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Abstract. In this paper we investigate the links between instantiated
argumentation systems and the axioms for non-monotonic reasoning
described in [15] with the aim of characterising the nature of argument
based reasoning. In doing so, we consider two possible interpretations of
the consequence relation, and describe which axioms are met by aspic+

under each of these interpretations. We then consider the links between
these axioms and the rationality postulates. Our results indicate that
argument based reasoning as characterised by aspic+ is—according to
the axioms of [15]—non-cumulative and non-monotonic, and therefore
weaker than the weakest non-monotonic reasoning systems considered
in [15]. This weakness underpins aspic+’s success in modelling other
reasoning systems. We conclude by considering the relationship between
aspic+ and other weak logical systems.

1 Introduction

The rationality postulates proposed by Caminada and Amgoud [4] have been
influential in the development of instantiated argumentation systems. These pos-
tulates identify desirable properties for the conclusions drawn from an argument
based reasoning process, and focus on the effects of non-defeasible rules within
an argumentation system. However, these postulates provide no desiderata with
regards to the conclusions drawn from the defeasible rules found within an argu-
mentation system. This latter type of rule is critical to argumentation, and
identifying postulates for such rules is therefore important. At the same time,
a large body of work exists which deals with non-monotonic reasoning (NMR).
Such NMR systems (exemplified by approaches such as circumscription [18],
default logic [23] and auto-epistemic logic [21]) introduce various approaches to
handling defeasible reasoning, and axioms have been proposed to categorise such
systems [15].
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In this paper we seek to combine the rich existing body of work on NMR with
structured argumentation systems. We aim to identify what axioms structured
argument systems, exemplified by aspic+ [19] meet1. In doing so, we also wish
to investigate the links between NMR axioms and the rationality postulates.
This latter strand of work will, in the future, potentially allow us to identify
additional rationality postulates which have not been considered to date.

2 The ASPIC+ Argumentation Framework

aspic+ [19] is a widely used formalism for structured argumentation, which sat-
isfies the rationality postulates of [4]2. Arguments within aspic+ are constructed
by chaining two types of inference rules, beginning with elements of a knowledge
base. The first type of inference rule is referred to as a strict rule, and represents
rules whose conclusion can be unconditionally drawn from a set of premises.
This is in contrast to defeasible inference rules, which allow for a conclusion to
be drawn from a set of premises as long as no exceptions or contrary conclusions
exist.

Definition 1. An argumentation system is a triple AS = 〈L,R, n〉 where:

– L is a logical language.
– ·̄ is a function from L to 2L, such that:

• φ is a contrary of ψ if φ ∈ ψ, ψ �∈ φ
• φ is a contradictory of ψ (denoted by ‘φ = −ψ’), if φ ∈ ψ, ψ ∈ φ
• each φ ∈ L has at least one contradictory.

– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of
the form φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respectively (where φi, φ are
meta-variables ranging over wff in L), and Rs ∩ Rd = ∅.

– n : Rd �→ L is a naming convention for defeasible rules.

We write φ1, . . . , φn � φ if R contains a strict rule φ1, . . . , φn → φ or a defeasible
rule φ1, . . . , φn ⇒ φ.

Definition 2. A knowledge base in an argumentation system 〈L,R, n〉 is a set
K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary
premises).

An argumentation theory consists of an argumentation system and knowledge
base.

Definition 3. An argumentation theory AT is a pair 〈AS ,K〉, where AS is an
argumentation system AS and K is a knowledge base.

1 aspic+ was selected for this study due to its popularity, and its ability to model a
variety of other structured systems [20].

2 While additional rationality postulates have been proposed [24], we do not consider
them in this paper.
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An argumentation theory is strict iff Rd = ∅ and Kp = ∅, and is defeasible
otherwise.

To ensure that reasoning meets norms for rational reasoning according to
the rationality postulates of [4], an aspic+ argumentation system’s strict rules
must be closed under transposition. That is, given a strict rule with premises
ϕ = {φ1, . . . , φn} and conclusion φ (written ϕ → φ), a set of n additional rules
of the following form must be present in the system: {φ} ∪ ϕ\{φi} → φi for all
1 ≤ i ≤ n.

Arguments are defined recursively in terms of sub-arguments and through
the use of several functions: Prem(A) returns all the premises of argument A;
Conc(A) returns A’s conclusion, and TopRule(A) returns the last rule used within
the argument. Sub(A) returns all of A’s sub-arguments. Given this, arguments
are defined as follows.

Definition 4. An argument A on the basis of an argumentation theory AT =
〈〈L,R, n〉,K〉 is:

1. φ if φ ∈ K with: Prem(A) = {φ}; Conc(A) = {φ}; Sub(A) = {A}; TopRule(A)
= undefined.

2. A1, . . . , An →/⇒ φ if Ai are arguments such that there respectively exists a
strict/defeasible rule Conc(A1), . . . , Conc(An) →/⇒ φ in Rs/Rd. Prem(A) =
Prem(A1)∪ . . .∪Prem(An); Conc(A) = φ; Sub(A) = Sub(A1)∪ . . .∪Sub(An)∪
{A}; TopRule(A) = Conc(A1), . . . , Conc(An) →/⇒ φ.

We write A(AT ) to denote the set of arguments on the basis of the theory AT ,
and given a set of arguments A, we write Concs(A) to denote the conclusions
of those arguments, that is:

Concs(A) = {Conc(A)|A ∈ A}

Like other argumentation systems, aspic+ utilises conflict between arguments—
represented through attacks—to determine what conclusions are justified.

An argument can be attacked in three ways: on its ordinary premises, on
its conclusion, or on its inference rules. These three kinds of attack are called
undermining, rebutting and undercutting attacks, respectively.

Definition 5. An argument A attacks an argument B iff A undermines, rebuts
or undercuts B, where:

– A undermines B (on B′) iff Conc(A) = φ for some B′ = φ ∈ Prem(B) and
φ ∈ Kp.

– A rebuts B (on B′) iff Conc(A) = φ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
2 ⇒ φ.

– A undercuts B (on B′) iff Conc(A) = n(r) for some B′ ∈ Sub(B) such that
TopRule(B) is a defeasible rule r of the form φ1, . . . , φn ⇒ φ.

Note that, in aspic+ rebutting is restricted : an argument with a strict TopRule
can rebut an argument with a defeasible TopRule, but not vice versa. ([5,16]
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introduce the aspic- and aspic+
D systems which use unrestricted rebut). Finally,

a set of arguments is said to be consistent iff there is no attack between any
arguments in the set.

Attacks can be distinguished by whether they are preference-dependent
(rebutting and undermining) or preference-independent (undercutting). The for-
mer succeed only when the attacker is preferred. The latter succeed whether or
not the attacker is preferred. Within aspic+ preferences over defeasible rules
and ordinary premises are combined to obtain a preference ordering over argu-
ments [19]. Here, we are not concerned about the means of combination, but,
following [19], we only consider reasonable orderings. For our purposes, a rea-
sonable ordering is one such that adding a strict rule or axiom to an argument
will neither increase nor decrease its preference level.

Definition 6. A preference ordering � is a binary relation over arguments, i.e.,
� ⊆ A × A, where A is the set of all arguments constructed from the knowledge
base in an argumentation system.

Combining these elements results in the following.

Definition 7. A structured argumentation framework is a triple 〈A, att ,�〉,
where A is the set of all arguments constructed from the argumentation system,
att is the attack relation, and � is a preference ordering on A.

Preferences over arguments interact with attacks such that preference-dependent
attacks succeed when the attacking argument is preferred. In contrast preference-
independent attacks always succeed. Attacks that succeed are called defeats.
Using Definition 4 and the notion of defeat, we can instantiate an abstract argu-
mentation framework from a structured argumentation framework.

Definition 8. An (abstract) argumentation framework AF corresponding to a
structured argumentation framework SAF = 〈A, att ,�〉 is a pair 〈A,Defeats〉
such that Defeats is the defeat relation on A determined by SAF .

This abstract argumentation framework can be evaluated using standard argu-
mentation semantics [8], defining the notion of an extension:

Definition 9. Let AF = 〈A,Defeats〉 be an argumentation framework, let A ∈
A and E ⊆ A. E is said to be conflict-free iff there does not exist a B,C ∈ E such
that B defeats C. E is said to defend A iff for every B ∈ A such that B defeats A,
there exists a C ∈ E such that C defeats B. The characteristic function F : 2A →
2A is defined as F (E) = {A ∈ A|E defends A}. E is called (1) an admissible set
iff E is conflict-free and E ⊆ F (E); (2) a complete extension iff E is conflict-
free and E = F (E); (3) a grounded extension iff E is the minimal complete
extension; (4) a preferred extension iff E is a maximal complete extension, where
minimality and maximality are w.r.t. set inclusion; and (5) a stable extension
iff E is a preferred extension which attacks all arguments in A − E.

We note in passing that other extensions have been defined and refer the reader
to [1] for further details.
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For a given semantics, if an argument is in an extension, it is said to be
justified, given the information in the argumentation framework, and given the
semantics that have been adopted. Dealing with structured arguments, we are
not only interested in what arguments hold, but which propositions are the
conclusions of arguments that hold, given some semantics. Thus we say that a
proposition is a justified conclusion if it is the conclusion of an argument that
is in an extension under some semantics. In fact, as [6] points out, the situation
is more complex than that, since under some semantics there may be multiple
extensions. Thus [6] defines the notions of sceptically, credulously and universally
justified conclusions under a given semantics as follows.

Definition 10. For T ∈ {admissible, complete, preferred, grounded, stable}, if
AF = 〈A,Defeats〉 is an argumentation framework. we say that:

– φ is a T credulously justified conclusion of AF iff there exists an argument A
and a T extension E such that A ∈ E and Conc(A) = φ.

– φ is a T sceptically justified conclusion of AF iff for every T extension E,
there exists an argument A ∈ E such that Conc(A) = φ.

– φ is a T universally justified conclusion of AF iff there exists an argument A
for every T extension E, such that A ∈ E and Conc(A) = φ.

3 Axiomatic Reasoning and ASPIC+

Kraus et al. [15], building on earlier work by Gabbay [11], identified a set of
axioms which characterise non-monotonic inference in logical systems, and stud-
ied the relationships between sets of these axioms. Their goal was to characterise
different kinds of reasoning; to pin down what it means for a logical system to
be monotonic or non-monotonic; and—in particular—to be able to distinguish
between the two. Table 1 presents the axioms of [15], which we will use to char-
acterise reasoning in aspic+. The symbol |∼ encodes a consequence relation,
while |= identifies the statements obtainable from the underlying theory. We
have altered some of the symbols used in [15] to avoid confusion with the nota-
tion of aspic+. Equivalence is denoted ≡ (rather than ↔), and ↪→ (rather than
→) denotes the existence of a strict or defeasible rule.

Consequence relations that satisfy Ref, LLE, RW, Cut and CM are said to
be cumulative, and [15] describes them as being the weakest interesting logical
system. Cumulative consequence relations which also satisfy CP are monotonic,
while consequence relations that are cumulative and satisfy M are called cumula-
tive monotonic. Such relations are stronger than cumulative but not monotonic
in the usual sense.

To determine which axioms aspic+ does or does not comply with, we must
decide how different aspects of the axioms should be interpreted. We interpret the
consequence relation |∼ in two ways that are natural in the context of aspic+—
describing these in detail later—and which fit with the high level meaning of “if
α is in the knowledge base, then β follows”, or “β is a consequence of α”.
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Table 1. The axioms from [15] that we will consider.

Abbr. Axiom Name
Ref α |∼ α Reflexivity

LLE |= α ≡ β α |∼ γ

β |∼ γ
Left Logical Equivalence

RW |= α ↪→ β γ |∼ α

γ |∼ β
Right Weakening

Cut α ∧ β |∼ γ α |∼ β

α |∼ γ
Cut

CM α |∼ β α |∼ γ

α ∧ β |∼ γ
Cautious Monotonicity

M |= α ↪→ β β |∼ γ

α |∼ γ
Monotonicity

T α |∼ β β |∼ γ

α |∼ γ
Transitivity

CP α |∼ β

β |∼ α
Contraposition

Assuming such an interpretation of α |∼ β we can consider the meaning of
the axioms. Some axioms are clear. For example, axiom T says that if β is a
consequence of α, and γ is a consequence of β, then γ is a consequence of α.
Other axioms are more ambiguous. Does α ∧ β |∼ γ in Cut mean that γ is a
consequence of the conjunction α ∧ β, or a consequence of α and β together? In
other words is ∧ a feature of the language underlying the reasoning system, or
a feature of the meta-language in which the properties are written? Similarly,
given the distinction between strict and defeasible rules, is α ↪→ β a strict rule
in aspic+, a defeasible rule, or some statement in the property meta-language?

We interpret the symbols found in the axioms as follows:

– |= α means that α is an element of the relevant knowledge base.
– α ∧ β means both α and β, in particular in Cut and CM, ∧ means that both

α and β are in the knowledge base.
– α ≡ β is taken—as usual—to abbreviate the formula (α ↪→ β)∧ (β ↪→ α). We

assume α ↪→ β and β ↪→ α have the same interpretation, i.e., both or neither
are strict.

– α ↪→ β has two interpretations. We have the strict interpretation in which
α ↪→ β denotes a strict rule α → β in aspic+, and the defeasible interpreta-
tion in which α ↪→ β denotes either a strict or defeasible rule. We denote the
latter interpretation by writing α � β.
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4 Axioms and Consequences in ASPIC+

In this section we examine which of the axioms aspic+ satisfies. Before doing
so however, we must further pin down some aspects of aspic+ rules.

4.1 Preliminaries

To evaluate aspic+, we have to be a bit more precise about exactly what we
are evaluating. We start by saying that we assume an arbitrary aspic+ argu-
mentation theory AT = 〈〈L,R, n〉,K〉, in the sense that we say nothing about
the contents of the knowledge base, or what domain-specific rules it contains.
However, we distinguish between two classes of theory, with respect to the base
logic that the theory contains.

The idea we capture by this is that in addition to domain specific rules—
rules, for example, about birds and penguins flying—an aspic+ theory might
also contain rules for reasoning in some logic. For example, we might equip an
aspic+ theory with the axioms and inference rules of classical logic. Such a
theory would be able to construct arguments using all the rules of classical logic,
as well as all the domain-specific rules in the theory. The two base logics that we
consider are classical logic, and what we call the “empty” base logic, where the
aspic+ theory only contains domain-specific rules. (We make some observations
about other base logics—intuitionistic logic and defeasible logic [2], but show no
formal results for them.)

For each of the base logics, we consider the two different interpretations of
the non-monotonic consequence relation |∼ described above, identifying which
axioms each interpretation satisfies. For our theory AT , we write ATx to denote
an extension of this augmentation theory also containing proposition x: ATx =
〈〈L,R, n〉,K ∪ {x}〉. An argument present in the latter, but not former, theory
is denoted Ax.

4.2 Argument Construction

We begin by considering the consequence relation as representing argument con-
struction. In other words, we interpret α |∼ β as meaning that if α is in the
axioms or ordinary premises of a theory, we can construct an argument for β.
More precisely:

Definition 11. We write α |∼B,a β, if for every aspic+ argumentation theory
AT = 〈〈L,R, n〉,K〉 with base logic B such that β �∈ Concs(A(AT )), it is the
case that β ∈ Concs(A(ATα)), where B = {∅, c}, representing the empty and
classical base logics respectively.

Proposition 1. Ref, LLE, RW, Cut and CM hold for |∼∅,a in strict and defea-
sible theories.
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Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [Ref] Given a the-
ory ATα, we have an argument Aα = [α], so Ref holds for |∼∅,a. [LLE] Since
α |∼∅,a γ, ATα contains a chain of arguments Aα

1 , Aα
2 , . . . , Aα

n with Aα
1 = [α]

and Conc(Aα
n) = γ. Given |= α ≡ β, we have that both α � β and β � α are

in the theory AT , so are in the theory ATβ. Within ATβ, we obtain a chain of
arguments Bβ

0 = [β], Bβ
1 = [Bβ

0 � α], Aβ
2 , . . . , Aβ

n. That is β |∼∅,a γ. Therefore,
both strict and defeasible versions of LLE hold for |∼∅,a. [RW] Since γ |∼∅,a α

in theory ATγ , there is a chain of arguments Aγ
1 , Aγ

2 , . . . , Aγ
n with Aγ

1 = [γ] and
Conc(Aγ

n) = α. Given |= α ↪→ β, theory AT must contain α � β, as must ATγ .
In ATγ , we have a chain of arguments Aγ

1 , . . . , Aγ
n, Aγ

n+1 = [Aγ
n ⇒ β]. Thus,

γ |∼∅,a β, and both strict and defeasible versions of RW hold for |∼∅,a. [Cut]

Since α ∧ β |∼∅,a γ, there is a chain of arguments Aα,β
1 , Aα,β

2 , . . . , Aα,β
n with

Aα,β
1 = [α], Aα,β

2 = [β] in theory ATα,β, and Conc(Aα,β
n ) = γ. In theory ATα,

since α |∼∅,a β, there is a chain of arguments Bα
1 , Bα

2 , . . . , Bα
m with Bα

1 = [α] and
Conc(Bα

m) = β. There is also a chain of arguments Bα
1 , Bα

2 , . . . , Bα
m, Aα

3 , . . . , Aα
n.

That is α |∼∅,a γ. Therefore, cut holds for |∼∅,a. [CM] Since α |∼∅,a γ ATα has
a chain of arguments Aα

1 , . . . , Aα
n with Aα

1 = [α] and Conc(Aα
n) = γ. ATα,β has a

similar chain of arguments Aα,β
1 , . . . , Aα,β

n , so α ∧ β |∼∅,a γ. CM thus holds for
|∼∅,a.

Since Ref, LLE, RW, Cut and CM hold, |∼∅,a is cumulative for both strict and
defeasible theories.

Proposition 2. M and T hold for |∼∅,a in strict and defeasible theories.

Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [M] Since β |∼∅,a γ,
in the theory ATβ, there is a chain of arguments Aβ

1 , Aβ
2 , . . . , Aβ

n with Aβ
1 = [β]

and Conc(Aβ
n) = γ. Given |= α ↪→ β, we have α � β in the theory AT , and also

in the theory ATα. In the latter, there is a chain of arguments Bα
0 = [α], Bα

1 =
[Bα

0 � β], Aα
2 , . . . , Aα

n. That is α |∼∅,a γ. Therefore, both strict and defeasible
versions of M hold for |∼∅,a. [T] Since β |∼∅,a γ, in ATβ, there is a chain
of arguments Bβ

1 , Bβ
2 , . . . , Bβ

m with Bβ
1 = [β] and Conc(Bβ

m) = γ. Similarly,
since α |∼∅,a β, in ATα, there is a chain of arguments Aα

1 , Aα
2 , . . . , Aα

n with
Aα

1 = [α] and Conc(Aα
n) = β. Combining this with Bα

1 , Bα
2 , . . . , Bα

m, we obtain
the combined chain of arguments Aα

1 , Aα
2 , . . . , Aα

n, Bα
2 , . . . , Bα

m. That is α |∼∅,a γ.
Therefore, T holds for |∼∅,a.

Thus |∼∅,a is cumulative monotonic for strict or defeasible theories. It is not,
however, monotonic.

Proposition 3. CP does not hold for |∼∅,a in strict or defeasible theories.

Proof. Consider an aspic+ theory which contains: K = {c}, Rs = {α, c →
d;α, d → c; c, d → α;α → e; e → α; d, e → β; d, β → e;β, e → d} We have
α |∼∅,a β but not β |∼∅,a α. Therefore, CP does not hold for |∼∅,a.
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Having characterised |∼∅,a, we consider |∼c,a. Clearly this will satisfy all the
properties that are satisfied by |∼∅,a, since it includes all the inference rules of
|∼∅,a. In addition, we have the following.

Proposition 4. CP holds for |∼c,a in strict theories.

Proof. Any strict aspic+ theory with a classical base logic will generate the same
set of consequences as classical logic. Furthermore, we know that CP is satisfied
under classical logic. Therefore, the consequence relation |∼c,a satisfies CP for
any strict theory.

Thus |∼c,a is monotonic for strict theories. However:

Proposition 5. CP does not hold for |∼c,a in defeasible theories.

Proof. Consider the counter-example from Proposition 3 where all rules are
defeasible. Since the defeasible portion of the theory does not contain a rule of
the form β → d ∨ e, CP will not be satisfied.

4.3 Justified Conclusions

Next we interpret α |∼ β as meaning that if α is in a theory, we can construct
an argument for β such that β is in the set of justified conclusions (regardless of
preferences). We will consider only the grounded and preferred semantics, but,
as we will see, we have to bring in the ideas from Definition 10 since different
kinds of justified conclusion lead to α |∼ β satisfying different properties. We
start with:

Definition 12. Let AF = 〈A,Defeats〉 be an abstract argumentation frame-
work, we define

Justg(A(AT )) = {φ|φ is a grounded justified conclusion}
Justc

p(A(AT )) = {φ|φ is a preferred credulously justified conclusion}
Justs

p(A(AT )) = {φ|φ is a preferred sceptically justified conclusion}
Justu

p(A(AT )) = {φ|φ is a preferred universally justified conclusion}

Note that we don’t have to distinguish between different classes of grounded
justified conclusion because, since there is exactly one grounded extension, the
three different classes of grounded justified conclusion coincide. Then:

Definition 13. We write α |∼g
B,j β, if for every aspic+ argumentation theory

AT = 〈〈L,R, n〉,K〉 with the B base logic such that β �∈ Justg(A(AT )), it is the
case that β ∈ Justg(A(ATα)), where B = {∅, c}.

Definition 14. We write α |∼p,Sem
B,j β, if for every aspic+ argumentation theory

AT = 〈〈L,R, n〉,K〉 with the B base logic such that β �∈ JustSem
p (A(AT )), it is

the case that β ∈ JustSem
p (A(ATα)), where B = {∅, c} and Sem ⊆ {c, s, u}.
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We also write |∼p,∗
∅,j to denote the union of |∼p,c

∅,j , |∼p,s
∅,j and |∼p,u

∅,j . Thus, α |∼p,∗
∅,j β

means that a conclusion holds under (at least one of) the consequence relations.
We write |∼p,∩{S}

∅,j to denote that a conclusion holds under all the consequence

relations in S. Thus, for example if we have that α |∼p,∩{c,s}
∅,j β, then it is the

case that α |∼p,c
∅,j β and α |∼p,s

∅,j β. Similarly, when we say an axiom holds for
|∼p,∗

∅,j , it means that the axiom holds for at least one of |∼p,s
∅,j , |∼p,u

∅,j , and |∼p
∅,j .

The same interpretation applies for axioms holding with respect to |∼p,∩{s}
∅,j .

It is worth noting the following result.

Proposition 6. If α |∼g
B,j β or α |∼p,∗

B,j β then α |∼B,a β.

Proof. Follows immediately from the definitions—for β to be a justified conclu-
sion, there must first be an argument with β as a conclusion.

Since there are, in general, less justified conclusions of a theory than there are
arguments, |∼g

∅,j and |∼p,∗
∅,j are more restrictive notions of consequence than |∼∅,a.

It is therefore no surprise to find that fewer of the axioms from [15] hold. We
have the following.

Proposition 7. Ref, and the defeasible versions of LLE and RW, do not hold
for |∼g

∅,j, |∼p,∗
∅,j in defeasible theories.

Proof. [Ref] Consider an aspic+ theory that contains: Kn = {α} and R = ∅.
Here, we have an argument A = [α]. If a is in the knowledge base Kp, we have
another argument B = [a]. However, B is defeated by A, but not vice versa. So B
is not in any extension. Thus, Ref does not hold for either |∼g

∅,j or |∼p,∗
∅,j . [LLE

(defeasible version)] Consider an aspic+ theory that contains Kn = {c} and
R = {α ⇒ β;β ⇒ α;α ⇒ γ; c → n1} where n(β ⇒ α) = n1. Here, α |∼g

∅,j γ and
α |∼p,∗

∅,j γ, but, β �|∼g
∅,j γ and β �|∼p,∗

∅,j γ. Therefore, the defeasible version of LLE
does not hold for either |∼g

∅,j or |∼p,∗
∅,j . [RW (defeasible version)] Consider

an aspic+ theory that contains β in its axioms. For such a theory, β will not
appear in any justified conclusions. Therefore, the defeasible version of RW does
not hold for either |∼g

∅,j or |∼p,∗
∅,j .

Proposition 8. The strict version of LLE and RW hold for |∼g
∅,j and |∼p,∗

∅,j in
strict and defeasible theories.

Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [RW (strict ver-
sion)] Consider the extension Eγ in ATγ containing an argument Aγ with
Conc(Aγ) = α. Since |= α � β, under the strict interpretation, we know that
α → β is in ATγ . Therefore, we can construct an argument Bγ = Aγ → β.
Furthermore, the attackers of B are the attackers of A because TopRule(B) is
a strict rule. Since Aγ is in the extension Eγ , Bγ is in the same extension
Eγ . Therefore the strict version of RW holds for |∼g

∅,j and |∼p,∗
∅,j . [LLE (strict

version)] Since |= α ≡ β, under the strict interpretation, the rules β → α
and α → β are in AT , ATα, ATβ and ATα,β. Thus ATα, ATβ, ATα,β have the
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same extensions, just as for RW(strict version). If α |∼p,∗
∅,j γ, then β |∼p,∗

∅,j γ. If
α |∼g

∅,j γ, then β |∼g
∅,j γ. Therefore, the strict version of LLE holds for |∼g

∅,j and
|∼p,∗

∅,j .

Proposition 9. Cut holds for |∼g
∅,j and |∼p,s

∅,j in strict and defeasible theories.

Proof. Since α |∼g
∅,j β, the grounded justified conclusions of ATα contain α and

β. By adding β into the knowledge base, the grounded justified conclusions will
not change – if the newly added β is not justified, then it has not effect; if the
newly added β is justified, it will remain in the justified conclusions. The same
argument applies for |∼p,s

∅,j .

Proposition 10. Cut does not hold for either |∼p,c
∅,j or |∼p,u

∅,j in defeasible theo-
ries.

Proof. We will give a counter-example. Consider the aspic+ theory that include
K = ∅ and R = {a ⇒ c; c ⇒ b; b ⇒ c; c ⇒ r; }. The credulous or universal
justified conclusions of ATα are {a, b, c}. The credulous or universal justified
conclusions of ATα,β are {a, b, c, r, c}. That is a∧b |∼p

∅,j r, a |∼p
∅,j b, but a �|∼p

∅,j r.
Therefore Cut does not hold for either |∼p,c

∅,j or |∼p,u
∅,j .

Proposition 11. CM holds for |∼g
∅,j in strict and defeasible theories.

Proof. Since α |∼g
∅,j γ, the grounded justified conclusions of ATα contain α and

γ. By adding β into the knowledge base, the grounded justified conclusions will
not change. The justification is same as in the proof of Proposition 9.

Proposition 12. CM does not hold for |∼p,∗
∅,j in defeasible theories.

Proof. We will give counter-examples. Consider an aspic+ theory that include
K = ∅ and R = {a ⇒ b; a ⇒ r; b → n1; r → n2; }, where n(a ⇒ b) = n1
and n(a ⇒ r) = n2. The credulous or universal justified conclusions of ATα are
{a, r, n1, b, n2}. And the credulous or universal justified conclusions of ATα,β

are {a, b, n2}. That is a |∼p
∅,j b, a |∼p

∅,j r, but a ∧ b �|∼p
∅,j r. Therefore CM does

not hold for either |∼p,c
∅,j or |∼p,u

∅,j . Now, consider an aspic+ theory that include
K = ∅, R = {a ⇒ r; r ⇒ b; b ⇒ r}. The sceptical justified conclusions of ATα

are {a, b, r}. And the sceptical justified conclusions of ATα,β are {a, b}. a |∼p
∅,j b,

a |∼p
∅,j r, but a ∧ b �|∼p

∅,j r. Therefore CM does not hold for |∼p,s
∅,j .

Proposition 13. M, T and CP do not hold for |∼g
∅,j or |∼p,∗

∅,j in defeasible the-
ories.

Proof. We will give counter-examples. [M] Consider an aspic+ theory that
contains Kn = {α} and R = {α → β;β → α;β ⇒ γ}. Thus, β |∼g

∅,j γ

and β |∼p,∗
∅,j γ, however, α �|∼g

∅,j γ and α �|∼p,∗
∅,j γ. Therefore, M does not hold

for |∼g
∅,j or |∼p,∗

∅,j . [T] Consider an aspic+ theory which includes K = ∅ and
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R = {α ⇒ β;β ⇒ c; c ⇒ γ;α ⇒ n1} where n(c ⇒ γ) = n1. Thus, a |∼g
∅,j b,

b |∼g
∅,j r, a |∼p,∗

∅,j b and b |∼p,∗
∅,j r, but a �|∼g

∅,j r and a �|∼p,∗
∅,j r. Therefore, T does

not hold for |∼g
∅,j or |∼p,∗

∅,j . [CP] Since contraposition does not hold for |∼∅,a, by
Proposition 3 it cannot hold for |∼g

∅,j or |∼p,∗
∅,j .

If we consider only strict theories, the following holds.

Proposition 14. Ref, CM, M and T hold for |∼g
∅,j and |∼p,∗

∅,j in strict theories.

Proof. If the theory is strict, then for any argumentation theory, all conclusions
are justified. Therefore, for any strict theory, if α |∼∅,a β, then α |∼g

∅,j β and
α |∼p,∗

∅,j β. We know that |∼∅,a holds for Ref, CM, M and T, therefore, |∼g
∅,j and

|∼p,∗
∅,j holds for Ref, CM, M and T in strict theories.

Proposition 15. CP does not hold for |∼g
∅,j or |∼p,∗

∅,j in strict theories.

Proof. Since CP does not hold for |∼∅,a under strict theories, CP can not hold
for |∼g

∅,j or |∼p,∗
∅,j .

This completes the characterisation of |∼g
∅,j , |∼p,s

∅,j , |∼p,c
∅,j and |∼p,u

∅,j . As we argued
above, adding classical logic as a base logic will create consequence relations that
satisfy the same properties as each of these since they will includes all the same
inference rules. In addition, we have the following:

Proposition 16. CP holds for |∼g
c,j and |∼p,∗

c,j in strict theories.

Proof. As above, |∼c,a satisfies CP in strict theories. Since the strict part of
the theory is always consistent, any conclusions from the argument construction
are justified. Therefore, the consequence relation |∼g

c,j and |∼p,∗
c,j satisfies CP for

strict theories.

4.4 Summary

The results for the two forms of consequence and the two base logics are sum-
marized in Table 2. This shows, for example, that Ref is satisfied by |∼c,j for
strict theories whether the proposition in question is a premise or an axiom;
that for defeasible theories, Ref is never satisfied by |∼c,j for propositions that
are premises, but is always satisfied for propositions that are axioms. Similarly,
the table shows that CP does not hold for |∼∅,a for either strict or defeasible
theories; that CP holds for |∼c,a for strict theories, but not for defeasible theories.

Recall from Sect. 3 that a consequence relation which satisfies axioms Ref,
LLE, RW, Cut and CM is said to be “cumulative”, a cumulative consequence
relation that also satisfies M is said to be “cumulative monotonic”, and a conse-
quence relation that satisfies CP is monotonic. Given this, it is clear that Table 2
is telling us that |∼∅,a is cumulative monotonic for both strict and defeasible the-
ories, while |∼c,a is monotonic for strict theories and cumulative monotonic for
defeasible theories. Similarly, |∼g

∅,j is cumulative monotonic for strict theories,
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and cumulative for the strict portions of defeasible theories (if Ref is applied
to axioms and LLE, RW and M are applied to strict rules only), but not even
cumulative for the defeasible parts of defeasible theories (if Ref is applied to
ordinary premises and LLE, RW or M are applied to defeasible rules, none of
them hold). |∼p,s

∅,j is weaker than |∼g
∅,j , since CM doesn’t hold, and |∼p,{c,u}

∅,j is
weaker still since Cut doesn’t hold. Adding classical logic as a base logic means
that CP holds, so |∼g

c,j is monotonic for strict theories, and behaves exactly like
|∼g

∅,j for defeasible theories. Again |∼p,s
c,j is weaker than |∼g

c,j , since CM doesn’t

hold, and |∼p,{c,u}
c,j is weaker still since Cut doesn’t hold.

4.5 Discussion

What light do the results in Table 2 shine on aspic+ and argumentation-based
reasoning in general? We will answer that question by considering each of the
consequence relations in turn.

Starting with |∼∅,a, it is no surprise that the relation is cumulative monotonic
and satisfies the axiom M which captures a form of monotonicity. It is clear from
the detail of aspic+, and indeed any argumentation system, that the number
of arguments grows over time, and that once introduced, arguments do not
disappear. However, the fact that |∼∅,a is not monotonic in the same strict sense
as classical logic, and so is strictly weaker, as a result of not satisfying CP, is a
bit more interesting. This is, of course, because arguments are not subject to the
law of the excluded middle—it is perfectly possible for there to be arguments
for α and α from the same theory.

Turning to the various versions of consequence built around justified con-
clusions, they are perhaps more reasonable notions of consequence for aspic+

than |∼∅,a. If β is a justified conclusion of α, then there is an argument for β
which holds despite any attacks (in the scenario we have considered, where all
attacks may be defeats for some preference ordering—and therefore succeed—
there can still be attacks on the argument for β, but the attacking arguments
must themselves be defeated). This is quite a restrictive notion of consequence
in a representation that allows for conflicting information, and as Table 2 makes
clear, even |∼g

∅,j , which is the strongest of the consequence relations based on
justified conclusions, is a relatively weak notion of consequence and obeys less
of the axioms than the non-monotonic logics analysed in [15], for example. For
defeasible theories |∼g

∅,j is not cumulative, and only satisfies LLE and RW if the
rules applied in those axioms are strict. As we pointed out above, at the time
that [15] was published, cumulativity was considered the minimum requirement
of a useful logic3. Whether or not one accepts this, it is clear that aspic+ is
weak. But is it too weak? To answer this, we should consider reason that |∼g

∅,j

is not cumulative, which as Table 2 shows is due to LLE, RW and Ref.

3 This position was doubtless a side-effect of the fact that at that time there were no
logics that did not obey cumulativity. The subsequent discovery of logics of causality
that are not cumulative suggests that this view should be revised.
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LLE and RW only hold in the case of strict rules, either because the theory
is strict, or because the case in question is of a strict rule in a defeasible theory.
For both LLE and RW, the effect of the axiom is to extend an existing argument,
either switching one premise for another (LLE), or adding a rule to the conclusion
of an argument (RW). While having these axioms hold for defeasible rules would
allow |∼g

∅,j to be cumulative for defeasible theories, this is not reasonable. Using
LLE or RW to extend arguments with defeasible rules—by definition—means
that the new arguments created by this extension can be defeated. Thus their
conclusions may not be justified, and |∼g

∅,j must not be cumulative for defeasible
rules. In other words |∼g

∅,j is not cumulative for defeasible rules exactly because
it makes no sense for a system of defeasible rules to be cumulative.

This weakness raises the question of whether reasoning in aspic+ can be
strengthened. When we add classical logic as a base logic, we get a family of
consequence relations that satisfy CP. Thus |∼g

c,j is monotonic, but only if all
elements are strict. For theories with defeasible elements, |∼g

c,j cannot guarantee
that CP will hold for arbitrary α and β, and, as above, LLE and RW will only
hold for strict rules. Adding a base logic that is weaker than classical logic does
not help in strengthening conclusions. If we add intuitionistic logic, for example,
we don’t get CP, because intuitionistic logic explicitly rejects this pattern of
reasoning. A similar argument applies to Ref. Proposition 14 tells us that Ref
holds for |∼g

∅,j and |∼p,∗
∅,j for strict theories, meaning that α has to be an axiom4.

If Ref were to hold for defeasible theories, α could be a premise. But premises
can be defeated, again by definition, so it is not appropriate to directly conclude
that any premise is a justified conclusion (it is necessary to go through the whole
process of constructing arguments and establishing extensions to determine this).

From this we conclude that although |∼g
∅,j and |∼g

c,j are not cumulative, and
hence aspic+ is, in some sense, weaker than non-monotonic logics like circum-
scription [18] and default logic [23], it is not clear that it is too weak. That
is strengthening |∼g

∅,j or |∼g
c,j so that they would be cumulative for defeasible

theories would allow for conclusions that make no sense from the point of view
of argumentation-based reasoning. Whether there are other ways to strengthen
aspic+ that do make sense is an open question, and one we intend to investigate
in the future.

5 The Rationality Postulates

Finally, we consider the three postulates of [4] (which aspic+ complies with),
namely (1) closure under strict rules; and (2) direct and (3) indirect consistency.
We ask whether the axioms discussed in this paper are equivalent to any of these
postulates. In what follows, we assume that strict rules are consistent.

4 This is exactly how defeasible logic [2] satisfies Ref.
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5.1 Closure Under Strict Rules

Proposition 17. An argumentation framework meets closure under strict rules
if and only if the consequence relation for strict rules complies with right weak-
ening (RW) with regards to justified conclusions.

Proof. Given an argumentation framework AF , assume that α is in the justified
conclusions. Therefore � |∼j α, and assume that there is a strict rule |= α → β.
Using RW, we obtain � |∼j β. Therefore RW implies closure under strict rules.
Furthermore, having γ |∼j α, as well as a strict rule α → β results in γ |∼j β,
i.e., the strict form of RW.

5.2 Direct Consistency

Direct consistency with regards to |∼j requires that no extension contains incon-
sistent arguments (and therefore inconsistent conclusions). This is equivalent to
the following axiom, unobtainable from the axioms discussed previously.

α |∼j β

α �|∼j β

5.3 Indirect Consistency

Proposition 18. Assume we have direct consistency, and that strict rules are
consistent. Any system which satisfies monotonicity under strict rules will satisfy
indirect consistency, and vice-versa.

Proof. From [4, Proposition 7], direct consistency and closure yield indirect con-
sistency. We assume direct consistency, and monotonicity gives closure.

In this section we have shown that the rationality postulates described in [4]
can be described using axioms from classical logic and non-monotonic reasoning.
In future work, we intend to determine whether these axioms can help identify
additional rationality postulates. In addition, we will investigate whether these
axioms can represent the additional rationality postulates described in [24].

6 Related Work

There are several papers describing work that is similar in some respects to
what we report here. Billington [2] describes Defeasible Logic, a logic that, as its
name implies, differs from classical logic in that it deals with defeasible reason-
ing. In addition to introducing the logic, [2] shows that defeasible logic satisfies
the axioms of reflexivity, cut and cautious monotonicity suggested in [11], thus
satisfying what [11] describes as the basic requirements for a non-monotonic
system (such a system is equivalent to a cumulative system in [15]). [13] sub-
sequently established significant links between reasoning in defeasible logic and
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argumentation-based reasoning. To do this, [13] provides an argumentation sys-
tem that makes use of defeasible logic as its underlying logic, and shows that the
system is compatible with Dung’s semantics [8]. Given Defeasible Logic’s close
relation to Prolog [22], this line of work is closely related to Defeasible Logic Pro-
gramming (DeLP) [12], a formalism combining results of Logic Programming
and Defeasible Argumentation. As a rule-based argumentation system, DeLP
also has strict/defeasible rules and a set of facts. DeLP differs from aspic+ in
the types of attack relation it permits (no undermining) and in the way that it
computes conclusions (it does not implement Dung’s semantics).

[17] first introduce an argument system, containing two kinds of inference
rules, namely, monotonic inference rules and non-monotonic inference rules.
They show that most well-known non-monotonic systems, such as default logic,
autoepistemic logic, negation as failure and circumscription, can be formulated as
instances of their argument system. [3] continues this line of work, presenting an
abstract framework for default reasoning which includes Theorist, default logic,
logic programming, autoepistemic logic, non-monotonic modal logics, and cer-
tain instances of circumscription as special cases. [13] subsequently established
significant links between reasoning in defeasible logic and argumentation-based
reasoning. To do this, [13] provides an argumentation system that makes use of
defeasible logic as its underlying logic, and shows that the system is compatible
with Dung’s semantics [8]. Similar to the current work, [14] investigates various
consequence relations of deductive argumentation and their satisfaction of vari-
ous properties. However, [14] focuses entirely on argument construction and says
nothing about justified conclusions.

Also related are [9,10], which investigate cumulativity of aspic-like struc-
tured argumentation frameworks. Finally, [7] analyzes cautious monotonicity
and cumulative transitivity with respect to Assumption-Based Argumentation.

7 Conclusions

In this paper we considered which of the axioms of [15] aspic+ meets based on
two different interpretations of the consequence relation. We demonstrated that,
in terms of those axioms, the most natural forms of consequence in aspic+ are
rather weak. This is the case even when we assume aspic+ theories contain all
the inference rules of classical logic. However, as we discuss, strengthening the
consequence relation (to, for example, be cumulative) neither makes sense in
terms of argumentation-based reasoning, nor can easily be achieved by adding
additional inference rules to aspic+ theories. We also investigated the relation-
ship between the axioms of [15] and the rationality postulates, and suggested an
alternative, axiom based formulation of the latter.

As mentioned above, in the future we will investigate whether additional
axioms can encode the rationality postulates described in [24]. We will also exam-
ine the properties of different interpretations of the logical symbols. For example,
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we assumed that ≡ encodes the presence of two rules, but says nothing about
their preferences or defeaters. Finally, we may consider other interpretations
of the consequence relation. This paper therefore opens up several significant
avenues of future investigation.
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