
A Forward Propagation Algorithm
for the Computation of the Semantics

of Argumentation Frameworks

Odinaldo Rodrigues(B)

Department of Informatics, King’s College London, London, UK
odinaldo.rodrigues@kcl.ac.uk

Abstract. In this paper we propose a novel algorithm for the com-
putation of the semantics of argumentation frameworks. The algorithm
can generate all complete extensions and thus can be used in problems
involving the grounded, complete, preferred and stable semantics. The
algorithm takes advantage of the constraints imposed on legal labelling
functions to prune the search space of possible solutions.

1 Introduction

This paper describes a new algorithm for the computation of the semantics of
argumentation frameworks based on the idea of forward propagation of in labels
of accepted argument. The basic mechanism is very simple: the construction of
complete extensions is done by attempting to re-label in all undecided (und)
arguments that could potentially be labelled in by a labelling function and check-
ing whether the resulting function can be made “legal”.

The algorithm works on the strongly connected components (SCCs) of an
argumentation framework which are arranged into layers following the direction
of attacks. Because of the dependencies between the valid assignments of labels
of attacking and attacked arguments, a solution for one layer may impose con-
straints on the possible solutions for SCCs of subsequent layers. In such cases, we
say that the solution of one layer conditions the possible legal label assignments
of the attacked SCC. So we take this idea further by looking at the consequences
of legally labelling an argument in in an SCC: we search for labelling assign-
ments of the SCC satisfying an increasing set of constraints. All solutions thus
found are combined in the way described in [11].

We start with the undecided arguments of an SCC that could potentially be
labelled in in some solution. By labelling one of these arguments in, we are forced
to label all of its attackers out (i.e., reject them). If all attackers of an argument
are re-labelled out, then the argument must be re-labelled in, imposing new
constraints on the labels of the arguments that it attacks, and so forth. Forcing
the attacker of an argument to be labelled out is done analogously by requiring
that at least one of the attacker’s attacker is labelled in, so the whole process
can be done through a series of recursive forward propagation operations of in
labels each of smaller complexity than the original one.
c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 120–136, 2018.
https://doi.org/10.1007/978-3-319-75553-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75553-3_8&domain=pdf

A Forward Propagation Algorithm for the Computation of the Semantics 121

Searching for extensions in this way has several advantages. The constraints
can prune the search space considerably by ruling out assignments that violate
the admissibility conditions. Thus, the algorithm is designed to incrementally
“fill in” the gaps of an admissible but partially uncommitted labelling function
by successively swapping labels from und to in or out, and as a result generating
all complete extensions along the way. As a by-product, we can pick an argument
of interest and attempt to construct a legal labelling assignment that labels the
argument in a particular way (e.g., in), without necessarily having to look at all
solutions of the SCC or the argumentation framework as a whole.

The rest of the paper is structured as follows. In Sect. 2, we provide some
background material for the paper. This is followed by the presentation of the
algorithm itself in Sect. 3.1 In Sect. 4, we compare our algorithm with others in
the literature. Section 5 provides some empirical evaluation of the algorithm and
we conclude in Sect. 6 with a discussion and some future work.

2 Background

An abstract argumentation framework is a system for reasoning about arguments
proposed by Dung [9] and defined in terms of a directed graph 〈A,R〉, where A
is a finite non-empty set of arguments and R is a binary relation on A, called
the attack relation. If (X,Y) ∈ R, we say that X attacks Y and denote it in the
graph with an edge from X to Y . In what follows, X− = {Y ∈ A|(Y,X) ∈ R};
and X+ = {Y ∈ A|(X,Y) ∈ R}. For sets E ⊆ A, E− and E+ are defined in an
obvious way via set union. We write E → X as a shorthand for X ∈ E+. The
path-equivalence relation ∼R⊆ A∈ is defined as X ∼R Y iff X = Y or there is a
path from X to Y and a path from Y to X in R. A strongly connected component
(SCC) is an equivalence class of arguments under ∼R.

One of the main purposes of an argumentation framework is to provide a
way of reasoning about the status of its arguments, i.e., whether an argument
is accepted or is defeated by other arguments. Arguments that have no attacks
are always accepted. However, an attack from X to Y may not be sufficient to
defeat Y , because X may itself be defeated, and thus the statuses of arguments
need to be determined systematically. In Dung’s original formulation, this is
usually done through acceptability conditions for the arguments. A semantics
can then be defined in terms of extensions—subsets of A with special properties.
A set E ⊆ A is said to be conflict-free if for all elements X,Y ∈ E, we have
that (X,Y) �∈ R. Although a conflict-free set only contains elements that do
not attack each other, this does not necessarily mean that all arguments in
the set are properly supported. Well-supported sets satisfy special admissibility
criteria. An argument X ∈ A is acceptable with respect to E, if for all Y ∈ X−,
E ∩Y − �= ∅. A set E is admissible if it is conflict-free and all of its elements are
acceptable with respect to itself. An admissible set E is a complete extension iff
E contains all arguments which are acceptable with respect to itself; E is called

1 For easier understanding the algorithm is broken into functional sub-components.

122 O. Rodrigues

a preferred extension iff E is a ⊆-maximal complete extension; and E is stable
if E is preferred and E ∪ E+ = A.

Dung’s semantics can also be presented in terms of a Caminada labelling
function of the form λ : A −→ {in,out,und} satisfying certain conditions [4,
5,15]. Let dom denote the domain of a function and λ a labelling function, we
define in(λ) = {X ∈ dom λ|λ(X) = in}; und(λ) = {X ∈ dom λ|λ(X) = und};
and out(λ) = {X ∈ dom λ|λ(X) = out}. The notion of extension is recovered
from the set in(λ) for some labelling function λ. Furthermore, we say that an
argument X is illegally labelled inby λ, if X− �⊆ out(λ); X is illegally labelled
out by λ, if X− ∩ in(λ) = ∅; and X is illegally labelled und by λ, if either
X− ⊆ out(λ) or X− ∩ in(λ) �= ∅. Finally, X is super-illegally labelled in if it
is attacked by an argument that is legally labelled in or labelled und [12]. A
labelling function is legal it does not illegally label any arguments.

2.1 Computing Extensions via Decomposition into SCCs

Baroni et al. proposed a general recursive schema for argumentation semantics in
[1]. The schema employs the decomposition of an argumentation framework into
SCCs and can be used to obtain Dung’s admissibility-based semantics. Based on
that, many researchers showed how to compute the extensions of argumentation
frameworks under several semantics. Baumann adapted the Modgil-Caminada’s
algorithms [12] to compute extensions under the grounded, preferred and sta-
ble semantics in what he called “split” frameworks [2]. Preliminary experimen-
tal results of the advantages of these techniques were then shown in [3]. Liao
described the use of the decomposition idea for computation of argumentation
semantics in a more general way [11].

The overall process can be summarised as follows. Firstly, the SCCs of an
argumentation framework are arranged into layers following the direction of
attack. Then the solutions for each layer are computed using an appropriate
algorithm for the semantics at hand and the solutions of the previous layers.
Finally, the solutions of subsequent layers are combined in a systematic way.
To illustrate this idea, consider the argumentation framework N in Fig. 1 with
SCCs S1 = {X}, S2 = {W,Y } and S3 = {A,B,C,D,E}. Following the attack
relation, these SCCs can be arranged into two layers, the first containing S1 and
S2 and the second containing S3. The solutions of the SCCs in a given layer are
all independent from each other, but the attacks between arguments of different
layers create dependencies of the solutions of an SCC on the solutions of the
SCCs attacking it. For example, the computation of the solutions of S3 depends
on the labels assigned to X and W , and thus on the solutions of S1 and S2. As S1

and S2 have no external attackers, their solutions can be computed completely
independently of the rest of the framework. S2 has three legal assignments: one
in which both W and Y are labelled und and the other two in which one of them
is labelled in and the other is labelled out. X = in is the only solution to S1,
so each of the partial solutions to S2 must be augmented with the assignment

A Forward Propagation Algorithm for the Computation of the Semantics 123

X = in, giving all partial solutions to layer 0: f1 : X = Y = in,W = out,
f2 : X = W = in, Y = out, and f3 : X = in,W = Y = und.2 [11].

Now consider the computation of the solutions for S3. We say that S3’s
solutions are conditioned by the labels of the external attackers X and W in the
partial solutions f1, f2 and f3. In any such solution, X = in, but the label of W
could be either out, in or und. In order to generate all complete extensions for
N , each partial solution f1, f2 and f3 needs to be expanded with the solutions
for S3 under the constraints that they impose.

Definition 1 (Initial Conditioned Solution for an SCC). Let f be a con-
ditioning solution for an SCC S. The initial solution for S conditioned by f
λf
S : S �−→ {out,und,in} is a legal labelling function whose set in(λf

S) is ⊆-
minimal with respect to all legal labelling functions conditioned by f .

λf
S is the “minimal” (grounded) solution for S under f . It is a special case

of forward propagation from external attackers starting with the all undecided
labelling (all-und). The Discrete Gabbay-Rodrigues Iteration Schema [10] is an
example of a method that can perform this propagation very efficiently.

Since f1(X) = in and f1(W) = out, the search for the solutions for S3 con-
ditioned by f1 consists of the search for all solutions to S3 with the constraint
A =out or the search of all possible ways to “expand” λf1

S by swapping labels
from und to in or out. Similarly, since the f2(X)=f2(W)= in, under f2 we need
to satisfy the constraint A=B=out. A similar reasoning applies to solution f3
in which we have the “implicit” constraint λf3

S (B) �= in (since λf3
S (W)=und).

More generally speaking, the whole process can be thought of as follows: given a
SCC S, a conditioning solution f , and a partial labelling function λf

S , compute
the set Λ of all expansions of λf

S satisfying some constraints.

X W Y

A B C D E

S1

S3

S2

layer 0

layer 1

Fig. 1. A complex argumentation framework and its decomposition into layers.

Decomposition breaks the argumentation problem into smaller sub-problems,
but an algorithm is still needed to find the solutions for each SCC. Modgil-
Caminada’s algorithm for preferred extensions is one algorithm that can be
adapted for this [12].

2 This is called the horizontal combination of solutions of the layer.

124 O. Rodrigues

2.2 Modgil-Caminada’s Algorithm for Preferred Extensions

For space limitations we cannot present Modgil-Caminada’s algorithm in full,
but we will describe it in general terms. This should suffice for our discussion.

Since preferred extensions are associated with maximal sets of arguments that
are labelled in, Modgil-Caminada’s algorithm starts with the labelling function
that labels all arguments in (all-in) and then successively “corrects” illegally
labelled arguments via a so-called transition step. Eventually, all illegal labels get
corrected, and the set of arguments labelled in will correspond to an extension –
those that are maximal will correspond to the preferred extensions.3 A transition
step consists of the following. If the argument X is illegally labelled in, then it is
re-labelled out, if it can be legally re-labelled so. Otherwise it is re-labelled und.
Afterwards, the labels of all arguments in X+ that become illegally labelled out
by the fact that X has been re-labelled from in to out or und, are then also
changed to und. The algorithm applies transition steps as follows. If there is any
argument X in λ that is super illegally labelled in, then the algorithm performs a
single transition step on X generating a new labelling function λ′ and then calls
itself recursively from λ′. If there is no such argument, the algorithm will instead
iterate through all arguments that are illegally labelled in; apply a transition
step on each; and call itself recursively from the new labelling functions thus
generated. Eventually, all labels will become legal and the algorithm will simply
return the labelling functions with maximal sets of arguments labelled in.

In Sects. 4 and 5, we will see that the strategy used by Modgil-Caminada’s
algorithm may result in a very high number of operations.

3 A New Algorithm for Enumeration and Decision
Problems of Argumentation Semantics

Our algorithm’s strategy takes advantage of the constraints that a legal labelling
function must satisfy. These constraints come from two sources: (i) the labels of
the external attacking arguments in the conditioning solutions (which already
partially determine the SCC’s solution); and (ii) the internal constraints aris-
ing from re-labelling the seed argument in. The constraints help to reduce the
search space. The successful implementation of this strategy relies on an efficient
propagation mechanism (see Sect. 6) and a bottom-up method for constructing
all extensions.

This way of looking into the problem has two major implications. By gener-
ating all complete extensions, the method can be used in problems involving the
grounded, complete, stable and preferred semantics. For the grounded seman-
tics, all we need to do is to propagate the (unique) conditioning solution; for the
preferred semantics, we generate alternative solutions but only keep those that
maximise the set of nodes labelled in; and for the stable semantics we exclude
preferred solutions with undecided nodes. Secondly, because we only work on an
3 Unlike ours, Modgil-Caminada’s algorithm does not guarantee the generation of all

complete extensions.

A Forward Propagation Algorithm for the Computation of the Semantics 125

individual argument at a time, we can define decision procedures for argument
acceptability that do not need to necessarily generate all extensions.

In order to lighten the notation, we will drop the subscript and superscript
in λf

S when the context makes the SCC S and the conditioning solution f clear.
Given a partial solution λ conditioned by a solution f , an argument X of an
SCC S can potentially be re-labelled from und to in if it satisfies the following
conditions: (I1) λ(X) =und; (I2) X �∈ X− (it does not attack itself); and (I3)
{Y ∈ X−|f(Y)=und}=∅. 4 The set possInsS ⊆ S is the set of nodes satisfying
conditions (I1)–(I3). Thus the starting point for Algorithm 1 is an SCC S; the
set possInsS ; a conditioning solution f for previous layers; and a partial solution
λ for S conditioned by f . The algorithm will compute the set Λ of all complete
(or preferred)5 labelling functions that “expand” λ by successively searching
for complete/preferred labelling functions that label an element of possInsS in.
Each search is done via Algorithm 4, which we now explain.

Algorithm 1 Finding extensions from a given set of arguments
Input: possInsS , a SCC S, a conditioning labelling function f, a conditioned legal labelling function

λ for S, and a set of candidate labelling functions Λ
Output: true (success) or false (failure) and an updated set Λ

1 Function findExtsFromArgs(S,possInsS,f ,λ,Λ)
2 while possInsS �= ∅ do
3 Pick X ∈ possInsS

4 possInsS← possInsS\{X}
5 findExtsFromArg(X, S, f, λ, Λ)
6 end while
7 end

In Sect. 2, we saw that an argument X is legally labelled in in a solution λ
if all arguments that it attacks are labelled out and that if all arguments that
attack X are labelled out then X must be labelled in in λ. Thus, to re-label
X in we must re-label out all arguments that it attacks. By re-labelling some
arguments out, we may also be forced to re-label in some other arguments,
and so forth. We call this process the forward propagation of the in label. All
attackers of X must also be labelled out for X to be legally labelled in in λ.
Thus, all external attackers of X must be labelled out (by f) and all internal
attackers that are still labelled und must be re-labelled out. This can be done
by ensuring that every internal attacker Y that is labelled und, gets an attacker
Z to be legally re-labelled in. We call the process of ensuring that all attackers
of X are legally labelled out the backward propagation of the in label. Backward
propagations can be done in terms of one or more forward propagations and this
is the motivation for the title of the algorithm.

Although we start with “good enough” candidates, i.e., arguments satisfy-
ing (I1)–(I3), both types of propagations may fail, since we have no control
over the assignments of conditioning solutions and the propagations may result
in inconsistent label requirements. A failed propagation simply means that we

4 We know that λ(X) = und by (I1), but we still want to make sure that X can be
re-labelled in which is not the case if an external attacker Y ∈ X− has f(Y) = und.

5 The set Λ is updated according to the desired semantics (see Sect. 3.3).

126 O. Rodrigues

cannot construct a legal labelling function meeting the required constraints, so
we backtrack to any available alternatives. We now explain the details.

3.1 Propagating Forwards

A forward propagation essentially requires changing the label of a seed node in
a partial solution λ from und to in and then following the direction of attacks
to re-label any nodes that may have thus have been rendered illegally labelled.
One important aspect of a forward propagation is that (if successful) it will
generate a single solution λ′ from a partial solution λ which, by construction, has
less undecided nodes than λ itself. A forward propagation is carried out by the
function propagateIN in Algorithm 2. Figure 2 illustrates the labelling function
λ′ obtained as the result of a successful forward propagation from X = in and
f =∅ and a failed forward propagation from W2= in and f =∅. The latter fails
because by labelling W2 in, we must label U out, which then requires T to be
labelled in, which in turn requires W2 to be labelled out, which is not possible.

Algorithm 2 Forward propagation of an IN label
Input: argument X to label in, its SCC S, a partial legal labelling function λ, and a

conditioning labelling function f
Output: false if failure; or true if successful, with the new partial labelling function λ′

1 Function propagateIN(X,S,f ,λ,λ′)
2 if {Z ∈ X+ | λ(Z) = in} �= ∅ then
3 return false
4 else
5 λ′ ← λ; λ′(X) = in
6 forall Y ∈ {Z ∈ X+ | λ′(Z) = und} do
7 λ′(Y) ← out
8 end forall
9 newIns← {Z ∈ S | λ′(Z) = und and for all Y ∈ Z−, λ′(Y) = out}

10 while newIns �= ∅ do
11 Pick W ∈ newIns

12 if propagateIN(W ,S,f ,λ′,λ′′) then
13 λ′← λ′′

14 newIns← newIns\{W}
15 else
16 return false
17 end if
18 end while
19 return true
20 end if
21 end

Y1 T

W1 X W2

Y2 U

SCC S, f = ∅, λ is all-und

propagateIN(X, S, f, λ, λ′) succeeds with
in(λ′) = {X, U}, out(λ′) = {T, W2, Y2},
und(λ′) = {W1, Y1}

propagateIN(W2, S, f , λ, λ′) fails since we
cannot label W2 both in and out

Fig. 2. Results of forward propagations from X = in and W2 = in.

A Forward Propagation Algorithm for the Computation of the Semantics 127

If the forward propagation from a node X is successful, we must then ensure
that all of X’s attackers are legally labelled out in order to guarantee that the
solution is legal. This is done by a backward propagation.

3.2 Propagating Backwards

In the example in Fig. 2, it is easy to see that λ′ is not legal, since λ′(X)= in,
Y1 → X, but λ′(Y1) = und. We can perform a backward propagation from
X by performing one or more forward propagations using any of the attackers
of each attacker of X as the seed. X− = {Y1,W2}, so we want a labelling
function that labels at least one of the arguments in Y −

1 and in W−
2 in (X

itself already satisfies the latter). It is easy to see that the labelling function
λ′′ ={X =U =W1= in, Y2=W2=T =Y1=out} satisfies these requirements.

Naturally, a backward propagation may also fail. Consider the network in
Fig. 3. After a successful forward propagation from X = in, f = ∅, and λ=all-
und, we get the labelling function λ′ ={X = in, Y =out,W1=W2=W3=und},
which is not legal, since W3 → X and λ′(W3) �= out. So we attempt to backward
propagate from X, f = ∅ and λ′. We need to label W3 out, which requires
labelling W2 = in, which is not possible since it attacks itself, and thus the
backward propagation fails. What this means in practice is that X cannot be
part of any extension (this reasoning can be used in decision problems).

Y W1 W2 W3 X

Fig. 3. Backward propagation.

Unlike a forward propagation, a backward propagation can generate multiple
labelling functions. Consider the SCC S in the network in Fig. 4(L). A call to
propagateIN(X,S, f, λ, λ′) will succeed with λ′ = {X = in, Y = out, Z1 = Z2 =
Z3 = Z4 = W1 = W2 =und}. We must now legally label both W1 and W2 out.
But here we have a choice between labelling Z1 or Z2 in. So both λ′

C = {X =
in, Y = out, Z1 = in,W1 = W2 = Z3 = out, Z2 = Z4 = und} (Fig. 4(C)) and
λ′

R ={X = in, Y =out, Z2 = in,W1 =W2 =Z4 =out, Z1 =Z3 =und} (Fig. 4(R))
are returned in Λ from an invocation to propagateOUT(X,S, f, λ′, Λ).

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

und und

und

und

und und

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

in out

out

out

und und

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

und out

out

und

out in

)R()C()L(

Initial configuration λ′ Backward prop., Z1 = in (λ′
C) Backward prop., Z2 = in (λ′

R)

Fig. 4. A sample network and two successful backward propagations from X = in.

128 O. Rodrigues

There are two more important considerations to make. First, all of the attack-
ers of the seed node must be labelled out. Therefore any solution returned by
propagateOUT must satisfy this requirement. Our implementation approach in
Algorithm 3 was to work with two lists. makeOuts contains the nodes that still
need to be labelled out and starts with all undecided attackers of the seed
node (Algorithm 3, line 5). At least one solution must be found labelling all of
these nodes out. If this is not possible, propagateOUT simply fails (Algorithm 3,
line 27). This essentially complements propagateIN to guarantee the correct-
ness of the algorithm. The solutions are stored in the list sols, which is ini-
tialised with the result of the forward propagation of the seed node (Algorithm 3,
line 12). For each node in makeOuts, sols is replaced with a new set of satis-
fying solutions. Each successive node is then checked against all new solutions
thus generated which, by construction, label out all of the previously removed
nodes in makeOuts. If we successfully exhaust all of the nodes in makeOuts,
then propagateOUT succeeds and returns all corresponding solutions (line 30).
Otherwise, it fails and Λ is not updated.

Algorithm 3 Backward propagation of an IN label
Input: argument X labelled in, its SCC S, a conditioning labelling function f , and a

labelling function λ′ obtained from propagating X = in forward
Output: false or true with a set of new partial labelling functions Λ

1 Function propagateOUT(X,S,f ,λ′,Λ)
2 if there exists W ∈ X− such that W is in a previous layer and f(W) �= out or there exists

W ∈ X− such that W ∈ S and f(W) = in then
3 return false
4 else
5 makeOuts(X)← {W ∈ X− | W ∈ S and λ′(W) = und}
6 forall W ∈ makeOuts(X) do
7 makeIns(W)← {Z ∈ W − | Z ∈ S and λ′(Z) = und}
8 if makeIns(W) = ∅ then
9 return false

10 end if
11 end forall
12 sols← {λ′}
13 while makeOuts(X) �= ∅ do
14 Pick W ∈ makeOuts(X) such that |makeIns(W)| is minimal
15 makeOuts(X)← makeOuts(X)\{W}
16 newSols← ∅

17 forall λ′ ∈ sols do
18 forall Y ∈ makeIns(W) do

fi91 findExtsFromArg(Y,f ,λ′,newSols) then
20 success← true

fidne12
22 end forall
23 end forall
24 if success then
25 sols← newSols
26 else
27 return false
28 end if
29 end while
30 Λ← newSols
31 return true
32 end if
33 end

A Forward Propagation Algorithm for the Computation of the Semantics 129

λ′
C λ′

R

W1

Y Z4 Z2

W2

undundout
out

out
W1

Y Z3 Z1

W2

undundout
out

out

Fig. 5. Undecided sub-cycles within solutions.

The story does not end here though, and this takes us to the second impor-
tant consideration which has to do with completeness. The result of a successful
backward propagation may still leave some nodes of an SCC in what are effec-
tively induced sub-SCCs ring-fenced by out-labelled nodes. Consider the network
of Fig. 4(L) again. In order to legally label X in we need to label W1 and W2

out. We have seen that this can be done by labelling either Z1 or Z2 in, giving
us the solutions λ′

C (extension {X,Z1}) and λ′
R ({X,Z2}) of Fig. 4(C) and (R),

respectively. However, λ′
C leaves Z2 and Z4 undecided, whereas λ′

R leaves Z1

and Z3 undecided. In order to break these cycles (and hence guarantee complete-
ness w.r.t. all complete extensions), all we have to do is to simply treat Z4–Z2

and Z3–Z1 as “sub-SCCs” and restart the whole process from the same original
conditioning solution but now with initial conditioned solutions λ′

C and λ′
R (see

Fig. 5). This is implemented in lines 8 and 10 of Algorithm 4. In our example, λ′
C

will generate sub-solutions Z4 = in, Z2 = out and Z4 = out, Z2 = in; whereas
λ′

R will generate sub-solutions Z3 = in, Z1 = out and Z3 = out, Z1 = in. The
search will eventually terminate because recursive calls are only made with ini-
tial solutions containing less und labels than their parents’ and the fact that
the argumentation graph is finite.

3.3 Combining All Steps

Algorithm 1 will attempt to label in all candidate arguments that can be possibly
labelled in. We then generate all possible solutions starting from each of these
arguments with Algorithm 4. This requires to attempt to propagate forward from
X = in (line 3). If this is successful, it will generate a new labelling function
λ′′ with at least two less undecided arguments than λ′. We then attempt to
propagate backwards from λ′′ (line 5), to guarantee that all attackers of X are
legally labelled out. If this is successful, it will generate a number of possible
solutions Λ′, which we add to the current set of solutions (line 7). These solutions
may still leave some undecided nodes, so we restart the process from each solution
σ in Λ′ and the remaining candidate undecided nodes (lines 8 and 10), adding
again the results to the set of solutions (line 12). At this point, we can filter out
the solutions that do not yield preferred extensions if needed (see Algorithm 5).

130 O. Rodrigues

Algorithm 4 Finding extensions from a given argument
Input: argument X to label in, its SCC S, a conditioning labelling function f , a legal

labelling function λ, and a set of candidate labelling functions Λ
Output: false or true with an updated set of candidate labelling functions Λ

1 Function findExtsFromArg(X,S,f ,λ,Λ)
2 λ′ ← λ; λ′(X) = in
3 if propagateIN(X,S, f ,λ′,λ′′) then
4 Λ′← ∅

5 if propagateOUT(X,f ,λ′′,Λ′) then
6 for σ ∈ Λ′ do
7 updateExts(σ,Λ)

8 possInsS ← {Y ∈ S|σ(Y) = und, Y �∈ Y +, {X ∈ Y −\S|f(X) = und} = ∅}
9 if possIns �= ∅ then

10 Λ′′← ∅; findExtsFromArgs(S,possInsS,f ,σ,Λ′′)
11 for σ′ ∈ Λ′′ do
12 updateExts(σ′,Λ)
13 end for
14 end if
15 end for
16 else
17 return false
18 end if
19 else
20 return false
21 end if
22 end

Algorithm 5 Updating the set of candidate solutions
Input: a solution λ and a set of candidate solutions Λ
Output: an updated set of candidate solutions Λ, according to the semantics

1 Function updateExts(λ,Λ)
2 if preferred semantics then
3 Remove all solutions γ in Λ whose set of in-nodes is contained in the set of in-nodes of λ
4 end if
5 Λ← Λ ∪ {λ}
6 end

Proposition 1 (Soundness and Completeness). Let S be an SCC, f an
admissible conditioning labelling function, and λ a labelling function for S con-
ditioned by f (cf. Definition 1), then (1) all labelling functions returned by Algo-
rithm 1 are legal; and (2) these are all the legal labelling functions for S.
Proof. Omitted, but soundness comes from the fact that lines 7 and 12 of Algo-
rithm 4 only add legal labelling functions and completeness from the facts that all
alternative solutions are tried in line 2 of Algorithm1 and line 10 of Algorithm4.

4 Analysis and Comparisons with Other Work

In Sect. 2, we briefly described the Modgil-Caminada’s algorithm for preferred
extensions and mentioned that it could behave very inefficiently. In fact, Charwat
et al. pointed out that for the class of argumentation frameworks 〈A,A2〉, the
algorithm produces n! branches (where n = |A|), all with the same extension
[8]. Since each node in each branch of execution corresponds to a transition
step, the total number of transition steps is at least twice as many. In fact, it
is n! +

∑n−1
i=1

n!
(n−i)! ≥ 2n!, to be precise. Although arguably unrealistic, this

A Forward Propagation Algorithm for the Computation of the Semantics 131

class of argumentation frameworks is particularly hard for Modgil-Caminada’s
algorithm, but it is dealt with trivially by our algorithm, requiring only n steps
to identify that no nodes can be possibly labelled in and then producing the
empty extension. This is because the higher the degree of attacks, the higher the
degree of constraints and hence the lower the number of alternatives to check
by our algorithm. Perhaps a more interesting class of frameworks to compare
is what we call bi-directed cycle graphs involving a cycle with all nodes in both
directions (see Fig. 6 (Start)). We now discuss the behaviour of both algorithms
for this class of graphs. Modgil-Caminada’s algorithm would start with the all-
in labelling function and hence all nodes would be initially illegally labelled in.
None is super-illegally labelled in, so the algorithm would iterate through all
nodes, performing a transition step on each one and then recursively calling
itself with the labelling functions resulting from the transitions. For the sake of
argument, let us assume that the algorithm picks node A1 first. A1’s label would
be changed from in to out. As it would become legally labelled out and none of
the nodes that it attacks is labelled out, the first transition step would result in
the labelling TS1 of Fig. 6.6 None of the nodes in TS1 are legally labelled in or
super-illegally labelled in, so the algorithm would then again iterate through all
nodes that remain illegally labelled in (4 in total). In the branches that pick a
node adjacent to A1, say A2, the following would happen. The algorithm would
change A2’s label to out (which is illegal), and then to und. A1 is the only node
that A2 attacks and it is labelled out, but it is legally labelled so. The algorithm
would then choose from one of the remaining illegally labelled nodes (of which
there would be 3). If it agains picks an adjacent node, say A3, it would change
its label to out and then to und, and this process would continue until all nodes
were re-labelled und. This sequence of transitions is depicted in graphs TS1,
TS2,. . . , TS5 of Fig. 6. The algorithm would eventually pick A3 or A4 as an
alternative choice to A2 and in those branches it would eventually produce the
preferred extensions. However, the number of recursive calls would still remain
close to factorial (See Fig. 7). Our algorithm by contrast would start with all
nodes labelled und and pick any initial seed node. In enumeration problems
the choice is actually irrelevant as all eligible undecided nodes are attempted.
In decision problems, we can start with an argument of interest and continue
only if an appropriate extension can be constructed. If we start by propagating
A1 = in, we are immediately forced to label A2 and A5 out, giving us only two
further choices to generate the preferred extensions, i.e., either to label A3 = in
or to label A4 = in. Figure 7 shows the number of transition steps performed
by Modgil-Caminada’s algorithm in bi-directed cycle graphs of up to 24 nodes
and the number of recursive calls in our own algorithm (both implemented in
EqArgSolver). For comparison, we included the factorial and 2x functions.

In [6], Cerutti et al.’s proposed a meta-algorithm that decomposes the original
argumentation framework into SCCs and uses a “base algorithm” at the base of
the recursion to solve the original problem at the SCC level. As an illustration of
the approach, the base algorithm employed a SAT solver. It should be possible

6 There is an analogous branch for all other arguments A2,. . . ,A5.

132 O. Rodrigues

A2

A1

A5

A4 A3

in

in

in

in in
⇒ A2

A1

A5

A4 A3

out

in

inin

in

⇒ A2

A1

A5

A4 A3

out

out

inin

in

(Start) (TS1): A1 (TS2): A2

⇓

A2

A1

A5

A4 A3

und

und

undund

und

⇐ A2

A1

A5

A4 A3

out

und

undout

in

⇐ A2

A1

A5

A4 A3

out

und

outin

in

(TS5): A5 (TS4): A4 (TS3): A3

Fig. 6. Bi-directed cycle graph behaviour

Fig. 7. Transition steps × calls to propagateIN and propagateOUT

to swap the algorithm here proposed for the call to the SAT solver [6, Line
19, Algorithm 2] or vice-versa using an appropriate translation of the problem,
since a conditioning solution simply constrains the set of possible models. This
investigation will appear in a forthcoming paper. Finally, Nofal et al. proposed

A Forward Propagation Algorithm for the Computation of the Semantics 133

algorithms for decision problems in the preferred semantics [13]. The algorithm
presented here is not restricted to this semantics only. We will however compare
the approaches of these algorithms and ours in future work.

5 Empirical Evaluation

Apart from the special cases discussed above, we also conducted some exper-
iments to compare Modgil-Caminada’s algorithm with ours in randomly gen-
erated graphs. Our objective was not to conduct an extensive empirical eval-
uation between general solvers, as this will be done by the 2nd International
Competition of Computational Models of Argumentation (ICCMA), but merely
to provide a first-hand evaluation of the two labelling approaches. In order to
eliminate any implementation factors that could directly affect the comparison
between the two, they were both embedded within two versions of EqArgSolver
which was invoked for the preferred semantics only. For further comparison we
also recorded the results provided by Tweetysolver v1.2, which also uses decom-
position into SCCs but uses a SAT solver for solutions. Tweetysolver was chosen
because it is an off-the-peg easy-to-deploy solver and a “good enough” initial
marker for the performance of SAT-based solvers in this class of problems.

We generated 3 datasets of 1,000 graphs each with maximum cardinality of
15, 25 and 35 nodes using probo’s SCC generator. The maximum number of
SCCs in each graph was set to 2. Each dataset was divided into 10 sets of 100
graphs with probability p = 0.1, p = 0.2, . . . , p = 1 of a node attacking another
within an SCC. We submitted the 3,000 graphs thus generated to the solvers
running on a PC with an Intel i7 4690 K processor and 32 Gb RAM. The left of
Fig. 8 shows the comparative average time per graph successfully solved by each
solver and the right shows the percentage of instances timed out within 180 s.

The graphs turned out to be rather too small to effectively stress test EqArg-
Solver using our algorithm. However, they clearly show the differences in per-
formance between the two algorithms (and Tweetysolver). Both the version of
EqArgSolver using our algorithm as well as Tweetysolver successfully solved all
graphs submitted within the time limit. As expected, the version using Modgil-
Caminada’s algorithm timed out more frequently the more nodes the datasets
contained. For graphs with up to 15 nodes, it timed out in roughly 10% of the
problems, increasing to 40% of timeouts in graphs with up to 25 nodes; and then
to 70% timeouts in graphs with up to 35 nodes. The actual average time per
graph successfully solved varied rather erratically in the version using Modgil-
Caminada’s algorithm and this deserves further investigation. Our algorithm
was clearly the fastest (just above 0 ms per graph on average). The execution
times for Tweetysolver stayed relatively constant at around 1,000–1,250 ms per
graph in all datasets. This shows some advancements in catching up with SAT
reduction approaches.7

7 A more robust SAT-based argumentation solver would employ special techniques to
maximise the performance of the underlying SAT solver.

134 O. Rodrigues

Fig. 8. Average execution time and % of time-outs for graphs with up to 15, 25 and
35 nodes.

6 Conclusions and Future Work

It is well known that the computation of grounded extensions is simply a matter
of propagation of the in labels of unattacked arguments, which can be done very
efficiently using the Discrete Gabbay-Rodrigues Iteration Schema [10]. In this
paper we proposed a novel algorithm for the computation of all other complete
extensions by looking for solutions to the SCCs of an argumentation framework.
With minor modifications the algorithm can be used for the preferred and stable
semantics as well.

The motivation for the development of this algorithm came from the fol-
lowing. In the solver GRIS [14], we used Modgil-Caminada’s algorithm to com-
pute the preferred extensions of an argumentation framework. However, Modgil-
Caminada’s algorithm proved very inefficient for all but the simplest graphs
and can only compute the preferred extensions. We wanted a more efficient
algorithm that could compute all complete extensions and that could also
check argument acceptability without necessarily having to generate all exten-
sions. The algorithm here proposed achieves all that and successfully replaced

A Forward Propagation Algorithm for the Computation of the Semantics 135

Modgil-Caminada’s algorithm in the solver EqArgSolver, which we submitted to
the 2nd ICCMA (see http://argumentationcompetition.org/).

Given that solvers using reduction-based approaches to the computation of
argumentation semantics took the top spots in the 1st ICCMA, the reader might
ask if the development of direct algorithms and tools for argumentation seman-
tics is worthwhile or whether we should simply concentrate on improving the
reduction-based techniques. We would side with Cerutti et al.’s to argue that
both approaches have a role to play [7] and combining them could be advanta-
geous. In addition, we would claim that direct approaches are the only alternative
in applications for which a translation to logic is either not possible at all or very
cumbersome, e.g., in certain numerical argumentation networks.

We tested the new algorithm over tens of thousands of graphs of cardinality
of up to 100,000 nodes. Rather than the number of nodes in the framework
as a whole, it is the complexity and the number of SCCs involved that can
stress a solver using the algorithm. Although some of these characteristics are
unavoidable and intrinsic to the problem, the complexity could be reduced in our
algorithm by avoiding multiple generation of the same solution arising in different
search branches. As it stands, we attempt to label in every candidate argument
in an SCC in order to guarantee the completeness of the set of solutions found,
but this could be improved. Optimisations in this area are under investigation.

A further point to make is that within an SCC we can start the algorithm at
an argument of interest to aid in decision problems of argument acceptability. It
should also be possible to work backwards from a specific argument to see if an
extension containing it can be constructed. This is work in progress.

Finally, each in labelling of a node forces the arguments that it attacks to be
labelled out, which means that in each non-trivial SCC, each forward propaga-
tion reduces the complexity of the original problem by at least two arguments,
but possibly many more in cases where the seed node attacks multiple argu-
ments. We therefore expect the probability of attacks between nodes within an
SCC to be inversely proportional to the execution time of our algorithm. This
needs to be fully demonstrated and we also want to compare the performance of
our algorithm with Nofal et al.’s [13] which, as for Modgil-Caminada’s algorithm,
can only generate the preferred extensions.

References

1. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artif. Intell. 168(1), 162–210 (2005)

2. Baumann, R.: Splitting an argumentation framework. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 40–53. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20895-9 6

3. Baumann, R., Brewka, G., Wong, R.: Splitting argumentation frameworks: an
empirical evaluation. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS
(LNAI), vol. 7132, pp. 17–31. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29184-5 2

http://argumentationcompetition.org/
https://doi.org/10.1007/978-3-642-20895-9_6
https://doi.org/10.1007/978-3-642-29184-5_2
https://doi.org/10.1007/978-3-642-29184-5_2

136 O. Rodrigues

4. Caminada, M.: A labelling approach for ideal and stage semantics. Argum. Com-
put. 2(1), 1–21 (2011)

5. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Stud.
Log. 93(2–3), 109–145 (2009)

6. Cerutti, F., Giacomin, M., Vallati, M., Zanella, M.: A SCC recursive meta-
algorithm for computing preferred labellings in abstract argumentation. In: 14th
International Conference on Principles of Knowledge Representation and Reason-
ing (2014)

7. Cerutti, F., Vallati, M., Giacomin, M.: Where are we now? State of the art and
future trends of solvers for hard argumentation problems. In: Baroni, P., Gordon,
T., Scheffler, T. (eds.) Proceedings of COMMA, Frontiers in Artificial Intelligence
and Applications, vol. 287, pp. 207–218. IOS Press (2016)

8. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation a survey. Artif. Intell. 220,
28–63 (2015)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–357 (1995)

10. Gabbay, D.M., Rodrigues, O.: Further applications of the Gabbay-Rodrigues itera-
tion schema. In: Beierle, C., Brewka, G., Thimm, M. (eds.) Computational Models
of Rationality, vol. 29, pp. 392–407. College Publications (2016)

11. Liao, B.: Toward incremental computation of argumentation semantics: a
decomposition-based approach. Ann. Math. Artif. Intell. 67(3), 319–358 (2013).
http://dx.doi.org/10.1007/s10472-013-9364-8

12. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumen-
tation frameworks. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial
Intelligence, pp. 105–129. Springer, Boston (2009). https://doi.org/10.1007/978-0-
387-98197-0 6

13. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument
systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

14. Rodrigues, O.: GRIS system description. In: Thimm, M., Villata, S. (eds.) System
Descriptions of the 1st International Competition on Computational Models of
Argumentation, pp. 37–40. Cornell University Library (2015)

15. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Stud.
Log. 3(4), 12–29 (2010)

http://dx.doi.org/10.1007/s10472-013-9364-8
https://doi.org/10.1007/978-0-387-98197-0_6
https://doi.org/10.1007/978-0-387-98197-0_6

	A Forward Propagation Algorithm for the Computation of the Semantics of Argumentation Frameworks
	1 Introduction
	2 Background
	2.1 Computing Extensions via Decomposition into SCCs
	2.2 Modgil-Caminada's Algorithm for Preferred Extensions

	3 A New Algorithm for Enumeration and Decision Problems of Argumentation Semantics
	3.1 Propagating Forwards
	3.2 Propagating Backwards
	3.3 Combining All Steps

	4 Analysis and Comparisons with Other Work
	5 Empirical Evaluation
	6 Conclusions and Future Work
	References

