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Abstract. We propose ASPIC-END, an adaptation of the structured
argumentation framework ASPIC+ which can incorporate explanations
and natural deduction style arguments. We discuss an instantiation of
ASPIC-END that models argumentation about explanations of seman-
tic paradoxes (e.g. the Liar paradox), and we show that ASPIC-END
satisfies rationality postulates akin to those satisfied by ASPIC+.

1 Introduction

In order to develop tools that intelligently support scientists in their interpreta-
tion of data and evaluation of theories, it is important to develop formal models
of the argumentation and reasoning about conflicting information found in many
academic disciplines. One promising methodology for approaching this problem
is structured argumentation theory [4], which allows for a fine-grained model
of argumentation and argumentative reasoning based on a logical language and
evaluated according to the principles developed in abstract argumentation theory.

One of the dominant formal frameworks for structured argumentation is the
ASPIC+ framework [12]. In ASPIC+, arguments are built from axioms and
premises as well as from strict and defeasible rules, in a similar manner as proofs
are built from axioms and rules in a Hilbert-style proof system. Three kinds
of attacks between arguments, undermines, undercuts and rebuttals, are defined
between arguments, and finally an argumentation semantics from Dung-style
abstract argumentation theory [1,8] is applied to determine which sets of argu-
ments can be rationally accepted.

Scientific discourse is characterized not only by the exchange of arguments in
favour and against various scientific hypotheses, but also by the attempt to scien-
tifically explain observed phenomena. In the context of abstract argumentation,
Šešelja and Straßer [16] have therefore proposed to incorporate the notion of
explanation into argumentation theory, in order to model scientific debate more
faithfully. So far, this incorporation of explanation into argumentation theory
has not been extended to the case of structured argumentation. One goal of the
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current paper is to work towards filling this gap by presenting on the one hand a
general framework for incorporating explanation into structured argumentation,
and on the other hand a particular proposal for how to define explanations in
instantiations of that framework within a specific domain.

Scientific arguments often involve hypothetical reasoning, which involves rea-
soning based on an assumption or hypothesis that is locally assumed to be true
for the sake of the argument, but to which there is no commitment on the global
level. Such hypothetical reasoning is captured well by natural deduction proof
systems, whereas the Hilbert-style definition of arguments in ASPIC+ cannot
account for such hypothetical reasoning.

We propose an adaptation of the ASPIC+ framework called ASPIC-END
that allows for incorporating explanations and hypothetical reasoning. In order
to illustrate the usage of ASPIC-END, we consider its application to argumenta-
tion about explanations of semantic paradoxes, a research topic within the field
of philosophical logic, and present a specific instantiation of the framework that
models a simple example from this domain.

In order to ensure that the ASPIC-END framework behaves as one would
rationally expect, we have proved multiple rationality postulates about ASPIC-
END, as was previously done for ASPIC+ [11].

The paper is structured as follows: In Sect. 2, we discuss related work and
motivate ASPIC-END. In Sect. 3, we formally define the ASPIC-END frame-
work, and in Sect. 4, we instantiate it for argumentation about explanation of
semantic paradoxes. In Sect. 5, we present, motivate and prove six rationality
postulates for ASPIC-END, and in Sect. 6 we conclude.

2 Related Work and Motivation for ASPIC-END

The work of Dung [8] introduced the theory of abstract argumentation, in which
one models arguments by abstracting away from their internal structure to
focus on the relations of conflict between them. In structured argumentation,
one models also the internal structure of arguments through a formal language
in which arguments and counterarguments can be constructed [4]. One impor-
tant family of frameworks for structured argumentation is the family of ASPIC-
like frameworks, consisting among others of the original ASPIC framework [13],
the ASPIC+ framework [12], and the ASPIC- framework [7]. We briefly sketch
ASPIC+, as it is the basis for our framework ASPIC-END.

In ASPIC+, one starts with a knowledge base and a set of rules which allow
one to make inferences from given knowledge. There are two kinds of rules:
Strict rules logically entail their conclusion, whereas defeasible rules only cre-
ate a presumption in favour of their conclusion. Arguments are built either by
introducing an element of the knowledge base into the framework, or by making
an inference based on a rule and the conclusions of previous arguments. Attacks
between arguments are constructed either by attacking a fallible premise of an
argument (undermining), by attacking the conclusion of a defeasible inference
made within an argument (rebuttal), or by questioning the applicability of such a
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rule (undercutting). Preferences between arguments can be derived from prefer-
ences between rules. An abstract argumentation framework has then been built
and acceptable arguments can be selected using any abstract argumentation
semantics.

Caminada and Amgoud [6] have introduced the notion of rationality postu-
lates for structured argumentation frameworks. These are conditions that struc-
tured argumentation frameworks would rationally be expected to satisfy, such
as closure under strict rules of the output and consistency of the conclusions
given consistency of the strict rules. Caminada and Amgoud [6] showed that
the original ASPIC system did not satisfy these postulates, but proposed minor
changes that made it satisfy them. These changes have been incorporated into
ASPIC+ [11].

ASPIC-END features three main differences from ASPIC+. The first is that
it allows for arguments to introduce an assumption on which to reason hypo-
thetically, just like in natural deduction. In natural deduction, hypothetical
derivations are employed in the inference schemes called ¬-Introduction (or proof
by contradiction), →-Introduction, and ∨-Elimination (or reasoning by cases).
Allowing for the usage of defeasible rules within hypothetical reasoning leads
to specific problems that have been studied for the inference scheme of rea-
soning by cases in a recent paper by Beirlaen et al. [3]. In the current paper we
avoid these problems by not allowing defeasible rules within hypothetical reason-
ing. However, a conclusion made on the basis of an inference scheme involving
hypothetical reasoning may still be incorporated into an argument that uses
defeasible rules, so that there is some integration of defeasible and hypotheti-
cal reasoning. In order to keep the presentation simple, our formal definition of
ASPIC-END will only cover the case of the inference scheme of proof by contra-
diction, but reasoning by cases and →-Introduction can be treated analogously.
Our proof-by-contradiction arguments bear a vague similarity to Caminada’s
S-arguments [5], which can attack an argument by showing that its conclusion
leads to an absurdity. But unlike S-arguments, proof-by-contradiction arguments
can be embedded into more complex arguments which make use of the negated
conclusion of the proof-by-contradiction argument to conclude something else.

The second difference is that ASPIC-END has a notion of explanations addi-
tionally to the notion of arguments. This feature is based on the work of Šešelja
and Straßer [16], who have extended Dung-style abstract argumentation with
explananda (phenomena that need to be explained) and an explanatory relation,
which allows arguments to either explain these explananda or deepen another
argument’s explanation. In Sect. 3, we will need some definitions from [16]:

Definition 1. An explanatory argumentation framework (EAF) is a tuple
〈A,X ,→, ���〉, where A is a set of arguments, X is a set of explananda, →
is an attack relation between arguments and ��� is an explanatory relation from
arguments to either explananda or arguments.

Sets of admissible arguments are then selected:
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Definition 2. Let Δ = 〈A,X ,→, ���〉 be an EAF, A ∈ A and S ⊆ A. We say
that S is conflict-free iff there are no arguments B,C ∈ S such that B → C. We
say that S defends A iff for every B ∈ A such that B → A, there exists C ∈ S
such that C → B. We say that S is admissible iff S is conflict-free and for all
B ∈ S, S defends B.

The most suitable admissible sets are then selected by also taking into
account their explanatory power and depth. These are measured by first identi-
fying the explanations present in each set of arguments.

Definition 3. Let Δ = 〈A,X ,→, ���〉 be an EAF, S ⊆ A and E ∈ X . An
explanation X[E] for E offered by S is a set S′ ⊆ S such that there exists a
unique argument A ∈ S′ such that A ��� E and for all A′ ∈ S′ \ {A}, there
exists a path in ��� from A′ to A.

In order to be able to compare sets of arguments on how many explananda
they can explain and in how much detail, the two following measures are required:

Definition 4. Let Δ = 〈A,X ,→, ���〉 be an EAF and S, S′ ⊆ A. Let E be the
set of explananda S offers an explanation for and E ′ the set of explananda S′

offers an explanation for. We say that S is explanatory more powerful than S′

(S >p S′) if and only if E � E′.

Definition 5. Let Δ = 〈A,X ,→, ���〉 be an EAF and S, S′ ⊆ A. We say that
S is explanatory deeper than S′ (S >d S′) if and only if for each explanation X ′

offered by S′, there is an explanation X offered by S such that X ′ ⊆ X and for
at least one such X and X ′ pair, X ′ � X.

Šešelja and Straßer [16] define two procedures for selecting the most suit-
able sets of arguments. The first procedure (for the argumentative core) consists
in selecting the most explanatory powerful conflict-free sets, from which the
maximal most defended sets are then retained. The second procedure (for the
explanatory core) selects the most explanatory powerful conflict-free sets, from
which the most defended sets are taken, and then from those selects the minimal
explanatory deepest sets. In our formalism, we will slightly alter and reformulate
these procedures.

The third difference is that ASPIC-END allows for arguments about the cor-
rect rules of logical reasoning. In ASPIC+, such arguments cannot be modeled, as
the rules of logical reasoning represented by strict rules, and arguments involving
only strict rules can never be attacked. Argumentation about the correct rules
of logical reasoning is quite common within the field of philosophical logic, and
additionally occurs not only in other areas of philosophy, e.g. in philosophy of
science, but also in the study of logic within fields other than philosophy, e.g. in
relation to the applications of logic to linguistics, law and Artificial Intelligence.
For example, our prima facie intuitions suggest that it is a law of logic that a
sentence that is not true must be false. However, the Kripke-Feferman solution
to the Liar paradox [9,15] suggests that some sentences, such as the Liar sen-
tence, are neither true nor false, since giving them either one of the two truth
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values leads to a contradiction. This solution is not putting forward an argument
against the falsehood of the sentence by rebutting it, nor is it undermining any
of the argument’s premises. It is undercutting the argument by attacking the
inference made from the negation of truth to falsehood.

It is true that outside the academic disciplines of philosophy and logic, argu-
mentation about the correct rules of logical reasoning is very rare. But the goal
of structured argumentation frameworks like ASPIC+ and ASPIC-END is to
be largely domain-independent, and to therefore incorporate domain-specific
assumptions into instantiations of the framework rather than into the frame-
work itself. Given that there are some domains in which arguments about the
correct rules of logical reasoning are sometimes put forward, the restriction that
disallows such arguments to be modeled in ASPIC+ should be moved from the
definition of the framework to the definition of those instantiations of the frame-
work in which such arguments should indeed be disallowed.

To allow such arguments about the correct laws of logic to be modeled in
ASPIC-END, we replace strict rules by intuitively strict rules whose applicability
can be questioned, as in the case of defeasible rules in ASPIC+, but which behave
like strict rules when their applicability is accepted. This means that conclusions
of intuitively strict rules cannot be rebutted, just as for strict rules in ASPIC+.
Intuitively strict rules represent prima facie laws of logic, i.e. purportedly logical
inference rules which make sense at first but are open to debate.

3 ASPIC-END

In this section, we define ASPIC-END and motivate the details of its definition.

Definition 6. An argumentation theory is a tuple (L,R, n,≤), where:

– L is a logical language closed under the two unary connectives negation (¬)
and assumability (Assumable) such that ⊥ ∈ L.

– R = Ris ∪ Rd is a set of intuitively strict (Ris) and defeasible (Rd) rules of
the form ϕ1, . . . , ϕn � ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively, where n ≥ 0 and
ϕi, ϕ ∈ L.

– n : R → L is a partial function.
– Rce := {(⊥ � α) | α ∈ L} ⊆ Ris, ∀r′ ∈ Ris \ Rce, n(r′) ∈ L, and ∀r ∈ Rce,

n(r) is undefined.
– ≤ is a reflexive and transitive relation over Rd which represents preference,

with a < b iff a ≤ b and b � a.

Note that we interpret ⊥ not just as any contradiction but as the conjunction
of all formulas in the language.

We now inductively define how to construct arguments. At the same time,
we define five functions on arguments that specify certain features of any given
argument: Conc(A) denotes the conclusion of argument A. As(A) denotes the set
of assumptions under which argument A is operating (so whenever As(A) �= ∅,
A is a hypothetical argument). Sub(A) denotes the set of sub-arguments of A.
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DefRules(A) denotes the set of all defeasible rules used in A. TopRule(A) denotes
the last inference rule which has been used in the argument if such a rule exists,
and is undefined otherwise.

Definition 7. An argument A on the basis of an argumentation theory Σ =
(L,R, n,≤) has one of the following forms:

1. A1, . . . , An � ψ, where A1, . . . , An are arguments such that there exists an
intuitively strict rule Conc(A1), . . . ,Conc(An) � ψ in Ris.
Conc(A) := ψ, As(A) := As(A1) ∪ · · · ∪ As(An),
Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An),
TopRule(A) := Conc(A1), . . . ,Conc(An) � ψ.

2. A1, . . . , An ⇒ ψ, where A1, . . . , An are arguments s.t. As(A1)∪· · ·∪As(An) =
∅ and there exists a defeasible rule Conc(A1), . . . ,Conc(An) ⇒ ψ in Rd.
Conc(A) := ψ, As(A) := ∅,
Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An) ∪
{Conc(A1), . . . ,Conc(An) ⇒ ψ},
TopRule(A) := Conc(A1), . . . ,Conc(An) ⇒ ψ.

3. Assume(ϕ), where ϕ ∈ L. Conc(A) := ϕ, As(A) := {ϕ}, Sub(A) :=
{Assume(ϕ)}, DefRules(A) := ∅, TopRule(A) is undefined.

4. ProofByContrad(¬ϕ,A′), where A′ is an argument such that ϕ ∈ As(A′) and
Conc(A′) = ⊥, with:
Conc(A) = ¬ϕ, As(A) = As(A′) \ {ϕ},
Sub(A) = Sub(A′) ∪ {ProofByContrad(¬ϕ,A′)},
DefRules(A) = DefRules(A′),
TopRule(A) is undefined.

Notice that we do not allow for the use of defeasible rules within hypothetical
arguments. We do however allow for the conclusions of defeasible arguments to
be imported inside of a proof by contradiction. This is motivated by the fact
that allowing for proofs by contradiction amounts to allowing for transpositions
of any rule that can be used within a proof by contradiction, and transpositions
are usually assumed only for strict rules in structured argumentation [6,11].

We now need to define the attack relation in our framework. Notice that in
ASPIC-END, we also allow for an argument A to attack an argument B which
makes an assumption ϕ if A concludes that ϕ is not assumable. For example, if
one were to assume that the number 5 is yellow, since numbers do not have colors,
it should be possible to attack the argument that introduces this assumption and
any argument making an inference from this assumption.

Definition 8. Let Σ = (L,R, n,≤) be an argumentation theory and A,B two
arguments on the basis of Σ. We say that A attacks B iff A rebuts, undercuts or
assumption-attacks B, where:

– A rebuts argument B (on B′) iff Conc(A) = ¬ϕ or ¬Conc(A) = ϕ for some
B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ ϕ and As(A) = ∅.
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– A undercuts argument B (on B′) iff Conc(A) = ¬n(r) or ¬Conc(A) = n(r)
for some B′ ∈ Sub(B) such that TopRule(B′) = r, there is no ϕ ∈ As(B′)
such that ¬ϕ = Conc(A′) or ϕ = ¬Conc(A′) for some A′ ∈ Sub(A), and there
are arguments B1, ..., Bn such that B1 = B′, Bn = B, Bi ∈ Sub(Bi+1) for
1 ≤ i < n and As(A) ⊆ As(B1) ∪ · · · ∪ As(Bn).

– A assumption-attacks B (on B′) iff for some B′ ∈ Sub(B) such that B′ =
Assume(ϕ), Conc(A) = ¬Assumable(ϕ) and As(A) = ∅.

We require that any attacking argument A is making fewer assumptions
than the B′ it attacks, as to prevent arguments from attacking outside of their
assumption scope. Note that in the case of rebuttal, since the attacked argument
cannot have assumptions, we require that the attacking argument have none
either.

In the case of undercutting, we also have the requirement that A does not use
the contrary of any assumptions made by B′ in any of its inferences, since the
attack would not stand in the scope of B′. Additionally, we allow A to make use
of any assumptions appearing in the chain of arguments leading B′ to B, as these
assumptions, even if they have been retracted, still constitute valid grounds on
which to form an attack.

Similarly as in ASPIC+, one can also define a notion of successful attack by
lifting the preference relation from rules to arguments as follows:

Definition 9. Let Σ = (L,R, n,≤) be an argumentation theory and A,B be
two arguments on the basis of Σ. We define the lifting of ≤ to arguments �
to be such that A � B iff there exists ra ∈ DefRules(A), such that for all
rb ∈ DefRules(B), we have ra ≤ rb. We also define A ≺ B by replacing ≤ with
< in the definition of �.

Notice that this lifting corresponds to elitist weakest-link as described in
[12]. We believe that this ordering is best suited for modeling philosophical and
scientific arguments.

We now define what it means for an attack to be successful:

Definition 10. Let Σ = (L,R, n,≤) be an argumentation theory, A,B be two
arguments on the basis of Σ. We say that A successfully rebuts B iff A rebuts B
on B′ for some argument B′ and A ⊀ B′, and that A defeats B iff A assumption-
attacks, undercuts or successfully rebuts B.

The aim of our system is to generate an EAF as defined in Sect. 2. For this
three things need to be specified: A set X of explananda, a condition under
which an argument explains an explanandum, and a condition under which an
argument explains another argument. The first two of these three details are
domain-specific, and are thus to be specified in an instantiation of the ASPIC-
END framework. The third one, on the other hand, should be the same in all
domains. The reason for this can be found in the informal clarification that
Šešelja and Straßer [16] provided for what it means to say that an argument b
explains an argument a: “argument b can be used to explain one of the premises
of argument a [. . . ] or the link between the premises and the conclusion.”
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In the context of structured argumentation, this informal clarification can be
turned into a formal definition:

Definition 11. Let A,B be arguments. We say that B explains A (on A′) iff
A′ ∈ Sub(A), As(B) ⊆ As(A′) and at least one of the following two cases holds:

– A′ /∈ Sub(B) and either A′ = (� Conc(B)) or A′ = (⇒ Conc(B)).
– Conc(B) = n(TopRule(A′)) and �B′ ∈ Sub(B) such that TopRule(B′) =
TopRule(A′).

Intuitively, the idea behind this definition is that an argument B explains another
argument A if B non-trivially concludes one of A’s premises or one of the infer-
ence rules used by A.

We now have all the elements needed to build an EAF.

Definition 12. Let Σ = (L,R, n,≤) be an argumentation theory. Let X be a
set of explananda, and let C be a criterion for determining whether an argument
constructed from Σ explains a given explanandum E ∈ X . The explanatory
argumentation framework (EAF) defined by (Σ,X , C) is a tuple 〈A,X ,→, ���〉,
where:

– A is the set of all arguments that can be constructed from Σ satisfying Defi-
nition 7;

– (A,B) ∈ → iff A defeats B, where A,B ∈ A;
– (A,E) ∈ ��� iff criterion C is satisfied with respect to A and E, where A ∈ A

and E ∈ X ;
– (A,B) ∈ ��� iff A explains B according to Definition 11, where A,B ∈ A.

Once such a framework has been generated, we want to be able to extract
the most interesting sets of arguments. Such a set should be able to explain as
many explananda in as much detail as possible, while being self-consistent and
plausible.

We define two kinds of extensions corresponding to the two selection proce-
dures defined by Šešelja and Straßer [16]. As suggested in the informal discussion
in their paper, we chose to give higher importance to the criterion of defense com-
pared to the criterion of explanatory power. This prevents some absurd theories
which manage to explain all explananda but cannot defend themselves against
all attacks from beating plausible theories which fail to explain some of the
explananda but are sound and fully defended.

Definition 13. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 the EAF defined by Σ and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S′ ⊆ A such
that S′ >p S and S′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S′ ⊆ A such
that S′ >d S and S′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of Δ iff S
is satisfactory and there is no S′ ⊃ S such that S′ is satisfactory.
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4. We say that S is an explanatory core extension (EC-extension) of Δ iff S is
insightful and there is no S′ ⊂ S such that S′ is insightful.

The AC-extensions are sets of arguments which represent the theories
explaining the most explananda, together with all other compatible beliefs
present in the framework. EC-extensions represent the core of those theories
and only include the arguments which defend or provide details for them.

We define the conclusions of the arguments in a given extension as follows:

Definition 14. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 be the EAF defined by Σ and S be an extension of Δ. Then, we
define the conclusions of S, denoted Concs(S), to be Concs(S) = {Conc(A)|A ∈
S s.t. As(A) = ∅}.

4 Modelling Explanations of Semantic Paradoxes in
ASPIC-END

In this section, we discuss how ASPIC-END can be applied to modelling argu-
mentation about explanations of semantic paradoxes, and illustrate this potential
application with a simple example. We start by briefly motivating this applica-
tion of structured argumentation theory.

Philosophy is an academic discipline in which good argumentative skills are
a central part of every student’s training. Philosophical texts are often much
richer in explicit formulation of arguments than texts from other academic disci-
plines. For these reasons, we believe that modeling arguments from philosophical
textbooks, monographs and papers can be an interesting test case for structured
argumentation theory.

Different areas of philosophy vary with respect to how much logical rigor is
commonly applied in the presentation of arguments. Even logically rigorous argu-
mentation poses many interesting problems, as the rich literature on abstract
and structured argumentation attests. In order to not confound these interest-
ing problems with issues arising from the lack of logical rigor, it is a good idea
to concentrate on the study of logically rigorous argumentation. Philosophical
logic is an area of logic where logically rigorous arguments abound. One topic
that has gained a lot of attention in philosophical logic is the study of semantic
paradoxes such as the Liar paradox and Curry’s paradox [2,10]. We therefore
use the argumentation about the various explanations of the paradoxes that
have been proposed in the philosophical literature as a test case for structured
argumentation theory.

In our application of ASPIC-END to argumentation about explanations of
semantic paradoxes, the explananda are the paradoxes (i.e. arguments that
derive an absurdity under no assumption without using defeasible rules), which
other arguments can explain by attacking the said derivation. So we instantiate
the set X of explananda and criterion C for an explanation of an explanandum
by an argument as specified in the following two definitions:
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Definition 15. Let Σ = (L,R, n,≤) be an argumentation theory. For every
argument A on the basis of Σ such that DefRules(A) = ∅,As(A) = ∅ and
Conc(A) = ⊥, we stipulate an explanandum EA, and say that Source(EA) = A.
We define the set X of explananda based on Σ to be the set of all explananda
EA that we have thus stipulated.

Definition 16. Let Σ = (L,R, n,≤) be an argumentation theory, A,B argu-
ments and E an explanandum based on Σ. We say that A explains E iff A
defeats Source(E).

The following example illustrates an application of ASPIC-END to a version
of the Liar paradox and two very simple explanations of it:1

Example: Define L to be the sentence “L is false”. If L is true, i.e. “L is false”
is true, then L is false, which is a contradiction. So L is not true, i.e. L is false.
So “L is false” is true, i.e. L is true. So we have the contradiction that L is both
true and false from no assumption.

A truth-value gap explanation: L is neither true nor false. When concluding that
L is false because L is not true, we are making the assumption that any sentence
is either true or false. This assumption does not hold for problematically self-
referential sentences such as L.

A paracomplete explanation: The reasoning that led to the conclusion that L
is not true is a proof by contradiction that derives a contradiction from the
assumption that L is true. However, a proof by contradiction based on assump-
tion φ can only be accepted once one accepts that the law of excluded middle
holds for φ, i.e. that φ ∨ ¬φ. However, the law of excluded middle should not be
accepted for problematically self-referential statements like L, and thus also not
to the statement “L is true”. So “L is true” cannot be assumed for a proof by
contradiction.

We now proceed to the ASPIC-END model of the reasoning and argumen-
tation involved in the paradox and the two explananda. We use T , F and Psr
to mean true, false and problematically self-referential respectively. The rules
in our model are Ris = {T (L)� T (F (L));T (F (L))� F (L);T (L), F (L)� ⊥;
¬T (L)� F (L);F (L)� T (F (L));T (F (L))� T (L)} with n(¬T (L)� F (L)) =
r1 and Rd = { ⇒ ¬T (L) ∧ ¬F (L);¬T (L) ∧ ¬F (L)⇒ ¬r1; ⇒ Psr(L);Psr(L)⇒
¬T (L)∧¬F (L); ¬T (L)∧¬F (L) ⇒ ¬Assumable(T (L))}. We also define the pred-
icate Expl to be: Expl(A) iff DefRules(A) = ∅,As(A) = ∅ and Conc(A) = ⊥.

Infinitely many arguments can be constructed from this argumentation the-
ory. However, the following set of arguments is the set of most relevant argu-
ments, in the sense that other arguments will not defeat these arguments and
will not add relevant new conclusions.

1 See [10] for comprehensive presentations of truth-value gap and paracomplete expla-
nations, besides many others.
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A1 = ProofByContrad(¬T (L), (Assume(T (L)),
((Assume(T (L))� T (F (L)))� F (L))� ⊥))� F (L)

A2 = ((A1 �T (F (L)))� T (L)), A1 � ⊥
B1 = (⇒ Psr(L))⇒ ¬T (L) ∧ ¬F (L)
B2 = (⇒ ¬T (L) ∧ ¬F (L))⇒ ¬r1

C = ((⇒ Psr(L))⇒ ¬T (L) ∧ ¬F (L))⇒ ¬Assumable(T (L))

We get the explanandum E with Source(E) = A2. B2 defeats A2 on A1 and
C defeats A2 on Assume(T (L)), thus they both explain E. B1 explains B2 by
non-trivially concluding ¬T (L) ∧ ¬F (L). The AC-extension is {B1, B2, C} and
the EC-extensions are {B1, B2} and {C} (Fig. 1).2

A1

A2

E

B2 B1C

Assume(T (L))

Fig. 1. The relevant arguments, explanandum, attacks and explanations from Example

5 Closure and Rationality Postulates

In this section, we show that ASPIC-END satisfies four rationality postulates
analogous to the four postulates that Modgil and Prakken [11] have established
for ASPIC+, as well as two new postulates motivated by the application of
structured argumentation to the domain of philosophical logic.

The first postulate concerns the closure of the extensions under the sub-
argument relation. The idea is that one cannot accept an argument while reject-
ing part of it.

Theorem 1. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, for all
A ∈ S, Sub(A) ⊆ S.

The proof of Theorem1 rests on the following lemma, which can be proven
in a straightforward way as in the case of ASPIC+ (see Lemma 35 of [11]):

2 Notice that both solutions appear in the same AC-extension. This is only due to
the brevity of our example. In a more comprehensive exposition of these explana-
tions, arguments attacking other explanations would be included, and thus each
AC-extension would contain no more than one solution.
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Lemma 1. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ, S ⊆ A and A,B ∈ A. We have that:

1. If S defends A and S ⊆ S′, then S′ defends A.
2. If A defeats B′ and B′ ∈ Sub(B), then A defeats B.
3. If S defends A and A′ ∈ Sub(A), then S defends A′.

Proof of Theorem 1: Let A ∈ S and A′ ∈ Sub(A). Suppose S ∪ {A′} is not
conflict-free. Then, either some B ∈ S defeats A′, or A′ defeats some B′ ∈ S.
Since S defends itself, if A′ defeats B′ ∈ S, then there exists B which defeats A′.
So in both cases there exists B ∈ S which defeats A′. But then by Lemma 1.2,
B defeats A, so S is not conflict-free, which is a contradiction. So S ∪ {A′} is
conflict-free. Also, since S defends A, by Lemma 1.3, S also defends A′. Hence,
by maximality of the AC-extensions, A′ ∈ S. ��

Notice that this postulate does not hold for EC-extensions, as they are by
definition minimal in their inclusion of arguments, and thus will often leave out
low-level sub-arguments.

The second postulate concerns the closure of the conclusions under intuitively
strict rules. In the case of ASPIC+, the corresponding postulate concerned the
closure of the conclusions under all strict rules (see Theorem 13 in [11]). But since
ASPIC-END allows for the rejection of intuitively strict rules, it is undesirable
to consider the closure under all of them. Instead, we consider the closure under
the accepted intuitively strict rule. The following two definitions define the set
of accepted intuitively strict rules and the closure under a given set of intuitively
strict rules:

Definition 17. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 be the EAF defined by Σ and S be an extension of Δ. The set of
intuitively strict rules accepted by S is Risa(S) = {r ∈ Ris|∀A ∈ A s.t.As(A) =
∅ andConc(A) = ¬n(r) or ¬Conc(A) = n(r),∃B ∈ S s.t. B defeats A}.

Definition 18. Let Σ = (L,R, n,≤) be an argumentation theory, P ⊆ L and
R′ ⊆ Ris. We define the closure of P under the set of rules R′, denoted ClR′(P ),
as the smallest set such that P ⊆ ClR′(P ), and when (ϕ1, ..., ϕn � ψ) ∈ R′ and
ϕ1, ..., ϕn ∈ ClR′(P ), then ψ ∈ ClR′(P ).

Now the postulate on the closure under accepted intuitively strict rules can
be formulated as follows:

Theorem 2. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, Conc(S) =
ClRisa(S)(Concs(S)).

Proof: We need to show that if (ϕ1, ..., ϕn � ψ) ∈ Risa(S) and ϕ1, ..., ϕn ∈
Concs(S), then ψ ∈ Concs(S). Supposing these conditions are met, there exist
arguments A1, ..., An with conclusions ϕ1, ..., ϕn respectively. We can then con-
struct A = A1, ..., An � ψ. Since A1, ..., An are defended by S and TopRule(A)
is accepted by S, A is also defended by S, so A ∈ S. Hence, ψ ∈ Concs(S). ��
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The last two postulates presented in [11] are direct and indirect consistency,
which state that when the set of strict rules is consistent, the set of conclusions
and the closure of this set under strict rules are consistent.

We have three requirements for applying the consistency postulates. The first
is that there cannot be non-defeasible arguments which contradict each other.
The second requirement ensures that a formula and its negation are considered as
contradictory and the third guarantees that no assumptions are prevented. The
last two requirements are motivated by the consideration that in the applications
of ASPIC-END not related to paradoxes, one would likely accept classical or
intuitionistic logic, for both of which these requirements hold.

Definition 19. Let Σ = (L,R, n,≤) be an argumentation theory. We say that
Σ is consistency-inducing iff:

1. there are no A,B ∈ A such that DefRules(A) = DefRules(B) = ∅ and
Conc(A) = ¬Conc(B),

2. for each ϕ ∈ L there is a rule rϕ of the form ϕ,¬ϕ � ⊥ ∈ Ris such that
n(rϕ) is undefined,

3. there is no rule r ∈ R such that the conclusion of r is of the form
¬Assumable(ϕ).

The following theorem establishes direct consistency for ASPIC-END:

Theorem 3. Let Σ = (L,R, n,≤) be a consistency-inducing argumentation
theory, Δ = 〈A,X ,→, ���〉 be the EAF defined by Σ and S be an AC
or EC-extension of Δ. Then, there does not exist ϕ ∈ Concs(S) such that
¬ϕ ∈ Concs(S).

Proof: Suppose for a contradiction that there exists ϕ ∈ Conc(S) such
that ¬ϕ ∈ Conc(S). Then, there exist two arguments A,B ∈ S such that
Conc(A) = ϕ and Conc(B) = ¬ϕ. Since Σ is consistency-inducing, at least
one of A and B has a defeasible sub-argument. For each maximal (w.r.t Sub)
sub-argument C of A with a defeasible top rule, let AC be the copy of A that
has Assume(Conc(C)) instead of C (so As(AC) = {Conc(C)}), and let DC be
ProofByContrad(¬Conc(C), AC , B � ⊥) (so DC rebuts C). We can do this as
well for every maximal sub-argument of B with a defeasible top rule. Then for
at least one such sub-argument C of A or B, say of A, AC ⊀ C and B ⊀ C,
hence DC ⊀ C, and so DC will defeat C. Then DC defeats A on C. So some
F ∈ S defeats DC . Since B ∈ S, F does not defeat B, so F defeats AC . Since
Conc(F ) �= ¬Assumable(Conc(C)) by item 3 of Definition 19 and F does not
defeat A, As(F ) = {C}. By Theorem 1, C ∈ S. Let F ′ be hte copy of F that has
C instead of Assume(C). Then F ′ defeats A. So some argument G ∈ S defeats
F ′. but then G defeats F or C, which is a contradiction. ��

Indirect consistency of AC-extensions follows from closure under accepted
intuitively strict rules together with direct consistency:
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Theorem 4. Let Σ = (L,R, n,≤) be a consistency-inducing argumentation
theory, Δ = 〈A,X ,→, ���〉 be the EAF defined by Σ and S be an AC-
extension of Δ. Then, there does not exist ϕ ∈ ClRisa(S)(Concs(S)) such that
¬ϕ ∈ ClRisa(S)(Concs(S)).

As explained in Sect. 2, we want ASPIC-END to be applicable to domains
like philosophical logic, in which the correctness of logical rules can be up for
debate. Among the proposals made by philosophers of how to handle the seman-
tic paradoxes, there is paraconsistent dialetheism [14], which accepts some incon-
sistencies as true and uses a paraconsistent logic to avoid that everything can
be derived. And in order to be able to show the internal structure of the para-
dox, we need to have an inconsistency arise from intuitively strict rules under
no assumptions. For these reasons, the consistency postulates do not make sense
for this kind of application of ASPIC-END.

However, there is a property similar to consistency that should still hold
even when the intuitively strict rules lead to paradoxes and when the output
extensions contain one that accepts paraconsistent dialetheism, namely that an
extension should never be trivial, i.e. conclude everything.

For the non-triviality of the extensions, we require that rules are present in
the framework which allow one to derive any formula from ⊥.3 We also require
these rules of conjunction elimination from ⊥ not to have a corresponding for-
mula in L as a name, which prevents them from being attackable. Also, we
require every other intuitively strict rule to have a name so that it can be
attacked. We say that the argumentation theory is well-defined if it satisfies
these requirements, and assume well-definedness in the non-triviality postulate
stated in Theorem 5.

Theorem 5. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ, and S be an AC or EC-extension of Δ. Then,
⊥ /∈ Concs(S).

Proof: Suppose for a contradiction that ⊥ ∈ Concs(S). Then there exists a
minimal (under sub-argument relation) argument A ∈ S such that Conc(A) = ⊥
and As(A) = ∅. Let r = TopRule(A). If r ∈ Ris, then from Definition 6, n(r) ∈ L
and so let B = A � ¬n(r). Otherwise, let B = A � ¬⊥. By Definition 9,
B ⊀ A. Then B undercuts or successfully rebuts A on A, so B defeats A. Since
S is an AC- or EC-extension of Δ, it defends itself, so there exists C ∈ S such
that C defeats B. Suppose for a contradiction that C defeats B on B′ �= B.
Since Sub(B) = Sub(A) ∪ {B}, B′ ∈ Sub(A). Then, by Lemma 1.2, C defeats
A on B′. But S is conflict-free, so we have a contradiction. Hence, C defeats B
on B. Since B = A � ¬n(r), B cannot be rebutted nor assumption-attacked.
Hence, C undercuts B on B. But from Definition 6 and since TopRule(B) ∈ Rce,
n(TopRule(B)) is undefined, i.e. no argument undercuts B on B, a contradiction.
Hence, ⊥ /∈ Concs(S). ��
3 As noted earlier, we interpret ⊥ as the conjunction of all formulas in L, so these

rules are in effect conjunction elimination rules.
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Indirect non-triviality of AC-extensions then follows from closure under
accepted intuitively strict rules and direct non-triviality:

Theorem 6. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, ⊥ /∈
ClRisa(S)(Concs(S)).

6 Conclusion and Future Work

We have proposed a modification of ASPIC+ called ASPIC-END, which incorpo-
rates a formal model of explanations, and features natural-deduction style argu-
ments. We have shown how ASPIC-END can be instantiated for modelling argu-
mentation about explanations of semantic paradoxes in ASPIC-END. Finally, we
have shown that ASPIC-END satisfies rationality postulates analogous to those
satisfied by ASPIC+, as well as non-triviality postulates that are relevant in the
application to semantic paradoxes.

One topic of our future work on ASPIC-END is to study possible ways of
instantiating explananda and explanations in other scientific domains. For expla-
nations from the natural sciences, this might require an instantiation of ASPIC-
END with a language covering causal notions. Furthermore, we will study the
possibility of integrating the new results of Beirlaen et al. [3] on reasoning by
cases in structured argumentation with our work on ASPIC-END.
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