i ∈ Z | hU,A•V (i) �= PU,A•V (0)} = pstln
(
GlA•V (U)

of U with respect to the filtration A•V. Theorem 1.14.9 shows, that the postulation
number pstlnA•V (U) is not needed to bound the degrees we are interested in.
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(C) We thank the referee for having pointed out to us, that Aschenbrenner and
Leykin [2] have proved a result, which is closely related to Theorem 1.14.9 and
which furnishes a bound on the degree of the elements of Gröbner bases of a left
ideal I ⊆ W of our Weyl algebra. More precisely, if ω ∈ Ω (see Notation 1.13.1),
if d ∈ N and if I is generated by elements whose ω-weighted degree degω(•) does
not exceed d , then I admits a ≤ω-Gröbner basis consisting of elements whose ω-

weighted degree does not exceed the bound 2
(
d2

2 + d
)22n−1

.

As the Castelnuovo-Mumford regularity reg(a) of a graded ideal in the polynomial
ring a ⊆ K[X1, x2, . . . , Xn] over a field K is an upper bound for the degree
of the polynomials occurring in some Gröbner basis of a, the mentioned result

in [2] corresponds to the ”classical“ regularity bound reg(a) ≤ (
2gendeg(a)

)2n−2

for graded ideals in the polynomial ring (see [23, 27, 28], but also [17] and [22]).
Via Gröbner bases and Macaulay’s Theorem for Hilbert Functions (see [26], for
example), this latter regularity bound on its turn, is also related to the module
theoretic form of Mumford’s regularity bound ([18], Corollary 17.4.2), we were
using as an important tool in the proof of Theorem 1.14.9 (see Reminder, Remark
and Exercise 1.14.5 (D)(a)).
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Chapter 2
Inverse Systems of Local Rings

Juan Elias

Abstract Matlis duality and the particular case of Macaulay correspondence
provide a dictionary between the Artin algebras and their inverse systems. Inspired
in a result of Emsalem we translate the problem of classification of Artin algebras
to a problem of linear system of equations on the inverse systems.

The main purpose of these notes is to use this result to classify Artin Gorenstein
algebras with Hilbert function {1, 3, 3, 1}, level algebras and compressed algebras.
The main results presented in these notes were obtained in collaboration with M.E.
Rossi.

2.1 Introduction

These notes are based on a series of lectures given by the author at the Vietnam
Institute for Advanced Study in Mathematics, Hanoi, during the period February 8–
March 7, 2014. The aim of these three lectures was to present some recent results on
the classification of Artin Gorenstein and level algebras by using the inverse system
of Macaulay. These notes are not a review on the known results of Macaulay’s
inverse systems. See [12, 20–23] and [11] for further details on inverse systems.

Let R = k[[x1, . . . xn]] be the ring of the formal series and let S = k[y1, . . . , yn]
be a polynomial ring. Macaulay established a one-to-one correspondence between
the Gorenstein Artin algebras A = R/I and cyclic submodules 〈F 〉 of the
polynomial ring S. This correspondence is a particular case of Matlis duality
because the injective hull of k as R-module is isomorphic to S. The structure of
S as R-module is defined, depending on the characteristic of the residue field k,
by derivation or by contraction. Macaulay’s correspondence establish a dictionary
between the algebraic-geometric properties of Artin Gorenstein algebras A and the
algebraic properties of its inverse system F or the geometric properties of the variety
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defined by F ≡ 0. See [13] for the extension to higher dimensions of Macaulay’s
correspondence.

In the second chapter we review the main results on injective modules. We prove
the existence on the injective hull of a ring and we prove Matlis’ duality for a
complete ring. The main references used in this chapter are: [28] and [27].

In the third chapter we study Macaulay’s correspondence that is a particular case
of Matlis’ duality. In the main result of this we prove that S is the injective hull of
the residue field of the R-module k. From this result and Matlis’ duality we deduce
Macaulay’s correspondence. We end the chapter computing the Hilbert function of
a quotient A = R/I in terms of its inverse system. The main references used in this
chapter are: [18, 20–23] and [25].

The fourth chapter is devoted to give a quick introduction to Artin Gorenstein,
level and compressed algebras. We only quote the results needed to achieve the main
goal of these notes. The main references used in this chapter are: [20] and [21].

The fifth chapter is the core of these notes. We present the main results obtained
in collaboration with M.E. Rossi on the classification of Artinian Gorenstein
algebras, level algebras and compressed algebras, [12] and [11]. After a short review
of the classification of Artin algebra we show the difficulty of the problem of the
classification of Artin algebras recalling some results obtained in collaboration with
Valla, [14] and [15].

Inspired in a result of Emsalem, [16], we translate the problem of classification
of Artin algebras to a problem of linear systems of equations. The study of
these systems of equations permits to establish the main result of this paper,
Theorem 2.5.10. We end the chapter by giving a complete analytic classification of
Artin Gorenstein algebras with Hilbert function {1, 3, 3, 1} by using the Weierstrass
form of an elliptic plane curve. The main references used in this chapter are: [12, 20]
and [11].

In Sect. 2.6 we consider the problem of computing the Betti numbers of an ideal
I by considering only its inverse system without computing the ideal I . The main
open problem is to characterize the complete intersection ideals in terms of their
inverse systems. In this chapter we focus the study on the computation of the last
Betti number (i.e. the Cohen-Macaulay type) and the first Betti number (i.e. the
minimal number of generators)

In the last chapter we show that some results of the chapter four cannot be
generalized and we present several explicit computations of the minimal number
of generators of some families of Artin Gorenstein and level algebras.

In these notes we omit reviewing some recent interesting results on the rationality
of the Poincaré series of an Artin Gorenstein algebra, on the smoothability of the
Artinian algebras, and the applications of these results to the study of the geometric
properties of Hilbert schemes, see for instance [4, 5] and their reference’s list.

The examples of this paper are done by using the Singular library [7, 8], and
Mathematica�.
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2.2 Injective Modules: Matlis’ Duality

Given a commutative ring R we denote by R_mod, resp. R_mod.Noeth,
R_mod.Artin, the category of R-modules, resp. category of Noetherian R-
modules, Artinian R-modules.

Definition 2.2.1 (Injective Module) Let R be a commutative ring and let E be an
R-module. E is injective if and only if HomR(·, E) is an exact functor.

Since for all R-module E the contravariant functor HomR(·, E) is right exact,
we have that E is injective if and only for all injective morphism h : M −→ N

and for all morphism f : M −→ E, where M and N are R-modules, there exists a
morphism g : N −→ E making the following diagram commutative:

E

0 M
h

f

N

g

In the following result we collect some basic properties of injective modules.

Proposition 2.2.2

(i) If a R-module E is injective, then every short exact sequence splits:

0 −→ E −→ M −→ N −→ 0

(ii) If an injective module E is a submodule of a module M , then E is a direct
summand of M , in other words, there is a complement S with M = S ⊕ E.

(iii) If (Ej )∈J is a family of injective R-modules, then
∏

j∈J Ej is also an injective
module.

(iv) Every direct summand of an injective R-module is injective.
(v) A finite direct sum of injective R-modules is injective.

Now that we have showed some of the properties of the injective modules, we
need to find an easier way to check the injectivity of a module. This criterion is the
following:

Proposition 2.2.3 (Baer’s Criterion) A R-module E is injective if and only if
every homomorphism f : I → E, where I is an ideal of R, can be extended to R.

Proof First, if E is injective, then, as I is a submodule of R, the existence of an
extension g of f is just a a straight consequence of the injectivity of E.

Consider that we have the following diagram, where M is a submodule of a R-
module N :
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E

0 M
i

f

N

We may assume that M is a submodule of N . Let us consider the set X =
{(M ′, g′)|M ⊂ M ′ ⊂ N, g′|M = f }. Note that X �= ∅ because (M, f ) ∈ X.
Now we put a partial order in X, (M ′, g′) � (M ′′, g′′), which means that M ′ ⊂ M ′′
and g′′ extends g′. It is easy to see that any chain in X has an upper bound in X (just
take the union). By Zorn’s Lemma we have that there is a maximal element (M0, g0)

of X. If M0 = N we are done, so we can assume that there is some b ∈ N that is
not in M0. Define I = {r ∈ R : r.b ∈ M0}, which is clearly an ideal of R. Now
define h : I → E by h(r) = g0(r.b). By hypothesis, there is a map h∗ extending h.
Finally define M1 = M0 + 〈b〉 and g1 : M1 → E by

g1(a0 + br) = g0(a0)+ r · h∗(1),

where a0 ∈ M0 and r ∈ R. Notice that if a0 + r.b = a′0 + r ′.b then (r − r ′)b =
a′0 − a0 ∈ M0 and (r − r ′) ∈ I . Therefore, g0((r − r ′)b) and h(r − r ′) are defined
and we have:

g0(a
′
0 − a0) = g0((r − r ′)b) = h(r − r ′) = h∗(r − r ′) = (r − r ′) · h∗(1).

Thus, g0(a
′
0)−g0(a0) = r ·h∗(1)−r ′ ·h∗(1) and this shows that g0(a

′
0)+r ′ ·h∗(1) =

g0(a0)+ r · h∗(1).
Clearly, g1(a0) = g0(a0) for all a0 ∈ M0, so that the map g1 extends g0. We

conclude that (M0, g0) � (M1, g1) and M0 �= M1, contradicting the maximality of
(M0, g0). Therefore, M0 = N , the map g0 is a lifting of f and then E is injective.

Proposition 2.2.4 If R is a Noetherian ring and (Ej )j∈J is a family of injective
R-modules, then

⊕
j∈J Ej is an injective R-module.

Proof By the Baer criterion, it suffices to complete the diagram

j∈J Ej

0 I
i

f

R

q

where I is an ideal of R. If x ∈ ⊕j Ej , then x = (ej ), where ej ∈ Ej . Since R
is noetherian, I is finitely generated. There exists a finite set S such that Im(f ) ⊂
⊕s∈SEs . But we already know that the finite direct sums are injective. Hence, there
is a homomorphism g′ : R→ ⊕s∈SEs . Finally, composing g′ with the inclusion of
⊕s∈SEs into ⊕j∈JEj completes the given diagram.
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Next step is to show that any R-module is a sub-module of an injective module,
for this end we have to recall the basics of divisible modules.

Definition 2.2.5 (Divisible Modules) Let M be an R-module over a ring R and let
r ∈ R\Z(R) and m ∈ M . We say that m is divisible by r if there is some m′ ∈ M

with m = rm′. In general, we say that M is a divisible module if for all r ∈ R\Z(R)
and for all m ∈ M we have that m is divisible by r.

Proposition 2.2.6 Every injective module E is divisible.

Proof Assume that E is injective. Let e ∈ E and a ∈ R\Z(R), we must find x ∈ E

with e = ax. Define f : (a) → E by f (ra) = rm. Observe that this map is well
defined because a is not a zero divisor. Since E is injective we have the following
diagram:

E

0 (a)
i

f

R

f

where f extends f . In particular, m = f (a) = f (a) = af (1). So, the x that we
need is x = f (1).

Proposition 2.2.7 Let R be a principal ideal domain and M an R-module. Then
we have that M is divisible if and only if M is injective.

Proof We are going to use Baer’s criterion. Assume that f : I → E is a
homomorphism where I is a non zero ideal. By hypothesis, I = (a) for some
non zero a ∈ I . Since E is divisible, there is some e ∈ E with f (a) = ae. Define
h : R → E by h(s) = se. It is easy to check that h is a homomorphism, moreover,
it extends f . That is, if s = ra ∈ I , we have that h(s) = h(ra) = rae = rf (a) =
f (ra). Therefore, by Baer’s criterion, E is injective.

Lemma 2.2.8 Let R be a ring. Then:

(i) For all G abelian groups, HomZ(R,G) is an R-module.
(ii) If G is injective as a Z-module, then HomZ(R,G) is R-injective.

Proof

(i) This statement is clear, because the addition is as usual, and with the mul-
tiplication by elements of R, we define (rf )(x) = f (rx) if r ∈ R and
f ∈ HomZ(R,G).

(ii) If we have a monomorphism g : M1 → M2 and a homomorphism f : M1 →
HomZ(R,G), we have to find an extension from M2 to HomZ(R,G). But if we
have that f , we can also define a homomorphism f ′ between M1 and G in the
following way, f ′(m1) = (f (m1))(1). Is an homomorphism because f is also
an homomorphism. So, as G is injective, we can find an extension of f ′, namely
f ′. With this map, we can define the extension we wanted f (m2) : R → G



124 J. Elias

where f (m2)(r) = f ′(rm2). The way that we constructed the map assure us
that is an homomorphism and that extends f .

Theorem 2.2.9 Let R be a ring and M an R-module. Then there exists an R-
injective module E and a monomorphism f : M → E. In other words, any module
M can be embedded as a submodule of an injective module.

Proof Since M is a Z-module we have that M ∼= Z
(I )/H for a suitable subgroup

H of Z(I ). Notice that Z(I ) ⊂ Q
(I ) as abelian groups, so M ⊂ G = Q

(I )/H . But
as Q is divisible, we have that also G is divisible. Hence M ↪→ G, where G is an
injective abelian group. So from the last Lemma we deduce that HomZ(R,G) is an
R-injective module. Then we have the exact sequence of R-modules

0 −→ HomZ(R,M) −→ E = HomZ(R,G).

Next step is to embed M in E; it is enough to show that the linear map f : M →
HomZ(R,M), defined by f (m)(r) = rm if r ∈ R, is injective. If f (m)(r) = 0 for
all r ∈ R, we have that f (m)(1) = m = 0.

Definition 2.2.10 (Proper Essential Extensions) Let R be a ring and let N ⊂ M

be R-modules. We say that M is an essential extension of N if for any non-zero
submodule U of M one has U ∩ N �= 0. An essential extension M of N is called
proper if N �= M .

Proposition 2.2.11 Let R be a ring.

(i) An R-module N is injective if and only if it has no proper essential extensions.
(ii) Let N ⊂ M be an essential extension. Let E be an injective module containing

N . Then there exists a monomorphism φ : M −→ E extending the inclusion
N ⊂M .

Proof

(i) Let’s assume that N is injective and let N ⊂ M be an essential extension.
Since N is injective, N is a direct summand of M , Proposition 2.2.2. Let S be
the complement of N in M , Proposition 2.2.2. Then N ∩ S = 0 and so, the
extension N ⊂ M is essential, so S = 0 and N =M . Conversely, suppose that
N has no proper essential extensions. Let E be an injective module containing
N , Theorem 2.2.9. Let us consider the set of submodules M ⊂ E such that
M ∩ N = 0. This set is not empty 0 ∈ X and it is inductively ordered. By
Zorn’s Lemma there is a maximal element L ∈ X, so N ∼= N + L/L ⊂ E/L.
This extension is essential. Let K be an R-module L ⊂ K ⊂ E such that
K/L ∩ (N + L)/L = 0. Hence K ∩ (N + L) = 0, so K ∩ N = 0. From the
maximality ofLwe deduceK = L. SinceN has no proper essential extensions
we obtain E = N +L. On the other hand we have L∩N = 0, so E = N ⊕L.
From Proposition 2.2.2 we get that N is injective.

(ii) Since E is injective there exists a homomorphism φ : M −→ E extending the
inclusion N ⊂ M . If ker(φ) �= 0 then ker(φ) ∩M �= 0 because the extension
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N ⊂ M is essential. Let 0 �= x ∈ ker(φ) ∩ M then we get a contradiction:
x = φ(x) = 0.

Definition 2.2.12 Let be R a ring and M an R-module. An injective hull of M is
an injective module ER(M) such that M ⊂ ER(M) is an essential extension.

Proposition 2.2.13 Let R be a ring and let M be an R-module.

(i) M admits an injective hull. Moreover, if M ⊂ I and I is injective, then a
maximal essential extension of M in I is an injective hull of M .

(ii) Let E be an injective hull of M , let I be an injective R-module, and α : M → I

a monomorphism. Then there exists a monomorphism ϕ : E→ I such that the
following diagram is commutative, where i is the inclusion:

M
i

α

E

ϕ

I

In other words, the injective hulls of M are the “minimal” injective modules
in which M can be embedded.

(iii) If E andE′ are injective hulls of M , then there exists an isomorphism ϕ : E→
E′ such that the following diagram commutes:

M

i

i

E
ϕ

E

Proof

(i) We know by Theorem 2.2.9 that we can embed M into an injective module I .
Now consider S to be the set of all essential extensions N with M ⊂ N ⊂ I .
Applying Zorn’s Lemma to this set yields to a maximal essential extension
M ⊂ E such that E ⊂ I . We claim that E has no proper essential extensions
and because of Proposition 2.2.11 we can say that E will be injective and
therefore it will be the injective hull we are looking for. Assume that E has a
proper essential extension E′. Since I is injective, there exists ψ : E′ → I

extending the inclusion E ⊂ I . Suppose kerψ = 0; then Imψ ⊂ I is an
essential extension of M (in I ) properly containing E, which contradicts the
fact that E is maximal. On the other hand, since ψ extends the inclusion E ⊂
I we have E ∩ kerψ = 0. But this contradicts with the essentiality of the
extension E ⊂ E′. And then we have the result we were looking for.

(ii) Since I is injective, α can be extended to an homomorphism ϕ : E → I .
We have that ϕ|M = α, and so M ∩ kerϕ = kerα = 0. Thus, since the
extension M ⊂ E is essential, we even have kerφ = 0 and therefore ϕ is a
monomorphism.
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(iii) By (ii) there is a monomorphism φ : E → E′ such that φ|M equals the
inclusion M ⊂ E′. Then, as Imφ ∼= E because of the injectivity, Imφ is
also injective and hence a direct summand of E′. However, since the extension
M ⊂ E′ is essential, φ is exhaustive because there can’t be direct summands
different than the total. Therefore, φ is an isomorphism.

Remark We can use this proposition to build an injective resolution, E∗R(M) of
a module M . We let E0(M) = ER(M) and denote the embedding by ∂−1. Now
suppose that the injective resolution has been constructed till the i-th step:

0 E0(M)
∂0

E1(M)
∂1

. . . Ei−1(M)
∂i−1

Ei(M)

We define then Ei+1 = ER(Coker ∂i−1), and ∂i is defined as the inclusion.

Definition 2.2.14 Let (R,m,k) be a local ring. Given an R-module M the Matlis
dual of M is M∨ = HomR(M,ER(k)). We write (−)∨ = HomR(−, ER(k)), which
is a contravariant exact functor from the category R_mod into itself.

Proposition 2.2.15 Let (R,m,k) be a local ring. Then (−)∨ is a faithful functor.
Furthermore, if M is a R-module of finite length, then �R(M∨) = �R(M). If R is in
addition an Artin ring then �R(ER(k)) = �R(R) <∞.

Proof We have to show that if M is a nonzero R-module then M∨ is nonzero. Let’s
take a non-zero cyclic submodule R/a of M . Since a ⊂ m we have the maps

M ←↩ R/a � R/m ∼= k.

Notice that k∨ = HomR(k, ER(k)) ∼= k. Applying the functor (−)∨ to this diagram
we get

M∨ � (R/a)∨ ←↩ k∨ ∼= k,

implying that M∨ is nonzero.
Let M be a finite length R-module, we use induction on �(M) to prove �R(M) =

�R(M
∨). If �R(M) = 1, then M is a simple R-module and thus M ∼= R/m = k.

Thus �R(M∨) ∼= �R(k) = 1. For the general case, pick a simple submodule S ⊂ M .
We apply (−)∨ to the short exact sequence:

0 −→ S −→ M −→ M/S −→ 0

Since S ∼= k, we have �(S∨) = 1. Now, by induction, �R((M/S)∨) = �R(M/S) =
�R(M)− 1. We conclude then �R(M∨) = �R(M).

Let us assume that R is Artin, so �R(R) < ∞. From the first part we get
�R(ER(k)) = �R(R) <∞.
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Proposition 2.2.16 Let R be a ring, a an ideal of R and M a R-module annihilated
by a. Then, if E = ER(M):

ER/a(M) = {e ∈ E : ae = 0} = (0 :E a)

Proof Both M and (0 :E a) are annihilated by a and thus can be thought as R/a-
modules. Clearly M ⊂ (0 :E a) ⊂ E. Since all R/a-submodule of (0 :E a) is
also a R-submodule of E, necessarily (0 :E a) is an essential extension on M . So
now we need to check that (0 :E a) is injective. So let us consider a diagram of
R/a-modules:

(0 :E )

0 A
i

f

B

We have to prove that there is g : B −→ 0 :E a) such that f = g ◦ i. But as we can
think these modules as R-modules, we can replace (0 :E a) by E and, since E is
injective, we can extend the diagram and make the diagram commutative. But this
commutativity implies that Im(g) ⊂ (0 :E a) and therefore the original diagram
also commutes.

Corollary 2.2.17 Let (R,m,k) be a local ring and E = ER(k). Let a be an ideal
of R. Then:

(i) ER/a(k) = (0 :E a)
(ii) E =⋃t≥1 ER/mt (k)

Now it’s time to prove some technical results with the assumption that we need,
the completeness of the Noetherian local ring.

Lemma 2.2.18 Let (R,m,k) be a complete Noetherian local ring andE = ER(k).
Then:

(i) R∨ ∼= E and E∨ ∼= R.
(ii) For every R-module M the natural map M → M∨∨ induce isomorphisms

R→ R∨∨ and E→ E∨∨.

Proof

(i) It is well known that R∨ = HomR(R,E) ∼= E. Now let’s prove E∨ ∼= R.
Assume first thatR is Artinian. Consider the map θ : R→ E∨ = HomR(E,E)

which sends an element r ∈ R to the homothety defined by r . Since �(R) =
�(E∨), Proposition 2.2.15, we only need to prove that θ is injective. Suppose
that rE = 0. Then, by the last Corollary, ER/(r)(k) = (0 :E (r)) = E, and, by
the same argument, �(E) = �(R/(r)). This implies that �(R) = �(R/(r)), then
r = 0.
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Assume now that R is Noetherian and complete. We consider the map θ :
R → E∨ = HomR(E,E) as above, we will prove that θ is an isomorphism.
Let’s write Rt = R/mt for each t . By the last corollary Et := ERt (k) =
(0 :E mt ). Let ϕ ∈ HomR(E,E) = E∨. It is clear that ϕ(Et) ⊂ Et and thus
ϕ ∈ HomRt (Et , Et ). Since Rt is Artinian we have ϕ is a homothety defined by
an element rt ∈ Rt . The factEt ⊂ Et+1 implies that rt−rt+1 ∈ mt for all t ≥ 1.
In consequence, r = (rt )t ∈ R̂ = R and rt = r + mt for all t ≥ 1. We claim
that ϕ is given by multiplication by r . This follows from the fact that E = ∪tEt

and that ϕ(e) = rt e for all e ∈ Et . Moreover, r is uniquely determined by ϕ,
and we conclude that θ is bijective.

(ii) We consider the natural homomorphism γ : M → M∨∨ = HomR(HomR(M,

E),E) given by γ (m)(ϕ) = ϕ(m). Fisrt we prove that γ : R → R∨∨ is an
isomorphism. This map is the composition of the two isomorphisms given in
part (i) R ∼= E∨ ∼= (R∨)∨. In fact, if r ∈ R, the map R ∼= E∨ sends r to
multiplication by r , hr : E → E. Now the map E∨ ∼= (R∨)∨ sends hr to αr
defined by αr (ϕ) = hr(ϕ(1)) = ϕ(r), so αr = γ (r). The case ofE is analogous
to this one.

Proposition 2.2.19 Let (R,m,k) be a complete Noetherian local ring and E =
ER(k).

(i) There is an order-reversing bijection ⊥ between the set of R-submodules of E
and the set of ideals of R given by: if M is a submodule of E then (E/M)∨ ∼=
M⊥ = (0 :R M), and (R/I)∨ ∼= I⊥ = (0 :E I) for an ideal I ⊂ R,

(ii) E is an Artinian R-module,
(iii) an R-module is Artinian if and only if it can be embedded in En for some

n ∈ N.

Proof (i) Since M ⊂ M⊥⊥ we have to prove that M⊥⊥ ⊂ M . Consider the exact
sequence

0 −→ M −→ E
π−→ E/M −→ 0,

dualizing with respect E, we get an injective homomorphism, Lemma 2.2.18,

0 −→ (E/M)∨ π∨−→ E∨
θ−1∼= R.

Hence every g ∈ (E/M)∨ is mapped to an r ∈ R such that (θ−1 ◦ π∨)(g) = r , or
equivalently g ◦ π = π∨(g) = hr = θ(r) where hr : E −→ E is the homothety
defined by r . Since g ◦ π(M) = g(0) = 0 we get rM = 0, so (E/M)∨ ⊂ M⊥.
On the other hand if r ∈ M⊥ then we can consider the map g : E/M −→ E

such that g(x) = rx for all x ∈ E. It is easy to see that (θ−1 ◦ π∨)(g) = r , so

(E/M)∨
θ−1π∨∼= M⊥. Let x ∈ E \M then there is g ∈ (E/M)∨ such that g(x) �= 0,

Lemma 2.2.18. From the above isomorphism we deduce that there is r ∈ M∨ such
that rx �= 0. This shows that M∨∨ ⊂M and then M = M∨∨.
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Let I be an ideal of R. As in the previous case we have I ⊂ I⊥⊥. From the
natural exact sequence

0 −→ I −→ R
π−→ R/I −→ 0,

we get an injective homomorphism, Lemma 2.2.18,

0 −→ (R/I)∨ π∨−→ R∨
θ−1∼= E.

As in the previous case θ−1 ◦ π∨ maps (R/I)∨ to I⊥. Let r ∈ R \ I then there is
g ∈ (R/I)∨ such that g(r) �= 0, Lemma 2.2.18. Hence x = g(1) ∈ I⊥ and rx �= 0,
i.e. r /∈ (0 :R x). Since I⊥⊥ =⋂x∈I⊥(0 :R x) we get I⊥⊥ ⊂ I and then I = I⊥⊥.
(ii) Since R is Noetherian, by (i) we get that E is Artinian.
(iii) We consider the set X of kernels of all homomorphisms F : M −→ En, for
all n ∈ N. This is a set of submodules of M . Since M is Artininan there is a minimal
element ker(F ) of X, where F :M −→ En for some n ∈ N. Assume that ker(F ) �=
0 and pick 0 �= x ∈ ker(F ). From Proposition 2.2.15 there is σ :M −→ E such that
σ(x) �= 0. Let us consider F ∗ : M −→ En+1 defined by F ∗(y) = (F (y), σ (y)).
Since ker(F ∗) � ker(F ) we get a contradiction with the minimality of ker(F ).

Assume that M is a submodule of En for some integer n. From (ii) we get that
M is an Artin module.

In the next result we will prove Matlis’ duality, see [28] Theorem 5.20.

Theorem 2.2.20 (Matlis Duality) Let (R,m,k) be a complete Noetherian local
ring, E = ER(k) and let M be a R-module. Then:

(i) If M is Noetherian then M∨ is Artinian.
(ii) If M is Artinian then M∨ is Noetherian.

(iii) If M is either Noetherian or Artinian then M∨∨ ∼= M .
(iv) The functor (−)∨ is a contravariant, additive and exact functor.
(v) The functor (−)∨ is an anti-equivalence between R_mod.Noeth and

R_mod.Artin (resp. between R_mod.Artin and R_mod.Noeth). It holds
(−)∨ ◦ (−)∨ is the identity functor of R_mod.Noeth (resp. R_mod.Artin).

Proof

(i) Let’s consider a presentation of M

Rm Rn M 0

Since (−)∨ is exact, it induces an exact sequence:

0 M∨ (Rn)∨ (Rm)∨

Thus M∨ can be seen as a submodule of (Rn)∨ ∼= (R∨)n ∼= En,
Lemma 2.2.18. Since E is Artinian as we saw in the previous corollary,
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so is En and hence also M∨. Applying the functor (−)∨ again we get a
commutative diagram:

(Rm)∨∨ (Rn)∨∨ M∨∨
0

Rm Rn M 0

whose rows are exact. Since we proved that in this context R → R∨∨ is an
isomorphism, M ∼= M∨∨

(ii) We proved that M ↪→ En for some n ∈ N. Since E is Artinian, so is En/M

and thus En/M ↪→ Em for some m ∈ N. In consequence, we have an exact
sequence:

0 M En Em

As before, if we apply (−)∨ we have an exact sequence:

(Em)∨ (En)∨ M∨
0

and M∨ can be seen as a quotient of (En)∨ ∼= (E∨)n ∼= Rn, where the
isomorphism is the one we proved in Lemma 2.2.18. This implies that M∨ is
Noetherian.

(iii) Finally, we apply the functor (−)∨ to the last exact sequence we obtain the
commutative diagram

0 M∨∨ (En)∨∨ (Em)∨∨

0 M En Em

And again, since E→ E∨∨ is an isomorphism, M ∼= M∨∨
(iv) This is a consequence of the previous statements.

2.3 Macaulay’s Correspondence

Let k be an arbitrary field. Let R = k[[x1, . . . xn]] be the ring of the formal series
with maximal ideal m = (x1, · · · , xn) and let S = k[y1, . . . , yn] be a polynomial
ring, we denote by μ = (x1, . . . , xn) the homogeneous maximal ideal of S.

It is well known that R is an S-module with the standard product. On the other
hand, S can be considered as R-module with two linear structures: by derivation and
by contraction.
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If char(k) = 0, the R-module structure of S by derivation is defined by

R × S −→ S

(xα, yβ) �→ xα ◦ yβ =

⎧
⎪⎨

⎪⎩

β!
(β−α)!y

β−α β ≥ α

0, otherwise

where for all α, β ∈ N
n, α! =∏n

i=1 αi !
If char(k) ≥ 0, the R-module structure of S by contraction is defined by:

R × S −→ S

(xα, yβ) �→ xα ◦ yβ =
⎧
⎨

⎩

yβ−α β ≥ α

0, otherwise

α, β ∈ N
n

Proposition 2.3.1 For any field k there is a R-module homomorphism

σ : (S, der) −→ (S, cont)

yα �→ α! yα

If char(k) = 0 then σ is an isomorphism of R-modules.

Proof For proving the first statement it is enough to show that

σ(xα ◦ yβ) = xασ(yβ).

This is easy:

σ(xα ◦ yβ) = σ

(
β!

(β − α)!y
β−α

)
= β!

(β − α)! ((β − α)!yβ−α)

= β! yβ−α = xα ◦ σ(yβ)

If char(k) = 0 then the inverse of σ is yα −→ (1/α!)yα
Given a family of polynomials Fj , j ∈ J , we denote by 〈Fj , j ∈ J 〉 the

submodule of S generated by Fj , j ∈ J , i.e. the k-vector subspace of S generated
by xα ◦ Fj , j ∈ J , and α ∈ N

n. We denote by 〈Fj , j ∈ J 〉k the k-vector space
generated by Fj , j ∈ J .

In the next result we compute the injective hull of the residue field of a power
series ring, [18, 25].
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Theorem 2.3.2 Let R = k[[x1, . . . xn]] be the n-dimensional power series ring over
a field k. If k is of characteristic zero then

ER(k) ∼= (S, der) ∼= (S, cont).

If k is of positive characteristic then

ER(k) ∼= (S, cont).

Proof We write E = ER(k). From Corollary 2.2.17 we get

E =
⋃

i≥0

(0 :E mi
R) =

⋃

i≥0

ER/mi
R
(k)

Hence the problem is reduced to the computation of ER/mi
R
(k) ⊂ E.

Notice that S≤i−1 := {f ∈ S | deg(f ) ≤ i − 1} ⊂ S is an sub-R-module
of S, with respect to the derivation or contraction structure of S, and that S≤i−1 is
annihilated by mi

R . Hence S≤i−1 is an R/mi
R-module. For any characteristic of the

ground field k the extension k ⊂ S≤i−1 := {f ∈ S | deg(f ) ≤ i − 1} is essential.
In fact, let 0 �= M ⊂ S≤i−1 be a sub-R/mi

R-module then it holds 1 ∈ M .
From Theorem 2.2.13 there exists L ∼= ER/mi

R
(k) such that

k ⊂ S≤i−1 ⊂ L ∼= ER/mi
R
(k).

Since, Proposition 2.2.15,

LengthR/mi
R
(ER/mi

R
(k)) = LengthR/mi

R
(R/mi

R)

= LengthR/mi
R
(S≤i−1)

from the last inclusions we get S≤i−1 ∼= ER/mi
R
(k). Hence

ER(k) ∼=
⋃

i≥0

S≤i−1 = S.

From the previous results we can recover the classical result of Macaulay, [23],
for the power series ring, see [16, 21].

If I ⊂ R is an ideal, then (R/I)∨ is the sub-R-module of S that we already
denote by I⊥, see Proposition 2.2.19,

I⊥ = {g ∈ S | I ◦ g = 0},
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this is the Macaulay’s inverse system of I . Given a sub-R-module M of S then dual
M∨ is an ideal of R that we already denote by (S/M)⊥, see Proposition 2.2.19,

M⊥ = {f ∈ R | f ◦ g = 0 for all g ∈ M}.

We will write sometimes this module as M⊥ = AnnR(M).

Proposition 2.3.3 (Macaulay’s Duality) Let R = k[[x1, . . . xn]] be the n-
dimensional power series ring over a field k. There is a order-reversing bijection
⊥ between the set of finitely generated sub-R-submodules of S = k[[y1, . . . yn]]
and the set of m-primary ideals of R given by: if M is a submodule of S then
M⊥ = (0 :R M), and I⊥ = (0 :S I) for an ideal I ⊂ R.

Proof The one-to-one correspondence is a particular case of Proposition 2.2.19.
Theorem 2.2.20 gives the one-to-one correspondence between finitely generated
sub-R-submodules of S and m-primary ideals of R.

Remark Macaulay proved more as we will see later on. Trough this correspondence
Macaulay proved that Artin Gorenstein k-algebras A = R/I of socle degree s

correspond to R-submodules of S generated by a polynomial F of degree s, see
Proposition 2.4.4.

Let A = R/I be an Artin quotient of R, we denote by n = m/I the maximal
ideal of A. The socle of A is the colon ideal Soc(A) = 0 :A n, notice that Soc(A)
is a k-vector space subspace of A. We denote by s(A) the socle degree of A, that
is the maximum integer j such that nj �= 0. The (Cohen-Macaulay) type of A is
t (A) := dimk Soc(A).

The Hilbert function of A = R/I is by definition

HFA(i) = dimk

(
ni

ni+1

)
,

the multiplicity of A is the integer e(A) := dimk(A) = dimk I
⊥, Propositions 2.3.3

and 2.2.19. Notice that s(A) is the last integer such that HFA(i) �= 0 and that
e(A) =∑s

i=0 HFA(i). The embedding dimension of A is HFA(1).

Example 2.3.4 Let F = y3 + xy + x2 ∈ R = k[[x, y]] be a polynomial. We
consider the R-module structure of S = k[x, y] defined by the contraction ◦. Then
〈F 〉 = 〈F, y2+x, y+x, x, 1〉k and dimk(〈F 〉) = 5. We have that I = AnnR(〈F 〉) =
(xy− y3, x2− xy), i.e. I is a complete intersection ideal of R. The Hilbert function
of A is HFA = {1, 2, 1, 1}, so e(A) = 5 and s(A) = 3

The associated graded ring to A is the graded k-algebra ring grn(A) =
⊕i≥0n

i/ni+1. Notice that the Hilbert function of A and its associated graded ring
grn(A) agrees. We denote by I∗ the homogeneous ideal of S generated by the initial
forms of the elements I . It is well known that grn(A) ∼= S/I∗ as graded k-algebras,
in particular grn(A)i ∼= (S/I∗)i for all i ≥ 0.
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We denote by S≤i (resp. S<i , resp. Si ), i ∈ N, the k-vector space of polynomials
of S of degree less or equal (resp. less, resp. equal to) to i, and we consider the
following k-vector space

(I⊥)i := I⊥ ∩ S≤i + S<i

S<i
.

Proposition 2.3.5 For all i ≥ 0 it holds

HFA(i) = dimk(I
⊥)i .

Proof Let’s consider the following natural exact sequence of R-modules

0 −→ ni

ni+1 −→
A

ni+1 −→
A

ni
−→ 0.

Dualizing this sequence we get

0 −→ (I + mi )⊥ −→ (I +mi+1)⊥ −→
(

ni

ni+1

)∨
−→ 0

so we get the following sequence of k-vector spaces:

(
ni

ni+1

)∨
∼= (I +mi+1)⊥

(I + mi )⊥
= I⊥ ∩ S≤i

I⊥ ∩ S≤i−1

∼= I⊥ ∩ S≤i + S<i

S<i
.

From Proposition 2.2.15 we get the claim.

Consider the map

〈|〉 : R × S −→ k
(F,G) �→ (F ◦G)(0)

In the next result we collect some results on 〈|〉 that we will use later on.

Proposition 2.3.6

1. 〈|〉 is a bilinear non-degenerate map of k-vector spaces.
2. If I is an ideal of R then

I⊥ = {G ∈ S | 〈I | G〉 = 0}

3. 〈|〉 induces a bilinear non-degenerate map of k-vector spaces

〈|〉 : R
I
× I⊥ −→ k
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4. We have an isomorphism of k-vector spaces:

(
S

I∗

)

i

∼= (I⊥)i

for all i ≥ 0.

We will denote by ∗ the duality defined by exact pairing 〈|〉, notice that (R/I)∗
∼= I⊥.

If i = (i1, · · · , in) ∈ N
n is a integer n-pla we denote by ∂i(G), G ∈ S, the

derivative of G with respect to y
i1
1 · · · yinn , i.e. ∂i(G) = (x

i1
1 · · · xinn ) ◦G.

Let Ω = {ωi} be the canonical basis of R/ms+1 as a k-vector space consisting
of the standard monomials xα ordered by the deg-lex order with x1 > · · · > xn and,
then the dual basis with respect to ∗ is the basis Ω∗ = {ω∗i } of S≤j where

(xα)∗ = 1

α!y
α,

in fact ωj ◦ ω∗i = 〈ωj | ω∗i 〉 = δij , where δij = 0 if i �= j and δii = 1.

2.4 Gorenstein, Level and Compressed Algebras

Definition 2.4.1 An Artin ring A is Gorenstein if t (A) = 1; A is an Artin level
algebra if Soc(A) = ms , where s is the socle degree of A.

Proposition 2.4.2 Let A = R/I be an Artin ring, the following conditions are
equivalent:

(i) A is Gorenstein,
(ii) A ∼= EA(k) as R-modules,

(iii) A is injective as A-module.

Proof Assume (i). Since the extension k = Soc(A) ⊂ A is essential we have the
A-module extensions, Proposition 2.2.11 (ii),

k = Soc(A) ⊂ A ⊂ EA(k).

so A = EA(k), Proposition 2.2.15. Since S ∼= Ek(k) is an injective R-module, (ii)
implies (iii).

Assume that A is injective as A-module. From Proposition 2.2.13 (ii) we get the
A-module extensions

k ⊂ EA(k) ⊂ A,

from Proposition 2.2.15 we get (i).
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Given an R-module M we denote by μ(M) the minimal number of generators
of M .

Proposition 2.4.3 Let A = R/I be an Artinian local ring. Then

Soc(A)∨ = I⊥

m ◦ I⊥ .

In particular the Cohen-Macaulay type of A is

t (A) = dimk(I
⊥/m ◦ I⊥) = μR(I

⊥).

Proof Let’s consider exact sequence of R-modules

0 −→ Soc(A) = (0 :A n) −→ A
(x1,··· ,xn)−→ An,

dualizing this sequence we get

(I⊥)n σ−→ I⊥ −→ Soc(A)∨ −→ 0

where σ(f1, · · · , fn) =∑n
i=1 xi ◦ fi . Hence

Soc(A)∨ = I⊥

(x1, . . . , xn) ◦ I⊥ =
I⊥

m ◦ I⊥

Since t (A) = dimk(Soc(A)) = dimk(Soc(A)∨) = μ(I⊥), Proposition 2.2.15.

Given a polynomial F ∈ S of degree r we denote by top(F ) the degree r form
of F where r = deg(F ).

Proposition 2.4.4 Let I be an m-primary ideal of R. The quotient A = R/I is an
Artin level algebra of socle degree s and Cohen-Macaulay type t if and only if I⊥
is generated by t polynomials F1, · · · , Ft ∈ S such that deg(Fi) = s, i = 1, · · · , t ,
and top(F1), · · · , top(Ft ) are k-linear independent forms of degree s. In particular,
A = R/I is Gorenstein of socle degree s if and only if I⊥ is a cyclic R-module
generated by a polynomial of degree s.

Proof Assume that A is an Artin level algebra of socle degree s and Cohen-
Macaulay type t . In particular Soc(A) = ns = ms + I/I so

Soc(A)∨ = I⊥

I⊥ ∩ S≤s−1
.

From the last result we get

m ◦ I⊥ = I⊥ ∩ S≤s−1.
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From this identity we deduce that I∨ is generated by t polynomials F1, · · · , Ft of
degree s and top(F1), · · · , top(Ft ) are k-linear independent.

Assume that I⊥ = 〈F1, · · · , Ft 〉 such that deg(Fi) = s, i = 1, · · · , t , and that
top(F1), · · · , top(Ft ) are k-linear independent forms of degree s. Hence F1, · · · , Ft
is a minimal system of generators of I⊥, in particular μR(I

⊥) = t and from the
last result we have that t is the Cohen-Macaulay type of A. Furthermore, since
deg(Fi) = s, i = 1, · · · , t , we have

m ◦ I⊥ = I⊥ ∩ S≤s−1.

From the last result we deduce Soc(A) = ns , i.e. A is Artin level of socle degree s.

In the last section we will prove the following result, see Proposition 2.6.3,

Corollary 2.4.5 Let A = R/I be an Artin algebra of embedding dimension two.
Then

μ(I) = t (R/I)+ 1.

A is Gorenstein if and only if I is a complete intersection.

The initial degree of A = R/I is the integer r such that I ⊆ mr and I � mr+1.
The socle type of A is the sequence σ(A) = (0, . . . , σr−1, σr , . . . , σs, 0, 0, . . . ), s
is the socle degree of A, with

σi := dimk

(
(0 : n) ∩ ni

(0 : n) ∩ ni+1

)
.

Notice that σs > 0 and σj = 0 for j > s,. See [20] for some conditions on a
sequence of integers to be the socle type of an Artin algebra

Remark An Artin algebra of socle degree s and Cohen-Macaulay type t is level if
and only if σj = 0 for j �= s and σs = t . The Artin algebra is Gorenstein if and
only if σj = 0 for j �= s and σs = 1 .

We say that the Hilbert function HFA is maximal in the class of Artin level
algebras of given embedding dimension and socle type, if for each integer i,
HFA(i) ≥ HFB(i) for any other Artin algebra B in the same class. The existence
of a maximal HFA was shown for graded algebras by Iarrobino [20]. In the general
case by Fröberg and Laksov [17], by Emsalem [16], by Iarrobino and the author of
this notes in [10] in the local case.

Definition 2.4.6 An Artin algebra A = R/I of socle type σ is compressed if and
only if it has maximal length e(A) = dimk A among Artin quotients of R having
socle type σ and embedding dimension n.
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The maximality of the Hilbert function characterizes compressed algebras as
follows. If A is an Artin algebra of socle type σ, it is known that for i ≥ 0,

HFA(i) ≤ min{dimk Si, σi dimk S0 + σi+1 dimk S1 + · · · + σs dimk Ss−i}.

Accordingly with [20], Definition 2.4. B, we can rephrase the previous definition in
terms of the Hilbert function.

Definition 2.4.7 A local k-algebra A of socle degree s, socle type σ and initial
degree r is compressed if

HFA(i) =
⎧
⎨

⎩

∑s
u=i σu(dimk Su−i ) if i ≥ r

dimk Si otherwise.

In particular a level algebra A of socle degree s, type t and embedding dimension n
is compressed if

HFA(i) = min

{(
n+ i − 1

i

)
, t

(
n+ s − i − 1

s − i

)}
.

If t = 1 and the above equality holds then A is called compressed Gorenstein
algebra or also extremal Gorenstein algebra.

It is clear that compressed algebras impose several restrictive numerical condi-
tions on the socle sequence σ (see [20, Definition 2.2]). For instance if r is the initial
degree of A, then

σr−1 = max{0, dimk Sr−1 −
∑

u≥r
(σu dimk Su−(r−1))}. (2.1)

If s ≥ 2(r − 1), then it is easy to see that σr−1 = 0 because dimk Ss−(r−1) ≥
dimk Sr−1. This is the case if A is Gorenstein.

The following result was proved in [20, Proposition 3.7 and Corollary 3.8].

Proposition 2.4.8 A compressed local algebra A = R/I whose dual module I⊥ is
generated by F1, . . . , Ft of degrees d1, . . . , dt has a compressed associated graded
ring grn(A) whose dual module is generated by the leading forms of F1, . . . , Ft .

Conversely if grn(A) is compressed, then A is compressed and σ(A) = σ(grn(A)).

It is well known that if grn(A) is Gorenstein then A is Gorenstein. On the other
hand, if A is Gorenstein then grn(A) is no longer Gorenstein. In order to study the
associated graded ring to A Iarrobino considered the following construction. For
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a = 0, · · · , s − 1, s = s(A), consider the homogeneous ideals of grn(A)

C(a) =
⊕

i≥0

C(a)i

C(a)i = (0 :A ns+1−a−i) ∩ ni

(0 :A ns+1−a−i) ∩ ni+1 ⊂ grn(A)i

This defining a decreasing filtration of ideals of grn(A)

grmA(A) = C(0) ⊇ C(1) ⊇ · · · ⊇ C(s) = 0

Notice that if a ≥ 1 then C(a)i = 0 for all i ≥ s−a and C(0)i = 0 for all i ≥ s+1

Definition 2.4.9 (Iarrobino’s Q-Decomposition of grn(A)) For all a =
0, · · · , s − 1 we consider the grmA(A)-module

Q(a) = C(a)/C(a + 1).

Since the Hilbert function of A and grn(A) agree we have the Iarrobino’s Shell
decomposition of HFA:

HFA =
s−1∑

a=0

HFQ(a)

Proposition 2.4.10 If A is Artin Gorenstein then Q(a) is a reflexive grn(A)-
module:

Homk(Q(a)i,k) ∼= Q(a)s−a−i

i = 0, · · · , s − a. In particular, HFQ(a) is a symmetric function w.r.t s−a
2 .

Example 2.4.11 (Shell Decomposition) Assume that HF = {1,m, n, 1} is the
Hilbert function of an Artin Gorenstein algebra A = R/I The Shell decomposition
of HF is, s = 3,

i 0 1 2 3
HFA 1 m n 1
HFQ(0) 1 n n 1
HFQ(1) 0 m− n 0 0
HFQ(2) 0 0 0 0

so m ≥ n. In fact, all function {1,m, n, 1}, m ≥ n, is the Hilbert function of an Artin
Gorenstein algebra Theorem 2.5.11. Notice that from Macaulay’s characterization
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of Hilbert functions we get that {1,m, n, 1} is the Hilbert function of an Artin
algebra iff 1 ≤ n ≤ (m+1

2

)
, [3, 30].

The following result is due to De Stefani, [6], it is a generalization of some results
of Iarrobino.

Proposition 2.4.12 Let A = R/I be an Artin level algebra of socle degree s and
Cohen-Macaulay type t . Then

(i) Q(0) = grn(A)/C(1) is the unique (up to iso) graded level quotient of grn(A)
with socle degree s and Cohen-Macaulay type t .

(ii) Let F1, · · · , Ft ∈ S be generators of I⊥ such that such that deg(Fi) = s,
i = 1, · · · , t , and top(F1), · · · , top(Ft ) are k-linear independent forms of
degree s, Proposition 2.4.4. Then Q(0) ∼= R/〈top(F1), · · · , top(Ft )〉⊥.

(iii) The associated graded ring grn(A) is an Artin level algebra of socle degree s
and Cohen-Macaulay type t iff grn(A) ∼= Q(0).

As corollary we get:

Proposition 2.4.13 Let A = R/I be an Artin Gorenstein algebra of socle degree
s. Then the following conditions are equivalent:

(i) grn(A) is Gorenstein,
(ii) grn(A) = Q(0),

(iii) HFA is symmetric.

2.5 Classification of Artin Rings

It is known that there are a finite number of isomorphism classes for e ≤ 6.
J. Briançon [2] proved this result for n = 2, k = C; G. Mazzola [24] for k = k̄ and
char(k) �= 2, 3; finally B. Poonen [26] proved the finiteness for any k = k̄. On the
other hand D.A. Suprunenko [31] proved that if k infinite, there are infinite number
of isomorphism classes for e ≥ 7.

The problem of classification is in general very hard. For instance, before the
paper [12], an open problem was the classification of Artin algebras with Hilbert
function {1,m, n, 1}, even if A is Gorenstein.

Other families that has been classified are the almost stretched algebras, [14, 15].
We say that a Artin Gorenstein algebra A = R/I is Almost Stretched if m2 is
minimally generated by two elements or equivalently, the Hilbert function of A is

HFA = {1, n,
t−1︷ ︸︸ ︷

2, · · · , 2,

s−t︷ ︸︸ ︷
1, · · · , 1}

We assume that 3 ≤ t + 1 ≤ s. We say that A is of type (s, t).
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In the following result we present the possible analytic types of almost stretched
algebras, [14, 15] and [9]. In fact, we proved more: we determined the pairwise
analytic types of almost stretched algebras. We omit describing it here.

Theorem 2.5.1 Let A = R/I be an Almost Stretched algebra of type (s, t) with
3 ≤ t + 1 ≤ s.
If there is not r such that 2(r + 1) = s − t + 1 or s ≥ 3t − 1 then I is isomorphic
to one of the following ideals:

I0,1, I1,1, . . . , Imin{t−1,s−t},1.

Assume that s ≤ 3t − 2 and let r be the integer such that 2(r + 1) = s − t + 1, then
I is isomorphic to one of the following ideals:

I0,1, . . . , Ir−1,1, Ir+1,1, . . . , Imin{t−1,s−t},1

{Ir,a}a∈k∗, {Ir,a+x1}a∈k∗, . . . , {Ir,a+xt−r−2
1

}a∈k∗

Where Ip,z is the ideal generated by

{xixj }1≤i<j≤n,(i,j) �=(1,2), {xj − xs1}3≤j≤n, x2
2 − x

p+1
1 x2 − zxs−t+1

1 , xt1x2

Example 2.5.2 ([15]) Let A be an Artin Gorenstein algebra with Hilbert function
{1, 2, 2, 2, 1, 1, 1}. Then the analytic types are represented by

1. I1 = (y2 − xy − x4, x3y)

2. I2 = (y2 − x3y − x4, x3y)

3. Ic = (y2 − x2y − cx4, x3y), c ∈ k∗

The moduli space, see [19] has two isolated points and a punctured affine line.

The main result of this section shows that some Artin algebras are isomorphic to
their associated graded ring. J. Emsalem called these algebras “canonically graded”.

Definition 2.5.3 (Emsalem) An Artin local algebra A = R/I is canonically
graded if A is analytically isomorphic to grn(A) ∼= R/I∗R.

Notice that there are non-canonically graded algebras, for instance:

Example 2.5.4 ([15]) Let A be an Artin Gorenstein algebras with HFA =
{1, 2, 3, 2, 1} then A is is isomorphic to one and only one of the following quotients
of R = k[[x1, x2]]:
1. I1 = (x4

1 , x
2
2),

2. I2 = (x4
1 , x

2
1 + x2

2), and
3. I3 = (x4

1 , x
2
2 − x3

1).

Notice: I∗3 = (x4
1 , x

2
2 ) = I1 and I1 � I3, i.e. R/I3 is not canonically graded.

From now on we assume that the ground field k is of characteristic zero.
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If L is a submodule of S generated by a sequence G := G1, . . . ,Gt of
polynomials of S, then we will write

AG = R/Ann(L).

Given a form G of degree s and an integer q ≤ s, we denote by Δq(G) the(
n−1+s−q

n−1

) × (n−1+q
n−1

)
matrix whose columns are the coordinates of ∂i(G), |i| = q ,

with respect to (xL)∗ = 1
L!y

L, |L| = s − q . We will denote by (L, i) the
corresponding position in the matrix Δq(G). In the following L + i denotes the
sum in N

n.

Proposition 2.5.5 ([11]) Let G ∈ S = k[y1, · · · , yn] be a form of degree s. Then

HFAG(s − i) = rank (Δi(G)) ≤ min

{(
n− 1+ s − i

n− 1

)
,

(
n− 1+ i

n− 1

)}

for i = 0, · · · , s. The equality holds if and only if AG is compressed.
Given an integer i ≤ s, then

Δi(G) =τ Δs−i (G)

where τ denotes the transpose matrix.

Notice that from the last result and Proposition 2.3.5 it is easy to deduce an
alternative proof of the fact that a graded Gorenstein algebra AG has symmetric
Hilbert function.

Let AG be a graded level algebra. We can define for all integers i ≤ s the block
matrix

Δi(G) =
⎛
⎜⎝
Δi(G1)

...

Δi(Gt)

⎞
⎟⎠ (2.2)

which is a t
(
n−1+s−i

n−1

)× (n−1+i
n−1

)
matrix. We get the following result.

Proposition 2.5.6 Let A = AG be a compressed algebra of socle degree s and
Cohen-Macaulay type type t . Then for every i = 1, . . . , s

HFA(i) = rank(Δi(G[s])) = min

{(
n− 1+ i

n− 1

)
, t

(
n− 1+ s − i

n− 1

)}
.

Proof By Proposition 2.4.8 we know that grμ(A) is level compressed of socle
degree s and type t . Since grμ(A) is level if and only if grμ(A) # Q(0) =
S/〈top(G)〉⊥, the result follows by Proposition 2.5.5.
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Given a k-algebra C, quotient of R, we will denote by Aut(C) the group of the
automorphisms of C as a k-algebra and by Autk(C) as a k-vector space. Since R is
complete ϕ ∈ Aut(R) is determined by

ϕ(xi) ∈ m

i = 1, · · · , n, i.e. ϕ acts by substitution of xi by ϕ(xi).
For any ϕ ∈ Autk(R/m

s+1) we may associate a matrix M(ϕ) with respect to the
basis Ω of size r = dimK(R/m

s+1) = (
n+s
s

)
already defined at the end of Sect.

2.5. Given I and J ideals of R such that ms+1 ⊂ I, J, there exists an isomorphism
of k-algebras

ϕ : R/I → R/J

if and only if ϕ is canonically induced by a k-algebra automorphism of R/ms+1

sending I/ms+1 to J/ms+1. In particular ϕ is an isomorphism of k-vector spaces.
Dualizing

ϕ∗ : (R/J )∗ → (R/I)∗

is an isomorphism of the k-vector subspaces where (R/I)∗ # I⊥ and (R/J )∗ # J⊥
of S≤s according to the exact paring (2.3.6). Hence τM(ϕ) is the matrix associated
to ϕ∗ with respect to the basis Ω∗ of S≤s .

We denote by R the subgroup of Autk(S≤s) (automorphisms of S≤s as a k-
vector space) represented by the matrices τM(ϕ) ofGlr(k) with ϕ ∈ Aut(R/ms+1).
For all p ≥ 1, Ip denotes the identity matrix of order

(
n+p−1

p

)
. By Emsalem, [16,

Proposition 15], the classification, up to analytic isomorphism, of the Artin local k-
algebras of multiplicity e, socle degree s and embedding dimension n is equivalent
to the classification, up to the action of R, of the k-vector subspaces of S≤s of
dimension e, stable by derivations and containing the k-vector space S≤1.

Let F = F1, . . . , Ft , respectively G = G1, . . . ,Gt , be polynomials of degree s.

Let ϕ ∈ Aut(R/ms+1), from the previous facts we have

ϕ(AF ) = AG if and only if (ϕ∗)−1(〈F 〉R) = 〈G〉R. (2.3)

If Fi = bi1ω
∗
1 + . . . birω

∗
r ∈ S≤s , then we will denote the row vector of the

coefficients of the polynomial with respect to the basis Ω∗ by

[Fi]Ω∗ = (bi1, . . . , bir ).

If there exists ϕ ∈ Aut(R/ms+1) such that

[Gi]Ω∗M(ϕ) = [Fi ]Ω∗, for every i = 1, . . . , t, then ϕ(AF ) = AG (2.4)
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Let ϕs−p be an automorphism of R/ms+1 such that ϕs−p = Id modulo mp+1,
with 1 ≤ p ≤ s, that is

ϕs−p(xj ) = xj +
∑

|i|=p+1

a
j
i x

i + higher terms (2.5)

for j = 1, . . . , n and aji ∈ k for each n-uple i such that |i| = p+1. In the following

we will denote a := (a1
i , |i| = p + 1; · · · ; ani , |i| = p + 1) ∈ kn(

n+p
n−1).

The matrix associated to ϕs−p, sayM(ϕs−p), is an element ofGlr(k), r =
(
n+s
s+1

)
,

with respect to the basis Ω of R/ms+1. We write M(ϕs−p) = (Bi,j )0≤i,j≤s where
Bi,j is a

(
n+i−1

i

) × (n+j−1
j

)
matrix of the coefficients of monomials of degree i

appearing in ϕ(xj ) where j = (j1, . . . , jn) such that |j | = j. It is easy to verify
that:

Bi,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 ≤ i < j ≤ s, or j = 1, i = 1, · · · , s,

Ii , i = j = 0, · · · , s,

0, j = s − p, · · · , s − 1, i = j + 1, · · · , s, and (i, j) �= (s, s − p).

The matrix M(ϕs−p) has the following structure

M(ϕs−p) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0 0 0

0 I1 0 0 0 0 0
...

0 0 I2 0 0 0 0
...

...
... 0

. . .
...

...
...

...

0 Bp+1,1 0 . . . Is−p 0 0
...

0 . . . Bp+2,2 0 0 Is−p+1 0
...

0 . . . · · · . . .
... 0

. . . 0
0 Bs,1 Bs,2 . . . Bs,s−p 0 . . . Is

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The entries of Bp+1,1, Bp+2,2, . . . , Bs,s−p are linear forms in the variables aji , with

|i| = p+ 1, j = 1, · · · , n. We are mainly interested in Bs,s−p which is a
(
n+s−1

s

)×(
n+s−p−1

s−p
)

matrix whose columns correspond to xW with |W | = s−p and the rows

correspond to the coefficients of xL with |L| = s in ϕ(xW).

Let F,G be polynomials of degree s of P and let ϕs−p be a k-algebra
isomorphism of type (2.5) sending AF to AG. We denote by F [j ] (respectively
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G[j ]) the homogeneous component of degree j of F (respectively of G), that is
F = F [s] + F [s − 1] + . . . (G = G[s] +G[s − 1] + . . . ).
By (2.4) we have

[G]Ω∗M(ϕs−p) = [F ]Ω∗, (2.6)

in particular we deduce

[F [j ]]Ω∗ =
⎧
⎨

⎩

[G[s − p]]Ω∗ + [G[s]]Ω∗Bs,s−p, j = s − p,

[G[j ]]Ω∗, j = s − p + 1, · · · , s.
(2.7)

We are going to study [G[s]]Ω∗Bs,s−p. Let [αi] be the vector of the coordinates
of G[s] w.r.t. Ω∗, i.e.

G[s] =
∑

|i|=s
αi

1

i!y
i;

the entries of [G[s]]Ω∗Bs,s−p are bi-homogeneous forms in the components of [αi]
and a = (a1

i , . . . , a
n
i ) such that |i| = p+ 1 of bi-degree (1, 1). Hence there exists a

matrix M [s−p](G[s]) of size
(
n−1+s−p

n−1

)× n
(
n+p
n−1

)
and entries in the k[αi] such that

τ([αi ]Bs,s−p) = M [s−p](G[s]) τa (2.8)

where τa denotes the transpose of the row-vector a. We are going to describe the
entries of M [s−p](G[s]). We label the columns of M [s−p](G[s]) with the set of
indexes (j, i), j = 1, · · · , n, |i| = p + 1, corresponding to the entries of a =
(a1

i , |i| = p + 1; · · · ; ani , |i| = p + 1) ∈ kn(
n+p
n−1).

For every i = 1, · · · , n, we denote Sip the set of monomials xα of degree p such

that xα ∈ xi(xi, · · · , xn)p−1, hence #(Sip) =
(
p−1+n−i

p−1

)
.

Lemma 2.5.7 The matrix M [s−p](G[s]) has the following upper-diagonal struc-
ture

M [s−p](G[s]) =

⎛

⎜⎜⎜⎜⎜⎜⎝

M1 ∗ · · · ∗ ∗
0 M2 · · · ∗ ∗
...

...
...

...
...

0 0 0 Mn−1 ∗
0 0 0 0 Mn

⎞

⎟⎟⎟⎟⎟⎟⎠

where Mj is a matrix of size
(
s−p−1+n−j

s−p−1

) × (n+p
n−1

)
, j = 1, · · · , n, defined as

follows: the entries of Mj are the entries of M [s−p](G[s]) corresponding to the rows
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W ∈ log(Sjs−p) and columns (j, i), |i| = p + 1. We label the entries of Mj with
respect to these multi-indices. Then it holds:

(i) for all W = (w1, · · · , wn) ∈ log(S1
s−p) and i, |i| = p + 1,

w1Δ
p+1(G[s])(W−δ1,i) = M1(W,(1,i)),

(ii) for all j = 1, · · · , n− 1, W ∈ log(Sj+1
s−p),

Mj+1,(W,(j+1,∗)) = wj+1Mj,(L,(j,∗))

with L = δj +W − δj+1,

From the last result we get the key result of this chapter.

Corollary 2.5.8 If s ≤ 4 then rank (M [s−p](G[s])) is maximal if and only if
rank (Δp+1(G[s])) is maximal.

Proof Notice that M [s−p](G[s]) has an upper-diagonal structure where the rows
of the diagonal blocks Mj are a subset of the rows of the first block matrix M1.
Let us assume that the number of rows of M1 is not bigger than the number of
columns of M1, as a consequence the same holds for Mj with j > 1. Then we can
compute the rank of M [s−p](G[s]) by rows, so rank (M [s−p](G[s])) is maximal
if and only if rank (Δp+1(G[s])) is maximal. Since M1 is a

(
s−p−2+n
s−p−1

) × (n+p
n−1

)

matrix, if
(
n+s−p−2
s−p−1

) = (
n+s−p−2

n−1

) ≤ (
n+p
n−1

)
we get the result. This inequality is

equivalent to n+ s−p− 2 ≤ n+p, i.e. s ≤ 2p+ 2, since p ≥ 1 we get that s ≤ 4.

We may generalize the previous facts to a sequence G = G1, . . . ,Gt of
polynomials of degree s of S. Let ϕs−p be a k-algebra isomorphism of type (2.5)
sending AF to AG where F = F1, . . . , Ft . In particular we assume that, as in (2.6),

[Gr ]Ω∗M(ϕs−p) = [Fr ]Ω∗,

for every r = 1, . . . , t. We deduce the analogues of (2.7) and we restrict our
interest to

[G[s]]Ω∗B⊕ts,s−p

where

B⊕ts,s−p :=
⎛

⎜⎝
Bs,s−p

...

Bs,s−p

⎞

⎟⎠

obtained by gluing t times the matrix Bs,s−p and where [G[s]]Ω∗ is the row
([Gr [s]]Ω∗ : r = 1, . . . , t). In accordance with (2.8), it is defined the matrix
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M [s−p](Gr [s]) of size
(
n−1+s−p

n−1

)×n
(
n+p
n−1

)
and entries depending on [G[s]]Ω∗ such

that

τ ([Gr [s]]Ω∗Bs,s−p) = M [s−p](Gr [s]) τ a

If we define

M [s−p](G[s]) :=
⎛
⎜⎝
M [s−p](G1[s])

...

M [s−p](Gt [s])

⎞
⎟⎠ (2.9)

which is a t
(
n−1+s−p

n−1

)× n
(
n+p
n−1

)
matrix, we get

τ([G[s]]Ω∗B⊕ts,s−p) = M [s−p](G[s]) τa. (2.10)

The matrix M [s−p](G[s]) has the same shape of M [s−p](G[s]), already described
in Lemma 2.5.7 and its blocks correspond to suitable submatrices of (Δp+1(G[s]))
(see (2.2)). Hence we have an analogue to (2.7) for the level case

[Fr [j ]]Ω∗ =
⎧
⎨

⎩

[Gr [s − p]]Ω∗ + a τ (M [s−p](G[s])), j = s − p,

[Gr [j ]]Ω∗ , j = s − p + 1, · · · , s.
(2.11)

for all r = 1, . . . , t.
In the next result we generalize the main result of [12].

Theorem 2.5.9 Let A be an Artin compressed Gorenstein local k-algebra. If s ≤ 4
then A is canonically graded.

Proof Let A be an Artin compressed Gorenstein local k-algebra of socle degree
s ≥ 2 and embedding dimension n. Then A = AG with G ∈ S a polynomial of
degree s and grμ(A) = S/Ann(G[s]) is a compressed Gorenstein graded algebra
of socle degree s ≥ 2 and embedding dimension n (see Proposition 2.4.8).

The main result of [12] shows that if s ≤ 3 then A is canonically graded. Let
us assume s = 4, then the Hilbert function is {1, n, (n+1

2

)
, n, 1}. Because AG[4]

is a compressed Gorenstein algebra with the same Hilbert function of A, we may
assume G = G[4] + G[3]. In fact S1, S2 ⊆ 〈G[4]〉R because of (2.5.6) and, as a
consequence, it is easy to see that 〈G[4]+G[3]〉R = 〈G[4]+G[3]+G[2]+ . . .〉R.
We have to prove that there exists an automorphism ϕ ∈ Aut(R/m5) such that

AG # AG[4].
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We consider for every j = 1, . . . , n

ϕ3(xj ) = xj +
∑

|i|=2

a
j
i x

i + higher terms

If AF = ϕ−1
3 (AG), then from (2.7) and (2.8) we get

[F [3]]Ω∗ = [G[3]]Ω∗ + a τ(M [3](G[4]))

[F [4]]Ω∗ = [G[4]]Ω∗
(2.12)

where a = (a1
i , . . . , a

n
i ). By Proposition 2.5.6 and Corollary 2.5.8, we know that

the matrix M [3](G[4]) has maximal rank and it coincides with the number of rows,
so there exists a solution a ∈ kn of (2.12) such that F [3] = 0 and F [4] = G[4].

The aim is now to list classes of local compressed algebras of embedding
dimension n, socle degree s and socle type σ = (0, . . . , σr−1, σr , . . . , σs, 0, 0, . . . )
which are canonically graded. Examples will prove that the following result cannot
be extended to higher socle degrees. This result extends the main result of [12]
and [6].

Theorem 2.5.10 Let A = R/I be an Artin compressed k-algebra of embedding
dimension n, socle degree s and socle type σ. Then A is canonically graded in the
following cases:

(1) s ≤ 3,
(2) s = 4 and e4 = 1,
(3) s = 4 and n = 2.

Proof Since a local ring with Hilbert function {1, n, t} is always graded, we may
assume s ≥ 3.

If s = 3 and A is a compressed level algebra, then A is canonically graded
by De Stefani [6]. If A is not necessarily level, but compressed, then by (2.1) the
socle type is {0, 0, σ2, σ3} and the Hilbert function is {1, n, h2, σ3} where h2 =
min{dimk R2, σ2 + σ3n}. Then we may assume that in any system of coordinates
I⊥ is generated by e2 quadratic forms and e3 polynomials G1, . . . ,Gσ3 of degree
3. Then the result follows because R/AnnR(G1, . . . ,Gσ3) is a 3-level compressed
algebra of type σ3 and hence canonically graded.

Let us assume s = 4 and σ4 = 1. We recall that if A is Gorenstein, then the result
follows by Theorem 2.5.9. Since A is compressed, then by (2.1) the socle type is
(0, 0, 0, σ3, 1). This means that I⊥ is generated by e3 polynomial of degree 3 and
one polynomial of degree 4. Similarly to the above part, because S≤2 ⊆ (I∗)⊥, I⊥
can be generated by σ3 forms of degree 3 and one polynomial of degree 4. As before
the problem is reduced to the Gorenstein case with s = 4 and the result follows.

Assume s = 4 and n = 2. If σ4 = 1, then we are in case (2). If σ4 > 1, because
A is compressed, the possible socle types are: σi = (0, 0, 0, 0, i) with i = 2, · · · , 5
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and since A is compressed, the corresponding Hilbert function is {1, 2, 3, 4, i}. In
each case A is graded because the Hilbert function forces the dual module to be
generated by forms of degree four.

As a corollary of the last result we get [12].

Theorem 2.5.11 Let A be an Artinian Gorenstein k-algebra with Hilbert function
{1, n,m, 1}. Then the following conditions are equivalent:

(i) A is canonically graded,
(ii) m = n,

(iii) A is compressed.

From this result we can deduce

Corollary 2.5.12 ([12]) The classification of Artinian Gorenstein local k-algebras
with Hilbert function HFA = {1, n, n, 1} is equivalent to the projective classification
of the hypersurfaces V (F) ⊂ P

n−1
k where F is a degree three non degenerate form

in n variables.

Next we will recall the classification of the Artin Gorenstein algebras for n =
1, 2, 3, [12].

If n = 1, then it is clear that A ∼= k[[x]]/(x4), so there is only one analytic
model. If n = 2 we have the following result:

Proposition 2.5.13 ([12]) Let A be an Artinian Gorenstein local K-algebra with
Hilbert function HFA = {1, 2, 2, 1}. Then A is isomorphic to one and only one of
the following quotients of R = K[[x1, x2]]:

Model A = R/I Inverse system F Geometry of C = V (F) ⊂ P
1
k

(x3
1 , x

2
2 ) y2

1y2 Double point plus a simple point
(x1x2, x

3
1 − x3

2 ) y3
1 − y3

2 Three distinct points

Finally, for n = 3 first we have to study with detail the classification of plane
curves, in particular, the elliptic curves, see for instance [29]. Any plane elliptic
cubic curveC ⊂ P

2
k is defined, in a suitable system of coordinates, by a Weierstrass’

equation, [29],

Wa,b : y2
2y3 = y3

1 + ay1y
2
3 + by3

3

with a, b ∈ k such that 4a3 + 27b2 �= 0. The j invariant of C is

j (a, b) = 1728
4a3

4a3+ 27b2

It is well known that two plane elliptic cubic curvesCi = V (Wai,bi ) ⊂ P
2
k, i = 1, 2,

are projectively isomorphic if and only if j (a1, b1) = j (a2, b2).
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For elliptic curves the inverse moduli problem can be done as follows. We denote
by W(j) the following elliptic curves with j as moduli : W(0) = y2

2y1+y2y
2
3 −y3

1 ,
W(1728) = y2

2y3 − y1y
2
3 − y3

1 , and for j �= 0, 1728

W(j) = (j − 1728)(y2
2y3 + y1y2y3 − y3

1 )+ 36y1y
2
3 + y3

3 .

We will show by using the library INVERSE-SYST.LIB that:

Proposition 2.5.14 Let A be an Artin Gorenstein local k-algebra with Hilbert
function HFA = {1, 3, 3, 1}. Then A is isomorphic to one and only one of the
following quotients of R = k[[x1, x2, x3]] :

Model for A = R/I Inverse system F Geometry of C=V (F )⊂P2
k

(x2
1 , x

2
2 , x

2
3 ) y1y2y3 Three independent lines

(x2
1 , x1x3, x3x

2
2 , x

3
2 , x

2
3 + x1x2) y2(y1y2 − y2

3 ) Conic and a tangent line
(x2

1 , x
2
2 , x

2
3 + 6x1x2) y3(y1y2 − y2

3 ) Conic and a non-tangent line
(x2

3 , x1x2, x
2
1 + x2

2 − 3x1x3) y2
2y3 − y2

1 (y1 + y3) Irreducible nodal cubic
(x2

3 , x1x2, x1x3, x
3
2 , x

3
1 + 3x2

2x3) y2
2y3 − y3

1 Irreducible cuspidal cubic
(x3

3 , x
3
1 + 3x2

2x3, x1x3, x
2
2 − x2x3 W(0) = y2

2y1 + y2y
2
3 − y3

1 Elliptic curve j = 0
+x2

3 , x1x2)

(x2
2 + x1x3, x1x2, x

2
1 − 3x2

3 ) W(1728) = y2
2y3 − y1y

2
3 − y3

1 Elliptic curve j = 1728
I (j) = (x2(x2 − 2x1),Hj ,Gj ) W(j), j �= 0, 1728 Elliptic curve with j �=0, 1728

with:
Hj = 6jx1x2 − 144(j − 1728)x1x3 + 72(j − 1728)x2x3 − (j − 1728)2x2

3 , and
Gj = jx2

1 − 12(j − 1728)x1x3 + 6(j − 1728)x2x3 + 144(j − 1728)x2
3;

I (j1) ∼= I (j2) if and only if j1 = j2.

Proof Let us assume that F is the product of the linear forms l1, l2, l3. If l1, l2, l3
are k-linear independent we get the first case. On the contrary, if these linear forms
are k-linear dependent, we deduce that F is degenerate. Let us assume that F is the
product of a linear form l and an irreducible quadric Q. According to the relative
position of V (l) and V (Q) we get the second and the third case.

Let F be a degree three irreducible form. The first seven models can be obtained
from the corresponding inverse system F by using the command idealAnn of [8].
For the last case see [8].

2.6 Computation of Betti Numbers

In this chapter we address the following problem: How can we compute the Betti
numbers of I in terms of its Macaulay’s inverse system L = I⊥ without computing
the ideal I? This is a longstanding problem in commutative algebra that has been
considered by many authors, see for instance [22], Chap. 9, Problem L. For instance,
if A = R/I is an Artin Gorenstein local ring then its inverse system is a polynomial
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F on the variables x1, . . . , xn of degree the socle degree of A. In this chapter we
compute the Betti numbers of A in terms of the polynomial F instead of computing
I and then to compute the Betti numbers of A = R/I .

Let I be an m-primary ideal of R. Let F• be a minimal free resolution of the
R-module R/I

F• 0 −→ Fn = Rβn −→ . . . −→ F1 = Rβ1 −→ F0 = R −→ R/I −→ 0,

the p-th Betti number of R/I is βp(R/I) = rankR(Fp), 1 ≤ p ≤ n. Tensoring F•
by the R-module k we get the complex

F• ⊗R k 0 −→ kβn −→ . . . −→ kβ1 −→ k = k −→ 0.

Since F• is a minimal resolution we get that the morphisms of F• ⊗R k are zero, so

βp(R/I) = dimk(TorRp (R/I,k)),

p = 1, . . . , n. Let us now consider Koszul’s resolution of R defined by the regular
sequence x1, . . . , xn

K• 0
dn+1−→ Kn =

n∧
Rn dn−→ . . . −→ K1 =

1∧
Rn d1−→ K0 = R −→ k −→ 0.

We consider the R-basis of Rn: ei = (0, . . . , 1(i, . . . , 0) ∈ Rn, i = 1, . . . , n; for
all 1 ≤ i1 < · · · < ip ≤ n we set ei1,...,ip = ei1 ∧ . . . eip ∈

∧p Rn. Since the set
ei1,...,ip , 1 ≤ i1 < · · · < ip ≤ n, form a R-basis of Kp we define the morphism

dp : Kp −→ Kp−1

by dp(ei1,...,ip ) =
∑p

j=1(−1)j−1xij ei1,...,ij−1,ij+1,...,ip ∈ Kp−1. Notice that the basis
ei1,...,ip , 1 ≤ i1 < · · · < ip ≤ n, this defines an isomorphism of R-modules
∧p

Rn
φp∼= R(

n
p), such that φp(ei1,...,ip ) = vi1,...,ip , 1 ≤ i1 < · · · < ip ≤ n, is

the element of R(
n
p) with all entries zero but the (i1, . . . , ip)-th that it is equal to 1.

We denote by Δp the associated matrix to dp with respect the above bases of R(
n
p)

and R(
n

p−1), notice that the entries of Δp are zero or ±xi , i = 1, . . . , n.
We can compute TorRp (R/I,k) by considering the complex R/I ⊗R K•

R/I ⊗R K• 0 −→ (R/I)(
n
n) −→ . . . −→ (R/I)(

n
1) −→ R/I −→ k −→ 0.

We denote again by dp the morphism IdR/I ⊗Rdp then

TorRp (R/I,k) = Hp(R/I ⊗R K•) = ker(dp)

im(dp+1)
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for p = 1, . . . , n. If we consider the dual of R/I ⊗R K• with respect to E we get,
L = I⊥,

(R/I ⊗R K•)∗ 0 −→ k
d∗0−→ L

d∗1−→ L(
n
1) −→ . . . L(

n
n)

d∗n+1−→ 0.

Notice that, if h = (hi1,...,ip , 1 ≤ i1 < · · · < ip−1 ≤ n) ∈ L(
n

p−1) then

d∗p(h) = τΔp(h). (2.13)

Proposition 2.6.1 Let L ⊂ S be a finitely generated sub-R-module of S of
dimension e = dimk(L). If I = AnnR(L) ⊂ R then

βp(R/I) = e

(
n

p

)
− dimk(im(d∗p))− dimk(im(d∗p+1)).

for p = 1, . . . , n.

Proof Since L is a finitely dimensional k-vector space and the duallzing functor ∗
is exact and additive we get

βp(R/I) = dimk

(
ker(d∗p+1)

im(d∗p)

)
= dimk ker(d∗p+1)− dimk im(d∗p).

On the other hand dimk(ker(d∗p+1)) = e
(
n
p

) − dimk(im(d∗p+1)), so from these
identities we get the claim.

Next step is to compute the Betti numbers effectively. For all t ≥ 0 let Wt be
the set of standard monomials xα, α ∈ N

n, of degree at most t ordered by the
local deg-rev-lex ordering with xn < · · · < x1. For instance, for n = 3 and t = 2,
W2 = {x2

3 , x3x2, x3x1, x
2
2 , x2x1, x

2
1 , x3, x2, x1, 1}. For all p = 1, . . . , n we consider

the following set Ms,p of linearly independent elements of R(
n
p)

mα;i1,...,ip :=
⎧
⎨

⎩

xα in the (i1, . . . , ip)-th component,

0 otherwise,

deg(α) ≤ s, 1 ≤ i1 < · · · < ip ≤ n. Notice that #(Ms,p) =
(
n+s
n

)(
n
p

)
.

Assume that s = deg(L). Given a k-basis w1, . . . , we of L we consider the

following k-basis, say Bp , of L(
n
p):

wi
i1,...,ip

:=
⎧
⎨

⎩

wi in the (i1, . . . , ip)-th component,

0 otherwise,
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i = 1, . . . , e, 1 ≤ i1 < · · · < ip ≤ n. We denote by Δ+p (L) the matrix such that

the columns are the coordinates of d∗p(wi
i1,...,ip

) with respect the basis Ms,p−1. This

is a matrix of
(
n+s
n

)(
n
p

)
rows and e

(
n

p−1

)
columns and the entries are zero or ±xi ,

i = 1, . . . , n. Then we have:

Proposition 2.6.2 For any finitely generated R-module L and 1 ≤ p ≤ n we have

dimk(im(d∗p)) = rank (�+p (L)).

If e = dimk(L) and I = AnnR(L) ⊂ R then

βp(R/I) = e

(
n

p

)
− rank (Δ+p (L))− rank (Δ+p+1(L)).

for p = 1, . . . , n.

From this result we get that the determination of the Betti number βp(R/I)
involves the computation of the rank of Δ+p (L), p = 1, . . . , n. Recall that these
matrices are huge, see the comments before last result, so they are difficult to
manage. Moreover, this method of computation of Betti numbers implies the
computation or election of a k-basis of L. This is not possible if we want to consider
a general L or the deformations of L, see Example 2.6.7.

In the next result we compute the Cohen-Macaulay type of R/I and we partially
recover the classical result of Macaulay. In the second part, case n = 2, we prove
a well known result of Serre that can be deduced from Hilbert-Burch structure
theorem, i.e. the class of codimension two complete intersection ideals coincides
with the class of codimension two Gorenstein ideals.

Proposition 2.6.3 Let L be a finitely generatedR-module of S of dimension e. Then
the Cohen-Macaulay type of R/I , I = AnnR(L), is

t (R/I) = dimk(L/m ◦ L) = μR(L).

In particular, for n = 2 then

μ(I) = t (R/I)+ 1.

In particular, I is a complete intersection if and only if R/I is Gorenstein.

Proof The first result is Proposition 2.4.3.
Assume that n = 2. Then the complex (R/I ⊗R K•)∗ is

0 −→ k
d∗0−→ L

d∗1−→ L2 d∗2−→ L
d∗3−→ 0,
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and im(d∗2 ) = m ◦ L. From Corollary 2.6.1 with p = 1 we get

μ(I) = 2e − (e − 1)− dimk(m ◦ L) = dimk(L/m ◦ L)+ 1 = t (R/I)+ 1,

so I is a complete intersection ideal, i.e. μ(I) = 2, if and only if t (R/I) = 1, i.e.
R/I is Gorenstein.

Given a finitely generated sub-R-moduleL of S we denote by L :S m the sub-R-
module of S formed by the polynomials h ∈ S such that m ◦ h ⊂ L. Notice that if
L ⊂ S≤s then L :S m ⊂ S≤s+1 and, in particular, dimk(L :S m) <∞. We consider
the k-vector space morphism induced by d∗1

d∗1,s : S≤s+1 −→ Sn≤s

with

d∗1,s(h) = (x1 ◦ h, . . . , xn ◦ h)

for all h ∈ S≤s+1. It is easy to prove that L :S m = (d∗1,s)−1(Ln).

Proposition 2.6.4 Let L ⊂ S be a finitely generated sub-R-module of S of
dimension e = dimk(L) and degree s = deg(L). If I = AnnR(L) ⊂ R then

μ(I) = e(n− 1)+
(
n+ s + 1

n

)
− dimk(im(d∗1,s)+ Ln).

Proof If we write V = Ln then we have

dimk(L :S m) = dimk((d
∗
1,s)

−1(V ))

= dimk((d
∗
1,s)

−1(V ∩ im(d∗1,s)) = dimk(V ∩ im(d∗1,s))+ 1

because dimk(ker(φs)) = 1, so

dimk(L :S m) = dimk(V )+ dimk(im(d∗1,s))− dimk(im(d∗1,s)+ V )+ 1

= n.e + dimk(S≤s+1)− 1− dimk(im(d∗1,s)+ V )+ 1

= n.e + (n+s+1
n

)− dimk(im(d∗1,s)+ V ).

Claim μ(I) = dimk (L :S m/L).
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Proof of the Claim Let us consider the exact sequence of R-modules

0 −→ I

mI
−→ R

mI
−→ R

I
−→ 0

dualizing this sequence we get the exact sequence on S-modules

0 −→ L −→ (mI)⊥ −→
(

I

mI

)∗
−→ 0.

Hence

dimk
(

I
mI

)∗ = dimk((mI)
⊥)− dimk(L)

= dimk(R/mI)− dimk(R/I)

= dimk(I/mI) = μ(I)

by Nakayama’s lemma. In particular, we get μ(I) = dimk
(
(mI)⊥/L

)
. Last step is

to prove that (mI)⊥ = L :S m. Given a polynomial h ∈ S then h ∈ (mI)⊥ if and
only if 0 = (mI) ◦ h = I ◦ (m ◦ h), so (mI)⊥ is the set of polynomial h such that
m ◦ h ⊂ L, i.e. (mI)⊥ = L :S m.

From the Claim we get

μ(I) = dimk(L :S m)−dimk(L) = n.e+
(
n+ s + 1

n

)
−dimk(im(d∗1,s)+V )− e,

so

μ(I) = (n− 1)e+
(
n+ s + 1

n

)
− dimk(im(d∗1,s)+ V ).

Next we will compute dimk(im(d∗1,s)+ Ln) by considering a matrix that we are

going to define. We denote by Ms the n
(
n+s
n

)×
((

n+s+1
n

)− 1
)

-matrix such that the

i-th column, i ∈ [1, (n+s+1
n

)− 1], consists in the coordinates of xn ◦ xα,. . . , x1 ◦ xα
with respect the base Ws , where xα is the i-th monomial of Ws+1.

Let L ⊂ S be a finitely generated R-module of dimension e and degree s. We
pick a basis w1, . . . , we of L and we consider the following basis, say B, of Ln:

(0, . . . ,
j
wi, . . . , 0) ∈ Ln for j = 1, . . . , n, i = 1, . . . , e. We denote by B(L)

the n
(
n+s
n

) × (n.e)-matrix, such that the columns consists of the coordinates of the

elements ofB with respectMs,1. Finally,M(L) is the n
(
n+s
n

)×
((

n+s+1
n

)− 1+ n.e
)

block matrix

M(L) = (Ms | B(L));
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notice that

dimk(im(d∗1,s)+ Ln) = rank (M(L)).

If we want to consider a general L ⊂ S, see for instance Example 2.6.7, we have
to avoid considering a basis of L. Let F1, . . . , Fr be a system of generators of L as
R-module. Then consider the following system of generators of L as k-vector space
xα ◦Fi for all α ∈ N

n of degree less or equal to s = deg(L) and for all i = 1, . . . , r .
We consider now the following system of generators, say B+, of Ln:

(0, . . . ,
j

xα ◦ Fi, . . . , 0) ∈ Ln

for j = 1, . . . , n, α ∈ N
n with deg(α) ≤ s. We denote by B

+(L) the n
(
n+s
n

) ×
r
(
n+s
n

)
-matrix, such that the columns are the coordinates of the system of generators

B+ with respect Ms,1. This (lazy) method generates a matrix

L(L) = (Ms | B+(L))

with
(
n+s+1

n

)−1+nr
(
n+s
n

)
columns and n

(
n+s
n

)
rows. Notice that the rank of M(L)

and L(L) agree. Since the rank of Ms is
(
n+s+1

n

)−1 there is a dimension
(
n+s+1

n

)−1
square invertible matrix Gs such that

GsMs =
(
Id

Z

)

where Id is the identity matrix of dimension
(
n+s+1

n

) − 1 and Z is the(
n
(
n+s
n

)− (n+s+1
n

)+ 1
)
× (

(
n+s+1

n

) − 1) zero matrix. We denote by L
∗(L),

resp. M
∗(L), the sub-matrix of GsL(L), resp. GsM(L), consisting of the last

n
(
n+s
n

)− (n+s+1
n

)+ 1 rows and the last nr
(
n+s
n

)
, resp. n.e, columns. Hence we have

Proposition 2.6.5 Let L be a degree s finitely generated sub-R-module of S.
Then

(i) rank (M(L)) = rank (L(L)) and rank (M∗(L)) = rank (L∗(L)),
(ii) rank (M(L)) = rank (M∗(L))+ (n+s+1

n

)− 1.

Remark Recall that Δ+1 (L) is a matrix of n
(
n+s
n

)
rows and e columns. If we mimic

the construction of the matrix M
∗(L) in the definition of Δ+1 (L), i.e. considering a

system of generators of L instead a k-basis of L, we get a matrix with n
(
n+s
n

)
rows

and nr
(
n+s
n

)
columns. Notice that M∗(L) is a smaller matrix: has n

(
n+s
n

)−(n+s+1
n

)+
1 rows and nr

(
n+s
n

)
columns.
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In the next result we compute more efficiently the minimal number of generators
of an ideal by considering the matrix M

∗(L).

Theorem 2.6.6 Let L ⊂ S be a finitely generated sub-R-module of S of dimension
e = dimk(L) and degree s = deg(L). If I = AnnR(L) ⊂ R then

μ(I) = e(n− 1)+ 1− rank (M∗(L)).

In particular, I is a complete intersection if and only if rank (M∗(L)) = (e − 1)
(n− 1).

Proof The statement follows from Propositions 2.6.4 and 2.6.5.

Example 2.6.7 Let n = 2 and consider a general polynomial of degree two

F = c6 + c5x1 + c4x2 + c3x
2
1 + c2x1x2 + c1x

2
2 .

We assume that A = R/I , I = Ann(〈F 〉), is an Artinian Gorenstein ring of
embedding dimension two, in particular μ(I) = 2. Hence the Hilbert function of A
is {1, 2, 1}. L(F ) is the 12× (9+ 2.6)-matrix:

L(F ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 c2 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 c3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 c4 c2 c1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 c5 c3 c2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 c6 c5 c4 c3 c2 c1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 c1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 c3 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 c4 c2 c1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 c5 c3 c2 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 c6 c5 c4 c3 c2 c1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix L
∗(F ) is

L
∗(F ) =

⎛

⎝
−c5 c3 −c2 0 0 0 c4 c2 c1 0 0 0
−c2 0 0 0 0 0 c1 0 0 0 0 0
−c3 0 0 0 0 0 c2 0 0 0 0 0

⎞

⎠

after elementary transformations, the rank of L∗(F ) agrees with the rank of

⎛

⎝
c5 c4 c3 c2 c1

c2 c1 0 0 0
c3 c2 0 0 0

⎞

⎠

Since the embedding dimension of A is two the rank of this matrix is 3. Hence
rank (M∗(F )) = 3 and by Proposition 2.6.6 μ(I) = 4 − 3 + 1 = 2, as expected,
Proposition 2.4.3.
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2.7 Examples

In this chapter we present several explicit examples proving that some results cannot
be improved. We also give some explicit computations of the matrices introduced
in chapter 5 and some explicit commutations of the minimal number of generators
following the results of Chapter 6.

The following example shows that Theorem 2.5.9 fails if A is Gorenstein of socle
degree s = 4, but not compressed, i.e. the Hilbert function is not maximal.

Example 2.7.1 ([15]) Let A be an Artin Gorenstein local k-algebra with Hilbert
function HFA = {1, 2, 2, 2, 1}. The local ring is called almost stretched and a
classification can be found in [15]. In this case A is isomorphic to one and only
one of the following rings :

(a) A = R/I with I = (x4
1 , x

2
2) ⊆ R = k[[x1, x2]], and I⊥ = 〈y3

1y2〉. In this case
A is canonically graded,

(b) A = R/I with I = (x4
1 ,−x3

1 + x2
2) ⊆ R = k[[x1, x2]], and I⊥ = 〈y3

1y2 + y3
2〉.

The associated graded ring is of type (a) and it is not isomorphic to R/I. Hence
A is not canonically graded.

(c) A = R/I with I = (x2
1+x2

2 , x
4
2) ⊆ R = k[[x1, x2]], and I⊥ = 〈y1y2(y

2
1−y2

2)〉.
In this case A is graded.

The following example shows that Theorem 2.5.9 cannot be extended to com-
pressed Gorenstein algebras of socle degree s = 5.

Example 2.7.2 ([11]) Let us consider the ideal

I = (x4
1 , x

3
2 − 2x3

1x2) ⊂ R = k[[x1, x2]].

The quotient A = R/I is a compressed Gorenstein algebra with HFA =
{1, 2, 3, 3, 2, 1}, I∗ = (x4

1 , x
3
2) and I⊥ = 〈y3

1y
2
2 + y4

2〉. Assume that there exists an
analytic isomorphism ϕ of R mapping I into I∗. It is easy to see that the Jacobian
matrix of ϕ is diagonal because (I∗)⊥ = 〈y3

1y
2
2〉. We perform the computations

modulo (x1, x2)
5, so we only have to consider the following coefficients of ϕ

⎧
⎨

⎩

ϕ(x1) = ax1 + . . .

ϕ(x2) = bx2 + ix2
1 + jx1x2 + kx2

2 + . . .

where a, b are units, i, j, k ∈ k. After the isomorphism x1 → 1/ax1, x2 → 1/bx2,

we may assume a = b = 1. Then we have

I∗ = ϕ(I) = (x4
1 , x

3
2 − 2x3

1x2 + 3ix2
1x

2
2 + 3jx1x

3
2 + 3kx4

2) modulo (x1, x2)
5.
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Hence there exist α ∈ K,β ∈ R such that

x3
2 − 2x3

1x2 + 3ix2
1x

2
2 + 3jx1x

3
2 + 3kx4

2 = αx4
1 + βx3

2 modulo (x1, x2)
5.

From this equality we deduce α = 0 and

2x3
1x2 = x2

2(x2 + 3ix2
1 + 3jx1x2 + 3kx2

2 − βx2) modulo (x1, x2)
5,

a contradiction, so I is not isomorphic to I∗.
Let ϕ as above sending I into I∗. If we denote by (zi)i=1,...,6 the coordinates of

a homogeneous form G[5] of degree 5 in y1, y2 with respect to Ω∗, then the matrix
M [4](G[5]) (s = 5, p = 1) has the following shape

⎛

⎜⎜⎜⎜⎜⎝

4z1 4z2 4z3 0 0 0
3z2 3z3 3z4 z1 z2 z3

2z3 2z4 2z5 2z2 2z3 2z4

z4 z5 z6 3z3 3z4 3z5

0 0 0 4z4 4z5 4z6

⎞

⎟⎟⎟⎟⎟⎠

In our case G[5] = y3
1y

2
2 , so all zi are zero but z3 = 12, hence the above matrix has

rank 4 and it has not maximum rank given by Corollary 2.5.8. Since all the rows are
not zero except the last one, it is easy to see that F [4] = y4

2 is not in the image of
M [4](G[5]), as (2.7) requires.

The following example shows that Theorem 2.5.10 cannot be extended to
compressed type 2 level algebras of socle degree s = 4.

Example 2.7.3 ([11]) Let us consider the forms G1[4] = y2
1y2y3, G2[4] =

y1y
2
2y3 + y2y

3
3 in S = k[y1, y2, y3] of degree 4 and define in R = k[[x1, x2, x3]]

the ideal

I = Ann(G1[4] + y3
3 ,G2[4]).

Then A = R/I is a compressed level algebra with socle degree 4, type 2 and Hilbert
function HFA = {1, 3, 6, 6, 2}. We prove that A is not canonically graded.

We know that I∗ = Ann(G1[4],G2[4]) and we prove that A and grn(A) are not
isomorphic as k-algebras. Let ϕ an analytic isomorphism sending I to I∗, then it is
easy to see that ϕ = I3 modulo (x1, x2, x3)

2. The matrix M [3](G1[4],G2[4]) is of
size 20× 18 and, accordingly with (2.7), we will show that y3

3 is not in the image of
M [3](G1[4],G2[4]).
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Let F1[4], F2[4] be two homogeneous forms of degree 4 of R = k[y1, y2, y3].
We denote by (z

j
i )i=1,...,15 the coordinates of Fj [4] with respect the basis Ω∗, j =

1, 2. Then the 20× 18 matrix M [3](F1[4], F2[4]) has the following shape, see (2.9),
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3z1
1 3z1

2 3z1
3 3z1

4 3z1
5 3z1

6 0 0 0 0 0 0 0 0 0 0 0 0
2z1

2 2z1
4 2z1

5 2z1
7 2z1

8 2z1
9 z1

1 z1
2 z1

3 z1
4 z1

5 z1
6 0 0 0 0 0 0

2z1
3 2z1

5 2z1
6 2z1

8 2z1
9 2z1

10 0 0 0 0 0 0 z1
1 z1

2 z1
3 z1

4 z1
5 z1

6
z1

4 z1
7 z1

8 z1
11 z1

12 z1
13 2z1

2 2z1
4 2z1

5 2z1
7 2z1

8 2z1
9 0 0 0 0 0 0

z1
5 z1

8 z1
9 z1

12 z1
13 z1

14 z1
3 z1

5 z1
6 z1

8 z1
9 z1

10 z1
2 z1

4 z1
5 z1

7 z1
8 z1

9
z1

6 z1
9 z1

10 z1
13 z1

14 z1
15 0 0 0 0 0 0 2z1

3 2z1
5 2z1

6 2z1
8 2z1

9 2z1
10

0 0 0 0 0 0 3z1
4 3z1

7 3z1
8 3z1

11 3z1
12 3z1

13 0 0 0 0 0 0

0 0 0 0 0 0 2z1
5 2z1

8 2z1
9 2z1

12 2z1
13 2z1

14 z1
4 z1

7 z1
8 z1

11 z1
12 z1

13
0 0 0 0 0 0 z1

6 z1
9 z1

10 z1
13 z1

14 z1
15 2z1

5 2z1
8 2z1

9 2z1
12 2z1

13 2z1
14

0 0 0 0 0 0 0 0 0 0 0 0 3z1
6 3z1

9 3z1
10 3z1

13 3z1
14 3z1

15
3z2

1 3z2
2 3z2

3 3z2
4 3z2

5 3z2
6 0 0 0 0 0 0 0 0 0 0 0 0

2z2
2 2z2

4 2z2
5 2z2

7 2z2
8 2z2

9 z2
1 z2

2 z2
3 z2

4 z2
5 z2

6 0 0 0 0 0 0

2z2
3 2z2

5 2z2
6 2z2

8 2z2
9 2z2

10 0 0 0 0 0 0 z2
1 z2

2 z2
3 z2

4 z2
5 z2

6
z2

4 z2
7 z2

8 z2
11 z2

12 z2
13 2z2

2 2z2
4 2z2

5 2z2
7 2z2

8 2z2
9 0 0 0 0 0 0

z2
5 z2

8 z2
9 z2

12 z2
13 z2

14 z2
3 z2

5 z2
6 z2

8 z2
9 z2

10 z2
2 z2

4 z2
5 z2

7 z2
8 z2

9
z2

6 z2
9 z2

10 z2
13 z2

14 z2
15 0 0 0 0 0 0 2z2

3 2z2
5 2z2

6 2z2
8 2z2

9 2z2
10

0 0 0 0 0 0 3z2
4 3z2

7 3z2
8 3z2

11 3z2
12 3z2

13 0 0 0 0 0 0

0 0 0 0 0 0 2z2
5 2z2

8 2z2
9 2z2

12 2z2
13 2z2

14 z2
4 z2

7 z2
8 z2

11 z2
12 z2

13
0 0 0 0 0 0 z2

6 z2
9 z2

10 z2
13 z2

14 z2
15 2z2

5 2z2
8 2z2

9 2z2
12 2z2

13 2z2
14

0 0 0 0 0 0 0 0 0 0 0 0 3z2
6 3z2

9 3z2
10 3z2

13 3z2
14 3z2

15

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is enough to specialize the matrix to our case for proving that y3
3 is not in the

image of M [3](G1[4],G2[4]).
Next we will show how to apply the main result of the chapter six, Theorem 2.6.6.

We assume that the ground field k is infinite.

Example 2.7.4 Artin Graded Level algebras of type 2.
Let F,G be two forms of degree three of S = k[x1, x2, x3]. We write

I = AnnR(〈F,G〉). Then L
∗(〈F,G〉) is a 26 × 120 matrix in the coefficients of

F , c1, . . . , c10, and the coefficients of G, c11, . . . , c20. This matrix has rank 17
considered as matrix with entries in the field K of fractions of c1, . . . , c20. This
means that for generic c1, . . . , c20 the matrix L

∗(〈F,G〉) has rank 17. Moreover,
there is a 17× 17 submatrix of L∗(〈F,G〉) whose determinant is non-zero in K

D1 = c1(c5c7 − c3c8)(c1c12 − c2c11)G4G8

where G4 is a form of degree 4 on c1, . . . , c10 and G8 is a form of degree 8
on c11, . . . , c20. The condition c1c12 − c2c11 �= 0 implies that F,G are linearly
independent over k, so A = R/I is an Artin level algebra of socle degree three and
type 2. If the determinant, say D2, of the matrix

⎛

⎝
c9 c8 c6

c7 c6 c3

c6 c5 c2

⎞

⎠

is non-zero, the embedding dimension of A is three.
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Let now consider the k-vector space V generated by xi ◦ F , i = 1, 2, 3; xi ◦G,
i = 1, 2, 3. The dimension of V equals HFA(2) and agrees with the rank of the
following matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c10 c9 c8 c7 c6 c5

c20 c19 c18 c17 c16 c15

c9 c7 c6 c4 c3 c2

c19 c17 c16 c14 c13 c12

c8 c6 c5 c3 c2 c1

c18 c16 c15 c13 c12 c11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

If the determinant D3 of this matrix is non-zero then the Hilbert function of A is
{1, 3, 6, 2}. Hence, if D1D2D3 �= 0 then A is a compressed Artin level algebra
of type 2, socle degree 3, embedding dimension 3 and Hilbert function {1, 3, 6, 2}.
From Theorem 2.6.6 we get

μ(I) = 2.12− rank (L∗(〈F,G〉)) + 1 = 8

as Böij conjecture predicts, [1, Section 3.2].
Let P9

k × P
9
k be the space parameterizing the pairs (F,G) up to scalars in each

component. Since D1D2D3 is bi-homogeneous form of degree 26 on (c1, . . . , c10)

and (c11, . . . , c20), in this example we have shown a principal non-empty subset
U = P

9
k × P

9
k \ V (D1D2D3) parameterizing a family of compressed Artin level

algebra of type 2, socle degree 3, embedding dimension 3 and Hilbert function
{1, 3, 6, 2}.
Example 2.7.5 Artin Gorenstein algebras with Hilbert function {1, 4, 4, 1}.

Let us consider a general polynomial F of degree 3 of R = k[[x1, x2, x3, x4]].
We write I = 〈F 〉⊥. Then L

∗(F ) is a 71× 140 matrix in the coefficients of F , say
c1, . . . , c35. This matrix has rank 25 considered as matrix with coefficients in the
field K of fractions of c1, . . . , c35. Hence for generic values of c1, . . . , c35 the ring
A = R/I is a compressed Gorenstein algebra with Hilbert function {1, 4, 4, 1}, and
the matrix L

∗(F ) has rank 25 so

μ(I) = 3.10− 25+ 1 = 6

as it was expected, [1].

Example 2.7.6 Artin Gorenstein algebras with Hilbert function {1, 3, 3, 1}.
In this example we assume that the ground field k is algebraically closed. In

[12] we prove that all Artin Gorenstein algebra A = R/I with Hilbert function
{1, n, n, 1} is isomorphic to its associated graded ring. Hence in the case n = 3
we may assume that I⊥ is generated by a form F in x1, x2, x3 of degree three. In
[12, Proposition 3.7 ] we classify such algebras in terms of the geometry of the
projective plane cubic C defined by F . Next we will compute the minimal number
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of generators of I in the case that C is non-singular by using the main theorem of
this paper.

Let is consider the Legendre form attached to C, λ �= 0, 1,

Uλ = x2
2x3 − x1(x1 − x2)(x1 − λx3)

the j -invariant of C is

j (λ) = 28 (λ
2 − λ+ 1)3

λ2(λ− 1)3
.

L
∗(Uλ) is a 20 × 24-matrix, after elementary transformations we get that the rank

of L∗(Uλ) is 10 plus the rank of the 4× 4 square matrix

W =

⎛
⎜⎜⎝

λ+ 1 −λ 0 0
−3 λ+ 1 0 0
0 0 λ+ 1 −λ
0 0 −3 λ+ 1

⎞
⎟⎟⎠

The determinant of W is

det(K) = (λ2 − λ+ 1)2.

Hence if j (λ) �= 0 then μ(I) = 2.8 − (10 + 4) + 1 = 3, i.e. I is a complete
intersection, as we get in [12, Proposition 3.7]. If j (λ) = 0, i.e. C is the elliptic
Fermat curve, then one gets rank (W) = 2 for all roots of det(W) = 0. Hence
μ(I) = 2.8− (10+ 2)+ 1 = 5 as we get in [12, Proposition 3.7].
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Chapter 3
Lectures on the Representation Type
of a Projective Variety

Rosa M. Miró-Roig

Abstract In these notes, we construct families of non-isomorphic Arithmetically
Cohen Macaulay (ACM for short) sheaves (i.e., sheaves without intermediate
cohomology) on a projective variety X. The study of such sheaves has a long and
interesting history behind. Since the seminal result by Horrocks characterizing ACM
sheaves on P

n as those that split into a sum of line bundles, an important amount of
research has been devoted to the study of ACM sheaves on a given variety.

ACM sheaves also provide a criterium to determine the complexity of the
underlying variety. This complexity is studied in terms of the dimension and
number of families of undecomposable ACM sheaves that it supports, namely, its
representation type. Varieties that admit only a finite number of undecomposable
ACM sheaves (up to twist and isomorphism) are called of finite representation type.
These varieties are completely classified: They are either three or less reduced points
in P

2, Pn, a smooth hyperquadricX ⊂ P
n, a cubic scroll in P

4, the Veronese surface
in P

5 or a rational normal curve.
On the other extreme of complexity we find the varieties of wild represen-

tation type, namely, varieties for which there exist r-dimensional families of
non-isomorphic undecomposable ACM sheaves for arbitrary large r . In the case
of dimension one, it is known that curves of wild representation type are exactly
those of genus larger or equal than two. In dimension greater or equal than two few
examples are know and in these notes, we give a brief account of the known results.

3.1 Introduction

These notes grew out of a series of lectures given by the author at the Vietnam
Institute for Advanced Study in Mathematics (VIASM), Hanoi, during the period
February 8–March 7, 2014. In no case do I claim it is a survey on the representation
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type of a projective variety. Many people have made important contributions without
even being mentioned here and I apologize to those whose work I made have
failed to cite properly. The author gave three lectures of length 120 min each. She
attempted to cover the basic facts on the representation type of a projective variety.
Given the extensiveness of the subject, it was not possible to go into great detail in
every proof. Still, it was hoped that the material that she chose will be beneficial and
illuminating for the participants, and for the reader.

The projective space P
n holds a very remarkable property: the only undecom-

posable vector bundle E without intermediate cohomology (i.e., Hi (Pn,E (t)) = 0
for t ∈ Z and 1 < i < n), up to twist, is the structural line bundle OPn . This is the
famous Horrocks’ Theorem, proved in [30]. Ever since this result was stated, the
study of the category of undecomposable arithmetically Cohen-Macaulay bundles
(i.e., bundles without intermediate cohomology) supported on a given projective
variety X has raised a lot of interest since it is a natural way to understand the
complexity of the underlying variety X. Mimicking an analogous trichotomy in
Representation Theory, in [17] it was proposed a classification of ACM projective
varieties as finite, tame or wild (see Definition 3.2.10) according to the complexity
of their associated category of ACM vector bundles and it was proved that this
trichotomy is exhaustive for the case of ACM curves: rational curves are finite,
elliptic curves are tame and curves of higher genus are wild. Unfortunately very
little is known for varieties of higher dimension and in this series of lectures I will
give a brief account of known results.

The result due to Horrocks (cf. [30]) which asserts that, up to twist, OPn is
the only one undecomposable ACM bundle on P

n and the result due to Knörrer
(cf. [34]) which states that on a smooth hyperquadric X the only undecomposable
ACM bundles up to twist are OX and the spinor bundles S match with the general
philosophy that a “simple” variety should have associated a “simple” category of
ACM bundles. Following these lines, a cornerstone result was the classification of
ACM varieties of finite representation type, i.e., varieties that support (up to twist
and isomorphism) only a finite number of undecomposable ACM bundles. It turned
out that they fall into a very short list: Pn, a smooth hyperquadric Q ⊂ P

n, a cubic
scroll in P

4, the Veronese surface in P
5, a rational normal curve and three or less

reduced points in P
2 (cf. [7, Theorem C] and [18, p. 348]).

For the rest of ACM varieties, it became an interesting problem to give a criterium
to split them into a finer classification, i.e. it is a challenging problem to find out the
representation type of the remaining ones. So far only few examples of varieties of
wild representation type are known: curves of genus g ≥ 2 (cf. [17]), del Pezzo
surfaces and Fano blow-ups of points in P

n (cf. [45], the cases of the cubic surface
and the cubic threefold have also been handled in [10]), ACM rational surfaces on P4

(cf. [44]), any Segre variety unless the quadric surface in P
3 (cf. [15, Theorem 4.6])

and non-singular rational normal scrolls S(a0, · · · , ak) ⊆ P
N , N =∑k

i=0(ai)+ k,
(unless P

k+1 = S(0, · · · , 0, 1), the rational normal curve S(a) in P
a , the quadric

surface S(1, 1) in P
3 and the cubic scroll S(1, 2) in P

4) (cf. [40, Theorem 3.8 ]).
Among ACM vector bundles E on a given variety X, it is interesting to spot

a very important subclass for which its associated module ⊕tH0(X,E (t)) has the
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maximal number of generators, which turns out to be deg(X)rk(E ). This property
was isolated by Ulrich in [51], and ever since modules with this property have
been called Ulrich modules and correspondingly Ulrich bundles in the geometric
case (see [21] for more details on Ulrich bundles). The search of Ulrich sheaves
on a particular variety is a challenging problem. In fact, few examples of varieties
supporting Ulrich sheaves are known and, in [21], Eisenbud and Schreier asked the
following question: Is any projective variety the support of an Ulrich sheaf? If so,
what is the smallest possible rank for such a sheaf? Moreover, the recent interest
in the existence of Ulrich sheaves relies among other things on the fact that a d-
dimensional varietyX ⊂ P

n supports an Ulrich sheaf (bundle) if and only if the cone
of cohomology tables of coherent sheaves (resp. vector bundles) on X coincides
with the cone of cohomology tables of coherent sheaves (resp. vector bundles) on
P
d [19, Theorem 4.2]. It is therefore a meaningful question to find out if a given

projective variety X is of wild representation type with respect to the much more
restrictive category of its undecomposable Ulrich vector bundles. We will prove
that all smooth del Pezzo surfaces as well as all Segre varieties unless P1 × P

1 are
of wild representation type and wildness is witnessed by Ulrich bundles.

Next we outline the structure of these notes. In Sect. 3.2, we introduce the
definitions and main properties that are going to be used throughout the paper;
in particular, a brief account of ACM varieties, ACM vector bundles and Ulrich
bundles on projective varieties is provided.

In Sect. 3.3, we determine the representation type of any smooth del Pezzo
surface S. To this end, we have to construct families of undecomposable ACM
bundles of arbitrary high rank and dimension. Our construction will rely on the
existence of level set of points on S and the existence of level set of points on S

is related to Mustaţǎ’s conjecture for a general set of points on a projective variety.
Roughly speaking, Mustaţǎ’s conjecture predicts the graded Betti number of a set
Z of general points on a fixed projective variety X. In Sect. 3.3.1, we will address
this latter conjecture and we will prove that it holds for a general set of points Z
on a smooth del Pezzo surface provided the cardinality of Z falls in certain strips
explicitly described. In Sect. 3.3.30, we perform the construction of large families
of simple Ulrich vector bundles on del Pezzo surfaces obtained blowing up s ≤ 8
points in P

2. These families are constructed as the pullback of the kernel of certain
surjective morphisms

OP2(1)b −→ OP2(2)a

with chosen properties. It is worthwhile to point out that in the case of del Pezzo
surfaces with very ample anticanonical divisor, we can show that these families
of vector bundles could also be obtained through Serre’s correspondence from a
suitable general set of level points on the del Pezzo surface.

In Sect. 3.4, we are going to focus our attention on the case of Segre varieties
Σn1,...,ns ⊆ P

N , N = ∏s
i=1(ni + 1) − 1 for 1 ≤ n1, . . . , ns . It is a classical result

that the quadric surface P
1 × P

1 ⊆ P
3 only supports three undecomposable ACM

vector bundles, up to shift: OP1×P1 , OP1×P1(1, 0) and OP1×P1(0, 1). For the rest of
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Segre varieties we construct large families of simple (and, hence, undecomposable)
Ulrich vector bundles on them and this will allow us to conclude that they are of wild
representation type. Up to our knowledge, they will be the first family of examples of
varieties of arbitrary dimension for which wild representation type is witnessed by
means of Ulrich vector bundles. In this section, we first introduce the definition and
main properties of Segre varieties needed later. Then, we pay attention to the case of
Segre varieties Σn,m ⊆ P

N , N := nm+n+m, for 2 ≤ n,m and to the case of Segre
varieties of the form Σn1,n2...,ns ⊆ P

N , N =∏s
i=1(n1+1)−1, for 2 ≤ n1, · · · , ns .

We construct families of arbitrarily large dimension of simple Ulrich vector bundles
on them by pulling-back certain vector bundles on each factor. This will allow us to
conclude that they are of wild representation type. Finally, we move forward to the
case of Segre varieties of the form Σn1,n2...,ns ⊆ P

N , N = ∏s
i=1(n1 + 1) − 1, for

either n1 = 1 and s ≥ 3 or n1 = 1, s = 2 and n2 ≥ 2. In this case the families of
undecomposable Ulrich vector bundles of arbitrarily high rank will be obtained as
iterated extensions of lower rank vector bundles.

In Sect. 3.5, we could not resist to discuss some details that perhaps only the
experts will care about, but hopefully will also introduce the non-expert reader to a
subtle subject. We analyze how the representation type of a projective variety change
when we change the polarization. Our main goal will be to prove that for any smooth
ACM projective variety X ⊂ P

n there always exists a very ample line bundle L on
X which naturally embeds X in P

h0(X,L )−1 as a variety of wild representation type.
Throughout the lectures I mentioned various open problems. Some of them and

further related problems are collected in the last section of these notes.

Notation Throughout these notes K will be an algebraically closed field of
characteristic zero, R = K[x0, x1, · · · , xn], m = (x0, . . . , xn) and P

n = Proj(R).
Given a non-singular variety X equipped with an ample line bundle OX(1), the line
bundle OX(1)⊗l will be denoted by OX(l). For any coherent sheaf E on X we are
going to denote the twisted sheaf E ⊗OX(l) by E (l). As usual, Hi (X,E ) stands for
the cohomology groups, hi (X,E ) for their dimension, exti (E ,F ) for the dimension
of Exti (E ,F ) and Hi∗(X,E ) = ⊕l∈ZHi (X,E (l)) (or simply Hi∗E ).

Given closed subschemes X ⊆ P
n, we denote by RX the homogeneous coordi-

nate ring of X defined as K[x0, . . . , xn]/I (X). As usual, the Hilbert function of X
(resp. the Hilbert polynomial of X) will be denoted by HX(t) (resp. PX(t) ∈ Q[t])
and the regularity ofX is defined to be the regularity of I (X), i.e., reg(X) ≤ m if and
only if Hi (Pn, IX(m − i)) = 0 for i ≥ 1. Moreover, we know that PX(t) = HX(t)

for any t ≥ regX − 1 + δ − n where δ is the projective dimension of RX . Finally,
ΔHX(t) denotes the difference function, i.e., ΔHX(t) = HX(t)−HX(t − 1).
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3.2 Preliminaries

In this section, we set up some preliminary notions mainly concerning the defini-
tions and basic results on ACM schemes X ⊂ P

n as well as on ACM sheaves and
Ulrich sheaves E on X needed in the sequel.

Definition 3.2.1 A subscheme X ⊆ P
n is said to be arithmetically Cohen-

Macaulay (briefly, ACM) if its homogeneous coordinate ring RX = R/I (X) is a
Cohen-Macaulay ring, i.e. depth(RX) = dim(RX).

Thanks to the graded version of the Auslander-Buchsbaum formula (for any
finitely generated R-module M):

pd(M) = n+ 1− depth(M),

we deduce that a subscheme X ⊆ P
n is ACM if and only if pd(RX) = codimX.

Hence, if X ⊆ P
n is a codimension c ACM subscheme, a graded minimal free

R-resolution of I (X) is of the form:

0 −→ Fc
ϕc−→ Fc−1

ϕc−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0 (3.1)

with F0 = R and Fi = ⊕jR(−i − j)bij (X), 1 ≤ i ≤ c. The integers bij (X) are
called the graded Betti numbers of X and they are defined as

bij (X) = dimKTori (R/I (X),K)i+j .

We construct the Betti diagram ofX writing in the (i, j)-th position the Betti number
bij (X). In this setting, minimal means that imϕi ⊂ mFi−1. Therefore, the free
resolution (3.1) is minimal if, after choosing basis of Fi , the matrices representing
ϕi do not have any non-zero scalar.

Remark For non ACM schemes X ⊆ P
n of codimension c the graded minimal free

R-resolution of RX is of the form:

0 −→ Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0

with F0 = R, Fi = ⊕βi
j=1R(−nij ), 1 ≤ i ≤ p, and c < p ≤ n.

Notice that any zero-dimensional variety is ACM. For varieties of higher
dimension we have the following characterization that will be used in this paper:

Lemma 3.2.2 (cf. [39], p. 23) If dimX ≥ 1, then X ⊆ P
n is ACM if and only if

Hi∗(IX) := ⊕t∈ZHi(Pn, IX(t)) = 0 for 1 ≤ i ≤ dimX.
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Example 3.2.3

1. Any complete intersection variety X ⊂ P
n is ACM.

2. The twisted cubic X ⊂ P
3 is an ACM curve.

3. The rational quartic C ⊂ P
3 is not ACM since H 1(P3, IC(1)) �= 0.

4. Segre Varieties are ACM varieties.
5. Any standard determinantal variety X ⊂ P

n defined by the maximal minors of a
homogeneous matrix is ACM.

Definition 3.2.4 If X ⊆ P
n is an ACM subscheme then, the rank of the last free

R-module in a minimal free R-resolution of I (X) is called the Cohen-Macaulay
type of X.

Definition 3.2.5 A codimension c subscheme X of Pn is arithmetically Gorenstein
(briefly AG) if its homogeneous coordinate ring RX is a Gorenstein ring or,
equivalently, its saturated homogeneous ideal, I (X), has a minimal free graded R-
resolution of the following type:

0 −→ R(−t) −→ ⊕αc−1
i=1 R(−nc−1,i ) −→ . . . . . . −→ ⊕α1

i=1R(−n1,i ) −→ I (X) −→ 0.

In other words, an AG scheme is an ACM scheme with Cohen-Macaulay type 1.

Definition 3.2.6 Let (X,OX(1)) be a polarized variety. A coherent sheaf E on X is
Arithmetically Cohen Macaulay (ACM for short) if it is locally Cohen-Macaulay
(i.e., depthEx = dimOX,x for every point x ∈ X) and has no intermediate
cohomology:

Hi∗(X,E ) = 0 for all i = 1, . . . , dimX − 1.

Notice that when X is a non-singular variety, which is going to be mainly
our case, any coherent ACM sheaf on X is locally free. For this reason we are
going to speak often of ACM bundles (since we identify locally free sheaves with
their associated vector bundle). ACM sheaves are closely related to their algebraic
counterpart, the maximal Cohen-Macaulay modules:

Definition 3.2.7 A graded RX-module E is a Maximal Cohen-Macaulay module
(MCM for short) if depthE = dimE = dimRX.

Indeed, it holds:

Proposition 3.2.8 Let X ⊆ P
n be an ACM scheme. There exists a bijection between

ACM sheaves E on X and MCM RX-modules E given by the functors E → Ẽ and
E → H0∗(X,E ).

The study of ACM bundles has a long and interesting history behind and it is well
known that ACM sheaves provide a criterium to determine the complexity of the
underlying variety. Indeed, this complexity can be studied in terms of the dimension
and number of families of undecomposable ACM sheaves that it supports. Let us
illustrate this general philosophy with a couple of examples (the simplest examples
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of varieties we can deal with have associated a simple category of undecomposable
vector bundles).

Example 3.2.9

1. Horrocks Theorem asserts that on P
n a vector bundle E is ACM if and only

if it splits into a sum of line bundles. So, up to twist, there is only one
undecomposable ACM bundle on P

n: OPn (cf. [30]).
2. Knörrer’s theorem states that on a smooth hyperquadric Qn ⊂ P

n+1 any ACM
vector bundle E splits into a sum of line bundles and spinor bundles. So, up to
twist and dualizing, there are only two undecomposable ACM bundles on Q2n+1
(OQ2n+1 and the spinor bundle Σ); and three undecomposable ACM bundles on
Q2n (OQ2n and the spinor bundles Σ− and Σ+)(cf. [34]).

Recently, inspired by an analogous classification for quivers and for K-algebras
of finite type, it has been proposed the classification of any ACM variety as being
of finite, tame or wild representation type (cf. [17] for the case of curves and [9] for
the higher dimensional case). Let us recall the definitions:

Definition 3.2.10 Let X ⊆ P
N be an ACM scheme of dimension n.

1. We say that X is of finite representation type if it has, up to twist and
isomorphism, only a finite number of undecomposable ACM sheaves.

2. X is of tame representation type if either it has, up to twist and isomorphism,
an infinite discrete set of undecomposable ACM sheaves or, for each rank r , the
undecomposable ACM sheaves of rank r form a finite number of families of
dimension at most n.

3. X is of wild representation type if there exist l-dimensional families of non-
isomorphic undecomposable ACM sheaves for arbitrary large l.

One of the main achievements in this field has been the classification of varieties
of finite representation type (cf. [7, Theorem C], and [18, p. 348]); it turns out that
they fall into a very short list: three or less reduced points on P

2, a projective
space, a non-singular quadric hypersurface X ⊆ P

n, a cubic scroll in P
4, the

Veronese surface in P
5 or a rational normal curve. As examples of a variety of

tame representation type we have the elliptic curves, the Segre product of a line
and a smooth conic naturally embedded in P

5: ϕ|O(2,2)| : P1 × P
1 ↪→ P

8 (cf. [23])
and the quadric cone in P

3 (cf. [8, Proposition 6.1]). Finally, on the other extreme
of complexity lie those varieties that have very large families of ACM sheaves. So
far only few examples of varieties of wild representation type are known: curves
of genus g ≥ 2 (cf. [17]), smooth del Pezzo surfaces (see Sect. 3.3 of these notes)
and Fano blow-ups of points in P

n (cf.[45], the cases of the cubic surface and the
cubic threefold have also been handled in [10]), ACM rational surfaces on P

4 (cf.
[44]), Segre varieties other than the quadric in P

3 (see Sect. 3.4 of these notes or [15,
Theorem 4.6]), rational normal scrolls other than P

n, the rational normal curve in
P
n, the quadric in P

3 and the cubic scroll in P
4 [40, Theorem 3.8] and hypersurfaces

X ⊂ P
n of degree ≥ 4 [50, Corollary 1].
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The problem of classifying ACM varieties according to the complexity of the
category of ACM sheaves that they support has recently attired much attention and,
in particular, the following problem is still open (for ACM varieties of dimension
≥ 2):

Problem 3.2.11 Is the trichotomy finite representation type, tame representation
type and wild representation type exhaustive?

Very often the ACM bundles that we will construct will share another stronger
property, namely they have the maximal possible number of global sections; they
will be the so-called Ulrich bundles. Let us end this section recalling the definition
of Ulrich sheaves and summarizing the properties that they share and that will be
needed in the sequel.

Definition 3.2.12 Given a polarized variety (X,OX(1)), a coherent sheaf E on X

is said to be initialized if

H0(X,E (−1)) = 0 but H0(X,E ) �= 0.

Notice that when E is a locally Cohen-Macaulay sheaf, there always exists an
integer k such that Einit := E (k) is initialized.

Definition 3.2.13 Given a projective scheme X ⊆ P
n and a coherent sheaf E on X,

we say that E is an Ulrich sheaf if E is an ACM sheaf and h0(Einit ) = deg(X)rk(E ).

The following result justifies the above definition:

Theorem 3.2.14 Let X ⊆ P
n be an integral ACM subscheme and let E be an ACM

sheaf on X. Then the minimal number of generators m(E ) of the associated MCM
RX-module H0∗(E ) is bounded by

m(E ) ≤ deg(X)rk(E ).

Therefore, since it is obvious that for an initialized sheaf E , h0(E ) ≤ m(E ), the
minimal number of generators of Ulrich sheaves is as large as possible. MCM
Modules attaining this upper bound were studied by Ulrich in [51]. A complete
account is provided in [21]. In particular we have:

Theorem 3.2.15 Let X ⊆ P
N be an n-dimensional ACM variety and let E be an

initialized ACM coherent sheaf on X. The following conditions are equivalent:

1. E is Ulrich.
2. E admits a linear OPN -resolution of the form:

0 → OPN (−N + n)aN−n → · · · → OPN (−1)a1 → Oa0
PN
→ E → 0.

3. Hi (E (−i)) = 0 for i > 0 and Hi (E (−i − 1)) = 0 for i < n.
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4. For some (resp. all) finite linear projections π : X → P
n, the sheaf π∗E is the

trivial sheaf O t
Pn

for some t .

In particular, initialized Ulrich sheaves are 0-regular and therefore they are globally
generated.

Proof See [21, Proposition 2.1]. &'
The search of Ulrich sheaves on a particular variety is a challenging problem. In

fact, few examples of varieties supporting Ulrich sheaves are known and, in [21, p.
543], Eisenbud, Schreyer and Weyman leave open the following problem

Problem 3.2.16

1. Is every variety (or even scheme) X ⊂ P
n the support of an Ulrich sheaf?

2. If so, what is the smallest possible rank for such a sheaf?

Recently, after the Boij-Söderberg theory has been developed, the interest on
these questions have grown up due to the fact that it has been proved [19,
Theorem 4.2] that the existence of an Ulrich sheaf on a smooth projective variety X
of dimension n implies that the cone of cohomology tables of vector bundles on X

coincide with the cone of cohomology tables of vector bundles on P
n.

In these series of lectures we are going to focus our attention on the existence of
Ulrich bundles on smooth del Pezzo surfaces and on Segre varieties, providing the
first example of wild varieties of arbitrary dimension whose wildness is witnessed
by means of the existence of families of simple Ulrich vector bundles of arbitrary
high rank and dimension.

3.3 The Representation Type of a del Pezzo Surface

In this section, we are going to construct ACM bundles and Ulrich bundles on
smooth del Pezzo surfaces, and to determine their representation type. So, let us
start recalling the definition and main properties of del Pezzo surfaces.

Definition 3.3.1 A del Pezzo surface is defined to be a smooth surface X whose
anticanonical divisor −KX is ample. Its degree is defined as K2

X. If −KX is very
ample, X will be called a strong del Pezzo surface.

Example 3.3.2 As examples of del Pezzo surfaces we have:

1. A smooth cubic surface X ⊆ P
3.

2. A smooth quartic surface X ⊂ P
4 complete intersection of two quadrics.

3. Let Y be the blow up of P2 at 0 ≤ s ≤ 6 general points. Consider its embedding
in P

9−s through the very ample divisor −KY and call X ⊂ P
9−s its image. X is

a del Pezzo surface.

The classification of del Pezzo surfaces is known and we recall it for seek of
completeness.



174 R. M. Miró-Roig

Definition 3.3.3 A set of s different points {p1, . . . , ps} on P
2 with s ≤ 8 is in

general position if no three of them lie on a line, no six of them lie on a conic and
no eight of them lie on a cubic with a singularity at one of these points.

Theorem 3.3.4 Let X be a del Pezzo surface of degree d . Then 1 ≤ d ≤ 9 and

1. If d = 9, thenX is isomorphic to P
2 (and−KP2 = 3HP2 gives the usual Veronese

embedding in P
9).

2. If d = 8, then X is isomorphic to either P1 × P
1 or to a blow-up of P2 at one

point.
3. If 7 ≥ d ≥ 1, then X is isomorphic to a blow-up of P2 at 9 − d closed points in

general position.

Conversely, any surface described under 1., 2., 3 is a del Pezzo surface of the
corresponding degree.

Proof See, for instance, [37, Chapter IV, Theorems 24.3 and 24.4], and [16,
Proposition 8.1.9]. &'
Lemma 3.3.5 Let X be the blow-up of P2 on 0 ≤ s ≤ 8 points in general position.
Let e0 ∈ Pic(X) be the pull-back of a line in P

2, ei the exceptional divisors, i =
1, . . . , s and KX be the canonical divisor. Then:

1. If s ≤ 6, −KX = 3e0 −∑s
i=1 ei is very ample and its global sections yield a

closed embedding of X in a projective space of dimension

dimH0(X,OX(−KX))− 1 = K2
X = 9− s.

2. If s = 7, −KX is ample and generated by its global sections.
3. if s = 8, −KX is ample and −2KX is generated by its global sections.

Proof See, for instance, [35, Proposition 3.4]. &'
The construction of ACM bundles and Ulrich bundles on smooth del Pezzo

surfaces is closely related (via Serre’s correspondence) to the existence of level set
of points.

Definition 3.3.6 A 0-dimensional scheme Z on a surface X ⊂ P
n is said to be level

of type ρ if the last graded free module in its minimal graded free resolution has
rank ρ and is concentrated in only one degree. Dualizing, this is equivalent to say
that all minimal generators of the canonical module KZ of Z have the same degree.

Example 3.3.7 Let Z be a set of 29 general points on a smooth quadric surface
Q ⊂ P

3. The ideal I (Z) of Z has a minimal graded free resolution of the following
type:

0 −→ R(−8)4 −→ R(−7)3 ⊕ R(−6)8 −→ R(−5)7 ⊕ R(−2) −→ I (Z) −→ 0.

Therefore, Z is level of type 4.
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The existence of level set of points on a smooth del Pezzo surface is related to
Mustaţă’s conjecture which we will discuss in next subsection and its proof will
strongly rely on the fact that we know the minimal resolution of the coordinate ring
of a del Pezzo surface X ⊂ P

d . Indeed, according to [29, Theorem 1], the minimal
free resolution of the coordinate ring of a del Pezzo surface X ⊆ P

d has the form:

0 −→ R(−d) −→ R(−d + 2)αd−3 −→ . . . −→ R(−2)α1 −→ R −→ RX −→ 0
(3.2)

where

αi = i

(
d − 1

i + 1

)
−
(
d − 2

i − 1

)
for 1 ≤ i ≤ d − 3.

Notice that X turns out to be AG and, in particular, αi = αd−2−i for all i =
1, . . . , d − 2. The Hilbert polynomial and the regularity of a del Pezzo surface X
can be easily computed using the exact sequence (3.2) and we have

PX(r) = d

2
(r2 + r)+ 1 and reg(X) = 3.

3.3.1 Mustaţă’s Conjecture for a Set of General Points on a del
Pezzo Surface

In [46], Mustaţă predicted the minimal free resolution of a general set of points Z in
an arbitrary projective variety X; he proved that the first rows of the Betti diagram
of Z coincide with the Betti diagram of X and that there are two extra nontrivial
rows at the bottom. Let us recall it.

Theorem 3.3.8 Let X ⊆ P
n be a projective variety with d = dim(X) ≥ 1,

reg(X) = m and with Hilbert polynomial PX . Let s be an integer with PX(r − 1) ≤
s < PX(r) for some r ≥ m+ 1 and let Z be a set of s general points on X. Let

0 → Fn → Fn−1 → · · · → F2 → F1 → R→ RX → 0

be a minimal graded free R-resolution of RX. Then RZ has a minimal free R-
resolution of the following type

0 −→ Fn ⊕ R(−r − n+ 1)bn,r−1 ⊕ R(−r − n)bn,r −→
· · · −→ F2 ⊕ R(−r − 1)b2,r−1 ⊕ R(−r − 2)b2,r −→
F1 ⊕ R(−r)b1,r−1 ⊕ R(−r − 1)b1,r −→ R −→ RZ −→ 0.
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Moreover, if we set Qi,r (s) = bi+1,r−1(Z)− bi,r (Z),

Qi,r (s) =
d−1∑

l=0

(−1)l
(
n− l − 1

i − l

)
Δl+1PX(r + l)−

(
n

i

)
(s − PX(r − 1)).

Conjecture 3.3.9 The minimal resolution conjecture (MRC for short) says that

bi+1,r−1 · bi,r = 0 for i = 1, · · · , n− 1.

Example 3.3.10 Let S ⊂ P
4 be a smooth del Pezzo surface of degree 4. S is the

complete intersection of 2 hyperquadrics in P
4, reg(S) = 3 and PS(x) = 2x2 +

2x + 1. Let Z ⊂ S be a set of 45 general points on S. We have PS(4) = 41 ≤ 45 ≤
PS(5) = 61.

The Betti diagram of Z looks like:

0 1 2 3 4

0 1 – – – –

1 – 2 – – –

2 – – 1 – –

3 – – – – –

4 – 16 40 28 –

5 – – – – 4

The first three rows of the Betti diagram of Z coincide with the Betti diagram of
S and there are two extra nontrivial rows without ghost terms.

Related to it there exist two weaker conjectures that deal only with a part of the
minimal resolution of a general set of points:

1. The Ideal Generation Conjecture (IGC for short) which says that the minimal
number of generators of the ideal of a general set of points will be as small as
possible; this conjecture can be translated in terms of the Betti numbers saying
that

b1,rb2,r−1 = 0.

2. On the other extreme of the resolution the Cohen-Macaulay type Conjecture
(CMC for short) controls the ending terms of the MFR and says that the canonical
module ExtnR(R/I (Z),R(−n − 1)) has as few generators as possible, i.e,

bn−1,rbn,r−1 = 0.
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Remark

1. When X = P
n the above conjecture coincides with the MRC for points

in P
n stated in [36] which says that this resolution has no ghost terms, i.e,

bi+1,r−1bi,r = 0 for all i. The MRC for points in P
n is known to hold for n ≤ 4

(see [4, 25] and [52]) and for large values of s for any n (see [28]) but it is false
in general. Eisenbud, Popescu, Schreyer and Walter showed that it fails for any
n ≥ 6, n �= 9 (see [20]).

2. Regarding Mustaţă conjecture, in [27] Giuffrida, Maggioni and Ragusa proved
that it holds for any general set of points when X is a smooth quadric surface
in P

3. In [43, Proposition 3.10], the authors showed that it holds for any general
set of s ≥ 19 points on a smooth cubic surface in P

3 and, in [38], Migliore
and Patnott have been able to prove it for sets of general distinct points of any
cardinality on a cubic surface X ⊆ P

3 given that X is smooth or it has at most
isolated double points.

The goal of this subsection is to prove MRC for a set Z of general points on a
smooth del Pezzo surface X, when the cardinality |Z| of Z falls in certain interval
explicitly described later. As corollary we prove IGC and CMC for a setZ of general
points on a del Pezzo surface X provided |Z| ≥ PX(3).

As a main tool we use the theory of liaison. Roughly speaking, Liaison Theory
is an equivalence relation among schemes of the same dimension and it involves the
study of the properties shared by two schemesX1 andX2 whose unionX1∪X2 = X

is either a complete intersection (CI-liaison) or an arithmetically Gorenstein scheme
(G-liaison). Knowing that two sets of points are G-linked, this technique will allow
us to pass from the minimal resolution of the ideal of one of them to the resolution
of the other one (mapping cone process) and vice versa.

Definition 3.3.11 Two subschemes X1 and X2 of Pn are directly Gorenstein linked
(directly G-linked for short) by an AG scheme G ⊆ P

n if I (G) ⊆ I (X1) ∩ I (X2),
[I (G) : I (X1)] = I (X2) and [I (G) : I (X2)] = I (X1). We say that X2 is residual
to X1 in G. When G is a complete intersection we talk about a CI -link.

When X1 and X2 do not share any component, being directly G-linked by an AG
scheme G is equivalent to G = X1 ∪X2.

Definition 3.3.12 Two subschemes X1,X2 ⊂ P
n are in the same CI-liaison class

(resp. G-liaison class) if there existsX1 = Z0, Z1, . . . , Zt = X2 closed subschemes
in P

n such that Zi and Zi+1 are directly linked by a complete intersection
(arithmetically Gorenstein) Xi ⊂ P

n.

See [33] for more details on G-liaison.
Usually it is not easy to find out AG schemes to work with. The following

theorem gives a useful way to construct them.

Definition 3.3.13 A subscheme X ⊂ P
n satisfies the condition Gr if every

localization of R/I (X) of dimension ≤ r is a Gorenstein ring. Gr is sometimes
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referred to as “Gorenstein in codimension ≤ r”, i.e. the non locally Gorenstein
locus has codimension≥ r + 1. In particular, G0 is generically Gorenstein.

Theorem 3.3.14 Let S ⊆ P
n be an ACM scheme satisfying condition G1. Denote

by KS the canonical divisor and by HS a general hyperplane section of S. Then any
effective divisor in the linear system |mHS −KS | is AG.

Proof See [33, Lemma 5.4]. &'
The main feature of G-liaison that is going to be exploited in this paper is that

through the mapping cone process it is possible to pass from the free resolution of a
scheme X1 to the free resolution of its residual X2 on an AG scheme. We have

Lemma 3.3.15 Let V1, V2 ⊆ P
n be two ACM schemes of codimension c directly

G-linked by an AG scheme W . Let the minimal free resolutions of I (V1) and I (W)

be

0 −→ Fc
dc−→ Fc−1

dc−1−→ . . . F1
d1−→ I (V1) −→ 0

and

0 −→ R(−t) ec−→ Gc−1
ec−1−→ . . .G1

e1−→ I (W) −→ 0,

respectively. Then the contravariant functor Hom(−, R(−t)) applied to a free
resolution of I (V1)/I (W) gives a (non necessarily minimal) resolution of I (V2):

0 −→ F∨1 (−t) −→ F∨2 (−t)⊕G∨1 (−t) −→ . . .

−→ F∨c (−t)⊕G∨c−1(−t) −→ I (V2) −→ 0.

In order to achieve the main result of this subsection, we define for any del Pezzo
surface X ⊂ P

d of degree d the so-called critical values:

m(r) := d

2
r2 + r

2− d

2
, n(r) := d

2
r2 + r

d − 2

2
.

Notice that

PX(r − 1) < m(r) < n(r) < PX(r).

Our first aim is to find out the minimal graded free resolution and to prove MRC
conjecture for these two specific cardinalities m(r) and n(r) of general set of points
on a del Pezzo surfaceX. Since the structure of our proof requires that X contains at
least a line L and moreover that the elements of the linear system |L+ rH | satisfy
conditionG1 in order to apply the theory of generalized divisors, we need to exclude
the following two particular cases: X ∼= P

2 and X ∼= P
1×P

1 proved in [48, Chapter
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II]. Therefore, in this subsection X ⊆ P
d will stand for any del Pezzo surface except

the two aforementioned sporadic cases. We also set the following notation.

1. L is any line on X.
2. H denotes a general hyperplane section of X.
3. If C is a curve on X, HC will be a general hyperplane section of C and KC the

canonical divisor on C.

The strategy of the proof is as follows: firstly, we will establish the result for
m(2) = d + 2 points which gives the starting point for our induction process.
Secondly, using G-liaison, we prove that if m(r) general points on any del Pezzo
surface satisfy MRC then so do n(r) general points. Next we observe that if n(r)
general points on X have the expected minimal free resolution then n(r)+1 general
points do as well. And, finally, we show that if n(r) + 1 general points on a del
Pezzo surface satisfy MRC then so do m(r + 1).

Since the shape of the minimal free resolution of the homogeneous ideal I (X) of
a del Pezzo surface of degree 3 (i.e., a cubic surface) is slightly different from that
of a del Pezzo surface of degree d ≥ 4 we need to consider apart the two cases. We
only sketch the proofs in the case of degree d ≥ 4 and we leave as exercise the case
of degree 3.

Lemma 3.3.16

(a) Let X ⊆ P
d be any del Pezzo surface of degree d ≥ 4 and take C ∈ |(r + ε)H |,

r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system |rHC | is
AG and it has a minimal free resolution of the following form:

0 −→ R(−2r − d − ε) −→ R(−2r − d + 2− ε)αd−3

⊕ R(−r − d)2−ε ⊕ R(−r − d − 1)ε

−→ . . . −→ Mi −→ . . . −→ R(−2r − ε)

⊕ R(−r − 2)(2−ε)α1 ⊕ R(−r − 3)εα1

−→ M1 := R(−r)2−ε ⊕ R(−r − 1)ε −→ I (G|X) −→ 0

where Mi := R(−2r− i+1−ε)αi−2⊕R(−r− i)(2−ε)αi−1⊕R(−r− i−1)εαi−1

for i = 3, . . . , d − 2 and αi = i
(
d−1
i+1

)− (d−2
i−1

)
for 1 ≤ i ≤ d − 3.

(b) Let X ⊆ P
3 be a del Pezzo surface of degree 3 and take C ∈ |(r + ε)H |,

r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system |rHC | is
AG and it has a minimal free resolution of the following form:

0 −→ R(−2r − 3− ε) −→ R(−2r − ε)⊕ R(−r − 3)2−ε ⊕ R(−r − 4)ε

−→ R(−r)2−ε ⊕ R(−r − 1)ε −→ I (G|X) −→ 0.
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Proof A curve C ∈ |(r + ε)H | has saturated ideal I (C|X) = H0∗(OX(−r − ε)).
From the exact sequence (3.2) we have:

0 → OPd (−d)→ OPd (−d + 2)αd−3 → · · · → OPd (−2)α1 → OPd → OX → 0

(3.3)

with αi = i
(
d−1
i+1

)− (d−2
i−1

)
for 1 ≤ i ≤ d − 3. Twisting (3.3) with OPd (−r − ε) and

taking global sections we get the minimal graded free resolution of I (C|X):

0 −→ R(−r − d − ε) −→ . . . −→ R(−r − (i + ε))αi−1 −→
. . . −→ R(−r − 2− ε)α1 −→ R(−r − ε) −→ I (C|X) −→ 0.

Now we apply the horseshoe lemma to the exact sequence

0 −→ I (X) −→ I (C|Pd ) −→ I (C|X) −→ 0

to obtain the minimal free resolution of I (C|Pd ):

0 −→ R(−r − d − ε) −→ R(−r − d + 2− ε)αd−3 ⊕ R(−d) −→ . . .

−→ Ti := R(−r − i − ε)αi−1 ⊕ R(−(i + 1))αi −→ . . .

−→ R(−r − ε)⊕ R(−2)α1 −→ I (C|Pd ) −→ 0.

This sequence shows that C ⊆ P
d is an AG variety with canonical module

KC = RC(r − 1+ ε).

Therefore I (G|C) = H 0∗ (OC(−r)) = KC(−2r+1−ε). Now, we apply the functor
Hom(−, R(−d − 1)) to the previous sequence and we get a minimal free resolution
of KC :

0 −→ R(−d − 1) −→ R(r − d − 1+ ε)⊕ R(−d + 1)αd−3 −→ . . .

−→ T ′i −→ . . . −→ R(−1)⊕ R(r − 3+ ε)α1 −→ R(r − 1+ ε) −→ KC −→ 0

where T ′i := T ∨d−i (−d − 1) = R(r − i − ε)αi−1 ⊕ R(−i)αi−2 for i = 3, . . . , d − 2.
If we twist the previous sequence by−2r + 1− ε we get the minimal resolution of
I (G|C):

0 −→ R(−2r − d − ε) −→ R(−r − d)⊕ R(−2r − d + 2− ε)αd−3 −→
. . . −→ T ′i (−2r + 1− ε) −→ . . .

−→ R(−2r − ε)⊕ R(−r − 2)α1 −→ R(−r) −→ I (G|C) −→ 0.
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Finally, we apply the horseshoe lemma to the short exact sequence

0 −→ I (C|X) −→ I (G|X) −→ I (G|C) −→ 0

to recover the resolution of I (G|X) and we finish the proof. &'
Lemma 3.3.17

(a) Let X ⊆ P
d be a del Pezzo surface and let L ⊆ X be a line on it. Take C ∈ |L+

rH |, r ≥ 2, and let G be any effective divisor in the linear system |2rHC−KC |.
Then, G is AG and the minimal free resolution of I (G|C) has the following
form:

0 −→ R(−2r − d − 1) −→ R(−2r − d + 1)α1 ⊕ R(−r − d)d−1 −→ . . .

−→ R(−2r − i)αd−i ⊕ R(−r − i − 1)(
d−1
d−i)+αd−i−1 −→ . . .

−→ R(−2r − 1)⊕ R(−r − 3)(
d−1
d−2)+αd−3

−→ R(−r − 1)⊕ R(−r − 2) −→ I (G|C) −→ 0

with αi = i
(
d−1
i+1

)− (d−2
i−1

)
for 1 ≤ i ≤ d − 3.

(b) Let X ⊆ P
3 be an integral cubic surface and let L ⊆ X be a line on it. Take

C ∈ |L+ rH |, r ≥ 2, and let G be any effective divisor in |2rHC −KC |. Then,
G is AG and the minimal free resolution of I (G|C) has the following form:

0 −→ R(−2r − 4) −→ R(−2r − 1)⊕ R(−r − 3)2

−→ R(−r − 1)⊕ R(−r − 2) −→ I (G|C) −→ 0.

Proof Let L ⊆ X be any line. Its ideal as a subvariety of Pd has a resolution:

0 −→ R(−d + 1) −→ . . . −→ R(−i)(d−1
i ) −→ . . . −→ R(−1)d−1 −→ I (L) −→ 0.

Applying the mapping cone process to 0 → I (X) → I (L) → I (L|X) → 0 we
get

0 −→ R(−d)⊕ R(−d + 1) −→ . . . −→ R(−i)(d−1
i )+αi−1

−→ . . . −→ R(−1)d−1 −→ I (L|X) −→ 0

with αi = i
(
d−1
i+1

) − (d−2
i−1

)
for 1 ≤ i ≤ d − 3. Therefore, C ∈ |L + rH | has the

following minimal graded free resolution

0 → R(−r − d)⊕ R(−r − d + 1)→ · · · → R(−r − i)(
d−1
i )+αi−1 →

· · · → R(−r − 1)d−1 → I (C|X)→ 0. (3.4)
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Now the horseshoe lemma applied to 0 → I (X|Pd ) → I (C) → I (C|X) → 0
gives us

0 −→ R(−r − d)⊕ R(−r − d + 1) −→ R(−r − d + 2)(
d−1
d−2)+αd−3 ⊕ R(−d) −→ . . .

−→ R(−r − i)(
d−1
i )+αi−1 ⊕ R(−(i + 1))αi

−→ . . . −→ R(−r − 1)d−1 ⊕ R(−2)α1 −→ I (C) −→ 0.

Since C is ACM we can apply Hom(−, R(−d − 1)) to get a resolution of KC :

0 −→ R(−d − 1) −→ R(−d + 1)α1 ⊕ R(r − d)d−1 −→

. . . −→ R(r − i − 1)(
d−1
d−i )+αd−i−1 ⊕ R(−i)αd−i −→

. . . −→ R(r − 3)(
d−1
d−2)+αd−3 ⊕ R(−1) −→ R(r − 1)⊕ R(r − 2) −→ KC −→ 0.

Finally, since G ∈ |2rHC −KC | we have:

0 −→ R(−2r − d − 1) −→ R(−2r − d + 1)α1 ⊕ R(−r − d)d−1 −→
. . . −→ R(−2r − i)αd−i ⊕ R(−r − i − 1)(

d−1
d−i)+αd−i−1 −→ . . .

−→ R(−2r − 1)⊕ R(−r − 3)(
d−1
d−2)+αd−3 −→ R(−r − 1)⊕ R(−r − 2)

−→ I (G|C) −→ 0.

&'
Now we fix the starting point of the induction.

Lemma 3.3.18 A general set Z of m(2) = d + 2 points on any del Pezzo surface
X ⊆ P

d has a minimal free resolution of the following type:

0 −→ R(−d − 2) −→ R(−d)γd−1 −→ . . .

−→ R(−3)γ2 −→ R(−2)2d−1 −→ I (Z|X) −→ 0

with

γi =
1∑

l=0

(−1)l
(
d − l − 1

i − l

)
Δl+1HX(2+ l)−

(
d

i

)
(m(2)−HX(1)).

Proof It follows from the fact that a general set Z of d+2 points on X is in linearly
general position (i.e., any subset of Z of d + 1 points spans Pd ). &'

Fix an integer r ≥ 2 and let Zm(r) and Zn(r) be general sets of points on X of
cardinality m(r) and n(r), respectively. We will see that they are directly G-linked
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by an effective divisor G in |rHC | with C a curve in the linear system |rHX|. Recall
that we have:

PX(r − 1) < m(r) < n(r) < PX(r).

Let us start with a general set Zm(r) of m(r) points. Since h0(OX(r)) > m(r) there
exists a curve C in the linear system |rHX| such that Zm(r) lies on C. On the other
hand, the inequality n(r) > pa(C) allows us to apply Riemann-Roch Theorem for
curves and assure that there exists an effective divisor Zn(r) of degree n(r) such that
Zm(r) + Zn(r) is linearly equivalent to a divisor rHC .

Since this construction can also be performed starting from a general set Zn(r)

of n(r) points we see that a general set of m(r) points is G-linked to a general set
of n(r) points and vice versa. Therefore as a direct application of the mapping cone
process we get

Proposition 3.3.19 Fix r ≥ 2 and assume that the ideal I (Zm(r)|X) of m(r)
general points on a del Pezzo surface X ⊆ P

d has the minimal free resolution

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I (Zm(r)|X) −→ 0

with γi,r−1 = ∑1
l=0(−1)l

(
d−l−1
i−l

)
Δl+1PX(r + l) − (d

i

)
(m(r) − PX(r − 1)). Then

the ideal I (Zn(r)|X) of n(r) general points has the minimal free resolution

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d + 1)βd−1,r −→ . . .

−→ R(−r − 2)β2,r −→ R(−r)r+1 −→ I (Zn(r)|X) −→ 0

with βi,r =∑1
l=0(−1)l+1

(
d−l−1
i−l

)
Δl+1PX(r + l)+ (d

i

)
(n(r)− PX(r − 1)).

Vice versa, if n(r) general points on a del Pezzo surface X ⊆ P
d have the

expected resolution then m(r) general points do as well.

Lemma 3.3.20 LetX ⊂ P
d be any del Pezzo surface. Fix r ≥ 2 and assume that the

ideal I (Zn(r)|X) of a set Zn(r) of n(r) general points on X ⊆ P
d has the expected

minimal free graded resolution. Then a set of n(r)+ 1 general points do as well.

Proof Since I (Zn(r)|X) has the expected minimal free resolution, it is generated by
r + 1 forms of degree r without linear relations. Take a general point p ∈ X and
set Z := Zn(r) ∪ {p}. Since I (Z|X) ⊂ I (Zn(r)|X), we can take the r generators
of I (Z|X) in degree r to be a subset of the generators of I (Zn(r)|X) in degree r;
in particular, they do not have linear syzygies. We must add d generators of degree
r + 1 in order to get a minimal system of generators of I (Z|X). Hence the first
module in the minimal free resolution of I (Z|X) is R(−r)r ⊕ R(−r − 1)d which
forces the remaining part of the resolution. &'
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Proposition 3.3.21 Let X ⊆ P
d be a del Pezzo surface. Fix r ≥ 2 and assume that

the ideal I (Zp(r)|X) of p(r) := n(r)+ 1 general points on X has the minimal free
resolution

0 −→ R(−r − d)(d−1)r −→ R(−r − d + 1)δd−1,r −→ . . .

−→ R(−r − 2)δ2,r −→ R(−r)r ⊕ R(−r − 1)d −→ I (Zp(r)|X) −→ 0

with

δi,r =
1∑

l=0

(−1)l+1
(
d − l − 1

i − l

)
Δl+1HX(r + l)+

(
d

i

)
(p(r)−HX(r − 1)).

Then the ideal I (Zm(r+1)|X) of m(r + 1) general points has the minimal free
resolution

0 −→ R(−r − d − 1)r −→ R(−r − d + 1)γd−1,r −→ . . .

−→ R(−r − 2)γ2,r −→ R(−r − 1)(d−1)r+d −→ I (Zm(r+1)|X) −→ 0

with

γi,r =
1∑

l=0

(−1)l
(
d − l − 1

i − l

)
Δl+1HX(r + 1+ l)−

(
d

i

)
(m(r + 1)−HX(r)).

Proof Let Zp(r) be a set of p(r) general points with resolution as in the statement.
Let us consider the linear system |L + rH |. Since, dim |L + rH | ≥ dim |rH | =
PX(r) − 1 > p(r), we can find a curve C ∈ |L + rH | passing through these
p(r) points. Notice that deg(C) = 1 + rd and pa(C) = d

(
r
2

) + r . Since pa(C) <
m(r + 1) we can find an effective divisor Zm(r+1) of degree m(r + 1) such that
Zp(r) and Zm(r+1) are G-linked by a divisor of degree p(r) + m(r + 1) = dr2 +
dr + 2 = deg(2rHC −KC). This allows us to find the resolution of I (Zm(r+1)|X).
First we find the minimal free resolution of I (Zp(r)|C) using the exact sequence
0 → I (C|X) → I (Zp(r)|X) → I (Zp(r)|C)→ 0, the resolution of I (C|X) given
in (3.4) and the mapping cone process. It turns out to be:

0 −→ R(−r − d)(d−1)r+1 −→ R(−r − d + 1)cd−1,r −→ . . .

−→ R(−r − 2)c2,r −→ R(−r)r ⊕ R(−r − 1) −→ I (Zp(r)|C) −→ 0.

Since we know the minimal free resolution of I (G|C) (see Lemma 3.3.17) we
apply the mapping cone process to the sequence 0 → I (G|C) → I (Z(p(r)|C) →
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I (Zp(r)|G)→ 0 to get

0 −→ R(−2r − d − 1) −→ R(−r − d)(d−1)r+d ⊕ R(−2r − d + 1)α1 −→ . . .

−→ R(−r − i)di,r ⊕ R(−2r − i + 1)αd−i+1 −→ . . .

−→ R(−r − 2)d2,r −→ R(−r)r −→ I (Zp(r)|G) −→ 0.

(0 → R(−2r−4)→ R(−r−3)2r+2⊕R(−2r−1)→ R(−r−2)d2,r → R(−r)r →
I (Zp(r)|G)→ 0 if d = 3).

Finally we obtain the minimal free resolution of I (Zm(r+1)):

0 −→ R(−r − d − 1)r

−→ R(−r − d + 1)γd−1,r −→ R(−r − d + 2)γd−2,r ⊕ R(−d) −→
. . . −→ R(−r − i)γi,r ⊕ R(−i)αi −→ . . .

−→ R(−r − 1)(d−1)r+d ⊕ R(−2)α1 −→ I (Zm(r+1)) −→ 0

(0 → R(−r−4)r → R(−r−2)γ2,r → R(−r−1)2r+3⊕R(−3)→ I (Zm(r+1))→ 0
if d = 3) from which it is straightforward to recover the predicted resolution of
I (Zm(r+1)|X). &'

We are ready to prove the MRC for n(r) and m(r) general points on a del Pezzo
surface:

Theorem 3.3.22 Let X ⊆ P
d be a del Pezzo surface. We have:

1. Let Zn(r) ⊆ X be a general set of n(r) points, r ≥ 2. Then the minimal graded
free resolution of I (Zn(r)|X) has the following form:

0 −→ R(−r − d)(d−1)r−1 −→ R(−r − d + 1)βd−1,r −→ R(−r − d + 2)βd−2,r −→
. . . −→ R(−r − 2)β2,r −→ R(−r)r+1 −→ I (Zn(r)|X) −→ 0.

where

βi,r =
1∑

l=0

(−1)l+1
(
n− l − 1

i − l

)
Δl+1HX(r + l)+

(
n

i

)
(n(r)−HX(r − 1)).

2. Let Zm(r) ⊆ X be a general set of m(r) points, r ≥ 2. Then its minimal graded
free resolution has the following form:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I (Zm(r)|X) −→ 0
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with

γi,r−1 =
1∑

l=0

(−1)l
(
n− l − 1

i − l

)
Δl+1PX(r + l)−

(
n

i

)
(m(r)− PX(r − 1)).

In particular, Mustaţă’s conjecture works for n(r) and m(r), r ≥ 4, general
points on a del Pezzo surface X ⊆ P

d .

Proof Lemma 3.3.18 establishes the result for a set of m(2) general points, the
starting point of our induction process. Therefore, the result about the resolution
of I (Zn(r)|X) and I (Zm(r)|X) follows using Lemma 3.3.20, Propositions 3.3.19
and 3.3.21 and applying induction. &'

Next lemma controls how the bottom lines of the Betti diagram of a set of general
points on a projective variety change when we add another general point.

Lemma 3.3.23 Let X ⊆ P
n be a projective variety with dim(X) ≥ 2, reg(X) = m

and with Hilbert polynomial PX. Let s be an integer with PX(r − 1) ≤ s < PX(r)

for some r ≥ m+ 1, let Z be a set of s general points on X and let P ∈ X \ Z be a
general point. We have

1. bi,r−1(Z) ≥ bi,r−1(Z ∪ P) for every i.
2. bi,r (Z) ≤ bi,r (Z ∪ P) for every i.

Proof See [46, Proposition 1.7]. &'
Now, we prove the main result of this subsection, namely, the MRC holds for a

general set of points Z on a smooth del Pezzo surface when the cardinality of Z
falls in the strips of the form [PX(r − 1),m(r)] or [n(r), PX(r)], r ≥ 4.

Theorem 3.3.24 Let X ⊆ P
d be a del Pezzo surface. Let r be such that r ≥

reg(X) + 1 = 4. Then for a general set of points Z on X such that PX(r − 1) ≤
|Z| ≤ m(r) or n(r) ≤ |Z| ≤ PX(r) the MRC is true.

Proof See [48, Chapter II], for the cases of X ∼= P
2 and X ∼= P

1 × P
1. So

let X be any other smooth del Pezzo surface. Let Z′ be a general set of points
of cardinality |Z′| = n(r) and add general points to Z′ in order to get a set of
points Z of cardinality n(r) ≤ |Z| ≤ PX(r). By Theorem 3.3.22 we have that
bi,r−1(Z

′) = 0 for all i = 2, . . . , d . Therefore we can apply Lemma 3.3.23 to
deduce that bi,r−1(Z) = 0 for all i = 2, . . . , d . Thus, by semicontinuity, MRC
holds for a general set of |Z| points.

Now if |Z| ≤ m(r), we can add general points to Z in order to have a general set
Z′ including Z and such that |Z′| = m(r). Again from the previous Theorem we
have that bi,r (Z′) = 0 for all i = 1, . . . , d − 1. So we can use again Lemma 3.3.23
to deduce that bi,r (Z) = 0 for all i = 1, . . . , d − 1 and therefore MRC holds
for Z. &'
Example 3.3.25 Let Y be the blow up of P

2 at 4 general points. Consider its
embedding in P

5 through the very ample divisor −KY and call X ⊂ P
5 its image.
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X is a del Pezzo surface of degree 5, reg(X) = 3, PX(t) = d
2 (t

2 + t) + 1 and its
homogenous ideal has a minimal free R-resolution of the following type:

0 −→ R(−5) −→ R(−3)5 −→ R(−2)5 −→ I (X) −→ 0.

Let Z ⊂ X be a set of 79 general points on X. We have PX(5) = 76 < 79 <

m(6) = 81 < n(6) = 99 < PX(6) = 106. By Theorem 3.3.24, the minimal free
resolution of I (Z) has the following shape:

0 −→ R(−11)3 ⊕ R(−10)10 −→ R(−9)75 −→ R(−8)135 ⊕ R(−5)

−→ R(−7)100 ⊕ R(−3)5 −→ R(−6)27 ⊕ R(−2)5 −→ I (Z) −→ 0.

Therefore, the Betti diagram of Z looks like:

0 1 2 3 4 5

0 1 – – – – –

1 – 5 5 – – –

2 – – – 1 – –

3 – – – – – –

4 – – – – – –

5 – 27 100 135 75 10

5 – – – – – 3

The first three rows of the Betti diagram of Z coincide with the Betti diagram of
X and there are two extra nontrivial rows without ghost terms.

As a consequence of Theorem 3.3.22 we prove that the number of generators of
the ideal of a general set of points on a del Pezzo surface is as small as possible and
so it is the number of generators of its canonical module as well. In fact, we have:

Theorem 3.3.26 Let X ⊆ P
d be a del Pezzo surface. Then for a general set of

points Z on X such that |Z| ≥ PX(3) the Cohen-Macaulay type Conjecture and the
Ideal Generation Conjecture are true.

Proof Let Z be a general set of points on our del Pezzo surface X. If it is the case
that n(r) ≤ |Z| ≤ m(r + 1) the result has been proved on the previous theorem. So
we can assume that m(r) < |Z| < n(r) for some r . We know that the MRC holds
for a general set |Z′| of n(r) points on X, Z ⊆ Z′ and in particular b1,r (Z

′) = 0.
Applying Lemma 3.3.23 inductively we see that b1,r (Z) = 0. Analogously, since
MRC holds for a general set Z′′ of m(r) points, bd,r−1(Z

′′) = 0 with Z′′ ⊆ Z.
Applying once again the same Lemma we see that bd,r−1(Z) = 0. &'

In the particular case of the cubic surface, since the minimal free resolution of its
points has length three, we recover one of the main results of [42] (see also [43]):
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Theorem 3.3.27 Let X ⊆ P
3 be a integral cubic surface (i.e., a del Pezzo surface

of degree three). Then the Minimal Resolution Conjecture holds for a general set of
points on X of cardinality ≥ PX(3) = 19.

3.3.2 Ulrich Bundles on del Pezzo Surfaces

In this subsection, we will construct large families of ACM vector bundles on
smooth del Pezzo surfaces with the maximal allowed number of global sections
(the so-called Ulrich bundles) and conclude that all smooth del Pezzo surfaces are
of wild representation type. This result generalizes a previous result of Pons-Llopis
and Tonini [49] (see also [10]) which states that the cubic surface S ⊂ P

3 is of wild
representation type.

The proof for the degree 8 smooth del Pezzo surface X ⊂ P
8 isomorphic to

P
1 × P

1 (i.e. the Segre product of two conics naturally embedded in P
8: ϕ|O(2,2)| :

P
1 × P

1 ↪→ P
8) is slightly different and the reader can consult [48]. So, from now

on when speaking of a smooth del Pezzo surface we will understand the blow up of
P

2 at s ≤ 8 points in general position.
Following notation from [22], let us consider K-vector spaces A and B of

respective dimension a and b. Set V = H0(Pm,OPm(1)) and let M = Hom(B,A⊗
V ) be the space of (a×b)-matrices of linear forms.M is an affine space of dimension
ab(m+1). It is well-known that there exists a bijection between the elements φ ∈ M

and the morphisms φ : B ⊗ OPm → A ⊗ OPm(1). Taking the tensor with OPm(1)
and considering global sections, we have morphisms

H0(φ(1)) : H0(Pm,OPm(1)
b) −→ H0(Pm,OPm(2)

a).

The following result tells us under which conditions the aforementioned morphisms
φ and H0(φ(1)) are surjective:

Proposition 3.3.28 For a ≥ 1, b ≥ a +m and 2b ≥ (m+ 2)a, the set of elements
φ ∈ M such that φ : B⊗OPm → A⊗OPm(1) and H0(φ(1)) : H0(Pm,OPm(1)b)→
H0(Pm,OPm(2)a) are surjective forms a non-empty open dense subset of the affine
variety M that we will denote by Vm.

Proof See [22, Proposition 4.1]. &'
Fix m = 2 and for a given r ≥ 2, set a := r , b := 2r . Take an element φ of the

non-empty subset V2 ⊆ M provided by Proposition 3.3.28 and consider the exact
sequence

0 −→ F −→ OP2(1)2r
φ(1)−→ OP2(2)r −→ 0. (3.5)
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It follows immediately that F is a vector bundle of rank r , being kernel of a
surjective morphism of vector bundles. Let X := BlZ(P

2)
π−→ P

2 be the low up of
P

2 at 0 ≤ s ≤ 8 points in general position. Pulling-back the exact sequence (3.5)
we obtain the exact sequence:

0 −→ π∗F −→ OX(e0)
b φ(1)−→ OX(2e0)

a −→ 0. (3.6)

We can prove:

Proposition 3.3.29 Let X
π−→ P

2 be the low up of P2 at 0 ≤ s ≤ 8 points in
general position and let r ≥ 2. Let F be the vector bundle obtained as the kernel
of a general surjective morphism between OP2(1)2r and OP2(2)r :

0 −→ F −→ OPn(1)
2r φ(1)−→ OPn(2)

r −→ 0. (3.7)

Then, the vector bundles E obtained pulling-back F , dualizing and twisting by
H := 3e0 −∑s

i=1 ei

0 −→ OX(−2e0 +H)r
f−→ OX(−e0 +H)2r

g−→ E (H) := (π∗F )∗(H) −→ 0

(3.8)

are simple (hence, undecomposable) vector bundles of rank r on X.

Proof See [45, Corollary 4.5]. &'
The Chern classes of E (H) can be easily computed and we get:

c1(E (H)) = rH and c2(E (H)) = H 2r2 + (2−H 2)r

2
.

Let us check that E (H) is an initialized Ulrich bundle. For this, we need the
following computations.

Remark (Riemann-Roch for Vector Bundles on a del Pezzo Surface) Let X be a del
Pezzo surface. Since X is a rational connected surface we have χ(OX) = 1. In
particular, the Riemann-Roch formula for a vector bundle E on X of rank r has the
form

χ(E ) = c1(E )(c1(E )−KX)

2
+ r − c2(E ).

Remark The Euler characteristic of the involved vector bundles can be computed
thanks to the Riemann-Roch formula:

χ(OX(−2e0 + lH )) = 9− s

2
l2 − 3+ s

2
l, (3.9)
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χ(OX(−e0 + lH )) = 9− s

2
l2 + 3− s

2
l, (3.10)

χ(E (lH)) = 2rχ(OX(−e0 + lH ))− rχ(OX(−2e0 + lH ))

= 9r−sr
2 l2 + 9r−sr

2 l.

(3.11)

Proposition 3.3.30 Let X be a del Pezzo surface. The bundles E (H) given by the
exact sequence (3.8) are initialized simple Ulrich bundles. Moreover, in the case of
a blow-up of ≤ 7 points, they are globally generated.

Proof First of all, notice that H0(E ∗) = H2(E (−H)) = 0. Therefore,
H2(E (tH)) = 0, for all t ≥ −1. On the other hand, since H2(OX(−2e0)) =
H0(OX(2e0 − H)) = 0 and h1(OX(−e0)) = −χ(OX(−e0)) = 0 we obtain from
the long exact sequence of cohomology associated to (3.8) that H1(E ) = 0. Since
χ(E ) = 0, we also conclude that H0(E ) = 0 and therefore H0(E (tH)) = 0 for
all t ≤ 0. Moreover, since we also have that χ(E (−H)) = 0, we obtain that
H1(E (−H)) = 0.

We easily check that H0(E (H)) �= 0 which together with the vanishing
H0(E (tH)) = 0 for all t ≤ 0 implies that E (H) is initialized.

We tensor by E the exact sequence

0 −→ OX(−H) −→ OX −→ OH −→ 0

and we consider the cohomology sequence associated to it. We get

0 = H0(E ) −→ H0(E|H) −→ H1(E (−H)) = 0.

This shows that H0(E|H(−tH )) = 0 for all t ≥ 0. Then we can use this last fact
together with the long exact sequence associated to

0 −→ E (−(t + 1)H) −→ E (−tH ) −→ E|H(−tH ) −→ 0

to show inductively that H1(E (−tH )) = 0 for all t ≥ 0.
In order to complete the proof we need to consider two different cases:

1. X is the blow-up of s ≤ 7 points on P
2 in general position. In this case, by

Lemma 3.3.5, H is ample and generated by its global sections. Since we have
just seen that E (H) is 0-regular with respect to H we can conclude that E (H) is
ACM and globally generated. Moreover, h0(E (H)) = χ(E (H)) = (9 − s)r =
H 2r , i.e., E (H) is an Ulrich bundle.

2. X is the blow-up of 8 points on P
2 in general position. In this case, the argument

is slightly more involved, since H is ample but not very ample. Fortunately 2H is
ample and globally generated. First of all, since the points are in general position,
H0(OX(−e0 +H)) = 0 and from the exact sequence (3.8) we get the following
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exact sequence:

0 −→ H0(E (H)) −→ H1(OX(−2e0 +H)r)

−→ H1(OX(−e0 +H)2r) −→ H1(E (H)) −→ 0.

From this sequence and the fact that h1(OX(−2e0 + H)) = −χ(OX(−2e0 +
H)) = 5 and h1(OX(−e0 + H)) = −χ(OX(−e0 + H)) = 2 we are forced
to conclude that h0(E (H)) = r and H1(E (H)) = 0. Now, from what we have
gathered up to now, we can affirm that E (H) is 1-regular with respect to the very
ample line bundle 2H and therefore, H1(E (H + 2tH )) = 0 for all t ≥ 0. In
order to deal with the cancelation of the remaining groups of cohomology, it will
be enough to show that E (2H) is 1-regular with respect to 2H , i.e., it remains to
show that H1(E (2H)) = 0. In order to do this consider the exact sequence (the
cancelation of H0(OX(−e0+2H)) is due to the fact that the points are in general
position):

0 −→ H0(E (2H)) −→ H1(OX(−2e0 + 2H)r)

−→ H1(OX(−e0 + 2H)2r) −→ H1(E (2H)) −→ 0.

Once again, we control the dimension of these vector spaces:

h1(⊕rOX(−2e0 + 2H)) = −rχ(OX(−2e0 + 2H)) = 9r

and

h1(⊕2rOX(−e0 + 2H)) = −2rχ(OX(−e0 + 2H)) = 6r.

Therefore we are forced to have h0(E (2H)) = 3r and H1(E (2H)) = 0. Notice
that in this case E (3H) is globally generated.

&'
As an immediate consequence we get:

Theorem 3.3.31 Let X ⊂ P
d be a smooth del Pezzo surface of degree d . Then for

any r ≥ 2 there exists a family of dimension r2 + 1 of simple initialized Ulrich
bundles of rank r on X. In particular, del Pezzo surfaces are of wild representation
type.

Proof See [45, Theorem 4.9]. &'
In the last part of this subsection we consider the case of strong del Pezzo surfaces

X, i.e. smooth del Pezzo surfaces with anticanonical divisor very ample. In this case,
−KX provides an embedding X ⊆ P

d , with d = K2
X. Let R := K[x0, . . . , xd ]

be the graded polynomial ring associated to P
d . Using our results on Mustaţă’s

conjecture explained in the previous subsection, we are going to show that the
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(r2 + 1)-dimensional family of rank r initialized Ulrich bundles given in Theo-
rem 3.3.31 could also be obtained through a version of Serre correspondence from

a general set of dr2+(2−d)r
2 points on X.

More precisely, as a particular case of Theorem 3.3.24, we have the following
result:

Theorem 3.3.32 Let X ⊆ P
d be a strong del Pezzo surface of degree d embedded

in P
d by its very ample anticanonical divisor. Let Zm(r) ⊂ X be a general set of

m(r) = 1

2
(dr2 + (2− d)r)

points, r ≥ 2. Then the minimal graded free resolution (as a R-module) of the
saturated ideal of Zm(r) in X has the following form:

0 −→ R(−r − d)r−1 −→ R(−r − d + 2)γd−1,r−1 −→ . . .

−→ R(−r − 1)γ2,r−1 −→ R(−r)(d−1)r+1 −→ I (Zm(r)|X) −→ 0 (3.12)

with

γi,r−1 =
1∑

l=0

(−1)l
(
d − l − 1

i − l

)
Δl+1PX(r + l)−

(
d

i

)
(m(r)− PX(r − 1)).

Theorem 3.3.33 Let X ⊆ P
d be a strong del Pezzo surface of degree d .

1. If E (H) is an Ulrich bundle of rank r ≥ 2 given by the exact sequence (3.8), then
there is an exact sequence

0 −→ Or−1
X −→ E (H) −→ I (Z|X)(rH) −→ 0

where Z is a zero-dimensional scheme of degree m(r) = c2(E (H)) = 1
2 (dr

2 +
(2− d)r) and h0(I (Z|X)(r − 1)H) = 0.

2. Conversely, for general sets Z of m(r) = 1/2(dr2+(2−d)r) points onX, r ≥ 2,
we recover the initialized Ulrich bundles given by the exact sequence (3.8) as an
extension of I (Z|X)(rH) by Or−1

X .

Proof

1. As E (H) is globally generated, r − 1 general global sections define an exact
sequence of the form

0 −→ Or−1
X −→ E (H) −→ I (Z|X)(D) −→ 0
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where D = c1(E (H)) = rH is a divisor on X and Z is a zero-dimensional
scheme of length

c2(E (H)) = dr2 + (2− d)r

2
.

Moreover, since E (H) is initialized, h0(I (Z|X)(r − 1)H) = 0.
2. Let Z be a general set of points of cardinality m(r) with the minimal free

resolution of (3.12). Let us denote by RX and RZ the homogeneous coordinate
ring of X and Z. It is well-known that for ACM varieties, there exists a bijection
between ACM bundles on X and Maximal Cohen Macaulay (MCM from now
on) graded RX-modules sending E to H0∗(E ). From the exact sequence

0 −→ I (Z|X) −→ RX −→ RZ −→ 0

we get Ext1(I (Z|X),RX(−1)) ∼= Ext2(RZ,RX(−1)) ∼= KZ where KZ denotes
the canonical module of RZ (the last isomorphism is due to the fact that RX(−1)
is the canonical module of X and the codimension of Z in X is 2). Dualizing the
exact sequence (3.12), we obtain a minimal resolution of KZ :

. . . −→ R(r − 3)γd−1,r−1 −→ R(r − 1)r−1 −→ KZ −→ 0.

This shows that KZ is generated in degree 1 − r by r − 1 elements. These
generators provide an extension

0 −→ Rr−1
X −→ F −→ I (Z|X)(r) −→ 0 (3.13)

via the isomorphism KZ
∼= Ext1(I (Z|X),RX(−1)). F turns out to be a MCM

module because Ext1(F,KX) = 0 (this last cancelation follows by applying
HomRX(−,KX) to (3.13)). If we sheafiffy the exact sequence (3.13) we obtain
the sequence

0 −→ Or−1
X −→ F̃ −→ I (Z|X)(r) −→ 0

where F̃ is an ACM vector bundle on X. Using the exact sequence (3.12)
we can see that H0(I (Z|X)(r − 1)H) = 0 and h0(I (Z|X)(rH)) = (d −
1)r + 1. Therefore F̃ is an initialized Ulrich bundle (i.e., h0(F̃ ) = dr). By
Theorem 3.2.15, F̃ will be globally generated.

It only remains to show that for a generic choice of Zm(r) ⊂ X, the
associated bundle F := F̃ just constructed belongs to the family (3.8). Since
F is an initialized Ulrich bundle of rank r with the expected Chern classes,
the problem boils down to a dimension counting. We need to show that the
dimension of the family of vector bundles obtained through this construction
from a general set Zm(r) is r2 + 1. Since this dimension is given by the formula
dimHilbm(r)(X) − dim Grass(h0(F ), r − 1), an easy computation taking into
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account that dimHilbm(r)(X) = 2m(r) and that dim Grass(h0(F ), r − 1) =
(r − 1)(dr − r + 1) gives the desired result. &'
As a nice application we get:

Theorem 3.3.34 Let X be a smooth del Pezzo surface of degree d . Then for any
r ≥ 2 there exists a family of dimension r2 + 1 of simple Ulrich bundles of rank r

with Chern classes c1 = rH and c2 = dr2+r(2−d)
2 .

So, we conclude:

Theorem 3.3.35 Smooth del Pezzo surfaces X ⊂ P
d are of wild representation

type.

3.4 The Representation Type of a Segre Variety

Fix integers 1 ≤ n1, · · · , ns and set N :=∏s
i=1(ni+1)−1. The goal of this section

is to prove that all Segre varieties Σn1,...,ns ⊆ P
N unless the quadric surface in P

3

support families of arbitrarily large dimension and rank of simple Ulrich (and hence
ACM ) vector bundles. Therefore, they are all unless P1×P

1 of wild representation
type. To this end, we will give an effective method to construct ACM sheaves (i.e.
sheaves without intermediate cohomology) with the maximal permitted number of
global sections, the so-called Ulrich sheaves, on all Segre varieties Σn1,··· ,ns other
than P

1×P
1. To our knowledge, they will be the first family of examples of varieties

of arbitrary dimension for which wild representation type is witnessed by means of
Ulrich bundles.

Let us start this section recalling the definition of Segre variety and the basic
properties on Segre varieties needed later on. Given integers 1 ≤ n1, · · · , ns , we
denote by

σn1,··· ,ns : Pn1 × · · · × P
ns −→ P

N, N =
s∏

i=1

(ni + 1)− 1

the Segre embedding of Pn1 × · · · × P
ns . The image of σn1,··· ,ns is the Segre variety

Σn1,··· ,ns := σn1,··· ,ns (Pn1 × · · · × P
ns ) ⊆ P

N , N = ∏s
i=1(ni + 1) − 1. Notice

that in terms of very ample line bundles, this embedding is defined by means of
OP

n1×···×Pns (1, · · · , 1).
The equations of the Segre varieties are familiar to anyone who has studied

Algebraic Geometry. Indeed, if we let T be the (n1 + 1) × · · · × (ns + 1) tensor
whose entries are the homogeneous coordinates in P

N , then it is well known that
the ideal of Σn1,··· ,ns is generated by the 2× 2 minors of T . Moreover, we have
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Proposition 3.4.1 Fix integers 1 ≤ n1, · · · , ns and denote by Σn1,··· ,ns ⊆ P
N ,

N =∏s
i=1(ni + 1)− 1, the Segre variety. It holds:

1. dim(Σn1,··· ,ns ) =
∑s

i=1 ni ,

2. deg(Σn1,··· ,ns ) = (
∑s

i=1 ni )!∏s
i=1(ni)! ,

3. Σn1,··· ,ns is ACM, and
4. I (Σn1,··· ,ns ) is generated by

(
N+2

2

)−∏s
i=1

(
ni+2

2

)
hyperquadrics.

Example 3.4.2

1. We consider the Segre embedding

σ1,1 : P1 × P
1 −→ P

3

((a, b), (c, d)) �→ (ac, ad, bc, bd).

Set Σ1,1 := σ1,1(P
1 × P

1). If we fix coordinates x, y, z, t in P
3, we have:

I (Σ1,1) = (xt − yz), dim(Σ1,1) = 2, deg(Σ1,1) = 2 and Pic(Σ1,1) = Z
2.

2. We consider the Segre embedding

σ2,3 : P2 × P
3 −→ P

11

((a, b, c), (d, e, f, g)) �→ (ad, ae, af, ag, · · · , cg).

Set Σ2,3 := σ2,3(P
2 × P

3). If we fix coordinates x0,0, x0,1, · · · , x2,3 in P
11,

we have: Σ2,3 is an ACM variety and its ideal I (Σ2,3) is generated by 18
hyperquadrics. In fact, Σ2,3 is a determinantal variety defined by the 2×2 minors
of the matrix

M =
⎡

⎣
x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

⎤

⎦ .

Moreover, dim(Σ2,3) = 5, deg(Σ2,3) = 10 and Pic(Σ2,3) = Z
2.

Let pi denote the i-th projection of Pn1×· · ·×P
ns onto P

ni . There is a canonical
isomorphism Z

s −→ Pic(Σn1,··· ,ns ), given by

(a1, · · · , as) �→ OΣn1 ,··· ,ns (a1, · · · , as) := p∗1(OP
n1 (a1))⊗ · · · ⊗ p∗s (OPns (as)).

For any coherent sheaves Ei on P
ni , we set E1 � · · ·�Es := p∗1(E1)⊗· · ·⊗p∗s (Es).

We will denote by πi : Pn1 × · · · × P
ns −→ Xi := P

n1 × · · · × P̂ni × · · · × P
ns the

natural projection and given sheaves E and F on Xi and P
ni , respectively, E �F

stands for π∗i (E )⊗ p∗i (F ). By the Künneth’s formula, we have

H�(Σn1,··· ,ns ,E �F ) =
⊕

p+q=�
Hp(Xi,E )⊗Hq (Pni ,F ).
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While given a coherent sheaf H on Σn1,··· ,ns , H (t) stands for H ⊗
OΣn1 ,··· ,ns (t, · · · , t).

Let us start by determining the complete list of initialized Ulrich line bundles on
Segre varieties Σn1,··· ,ns ⊆ P

N , N = ∏s
i=1(ni + 1) − 1. First of all, notice that it

follows from Horrocks’ Theorem [30] that

Lemma 3.4.3 The only initialized Ulrich bundle on P
n is the structural sheaf OPn .

The list of initialized Ulrich line bundles on Σn1,··· ,ns ⊆ P
N , N = ∏s

i=1(ni +
1)− 1, is given by

Proposition 3.4.4 Let Σn1,··· ,ns ⊆ P
N , N =∏s

i=1(ni + 1)− 1, be a Segre variety.
Then there exist s! initialized Ulrich line bundles on Σn1,··· ,ns . They are of the form

LXi � OP
ni (
∑

k �=i
nk),

where LXi is a rank one initialized Ulrich bundle on the Segre variety Xi :=
Σn1,··· ,n̂i ,··· ,ns ⊆ P

N ′ , N ′ = ∏
1≤j≤s
j �=i

(nj + 1) − 1. More explicitly, the initialized

Ulrich line bundles on Σn1,··· ,ns are of the form OΣn1 ,··· ,ns (a1, . . . , as) where, if we
order the coefficients 0 = ai1 ≤ · · · ≤ aik ≤ · · · ≤ ais then aik =

∑
1≤j<k nij .

Proof The existence of this set of initialized Ulrich line bundles is a straightforward
consequence of [21, Proposition 2.6]. In order to see that this list is exhaustive,
let us consider an initialized Ulrich line bundle L := OΣn1,··· ,ns (a1, . . . , as) with
ai1 ≤ · · · ≤ aik ≤ · · · ≤ ais . Given that L is initialized, it holds that ai1 = 0. Since
L is ACM, we have

H
∑k

j=1 nij (Σn1,··· ,ns ,L (−Σk
j=1nij − 1)) = 0

for k = 1, . . . , s − 1. In particular, using Künneth’s formula, it holds

k∏

l=1

hnil (Pnil ,O
P
nil (ail−Σk

j=1nij−1))·
s∏

l=k+1

h0(Pnil ,O
P
nil (ail−Σk

j=1nij−1)) = 0,

from where it follows that, by induction, aik+1 ≤ bik+1 := Σ1≤j≤knij for k =
1, . . . , s − 1 (and bi1 := 0). But, on the other hand, since an easy computation
shows that

h0(Σn1,··· ,ns ,OΣn1 ,··· ,ns (b1, . . . , bs)) = (
∑s

i=1 ni)!∏s
i=1(ni)!

= deg(Σn1,··· ,ns )

we are forced to have aij = bij for j = 1, . . . , s. &'
Corollary 3.4.5 OΣn,m(a, b) is an initialized Ulrich line bundle onΣn,m if and only
if (a, b) = (0, n) or (m, 0).
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It is natural to ask if we could use these initialized Ulrich line bundles as a bricks
to construct initialized Ulrich bundles of higher rank. The answer strongly depends
on the values of ni . Assume for a while that i = 2, take n = n1, m = n2 and assume
n ≤ m. The main difference between the case n = 1 and 1 < n comes from:

Ext1Σn,m
(O(m, 0),O(0, n)) �= 0 ⇔ n = 1 and m ≥ 2.

So, if 1 = n < m, we can construct a rank 2 undecomposable Ulrich bundle E
on Σn,m taking a non-trivial extension 0 �= e ∈ Ext1Σn,m

(O(m, 0),O(0, n)):

0 → O(0, n)→ E → O(m, 0)→ 0.

Iterating the process we will be able to construct Ulrich bundles of higher rank. If
2 ≤ n ≤ m we will need an alternative construction. So, we will distinguish to
cases:

1. Case 1: 2 ≤ n1, · · · , ns .
2. Case 2: 1 = n1 ≤ n2, · · · , ns .

3.4.1 Representation Type of Σn1,···,ns , 2 ≤ n1, · · · , ns

The goal of this subsection is the construction of families of arbitrarily large
dimension of simple (and, hence, undecomposable) Ulrich vector bundles on Segre
varieties Σn1,··· ,ns ⊆ P

N , N =∏s
i=1(ni + 1)− 1, for 2 ≤ n1, · · · , ns .

For any 2 ≤ m and any 1 ≤ a, we denote by Em,a any vector bundle on P
m given

by the exact sequence

0 → Em,a → OPm(1)
(m+2)a φ(1)→ OPm(2)

2a → 0 (3.14)

where φ ∈ Vm and Vm is the non-empty open dense subset of the affine scheme
M = Hom(O(m+2)a

Pm
,OPm(1)2a) provided by Proposition 3.3.28.

Note that Em,a has rank ma and in the next Proposition we summarize the
properties of these vector bundles needed later:

Proposition 3.4.6 With the above notation we have:

1.

h0(Pm,Em,a(t)) =
{

0 for t ≤ 0,
a((m+ 2)

(
m+t+1

m

)− 2
(
m+t+2

m

)
) for t > 0.
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2.

h1(Pm,Em,a(t)) =
⎧
⎨

⎩

0 for t < −2or t ≥ 0,
am for t = −1,
2a for t = −2.

3. hi (Pm,Em,a(t)) = 0 for all t ∈ Z and 2 ≤ i ≤ m− 1.
4. hm(Pm,Em,a(t)) = 0 for t ≥ −m− 1.
5. Em,a is simple.

Proof

1.–4. Since φ ∈ Vm, by Proposition 3.3.28, H0(φ(1)) is surjective. But, since
the K-vector spaces H0(Pm,OPm(1)(m+2)a) and H0(Pm,OPm(2)2a) have the
same dimension, H0(φ(1)) is an isomorphism and therefore H0(Em,a) = 0.
A fortiori, H0(Em,a(t)) = 0 for t ≤ 0. On the other hand, again by the
surjectivity of H0(φ(1)), H1(Em,a) = 0. Since it is obvious that Hi (Em,a(1−
i)) = 0 for i ≥ 2 it turns out that Em,a is 1-regular and in particular,
H1(Em,a(t)) = 0 for t ≥ 0. The rest of cohomology groups can be easily
deduced from the long exact cohomology sequence associated to the exact
sequence (3.14).

5. It follows from Kac’s theorem (see [31, Theorem 4]) arguing as in [45,
Proposition 3.4] that Em,a is simple. &'

We are now ready to construct families of simple (hence undecomposable) Ulrich
bundles on the Segre variety Σn,m ⊆ P

nm+n+m, 2 ≤ n,m, of arbitrary high rank
and dimension and to conclude that Segre varieties Σn,m are of wild representation
type. The main ingredient on the construction of simple Ulrich bundles on Σn,m ⊆
P
nm+n+m, 2 ≤ n ≤ m, will be the family of simple vector bundles Em,a on P

m

given by the exact sequence (3.14) as well as the vector bundles of p-holomorphic
forms of Pn, Ωp

Pn
:= ∧pΩ1

Pn
, where Ω1

Pn
is the cotangent bundle. The values of

hi (Ωp

Pn
(t)) are given by the Bott’s formula (see, for instance, [47, p. 8]).

Theorem 3.4.7 Fix integers 2 ≤ n ≤ m and let Σn,m ⊆ P
nm+n+m be the Segre

variety. For any integer a ≥ 1 there exists a family of dimension a2(m2+2m−4)+1
of initialized simple Ulrich vector bundles F := Ωn−2

Pn
(n − 1) � Em,a(n − 1) of

rank am
(
n
2

)
.

Proof Let F be the vector bundle Ωn−2
Pn

(n − 1) � Em,a(n − 1) for Em,a a general
vector bundle obtained on P

m from the exact sequence (3.14). The first goal is to
prove that F is ACM, namely, we should show that Hi (Σn,m,F⊗OΣn,m (t, t)) = 0
for 1 ≤ i ≤ n+m− 1 and t ∈ Z. By Künneth’s formula

Hi (Σn,m,F⊗OΣn,m
(t, t)) =

⊕

p+q=i
Hp(Pn,Ωn−2

Pn
(n−1+ t))⊗Hq(Pm,Em,a(n−1+ t)).

(3.15)
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According to Bott’s formula the only non-zero cohomology groups of Ωn−2
Pn

(n −
1+ t) are:

H0(Pn,Ωn−2
Pn

(n− 1+ t)) for t ≥ 0 and n ≥ 3 or t ≥ −1 and n = 2,
Hn−2(Pn,Ωn−2

Pn
(n− 1+ t)) for t = −n+ 1,

Hn(Pn,Ωn−2
Pn

(n− 1+ t)) for t ≤ −n− 2.

On the other hand, by Lemma 3.4.6, the only non-zero cohomology groups of
Em,a(n− 1+ t) are:

H0(Pm,Em,a(n− 1+ t)) for t ≥ −n+ 2,
H1(Pm,Em,a(n− 1+ t)) for −n− 1 ≤ t ≤ −n,
Hm(Pm,Em,a(n− 1+ t)) for t ≤ −n−m− 1.

Therefore, using (3.15), we get

Hi (Σn,m,F ⊗ OΣn,m(t, t)) = 0 for 1 ≤ i ≤ n+m− 1 and t ∈ Z.

Since for n ≥ 3 H0(Pn,Ωn−2
Pn

(n − 2)) = 0 and for n = 2 H0(Pm,Em,a) = 0
(Lemma 3.4.6),F is an initialized ACM vector bundle on Σn,m. Let us compute the
number of global sections. Recall that, by Bott’s formula, h0(Pn,Ωn−2

Pn
(n − 1)) =(

n+1
2

)
. Hence:

h0(F ) = h0(Σn,m,Ω
n−2
Pn

(n− 1)� Em,a(n− 1))
= h0(Pn,Ωn−2

Pn
(n− 1))h0(Pm,Em,a(n− 1))

= (n+1
2

)
a((m+ 2)

(
m+n
m

)− 2
(
m+n+1

m

)
)

= a(
(m+2)(m+n)!(n+1)!

m!n!(n−1)!2! − 2(m+n+1)!(n+1)!
m!(n+1)!(n−1)!2! )

= a( n!(m+n)!
2!(n−2)!m!n! · (n+1)(m+2)−2(m+n+1)

n−1 )

= a
(
n
2

)(
m+n
m

)
m(n−1)
n−1

= a
(
n
2

)(
m+n
m

)
m

= rk(F )deg(Σn,m)

where the last equality follows from the fact that deg(Σn,m) =
(
m+n
m

)
and rk(F ) =

rk(Em,a)rk(Ω
n−2
Pn

) = am
(
n
2

)
. Therefore, F is an initialized Ulrich vector bundle on

Σn,m. With respect to simplicity, we need only to observe that

Hom(F ,F ) ∼= H0(Σn,m,F∨ ⊗F )
∼= H0(Pn,Ωn−2

Pn
(n− 1)∨ ⊗Ωn−2

Pn
(n− 1)))

⊗H0(Pm,Em,a(n− 1)∨ ⊗ Em,a(n− 1))

and use the fact that Ωn−2
Pn

and Em,a are both simple.
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It only remains to compute the dimension of the family of simple Ulrich bundles
F := Ωn−2

Pn
(n−1)�Em,a(n−1) onΣn,m. Since they are completely determined by

a general morphism φ ∈ M := HomPm(O
(m+2)a
Pm

,OPm(1)2a), this dimension turns
out to be:

dimM − dimAut(O(m+2)a
Pm

)− dimAut(OPm(1)
2a)+ 1

= 2a2(m+ 2)(m+ 1)− a2(m+ 2)2 − 4a2 + 1 = a2(m2 + 2m− 4)+ 1

which proves what we want. &'
Corollary 3.4.8 For any integers 2 ≤ n,m, the Segre variety Σn,m ⊆ P

nm+n+m is
of wild representation type.

Notice that in Theorem 3.4.7 we were able to construct simple Ulrich vector
bundles on Σn,m ⊆ P

N for some scattered ranks, namely for ranks of the form
am
(
n
2

)
, a ≥ 1. The next goal will be to construct simple Ulrich bundles on Σn,m ⊆

P
nm+n+m, 2 ≤ n ≤ m, of the remaining ranks r ≥ m

(
n
2

)
.

Theorem 3.4.9 Fix integers 2 ≤ n ≤ m and let Σn,m ⊆ P
nm+n+m be the Segre

variety. For any integer r ≥ m
(
n
2

)
, set r = am

(
n
2

)+�with a ≥ 1 and 0 ≤ � ≤ m
(
n
2

)−
1. Then, there exists a family of dimension a2(m2 + 2m− 4)+ 1+ �(am

(
n+1

2

)− �)

of simple (hence, undecomposable) initialized Ulrich vector bundles G on Σn,m of
rank r .

Proof Note that for any r ≥ m
(
n
2

)
, there exists a ≥ 1 and m

(
n
2

) − 1 ≥ � ≥ 0, such
that r = am

(
n
2

)+�. For such a, consider the family Pa of initialized Ulrich bundles
of rank am

(
n
2

)
given by Theorem 3.4.7. Notice that

dimPa = a2(m2 + 2m− 4)+ 1.

Hence it is enough to consider the case � > 0. To this end, for any � > 0 we
construct the family Pa,� of vector bundles G given by a non-trivial extension

e : 0 → F → G → OΣn,m (0, n)
� → 0 (3.16)

where F ∈ Pa and e := (e1, . . . , e�) ∈ Ext1(OΣn,m(0, n)
�,F ) ∼=

Ext1(OΣn,m(0, n),F )� with e1, . . . , e� linearly independent.
Since

ext1(OΣn,m(0, n),F ) = h1(Σn,m,Ω
n−2
Pn

(n− 1)� E (−1))
= h0(Pn,Ωn−2

Pn
(n− 1)) · h1(Pm,E (−1))

= (n+1
2

)
am

> m
(
n
2

)

such extension exists.
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It is obvious that G , being an extension of initialized Ulrich vector bundles,
is also an initialized Ulrich vector bundle. Let us see that G is simple, i.e.,
Hom(G ,G ) ∼= K . If we apply the functor Hom(−,G ) to the exact sequence (3.16)
we obtain:

0 → Hom(OΣn,m(0, n)
�,G )→ Hom(G ,G )→ Hom(F ,G ).

On the other hand, if we apply Hom(F ,−) to the same exact sequence we have

0 → K ∼= Hom(F ,F )→ Hom(F ,G )→ Hom(F ,OΣn,m (0, n)
�). (3.17)

But

Hom(F ,OΣn,m (0, n)) ∼= Extn+m(OΣn,m(0, n),F (−n− 1,−m− 1))
∼= Hn+m(Σn,m,F (−n − 1,−m− n− 1))
= Hn(Pn,Ωn−2

Pn
(−2))⊗Hm(Pm,E (−m− 2)) = 0

(3.18)

by Serre’s duality and Bott’s formula. This implies that Hom(F ,G ) ∼= K .
Finally, using the fact that Hom(OΣn,m (0, n),F ) ∼= H0(F (0,−n)) = 0 and

applying the functor Hom(OΣn,m (0, n), ·) to the short exact sequence (3.16), we
obtain

0 −→ Hom(OΣn,m(0, n),G ) −→ Hom(OΣn,m(0, n),OΣn,m (0, n)
�) ∼= K�

φ−→ Ext1(OΣn,m (0, n),F ) −→ Ext1(OΣn,m (0, n),G ).

Since, by construction, the image of φ is the subvector space generated by e1, . . . , el
it turns out that φ is injective and in particular Hom(OΣn,m (0, n),G ) = 0. Summing
up, Hom(G ,G ) ∼= K , i.e., G is simple.

It only remains to compute the dimension of Pa,l . Assume that there exist vector
bundles F ,F ′ ∈Pa giving rise to isomorphic bundles, i.e.:

0 → F
j1−→ G

α−→ OΣn,m (0, n)
� → 0

i‖)
0 → F ′ j2−→ G ′ β−→ OΣn,m (0, n)

� → 0.

Since by (3.18), Hom( F,OΣn,m (0, n)) = 0, the isomorphism i between G and G ′
lifts to an automorphism f of OΣn,m(0, n)

� such that f α = βi which allows us to
conclude that the morphism ij1 : F −→ G ′ factorizes through F ′ showing up the
required isomorphism from F to F ′.
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Therefore, since dim Hom(F ,G ) = 1, we have

dimPa,� = dimPa + dim Grass(�,Ext1(OΣn,m(0, n),F ))

= dimPa + � dim Ext1(OΣn,m (0, n),F )− �2

= a2(m2 + 2m− 4)+ 1+ �(am
(
n+1

2

)− �).

&'
As a by-product of the previous results we can extend the construction of simple

Ulrich bundles on Σn,m, n ≥ 2, to the case of Segre embeddings of more than two
factors and get:

Theorem 3.4.10 Fix integers 2 ≤ n1 ≤ · · · ≤ ns and let Σn1,...,ns ⊆ P
N , N =∏s

i=1(ni+1)−1 be a Segre variety. For any integer r ≥ n2
(
n1
2

)
, set r = an2

(
n1
2

)+�

with a ≥ 1 and 0 ≤ � ≤ n2
(
n1
2

) − 1. Then there exists a family of dimension

a2(n2
2+2n2−4)+1+�(an2

(
n1+1

2

)−�) of simple (hence, undecomposable) initialized
Ulrich vector bundles on Σn1,...,ns ⊆ P

N of rank r .

Proof By Theorem 3.4.7 we can suppose that s ≥ 3. Therefore, by Eisenbud et
al. [21, Proposition 2.6], the vector bundle of the form H := G � L (n1 + n2),
for G belonging to the family constructed in Theorem 3.4.9 and L an Ulrich line
bundle on P

n3 × · · · × P
ns as constructed in Proposition 3.4.4, is an initialized

simple Ulrich bundle. In order to show that in this way we obtain a family of the
aforementioned dimension it only remains to show that whenever G � G ′ then
H � H ′, or equivalently G �OP

n3×···×Pns � G ′�OP
n3×···×Pns . But if there exists

an isomorphism

φ : G � OP
n3×···×Pns

∼=→ G ′ � OP
n3×···×Pns

π∗φ would also be an isomorphism between

π∗(G � OP
n3×···×Pns ) ∼= G and π∗(G ′ � OP

n3×···×Pns ) ∼= G ′

in contradiction with the hypothesis. &'
Corollary 3.4.11 For any integers 2 ≤ n1, · · · , ns , the Segre variety Σn1,...,ns ⊆
P
N , N =∏s

i=1(ni + 1)− 1 is of wild representation type.

3.4.2 Representation Type of Σn1,n2...,ns , 1 = n1 ≤ n2, · · · , ns

In this subsection we are going to focus our attention on the construction of simple
Ulrich bundles on Segre varieties of the form Σn1,n2...,ns ⊆ P

N for either n1 = 1
and s ≥ 3 or n1 = 1 and n2 ≥ 2. We are going to show that they also are of wild
representation type. Opposite to the Segre varieties that we studied in the previous
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subsection, the Ulrich bundles on Σ1,n2...,ns ⊆ P
N , N = 2

∏s
i=2(ni + 1)− 1, will

not be obtained as products of vector bundles constructed on each factor, but they
will be obtained directly as iterated extensions.

Theorem 3.4.12 Let X := Σ1,n2...,ns ⊆ P
N for either s ≥ 3 or n2 ≥ 2. Let r be an

integer, 2 ≤ r ≤ (Σs
i=2ni − 1)

∏s
i=2(ni + 1). Then:

1. There exists a family Λr of rank r initialized simple Ulrich vector bundles E on
X given by nontrivial extensions

0 −→ OX(0, 1, 1+ n2, . . . , 1 +Σs−1
i=2 ni) −→ E

−→ OX(Σ
s
i=2ni, 0, n2, . . . ,Σ

s−1
i=2 ni)

r−1 −→ 0 (3.19)

with first Chern class c1(E ) = ((r−1)Σs
i=2ni, 1, 1+ rn2, . . . , 1+ r(Σs−1

i=2 ni)).
2. There exists a family Γr of rank r initialized simple Ulrich vector bundles F on

X given by nontrivial extensions

0 −→ OX(0, 1+ n3, 1, 1+ n2 + n3, . . . , 1+Σs−1
i=2 ni) −→ F

−→ OX(Σ
s
i=2ni, n3, 0, n2 + n3, . . . ,Σ

s−1
i=2 ni)

r−1 −→ 0 (3.20)

with first Chern class c1(F ) = ((r−1)Σs
i=2ni, 1+rn3, 1, . . . , 1+r(Σs−1

i=2 ni)).

Proof To simplify we set

A := OX(0, 1, 1+ n2, . . . , 1+Σs−1
i=2 ni),

B := OX(Σ
s
i=2ni, 0, n2, . . . ,Σ

s−1
i=2 ni),

C := OX(0, 1+ n3, 1, 1 + n2 + n3, . . . , 1+Σs−1
i=2 ni), and

D := OX(Σ
s
i=2ni, n3, 0, n2 + n3, . . . ,Σ

s−1
i=2 ni).

We are going to give the details of the proof of statement 1. since statement 2.
is proved analogously. Recall that by Proposition 3.4.4, A and B are initialized
Ulrich line bundles on X. On the other hand, the dimension of Ext1(B,A ) can be
computed as:

dim Ext1(B,A ) = h1(X,OX(−Σs
i=2ni, 1, . . . , 1))

= h1(P1,OP1(−Σs
i=2ni))

∏s
i=2 h0(Pni ,OP

ni (1))
= (Σs

i=2ni − 1)
∏s

i=2(ni + 1).

So, exactly as in the proof of Theorem 3.4.9, if we take � (� = r − 1) linearly
independent elements e1, . . . , e� in Ext1(B,A ), 1 ≤ � ≤ (Σs

i=2ni − 1)
∏s

i=2(ni +
1)−1, these elements provide with an element e := (e1, . . . , e�) of Ext1(B�,A ) ∼=
Ext1(B,A )�. Then the associated extension

0 −→ A −→ E −→ B� −→ 0 (3.21)

gives a rank �+ 1 initialized simple Ulrich vector bundle. &'
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Remark

1. With the same technique, using other initialized Ulrich line bundles, it is
possible to construct initialized simple Ulrich bundles of ranks covered by
Theorem 3.4.12 with different first Chern class.

2. Notice that for s = 2, we have constructed rank r simple Ulrich vector bundles
on Σ1,m ⊆ P

2m+1, r ≤ m2 as extensions of the form:

0 −→ OΣ1,m (0, 1) −→ E −→ OΣ1,m (m, 0)r−1 −→ 0.

Lemma 3.4.13 Consider the Segre variety Σ1,n2...,ns ⊆ P
N for either s ≥ 3 or

n2 ≥ 2 and keep the notation introduced in Theorem 3.4.12. We have:

1. For any two non-isomorphic rank 2 initialized Ulrich bundles E and E ′ from the
family Λ2 obtained from the exact sequence (1), it holds that Hom(E ,E ′) = 0.
Moreover, the set of non-isomorphic classes of elements of Λ2 is parameterized
by

P(Ext1(B,A )) ∼= P(H1(Σ1,n2...,ns ,OΣ1,n2 ...,ns
(−

s∑

i=2

ni, 1, · · · , 1)))

and, in particular, it has dimension (Σs
i=2ni − 1)

∏s
i=2(ni + 1)− 1.

2. For any pair of bundles E ∈ Λ2 and F ∈ Γ3 obtained from the exact
sequences (1) and (2), it holds that Hom(E ,F ) = 0 and Hom(F ,E ) = 0.

Proof The first statement is a direct consequence of Proposition [49, Proposition
5.1.3]. Regarding the second statement, it is a straightforward computation applying
the functors Hom(F ,−) and Hom(E ,−) to the short exact sequences (1) and (2)
respectively, and taking into account that there are no nontrivial morphisms among
the vector bundles A ,B,C ,D . &'

In the next Theorem we are going to construct families of increasing dimension
of simple Ulrich bundles for arbitrary large rank on the Segre variety Σ1,n2...,ns . In
case s ≥ 3 we can use the two distinct families of rank 2 and rank 3 Ulrich bundles
obtained in Theorem 3.4.12 to cover all the possible ranks. However, when s = 2,
since there exists just a unique family, we will have to restraint ourselves to construct
Ulrich bundles of arbitrary even rank. In any case, it will be enough to conclude that
these Segre varieties are of wild representation type.

Theorem 3.4.14 Consider the Segre variety Σ1,n2...,ns ⊆ P
N for either s ≥ 3 or

n2 ≥ 2.

1. Then for any r = 2t , t ≥ 2, there exists a family of dimension

(2t − 1)(Σs
i=2ni − 1)

s∏

i=2

(ni + 1)− 3(t − 1)

of initialized simple Ulrich vector bundles of rank r .
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2. Let us suppose that s ≥ 3 and n2 = 1. Then for any r = 2t + 1, t ≥ 2, there
exists a family of dimension≥ (t − 1)((

∑s
i=2 ni − 1)(n3+ 2)

∏s
i=4(ni + 1)− 1)

of initialized simple Ulrich vector bundles of rank r .
3. Let us suppose that s ≥ 3 and n2 > 1. For any integer r = an3

(
n2
2

) + � ≥
n3
(
n2
2

)
with a ≥ 1 and 0 ≤ � ≤ n3

(
n2
2

) − 1, there exists a family of dimension

a2(n2
3 + 2n3 − 4) + � + l(an3

(
n2+1

2

) − �) of simple (hence, undecomposable)
initialized Ulrich vector bundles of rank r .

Proof

1. Let r = 2t be an even integer and set

a := ext1(B,A ) = (Σs
i=2ni − 1)

s∏

i=2

(ni + 1)

with A and B defined as in the proof of Theorem 3.4.12. Denote by U the

open subset of P
a× t )· · · ×Pa , Pa ∼= P(Ext1(B,A )) ∼= Λ2, parameterizing

closed points [E1, · · · ,Et ] ∈ P
a× t )· · · ×Pa such that Ei � Ej for i �= j (i.e.

U is P
a× t )· · · ×Pa minus the small diagonals). Given [E1, · · · ,Et ] ∈ U , by

Lemma 3.4.13, the set of vector bundles E1, · · · ,Et satisfy the hypothesis of
Proposition [49, Proposition 5.1.3] and therefore, there exists a family of rank r

simple Ulrich vector bundles E parameterized by

P(Ext1(Et ,E1))× · · · × P(Ext1(Et ,Et−1))

and given as extensions of the form

0 −→ ⊕t−1
i=1Ei −→ E −→ Et −→ 0.

Next we observe that if we consider [E1, · · · ,Et ] �= [E ′1, · · · ,E ′t ] ∈ U and the
corresponding extensions

0 −→ ⊕t−1
i=1Ei −→ E −→ Et −→ 0,

and

0 −→ ⊕t−1
i=1E

′
i −→ E ′ −→ E ′t −→ 0

then Hom(E ,E ′) = 0 and in particular E � E ′. Therefore, we have a
family of non-isomorphic rank r simple Ulrich vector bundles E on Σ1,n2...,ns

parameterized by a projective bundle P over U of dimension

dimP = (t − 1)dim(P(Ext1(Et ,E1)))+ dimU.
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Applying the functor Hom(−,E1) to the short exact sequence (1) we obtain:

0 −→ Hom(A ,E1) ∼= K −→ Ext1(B,E1) −→ Ext1(Et , E1) −→ Ext1(A ,E1) = 0.

On the other hand, applying Hom(B,−) to the same exact sequence we have

0 = Hom(B,E1) −→ Hom(B,B) ∼= K −→ Ext1(B,A ) ∼= Ka

−→ Ext1(B,E1) −→ Ext1(B,B) = 0.

Summing up, we obtain ext1(Et ,E1) = a − 2 and so

dimP = (t − 1)(a − 3)+ ta = (2t − 1)a − 3(t − 1).

2. Now, let us suppose that s ≥ 3 and n2 = 1 and take r = 2t + 1, t ≥ 2. Let
E1, . . . ,Et−1 be t−1 non-isomorphic rank 2 Ulrich vector bundles from the exact
sequence (1) and let F be a rank 3 Ulrich bundle from the exact sequence (2).
Again, by Lemma 3.4.13, this set of vector bundles satisfies the hypothesis of
[49, Proposition 5.1.3] and therefore, there exists a family G of rank r simple
Ulrich vector bundles E parameterized by

P(Ext1(E1,F ))× · · · × P(Ext1(Et−1,F ))

and given as extensions of the form

0 −→ F −→ E −→ ⊕t−1
i=1Ei −→ 0.

It only remains to compute the dimension of the family

dimG = (t − 1)dim(P(Ext1(E1,F ))).

Let us fix the notation

b := ext1(B,C ) = h1(P1,OP1(−∑s
i=2 ni))h

0(P1,OP1(1+ n3))
∏s

i=4 h0(Pni ,OP
ni (1))

= (
∑s

i=2 ni − 1)(n3 + 2)
∏s

i=4(ni + 1).

Applying the functor Hom(−,F ) to the short exact sequence (1) we obtain:

0 = Hom(A ,F ) −→ Ext1(B,F ) −→ Ext1(E1,F ) −→ Ext1(A ,F ).

On the other hand, applying Hom(B,−) to the short exact sequence (2) we have

0 = Hom(B,D) −→ Ext1(B,C ) ∼= Kb −→ Ext1(B,F ) −→ Ext1(B,D) = 0.

Summing up, we obtain ext1(E1,F ) ≥ b and therefore dimG ≥ (t − 1)(b − 1).
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3. It follows from Theorem 3.4.9 and [21, Proposition 2.6]. &'
Corollary 3.4.15 The Segre variety Σ1,n2...,ns ⊆ P

N , N = 2
∏s

i=2(ni + 1)− 1, for
s ≥ 3 or s = 2 and n2 ≥ 2 is of wild representation type.

Putting together Corollaries 3.4.8, 3.4.11 and 3.4.15, we get

Theorem 3.4.16 All Segre varieties Σn1,n2...,ns ⊆ P
N , N = ∏s

i=1(ni + 1) − 1,
are of wild representation type unless the quadric surface in P

3 (which is of finite
representation type).

Slightly generalizing the arguments of this section we can extend the last
Theorem and determine the representation type of any non-singular rational normal
scroll. Scrolls are fascinating varieties which have been largely studied in Algebraic
Geometry. Let us recall one of their possible definitions. To this end, we fix
E = ⊕k

i=0OP1(ai) a rank k + 1 vector bundle on P
1, where 0 ≤ a0 ≤ . . . ≤ ak , and

ak > 0. Let P(E ) = P(Sym(E ))
π−→ P

1 be the projectivized vector bundle and
let OP(E )(1) be its tautological line bundle. Then OP(E )(1) is generated by global
sections and defines a birational map P(E ) −→ P

N , N = ∑k
i=0 ai + k. We write

S(E ) or S(a0, . . . , ak) for the image of this map, which is a variety of dimension
k + 1 and degree c :=∑k

i=0 ai .

Definition 3.4.17 A rational normal scroll is one of these varieties S(E ); i.e. it is
the image of the map

σ : P1 × P
k −→ P

N

given by

σ(x, y; t0, t1 · · · , tk) := (xa0 t0, x
a0−1yt0, · · · , ya0 t0, , · · · , xak tk, xak−1ytk, · · · , yak tk)

where 0 ≤ a0 ≤ . . . ≤ ak , and ak > 0.

The most familiar examples of rational normal scrolls are P
d ∼= S(0, . . . , 0, 1),

the rational normal curve S(a) of degree a in P
a , the quadric S(1, 1) ⊂ P

3 and the
cubic scroll S(1, 2) ⊂ P

4.
There is a beautiful geometric description of rational normal scrolls. In P

N , take
k + 1 complementary linear spaces Li

∼= P
ai with 0 ≤ a0 ≤ . . . ≤ ak, and ak > 0.

In each Li choose a rational normal curve Cai and an isomorphism φi : P1 −→ Cai

(φi is constant when ai = 0). Then the variety

S(a0, . . . , ak) =
⋃

p∈P1

〈φ0(p), · · · , φk(p)〉 ⊂ P
N

is a rational normal scroll of dimension k + 1 and degree c := ∑k
i=0 ai in P

c+k .
Notice that rational normal scrolls are varieties of minimal degree.
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This geometric description will allow us to describe the homogeneous ideal of
S(a0, . . . , ak). Indeed, if S(a0, . . . , ak) ⊂ P

N , N =∑k
i=0 ai+k is a rational normal

scroll defined by rational normal curves Cai ⊂ Li
∼= P

ai , we choose coordinates
X0

0, · · · ,X0
a0
, · · · ,Xk

0, · · · ,Xk
ak

in P
N such that Xi

0, · · · ,Xi
ai

are homogeneous
coordinates in Li . Then, we consider the 2 × c matrix with two rows and k + 1
catalecticant blocks

Ma0,··· ,ak :=
[
X0

0 · · · X0
a0−1 · · · Xk

0 · · · Xk
ak−1

X0
1 · · · X0

a0
· · · Xk

1 · · · Xk
ak

]
.

It is well known that the ideal of S(a0, . . . , ak) is generated by the maximal minors
of Ma0,··· ,ak and we have:

Proposition 3.4.18 Let S(a0, . . . , ak) ⊂ P
N with N = ∑k

i=0 ai + k, 0 ≤ a0 ≤
. . . ≤ ak, and ak > 0 be a rational normal scroll. Set c :=∑k

i=0 ai . It holds:

1. dim(S(a0, . . . , ak)) = k + 1 and deg(S(a0, . . . , ak)) =∑k
i=0 ai .

2. S(a0, . . . , ak) is ACM and I (S(a0, . . . , ak)) is generated by
(
c
2

)
hyperquadrics.

3. S(a0, . . . , ak) is non-singular if and only if a0 > 0 (so, ai > 0 for all 0 ≤ i ≤ k)
or S(a0, . . . , ak) = S(0, · · · , 0, 1) ∼= P

k .

Since we are not interested in P
k (according to Horrocks Theorem there is, up

to twist, only one ACM bundle in P
k , namely, OPk ) and we will only deal with

non-singular rational scrolls, we will assume 0 < ai , 0 ≤ i ≤ k. It holds

Theorem 3.4.19 All rational normal scrolls S(a0, · · · , ak) ⊆ P
N , N =∏s

i=1(ni+
1) − 1, are of wild representation type unless Pk+1 = S(0, · · · , 0, 1), the rational
normal curve S(a) in P

a , the quadric surface S(1, 1) in P
3 and the cubic scroll

S(1, 2) in P
4 which are of finite representation type.

Proof See [40, Theorem 3.8]. &'

3.5 Does the Representation Type of a Projective Variety
Depends on the Polarization?

The representation type of an ACM variety X ⊂ P
n strongly depends on the

chosen embedding and the goal of this section will be to prove that on an ACM
projective variety X ⊂ P

n there always exists a very ample line bundle L on X

which naturally embeds X in P
h0(X,L )−1 as a variety of wild representation type

(cf. Theorem 3.5.4). As immediate consequence we will have many new examples
of ACM varieties of wild representation type.

Let us start with a precise example to illustrate such phenomena.
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Example 3.5.1

1. The Segre product of two lines naturally embedded in P
3 is an example of ACM

surface of finite representation type, i.e., ϕ|O(1,1)| : P1 × P
1 ↪→ P

3 is a variety
of finite representation type. Indeed, according to Knörrer any hyperquadric
Qn ⊂ P

n+1 is of finite representation type [34] and, up to twist, the only
undecomposable ACM bundles on P

1 × P
1 ⊂ P

3 are: OP1×P1 , OP1×P1(1, 0)
and OP1×P1(0, 1).

2. The Segre product of two smooth conics naturally embedded in P
8 is an example

of variety of wild representation type, i.e., ϕ|O(2,2)| : P
1 × P

1 ↪→ P
8 is an

example of ACM surface of wild representation type. Indeed, any smooth del
Pezzo surface is of wild representation type (see Theorem 3.3.35).

3. The Segre product of a line and a smooth conic naturally embedded in P
5 is an

example of smooth ACM surface of tame representation type, i.e., ϕ|O(1,2)| : P1×
P

1 ↪→ P
5 is a variety of tame representation type. Indeed, all continuous families

of undecomposable ACM bundles are one-dimensional (see [23, Theorem 1]).

This leads to the following problems:

Problem 3.5.2

1. Given an ACM variety X ⊂ P
n , is there an integer NX such that X can be

embedded in P
NX as a variety of wild representation type?

2. If so, what is the smallest possible integer NX?

We will answer affirmatively Problem 3.5.2 (1) and provide an upper bound for
NX. In other words, we will prove that for any smooth ACM projective variety
X ⊂ P

n there is an embedding of X into a projective space P
NX such that the

corresponding homogeneous coordinate ring has arbitrary large families of non-
isomorphic undecomposable graded Maximal Cohen-Macaulay modules. Actually,
it is proved that such an embedding can be obtained as the composition of the
“original” embedding X ⊂ P

n and the Veronese 3-uple embedding ν3 : Pn −→
P(

n+3
3 )−1. The idea will be to construct on any ACM variety X ⊂ P

n of dimension
d ≥ 2 irreducible families F of vector bundles E of arbitrarily high rank and
dimension with the extra feature that any E ∈ F satisfy Hi (X,E (t)) = 0 for all
t ∈ Z and 2 ≤ i ≤ d − 1 and H1(X,E (t)) = 0 for all t �= −1,−2. Therefore, X
embedded in P

h0(OX(s))−1 through the very ample line bundle OX(s), s ≥ 3, is of
wild representation type.

Let X be a smooth ACM variety of dimension d ≥ 2 in P
n with a minimal free

R-resolution of the following type:

0 −→ Fc
ϕc−→ Fc−1

ϕc−1−→ · · · ϕ2−→ F1
ϕ1−→ F0 −→ RX −→ 0 (3.22)

with c = n− d , F0 = R and Fi = ⊕βi
j=1R(−nij ), 1 ≤ i ≤ c.
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For any 2 ≤ n and any 1 ≤ a, we denote by En,a any vector bundle on P
n given

by the exact sequence

0 → En,a → OPn(1)
(n+2)a φ(1)→ OPn (2)

2a → 0 (3.23)

where φ ∈ Vn being Vn the non-empty open dense subset of the affine scheme
M = Hom(OPn(1)(n+2)a,OPn (2)2a) provided by Proposition 3.3.28.

From now on, for any 2 ≤ n and any 1 ≤ a, we call FX
n,a the non-empty

irreducible family of general rank na vector bundles E on X ⊂ P
n sitting in an

exact sequence of the following type:

0 → E → OX(1)(n+2)a f→ OX(2)2a → 0. (3.24)

Proposition 3.5.3 Let X ⊂ P
n be a smooth ACM variety of dimension d ≥ 2. With

the above notation, we have:

1. A general vector bundle E ∈ FX
n,a satisfies

Hi∗E = 0 for 2 ≤ i ≤ d − 1,
H1(X,E (t)) = 0 for t �= −1,−2.

2. A general vector bundle E ∈ FX
n,a is simple.

3. FX
n,a is a non-empty irreducible family of dimension a2(n2 + 2n − 4) + 1 of

simple (hence undecomposable) rank an vector bundles on X.

Proof

1. Since Hi (X,E (t)) = 0 for all t ∈ Z and 2 ≤ i ≤ d−1, and H1(X,E (t)) = 0 for
t �= −1,−2 are open conditions, it is enough to exhibit a vector bundle E ∈ FX

n,a

verifying these vanishing. Tensoring the exact sequence (3.23) with OX, we get

0 → E := En,a ⊗ OX → OX(1)
(n+2)a → OX(2)

2a → 0. (3.25)

Taking cohomology, we immediately obtain Hi (X,E (t)) = 0 for all t ∈ Z and
2 ≤ i ≤ d − 1. On the other hand, we tensor with En,a the exact sequence (3.22)
sheafiffied

0 −→ ⊕βc
j=1OPn(−ncj )

ϕc−→ ⊕βc−1
j=1 OPn(−nc−1

j )
ϕc−1−→

· · · ϕ2−→ ⊕β1
j=1OPn(−n1

j )
ϕ1−→ OPn

ϕ0−→ OX −→ 0

and we get

0 −→ ⊕βc
j=1En,a(−ncj )

ϕc−→ ⊕βc−1
j=1 En,a(−nc−1

j )
ϕc−1−→ · · · ϕi+1−→ ⊕βi

j=1En,a(−nij )
ϕi−→

· · · ϕ2−→ ⊕β1
j=1En,a(−n1

j )
ϕ1−→ En,a

ϕ0−→ E = En,a ⊗ OX −→ 0. (3.26)
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Set Hi := ker(ϕi), 0 ≤ i ≤ c − 2. Cutting the exact sequence (3.26) into short
exact sequences and taking cohomology, we obtain

· · · → H1(Pn,En,a(t))→ H1(X,E (t))→ H2(Pn,H0(t))→ · · · ,
· · · → H2(Pn,⊕β1

j=1En,a(−n1
j + t))→ H2(Pn,H0(t))→ H3(Pn,H1(t))→ · · · ,

· · ·
· · · → Hc−1(Pn,⊕βc−2

j=1 En,a(−nc−2
j + t))→ Hc−1(Pn,Hc−3(t))

→ Hc(Pn,Hc−2(t))→ · · · ,
· · · → Hc(Pn,⊕βc−1

j=1 En,a(−nc−1
j

+ t))→ Hc(Pn,Hc−2(t))

→ Hc+1(Pn,⊕βc
j=1En,a(−ncj + t))→ · · · ,

Using Proposition 3.4.6, we conclude that H1(X,E (t)) = 0 for t �= −1,−2.
2. A general vector bundle E ∈ FX

n,a sits in an exact sequence

0 → E
g→ OX(1)

(n+2)a f→ OX(2)
2a → 0

and to check that E is simple is equivalent to check that E ∨ is simple. Notice
that the morphism f ∨ : OX(−2)2a −→ OX(−1)(n+2)a appearing in the exact
sequence

0 → OX(−2)2a
f∨→ OX(−1)(n+2)a g∨→ E ∨ → 0 (3.27)

is a general element of the K-vector space

M := Hom(OX(−2)2a,OX(−1)(n+2)a) ∼= Kn+1 ⊗K2a ⊗K(n+2)a

because Hom(OX(−2),OX(−1)) ∼= H0(X,OX(1)) ∼= H0(Pn,OPn(1)) ∼=
Kn+1. Therefore, f ∨ : OX(−2)2a −→ OX(−1)(n+2)a is represented by a (n +
2)a× 2a matrix A with entries in H0(Pn,OPn(1)). Since Aut(OX(−1)(n+2)a) ∼=
GL((n + 2)a) and Aut(OX(−2)2a) ∼= GL(2a), the group GL((n + 2)a) ×
GL(2a) acts naturally on M by

GL((n+ 2)a)×GL(2a)×M −→ M

(g1, g2, A) �→ g−1
1 Ag2.

For all A ∈ M and λ ∈ K∗, (λId(n+2)a, λId2a) belongs to the stabilizer of A
and, hence, dimKStab(A) ≥ 1. Since (2a)2+(n+2)2a2−2a(n+1)(n+2)a < 0,
it follows from [31, Theorem 4] that dimKStab(A) = 1. We will now check that
E ∨ is simple. Otherwise, there exists a non-trivial morphism φ : E ∨ → E ∨ and
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composing with g∨ we get a morphism

φ = φ ◦ g∨ : OX(−1)(n+2)a → E ∨.

Applying Hom(OX(−1)(n+2)a,−) to the exact sequence (3.27) and taking into
account that

Hom(OX(−1)(n+2)a,OX(−2)2a) = Ext1(OX(−1)(n+2)a,OX(−2)2a) = 0

we obtain Hom(OX(−1)(n+2)a,OX(−1)(n+2)a) ∼= Hom(OX(−1)(n+2)a,E ∨).
Therefore, there is a non-trivial morphism φ̃ ∈ Hom(OX(−1)(n+2)a,

OX(−1)(n+2)a) induced by φ and represented by a matrix B �= μId ∈
Mat(n+2)a×(n+2)a(K) such that the following diagram commutes:

where C ∈ Mat2a×2a(K) is the matrix associated to φ̃|OX(−2)2a . Then the pair
(C,B) �= (μId,μId) verifies AC = BA. Let us consider an element α ∈ K

that does not belong to the set of eigenvalues of B and C. Then the pair (B −
αId,C − αId) ∈ GL((n + 2)a) × GL(2a) belongs to Stab(f ) and therefore
dimKStab(f ) > 1 which is a contradiction. Thus, E is simple.

3. It only remains to compute the dimension of FX
n,a . Since the isomorphism class

of a general vector bundle E ∈ FX
n,a associated to a morphism φ ∈ M :=

Hom(O(n+2)a
X ,OX(1)2a) depends only on the orbit of φ under the action of

GL((n+ 2)a)×GL(2a) on M , we have:

dimFX
n,a = dimM − dimAut(O(n+2)a

X )− dimAut(OX(1)
2a)+ 1

= 2a2(n+ 2)(n+ 1)− a2(n+ 2)2 − 4a2 + 1 = a2(n2 + 2n− 4)+ 1.

&'
As an immediate consequence of the above result we can answer affirmatively

Problem 3.5.2 (1) and provide an upper bound for NX. Indeed, we have:

Theorem 3.5.4 Let X ⊂ P
n be a smooth ACM variety of dimension d ≥ 2. The

very ample line bundle OX(s), s ≥ 3, embeds X in P
h0(OX(s))−1 as a variety of wild

representation type.

Proof See [41, Theorem 3.4]. &'
Corollary 3.5.5 The smallest possible integer NX such that X embeds as a variety
of wild representation type is bounded by NX ≤

(
n+3

3

)− 1.
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Proof See [41, Corollary 3.5]. &'

3.6 Open Problems

In this section we collect the open problems that were mentioned in the lectures, and
add some more.

1. Does Mustaţă’s conjecture holds for a set of general points on a smooth surface
S of degree d in P

3?
The answer is yes if d = 2 (see [27]) or d = 3 (see Theorem 3.3.27).
More general, does Mustaţă’s conjecture holds for a set of general points on a
smooth hypersurface X of degree d in P

n?
To my knowledge these two problems are open.

2. Fix a projective variety X ⊂ P
n. As we have seen in these notes ACM

bundles on X provide a criterium to determine the complexity of X. Indeed,
the complexity is studied in terms of the dimension and number of families
of undecomposable ACM bundles that it supports. Mimicking an analogous
trichotomy in representation theory, it was proposed a classification of ACM
projective varieties as finite, tame or wild representation type. We would like
to know:
Is the trichotomy finite representation type, tame representation type and wild
representation type exhaustive?
The answer is yes for smooth ACM curves. In fact, an ACM curve is of finite
representation type if its genus g(C) = 0, of tame representation type if
g(C) = 1, and of wild representation type if g(C) ≥ 2. For ACM varieties
of dimension≥ 2 the answer is not known.

3. In Sect. 3.5, we have seen that the representation type of an ACM projective
variety strongly depends on the embedding and we have proved that given an
ACM variety X ⊂ P

n , there is an integer NX such that X can be naturally
embedded in P

NX as a variety of wild representation type. So, the following
question arise in a natural way:
Given an ACM projective variety X, what is the smallest possible NX such that
X embeds in P

NX as a variety of wild representation type?
4. In Sect. 3.4, we saw that all Segre varieties Σn1,··· ,ns ⊂ P

N , N = ∏s
i=1(ni +

1)− 1 are of wild representation type unless P1 × P
1; it follows from Sect. 3.5

that the Veronese embedding νd : Pn −→ P(
n+d
d )−1, d ≥ 3, embeds Pn into

P(
n+d
d )−1 as a variety of wild representation type. So we are led to pose the

following question:
Let G(k, n) be the Grassmannian variety which parameterizes linear subspaces

of Pn = P(V ) of dimension k. Embed G(k, n) into P
(n+1
k+1)−1 using Plücker

embedding.

Is G(k, n) ⊂ P
(n+1
k+1)−1 = P(∧k+1V ) a variety of wild representation type?
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5. In Sect. 3.3, we have constructed Ulrich bundles on smooth del Pezzo surfaces
and, in Sect. 3.4, on Segree varieties. Nevertheless few examples of varieties
supporting Ulrich sheaves are known. In [21, p. 43], Eisenbud, Schreyer and
Weyman leave open the following interesting problems:

(a) Is every variety (or even scheme) X ⊂ P
n the support of an Ulrich sheaf?

(b) If so, what is the smallest possible rank for such a sheaf?

6. In Sect. 3.3.1, we have addressed Mustaţǎ’s conjecture for a general set of
points on a del Pezzo surface. As a main tool we have used Liaison Theory
and we will end these notes with a couple of open problems/questions on this
fascinating Theory.

(a) Does any zero-dimensional scheme Z ⊂ P
n belong to the G-liaison class

of a complete intersection? In other words, is it glicci?
(b) More general, is any ACM scheme X ⊂ P

n glicci?
(c) Find new graded R-modules invariant under G-liaison.

These notes and list of open problems were written for a course held in
2014. Some of these questions have been studied and even solved. For seek of
completeness we add a list of recent results on the subject where the reader could
find more information.

Problem 1 has been solved for a set of general points on a smooth surface S ⊂ P
3

of degree 4 and remains open for a set of general points on a smooth surface S of
degree d > 4 in P

3 (see [6]).
For more information on Problem 2 the reader could read [32] and [24]. For the

existence of homogeneous ACM (resp. Ulrich) bundles on Grassmannians G(k, n)
and on flag manifolds F(k1, · · · , kr), as well as for the representation type of
G(k, n) the reader can see [13, 14] and [12].

Finally, new contributions to Problem 6 could be found, for instance, in [1–3, 5,
11] and [26].
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Chapter 4
Simplicial Toric Varieties Which Are
Set-Theoretic Complete Intersections

Marcel Morales

Abstract We say that a polynomial ideal I is set-theoretically generated by a family
of elements f1, . . . , fk in I if the radical of I coincides with the radical of the ideal
generated by f1, . . . , fk . Over an algebraically closed field, the smallest number
among all such possible k is the minimal number of equations needed to define
the zero set of I . To find this number is a classical problem in both Commutative
Algebra and Algebraic Geometry. This problem is even not solved for the defining
ideals of toric varieties, whose zeros are given parametrically by monomials. In
this lecture notes we study set-theoretically generation of the defining ideals of
simplicial toric varieties, which are defined by the property that the exponents of the
parametrizing monomials span a simplicial complex. We review and improve most
of results on simplicial toric varieties which are set-theoretic complete intersections,
previously obtained by the author in collaboration with M. Barile and A. Thoma.

4.1 Introduction

In the beginning of Algebraic Geometry, varieties were described by equations.
However, such description is ambiguous. In order to be more precise, the notion
of ideal (defining a variety) was introduced. But if we define a variety as the zero
set of a polynomial ideal, there is still ambiguity because different ideals can have
the same zero set. The famous Hilbert Nullstellensatz helps us to understand this
phenomenon better.

More precisely, let S := K[X1, . . . , Xn] be a polynomial ring over a field
K . Let An

K be the affine n-dimensional space over K . Given a set f1, . . . , fk of
polynomials, the zero set

Z(f1, . . . , fk) = {P ∈ A
n
K | fi(P ) = 0 ∀i = 1, . . . , k}
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is called an algebraic set. It is also the zero set Z(I) of the ideal I = (f1, . . . , fk).
For any subset Y ⊂ A

n
K , we define the ideal of Y by

I (Y ) = {f ∈ S | f (P ) = 0 ∀P ∈ Y }.

For an algebraic set V , the ideal I (V ) is called the defining ideal of V . It is clear
that if I (V ) = (f1, . . . , fs ), then V = ∩si=1Z(fi), i.e. V is the intersection of the
hypersurfaces Z(fi). However, there are many ways to define V as an intersection
of hypersurfaces. An important problem in Algebraic Geometry is to determine the
minimum number of equations needed to define an algebraic set V set-theoretically,
that is the minimal number s such that V = ∩si=1Z(fi) for a family of s polynomials
f1, . . . , fs ∈ K[X1, . . . , Xn]. An important tool in the study of this problem is:

Theorem 4.1.1 (Hilbert’s Nullstellensatz) Let K be an algebraically closed field.
Then for any family of polynomials f1, . . . , fs , we have

I (Z(f1, . . . , fs)) = rad (f1, . . . , fs).

This result leads to the following definition.

Definition 4.1.2 The arithmetical rank of an algebraic set V ⊂ A
n
K is the number

ara(V ) = min{k| ∃f1, . . . , fk ∈ S : I (V ) = rad (f1, . . . , fk)},

and the arithmetical rank of an ideal I is

ara(I) = min{k| ∃f1, . . . , fk ∈ S : rad I = rad (f1, . . . , fk)}.

Let PnK be the projective n-dimensional space over K . Similarly, one can define
an algebraic set in P

n−1
K as the zero set of a family of homogeneous polynomials

in S. For any subset Y ⊂ P
n−1
K , one define I (Y ) to be the ideal generated by the

homogeneous polynomials f ∈ K[X0, . . . , Xn] vanishing on Y . Then we also have
the homogeneous Hilbert Nullstellensatz, and we can define the arithmetical rank of
an algebraic set in P

n
K or of a homogeneous ideal in K[X0, . . . , Xn].

Thus, if K is an algebraically closed field, we have ara(Z(I)) = ara(I) for
any ideal I (homogeneous or not). However, it is more convenient to work over any
field K and on set-theoretic generation of ideals. From now on, when we consider
affine or projective algebraic sets, we only take care of their defining ideals. For an
arbitrary ideal I , we always have the following inequalities:

ht (I) ≤ ara(I) ≤ μ(I).

Here, ht (I) denotes the height and μ(I) the minimal number of generators of I .
When h(I) = ara(I), the ideal I as well as the algebraic set V = Z(I) is called
a set-theoretic complete intersection (s.t.c.i). When ht (I) = μ(I), it is called a
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complete intersection. It is called an almost set-theoretic complete intersection if
ara(I) ≤ ht (I)+ 1.

In this lecture notes we focus on toric ideals and toric varieties whose precise
definition will be given in Sect. 4.2. Toric ideals and toric varieties play an important
role in both Commutative Algebra and Algebraic Geometry because they serve
as models for general algebraic varieties. Toric ideals are generated by binomials.
Moreover, each binomial is a difference of two monomials with coefficients equal
to 1. A rather systematic study of binomial ideals (i.e. generated by binomials) was
done by Eisenbud and Sturmfels in [7]. There are numerous publications on minimal
generation of a binomial ideal or of its radical, see, for example, [12] Chapter V and
[1, 2, 4, 9, 10, 13–15, 19, 22].

The binomial arithmetical rank bar(I) of a binomial ideal I is the smallest
integer s for which there exist binomials f1, . . . , fs in S such that rad(I) =
rad(f1, . . . , fs ). This intermediate invariant is, on one side, easier to compute. On
the other side, it gives an upper bound for the arithmetical rank of a binomial ideal
I as we always have:

ht (I) ≤ ara(I) ≤ bar(I) ≤ μ(I).

Using binomial arithmetic rank, one has obtained many results on set-theoretic
complete intersections. In this lecture notes we review, and sometimes improve,
some of these results.

The main results are (see Sects. 4.2, 4.3 for the used notations):

1. In characteristic p > 0, every simplicial toric affine or projective variety with
almost full parametrization is a set-theoretic complete intersection. This extends
previous results by Hartshorne [10], Moh [13], and Barile et al. [2].

2. In any characteristic, every simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection. We give a more
transparent proof of this result, which is due to Barile et al. [2].

3. Let V (p, q, r) be the projective toric curve in P
3
K with parametrization

w = ur, x = ur−pvp, y = ur−qvq , z = vr .

Then V (p, q, r) in P
3 is a set-theoretic complete intersection for r � 0.

4. Let p, q0, q1, . . . , qn−1 be positive integers. Let V (p, q0, q1, . . . , qn−2) ⊂ P
n
K

be the projective toric curve with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .
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Let V 1(p, q0, q1, . . . , qn−2, qn−1) ⊂ P
n+1
K be the projective curve defined by

w = uqn−1,

x = uqn−1−pvp,

y = uqn−1−q0vq0 ,

z1 = uqn−1−q1vq1 ,

. . .

zn−2 = uqn−1−qn−2vqn−2 ,

zn−1 = vqn−1 .

Let gcd (p, qn−2) = l, p′ = p/l, q ′ = qn−2/l. Assume that qn−1 ≥ p′q ′(q ′ −
1)+ q ′l. If V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection, then
so is V 1(p, q0, q1, . . . , qn−2, qn−1).

Moreover, the proofs presented here are constructive. It should be mentioned
that there is no general way to study set-theoretically generation of ideals. This is
not surprising because one can not give an answer to this most famous problem on
this subject, which deals a very simple case of projective curve in P

3
K :

Question 4.1.3 Assume that K is a field of characteristic 0. Let V (1, 3, 4) be the
projective toric curve with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

Is V (1, 3, 4) a set-theoretic complete intersection?

4.2 Definition of Toric Varieties by Parametrization,
Semigroups or Lattices

There are several ways to introduce a toric variety, which is associated with a set of
n vectors ai = (ai,1, . . . , ai,m) ∈ Z

m, i = 1, . . . , n.

1. Parametrization. A toric variety V ⊂ Kn is a variety having a following
parametrization of the form

x1 = ua1,

...

xn = uan ,
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where uai = u
ai,1
1 · · ·uai,mm , i = 1, . . . , n, are monomials in a polynomial

ring K[u1, . . . , um]. Sometimes we simply say that V is parametrized by
ua1, . . . , uan .

2. Semigroups. The coordinate ring of the above toric variety is isomorphic to the
subring K[uα, α ∈ ΣA] ⊂ K[u1, . . . , um]. This subring can be considered as
the semigroup ring K[ΣA] of the semigroup

ΣA = Na1 + . . .+ Nan ⊂ Z
m.

Note that K[ΣA] is a domain and that dimK[ΣA] = rankA, where A is the
m× n matrix whose i-th column vector is ai.

There is a canonical surjective map Ψ : S = K[X1, . . . , Xn] → K[ΣA]. Let
IA = kerΨ . Then IA is the defining ideal of the toric variety in S. One calls IA
a toric ideal.

We give now a short proof of the fact that IA is generated by binomials.
Observe that

• For any non zero monomial M ∈ S its image Ψ (M) is non zero.
• For any monomials M1,M2 ∈ S, if Ψ (M1) = Ψ (M2) then M1 −M2 ∈ IA.
• For any non zero monomials M1,M2 ∈ S, if Ψ (M1) �= Ψ (M2) then any

linear combination αΨ (M1)+ βΨ (M2) with (α, β) ∈ (K2)∗ is non zero.

Let F = ∑t
i=1 αiMi ∈ IA, where αi ∈ K∗ and Mi is a nonzero monomial,

i = 1, . . . , t . By the observation above we may assume that Ψ (Mi) = Ψ (Mj )

for any i, j = 1, . . . , t . It is clear that this implies
∑t

i=1 αi = 0 and consequently
α1 = −∑t

i=2 αi . Hence F =∑t
i=2 αi(Mi−M1). That shows that the toric ideal

IA is generated by binomials of the typeM−N , whereM,N are monomials with
coefficients 1 without common divisor.

3. Lattice of relations. Note that any vector α ∈ Z
n can be uniquely written as

α = α+ − α−, with α+, α− ∈ N
n such as (α+)i(α−)i = 0 for all i = 1, . . . , n.

Let

LA := {α ∈ Z
n | Xα+ −Xα− ∈ IA}.

Then LA ⊂ Z
n is a subgroup of finite rank. We call it the lattice of relations

associated to IA. It is easy to see that LA ⊂ Z
n is the set of integer solutions of

the linear system AX = 0.

In general, given a subgroup of finite rank (lattice) L ⊂ Z
n, we can define the

ideal IL ⊂ S generated by the binomials Xα+ − Xα− , α ∈ L. It is called the lattice
ideal associated to L. We call L saturated if dv ∈ L for some d ∈ Z \ {0}, v ∈ Z

n,
implies v ∈ L.

Remark The lattice of relations of a toric ideal IA is saturated and has the property

ILA = IA.



222 M. Morales

For any vector α ∈ Z
n, we set Fα := Xα+ − Xα− . Note that Fα is a reduced

binomial, that is it can’t be factored by a monomial.

Lemma 4.2.1 Let IA be a toric ideal and v1, . . . , vr a basis of LA. Let Fvi ∈ IA be
the binomial associated to vi. Then

Z(Fv1 , . . . , Fvr) ∩ (K∗)n = V (IA) ∩ (K∗)n.

Proof We have only to prove the inclusion Z(Fv1, . . . , Fvr) ∩ (K∗)n ⊂ V (IA).

Let P ∈ Z(Fv1 , . . . , Fvr)∩ (K∗)n. Then Fv1(P ) = 0, . . . , Fvr(P ) = 0. Let F ∈
IA be any reduced binomial then there exist v ∈ LA such that F = Xv+−Xv− . Since
v1, . . . , vr is a basis of LA, we can write v = α1v1 + · · · + αrvr for some integers
αi . Let P = (x1, . . . , xn) ∈ (K∗)n. We have xvi+ −xvi− = 0 for i = 1, . . . , r . Since
P = (x1, . . . , xn) ∈ (K∗)n, this is equivalent to xvi = 1 for i = 1, . . . , r , which
implies xαivi = 1 for i = 1, . . . , r . Hence 1 = x

∑r
i=1 αivi = xv, and so F(P) = 0.

The following result [7, Corollary 2.6] gives an exact relationship between binomial
ideals and toric ideals.

Theorem 4.2.2 Let K be an algebraically closed field. A binomial ideal is toric if
and only if it is prime.

For simplicity, we say that a binomial ideal is a set-theoretic complete intersec-
tion of binomials if bar(I) = ht (I). We have the following theorem from [16].

Theorem 4.2.3 Let K be a field of characteristic zero. A toric ideal is a set-
theoretic complete intersection of binomials if and only if it is a complete inter-
section.

By virtue of this theorem, we always assume that our toric ideal is not a complete
intersection in the rest of the lecture notes.

4.3 Simplicial Toric Varieties Which Are Set-Theoretic
Complete Intersections

Most of the results on set-theoretic complete intersections in this lecture notes
concern the following class of toric varieties.

Let e1, . . . , en denote the elements of the canonical basis of Z
n. Let ai =

(ai,1, . . . , ai,n), i = 1, . . . , r, be non zero vectors in N
n.

Definition 4.3.1 LetA be a matrix with column vectors d1e1, . . . , dnen, a1, . . . , ar,
where d1 . . . , dn ∈ N

∗, that is

A =

⎛

⎜⎜⎝

d1 0 . . . 0 a1,1 . . . ar,1

0 d2 . . . 0 a1,2 . . . ar,2

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . dn a1,n . . . ar,n

⎞

⎟⎟⎠ .
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Then IA is called the simplicial toric ideal associated to A and its affine variety
VA = V (IA) in Kn+r is called an affine simplicial toric variety.

In this case, the dimension of the affine semigroup ring K[ΣA] is n. Note that
VA has codimension r ≥ 2 in Kn+r and has the following parametrization:

x1 = u
d1
1 ,

...

xn = udnn ,

y1 = u
a1,1
1 · · · ua1,n

n ,

...

yr = u
ar,1
1 · · · uar,nn ,

One can define a projective simplicial toric variety similarly as above. For that
we need to assume that d1 = · · · = dr = deg uai for all i = 1, . . . , r .

For any vector v ∈ Z
m, we set supp (v) = {j ∈ {1, . . . ,m} | vj �= 0} and call it

the support of v.

Definition 4.3.2 We say that the parametrization of VA is full if supp ai = supp aj
for i, j = 1, . . . , r . The parametrization of VA is almost full if supp a1 ⊂ supp a2 ⊂
· · · ⊂ supp ar.

Note that when working with full or almost full parametrization we may always
assume that supp ar = {1, . . . ,m}.

In this section we extend the results on simplicial varieties with full parametriza-
tion of [2] to those with almost full parametrization. Namely, we will prove the
following results.

1. In characteristic p > 0, any simplicial toric affine or projective variety
with almost full parametrization is a set-theoretic complete intersection (see
Theorem 4.3.8).

2. In any characteristic, any simplicial toric affine or projective variety with full
parametrization is an almost set-theoretic complete intersection (see Theo-
rem 4.3.11).

4.3.1 Lattice of Relations of Simplicial Toric Varieties

As we said above for toric ideals IA the lattice LA is the set of integer solutions
of the linear system AX = 0. That is the problem of finding binomials in IA is
equivalent to finding solutions of AX = 0 or more generally of AX = b. For any
matrix with integer coefficients A, we set | A | to be the greatest common divisor
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of all its maximal minors. We say that the matrix A, has full rank if at least one
of its maximal minors is non null. Suppose that A has full rank. If there exists one
column vector for which some integer multiple belongs to the lattice generated by
the other column vectors, we can delete this column vector preserving our search
of solutions for the equation AX = b. That means that we can assume that all the
maximal minors are non zero.

We have the following basic lemma in Number Theory (see [11], or for a modern
presentation, [23, p. 51]):

Lemma 4.3.3 Assume that |A| �= 0. The linear Diophantine system AX = b has an
integer solution if and only if |A| �= 0 and |A| = |Ab|, where Ab is the augmented
matrix.

Another important ingredient is given by the chapter IV of [5] about basis of
Lattices. We learn in this chapter that we can find triangular basis of a lattice that
we will describe thanks to Lemma 4.3.3 in the case of simplicial toric varieties.

With the notations of Definition 4.3.1, for all i = 0 . . . , r, let Ai be the matrix:

Ai =

⎛

⎜⎜⎝

d1 0 . . . 0 a1,1 . . . ai,1

0 d2 . . . 0 a1,2 . . . ai,2

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . dn a1,n . . . ai,n

⎞

⎟⎟⎠ .

We denote by di the ith column vector of A for all i = 1, . . . , n, and by ai the (n+
i)th column vector of A for all i = 1, . . . , r . We set D[j1, . . . , jn] the determinant
of the n × n submatrix consisting of the columns of A with the indices j1, . . . , jn,
where {j1, . . . , jn} is an n-subset of {1, 2, . . . , n+r}. For all i = 0, . . . , r let |Ai | :=
gcd {D[j1, . . . , jn] : 1 ≤ j1 < j2 < · · · < jn ≤ n + i}; for the sake of simplicity
we set gi = |Ai |. Moreover, let ζi = gi−1/gi , for all i = 1, . . . , r .

Let us remark that any integer solution α of the linear system AiZ = 0
gives rise to a binomial, more precisely, let write α = β + γ , with suppβ ⊂
{1, 2, . . . , n}, supp γ ⊂ {n + 1, n + 2, . . . , n + i}, then the binomial Fα+β =
xβ+yγ+ − xβ−yγ− in the variables x1, . . . , xn, y1, . . . , yi belongs to IA.

In our situation we have the following corollary of Lemma 4.3.3 which can be
seen as a generalization of [15, Remark 2.1.2]:

Theorem 4.3.4 Keep the above notations. Then

1. For any i = 1, . . . , r , the linear Diophantine system Ai−1Z = θai has an integer
solution if and only if θ ∈ ζiZ.

2. The lattice LA ⊂ Z
n+r of rank r has a triangular basis:

{(w1, s(1,1), 0, . . . , 0), (w2, s(2,1), s(2,2), 0, . . . , 0), . . . ,

(wr, s(r,1), s(r,2), . . . , s(r,r))},

where w1, . . . ,wr ∈ Z
n and s(i,i) = ζi .
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3. Let s1 = (s(1,1), 0, . . . , 0), s1 = (s(2,1), s(2,2), 0, . . . , 0), . . . , sr = (s(r,1),

s(r,2), . . . , s(r,r)). For i ∈ {1, . . . , r} we have the reduced binomials

Fwi+si := Mi −Niy
ζi
i ∈ IA,

where Mi,Ni are monomials in K[x1, . . . , xn, y1, . . . , yi−1].
4. Z(Fw1+s1, . . . , Fwr+sr) ∩ (K∗)n+r ⊂ VA.

Proof

1. We have g0 = d0d1 . . . dn and for all 1 ≤ i ≤ r , the numbers gi−1 are non null.
On the other hand it holds:

gi = gcd {gi−1,D[j1, . . . , jn−1, n+ i] : 1 ≤ j1 < j2 < · · · < jn ≤ n+ i − 1},
(4.1)

which yields

1 = gcd {gi−1

gi
,
D[j1, . . . , jn−1, n+ i]

gi
: 1 ≤ j1 < j2 < · · · < jn ≤ n+ i − 1},

(4.2)

|Ai−1, θai| = gcd {gi−1, θD[j1, . . . , jn−1, n+ i] : 1 ≤ jk ≤ n+ i − 1}
= gcd {(gi−1

gi
)gi , θD[j1, . . . , jn−1, n+ i] : 1 ≤ jk ≤ n+ i − 1}

= gigcd {(gi−1

gi
), θ

D[j1, . . . , jn−1, n+ i]
gi

: 1 ≤ jk ≤ n+ i − 1}

Hence |Ai−1, θai|gi−1 = |Ai−1| if and only if

gigcd {(gi−1

gi
), θ

D[j1, . . . , jn−1, n+ i]
gi

: 1 ≤ jk ≤ n+ i − 1} = gi−1,

or equivalently

gcd {ζi, θ D[j1, . . . , jn−1, n+ i]
gi

: 1 ≤ jk ≤ n+ i − 1} = ζi .

Using (2) it implies that |Ai−1, θai|gi−1 = |Ai−1| if and only if θ ∈ ζiZ.
2. By the first part, for every i ∈ {1, . . . , r} the Diophantine system Ai−1x = ζiai

always has a solution. This means that the vector ζiai can be expressed as a linear
combination of the vectors d1, . . . ,dn, a1, . . . , ai−1 with integer coefficients,
i.e., one has

ζiai = w(i,1)d1 + · · · + w(i,n)dn + s(i,1)a1 + · · · + s(i−1,i−1)ai−1, (4.3)
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for some integers w(i,j), . . . , s(i,j). Setting for every i ∈ {1, . . . , r} wi =
(w(i,1), . . . , w(i,n)), we have that

{(w1, s(1,1), 0, . . . , 0), (w2, s(2,1), s(2,2), 0, . . . , 0), . . . ,

(wr, s(r,1), s(r,2), . . . , s(r,r))},

is a triangular basis of LA.
3. The expression (3) gives us monomials Mi,Ni in K[x1, . . . , xn, y1, . . . , yi−1]

such that Fwi+si :=Mi −Niy
ζi
i .

4. Follows from the above items and Lemma 4.2.1.

Triangular basis will give us some particular binomials which will play an
important role in our proofs.

Remark For the sake of simplicity we shall set s = (s1, . . . , sr−1), y =
(y1, . . . , yr−1). In particular, if (w, s, t) ∈ LA, then t ∈ ζrZ and, conversely,
for all multiples t of ζr there is s ∈ Z

r−1,w ∈ Z
n such that (w, s, t) ∈ LA.

For all s ∈ Z
r−1, we can write s = s+ − s−. Fix an element (w, s, sr ) ∈ LA. Let

w = w+ − w−. Then the binomial corresponding to (w, s, sr ) ∈ LA is

ys+xw+ − y−srr ys−xw−,

provided sr ≤ 0; otherwise it is

ys+ysrr x
w+ − ys−xw− .

Remark Let

J = IA ∩K[x1, . . . , xn, y1, . . . , yr−1].

Then J is the defining ideal of the simplicial toric variety of codimension r − 1
having the following parametrization:

x1 = u
d1
1 ,

...

xn = udnn ,

y1 = u
a1,1
1 · · · ua1,n

n ,

...

yr−1 = u
ar−1,1
1 · · · uar−1,n

n .

Note that if the parametrization of the variety defined by IA is full (resp. almost full),
then the parametrization of the variety defined by J satisfies the same property.
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4.3.2 Simplicial Toric Varieties in Characteristic p > 0

We introduce one more piece of notation. Let M1, M2 be monomials, and let h =
M1 −M2. For all positive integers q we set

h(q) = M
q

1 −M
q

2 .

Lemma 4.3.5 Let J = IA ∩K[x1, . . . , xn, y1, . . . , yr−1], and δ > 0 an integer for
which there is a binomial

fr = yζrδr − ysδ x
l1
1 · · · xlnn ∈ IA.

Then for any binomial h in IA we have

h(δ) ∈ (J, fr ).

Proof Let h ∈ IA be a binomial. Since IA is a prime ideal, we may assume that

h = yζrρr g1 − g2

for some monomials g1, g2 ∈ K[x1, . . . , xn, y1, . . . , yr−1]. Then

h(δ) = yζrρδr gδ1 − gδ2

= (f (ρ)
r + (ysδ x

l1
1 · · · xlnn )ρ)gδ1 − gδ2

∈ (J, fr ).

Lemma 4.3.6 Suppose that supp ar = {1, . . . ,m}. For all sufficiently large integers
δ > 0 there is a binomial

fr = yζrδr − ysx
l1
1 · · · xlnn ∈ IA.

Proof Let δ > 0. There is s′ such that (s′,−ζr ) ∈ KerΦ. Hence there are integers
r ′1, . . . , r ′n such that for all i

r−1∑

j=1

s′j aj,i − ζrar,i = r ′idi

for all i. Multiplying this relation by δ > 0 we get

r−1∑

j=1

δs′j aj,i − ζrδar,i = δr ′idi
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for all i. Let d = lcm{d1, . . . , dn}. Replacing δs′j by its residue sj modulo d , we
get a relation

r−1∑

j

sj aj,i − ζrδar,i = ridi .

Thus, if δ is sufficiently large, we will have ri < 0 for all i. Then fr = y
ζrδ
r −

ysx
−r1
1 · · · x−rnn ∈ IA as required.

As an immediate consequence we have:

Corollary 4.3.7 Suppose that supp ar = {1, . . . ,m}. Let p be a prime number. For
any sufficiently large integer m there is a binomial

fr = y
ζrp

m

r − ysx
l1
1 · · · xlnn ∈ IA.

The next theorem improves [2, Theorem 1], where the case of full parametriza-
tion was considered.

Theorem 4.3.8 Suppose that char K = p > 0. Then every simplicial toric variety
having an almost full parametrization is a set-theoretic complete intersection.

Proof We proceed by induction on r ≥ 1. Since the polynomial ring
K[x1, . . . , xn, y1] is an UFD the claim is true for r = 1.

Suppose that r ≥ 2 and the claim is true in codimension r − 1. Let h ∈ IA be a
binomial, then by Corollary 4.3.7 and Lemma 4.3.6, for m sufficiently large we get

hp
m = h(p

m) ∈ (fr , J ).

By the induction hypothesis the ideal J is set-theoretically generated by r − 1
binomials f1, . . . , fr−1. Hence some power of h lies in (f1, . . . , fr ).

Remark Note that the proof of the preceding result yields an effective and recursive
construction of the defining equations of a simplicial toric variety having almost full
parametrization over any field K of characteristic p > 0.

Exercise 4.3.9 Assume that K is a field of characteristic p. Let V (1, 3, 4) be the
projective toric curve in P

3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

1. Write the matrix A corresponding to V (1, 3, 4).
2. Use Theorem 4.3.4 to find a triangular basis of the Lattice LA.
3. Give f1, f2 such that rad (f1, f2) = I (V (1, 3, 4)) showing that in characteristic

p, V (1, 3, 4) is a set-theoretic complete intersection.
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4.3.3 Almost Set-Theoretic Complete Intersections

We have studied the case where the field K is of characteristic p > 0, so now we
assume that the field K is algebraically closed of characteristic 0, since we will use
the Hilbert’s Nullstellensatz.

In this section we show that simplicial toric varieties having a full parametriza-
tion are almost set-theoretic complete intersections.

If the parametrization of VA is full we will improve the triangular basis of IA
founded in Theorem 4.3.4.

Lemma 4.3.10 Let VA be a simplicial toric variety. If the parametrization of VA is
full, then for every i = 2, . . . , r there exists a binomial

Fi = y
μi

i−1 − x
νi,1
1 · · · xνi,nn y

μi,1
1 · · · yμi,i−2

i−2 y
ζi
i ∈ IA,

and there also exists a binomial

F1 = y
ζ1
1 − x

ν1,1
1 · · · xν1,n

n ∈ IA,

for some strictly positive integers μi, μi,j and νi,j .

Proof In this proof, for all i = 1, . . . , n, di will denote the ith column vector of A
and for all i = 1, . . . , r , ai will denote the (n+ i)th column vector of A.

Set μ = gcd (d1, . . . , dn) and qi = gcd (μ, ai,1, . . . , ai,n) for all i = 1, . . . , r .
For all i = 1, . . . , r and all j = 1, . . . , n let ρi,j = ai,jμ/djqj . Then, for all
i = 1, . . . , r , one has that

Gi = y
μ/qi
i − x

ρi,1
1 · · · xρi,nn ∈ IA.

It is easy to see that ζ1 = μ/q1, then for i = 1 the preceding formula yields the
required binomial F1.

As we have seen in Theorem 4.3.4, for all i = 1, . . . , r the vector ζiai can
be expressed as a linear combination of the vectors d1, . . . ,dn, a1, . . . , ai−1 with
integer coefficients, i.e., one has

ζiai = w(i,1)d1 + · · · +w(i,n)dn + s(i,1)a1 + · · · + s(i−1,i−1)ai−1, (4.2)

for some integers w(i,j), . . . , s(i,j) and this expression gives us monomials Mi,Ni

in K[x1, . . . , xn, y1, . . . , yi−1] such that Mi −Niy
ζi
i ∈ IA.

Now suppose that the parametrization of VA is full. From the binomial Gj we
see that for each aj there exist positive integers ρj = μ/qi, ρj,1, . . . , ρj,n such
that ρjaj = ρj,1d1 + · · · + ρj,ndn. Furthermore, for all 1 ≤ j ≤ i − 2 there
exists a positive integer νj such that, after adding all the zero vectors νj (ρj,1d1 +
· · · + ρj,ndn − ρjaj) to the right-hand side of (2), the new coefficient −μi,j of aj
is negative for all j = 1, . . . , i − 2. There also exists a large positive integer νi−1
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such that after adding the zero vector νi−1(ρi−1ai−1− (ρi−1,1d1+ · · ·+ ρi−1,ndn))

on the right-hand side of the new equation, for all j = 1, . . . , n the new coefficient
−νi,j of dj is negative and the new coefficient μi of ai−1 is positive. It follows that
for all i = 2 . . . , r we have a binomial

Fi = y
μi

i−1 − x
νi,1
1 · · · xνi,nn y

μi,1
1 . . . y

μi,i−2
i−2 y

ζi
i ∈ IA.

Theorem 4.3.11 Assume thatK is algebraically closed field of characteristic 0. Let
VA be a simplicial toric variety having a full parametrization. Then r ≤ bar(IA)) ≤
r + 1. In fact bar(IA) = r + 1 unless IA is a complete intersection.

Proof Consider the r binomials F1, F2, . . . , Fr which were defined in Lemma 3
and let Fr+1 be any binomial monic in yr , for example Gr . We claim that IA =
rad (F1, . . . , Fr+1).

By virtue of Hilbert Nullstellensatz the claim is proved once it has been
shown that every point x = (x1, . . . , xn, y1, . . . , yr) which is a common zero of
F1, . . . , Fr+1 in Kn+r is also a point of VA. First of all note that if xk = 0 for some
index k, then yj = 0 for all indices j . It is then easy to find u1, . . . , un ∈ K which
allow us to write x as a point of VA. Now suppose that xk �= 0 for all indices k,
F1(x) = 0, . . . , Fr+1(x) = 0, we have inductively that y1 �= 0, . . . , yr �= 0. So we
can assume that all the coordinates of x are non zero. Note that the vectors in LA

corresponding to F1, F2, . . . , Fr form a triangular basis of LA, hence by applying
Theorem 4.3.4 we have that x is a point of VA.

Exercise 4.3.12 Assume that K is an algebraically closed field of characteristic 0.
Let V (1, 3, 4) be the projective toric curve in P

3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.

Use Exercise 4.3.9 and the above section to give F1, F2, F3 binomials such that
rad (F1, F2, F3) = I (V (1, 3, 4)).

4.4 Equations in Codimension 2

This section is an English shorten version of the results in [15].
In this section we suppose that r = 2, i.e., VA is a simplicial toric variety of

codimension 2 in Kn+2. The parametrization of VA now is:

x1 = u
d1
1 ,

...

xn = udnn ,
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y1 = u
a1,1
1 · · · ua1,n

n ,

y2 = u
a2,1
1 · · · ua2,n

n ,

where the vectors a1, a2 may have zero components.

4.4.1 The Lattice Associated in Codimension Two

In this section, we introduce the reduced lattice associated to VA, which determines
the associated lattice LA, in this particular case.

Consider the morphism of groups:

Φ : Z2 −→ Z/d1Z× · · · × Z/dnZ (s, p) �→ (sb1 − pc1, . . . , sbn − pcn)

Definition 4.4.1 The reduced lattice associated to VA is

Ker(Φ) := {(s, p) ∈ Z
2 | sbi − pci ≡ 0 mod di,∀i = 1, . . . , n}.

Remark Ker(Φ) is not the lattice of VA in the sense given in Sect. 4.3, but it
determines the lattice of VA. For any i = 1, . . . , n there exists integers numbers
li such that sbi − pci = lidi . To the vector (s, p) ∈ Ker(Φ) corresponds the
vectors (−l1, . . . ,−ln, s,−p) in the Lattice LA. As a consequence, we associate to
the vector (s, p) ∈ Ker(Φ) with s ≥ 0 a binomial F(−l1,...,−ln,s,−p) ∈ IA and we
call it the binomial associated to (s, p). Reciprocally, any vector (w, s,−p) ∈ LA,
with s ≥ 0, determines a unique (s, p) ∈ Ker(Φ).

Proposition 4.4.2 We will define a fan decomposition ofKer(Φ) in R
2+, i.e. we will

determine a family of vectors ε−1, ε0, . . . , εm+1 ∈ Ker(Φ) ∩ Z2+ such that εi , εi+1
is a base of Ker(Φ), with det (εi, εi+1) > 0.

Proof We use the notion of base adapted to a lattice used in [5] p. 67. This allows
us to determine a base ε−1, ε0 of Ker(Φ). Precisely ε−1 = (s−1, 0), ε0 = (s0, p0)

where s−1 is the smallest positive integer s �= 0 such that (s, 0) ∈ Ker(Φ) and p0
is the smallest positive integer p �= 0 such that there is a vector (s, p) ∈ Ker(Φ),
s0 is unique defined such that s0 < s−1.

Consider Euclide’s algorithm, with negative rest, for the computation of the
greatest common divisor, gcd (s−1, s0):

s−1 = q1s0 − s1

s0 = q2s1 − s2

. . .

sm−1 = qm+1sm
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sm+1 = 0

∀i qi ≥ 2 , si ≥ 0.

Let us define the sequence: pi (−1 ≤ i ≤ m+ 1) , by p−1 = 0 and:

pi+1 = piqi+1 − pi−1 , (0 ≤ i ≤ m).

We set εi = (si , pi). By induction it is easy to check that sipi+1 − si+1pi = p0s−1
for all −1 ≤ i ≤ m+ 1, completing the proof.

In particular we have defined two sequences {si}, {pi}.
Example 4.4.3 Let consider the projective monomial curve with parametrization:

X = s10, Y = s7t3Z = s3t7,W = t10.

The lattice Ker(Φ) is given by the vectors (s, p) such that (r, r ′, s, p) is an integer
solution of the system:

7s − 3p = 10r

s − 7p = 10r ′

Note that the Lattice LA is given by the vectors (−r,−r ′, s,−p) such that
(s, p, r, r ′) is an integer solution of the above system.

We have the following table

i si pi ri r ′i qi

−1 10 0 7 3 0

0 9 1 6 2 0

1 8 2 5 1 2

2 7 3 4 0 2

3 6 4 3 −1 2

4 5 5 2 −2 2

5 4 6 1 −3 2

6 3 7 0 −4 2

7 2 8 −1 −5 2

8 1 9 −2 −6 2

9 0 10 −3 −7 2
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Corollary 4.4.4 For i = −1, . . . ,m + 1 we set εi = (si , pi). With the above
notations, the vectors

εm+1, . . . , ε0, ε−1, ε−1 − ε0, . . . , ε−1 − (q1 − 1)ε0 = ε0 − ε1, . . . , ε0 − (q2 − 1)ε1

= ε1 − ε2, . . . ,

εm−2 − (qm−1 − 1)εm−1 = εm−1 − εm, . . . , εm−1 − (qm − 1)εm

= εm − εm+1,−εm+1

are a fan decomposition of R+ ×R. The determinant of two consecutive vectors is
−p0s−1.

Proof The conclusion is a consequence of the above Proposition, since :

det(εi−1 − jεi , εi−1 − (j + 1)εi) = − det(εi−1, εi ).

The fan decomposition of R+ ×R is represented in Fig. 4.1:

Corollary 4.4.5 The set of binomials associated to the vectors

εm+1, . . . , ε0, ε−1, ε−1 − ε0, . . . , ε−1 − (q1 − 1)ε0

= ε0 − ε1, . . . , ε0 − (q2 − 1)ε1 = ε1 − ε2, . . . ,

εm−2−(qm−1−1)εm−1 = εm−1−εm, . . . , εm−1−(qm−1)εm = εm−εm+1,−εm+1

is a Universal Grobner Basis of IA.

Fig. 4.1 Fan decomposition



234 M. Morales

4.4.2 Effective Computation of the Fan Associated
to the Universal Grobner Basis of IA

We can assume that di, bi , ci are coprime.

Lemma 4.4.6 For any i let δi = gcd (di, bi), and

Φi : Z2 −→ Z/diZ (s, p) �→ (sbi − pci)

Then Ker(Φi) is a Z−free submodule of Z2 generated by the vectors (di/δi, 0),
(s̃i,0, δi ) where s̃i,0 is the unique integer such that s̃i,0bi − (δi)ci ≡ 0 mod di and
0 ≤ s̃i,0 < di/δi .

The proof is elementary. We have the following consequence:

Lemma 4.4.7 Let

ρi = gcd (d1/δ1, di/δi) , χi = gcd (δ1, δi ),

κi = gcd ((δ1si,0)/(χi)− (δis1,0)/(χi), ρi),

s−1 = lcm(d1/δ1, . . . , dn/δn), p−1 = 0, and

p0 = lcm2≤i≤n((ρi/κi)lcm(δ1, δi )).

ThenKerΦ is a subgroup of Z2 generated by the vectors: (s−1, p−1) (s0, p0) where
s0 is the unique integer such that:

0 ≤ s0 < lcm(d1/δ1, . . . , dn/δn) and

∀i ∈ {1, . . . , n} s0 ≡ si,0p0/δi mod di/δi .

For the proof we refer to [15].

Definition 4.4.8 We define the sequences of integers {si}, {pi} as in Proposi-
tion 4.4.2. That is {si} is defined by Euclid algorithm and {pi} by p−1 = 0 and:

pi+1 = piqi+1 − pi−1 , (0 ≤ i ≤ m).

For all j ∈ {1, . . . , n} we define the sequences {rj,i} by

rj,i = (sibj − picj )/dj − 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n.
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Lemma 4.4.9

1) The sequences {si}, {pi}, {rj,i}, 1 ≤ j ≤ n satisfy the following recurrent
relations:

vi+2 = qi+2vi+1 − vi for −1 ≤ i ≤ m− 1.
2) rj,−1 = s−1bi/di.∀1 ≤ j ≤ n

3) For any index i such that −1 ≤ i ≤ m, we have:

i) sipi+1 − si+1pi = s−1p0

ii) si+1rj,i − sirj,i+1 = s−1p0ci/di

iii) pi+1rj,i − pirj,i+1 = s−1p0bi/di

Lemma 4.4.10 For all j the sequences {si}, {rj,i} are strictly decreasing, and the
sequence {pi} is strictly increasing.

Definition 4.4.11

1) Let Dj be the line with equation sbj − pcj = 0. By changing if necessary the
order of the variables xj we can assume that the slopes of the lines Dj are in
increasing order.

2) Let ν (resp. μ ) the unique integer such that r1,ν ≥ 0 > r1,ν+1, (resp. rn,μ >

0 ≥ rn,μ+1).
3) Suppose that μ �= ν. For 1 ≤ i ≤ μ− ν let ki be the smallest integer j ≤ n− 1

such that rj,ν+i < 0. We set kμ−ν+1 = n.

Lemma 4.4.12 We have:

i) −1 ≤ ν ≤ μ ≤ m,

ii) let 1 ≤ i ≤ μ− ν. If l ≤ ki then rl,ν+i < 0 and if l > ki then rl,ν+i ≥ 0,
iii) if rj,μ+1 = 0 then rn,μ+1 = 0, and
iv) μ = ν if and only if rj,u ≤ 0 for all j ∈ {1, . . . , n} and u ≥ ν + 1.

Theorem 4.4.13 ([15]) Let VA be a simplicial toric variety of codimension 2. VA
is arithmetically Cohen-Macaulay if and only if μ = ν. If VA is not arithmetically
Cohen-Macaulay the ideal IA is minimally generated by the binomials associated
to the vectors

εν , εν+1 , εν − εν+1,

εν − 2εν+1 , . . . , εν − qν+2εν+1 , εν+2,

. . .

εμ−1 − 2εμ , . . . , εμ−1 − qμ+1εμ , εμ+1.

The proof consist to check that the mentioned binomials are a Grobner basis of IA.
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Example 4.4.14 We consider again the Toric variety of Example 4.4.3, with
parametrization

X = s10, Y = s7t3Z = s3t7,W = t10.

Its defining ideal is generated by the polynomials:

F1 = Z7 − Y 3W 4,

F2 = YZ − XW,

F3 = Y 4W 3 −XZ6,

F4 = Y 5W 2 −X2Z5,

F5 = Y 6W −X3Z4,

F6 = Y 7 −X4Z3.

Theorem 4.4.15 [15] Let VA be a simplicial toric variety of codimension 2. Assume
that VA is arithmetically Cohen-Macaulay that is μ = ν. The ideal IA is generated
by three binomials Fεν , Fεν+1, Fεν−εν+1 associated to the vectors

εν, εν+1, εν − εν+1.

That is

Fεν = zsν − ypν x
r1,ν
1 . . . x

rn,ν
n ,

Fεν+1 = ypν+1 − zsν+1x
−r1,ν+1
1 . . . x

−rn,ν+1
n ,

Fεν−εν+1 = zsν−sν+1ypν+1−pν − x
r1,ν−r1,ν+1
1 . . . x

rn,ν−rn,ν+1
n .

In fact Fεν , Fεν+1, Fεν−εν+1 are the 2× 2 minors of the matrix

M =
(
x
r1,ν
1 . . . x

rn,ν
n ypν zsν−sν+1

ypν+1−pν zsν+1 x
−r1,ν+1
1 . . . x

−rn,ν+1
n

)
.

Moreover IA is a complete intersection if and only if either pν = 0 or sν+1 = 0.

Exercise 4.4.16 Let K be any field. Let V (1, 3, 4) be the projective toric curve in
P

3 with parametrization

w = u4, x = u3v1, y = u1v3, z = v4.
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1. Draw the fan decomposition of V (1, 3, 4).
2. Use Theorem 4.4.13 to find a minimal generating set F1, F2, F3, F4 of the ideal

IA.
3. Use the fact that we have an explicit formulation of Ker(Φ), and so of LA,

together with the fan decomposition to prove directly Theorem 4.4.13 for this
example. (Hint. Binomials are represented by plane vectors.)

The material developed in this section help to understand not only generators but
also syzygies for codimension two simplicial toric ideals. See for example [6].

4.5 Almost-Complete Intersections and Set-Theoretic
Complete Intersections

From now on, we assume that the field K is algebraically closed of characteristic 0,
since we will use the Hilbert’s Nullstellensatz.

4.5.1 Almost-Complete Intersections: The General Case

Lemma 4.5.1 Assume that we have r binomials in K[x1, . . . , xn, y1, . . . , yr ]:

F1 = y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x),

F2 = y
ρ2
2 − y

β2,1
1 y

β2,3
3 · · · yβ2,r

r h2(x),

F3 = y
ρ3
3 − y

β3,1
1 y

β3,4
4 · · · yβ3,r

r h3(x),

. . .

Fr−1 = y
ρr−1
r−1 − y

βr−1,1
1 y

βr−1,r
r hr−1(x),

Fr = yρrr − y
βr,1
1 hr(x),

where h1(x), . . . , hr (x) are monomials in x1, . . . , xn, ρ1 >
∑r

k=2 βk,1, and for

j = 2, . . . , r , ρj ≥∑j−1
k=1 βk,j . Let σ = ρ2 · · · ρr . Then we have

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 F̃ σ
1 , mod (F2, . . . , Fr ),

with

F̃ σ
1 =

σ∑

k=0

(−1)k
(
σ

k

)
y
γk,1
1 y

δ2,k
2 y

δ3,k
3 · · · yδr,kr h

α1,k
1 h

α2,k
2 · · · hαr,k2 ,
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where all exponents are non negative integer numbers such that 0 ≤ δj,k < ρj ,
αj,0 = δj,0 = 0, δj,σ = 0 for j = 2, . . . , r, k = 0, . . . , σ , and γ0,1 > γ1,1 > · · · >
γσ,1 = 0.

Proof We have

(y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x))
σ =

σ∑

k=0

(−1)k
(
σ

k

)
y
(σ−k)ρ1
1 y

kβ1,2
2 · · · ykβ1,r

r hk1(x).

Let α1,k = k, we define α2,k, δ2,k by the relation

α1,kβ1,2 = α2,kρ2 + δ2,k, α2,k ≥ 0, 0 ≤ δ2,k < ρ2.

Note that α1,0 = 0, hence α2,0 = δ2,0 = 0, and α1,σ = σ , hence α2,σ =
(σ/ρ2)β1,2, δ2,σ = 0. By using F2 we get:

Fσ
1 =

σ∑

k=0

(−1)k
(
σ

k

)
y
(σ−k)ρ1+α2,kβ2,1
1 y

δ2,k
2 · · · ykβ1,3+α2,kβ2,3

3 + · · ·

+ y
kβ1,r+α2,kβ2,r
r h

α1,k
1 (x) mod F2.

We define α3,k, δ3,k by the relation:

α1,kβ1,3 + α2,kβ2,3 = α3,kρ3 + δ3,k, α3,k ≥ 0, 0 ≤ δ3,k < ρ3.

Note that α3,0 = δ3,0 = 0, and δ3,σ = 0. By using F3 we get:

Fσ
1 =

σ∑

k=0

(−1)k
(
σ

k

)
y
(σ−k)ρ1+α2,kβ2,1+α3,kβ3,1
1 y

δ2,k
2 y

δ3,k
3 · · · ykβ1,r+α2,kβ2,r+α3,kβ3,r

r

× h
α1,k
1 h

α2,k
2

modulo the ideal (F2, F3). We can inductively define the numbers αj,k, δj,k by the
relation:

α1,kβ1,j+α2,kβ2,j +· · ·+αj−1,kβj−1,j = αj,kρj +δj,k, αj,k ≥ 0, 0 ≤ δj,k < ρj .

Note that αj,0 = δj,0 = 0, and δj,σ = 0. Hence

Fσ
1 =

σ∑

k=0

(−1)k
(
σ

k

)
y
(σ−k)ρ1+∑r

j=2 αj,kβj,1

1 y
δ2,k
2 y

δ3,k
3 · · · yδr,kr h

α1,k
1 h

α2,k
2 · · ·

× h
αr,k
2 mod (F2, . . . , Fr ).
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It is easy to prove by induction that

∀k = 0, . . . , σ − 1, 0 ≤ α1,k+1 − α1,k ≤ 1.

Hence

(σ − k)ρ1 +
r∑

j=2

αj,kβj,1 − (σ − k − 1)ρ1 +
r∑

j=2

αj,k+1βj,1

= ρ1 +
r∑

j=2

(αj,k − αj,k+1)βj,1

>

r∑

j=2

βj,1 +
r∑

j=2

(αj,k − αj,k+1)βj,1 =
r∑

j=2

(1+ αj,k − αj,k+1)βj,1 ≥ 0

We can factor by y
∑r

j=2 αj,σ βj,1

1 and finally get

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 (

σ∑

k=0

(−1)k
(
σ

k

)
y
γk,1
1 y

δ2,k
2 y

δ3,k
3 · · · yδr,kr h

α1,k
1 h

α2,k
2 · · ·hαr,k2 )

mod (F2, . . . , Fr ).

with γk,1 > γk+1,1.

Theorem 4.5.2 Let VA be a simplicial toric variety. Let

F1 = y
ρ1
1 − y

β1,2
2 · · · yβ1,r

r h1(x),

F2 = y
ρ2
2 − y

β2,1
1 y

β2,3
3 · · · yβ2,r

r h2(x),

F3 = y
ρ3
3 − y

β3,1
1 y

β3,4
4 · · · yβ3,r

r h3(x),

. . .

Fr−1 = y
ρr−1
r−1 − y

βr−1,1
1 y

βr−1,r
r hr−1(x),

Fr = yρrr − y
βr,1
1 hr(x),

Fr+1 = y
ρ1−∑r

k=2 βk,1
1 y

ρ2−β1,2
2 y

ρ3−∑2
k=1 βk,3

3 · · · yρr−
∑r−1

k=1 βk,r
r − h1(x) · · ·hr(x),

be r + 1 binomials in IA ⊂ K[x1, . . . , xn, y1, . . . , yr ], where h1(x), . . . , hr (x) are

monomials in x1, . . . , xn, ρ1 >
∑r

k=2 βk,1, and for j = 2, . . . , r , ρj ≥∑j−1
k=1 βk,j .

Note that if for i = 1, . . . , r , Fi corresponds to the vector vi in the lattice LA, then
Fr+1 corresponds to the vector v1+· · ·+vr . Suppose that IA = J +(F1, . . . , Fr+1)
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and J ⊂ rad (F1, . . . , Fr+1). Then, IA = rad (F2, . . . , Fr , F̃
σ
1 ); in particular VA is

a set-theoretic complete intersection.

Proof Since

Fσ
1 = y

∑r
j=2 αj,σ βj,1

1 F̃ σ
1 mod (F2, . . . , Fr ),

and IA is a prime ideal, we have that F̃ σ
1 ∈ IA. So we only need to prove that if

P = (x1, . . . , xn, y1, . . . , yr) is a zero of F2, . . . , Fr , F̃
σ
1 , then P is also a zero of

IA. We note that Fσ
1 (P ) = 0. Since J ⊂ rad (F1, . . . , Fr+1), we have H(P) = 0

for any H ∈ J . So we only have to check that Fr+1(P ) = 0.
Note that for i = 1, . . . , r , ρi �= 0. Let examine the terms of Fr+1(P ). We have

four cases:

1. Suppose that hi(P ) = 0 for some i = 1, . . . , r . Since Fi(P ) = 0, we have yi =
0. If ρi −∑i−1

k=1 βk,i > 0, we have Fr+1(P ) = 0. If ρi −∑i−1
k=1 βk,i = 0, let 1 ≤

k1 ≤ i−1 be the smallest integer such that βk1,i �= 0. Since Fk1(P ) = 0 we have
yk1 = 0. If ρk1−

∑k1−1
k=1 βk,k1 > 0, we haveFr+1(P ) = 0. If ρk1−

∑k1−1
k=1 βk,k1 =

0, there exists 1 ≤ k2 ≤ k1 − 1 such that βk2,k1 �= 0, a contradiction.
2. If y1 = 0, then F̃ σ

1 (P ) = 0 implies hi(P ) = 0 for some i, so we are done.
3. If yj = 0 for some j > 1, let i > 1 be the biggest one such that yi = 0. Then

from Fi(P ) = 0 we have either hi(P ) = 0, or y1 = 0. We are done.
4. If for all i = 1, . . . , r , hi(P ) �= 0 and yi �= 0. For i = 1, . . . , r , assume that

Fi corresponds to the vector vi in the lattice LA, then Fr+1 corresponds to the
vector v1 + . . . + vr . Since Fi(P ) = 0 for i = 1, . . . , r , the assertion follows
trivially.

The following examples are applications of the above Theorem 4.5.2.

Example 4.5.3 Let V be the projective toric curve in P
4 with parametrization

w = t7, x = s7, y = t3s4, z = t4s3, a = t2s5.

Then I (V ) is generated by

Fv1 = a2 − xz, Fv2 = y2 − az, Fv3 = z3 − yaw,Fv1+v2+v3 = yz− xw.

Example 4.5.4 Let V be the toric surface in K4 with parametrization

w = t9, x = s9, y = ts5, z = t2s7, a = ts8.

Then I (V ) is generated by

Fv1 = y3 − az, Fv2 = a2 − xz, Fv3 = z5 − x3aw,Fv1+v2+v3 = y3z3 − x4w.
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Example 4.5.5 Let V be the projective toric surface in P
5 with parametrization

x = s9, w = t9, v = u9, y = t4s4u, z = t5s2u2, a = t3s6.

Then I (V ) is generated by

Fv1 = y2 − az, Fv2 = a3 −wx2, Fv3 = z5 − vw2ya, Fv1+v3 = yz4 − vw2a2.

Example 4.5.6 Let V be the projective toric curve in P
4 with parametrization

x = u11,

w = v11,

y = u6v5,

z = u7v4,

a = u3v8.

Then the ideal I (V ) is generated by:

Fv1 = y3 −wxz,

Fv2 = −wa + z2,

Fv3 = −xy + a2,

Fv1+v2+v3 = −w2x2 + y2az.

I (V ) is a set-theoretic complete intersection.
We can compute F 4

v1
modulo Fv2 , Fv3 , and we get:

F 4
v1
= y(y11 − 4y8wxz+ 6y5w3x2z− 4y2w4x3za +w6x5) modulo (Fv2 , Fv3).

Let F := y11− 4y8wxz+ 6y5w3x2z− 4y2w4x3za+w6x5. Our theorem says that
I (V ) = rad (Fv2, Fv3 , F ).

Example 4.5.7 Let the projective surface V with parametrization

x = s15, w = t15, v = u15, y = t4s2u9, z = t6s3u6, a = t10s5.

We have

I (V ) = (y2a − z3, y3 − vz2, w2x − a3,−va + yz).

Note that if y2a − z3 corresponds to a vector v1, y3 − vz2 corresponds to a vector
v2, then −va + yz corresponds to the vector v2 − v1. So V is a stci.
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Example 4.5.8 Let V be the projective toric curve in P
4 with parametrization

x = s5, w = t5, y = t4s, z = t3s2, a = t2s3.

The ideal I (V ) is generated by

xy − a2,−wx + az,−ya + z2,−wa + yz, y2 − wz.

It is a Gorenstein projective curve in P
4. We prove now that I (V ) is a set-theoretic

complete intersection. We follow the ideas of Brezinsky [3]:
First note that z(−wa+ yz) = y(−ya+ z2)+ a(y2−wz) implies−wa + yz ∈

rad (xy − a2,−wx + az,−ya + z2, y2 − wz). Next if a2 − xy corresponds to a
vector v1, z2 − ya corresponds to a vector v2, y2 − wz corresponds to a vector v3,
then az − wx corresponds to the vector v1 + v2 + v3, so by our Theorem 4.5.2,
rad (xy− a2,−wx+ az,−ya+ z2, y2−wz) = rad (xy− a2,−ya+ z2, y2−wz).

Now let α1, . . . , α5 be any positive numbers, α := α1 + · · · + α5 > 0. Let us
consider the variety W :

x = s5α,

w = t5α,

y = t4αsα,

z = t3αs2α,

a = t2αs3α,

b = t5α2+4α3+3α4+2α5s5α1+α3+2α4+3α5 .

Then W is a set-theoretic complete intersection. Note that the ideal I (W) is gener-
ated by: xy−a2,−wx+az,−ya+z2,−wa+yz, y2−wz, bα−xα1wα2yα3zα4aα5 .

I (W) = rad (xy − a2,−ya + z2, y2 −wz, bα − xα1wα2yα3zα4aα5).

Example 4.5.9 Let V be the projective toric curve in P
3, with parametrization

w = t9, x = s9, y = t8s, z = t4s5.

VA is arithmetically Cohen-Macaulay. Let V be the projective toric curve in P
4, with

parametrization

w = t9, x = s9, y = t8s, z = t4s5, a = t6s3.

Its ideal is generated by five elements:−y3+w2a,−y2a+w2z,−w2x+yaz, a2−
yz,−xy + z2 but is not Gorenstein, However we can still apply the method used
by Brezinsky [3]. First note that a(−y2a + w2z) = y2(yz − a2)+ z(−y3 + w2a)

implies by studying both cases when a = 0 or when a �= 0 that −y2a + w2z ∈
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rad (xy− a2,−wx + az,−ya+ z2, y2−wz). Secondly if−y3+w2a corresponds
to a vector v1, a2 − yz corresponds to a vector v2, −xy + z2 corresponds to a
vector v3, then −w2x + yaz corresponds to the vector v1 + v2 + v3, so by our
Theorem 4.5.2, rad (−y3+w2a,−y2a+w2z,−w2x+ yaz, a2− yz,−xy+ z2) =
rad ( ˜(−y3 +w2a)4, a2 − yz,−xy + z2).

We have the following open question:

Question 4.5.10 : Let V be the toric variety with parametrization

w = td , x = sd, y = sa1, z = sa2

and let V1 be the toric variety with parametrization

w = td , x = sd , y = sa1, z = sa2, a = s
a1+a2

2 ,

where we assume that a1+a2
2 has integer coordinates. We know by Theorem 4.5.12,

that if V is arithmetically Cohen-Macaulay then it is a set-theoretic complete
intersection. Can we say if I (V1) is a set-theoretic complete intersection?

We can answer to this question in Theorem 4.6.2 if one of the components of a1+a2
is odd.

Example 4.5.11 Let the projective curve with parametrization

w = t5, x = s5, y = t3s2, z = t1s4,

it is arithmetically Cohen-Macaulay. The projective curve with parametrization

w = t5, x = s5, y = t3s2, z = t1s4, a = t2s3

is Gorenstein and generated by five elements.

4.5.2 Almost-Complete Intersections, The Codimension
Two Case

In this subsection we apply Theorem 4.5.2 in the case of simplicial monomial
varieties of codimension two which are arithmetically Cohen-Macaulay:

Theorem 4.5.12 Let VA be a simplicial toric variety of codimension 2, such that is
arithmetically Cohen-Macaulay. Then VA is a set-theoretic complete intersection.
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Proof By Theorem 4.4.15, the defining ideal of a simplicial monomial variety of
codimension two arithmetically Cohen-Macaulay, is generated by three elements

F = zsμ − ypμx
r1,μ
1 · · · xrn,μn ,

G = ypμ+1 − zsμ+1x
−r1,μ+1
1 · · · x−rn,μ+1

n ,

H = zsμ−sμ+1ypμ+1−pμ − x
r1,μ−r1,μ+1
1 · · · xrn,μ−rn,μ+1

n ,

for some positive integer exponents with sμ > sμ+1, pμ+1 > pμ.
It is clear that we can apply the Theorem 4.5.2. Indeed let F1 be the polynomial

obtained from (zsμ − ypμxrμ)pμ+1 by reduction moduloG. That is Fpμ+1 = AG+
zpμ(sμ+1)F1. Then I = rad (G,F1).

Example 4.5.13 Let VA be the projective toric surface in P
5 with parametrization

v = u10,

x = s10,

w = t10,

y = t5s5,

z = t4s2u4,

a = t2s6u2.

The ideal IA is generated by:

Fv1 = z3 − vwa,

Fv2 = a2 − xz,

Fv3 = −y2 +wx,

Fv1+v2+v3 = vy2 − az2.

Then IA is a set-theoretic complete intersection. In fact we can compute F 4
v1

modulo
Fv2, Fv3 , and we get:

F 4
v1
= z2(v4w4x2 − 4v3w3axz2 + 6v2w2xz5 − 4vwaz7 + z11) mod (Fv2 , Fv3).

Let F := v4w4x2 − 4v3w3axz2 + 6v2w2xz5 − 4vwaz7 + z11. By Theorem 4.5.2
we have I (V ) = rad (Fv2, Fv3 , F ).

Another proof: Let us consider the variety W :

v = u5,

x = s5,
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w = t5,

z = t2su2,

a = ts3u.

By the trick developed in Sect. 4.6.1, IA = (I (W) + (y2 − xw)). I (W) has
codimension 2 and is arithmetically Cohen-Macaulay. Hence I (W) is a set-theoretic
complete intersection and so is IA.

Remark For an arithmetically Cohen-Macaulay projective curve, the shape of the
equations and the above theorem was known, by Stuckrad and Vogel [22] and by
Robbiano and Valla [19]. For an arithmetically Cohen-Macaulay simplicial toric
variety of codimension two, in [15] it was proved that its equations are given by the
2 × 2 minors of a 2 × 3 matrix, so the above theorem can be also proved by using
[22], or the next theorem. Our proof is simpler, it gives us the ideal I up to radical
in one step, while the next theorem needs several steps.

Theorem 4.5.14 ([19]) Let R be a commutative ring with identity, let m,n be non
negative integers, and let J be the ideal generated by the 2× 2 minors of the matrix

M =
(
a bm c

bn d e

)
, with entries inR. Then we can construct two elements f, g ∈

J , such that

rad (J ) = rad (f, g).

4.6 Some Set-Theoretic Complete Intersection Toric Varieties

4.6.1 Tricks on Toric Varieties

The following theorem was originally stated and proved in [14], in the case
of numerical semigroups, but it can be extended in general and the proofs are
unchanged.

Theorem 4.6.1 Let H be the semigroup of Nm generated by a1, . . . , an. Let IH ⊂
K[x1, . . . , xn] be the toric ideal associated to H .

1. Let l ∈ N
∗, and H(l) be the semigroup generated by la1, . . . , lan−1, an. Then the

ideal IH(l) is generated by f̃ (x1, . . . , xn) := f (x1, . . . , xn−1, x
l
n), where f runs

over all the generators of IH .

2. Let l1, . . . , ln ∈ N, l = l1 + · · · + ln > 0, let H
(l1,...,ln) be the semigroup

generated by la1, . . . , lan−1, lan, an+1 := l1a1 + · · · + lnan. If l is relatively
prime to a component of an+1 then I

H
(l1,...,ln) = IH + (xln+1 − x

l1
1 · · · xlnn ) ⊂

K[x1, . . . , xn+1].
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The following theorem follows from [14], Lemmas 1.3, 1.4, and 1.5. See also [21]
Corollary 2.5 and [16] Theorem 2.6.

Theorem 4.6.2

1. If IH is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection then the same property holds for IH(l) .

2. If IH is Cohen-Macaulay, Gorenstein, complete intersection or set-theoretic
complete intersection and l is relatively prime to a component of an+1 then the
same property holds for I

H
(l1,...,ln) .

We deduce a positive answer to Question 4.5.10 if one of the components of a1+a2
is odd. The following example shows that the hypothesis l is relatively prime to a
component of an+1 is necessary. We thank Mesut Sahin to pointed us this problem.

Example 4.6.3 Consider the projective surface with parametrization

x = s9, w = t9, v = u9, z = t5s2u2, a = t3s4u2.

It is a complete intersection but the projective surface with parametrization

x = s9, w = t9, v = u9, y = t4s3u2, z = t5s2u2, a = t3s4u2

is not arithmetically Cohen-Macaulay. Its defining ideal is generated by six ele-
ments.

These tricks can be applied to the projective case using the following

Theorem 4.6.4 Let H be the semigroup of Nm generated by a1, . . . , an, which are
not necessarily homogeneous with respect to the standard graduation. Suppose that
IH = rad (F1, . . . , Fr ). Let d = max{dega1, . . . , degan}, where degai is the sum of
its components. Let H1 be the semigroup in Z

m+1 generated by b1, . . . ,bn+1, where
for i = 1, . . . , n, bi = ai + (d − degai)em+1 and bn+1 = dem+1. Let xn+1 be a
new variable and let Fh

1 , . . . , F
h
r be the homogenization of F1, . . . , Fr with respect

to xn+1.
Let P = (x1, . . . , xn, xn+1) be a zero of Fh

1 , . . . , F
h
r . If xn+1 = 0 implies that

F(P) = 0 for all F ∈ IhH , then IH1 = rad (Fh
1 , . . . , F

h
r ).

Proof For projective closure and parametrization of toric varieties we refer to [4].
Let VA be the zero set of IH , then the projective closure V is the zero set of IhH and
since both ideals IhH , IH1 , are prime of the same height they coincide. This implies
that rad (Fh

1 , . . . , F
h
r ) ⊂ IH1 .

Let P = (x1, . . . , xn, xm+1) be a zero of Fh
1 , . . . , F

h
r . By hypothesis, if xm+1 =

0 then P ∈ V . If xm+1 �= 0 then P ∈ V since V ∩ (xm+1 = 1) = {(Q, 1) | Q ∈ V },
by general arguments on the projective closure.
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Example 4.6.5 Let VA be the affine surface with parametrization

b = t7, x = s7, y = t3s2, z = t4s3, a = t2s5,

V be the projective surface with parametrization

b = t7, x = s7, w = u7, y = t3s2u2, z = t4s3, a = t2s5.

Then

I (V ) = (−a2 + xz, z4 − xab2,−az3 + x2b2, y7 − x2b3),

and

I (V ) = (−a2 + xz, z4 − xab2,−az3 + x2b2, y7 −w2x2b3).

Applying the proof of Theorem 4.5.2, we have that V is a set-theoretic complete
intersection. Indeed, let Fv1 = z4−xab2, Fv2 = a2−xz then Fv1+v2 = az3−x2b2

and F 2
v1
= z(z7 − 2z3ab2x + b4x3) mod Fv2 . Hence I (V ) = rad (−a2 + xz, z7 −

2z3ab2x + b4x3, y7 − x2b3).

4.6.2 Toric Curves in P
3

In this section we consider curves, that is VA is a simplicial toric variety of
dimension 1 in K3. The parametrization of VA is:

x = vp,

y = vq,

z = vr ,

where p < q < r are positive integers. We simply denote this curve by V or
V (p, q, r). Let V be the projective toric curve in P

3, with parametrization

w = ur ,

x = ur−pvp,

y = ur−qvq ,

z = vr .

We simply denote this curve by V (p, q, r).
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Theorem 4.6.6 ([20]) Let a, b, p, q, r be natural integer numbers such that r =
ap + bq. If b ≥ a(q − p − 1) + 1, then V (p, q, r) is a set-theoretic complete
intersection. Moreover V (p, q, r) is the zero set of the polynomials F1 := xq −
ypwq−p, F2 = ((z − xayb)q)hyp=xq , where (H)yp=xq means substitution when

possible xq by yp, and Hh is the homogenization of H with respect to w.

Proof This proof is more or less the proof given by Sahin [20].
Let us consider

(z− xayb)q = zq +
q−1∑

k=1

(−1)k
(
q

k

)
zq−kxkaykb + xqayqb.

By setting ka = skq + rk ,with 0 ≤ sk, 0 ≤ rk < q , we can write

((z− xayb)q)yp=xq = zq +
q−1∑

k=1

(−1)k
(
q

k

)
zq−kxrkyskp+kb + ypa+qb.

Note that for k = 1, . . . , q − 1, q − k + rk + skp + kb < q − k + ka + kb, so it is
enough to check the condition q − k + ka + kb ≤ pa + qb for k = 0, . . . , q − 1.
This is equivalent to q − k + ka − pa ≤ qb + kb = q − k + (q − k)(b − 1), i.e.,
equivalent to (k−p)a ≤ (q − k)(b−1) for k = 0, . . . , q−1. This last condition is
equivalent to (k − p)a ≤ (q − k)(b− 1) for k = p+ 1, . . . , q − 1. We remark that
if b− 1 ≥ a(q −p− 1), then (k−p)a ≤ a(q −p− 1) ≤ b− 1 ≤ (q − k)(b− 1).
We can write:

((z− xayb)q)yp=xq =
q−1∑

k=0

(−1)k
(
q

k

)
zq−kxrkysk+kbwr−(q−k+rk+sk+kb) + yr .

By the preceding discussion q − k + rk + skp + kb < q − k + ka + kb ≤ r

if b − 1 ≥ a(q − p − 1). In conclusion the exponent of w in the monomial
zq−kxrkysk+kbwr−(q−k+rk+sk+kb) is strictly positive.

Let P = (w : x : y : z) ∈ Z(F1, F2). If w = 0, then F2(P ) = 0 implies y = 0,
and F1(P ) = 0 implies x = 0. Hence P = (0 : 0 : 0 : 1) belongs to V . If w �= 0,
we can assume that w = 1. Hence F1(P ) = 0 implies that there exists v ∈ K such
that x = vp, y = vq and F2(P ) = 0 implies (z − vr )q = 0, which finally implies
z = vr ; that is P = (1 : vp : vq : vr) belongs to V .

The next theorem uses a trick that improves Sahin’s theorem in some cases:

Theorem 4.6.7 ([17])

1. Let p, q, r be natural integer numbers and V (p, q, r) be the projective toric
curve in P

3, with parametrization (ur, ur−pvp, ur−qvq , vr ). Suppose that r =
ap + bq, with a, b ∈ N,
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a. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a , or
b. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ (q − a − 1)p,

then V (p, q, r) is a set-theoretic complete intersection. Moreover V (p, q, r) is
the zero set of the polynomials Fh

1 := xq − ypwq−p, Fh
2 , where Fh

2 is obtained
from ((z− xayb)q)xq−yp , by a trick, explained in the proof.

2. Let l be a natural number, let V (lp, lq, r) be the projective toric curve in P
3.

Suppose that r = ap + bq, with a, b ∈ N,

a. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a − 1+ l, or
b. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ q − a − p + l, b ≥ (q − a − 1)p,

then V (lp, lq, r) is a set-theoretic complete intersection. Moreover V (lp, lq, r)
is the zero set of the polynomials Fh

1 := xq − ypwq−p, F 2 where
F 2(w, x, y, z) = (F2(x, y, z

l))h, by the trick developed in Sect. 4.6.1.

Proof We prove only the first claim, the second claim follows from the proof of the
first and the trick developed in Sect. 4.6.1. The proof is more or less the one given
in [17].

Let us consider

(z− xayb)q = zq +
q−1∑

k=1

(−1)q−k
(
q

k

)
zkx(q−k)ay(q−k)b + xqayqb.

By setting (q − k)a = k(q − a) + q(a − k) and by using yp = xq , we get the
polynomial

F2 := zq +
q−1∑

k=1

(−1)q−k
(
q

k

)
zkxk(q−a)yr−k(b+p) + yr ,

For k = 1, . . . , q−1, the exponent of x in F2 is xk(q−a) which is strictly positive.
For k = 1, . . . , q − 1, the exponent of y in F2 is yr−k(b+p) which is positive if and
only if b ≥ (q − a − 1)p. Finally degF2 = r if and only if b ≥ q − a − p + 1.

It is easy to show that these conditions are equivalent to

1. if p = 1 and 0 ≤ a ≤ q − 1, b ≥ q − a, or
2. if p > 1 and 0 ≤ a ≤ q − 1, b ≥ (q − a − 1)p.

We also remark that the affine curve V (p, q, r) is a complete intersection by the
trick developed in Sect. 4.6.1, so is clear that V (p, q, r) is a set-theoretic complete
intersection defined by (F1, F2).
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Now we can prove that V (p, q, r) is a set-theoretic complete intersection defined
by (Fh

1 , F
h
2 ), where

Fh
1 := xq − ypwq−p,

Fh
2 := zqwr−q +

q−1∑

k=1

(−1)q−k
(
q

k

)
zkxk(q−a)yr−k(b+p)wk(b+p+a−q−1 + yr .

Let P = (w : x : y : z) ∈ Z(F1, F2). If w = 0 then F1(P ) = 0 implies x = 0, and
F2(P ) = 0 implies y = 0. Hence P = (0 : 0 : 0 : 1) and it is clear that it belongs
to V . If w �= 0, we can assume that w = 1, the claim follows from the fact that
V (p, q, r) is a set-theoretic complete intersection defined by (F1, F2).

Remark We can compare the bounds on b given in Theorems 4.6.6 and 4.6.7. We
assume that 0 ≤ a ≤ q − 1

1. If p = 1 then the bound given by Theorem 4.6.7 is better, that is b ≥ q − a.
2. If p > 1 and p ≤ a then the bound given by Theorem 4.6.7 is better, that is

b ≥ (q − a − 1)p,
3. If p > 1 and p > a then the bound given by Theorem 4.6.6 is better, that is

b ≥ a(q − p − 1)+ 1.

Proof We need a proof.

1. If p = 1 q − a ≤ a(q − 1− 1)+ 1 ⇔ (a − 1)(q − 1) ≥ 0.
2. If p > 1 (q − a − 1)p ≥ a(q − p − 1)+ 1 ⇔ (p − a)(q − 1) ≥ 1.

Note also that the bound given in Theorem 4.6.7 is the best one given by the methods
used, but the bound given by Theorem 4.6.6 is not the best obtained by the methods
used. We sometimes can get better bounds by applying the proof of Theorem 4.6.6.

Theorem 4.6.8 Suppose that gcd (p, q) = l. We set p′ = p/l, q ′ = q/l. If r ≥
p′q ′(q ′ − 1)+ q ′l, then V (p, q, r) is a set-theoretic complete intersection.

In particular given two positive numbers p, q there is only a finite number of
positive integers r for which we don’t know if the projective toric curve V (p, q, r)
in P

3 is a set-theoretic complete intersection.

Proof The Frobenius number for the semigroup generated by p′, q ′ is (p′ −1)(q ′ −
1), since r ≥ p′q ′(q ′ − 1)+ q ′l ≥ (p′ − 1)(q ′ − 1), we have that r belongs to the
semigroup generated by p′, q ′, and we can find a, b integers such that r = ap′ +
bq ′, 0 ≤ a ≤ q − 1, b ≥ 1. We will check the conditions for b in Theorem 4.6.7.

1. Suppose that b < q ′ − a − p′ − l, then

r = ap′ + bq ′ < r = ap′ + q ′(q ′ − a − p′ − l) = q ′(q ′ − p′ − l)− a(q ′ − p′)

≤ q ′(q ′ − p′ − l),

and q ′(q ′ − p′ − l) ≤ p′q ′(q ′ − 1)+ q ′l is equivalent to q ′ ≤ p′q ′, so we get a
contradiction.
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2. Suppose that b < (q ′ − a − 1)p′, then

r = ap′ + bq ′ < r = ap′ + q ′((q ′ − a − 1)p′) = q ′((q ′ − 1)p′)− a(q ′ − p′)

≤ p′q ′(q ′ − 1) ≤ p′q ′(q ′ − 1)+ q ′l,

we get again a contradiction.

We conclude that the conditions for b in Theorem 4.6.7 are satisfied, hence
V (p, q, r) is a set-theoretic complete intersection.

Example 4.6.9 Let V (1, 2, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 3, by applying the proof of the
above theorem.

Example 4.6.10 Let V (1, 3, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 5, by applying the proof of the
above theorem.

Remark that in this case the only unsolved example is the famous projective
quartic V (1, 3, 4).

Example 4.6.11 Let V (1, 4, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ∈ {7, 8, 10, . . .}. By applying the
proof of the above theorem, we get that r ∈ {7, 10, 11, 13, . . .}. Now by a direct
computation using [15], we get that V is a complete intersection for r = 8, 12.

The unsolved cases are V (1, 4, 5), V (1, 4, 6) and V (1, 4, 9).

Example 4.6.12 Let V (2, 3, r) be the projective toric curve in P
3. Then V is a set-

theoretic complete intersection for all integers r ≥ 4. By applying the proof of the
above theorem, we get that r ∈ {4, 7, 8, 10, 11, 12, . . .}. Now by direct computation
using [15], we get that V is a arithmetically Cohen-Macaulay for r = 5 and a
complete intersection for r = 6, 9.

4.6.3 Toric Curves in P
n

Let K be an algebraically closed field. In this subsection we consider curves in Kn,
that is V (p, q0, q1, . . . , qn−2) is an affine simplicial toric variety of dimension 1.
The parametrization of V := V (p, q0, q1, . . . , qn−2) is:

x = vp,

y = vq0 ,

z1 = vq1 ,

. . .

zn−2 = vqn−2 .
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Theorem 4.6.13 Let p, q0, q1, . . . , qn−2 be positive integers. Let V (p, q0, q1, . . . ,

qn−2) be the projective toric curve in P
n with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .

Suppose that V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection,
defined by F1, . . . , Fn−1. Let qn−1 ∈ N, and V 1 the projective curve defined
by

w = uqn−1,

x = uqn−1−pvp,

y = uqn−1−q0vq0 ,

z1 = uqn−1−q1vq1 ,

. . .

zn−2 = uqn−1−qn−2vqn−2 ,

zn−1 = vqn−1 .

If qn−1 = ap + bqn−2, with 0 ≤ a ≤ qn−2 − 1, b ≥ qn−2 − a when p = 1, or 0 ≤
a ≤ qn−2−1, b ≥ (qn−2−a−1)p when p > 1, then V 1(p, q0, q1, . . . , qn−2, qn−1)

is a set-theoretic complete intersection.
In particular, let gcd (p, qn−2) = l. We set p′ = p/l, q ′ = qn−2/l. If qn−1 ≥

p′q ′(q ′ − 1) + q ′l, then V 1(p, q0, q1, . . . , qn−2, qn−1) is a set-theoretic complete
intersection.

Proof By the hypothesis V is a set-theoretic complete intersection, defined by
F1, . . . , Fn−1. We will prove that V 1 is a set-theoretic complete intersection, defined
by F1, . . . , Fn−1, Fn, where Fn is the polynomial

z
qn−2
n−1 w

qn−1−qn−2 +
qn−2−1∑

k=1

(−1)qn−2−k
(
qn−2

k

)
zkn−1x

k(qn−2−a)zqn−1−k(b+p)
n−2

× wk(b+p+a−qn−2−1) + z
qn−1
n−2 ,
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obtained from ((zn−1 − xazbn−2)
qn−2)zpn−2=xqn−2 by the trick used in the proof of the

Theorem 4.6.7. Note that also by Theorem 4.6.7, all exponents are positive with our
hypothesis.

First note that Fn ∈ I (V 1). Let P = (w, x, y, z1, . . . , zn−1) ∈ V 1. Ifw = 0 then
from the parametrization we get x = y = z = · · · = zn−2 = 0, hence Fn(P ) = 0.
If w �= 0, we can assume that w = 1, there exists v ∈ K such that

x = vp, y = vq0 , z1 = vq1, . . . , zn−1 = vqn−1 .

If v = 0 then x = y = z = · · · = zn−1 = 0, and Fn(P ) = 0. If v �= 0,
we can perform the trick used in the proof of the Theorem 4.6.7, and we get that
Fn(P ) = (zn−1 − xazbn−2)

qn−2 = 0.
Secondly we prove that F1, . . . , Fn−1 ∈ I (V )1. For i = 1, . . . , n−1, Fi ∈ I (V ).

This implies Fdeh
i ∈ I (V ), where Fdeh

i is the dehomogenized polynomial, that is
setting w = 1 in Fi , hence Fi(1, vp, vq , vq1 , . . . , vqn−2) = 0, so Fdeh

i ∈ I (V1) and
finally Fi ∈ I (V 1). As a conclusion, the zero set of F1, . . . , Fn−1, Fn, is included
in V 1.

Third, we have to prove that if P = (w, x, y, z1, . . . , zn−1) is a zero of
F1, . . . , Fn−1, Fn, then P ∈ V 1. Let P ′ = (w, x, y, z1, . . . , zn−2), since F1(P

′) =
· · · = Fn−1(P

′) = 0, there exist u, v ∈ K such that

w = uqn−2, x = uqn−2−pvp, y = uqn−2−qvq0 ,

z1 = uqn−2−q1vq1 , . . . , zn−2 = vqn−2 .

Suppose that w = 0, then x = y = z = · · · = zn−3 = 0. Hence Fn(P ) = 0 implies
zn−2 = 0, that is P = (0, . . . , 0, 1), which is a point of V 1. Suppose that w �= 0,
we can assume that w = 1, hence there exists v ∈ K such that

x = vp, y = vq0 , z1 = vq1, . . . , zn−2 = vqn−2 .

In particular xqn−2 = (vp)qn−2 = z
p
n−2. From Fn(P ) = 0, we get (zn−1 −

xazbn−2)
qn−2 = 0, that is zn−1 = xazbn−2 = vqn−1 .

Example 4.6.14 Consider the projective curve V (p, q0, q1, . . . , qn−2). Let qn−1 =
bqn−2 for a natural number b ≥ 2. Then V 1(p, q0, q1, . . . , qn−2, qn−1) is the
zero set of I (V (p, q0, q1, . . . , qn−2)) and Fh := zn−1w

b−1 − zbn−2. In par-

ticular if V (p, q0, q1, . . . , qn−2) is a set-theoretic complete intersection, then
V 1(p, q0, q1, . . . , qn−2, qn−1) is a set-theoretic complete intersection.

Example 4.6.15 Let V (1, 2, 3, r) be the projective toric curve in P
4 with

parametrization

w = ur , x = ur−1v1, y = ur−2v2, z1 = ur−3v3, z2 = vr .
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Then V is a set-theoretic complete intersection for all integers r ≥ 4. By the above
theorem we have that V (1, 2, 3, r) is a set-theoretic complete intersection for r ≥ 5.
The case r = 4 was done in [19]. Note that the case r = 5 follows also from [8].
This example was independently studied in [18].

Example 4.6.16 Let V (1, 3, 5, r) be the projective toric curve in P
4 with

parametrization

w = ur , x = ur−1v1, y = ur−3v3, z1 = ur−5v5, z2 = vr .

Then by using the Theorem 4.6.7 V is a set-theoretic complete intersection for all
integers r ∈ {9, 13, 14, 17, 18, 19, 21, 22, . . .}, and by Example 4.6.14, for all r =
5b, b ≥ 2.

The trick used above can be improved. Let us consider the following example.
Let V (1, 3, 5, 11) be the projective toric curve in P

4, then V (1, 3, 5, 11) is a set-
theoretic complete intersection on I (V (1, 3, 5)) and F , where F is obtained from
(z2 − y2z1)

5 = 0 working modulo y5 − z3
1.

In conclusion the only unknown cases are for r = 6, 7, 8, 12.

Example 4.6.17 Let V (2, 3, 5, r) be the projective toric curve in P
4. We have seen

in Example 4.6.14, that V (2, 3, 5, r) is a set-theoretic complete intersection for r =
5b, b ≥ 2. By using the method in Theorem 4.6.6, we can see that V (2, 3, 5, r) is
a set-theoretic complete intersection for r = 12 + 5b, 14 + 5b, and by using the
methods in Theorem 4.6.7, that V (2, 3, 5, r) is a set-theoretic complete intersection
for r = 8 + 5b, 16 + 5b. In conclusion V (2, 3, 5, r) is a set-theoretic complete
intersection for all positive integers, except possibly for r ∈ {6, 7, 11}. Note that the
case V (2, 3, 5, 9) was solved in [24].

Theorem 4.6.18 Let p, q0, q1, . . . , qn−2 be positive integers. Let V be the projec-
tive toric curve in P

n, with parametrization

w = uqn−2,

x = uqn−2−pvp,

y = uqn−2−q0vq0 ,

z1 = uqn−2−q1vq1 ,

. . .

zn−2 = vqn−2 .

For i = 0, . . . , qn−3 let gcd (p, qi) = li . We set p′ = p/l, q ′i = qi/ li . Suppose that
for i = 1, . . . , n − 2, qi ≥ q ′i−1(q

′
i−1 − 1)(q ′i−1 − p′ − 1) + q ′i−1li . Then V is a

set-theoretic complete intersection.

Proof The proof is by induction, the case n = 3 is Theorem 4.6.8. The case n − 1
implies n follows from Theorem 4.6.13. In the case where li = 1 for all i we
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have that for i = 1, . . . , n − 2, there exist positive integers ai, bi such that qi =
aip

′ + biq
′
i−1, 0 ≤ ai ≤ q ′i−1 − 1. V is the zero set of the polynomials

F1 := xq0 − ypwq0−p, F2, . . . , Fn−1,

where Fi−1 is obtained, by applying the trick used in the proof of Theorem 4.6.7,
from

((zi − xai z
bi
i−1)

qi−1)h
z
p

i−1=xqi−1 ,

where (H)yp=xq0 means substitution when possible xq0 by yp, and Hh is the
homogenization of H with respect to w.
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