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Preface

Recent years have witnessed a rapid growth of interest in formal models of
argumentation and their application in diverse sub-fields and domains of
application of AI, including reasoning in the presence of inconsistency, non-
monotonic reasoning, decision-making, inter-agent communication, the Semantic Web,
grid applications, ontologies, recommender systems, machine learning, neural
networks, trust computing, normative systems, social choice theory, judgement
aggregation and game theory, and law and medicine. Argumentation thus shows great
promise as a theoretically grounded tool for a wide range of applications. The 4th
International Workshop on the Theory and Applications of Formal Argumentation
(TAFA 2017) aimed to contribute to the realization of this promise, by promoting and
fostering the uptake of argumentation as a viable AI paradigm with wide-ranging
application, and providing a forum for further development of ideas and the initiation
of new and innovative collaborations.

Co-located with the International Joint Conference on Artificial Intelligence (IJCAI
2017) in Melbourne, Australia, TAFA 2017 built on the success of TAFA 2011, TAFA
2013, and TAFA 2015 with a range of strong papers submitted by authors from across
Europe, Israel, China, and the USA. For the first time this year, TAFA 2017 included a
systems track for short papers presenting argumentation solvers, algorithms, imple-
mentation details, and empirical evaluations. The track included submissions from
participants of the Second International Competition on Computational Models of
Argumentation,1 the results of which were presented at TAFA 2017.

TAFA 2017 received 20 submissions, of which 15 were accepted and presented at
the workshop after a rigorous review process. We would like to thank the authors of
this volume’s papers for their high-quality contributions, and acknowledge the
reviewers’ efforts for their in-depth feedback to authors. We also thank the participants
of the workshop for their lively and thought-provoking discussions. The papers
included here point to not only the exciting work taking place in the field today, but
also to challenges and exciting opportunities for further research in the area, which will
no doubt lead to future volumes in this series of proceedings.

January 2018 Elizabeth Black
Sanjay Modgil

Nir Oren

1 http://argumentationcompetition.org/2017/
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An Investigation of Argumentation
Framework Characteristics

Josh Murphy(B), Isabel Sassoon, Michael Luck, and Elizabeth Black

Department of Informatics, King’s College London, London, UK
{josh.murphy,isabel.sassoon,michael.luck,elizabeth.black}@kcl.ac.uk

Abstract. We investigate the relationship between the structural prop-
erties of argumentation frameworks and their argument-based character-
istics, examining the characteristics of structures of Dung-style frame-
works and two generalisations: extended argumentation frameworks and
collective-attack frameworks. Our results show that the structural prop-
erties of frameworks have an impact on the size of extensions produced,
on the proportion of subsets of arguments that determine some topic
argument to be acceptable, and on the likelihood that the addition of
some new argument will affect the acceptability of an existing argu-
ment, all characteristics that are known to affect the performance of
argumentation-based technologies. We demonstrate the applicability of
our results with two case studies.

1 Introduction

Argumentation is a key sub-field of AI that provides an intuitive reasoning mech-
anism for dealing with inconsistent, uncertain and incomplete knowledge. A set
of arguments and the relationships between them can be represented as a directed
graph (referred to as an argumentation framework) to which one of a number of
semantics can be applied to determine which arguments it is coherent to accept
[12]. While progress has been made in the development of argumentation-based
technologies (e.g., argument solvers [5] and real-world applications [18]) realistic
evaluations of such technologies is difficult, due to the shortage of repositories
of argumentation frameworks that are representative of real-world domains [10];
typically, argument technologies are evaluated on randomly generated frame-
works, with little understanding of how the structure of such frameworks impacts
on performance. It has been shown that structural differences in argumenta-
tion frameworks can affect the performance of argumentation-based technolo-
gies, such as dialogue systems [3] and argument solvers [2]. We argue here that
a better understanding of these effects can not only allow for a more thorough
evaluation, but can also inform development of technologies that are optimised
for specific framework structures.

In order to explore the characteristics of argumentation frameworks with dif-
ferent structural properties, we consider the classic Dung-style argumentation
frameworks (which represent attacks between arguments) [12] and two general-
isations of these that each have their own particular structural traits: extended
c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-75553-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75553-3_1&domain=pdf
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a b

c

d

e f

Fig. 1. An example DAF.

argumentation frameworks (which allow an argument to attack the attack
between two arguments) [17] and collective-attack frameworks (which allow
attacks from sets of arguments) [22]). We investigate three key characteristics.

1. The size of the set of acceptable arguments generated by the grounded and
preferred sceptical semantics. This characteristic is known to affect perfor-
mance of argument solvers [8];

2. The proportion of argument subsets of the framework that determine some
topic argument to be acceptable. This characteristic is known to be a factor
in the effectiveness of strategies for persuasion [3];

3. Whether the addition of a new argument to the framework results in a change
of acceptability of some topic argument. This is a type of dynamic argumen-
tation, another factor in the effectiveness of dialogue strategies [1], and also
may be a key property for improving the computational efficiency of a variety
of other argument technologies [16].

We demonstrate applicability of our results with two case studies: a Dung-
style framework from a decision-making tool for aggregating the effects of medi-
cal treatment [15], and an extended framework from a statistical model selection
tool in a clinical domain [25].

2 Argumentation Frameworks (AFs)

Since Dung’s seminal work [12], the dominant approach to argumentation-based
reasoning is to represent arguments as abstract entities in an argumentation
framework that captures the relationships between them, and then to apply one
of several argumentation semantics to determine which subsets of arguments it
is rational to present as a coherent set. We now define Dung-style argumentation
frameworks [12] (DAFs), which capture attacks between arguments.

Definition 1. A Dung-style argumentation framework (DAF) is a pair
〈A,R〉 s.t. A is a finite set of arguments and R ⊆ A × A is a set of attacks.
(x, y) ∈ R means x attacks y.

Argumentation semantics are based on the intuitive principles that it is not
rational to accept any two conflicting arguments, and that an argument which
is attacked can only be accepted if all of its attacking arguments are themselves
attacked by an accepted argument [12].
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Definition 2. Let 〈A,R〉 be a DAF and S ⊆ A.

• S is conflict-free iff ∀a, b ∈ S: (a, b) �∈ R.
• a ∈ A is acceptable w.r.t. S iff ∀b s.t. (b, a) ∈ R: ∃c ∈ S s.t. (c, b) ∈ R.
• S is admissible iff S is conflict-free and each argument in S is acceptable

w.r.t. S.

There are a range of different semantics that build on these principles and
determine sets of arguments that can rationally be presented as coherent, known
as extensions. Here we consider two semantics: an argument is acceptable under
the preferred sceptical semantics if it is part of all maximal admissible sets;
an argument is acceptable under the grounded semantics if it is in the smallest
set S such that every argument that is acceptable w.r.t. S is in S. In the DAF
shown in Fig. 1, a and f are the only arguments that are acceptable under the
preferred sceptical semantics, while a is the only argument acceptable under the
grounded semantics.

Example 1. Considering the DAF in Fig. 1, the only argument acceptable under
the grounded semantics is a, whereas the arguments a and f are acceptable
under the preferred sceptical semantics.

Though Dung-style argumentation frameworks are expressive, many generali-
sations have been proposed which provide explicit representation of relationships
other than attacks between arguments, seeking to intuitively capture particular
aspects of argumentation [4]. Extended argumentation frameworks (EAFs) allow
the representation of arguments that attack attack relations [17]. Thus, given
an argument a which attacks b, an argument c may attack the attack between a
and b. In this way, an EAF may be used to capture (possibly conflicting) prefer-
ence relations between arguments. For example, see Fig. 2 in which c represents
a preference for a over b, which conflicts with d representing a preference for b
over a. EAFs are an especially expressive model as they represent preferences
as defeasible arguments, allowing agents to argue about their preferences and,
powerfully, about preferences over other preferences.

Definition 3. An extended argumentation framework (EAF) is a tuple
〈A,R,D〉 s.t. A is a finite set of arguments, R ⊆ A × A is a set of attacks,

• D ⊆ A × R is a set of attacks on attacks, and
• if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ R.

a b

c

d

e f

h

g

Fig. 2. An example EAF, which is also a HEAF.
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a b c de f

Fig. 3. An example CAF.

We especially consider here hierarchical EAFs (HEAFs), a particularly inter-
esting class of EAFs that can be used to formalise practical reasoning [17].

Definition 4. An EAF 〈A,R,D〉 is a hierarchical extended argu-
mentation framework (HEAF) iff there exists a partition P =
[〈〈A1, R1〉,D1〉, ..., 〈〈Aj , Rj〉,Dj〉, ...] s.t.:

• A = ∪∞
i=1Ai, R = ∪∞

i=1Ri,D = ∪∞
i=1Di, and for i = 1, ...,∞, 〈Ai, Ri〉 is a

DAF.
• If (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1.

We refer to an argument a as being in a lower partition than an argument b
if a ∈ Ap, b ∈ Aq, and p < q.

The arguments in Fig. 2 can be partitioned into 4 levels: {a, b}, {c, d}, {e, f},
and {g, h}, where {a, b} is the lowest partition and {g, h} is the highest.

EAF argumentation semantics are defined equivalently as for DAFs, with the
following adjustments [17].

Definition 5. Let 〈A,R,D〉 be an EAF and S ⊆ A.

• a defeatsS b (also written as a →S b) iff (a, b) ∈ R and �c ∈ S s.t. (c, (a, b)) ∈
D.

• S is conflict-free iff ∀a, b,∈ S: if (a, b) ∈ R then (b, a) �∈ R or ∃c ∈ S s.t.
(c, (a, b)) ∈ D.

• RS = {x1 →S y1, . . . , xn →S yn} is a reinstatement set for c →S b iff:
(i) c →S b ∈ RS; (ii) ∀i ∈ {1, . . . , n}: xi ∈ S, and (iii) ∀x ∈ Rs, ∀y′ s.t.
(y′, (s, y)) ∈ D: ∃x′ →S y′ ∈ RS.

• a ∈ A is acceptable w.r.t. S iff ∀b s.t. b →S a: ∃c ∈ S s.t. c →S b and there
is a reinstatement set for c →S b.

Collective-attack frameworks (CAFs) allow the representation of sets of argu-
ments that attack an argument [22]. They can allow for a more intuitive represen-
tation of common-sense reasoning and human dialogues and have been shown
to be useful in practical applications of argumentation [21,23]. See Fig. 3, in
which there are three collective attacks: the set of arguments {a, b} attacks the
argument c, {a, b} attacks e, and {c, d} attacks f .

Definition 6. A collective-attack framework (CAF) is a pair 〈A,R〉 s.t.
A is a finite set of arguments, and R ⊆ (2A\{∅}) × A is a set of attacks where
(X, y) ∈ R is an attack from the set of arguments X to the argument y.
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Similarly to EAFs, CAF argumentation semantics are defined equivalently
as for DAFs but with the following adjustments [22].

Definition 7. Let 〈A,R〉 be a CAF and S ⊆ A.

• S is conflict-free iff � ∃a ∈ S s.t. ∃S′ ⊆ S s.t. (S′, a) ∈ R.
• a ∈ A is acceptable w.r.t. S iff ∀B ⊆ A s.t. (B, a) ∈ R: ∃b ∈ B, ∃S′ ⊆ S

s.t. (S′, b) ∈ R.

3 Structural Properties of AFs

There are many different structural properties of DAFs, HEAFs and CAFs we
could investigate. Here we consider the DAF attack density, the distribution of
arguments across the different levels of a HEAF, and the restriction on the num-
ber of arguments that may appear in a CAF collective-attack set. Our analysis
of the characteristics of these different structural properties (Sect. 4) provides
valuable insights for understanding their impact on the performance of argu-
ment technologies such as argument solvers or dialogue systems, particularly
for domains or applications in which the structural properties we consider here
are typical. Our case studies (Sect. 5) demonstrate the applicability of two of
the structural classes we consider. More generally, our results show there is sig-
nificant difference in the characteristics of different structural classes of AFs,
which it can be important to consider when developing argument technologies
or selecting the most appropriate AF representation (e.g., [9]).

3.1 DAF Attack Density

Attack density of a DAF is the ratio of attack relations to the number of argu-
ments. A framework with many attacks with respect to the number of arguments
is dense, while a framework with fewer attacks is sparse.

Definition 8. An n-sparse DAF (n-DAF) is a DAF 〈A,R〉 s.t. |R| = |A|
n ,

where n ∈ [0, 1].

We investigate 0.25-DAFs, 0.5-DAFs and 0.75-DAFs. Note that as n
increases, the framework becomes more sparse. Note also that the number of
attacks in the framework is linearly related to the number of arguments in the
frameworks. We found in initial testing that if the number of attacks is tied
instead to the number of possible attacks in the graph (which increases expo-
nentially with the number of arguments) small changes in sparseness value pro-
duce very sharp changes in the characteristics of that structural class of DAF;
linearly relating the number of attacks to arguments allows us to explore this
relationship more finely.

We also consider a class of DAFs that correspond to minimum-spanning trees
(mst-DAFs), which is a fully connected DAF in which the number of attacks is
linearly related to the number of arguments (|R| = |A| − 1).

Definition 9. A mst-DAF is a DAF 〈A,R〉 such that 〈A,R〉 is a minimum-
spanning tree of 〈A,A × A〉.
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3.2 Distributed HEAFs

In some domains, particularly human dialogues, it seems reasonable to assume
that the number of arguments will be higher than the number of preferences over
those arguments, which will be higher than the number of preferences over prefer-
ences, etc. We consider two different distributions of the proportion of arguments
that appear in the different HEAF partitions. For normally-distributed HEAFs
(nEAFs), we use the binomial coefficient to approximate the normal distribution
(continuous) over a finite number of partitions (discrete), and thus the propor-
tions with which to assign arguments to each partition. We use the number of
partitions relative to the number of arguments in the graph that allows for the
best fit with the normal distribution (computed with Sturges’ formula [26]). The
choice of normal distribution provides the desired trend of decreasing propor-
tions, and is somewhat common in nature [14].

Definition 10. The discrete normal distribution over l partitions is given by
the formula norm dist(l) = [d0, d1, ..., dl−1] s.t.:

• n = 2l − 1
• dk = n!

k!(n−k)!

The proportional weights of the partitions are thus given by the formula
norm prop(l) = [p0, p1, ..., pl−1] such that pi = 2(di) ÷ 2n.

We can then use this definition of a normal distribution over partitions to
define normally-distributed HEAFs. Note that the HEAF in Fig. 2 us a normally-
distributed HEAF.

Definition 11. A normally-distributed HEAF (nEAF) is a HEAF
〈A,R,D〉 with a partition P = [〈〈A1, R1〉,D1〉, ..., 〈〈Am, Rm〉,Dm〉] s.t.:

• A = ∪m
i=1Ai, R = ∪m

i=1Ri,D = ∪m
i=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a

DAF,
• if (z, 〈x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1,
• m = log2 |A|� + 1 (Sturges’ formula), and
• |Aj | = (pl−j × |A|) + 1� where norm prop(m) = [p0, p1, ..., pl−1].

We also consider evenly-distributed HEAFs (eEAFs), in which each level of
the partition has an equal number of arguments. We consider eEAFs to be an
interesting corner-case to investigate. Again, we use Sturges’ formula to compute
an appropriate number of partitions.

Definition 12. An evenly-distributed HEAF (eEAF) is a HEAF 〈A,R,D〉
with a partition P = [〈〈A1, R1〉,D1〉, ..., 〈〈Am, Rm〉,Dm〉] such that:

• A = ∪m
i=1Ai, R = ∪m

i=1Ri,D = ∪m
i=1Di, and for i = 1, ...,m, 〈Ai, Ri〉 is a

DAF.
• If (z, (x, y)) ∈ Di then (x, y) ∈ Ri, z ∈ Ai+1.
• m = log2 |A|� + 1.
• For i = 0, ...,m, |Ai| = �(|A| ÷ m ± 1)�.
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3.3 Capped CAFs

We consider two structures of CAF: those in which the size of any collective-
attack set is no greater than (capped at) 3 and CAFs in which there is no
restriction on the size of collective-attacks sets. We refer to capped frameworks
as cCAFS, and those which are uncapped as uCAFs.

Definition 13. A capped collective-attack framework (cCAF) is a CAF
〈A,R〉 s.t. ∀(S, a) ∈ R : |S| ≤ 3.

Note, in the rest of this paper, to emphasise the distinction with capped
collective-attack frameworks, we refer to collective-attack frameworks where it
is not necessarily the case that there is an upper bound of 3 on the size of the
attacking sets as uncapped collective-attack frameworks, (uCAFs).

4 Characteristics of Structural Classes of AF

We ran experiments with the following structural classes of AF: 0.25-DAF, 0.5-
DAF, 0.75-DAF, mst-DAF, eEAF, nEAF, cCAF and uCAF. We consider specif-
ically the size of the grounded and the preferred sceptical extensions (known
to affect the performance of argument solvers [8]), the proportion of argument
subsets that determine some topic argument to be acceptable (a factor in the
effectiveness of dialogue strategies for persuasion [3]), and whether the addition
of a new argument to the framework results in a change of acceptability of some
topic argument (also a factor in the effectiveness of dialogue strategies [1] and
intrinsic to a variety of other argument technologies [16]). To investigate these
properties empirically, we generate random instances of the specified structures.

When generating DAFs, we ensure that each possible weakly-connected DAF
with the specified density is equally likely to be generated, only excluding frame-
works that contain self-attacking arguments. For EAFs, we begin by generating
each partition as a 0.5-DAF (in the same manner as described above), where
the number of arguments in the partitions depends on the distribution of the
EAF (e.g. whether it is a eEAF or nEAF). Then, we add one random prefer-
ence relation from each argument (excluding those in the lowest partition), to
a random attack relation in the partition directly below it; preference relations
are generated one at a time, ensuring that the EAF has a valid HEAF struc-
ture (specifically maintaining the property in Definition 3, bullet 2). Finally, for
CAFs, we begin by generating a random 0.25-DAF (in the manner described
above); the attacks generated form the singleton attacks of the CAF. We then
add attacks from sets of more than one argument so that the total number of
attacks in the resulting CAF is the same as the number of attacks in a 0.5-DAF
with the same number of arguments. We begin by first randomly selecting the
size of the attacking set (for cCAFs either 2 or 3, for uCAFs from 2 to |A| − 1),
we then randomly select a set of arguments of that size and then randomly select
an argument to be attacked by that set; we repeat until we have the required
number of attacks.
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Our experiments were implemented in Java, partly using the Tweety
library [27]. Our code is available at github.com/joshlmurphy. Experiments were
run on an Intel i5 3.20 GHz CPU, with 4 GB RAM.

4.1 Size of Extension

The argument solver competition [8], in which argument solvers attempt to com-
plete a set of tasks related to computational argumentation as efficiently as
possible (such as computing an extension, or determining whether a particu-
lar argument is acceptable) used three benchmark sets of DAFs. Two of these
benchmarks were characterised by the size of their extensions: frameworks with
large grounded extensions and frameworks with large preferred extensions. Most
solvers were slower when tasked with frameworks with a large preferred extension
compared to those frameworks with a large grounded extension. This indicates
that the size of the extensions of a framework is an important consideration
when employing an argument solver for certain tasks. We investigated how the
average size of both the grounded and the preferred sceptical extensions differs
between our chosen framework classes.

For each framework class, we randomly generated at least 1,000 frameworks
with n number of arguments, where n = 12, 24, 36. Figure 4 shows the average
size of both the grounded and the preferred sceptical extension of the frameworks
we generated. For DAFs, we observe a trend for both semantics that the more
dense the DAF, the smaller the size of the extension. We also observe that the
larger the framework, the larger the extension.

Interestingly, CAFs reverse this trend when using the grounded semantics:
the larger a uCAF/cCAF, the smaller (on average) the grounded extension. This
surprising result can be explained by the intuition that as you increase the num-
ber of arguments in a CAF, this increases the proportion of group attacks, and
thus the more arguments that are part of a collective-attack relation, leading
to a higher number of attack cycles (the more arguments in a set S that collec-
tively attack an argument a, the higher the chance that a will attack at least one
argument in S, causing a cycle) and the more attack cycles in a framework the
smaller the grounded extension is likely to be. This is supported by the obser-
vation that uCAFs have on average a smaller grounded extension than cCAFs,
which, we conclude, is due to more arguments being part of a collective-attack
relation in uCAFs (as there is no cap on the number of arguments in the attack
relation). When using the preferred semantics, cycles are less of a factor in the
size of the extension, and so we observe that the size of the preferred sceptical
extension increases as the size of CAF increases.

We find that eEAFs are more likely to have a larger grounded extension than
nEAFs, but have similar sized preferred sceptical extensions. We reason that in
EAFs, the more arguments that attack an attack between two arguments that
exist in a framework, the more likely attack relations in the partition below will
be defeated. This effectively lowers the attack density in lower partitions. So in
the frameworks with more preferences on average (eEAFs) there will be a lower
overall attack density. As we observe in DAFs, the lower the attack density of

https://github.com/joshlmurphy
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Fig. 4. The size of the grounded and preferred sceptical extensions.

the framework, the larger the extension—this is reflected in the results for the
grounded extension.

4.2 Subsets that Determine a Topic Acceptable

Some particular topic argument will be determined acceptable by some subsets
of arguments, but not others. Any topic argument will be acceptable in at most
50% of the subsets, since it will not exist in half of the subsets of the power set
(an argument is deemed unacceptable in a framework it is not a part of). We
refer to the proportion of subsets in which the topic argument is determined to
be acceptable as SA. This property has been found to be an important factor in
the success of persuasion dialogues [3]: the lower SA, the more difficult it is to
persuade an agent that the topic argument is acceptable.

We investigated whether average SA differs between the selected framework
classes. Our implementation is naive, exhaustively checking whether some topic
is acceptable in every set in the power set of arguments. The time for these
experiments is very high due to the exponential growth in the size of the power
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Fig. 5. The percentage of argument subsets in which a particular argument is accept-
able under the grounded semantics.

set. To feasibly compute the results we used the grounded semantics (which are
faster to compute) and limited the framework size to 12 arguments. We generated
at least 1,000 random instances of each framework class with 12 arguments, each
time randomly selecting a topic argument.

Using the analysis of variance test (ANOVA, a collective of tests used to
analyse the difference between the means of multiple groups [13]) we find that
the different argumentation framework classes have significantly different SA
(apart from nEAF and eEAF which are distinct from other classes but not from
each other), and thus that each class is a distinct population (p < 0.05 for each
class); this implies that the framework class is a significant factor in determining
SA. The largest difference between two classes is between mst-DAF and nEAF,
with a 36.06% points difference between means.

In the different classes of DAF, we observe a clear trend that the more dense
a framework class, the lower SA is for that class (see Fig. 5). This follows the
trend observed in Fig. 4, where the more dense a DAF, the smaller the grounded
extension. Similarly, uCAF frameworks typically have a smaller grounded exten-
sion than cCAF frameworks, and this trend is repeated for SA. For nEAF and
eEAF frameworks of 12 arguments, there is little difference between the size
of grounded extensions, and this trend is again shown for SA, in which eEAF
and nEAF were not found to have significantly different SA. When using the
grounded semantics it appears that the size of the extension and SA are linked.
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Table 1. The percentage of frameworks that are resistant.

Framework class 12 args 24 args 36 args

mst-DAF 80.9 85.8 90.7

0.75-DAF 81.9 89.5 93.4

0.5-DAF 87.5 90.8 95.1

0.25-DAF 92.3 93.1 96.0

nEAF 87.2 91.7 96.8

eEAF 89.9 93.4 98.5

cCAF 76.7 84.1 88.8

uCAF 69.2 74.3 79.6

4.3 Resistance of AFs

Argumentation is an inherently dynamic process, with arguments and attack
relations changing as new knowledge becomes available. The dynamic nature
of argumentation can potentially be exploited for computational efficiency [16]
as well as for strategic advantage [6]. Amgoud and Vesic consider whether the
addition of a new argument to a framework changes the acceptability of a specific
argument (termed the topic argument) [1]. If the addition of a new argument does
not cause a change in the topic argument’s acceptability we say the framework is
resistant, otherwise it is susceptible. To investigate whether there is a difference
in their resistance, for each framework class, we randomly generated at least
1,000 frameworks with n number of arguments, where n = 12, 24, 36, selecting
both a topic argument and a test argument at random, determining the AF to be
resistant if the acceptability of the topic argument is unaffected by the inclusion
of the test argument. Table 1 shows the percentage of the framework instances
we generated that are resistant.

For all classes we observe that the larger the framework, the more likely it
is to be resistant. Intuitively, the more arguments in a framework, the more
likely it is that an argument is topographically further away from the topic, and
therefore the less likely the test argument will change the acceptability of the
topic (this relationship can be used as a heuristic to inform an argument dialogue
strategy [20]).

In a cCAF, a new argument can alter the acceptability of arguments both
through introducing new argument-argument attacks as well as new collective-
attacks. This is also true in uCAFs, though they have a greater chance of intro-
ducing collective-attacks: since the size of a collective attack is uncapped, each
argument is in more collective attack relations on average. Thus, when we add a
new argument to a uCAF it is likely to result in more changes in the acceptability
of arguments, and this is why cCAFs are more resistant.

We see that eEAFs are more resistant than nEAFs, indicating that the higher
the proportion of preference arguments to arguments, the more resistant the
EAF will be. This is because an argument cannot alter the acceptability of an
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argument in a partition higher than its own partition, since all attack relations
are either to arguments in the same partition or to arguments in the partition
directly below. Therefore, if the topic argument is in a higher partition than the
test argument, the framework is guaranteed to be resistant. In eEAFs it is more
likely that the topic will be in a higher partition (since it is randomly selected
and there are more arguments in higher partitions than in a nEAF) and thus
the less likely it is that the test argument will affect the topic’s acceptability.

5 Case Studies

We examine two case study frameworks, obtained from argument technologies
deployed on real-world data. These motivate the relevance of the classes of frame-
work structure we investigate (showing that the results of our experiments on
randomly generated AFs map to the properties of our case-study frameworks)
and also allow us to demonstrate how our results can be used to inform argument
technologies.

5.1 Trial Aggregation

As evidence-based decision-making becomes increasingly important, clinical tri-
als can provide an important source of information to inform healthcare profes-
sionals. Hunter and Williams propose an argument-based approach for aggre-
gating the positive and negative effects of potential treatments, which has been
shown to produce recommendations that align with published clinical guide-
lines [15]. The approach performs a type of meta-analysis on a range of clinical
literature, producing a DAF (very sparse, almost a mst-DAF in structure) on
which reasoning about possible treatment options is done. We use such a frame-
work as our first case study.

Table 2 shows the number of arguments present in our trial aggregation case
study DAF (|Args|), the size of its grounded and preferred sceptical extensions
(|Gr| and |Pr|), the average SA over all possible topic arguments (SA) and the
percentage of cases that were resistant over each possible topic argument with
a randomly selected test argument (Res). We see that the results correlate with
the results obtained from mst-DAF presented earlier in this paper, with the size
of extensions, SA, and resistance being within the expected ranges of mst-DAFs.
This evidences the relevance of the structures we investigate.

We consider particularly the resistance of this case study framework to
demonstrate how our results may be used to inform a specific application. The
resistance of the trial aggregation framework is exceptionally high (97.2% ). This
indicates that new arguments added in the future, in this case by the addition of
new clinical studies, are unlikely to change the acceptability of other arguments
in the framework. This implication of this is that new studies are unlikely to
have an affect on the recommended treatment, meaning there can be confidence
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Table 2. Case study results.

|Args| |Gr| |Pr| SA Res

Trial aggregation 34 9 9 41.9 97.2

Model selection 13 7 7 46.5 89.1

in the current recommendation. If a framework produced by the trial aggrega-
tion approach had a low resistance, new studies would be likely to change the
recommended treatment, and this would imply that the recommendation is not
yet reliable.

5.2 Statistical Model Selection

Clinicians without statistical training often need support to select a suitable
model to correctly analyse and reason about their data. Sassoon et al. propose a
tool that uses argumentation to aid in the process of deciding which statistical
model is most suited to a user’s research question, data and preferences [25]. The
requirements and preferences of the user, as well as preferences from applicable
context domains, are captured in an EAF, which can then inform the user of
the most suitable model to use. We use a framework produced by using this
tool with real-world data from a study involving clinicians (originally presented
in [25]) as our second case study. The framework is an eEAF, being a HEAF
with the same number of arguments at each level of the hierarchy.

Table 2 shows the number of arguments present in our statistical model selec-
tion case study eEAF (column |Args|), the size of its grounded and the preferred
sceptical extensions (column |Gr| and column |Pr|), the average SA over all
possible topic arguments (column SA) and the percentage of cases that were
resistant over each possible topic argument with a randomly selected test argu-
ment (column Res). We see that the results correlate with our experiments over
randomly generated eEAFs. Perhaps the most interesting result from this case
study is the high SA of the framework (46.5% ). Empirical investigations have
demonstrated that the higher SA, the easier it is for a persuader to convince
a persuadee of the acceptability of some argument [3,19]. Therefore, we would
expect the persuasion of a user to use a particular statistical model to be likely
to be successful when the underlying AF is an eEAF, as in this case study we
consider here.

6 Discussion

We have shown that the type of AF and its structural properties have a sig-
nificant effect on the size of the grounded and preferred sceptical extensions,
on the proportion of subsets that determine some topic argument to be accept-
able, and on the resistance of the framework; these characteristics are known
to be important factors in the performance of different argument technologies.
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Understanding these relationships is therefore important when considering how
to evaluate such technologies. Furthermore, it can allow technologies to be opti-
mised for specific domains in which certain structures of AF are known to be
typical (such as our case study domains). For example, solvers can be developed
to be faster for particular classes of framework, or a dialogue strategy can be
effective for particular knowledge domains.

Related work considers how graph-theoretic properties of DAFs can be used
to predict the “best” argument solver for a particular DAF [7], specifically the
work considers how fast solvers are for DAFs with structures based on social
networks. In contrast, we consider a range of general argument-based character-
istics that are known to impact on various argumentation-technologies, including
argument solvers. The structures we investigate are based on those derived from
generalised argumentation frameworks commonly used in argument-technology,
and our case-studies demonstrate the relevance of these structures.

We could also examine structures of framework derived from natural human-
style argumentation (such as recent work by Rosenfield and Kraus [24]). Argu-
ment mining offers the possibility of obtaining large datasets of frameworks from
real-world human-based argumentation, and can be applied to a vast array of
domains, providing a range of framework structures related to human-reasoning.
However, representing human reasoning in a formal argumentation framework
is a challenging task; detecting arguments can be difficult in human dialogues
because conflict tends to be hidden [11]. Nevertheless, investigating the prop-
erties of structural patterns that may be emerging in representations of human
reasoning is a possible direction for future work.
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Abstract. In this paper we introduce hypersequent-based frameworks for
the modeling of defeasible reasoning by means of logic-based argumenta-
tion. These frameworks are an extension of sequent-based argumentation
frameworks, in which arguments are represented not only by sequents,
but by more general expressions, called hypersequents. This generaliza-
tion allows us to overcome some of the weaknesses of logical argumenta-
tion reported in the literature and to prove several desirable properties,
stated in terms of rationality postulates. For this, we take the relevance
logic RM as the deductive base of our formalism. This logic is regarded
as “by far the best understood of the Anderson-Belnap style systems”
(Dunn and Restall, Handbook of Philosophical Logic, vol. 6). It has a
clear semantics in terms of Sugihara matrices, as well as sound and com-
plete Hilbert- and Gentzen-type proof systems. The latter are defined by
hypersequents and admit cut elimination. We show that hypersequent-
based argumentation yields a robust defeasible variant of RM with many
desirable properties (e.g., rationality postulates and crash-resistance).

1 Introduction

Argumentation theory has been described as “a core study within artificial intel-
ligence” [11]. Among others, it is a standard method for modeling defeasible rea-
soning. Logical argumentation (sometimes called deductive or structural argu-
mentation) is a branch of argumentation theory in which arguments have a
specific structure. This includes rule-based argumentation, such as the ASPIC+

framework [26] and methods that are based on Tarskian logics, like Besnard
and Hunter’s approach [12], in which classical logic is the deductive base (the
so-called core logic).

The latter approach was generalized to sequent-based argumentation in [4],
where Gentzen-style sequents [19], extensively used in proof theory, are incorpo-
rated for representing arguments, and attacks are formulated by special inference
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rules called sequent elimination rules. The result is a generic and modular app-
roach to logical argumentation, in which any logic with a corresponding sound
and complete sequent calculus can be used as the underlying core logic. A
dynamic proof theory as a computational tool for sequent-based argumenta-
tion was introduced in [6]. This allows for reasoning with these argumentation
frameworks in an automatic way.

In this paper we further extend sequent-based argumentation to hyperse-
quents [7,22,24]. This is a powerful generalization of Gentzen’s sequents which
was used for providing cut-free Gentzen-type systems for the relevance logic RM,
its 3-valued version RM3 and the modal logic S5. It allows a high degree of par-
allelism in constructing proofs and has some applications in the proof theory
of fuzzy logics (see, e.g., [21]). In the context of argumentation, the incorpora-
tion of hypersequents enables to split sequents into different components, and
so different rationality postulates [1,13] can be satisfied, some of which are not
available otherwise.

The usefulness of logical argumentation with hypersequents is demonstrated
here on frameworks whose core logic is RM. This logic was introduced by
Dunn and McCall and later extensively studied by Dunn and Meyer [17] and
Avron [7,9] (see also [3,18]). In [18, p. 81], RM is regarded as “by far the best
understood of the Anderson-Belnap style systems”. The basic idea behind this
logic (and relevance logics in general) is that the set of premises should be ‘rele-
vant’ to its conclusion. This way some problematic phenomena of classical logic,
such as the paradoxes of material implication, are avoided. In addition, it was
shown that RM is semi-relevant, paraconsistent, decidable and has the Scroggs’
property [3, Sect. 29.4]. Furthermore, RM has a clear semantics in terms of Sugi-
hara matrices [3, Sect. 29.3] and sound and complete Hilbert- and Gentzen-type
proof systems are available for it (see, e.g., [7,9]). The latter admit cut elim-
ination and are expressed in terms of hypersequents, a fact which makes RM
particularly suitable for our purpose.

We will show that hypersequent-based frameworks, with RM as the core logic,
satisfy the logic-based rationality postulates from [1] and non-interference and
crash-resistance from [14]. In particular, this proves that such formalisms avoid
the problem of logical argumentation raised in [15], and further discussed in [2]
(to which we shall refer below). A byproduct of our approach is a defeasible
variant of RM with many desirable properties.

The rest of the paper is organized as follows. The next two sections contain
some preliminary material: in Sect. 2 we recall some basic notions of sequent-
based argumentation, and in Sect. 3 we review the notion of hypersequents and
the logic RM. Then, in Sect. 4 we extend sequent-based argumentation frame-
works to hypersequent-based ones, and in Sect. 5 we consider some properties of
these frameworks, instantiated in RM. Finally, in Sect. 6 we conclude.

2 Sequent-Based Argumentation

We start by recalling the setting of sequent-based argumentation [4]. Throughout
the paper we consider propositional languages, denoted by L, that may contain
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connectives in {¬,∧,∨,⊃,↔}. Sets of formulae are denoted by S, T , finite sets of
formulae are denoted by Γ,Δ, formulae are denoted by φ, ψ and atomic formulae
are denoted by p, q, all of which can be primed or indexed. We denote by

∧
Γ

(respectively, by
∨

Γ ), the conjunction (respectively, the disjunction) of all the
formulae in Γ . Furthermore, we let ¬S = {¬φ | φ ∈ S}.

Definition 1. A logic for a language L is a pair L = 〈L,�〉, where � is a
(Tarskian) consequence relation for L, satisfying, for all sets T , T ′ of L-formulas
and every L-formula φ, the following properties:

– reflexivity: if φ ∈ T , then T � φ;
– transitivity: if T � φ and T ′, φ � ψ, then T , T ′ � ψ;
– monotonicity: if T ′ � φ and T ′ ⊆ T , then T � φ.

As usual in logical argumentation (see, e.g., [12,23,25,27]), arguments have
a specific structure based on the underlying formal language. In the current
setting arguments are represented by the well-known proof theoretical notion of
a sequent.

Definition 2. Let L = 〈L,�〉 be a logic and let S be a set of formulae in L.

– An L-sequent ( sequent for short) is an expression of the form Γ ⇒ Δ, where
Γ and Δ are finite sets of formulae in L and ⇒ is a symbol that does not
appear in L.

– An L-argument ( argument for short) is an L-sequent Γ ⇒ ψ,1 where Γ � ψ.
Γ is called the support set of the argument and ψ is its conclusion.

– An L-argument based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We
denote by ArgL(S) the set of all the L-arguments based on S.

The formal systems used for the constructions of sequents (and so of argu-
ments) for a logic L = 〈L,�〉, are called sequent calculi [19]. In what follows we
shall assume that a sequent calculus C is sound and complete for its logic (i.e.,
Γ ⇒ ψ is provable in C iff Γ � ψ). One of the advantages of sequent-based argu-
mentation is that any logic with a corresponding sound and complete sequent
calculus can be used as the core logic. Furthermore, unlike other logic-based
approaches to argumentation (see, e.g., [2]), it is not required that the support
set is minimal, nor that it is consistent.2 The construction of arguments from
simpler arguments is done by the inference rules of the sequent calculus [19].

Argumentation systems contain also attacks between arguments. In our case,
attacks are represented by sequent elimination rules. Such a rule consists of
an attacking argument (the first condition of the rule), an attacked argument
(the last condition of the rule), conditions for the attack (the conditions in
between) and a conclusion (the eliminated attacked sequent). The outcome of
an application of such a rule is that the attacked sequent is ‘eliminated’. The
elimination of a sequent s = Γ ⇒ Δ is denoted by s or Γ �⇒ Δ.

1 Set signs in arguments are omitted.
2 See [4] for further advantages of this approach.
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Definition 3. A sequent elimination rule ( or attack rule) is a rule R of the
form:

Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γn �⇒ Δn
R (1)

Let L = 〈L,�〉 be a logic with corresponding sequent calculus C, Γ ⇒ ψ, Γ ′ ⇒
ψ′ ∈ ArgL(S) and let R be an elimination rule as above. If Γ ⇒ ψ is an instance
of Γ1 ⇒ Δ1, Γ ′ ⇒ ψ′ is an instance of Γn ⇒ Δn and all the other conditions of
R (i.e., Γi ⇒ Δi for i = 2, . . . , n−1) are provable in C, then we say that Γ ⇒ ψ
R-attacks Γ ′ ⇒ ψ′.

Example 1. We refer to [4,29] for a definition of many sequent elimination rules.
Below are three of them (assuming that Γ2 �= ∅):

Defeat:
Γ1⇒ ψ1 ⇒ ψ1 ⊃ ¬

∧
Γ2 Γ2⇒ ψ2

Γ2 �⇒ ψ2
Def

Undercut:
Γ1⇒ ψ1 ⇒ ψ1 ↔ ¬

∧
Γ2 Γ2, Γ

′
2⇒ ψ2

Γ2, Γ
′
2 �⇒ ψ2

Ucut

Consistency undercut
⇒ ¬

∧
Γ Γ, Γ ′⇒ ψ

Γ, Γ ′ �⇒ ψ
ConUcut

Note that the attacker and the attacked argument must be elements of
ArgL(S).3 A sequent-based argumentation framework is now defined as follows:

Definition 4. A sequent-based argumentation framework for a set of formulae
S based on a logic L = 〈L,�〉 and a set AR of sequent elimination rules, is a
pair AFL(S) = 〈ArgL(S),A〉, where A ⊆ ArgL(S) × ArgL(S) and (a1, a2) ∈ A
iff there is an R ∈ AR such that a1 R-attacks a2.

Example 2. Suppose that {p,¬p} ⊆ S. When classical logic (CL) is the core
logic, the sequents p ⇒ p and ¬p ⇒ ¬p attack each other according to defeat
and undercut (see Example 1). The tautological sequent ⇒ ψ∨¬ψ is not defeated
or undercut by any argument in ArgCL(S), since it has an empty support set.

Given a (sequent-based) argumentation framework AFL(S), Dung-style
semantics [16] can be applied to it, to determine what combinations of argu-
ments (called extensions) can collectively be accepted from it.

Definition 5. Let AFL(S) = 〈ArgsL(S),A〉 be an argumentation framework
and let S ⊆ ArgsL(S) be a set of arguments. It is said that:

– S attacks an argument a if there is an a′ ∈ S such that (a′, a) ∈ A;
– S defends an argument a if S attacks every attacker of a;
– S is conflict-free if there are no arguments a1, a2 ∈ S such that (a1, a2) ∈ A;
– S is admissible if it is conflict-free and it defends all of its elements.

3 By requiring that both the attacking and the attacked argument should be in ArgL(S)
we prevent “irrelevant attacks”, that is: situations in which, e.g., ¬p ⇒ ¬p attacks
p ⇒ p (by Undercut), although S = {p}.
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An admissible set that contains all the arguments that it defends is a complete
extension of AFL(S). Below are definitions of some other extensions of AFL(S):

– the grounded extension of AFL(S) is the minimal (with respect to ⊆) com-
plete extension of ArgL(S);4

– a preferred extension of AFL(S) is a maximal (with respect to ⊆) admissible
subset of ArgL(S);

– a stable extension of AFL(S) is an admissible subset of ArgL(S) that attacks
every argument not in it.

In what follows we shall refer to either complete (cmp), grounded (gr), pre-
ferred (prf) or stable (stb) semantics as completeness-based semantics. We denote
by Extsem(AFL(S)) the set of all the extensions of AFL(S) under the semantics
sem ∈ {cmp, gr, prf, stb}. The subscript is omitted when this is clear from the
context.

Example 3. Let AFCL(S) be a sequent-based argumentation framework for
S = {p,¬p, q}, based on CL, with Ucut as the sole attack rule. Then, as noted
in Example 2, the sequent ⇒ p ∨ ¬p belongs to every complete extension of
AFCL(S), since it cannot be undercut-attacked. Similarly, q ⇒ q also belongs
to every complete extension of AFL(S), since ⇒ p ∨ ¬p counter-attacks any
attacker of q ⇒ q that belongs to ArgCL(S).5 This implies that both ⇒ p ∨ ¬p
and q ⇒ q are in the grounded extension of AFCL(S).

Definition 6. Given a sequent-based argumentation framework AFL(S), the
semantics as defined in Definition 5 induces corresponding (nonmonotonic)
entailment relations: S |∼∩

sem φ (S |∼∪
sem φ) iff for every (some) extension E ∈

Extsem(AFL(S)) there is an argument Γ ⇒ φ ∈ E for some Γ ⊆ S.

Example 4. Note that, since the grounded extension is unique, |∼∩
gr and |∼∪

gr coin-
cide (so both can be denoted by |∼gr). For instance, in Example 3, p,¬p, q |∼gr q,
while p,¬p, q |�∼gr p and p,¬p, q |�∼gr ¬p.

3 Hypersequents and RM

Ordinary sequent calculi do not capture all the interesting logics. For some logics,
which have a clear and simple semantics, no standard cut-free sequent calculus is
known. Notable examples are the Gödel–Dummett intermediate logic LC, the rel-
evance logic RM and the modal logic S5. A large range of extensions of Gentzen’s
original sequent calculi have been introduced for providing decent proof sys-
tems for different non-classical logics. Here we consider a natural extension of
sequent calculi, called hypersequent calculi. Hypersequents were independently
introduced by Mints [22], Pottinger [24] and Avron [7], nowadays Avron’s nota-
tion is mostly used (see, e.g., [8]). Intuitively, a hypersequent is a finite set (or

4 It is well-known (see [16]) that the grounded extension of a framework is unique.
5 This follows since any attacker of q ⇒ q has an inconsistent support.
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sequence) of sequents, which is valid if and only if at least one of its component
sequents is valid. This allows to define new inference (and elimination) rules for
“multi-processing” different sequents. These types of rules increase the expres-
sive power of hypersequents compared to ordinary sequent calculi, and as a result
the corresponding argumentation systems have some desirable properties that
are not available for ordinary sequent-based frameworks.

To illustrate the application of hypersequents in argumentation, we take
RM as the core logic and use a hypersequent calculus for it, as well as extended
versions of the attack rules for standard sequents. In this section we formally
define what a hypersequent is and present a hypersequent calculus for RM.

3.1 Hypersequents and Inference Rules for Them

Definition 7. An L-hypersequent is a finite multiset of sequents: Γ1 ⇒ Δ1 |
. . . | Γn ⇒ Δn, where Γi ⇒ Δi (1 ≤ i ≤ n) are L-sequents and | is a new symbol,
not appearing in L.6 Each Γi ⇒ Δi is called a component of the hypersequent.

Note that every ordinary sequent is a hypersequent as well. In what fol-
lows, hypersequents are denoted by G,H, primed or indexed if needed. Given
a hypersequent H = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn, the support of H is the
set Supp(H) = {Γ1, . . . , Γn} and the consequent of H is the formula Conc(H) =∨

Δ1∨ . . .∨
∨

Δn. Given a set Λ of hypersequents, we let Concs(Λ) = {Conc(H) |
H ∈ Λ}.

Example 5. Like in Gentzen’s sequent calculi, hypersequent axioms have the
form A ⇒ A. Consider the right implication rule of Gentzen’s calculus LK for
classical logic (on the left below). The corresponding hypersequent rule is similar,
now with added components (on the right below):

Γ,A ⇒ Δ,B

Γ ⇒ Δ,A ⊃ B
⇒⊃

G | Γ,A ⇒ Δ,B | H
G | Γ ⇒ Δ,A ⊃ B | H ⇒⊃

As noted in [8], many sequent rules can be translated like this. However, it can be
that there are two versions (an additive form and a multiplicative form), which
are equivalent if contraction, exchange and weakening are all part of the system.
Take for example the right conjunction rule of LK. The dual hypersequent rule
in an additive form is:

G | Γ ⇒ Δ,A | H G | Γ ⇒ Δ,B | H
G | Γ ⇒ Δ,A ∧ B | H ⇒∧

and the multiplicative form of the same rule is:

G1 | Γ1 ⇒ Δ1, A | H1 G2 | Γ2 ⇒ Δ2, B | H2

G1 | G2 | Γ1, Γ2 ⇒ Δ1,Δ2, A ∧ B | H1 | H2
⇒∧

6 The common, intuitive interpretation of the sign “|” is disjunction.
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3.2 The Logic RM and the hypersequent calculus GRM

As noted previously, we will demonstrate hypersequent-based argumentation by
the core logic RM. This is the best understood and researched logic among the
relevance logics from the Anderson-Belnap approach [3].7 Moreover, it is para-
consistent, decidable [9], has a simple semantics [3, Sect. 29] and is characterized
by a Hilbert-style system [3, Sect. 27] (see also [9]). Like other relevance logics
(such as R), RM does not satisfy the classical implication paradoxes φ ⊃ (ψ ⊃ φ),
¬φ ⊃ (φ ⊃ ψ), (φ ∧ ¬φ) ⊃ ψ and φ ⊃ (ψ ⊃ ψ).8 This makes RM suitable for
the modeling of defeasible reasoning and hence an appropriate core logic for
argumentation-based reasoning.

An ordinary cut-free sequent calculus for RM is not known. Figure 1 presents
a hypersequent proof system for RM, called GRM.

Fig. 1. The proof system GRM [7]

7 Strictly speaking, RM is a semi-relevance logic: it does satisfy the basic relevance
criterion (introduced in [3]) and the minimal semantic relevance criterion [9], but it
does not have the variable sharing property (introduced in [3]), see, e.g., [9].

8 Unlike R, RM does satisfy the mingle axiom φ ⊃ (φ ⊃ φ).
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In [7] it is shown that GRM admits cut-elimination and that it satisfies the
following soundness and completeness result for RM:

Theorem 1. Let H = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn be a hypersequent, where for
each 1 ≤ i ≤ n, Γi = {γi

1, . . . , γ
i
mi

} and Δi = {δi
1, . . . , δ

i
li
}. We denote:

τ(H) =
(
¬γ1

1 ∨ . . . ∨ ¬γ1
m1

∨ δ11 ∨ . . . ∨ δ1l1
)
∨

. . . ∨
(
¬γn

1 ∨ . . . ∨ ¬γn
mn

∨ δn
1 ∨ . . . ∨ δn

ln

)
. (2)

Then H is derivable in GRM if and only if τ(H) is a theorem RM, that is, the
sequent ⇒τ(H) is derivable in a (complete) sequent calculus for RM [7].

To define hypersequent-based argumentation frameworks, it is not enough to
simply take the hypersequent inference rules to create arguments. A new defi-
nition of arguments is required and sequent elimination rules should be turned
into hypersequent elimination rules. This is what we will do in the next section.

4 Hypersequent-Based Argumentation

Given a logic L = 〈L,�〉 with a sound and complete hypersequent calculus H,
from now on, an argument (or an L-hyperargument) is an L-hypersequent (i.e.,
whose components are L-sequents) that is provable in H.9 In the remainder of the
paper, an argument based on a set S (of formulae in L), is an L-hyperargument
H such that Γ ⊆ S for every Γ ∈ Supp(H). We shall continue to denote by
ArgL(S) the set of arguments that are based on S.

As before, arguments are constructed by the inference rules of the hyperse-
quent calculus under consideration (see Sect. 3). For the elimination rules, we
continue to use the same notation: H denotes the elimination of the hyperse-
quent H. The structure of such rules remains the same as before as well: the
first hypersequent in the conditions of the rule is the attacking argument, the
last hypersequent in the conditions is the attacked argument and the rest of the
conditions are to be satisfied for the attack to take place.

Example 6. The elimination rules DefH , UcutH and ConUcutH are the hyperse-
quent counterparts of the rules in Example 1. Let G,H be two arguments, where
Supp(H) = {Δ1, . . . ,Δm}. We also assume that Δj �= ∅ for DefH , ∅ �= Δ′

j ⊆ Δj

for UcutH , and
⋃m

i=1 Δi �= ∅ for ConUcutH .

G ⇒ Conc(G) ⊃ ¬
∧

Δj H
H

DefH

G ⇒ Conc(G) ↔ ¬
∧

Δ′
j H

H
UcutH

⇒ ¬
∧ ⋃m

i=1 Δi H
H

ConUcutH

9 Since a sequent is a particular case of a hypersequent and hypersequent calculi gen-
eralize sequent calculi, arguments in the sense of the previous sections are particular
cases of the arguments according to the new definition.
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The notion of attack between hypersequents is the same as in Definition 3,
except that sequents are replaced by hypersequents and the sequent calculus C
is replaced by a hypersequent calculus H. Now, a hypersequent-based argumen-
tation framework can be defined in a similar way as that of a sequent-based
argumentation framework (cf. Definition 4).

Definition 8. A hypersequent-based argumentation framework for a set of for-
mulae S based on a logic L = 〈L,�〉 and a set AR of hypersequent elimination
rules, is a pair AFL(S) = 〈ArgL(S),A〉, where A ⊆ ArgL(S) × ArgL(S) and
(a1, a2) ∈ A iff there is an R ∈ AR such that a1 R-attacks a2.

Given a hypersequent-based argumentation framework AFL(S), Dung-style
semantics are defined in an equivalent way to those in Definition 5.

Example 7. Let AFRM(S) be a hypersequent-based argumentation framework
for S = {p, q,¬p ∨ ¬q}, based on RM, with UcutH as the sole attack rule. From
the axioms p ⇒ p and q ⇒ q, by the Mingle Rule [Mi] (see Fig. 1) the sequent
p, q ⇒ p, q can be derived in GRM and by the Splitting Rule [Sp] the hypersequent
p ⇒ q | q ⇒ p is derivable in GRM as well. The hypersequent p, q ⇒ p, q is UcutH -
attacked by the axiom ¬p ∨ ¬q ⇒ ¬p ∨ ¬q, but the hypersequent p ⇒ q | q ⇒ p
is not UcutH -attacked by this axiom. However, both hypersequents are UcutH -
attacked by the hypersequents p,¬p ∨ ¬q ⇒ ¬q and q,¬p ∨ ¬q ⇒ ¬p.

Definition 9. Given a hypersequent-based argumentation framework AFL(S),
the following entailment relations can be defined as in Definition 6: S |∼∩

H,sem φ

(S |∼∪
H,sem φ) iff for every (some) extension E ∈ Extsem(AFL(S)) there is an

argument H ∈ E such that Conc(H) = φ and
⋃
Supp(H) ⊆ S. The subscript H

is omitted when this is clear from the context.

5 Discussion of Some Properties

In this section we consider some useful properties of hypersequent-based argu-
mentation. We begin by showing that in some cases this kind of argumentation
overcomes a shortcoming of some other frameworks (including sequent-based
ones) that under some completeness-based semantics (Definition 5) extensions
may not always be consistent [2,15].

Example 8 (Based on Example 2 in [2]). Let AFCL(S) = 〈ArgCL(S),A〉, where
S = {p, q,¬p ∨ ¬q, t} and the attack rules are Def and/or Ucut. The following
sequents are in ArgCL(S):

a1 = t ⇒ t a2 = p ⇒ p a3 = q ⇒ q a4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q

a5 = p ⇒ ¬((¬p ∨ ¬q) ∧ q) a6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p)
a7 = p, q ⇒ p ∧ q a8 = ¬p ∨ ¬q, q ⇒ ¬p a9 = ¬p ∨ ¬q, p ⇒ ¬q

It can be shown that E = {a1, a2, a3, a4, a5, a6} is admissible in AFCL(S), for
either of the attack rules Def or Ucut. However, Concs(E) is inconsistent.
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Next, we show that the problem of the last example may be avoided by using
a hypersequent-based framework10.

Example 9 (Example 8, continued). Let AF ′
L(S) =

〈
Arg′

L(S),A′〉 be a
hypersequent-based argumentation framework (Definition 8) for L ∈ {CL,RM},
the attack rules DefH and UcutH , and S as in Example 8. With the possibility
of splitting components, we get Arg′

L(S) ⊇ ArgL(S) ∪ {a10, a11, a12} where:

a10 = ¬p ∨ ¬q ⇒ ¬p | q ⇒ ¬p a11 = ¬p ∨ ¬q ⇒ ¬q | p ⇒ ¬q

a12 = p ⇒ p ∧ q | q ⇒ p ∧ q

See Fig. 2 for a graphical representation of the situation in CL (the graph for RM
is similar). The dashed graph (nodes and arrows) represents Example 8, the ordi-
nary sequent-based argumentation graph. When generalizing to hypersequents,
the three solid nodes and all solid arrows are added.

The following three sets of arguments are part of different complete exten-
sions: E1 = {a1, a2, a3, a5, a6, a7, a12}, E2 = {a1, a3, a4, a6, a8, a10} and E3 = {a1,
a2, a4, a5, a9, a11}. Furthermore, although E = {a1, a2, a3, a4, a5, a6} is conflict-
free, a2, for example, is attacked by a10. In order to defend a2, E must be
extended with a hypersequent like a7, a9, a11 or a12, however, then the new
extension is not conflict-free anymore. Hence E is not part of a complete exten-
sion. Additionally, each extension contains a1, therefore, the system AF ′

L(S)
does not only avoid inconsistent extensions, it provides extensions from which
the free arguments follow11.

In the next subsection it will be shown, among others, that the outcome of
the last example is not a coincidence.

5.1 Rationality Postulates

In this section we show that, for a hypersequent-based argumentation frame-
work with the attack rules DefH and UcutH , and core logic RM, the logic-based
rationality postulates in [1] hold.

Definition 10. Let L = 〈L,�〉 be a logic and let T be a set of L-formulae, where
L contains the connectives ¬ and ∧.

– The closure of T is denoted by CNL(T ) (thus, CNL(T ) = {φ | T � φ}).
– T is consistent (for �), if there are no formulae φ1, . . . , φn ∈ T such that

� ¬
∧n

i=1 φi
12.

10 Intuitively, this is so due to the possibility of splitting hypersequents into different
components. A formal justification will be given in the next subsection.

11 Where free arguments are those arguments that are based only on premises that are
not involved in minimally inconsistent subsets of S (see Definition 10).

12 Note that if T is consistent, then so are CNL(T ) and T ′ for every T ′ ⊆ T . If T is
inconsistent, then so is every superset of T .
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a1

a2a5

a3a6

a7 a4

a8

a9

a10 a12 a11

Fig. 2. Part of the hypersequent-based argumentation graph for S = {p, q, ¬p ∨ ¬q, t},
with defeat as attack rule. The dashed graph is part of the ordinary sequent-based
graph, the solid nodes and arrows become available when generalizing to hypersequents.

– A subset C of T is a minimal conflict of T (w.r.t. �), if C is inconsistent and
for any c ∈ C, the set C \ {c} is consistent. We denote by Free(T ) the set of
formulae in T that are not part of any minimal conflict of T .

Let AFL(S) = 〈ArgL(S),A〉 be a hypersequent-based argumentation frame-
work and let H,H′ ∈ ArgL(S) such that H = Γ1 ⇒ φ1 | . . . | Γn ⇒ φn and
H′ = Γ ′

1 ⇒ φ′
1 | . . . | Γ ′

m ⇒ φ′
m. Then H′ is a sub-argument of H if for each

i ∈ {1, . . . , m} there is a j ∈ {1, . . . , n} such that Γ ′
i ⊆ Γj . The set of sub-

arguments of H is denoted by Sub(H).

Definition 11. Let AFL(S) = 〈ArgL(S),A〉 be an argumentation framework
for the logic L = 〈L,�〉, the set S of L-formulae and a fixed (set of) semantics
sem. We say that AFL(S) has the properties below (for sem), if they are satisfied
for every E ∈ Extsem(AFL(S)).

– closure of extensions: Concs(E) = CNL(Concs(E)).
– closure under sub-arguments: if H ∈ E then Sub(H) ⊆ E.
– consistency: Concs(E) is consistent.
– exhaustiveness: For every H ∈ ArgL(S) such that

⋃
Supp(H) ∪ {Conc(H)} ⊆

Concs(E), H ∈ E.
– free precedence: ArgL(Free(S)) ⊆ E.

Note 1. For proving the above postulates, we shall use (sometimes implicitly)
the following admissible rules of GRM:

– Transitivity: if G1 | Γ ⇒ φ1 | H1 and G2 | φ1 ⇒ φ2 | H2 are derivable, then
G1 | G2 | Γ ⇒ φ2 | H1 | H2 is derivable.
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– From G | Γ ⇒ φ ⊃ ψ,Δ | H derive G | Γ, φ ⇒ ψ,Δ | H.
– From G | Δ ⇒ φ | H derive G | ⇒ ¬φ ⊃ ¬

∧
Δ | H.

– For any Γ ′ ⊆ Γ , if G | ⇒ φ ⊃ ¬
∧

Γ ′ | H is derivable then G | ⇒ φ ⊃ ¬
∧

Γ |
H is derivable.

– Γ1 ⇒ φ1 | . . . | Γn ⇒ φn is derivable iff Γ1, . . . , Γn ⇒ φ1, . . . , φn is derivable.
– φ1 ∨ . . . ∨ φn ⇒ φ1 | . . . | φ1 ∨ . . . ∨ φn ⇒ φn is derivable.

Theorem 2. Any argumentation framework AFRM(S) with the attack relation
DefH or UcutH , and under any completeness-based semantics, satisfies closure of
extensions, closure under sub-arguments, consistency and exhaustiveness. More-
over, when ConUcutH is part of the attack rules, it also satisfies free precedence.

Proof. Let AFRM(S) = 〈ArgRM(S),A〉 be an argumentation framework, with the
attack rules DefH and/or UcutH and let E be a complete extension of AFRM(S).

Sub-argument closure: For both DefH and UcutH it can be shown that any
attacker of H′ ∈ Sub(H) is also an attacker of H. If H ∈ E , for any completeness-
based extension E there is a G ∈ E that defends H against this attack. Thus E
defends H′ as well. Therefore, H′ ∈ E .

Closure of extensions: Showing that Concs(E) ⊆ CNRM(Concs(E)) is trivial.
For the other direction, assume that φ ∈ CNRM(Concs(E)). Then there are argu-
ments H1, . . . ,Hn ∈ E such that Hi = Γ i

1 ⇒ ψi
1 | . . . | Γ i

mi
⇒ ψi

mi
, with

φi = ψi
1 ∨ . . . ∨ ψi

mi
and φ1, . . . , φn �RM φ.

It can be shown that the argument H′ =
∧n

k=1

∧mk

j=1

∧
Γ k

j ⇒ φ1 ∧ . . . ∧ φn is
derivable in GRM. By transitivity and splitting we get that H = Γ 1

1 ⇒ φ | . . . |
Γ 1

m1
⇒ φ | . . . | Γn

1 ⇒ φ | . . . | Γn
mn

⇒ φ is provable in GRM. For both attack
rules DefH and UcutH , any attacker of H is an attacker of one of the arguments
H1, . . . ,Hn. Hence H ∈ E , and so φ ∈ Concs(E).

Consistency: Assume, towards a contradiction, that Concs(E) is not consistent.
Then there are φ1, . . . , φn ∈ Concs(E) such that ⇒ ¬

∧n
j=1 φj is derivable in

GRM. Let ψ = φ1 ∧ . . . ∧ φn. Furthermore, like the proof of closure, there are
arguments H1, . . . ,Hn ∈ E , such that Hi = Γ i

1 ⇒ ψi
1 | . . . | Γ i

mi
⇒ ψi

mi

and φi = ψi
1 ∨ . . . ∨ ψi

mi
. From these, arguments H′

i = Γ i
1, . . . , Γ

i
mi

⇒ φi, for
each i ∈ {1, . . . , n}, can be derived. By applying (⇒∧) to the H′

i’s, we drive
Γ 1
1 , . . . , Γ 1

m1
, . . . , Γn

1 , . . . , Γn
mn

⇒ ψ.
Then, for each j ∈ {1, . . . , n} and k ∈ {1, . . . , mj}, ¬ψ, Γ 1

1 , . . . , Γ 1
m1

, . . . , Γn
1 ,

. . . , Γn
mn

⇒ ¬
∧

Γ j
k is derivable, where Γ j

k is taken out of Γ 1
1 , . . . , Γ 1

m1
, . . . , Γn

1 ,

. . . , Γn
mn

. By transitivity from ⇒ ¬ψ and splitting, G = Γ 1
1 ⇒ ¬

∧
Γ j

k | . . . |
Γ 1

m1
⇒ ¬

∧
Γ j

k | . . . | Γn
1 ⇒ ¬

∧
Γ j

k | . . . | Γn
mn

⇒ ¬
∧

Γ j
k is derivable. Note

that, for both attack rules DefH and UcutH , any attacker of G is an attacker
of one of the arguments H1, . . . ,Hn, therefore G ∈ E . However, G attacks
(defeats/undercuts) Hj , a contradiction to the assumption that E is conflict-
free. Thus Concs(E) is consistent.

Exhaustiveness: Let H ∈ ArgRM(S) be an argument such that
⋃
Supp(H) ∪

{Conc(H)} ⊆ Concs(E). It easily follows that E ∪ {H} is conflict-free. Assume
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that some G = Δ1 ⇒ ψ1 | . . . | Δn ⇒ ψn ∈ ArgRM(S) defeats H (the case
for undercut is similar and left to the reader). Then ⇒ Conc(G) ⊃ ¬

∧
Γ is

derivable in GRM, for some Γ ∈ Supp(H). Let Γ = {γ1, . . . , γm}. Then there
are H1, . . . ,Hm ∈ E such that Conc(Hj) = γj and

⋃
Supp(Hj) = {δj

1, . . . δ
j
kj

}
(1 ≤ j ≤ m). By Theorem 1, δj

1, . . . , δ
j
kj

�RM γj , thus δ11 , . . . , δ
1
k1

, . . . , δm
1 , . . . ,

δm
km

�RM γ1 ∧ . . . ∧ γm, and so ¬
∧

Γ, δ11 , . . . , δ
1
k1

, . . . , δm
1 , . . . , δm

km−1
�RM ¬δm

km
.

Now, by transitivity from Conc(G) ⇒ ¬
∧

Γ , Theorem 1, and splitting, we
have that G′ = Δ1 ⇒ ¬δm

km
| . . . | Δm ⇒ ¬δm

km
| δ11 ⇒ ¬δm

km
| . . . | δm

km−1
⇒

¬δm
km

∈ ArgRM(S). But then G′ defeats Hm ∈ E , thus there is some H∗ ∈ E
which defeats G′. This attack has to be on some Δi, i ∈ {1, . . . , n}, otherwise E
would not be conflict-free. Hence H∗ defeats G as well.

Since, by assumption, E is complete, E ∪ {H} is conflict-free and E defends
H, it follows that H ∈ E .

Free precedence: Suppose that ConUcutH is among the attack rules in
AFRM(S) as well. It can be shown that DefH , UcutH and ConUcutH are conflict-
dependent in the sense of [1], that is: if G,H ∈ ArgRM(S) such that G attacks H,
then

⋃
Supp(G) ∪

⋃
Supp(H) is inconsistent.

Assume that some G ∈ ArgRM(S) attacks an argument H ∈ ArgRM(Free(S)).
Since each of the considered attack rules is conflict-dependent,

⋃
Supp(H) ∪⋃

Supp(G) is inconsistent. However,
⋃
Supp(H) ⊆ Free(S), thus G has an incon-

sistent support set. Then there is an argument ⇒ ¬
∧

Supp(G) ∈ E that attacks
G via the ConUcutH rule. Since any attacker of H is counter-attacked by E , it
follows that E defends H, and since E is complete, H ∈ E .

We have shown that AFRM(S), for the given attack rules, satisfies the five
postulates under complete semantics. From this it follows (see, e.g., [1, Prop. 26])
that AFRM(S) satisfies the five postulates also under grounded, preferred and
stables semantics. ��

Consider the following weakening of the definition of sub-arguments:

Definition 12. We say that H′ is a weak sub-argument of H, if
⋃
Supp(H′) ⊆⋃

Supp(H). We denote by WSub(H) the set of all weak sub-arguments of H.

Clearly, any sub-argument of H is in particular a weak sub-argument of H.
Interestingly, as the next proposition shows, closure of extensions and exhaus-
tiveness imply closure under weak sub-arguments (and so closure under sub-
argument).

Proposition 1. Any argumentation framework AFRM(S) that satisfies closure
of extensions and exhaustiveness also satisfies closure under weak sub-arguments.

Proof. Let AFRM(S) be a hypersequent-based argumentation framework for
the core logic RM and set of formulas S that satisfies closure of extensions
and exhaustiveness. Suppose that H ∈ E for some E ∈ Extsem(AFRM(S)),
and let H′ ∈ WSub(H). Then

⋃
Supp(H′) ⊆

⋃
Supp(H). Note that for each

φ ∈
⋃
Supp(H), φ ⇒ φ ∈ E (since every attacker of φ ⇒ φ is also an attacker
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of H and E is complete). Thus (†)
⋃
Supp(H′) ⊆ Concs(E). Furthermore, since

Supp(H′) �RM Conc(H′), by the monotonicity of � also Supp(H) �RM Conc(H′)
and by closure (‡) Conc(H′) ∈ Concs(E). Thus H′ ∈ E by exhaustiveness in view
of (†) and (‡). ��

Note 2. Consider a hypersequent variant LKH of the sequent calculus LK for
classical propositional logic. This calculus would allow for internal weakening in
addition to all the rules of GRM. Then all of the above proofs for the postulates
hold also for classical logic with the calculus LKH .

5.2 Crash-Resistance and Non-interference

Two additional postulates were introduced in [14] concerning crash-resistance,
the problem that a system collapses when it is based on inconsistent information.
For defining these postulates, some definitions and notations are necessary.

Let AFL(S) = 〈ArgL(S),A〉 be an argumentation framework for the logic
L = 〈L,�〉 and a set S of L-formulae.

– We denote by Atoms(S) the set of atoms that occur in the formulae in S and
by Atoms(L) the set of all the atoms of the language.

– Sets S, T of formulae are syntactically disjoint , if Atoms(S) ∩Atoms(T ) = ∅.

Definition 13. Let |∼ be an entailment relation for L. A set S ′ of L-formulae
is called contaminating (with respect to |∼), if for any set S∗ ⊆ L such that S ′

and S∗ are syntactically disjoint, and for every L-formula φ, it holds that S ′ |∼φ
if and only if S ′ ∪ S∗ |∼ φ.

Definition 14. Let L be a propositional language and |∼ an entailment relation
for L. Then |∼ satisfies

– non-interference: if and only if for every syntactically disjoint sets S1, S2 of
L-formulae and any L-formula φ such that Atoms(φ) ⊆ Atoms(S1), S1 |∼ φ if
and only if S1 ∪ S2 |∼ φ;

– crash-resistance: if and only if there is no set S of L-formulae that is con-
taminating w.r.t. |∼.

For proving the above postulates, we need the next lemma. Its proof is par-
tially based on [5, Lemma 1] and [16, Lemma 15], but omitted due to space
restrictions.

Lemma 1. Let AFRM(S) be a hypersequent-based argumentation framework for
S (Definition 8) whose core logic is RM. The following are equivalent:
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(a) E ∈ Extprf(AFRM(S));
(b) E ∈ Extstb(AFRM(S));
(c) E = ArgRM(S ′), where S ′ is a ⊆-maximally consistent subset of S.

Theorem 3. Let AFRM(S) be a hypersequent-based argumentation framework
for the logic RM, the attack rules DefH and/or UcutH , and a set of formulae S.
Let also π ∈ {∩,∪}, and sem a completeness-based semantics. Then the induced
entailment |∼π

H,sem (Definition 9) satisfies non-interference.

Proof (outline). The structure of the proof is roughly based on the proofs in [30].
In what follows we abbreviate |∼π

H,sem by |∼π.
Let AFRM(S) be some hypersequent-based argumentation framework for the

logic RM, with the attack rules DefH and/or UcutH and a set of formulae S.
Consider two syntactically disjoint sets S1,S2 ⊆ S and let S ′ = S1 ∪ S2. For
any S ⊆ ArgRM(S), let DAFRM(S)(S) = {H ∈ ArgRM(S) | S defends H}. Then,
by Lemma 1 and the fact that RM satisfies the basic relevance criterion [9],
the following points can be shown for complete, preferred and stable semantics
(proofs are omitted due to space restrictions):

1. if E ∈ Extsem(AFRM(S ′)), then E ∩ ArgRM(S1) ∈ Extsem(AFRM(S1));
2. if E1 ∈ Extsem(AFRM(S1)) and E2 ∈ Extsem(AFRM(S2)), then DAFRM(S′)(E1 ∪

E2) ∈ Extsem(AFRM(S ′)).

Let φ be a formula with Atoms(φ) ⊆ Atoms(S1). We show that S1 |∼∩
φ if and

only if S ′ |∼∩
φ (the proof for |∼∪ is left to the reader).

⇒ Assume that S1 |∼∩
φ but S ′ |�∼∩

φ. Thus, there is some E ∈ Extsem(AFRM(S ′)),
such that there is no argument H ∈ E with Conc(H) = φ. By Item 1 above
E ∩ ArgRM(S1) ∈ Extsem(AFRM(S1)), a contradiction to S1 |∼∩

φ.
⇐ Assume that S ′ |∼∩

φ but S1 |�∼∩
φ. Thus, there is some E ∈ Extsem(AFRM(S1))

such that there is no argument H ∈ E with Conc(H) = φ. By the basic
relevance criterion [3], if E ′ ∈ Extsem(AFRM(S2)) (in [16] it is shown that there
is at least one such extension), there is no argument H ∈ E ′ with Conc(H) = φ
either. Thus, by Item 2 above, DAFRM(S′)(E ∪ E ′) ∈ Extsem(AFRM(S ′)). By
definition of DAFRM(S′), there is no argument H ∈ DAFRM(S′)(E ∪ E ′) with
Conc(H) = φ, a contradiction to S ′ |∼∩

φ.

It follows that |∼∪
H,sem and |∼∩

H,sem, for sem ∈ {gr, cmp, prf, stb}, satisfy non-
interference. ��

Theorem 4. Let AFRM(S) be a hypersequent-based argumentation framework
for the logic RM, the attack rules DefH and/or UcutH , and a set of formulae
S. Let also π ∈ {∩,∪}, and sem a completeness-based semantics. Then |∼π

H,sem

satisfies crash-resistance.

For the proof, we recall the following notion from [14]:

– Let AT be a set of atoms. We denote by S|AT the set of formulae in S that
contain only atoms from AT. For a set F of sets of L-formulae, we denote:
F|AT = {S|AT | S ∈ F}.
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– According to [14], a logic L = 〈L,�〉 is called non-trivial , if for every non-
empty set AT ⊆ Atoms(L) there are sets S1,S2 of L-formulae such that
Atoms(S1) = Atoms(S2) = AT but CNL(S1)|AT �= CNL(S2)|AT.

Proof (sketch). By Theorem 3, for every sem ∈ {gr, cmp, prf, stb} the entailments
|∼∩

H,sem and |∼∪
H,sem satisfy non-interference. Thus, since RM is non-trivial, crash-

resistance follows from [14, Theorem 1]. ��

Note 3. The basic relevance criterion [3] is a primary property of RM, used in
the proof of Theorem 3 for showing non-interference (and so also for obtaining
crash resistance in the proof of Theorem 4). We note that, although classical
logic does not satisfy the basic relevance criterion, it is a uniform logic (i.e.,
for every two sets of formulae S, S ′ and a formula φ, if S,S ′ � φ and S ′ is
a �-consistent theory that is syntactically disjoint from S ∪ {φ}, then S � φ).
By assuming that ConUcutH is part of the attack rules, Items 1 and 2 in the
proof of Theorem3 still hold. In the ⇐ direction of the proof the use of the
basic relevance criterion can be replaced by the uniformity of the core logic and
the fact that no arguments with inconsistent support set will be part of any
extension. Hence, the proofs of Theorems 3 and 4 can be adjusted also for the
case that, e.g., classical logic is the core logic.

6 Conclusion

Hypersequent-based argumentation, like sequent-based argumentation, avoids
some limitations of other approaches to logic-based argumentation (e.g., [12]),
where the support set of an argument has to be consistent and minimal. Fur-
thermore, it incorporates any logic with a corresponding sound and complete
(hyper)sequent calculus, and allows a great flexibility in the specification of the
attack rules.

In this paper we have examined hypersequent frameworks that are based on
the logic RM and with defeat and/or undercut as the attack rule. It was shown
that such frameworks satisfy the logic-based rationality postulates from [1,13]
and non-interference and crash-resistance from [14]. Moreover, a problem raised
in [15] (and further discussed in [2]), in which complete extensions may not be
consistent, is avoided.

A comparison to related literature has to be postponed. However, it is worth
noting that our non-interference result is more general than the one in [30], where
this is only proven for frameworks under complete semantics.

Future research directions include the extension of dynamic proof theory [6]
from sequent-based frameworks to hypersequent-based ones. Moreover, we plan
to investigate the integration of priorities among arguments and the use of
assumptions, such as default assumptions [20] and assumptions taken in adaptive
logics [10,28], for further extending the expressive power of hypersequent-based
argumentation.
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Abstract. The structure-preference (SP) order is a way of defining argu-
ment preference relations in structured argumentation theory that takes
into account how arguments are constructed. The SP order was first
introduced in the context of endowing Brewka’s prioritised default logic
(PDL) with sound and complete argumentation semantics. In this paper,
we further articulate the underlying intuitions of the SP order in terms
of how an agent should construct arguments. We also compare the SP
order to other argument preference relations and illustrate the different
results one would obtain. Finally, we prove that the SP order allows for
the original version of PDL to satisfy Brewka’s and Eiter’s postulates.

1 Introduction

Argumentation theory [1,2,10,14] is a general framework for non-monotonic rea-
soning [3], where inference from an inconsistent knowledge base in a given non-
monotonic logic (NML) can be expressed as the exchange of conflicting argu-
ments with premises from that knowledge base, such that the inferred statements
of the logic are the conclusions of justified arguments. As the study of how pref-
erences are used to resolve conflicts has become a major topic in NML [5,15,18],
argumentation theory has used preference relations to decide which arguments
are justified. Such preferences over arguments could be taken as exogenously
given, or be derived from more primitive concepts. Structured argumentation
theories like ASPIC+ [14], which treat arguments as structured objects made
up of premises and inference rules, consider more primitive preferences that are
given over argument components such as defeasible rules, such that these pref-
erences over components are aggregated into an argument preference relation.

This paper makes the following contributions. We first motivate and define
the structure-preference (SP) order. This is a rearrangement of the preference
relations on the fallible components (i.e. the non-axiom premises and the non-
deductive rules of inference) of a structured argumentation theory that takes into
account the structure of arguments, understood as the actual order of applica-
bility of the fallible components during argument construction. The SP order is
an alternative preference relation that can also make use of the commonly-used

c© Springer International Publishing AG, part of Springer Nature 2018
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aggregation techniques such as the elitist and democratic set-comparison rela-
tions, in accordance with the weakest-link and last-link principles [14, Sect. 5].
We also define the corresponding SP argument preference, which makes more
certain arguments more preferred. The SP order was first devised to endow
Brewka’s prioritised default logic (PDL) [4] with argumentation semantics [21].
After recapping this result, our second contribution applies the insight of the
SP order to show that Brewka and Eiter’s principles for PDL [5,6] hold for the
original version of PDL. We then discuss some related work, in particular the
roots of the SP order in logic programming [8,18].

This paper is structured as follows. In Sect. 2 we review the relevant aspects
of the ASPIC+ framework for structured argumentation [10,14]. In Sect. 3 we
define the SP order on the defeasible rules in the abstract context of ASPIC+,
establish its underlying intuitions, and compare it with different argument pref-
erence relations. In Sect. 4 we recap PDL [4] and its argumentation semantics in
the case where the underlying priority is a total order [21]. We also recall Brewka
and Eiter’s claim that PDL “does not take seriously what they believe” [5,6],
and their remedy by modifying PDL to satisfy two guiding principles. We prove
that if PDL reasons with the SP order, then it will also satisfy these principles.
Section 5 discusses related work [8,11–13,18] and Sect. 6 concludes.

2 Preferences in Structured Argumentation

To illustrate the idea of the SP order, we will use the ASPIC+ framework for
structured argumentation. However, it will become clear that any structured
argumentation theory that considers preferences over the fallible components of
arguments and has a well-defined notion of argument construction can accom-
modate the SP order.

2.1 The ASPIC+ Framework for Structured Argumentation

We recap the relevant definitions of ASPIC+ [10,14]. An argumentation system
is a tuple 〈L,−,Rs,Rd, n〉, where L is a set of well-formed formulae (wffs),
− : L → P (L) is the contrary function1 θ �→ θ, where θ is the set of wffs
that disagree with θ. Let m ∈ N and θ1, . . . , θm, φ ∈ L.2 Rs is the set of
strict inference rules, where rules are denoted by (θ1, . . . , θm → φ), meaning
that if θ1, . . . , θm are all true then φ is also true. Rd is the set of defeasible
inference rules, where rules are denoted by (θ1, . . . , θm ⇒ φ), meaning that if
θ1, . . . , θm are all true then φ is tentatively true. We have that Rs ∩ Rd = ∅.
For r = (θ1, . . . , θm → / ⇒ φ) ∈ Rs ∪ Rd we define Ante(r) := {θi}m

i=1 ⊆ L and
Cons(r) := φ ∈ L.3 Finally, n : Rd → L is a partial function that assigns a
name to defeasible rules.

1 If X is a set then P (X) is its power set.
2 In this paper, N := {0, 1, 2, 3, . . .} and N

+ := {1, 2, 3, 4, . . .}.
3 If m = 0 then rules like (→ φ) and (⇒ ψ) are well-defined, with Ante(r) = ∅.
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A knowledge base is a set K := Kn ∪ Kp ⊆ L where Kn ∩ Kp = ∅. Kn is the
set of axioms, and Kp is the set of ordinary premises. Given an argumentation
system and knowledge base, ASPIC+ arguments are constructed inductively:

1. (Base) [θ] is a singleton argument with θ ∈ K, with conclusion Conc ([θ]) :=
θ ∈ L, premise set Prem ([θ]) := {θ} ⊆ K, top rule TopRule ([θ]) := ∗4 and
set of subarguments Sub ([θ]) := {[θ]}.

2. (Inductive) Let n ∈ N and {Ai}n
i=1 be a set of arguments where for all

1 ≤ i ≤ n, Ai has Conc (Ai) ∈ L, Prem (Ai) ⊆ L and Sub (Ai) well-
defined. If we have a strict rule r = (Conc (A1) , . . . , Conc (An) → φ) ∈
Rs and defeasible rule s = (Conc (A1) , . . . , Conc (An) ⇒ ψ) ∈ Rd, then
B := [A1, . . . , An → φ] and C := [A1, . . . , An ⇒ ψ] are also arguments,
with respective conclusions Conc(B) := φ and Conc(C) := ψ, premise sets
Prem(B), P rem(C) :=

⋃n
i=1 Prem (Ai), top rules TopRule(B) = r and

TopRule(C) = s, and sets of subarguments Sub(B) = {B} ∪ ⋃n
i=1 Sub (Ai)

and Sub(C) = {C} ∪ ⋃n
i=1 Sub (Ai).5

Let A denote the (unique) set of arguments constructed in this way.

Example 1. Working in propositional logic where L denotes the set of all proposi-
tional wffs and Rs contains all of the usual rules of proof. Let a, b, c ∈ L be propo-
sitional variables. Suppose we have Rd = {(a ⇒ b) , (b ⇒ c)} and Kn = {a}.
Then we have arguments A0 := [a], A1 := [A0 ⇒ b] and A := [A1 ⇒ c].

Two arguments are equal iff they are constructed identically in the above
manner with syntactically identical formulae. For A,B ∈ A we say A is a sub-
argument of B iff A ∈ Sub(B) and write A ⊆arg B; it is clear that ⊆arg is
a preorder on A. An argument A is firm iff Prem(A) ⊆ Kn. For A ∈ A let
DR(A) ⊆ Rd be the defeasible rules applied in constructing A. We say an argu-
ment is strict iff DR(A) = ∅; non-strict arguments are defeasible. We say that
A attacks B on B′ ⊆arg B iff at least one of the following hold.6

1. Undermine iff (∃θ ∈ Prem(B) ∩ Kp)
[
B′ = [θ] and Conc(A) ∈ θ

]
.

2. Rebut iff r := TopRule (B′) ∈ Rd and Conc(A) ∈ Cons (r).
3. Undercut iff Conc(A) ∈ n (TopRule (B′)).

Example 2. (Example 1 continued) Let − : L → P (L) be the contrary function
representing classical syntactic negation, i.e. θ := {ψ} where if θ is syntactically
of the form ¬φ, then ψ = φ, else ψ = ¬θ. Suppose a further defeasible rule
(a ⇒ ¬c) ∈ Rd, then B := [A0 ⇒ ¬c] is an argument such that B ⇀ A, and
A ⇀ B, both rebutting each other at their conclusions.

ASPIC+ also includes preferences on each arguments’ fallible components,
namely ordinary premises in Kp and defeasible rules in Rd. These sets are

4 In this paper, undefined quantities are denoted with ∗.
5 From Footnote 3: when n = 0 then arguments like [→ φ] and [⇒ ψ] are well-defined,

each with empty premises and only itself as a subargument.
6 See [14] for why attacks are distinguished in this way.
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equipped with the respective strict partial orders <K and <D, assumed to
be exogenously given, such that 〈Kp, <K〉 and 〈Rd, <D〉 are respectively lifted
to relations �K and �D that compare finite subsets of Kp and Rd respec-
tively.7 This information is aggregated to an argument preference relation �
on A (see Sect. 2.2). We can then use this preference relation to determine
which attacks succeed as defeats. The defeat relation ↪→ on A is defined as:
A ↪→ B on B′ ⇔ [A ⇀ B on B′ ⊆arg B, A �≺ B′], in the cases where A ⇀ B is
an undermine or rebut.8 This gives us a directed graph called an argumentation
framework 〈A, ↪→〉 where the usual methods of calculating the justified argu-
ments from abstract argumentation apply [10]. For our purposes we say that a
set of arguments S ⊆ A is justified (i.e. a stable extension) iff it is conflict free,
↪→ ∩S2 = ∅, and (∀B /∈ S) (∃A ∈ S) A ↪→ B.

2.2 Principles for Argument Preferences

We now elaborate on how ASPIC+ derives argument preference relations from
the strict partially ordered set (poset) 〈Kp, <K〉 and 〈Rd, <D〉 [14, Sect. 5]. Let
X be Kp or Rd and < be either <K or <D. To lift 〈X,<〉 to 〈Pfin (X) , �〉,9 we
have the following formulae [14,16]: for Γ, Γ ′ ∈ Pfin (X) and � ∈ {�Eli, �Dem}:

Γ �Eli Γ ′ ⇔ [Γ = Γ ′ or Γ �Eli Γ ′] , (1)
where Γ �Eli Γ ′ ⇔ (∃x ∈ Γ ) (∀y ∈ Γ ′) x <D y, and (2)

Γ �Dem Γ ′ ⇔ [Γ = Γ ′ or Γ �Dem Γ ′] , (3)

where Γ �Dem Γ ′ ⇔

⎧
⎪⎨

⎪⎩

true if Γ �= ∅, Γ ′ = ∅,

false if Γ = Γ ′ = ∅ or (Γ = ∅, Γ ′ �= ∅),
else, (∀x ∈ Γ ) (∃y ∈ Γ ′) x <D y.

(4)

The relation �Eli (Eq. 2) is the strict elitist set-comparison relation. The relation
�Dem (Eq. 4) is the strict democratic set-comparison relation. Notice in all cases
∅ is a maximal element to reflect that what should be most preferred should be
arguments with no such fallible component.

To relate these set-comparison relations to arguments, we recall the last link
principle (LLP) [14, Definition 20]. For A,B ∈ A and �∈ {�Eli, �Dem}, define

A � B ⇔
{

Premp(A) � Premp(B) LDR(A) = LDR(B),
LDR(A) � LDR(B) else,

(5)

where for A ∈ A: if A is singleton then LDR(A) = ∅, else if A = [A1, . . . , An ⇒
Conc(A)] then LDR(A) = {(Conc(A1), . . . , Conc(An) ⇒ Conc(A))}, else we
have LDR(A) =

⋃n
i=1 LDR (Ai). Alternatively, one can use the weakest link

principle (WLP) [14, Definition 21]. For A,B,� as above,
7 The subscript K stands for “knowledge” and D stands for “defeasible”.
8 This is adequate for our purposes. For a discussion of the subtleties of how this

depends on the contrary function and for the case of undercutting attacks, see [14].
9 If X is a set then Pfin (X) is the set of all finite subsets of X.
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A � B ⇔

⎧
⎪⎨

⎪⎩

Premp(A) � Premp(B) if A,B are strict,
DR(A) � DR(B) if A,B are firm,
Premp(A) � Premp(B) and DR(A) � DR(B) else.

(6)

Both the LLP and WLP are commonly used ways of defining preferences �
on arguments from more primitive preferences on the fallible components of
arguments.10 The strict preference is defined as A ≺ B ⇔ [A � B, B �� A].

3 The Structure-Preference Order

3.1 Guiding Intuition – How to Construct Arguments

We now articulate the guiding intuition of the SP order, which is related to how
agents should construct and compare arguments. Preferences have long been used
to guide reasoning in non-monotonic logics (NMLs) and logic programming. In
[9], Delgrande et al. review the ways preferences are treated in NMLs. They
distinguish between two types of preferences. Prescriptive preferences provide
information on which of the applicable rules should be selected, i.e. “applicable”
in the sense of having all of the antecedents of a rule known. Descriptive pref-
erences specify the exact order of how the rules are actually applied. How do
these ideas translate to structured argumentation theory?

Assume we have an inferentially ideal agent who, when constructing argu-
ments, is able to apply all applicable strict rules in Rs when it is possible to do
so. Such an agent would begin with all premises K (as singleton arguments) and
deductively close under all possible strict rules to form a core. Of the applica-
ble defeasible rules, the agent would choose the <D-most preferred ones to be
applied. The agent then continues deductively closing with respect to the strict
rules, and then adding the <D-most preferred defeasible rules... and so on. This
view of argument construction gives a canonical enumeration of how far a given
argument is from the agent’s core, in terms of the number of times the agent has
added a defeasible rule and closed under all possible strict rules. This canonical
enumeration also creates a preference over the defeasible rules that is descriptive
in the sense of Delgrande et al.

How can we define such a descriptive preference on Rd in structured argu-
mentation theory? For simplicity, we will assume arguments are firm and that
the agent has a prescriptive preference relation <D over Rd that is a strict total
order [19, Chap. 3], and that Rd is a finite set. We define a preference <SP

on Rd, where SP stands for structure-preference, as follows. The most <SP -
preferred defeasible rule, a1, is the most <D-preferred applicable rule after all
strict arguments are constructed, i.e. the core. The next most <SP -preferred
defeasible rule, a2, is the next most <D-preferred applicable rule after a1... etc.
and so on until all defeasible rules are added. If <D is a total order then <SP is
also a total order. We will formalise this idea in Definition 2 below.
10 The infallible components of arguments, i.e. the axiom premises and deductive rules

of inference, are by convention incomparable because they are all true.
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3.2 The SP Order - Definitions, Comparisons, Properties

We give the following definitions. We work with an arbitrary argumentation
system and knowledge base with Kp = ∅ (Sect. 2).

Definition 1. Let R ⊆ Rd. The set Args(R) ⊆ A is defined as: A ∈ Args(R) ⇔
DR(A) ⊆ R. This is the set of arguments freely constructed with defea-
sible rules restricted to those in R.

The set Args(R) has all arguments with premises in K, strict rules in Rs and
defeasible rules in R. Given R, Args(R) exists and is unique. Further, we will
assume that there are no irrelevant rules, i.e. there is no r ∈ Rd such that r /∈
DR (A) :=

⋃
A∈A DR(A). Therefore, all rules in Rd feature in some argument.

Also, we generalise the conclusion function (Sect. 2) to sets of arguments. For
S ⊆ A, Conc(S) :=

⋃
A∈S {Conc(A)}.

We will define the SP order for argumentation systems where

1. Kp = ∅ (i.e. all arguments are firm),
2. Rd is finite and
3. <D is a total order on Rd.

We will briefly consider how assumptions 1 and 3 above might be lifted in Sect. 6.
Definition 2 below formalises our discussion of Sect. 3.1. Each <D over Rd can be
transformed into <SP that incorporates the logical relationship of the defeasible
rules, which is determined by the order they are applied when constructing
arguments.

Definition 2. Let N := |Rd| and 1 ≤ i ≤ N . We define a rearrangement of the
defeasible rules r ∈ Rd to ai ∈ Rd as follows:

ai := max
<D

⎡

⎣

{

r ∈ Rd Ante(r) ⊆ Conc

[

Args

(
i−1⋃

k=1

{ak}
)]}

−
i−1⋃

j=1

{aj}
⎤

⎦ . (7)

The (strict) structure-preference (SP) order on Rd, denoted by <SP , is:

(∀1 ≤ i, j ≤ N) ai <SP aj ⇔ j < i. (8)

The non-strict SP order is ai ≤SP aj ⇔ [ai = aj or ai <SP aj ].11

As <D is a total order and Rd is finite, ai exists and is unique. The agent first
constructs all strict (and firm) arguments Args (∅), then adds the <D-most pre-
ferred applicable rule a1 = max<D

{r ∈ Rd Ante(r) ⊆ Conc (Args (∅))}. Then
the agent adds the next <D-most preferred applicable rule a2... etc. until all
rules are exhausted. Note that the second union after the set difference in Eq. 7
ensures that each rule is only applied once. The result is such that <SP -larger
defeasible rules belong to smaller arguments or are more preferred. Clearly, <SP

is also a strict total order on Rd, and the transformation <D �→<SP is functional.
11 This is well-defined because i �→ ai is bijective between Rd and {1, 2, 3, . . . , |Rd|}.
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3.3 The SP Argument Preference

Inspired by preferences in NML, <SP provides a new way of defining argu-
ment preference relations, because it takes into account how arguments are con-
structed. We now lift <SP to its corresponding argument preference, ≺SP . The
guiding intuition is that arguments further away from the core should be less pre-
ferred, because (as Kp = ∅) arguments in the core are certain (strict and firm);
one might expect an agent to prefer arguments that are more certain (closer to
the core) by virtue of it having less fallible elements and thus being less suscepti-
ble to attack. We formalise this as A ⊆arg B ⇒ A � B, and investigate through
examples whether the other ASPIC+ preferences satisfy this property.

Example 3. (Example 1 continued) Consider the arguments A1 and A from
Example 1. Clearly LDR(A1) = {(a ⇒ b)} and LDR(A) = {(b ⇒ c)}. Suppose
(a ⇒ b) <D (b ⇒ c). By �Eli-LLP (Eqs. 1, 2 and 5), we have A1 ≺ A. By Eq. 7
[a] ∈ Args (∅) and Ante(a ⇒ b) = {a} ⊆ Conc (Args (∅)) so a1 = (a ⇒ b).
Similarly, a2 = (b ⇒ c), hence (b ⇒ c) <SP (a ⇒ b). Therefore, by �Eli-LLP
under <SP , we have that A ≺ A1.

Example 3 shows that under <D, it is possible for �Eli-LLP to rank an argument
A that is further from the core (because it has two defeasible rules composed in
series) to be more preferred than an argument A1 that is closer to the core.

The next example shows that <SP does not completely capture that argu-
ments should be less preferred than their (smaller) subarguments under �Dem.

Example 4. (Examples 1 to 3 continued) Let r1 := (a ⇒ b), r2 := (b ⇒ c)
and r3 := (a ⇒ ¬c). Suppose r1 <D r3 <D r2. Applying �Dem-WLP, we have
A1 ≺ B ≺ A ≺ A0, which by Example 2 means that A ↪→ B on B, so c is
a justified conclusion. From Eq. 7, we have r2 <SP r1 <SP r3, hence the new
preference is A, A1 ≺ B ≺ A0, with A and A1 incomparable.

As A1 ⊆arg A, we would like A � A1. Does �Eli fare any better?

Example 5. (Example 4 continued) Consider the same situation but with �Eli-
WLP. From r1 <D r3 <D r2 we have A, A1 ≺ B ≺ A0 with A and A1 incompa-
rable. However, from r2 <SP r1 <SP r3 we have A ≺ A1 ≺ B ≺ A0.

Example 5 makes the larger argument A less preferred than its subargument A1.
However, even when using �Eli, this does not generally hold true.

Example 6. Consider a different example where a, b, c ∈ L, Kn := {a}, Rd :=
{r1 := (a ⇒ b), r2 := (b ⇒ c), r3 := (b ⇒ ¬c)}. We can construct the arguments
A := [[[a] ⇒ b] ⇒ c] and B := [[[a] ⇒ b] ⇒ ¬c], with DR(A) = {r1, r2}
and DR(B) = {r1, r3}. Suppose we have that r3 <D r2 <D r1, which gives
r3 <SP r2 <SP r1 by Eq. 7. Under �Eli-WLP, both A and B are incomparable.

The ≺SP -smaller argument should be that which has the <SP -smallest rule,
i.e. be further from the core. Example 6 shows that �Eli does not behave well
when comparing arguments with shared rules. We now define a set-comparison
relation that compares arguments at their non-shared rules.
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Definition 3. Given <D and <SP from Eq. 8, the structure preference set-
comparison relation, �SP is the following binary relation on Pfin (Rd):

Γ �SP Γ ′ ⇔ (∃x ∈ Γ − Γ ′) (∀y ∈ Γ ′ − Γ ) x <SP y . (9)

It can be shown that as <SP is a strict total order on Rd, then �SP is also a
strict total order on Pfin (Rd) [21, Lemma 4.2].12 We specialise this relation to
obtain the corresponding argument preference relation:

Definition 4. Given <D, <SP from Eq. 8 and �SP from Eq. 9, the (strict)
structure-preference (SP) argument preference relation is the relation
≺SP , which is Eq. 9 specialised to WLP:

A ≺SP B ⇔ DR(A) �SP DR(B), (10)

with the non-strict SP argument preference relation defined as A �SP

B ⇔ [A ≺SP B or DR(A) = DR(B)].

We use WLP to avoid situations like Example 3, where arguments further away
from the core are more preferred. It follows that �SP is a total preorder on A. In
particular, �SP satisfies the following two properties that reflect how arguments
further from the core are ≺SP -less preferred.

1. Larger arguments are less preferred than smaller arguments, i.e. A ⊆arg B ⇒
B �SP A [21, Lemma 4.1].

2. Infallible arguments, in this case strict arguments, are �SP -maximal. It fol-
lows from the definition of the defeat relation that (e.g.) strict arguments
concluding θ will defeat any defeasible argument concluding ¬θ.

In summary, ≺SP is an ASPIC+ argument preference relation based on <SP ,
which captures the intuition that arguments further from the core are less cer-
tain and therefore less preferred. As shown in the preceding examples, these
properties do not hold for LLP or �Dem, and also fails for �Eli when there are
shared defeasible rules.

4 Applications to Prioritised Default Logic

In this section, we remind the reader that ≺SP has been used to endow Brewka’s
prioritised default logic (PDL) [4] with sound and complete argumentation
semantics [21]. Further, we show that whereas when reasoning according to
<D in PDL does not satisfy Brewka and Eiter’s two principles (articulated in
Sect. 4.2 below, also see [5,6]), the principles are satisfied if <SP is used instead.
We work in first order logic where the set of formulae is FL, and the set of
formulae without free variables is SL ⊂ FL, with the usual quantifiers and
connectives. Classical entailment is denoted by |=. Given S ⊆ FL, the deduc-
tive closure of S is Th (S) ⊆ FL, and given θ ∈ FL, the addition operator is
S + θ := Th (S ∪ {θ}).
12 Equation 9 has previously been considered in a different context [7].
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4.1 Brewka’s Prioritised Default Logic as Argumentation

In this paper, we assume closed normal defaults of the form θ:φ
φ read as: if the

antecedent θ ∈ SL is the case and the consequent φ is consistent with what
we know, then φ is also the case. Given S ⊆ SL, a default is active (in S) iff
[θ ∈ S, φ /∈ S, ¬φ /∈ S]. Active defaults are precisely those that can be applied,
such that the information gained is new and consistent with what we know. A
finite prioritised default theory (PDT) is a structure T := 〈D, W, <〉, where
W ⊆ SL is a possibly infinite set of known facts and 〈D, <〉 is a finite strict
poset of defaults, where d < d′ ⇔ means d′ is more prioritised than d. Intuitively,
D consists of the defaults that nonmonotonically extend W . The inferences of
a PDT are defined by its extensions. Let <+⊇< be a linearisation of <. A
prioritised default extension (with respect to <+) (PDE) is a set E :=

⋃
i∈N

Ei ⊆
SL built inductively as

E0 := Th (W ) and Ei+1 :=

{
Ei + φ , if property 1
Ei , else

(11)

where “property 1” iff “φ is the consequent of the <+-greatest default d active
in Ei”. Intuitively, one first generates all classical consequences from the facts
W , and then iteratively adds the nonmonotonic consequences from the most
prioritised default to the least. The set of defaults thus added are called the gen-
erating defaults of E, denoted by GD(<+) ⊆ D. Notice if W is inconsistent then
E0 = E = FL. It can be shown that the ascending chain Ei ⊆ Ei+1 stabilises
at some finite i ∈ N and that E is consistent provided that W is consistent. E
does not have to be unique because there are many distinct linearisations <+ of
<. We say the PDT T sceptically infers θ ∈ SL iff θ ∈ E for all PDEs E.

Henceforth, we will assume a linearised PDT (LPDT) T = 〈D,W,<〉 where
< is a strict total order unless otherwise stated. By Eq. 11, since < is total,
there is only one way to apply the defaults in D, hence the PDE is unique and
all inferences are sceptical. We say that θ follows from T iff θ ∈ E where E is
the PDE of T . Further, we will assume W is consistent.

Given an LPDT T := 〈D,W,<〉 we translate directly into an argumentation
system and knowledge base. For the argumentation system, we have that L =
FL, − is classical syntactic negation (as in Example 2),

Rs := {(θ1, . . . , θn → φ) θ1, . . . , θn |= φ} , (12)

Rd :=
{

(θ ⇒ φ)
θ : φ

φ
∈ D

}

, (θ ⇒ φ) <D (θ′ ⇒ φ′) ⇔ θ : φ

φ
<

θ′ : φ′

φ′ . (13)

Also, n ≡ ∗ (we do not need undercuts), Kn = W and Kp = ∅. Arguments
and attacks are defined as in Sect. 2. It has been shown that a sound and com-
plete argumentation semantics for PDL is obtained if <SP is used rather than
<D [21]. Further, it has been shown why the ASPIC+ argument preferences
(Sect. 2.2) cannot give a sound and complete argumentation semantics based
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on <D [20, Sect. 4.2.1]. Intuitively, the inference mechanism of PDL (Eq. 11)
picks out those defaults that are most preferred and active. This requirement of
being active is not a property of <, but rather a property of the way PDEs are
defined (Eq. 11). When translating into argumentation, <D only contains the
information from <. To achieve soundness and completeness, we must explicitly
incorporate the idea for a default to be active, such that arguments contain-
ing rules corresponding to blocked defaults are defeated by being less preferred,
which is what <SP captures. Further, common rules are ignored because either
they are included in E or not, which is what ≺SP captures (Eq. 9).

Using <SP and the associated defeat relation ↪→, it can be shown that there
is a unique stable extension of 〈A, ↪→〉 [21, Theorem 5.2]. We then have the
following soundness and completeness result.

Theorem 1. Let T be an LPDT where W is consistent, and DG(T ) := 〈A, ↪→〉
be its defeat graph with ↪→ defined under ≺SP .

1. Let E be the extension of T . Then there exists a unique stable extension E ⊆ A
of DG(T ) such that Conc (E) = E.

2. If E ⊆ A is the stable extension of DG(T ), then Conc(E) is the extension of
T .

Proof. See [21, Theorem 5.3]. �

PDL is thus endowed with argumentation semantics. The following definition
(Definition 5) is important for proving Theorem 1 because given the PDE E
of T we can show that Args (F (NBD(E))) is the unique stable extension E
(Definition 1). The set NBD(E) will become important in the next section.13

Definition 5. (From [21, Equation 5.3 and Lemma 5.1]) Let T = 〈D,W,<〉
with extension E. Define the set of non-blocked defaults w.r.t. E

NBD(E) :=
{

θ : φ

φ
∈ D θ ∈ E and ¬φ /∈ E

}

. (14)

The corresponding set of defeasible rules is denoted by the obvious order isomor-
phism F : D → Rd implicit in Eq. 13.

F (NBD(E)) := {(θ ⇒ φ) ∈ Rd θ ∈ E and ¬φ /∈ E} . (15)

4.2 On Brewka and Eiter’s Principles for Priorities

When PDL was defined, Prakken offered an alternative intuition of the prefer-
ence that differed from Eq. 11 [4, Section 5]. Brewka modified PDL in order to
accommodate Prakken’s intuition, at the cost of a less intuitive, non-constructive
inference mechanism. Brewka and Eiter later formalised this version of PDL with
two intuitive principles which they argue all PDLs should satisfy (see below),
13 Given T and its PDE E is generated by the total order <, we have NBD(E) �=

GD (<) in general. See [21, Section 5.1] for an explanation.



On the Interaction Between Logic and Preference 45

which are satisfied by the non-constructive inference mechanism but not by
Eq. 11. We will show that by importing <SP from the sound and complete argu-
mentation semantics of PDL back into PDL (Definition 6), Eq. 11 satisfies both
of these principles as well. This allows us to retain the constructive inference
mechanism of PDL.

Brewka and Eiter articulated two general principles that should hold true for
any prioritised default logic [5,6].

1. Principle I - Preference: Let T be a Reiter default theory14 [17] with
extensions E1 and E2 respectively generated by the defaults R ∪ {d1} and
R ∪ {d2} where d1, d2, /∈ R ⊆ D. Let <�= ∅ be a strict partial order on D
such that T is now a PDT. If d2 < d1 then E2 cannot be a PDE of T .

1. Principle II - Relevance: Let T be a PDT with PDE E. Let d = θ:φ
φ /∈ D

such that θ /∈ E. Define a PDT T ′ = 〈D ∪ {d} ,W,<′〉. If <′ ∩D2 =< then
E is also a PDE of T ′.

Principle I states that if E1 and E2 are Reiter extensions of the PDT that have
almost the same generating defaults but one, such that d1 generates E1 and d2
generates E2, and if d2 < d1, then E1 should be the PDE of the PDT. Principle
II states that the addition of irrelevant defaults cannot change the PDEs unless
the preference changes. Principle I is not satisfied by PDL (Eq. 11).

Corollary 1. Equation 11 does not satisfy Principle I.

Proof. (Based on [4, Section 5] and [6, Example 4]) Consider the PDT T =
〈D,W,<〉 with W = {a}, D =

{
d1 := b:c

c , d2 := a:b
b , d3 := a:¬c

¬c

}
and d2 < d3 <

d1. Applying Eq. 11, we have E0 = Th ({a}), E1 = E0 + ¬c, E2 = E1 + b
so E := Th ({a, b,¬c}). The equivalent Reiter default theory gives E and also
E′ := Th ({a, b, c}) as extensions. E is generated by the defaults {d2, d3} and
E′ is generated by the defaults {d1, d2}. However, the original preference states
d3 < d1. Therefore, Principle I states that E cannot be an extension. However,
by Eq. 11, E is an extension. �

Corollary 1 formalises Prakken’s criticism of Eq. 11 (cited in [4]): in this
example, there is nothing that could conflict with d2 and it could always be
applied as W = {a}. This means d1 is always applicable. As d1 is more <-
preferred than d3, d1 should be applied first. Therefore, the correct extension
should be E′ := Th ({a, b, c}). This later lead Brewka and Eiter to conclude that
PDL “does not take seriously what they believe” [5,6]. Brewka and Eiter’s artic-
ulation of Principles I and II seeks to formalise the intuition that the preference
should mean what it says.

We show here that Principle II is satisfied by Eq. 11 for general PDTs.

Theorem 2. Let E be a PDE of T = 〈D,W,<〉 where < does not have to be
total. Let d := θ:φ

φ /∈ D be a default such that θ /∈ E. Define a PDT T ′ :=
〈D ∪ {d} ,W,<′〉 where <′ ∩D2 =<. E is also a PDE of T ′.

14 Here, T is a PDT with no priority (partial order <= ∅), see [4, Proposition 6].



46 A. P. Young et al.

Proof. If E is a PDE of T then by Eq. 11 there exists some LPDT T+ =
〈D,W,<+〉 where <+ is a linearisation of < such that E is the unique PDE
of T+. As <′ ∩D2 =<, we can place d at any position along the chain <+

to make a linearisation <′+ of <′. As θ /∈ E, then d is not <′+-least active at
E0 = Th (W ) (else θ ∈ E). Similarly, the addition of any of the defaults in D to
Ei ⊆ E will not make d <′+-least active either because θ /∈ E implies θ /∈ Ei.
Therefore, E is also a PDE of T ′. �

Brewka and Eiter showed that their non-constructive version of PDL, mod-
ified to accommodate Prakken’s intuition, does satisfy both these principles,
unlike Eq. 11 [5,6]. We will prove that Eq. 11 can satisfy Principle I, provided
that it reasons with the PDL analogue of <SP on its defaults. Consider the
following example.

Example 7 (Continued from the Example in Corollary 1). We can transform T
into its argumentation framework with d2 < d3 < d1 �→ r2 <D r3 <D r1.15 It
can be shown that r1 <SP r2 <SP r3. Now consider the equivalent preference
to <SP on the side of PDL, denoted as d1 <PDLSP d2 <PDLSP d3. The Reiter
extensions are E = Th ({a, b,¬c}) and E′ = Th ({a, b, c}), respectively gener-
ated by {d2, d3} and {d1, d2}. Notice now that E is indeed the extension and
d1 <PDLSP d3, which means Principle I is satisfied.

Example 7 motivates the following definition, which formalises the idea of
importing <SP from the argumentation semantics of PDL back into PDL.

Definition 6. Let T be an LPDT. Let < ∼= <D �→ <SP be the corresponding
SP order on the defeasible rules in its argumentation framework (Eqs. 7, 8 and
13). The SP default priority, <PDLSP on D is the total order that is order
isomorphic to the SP order <SP on Rd.

Definition 6 transforms the prescriptive preference < of a PDT to its correspond-
ing descriptive preference <PDLSP . This does not change the PDE, because
Eq. 11 already selects the most active default at each stage, so explicitly incor-
porating “active” into < to form <PDLSP means that selecting the <PDLSP -
greatest active rule is the same as selecting the <-greatest active rule.

We now prove that Principle I is always satisfied by Eq. 11 when using the SP
default priority <PDLSP . To do this, we first prove some properties of Args(R)
(Definition 1).

Lemma 1. If S = Args(R) ⊆ A for some R ⊆ Rd, then DR(S) ⊆ R, where
DR(S) :=

⋃
A∈S DR(A).

Proof. For all A ∈ S = Args(R), DR(A) ⊆ R by definition. Let r ∈ DR(S),
then (∃A ∈ S) r ∈ DR(A) ⊆ R, hence r ∈ R. �

Lemma 2. If S = Args(R) ⊆ A for some R ⊆ Rd and (∀r ∈ R) Ante(r) ⊆
Conc(S), then DR(S) = R.

15 Where (e.g.) d1 := b:c
c

means that r1 := (b ⇒ c), and similarly for di to ri, i ∈ {2, 3}.
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Proof. Let r ∈ R, then Ante(r) ⊆ Conc(S) and (∃n ∈ N) r = (θ1, . . . , θn ⇒ φ).
If n = 0 then Ante(r) = ∅, so r is always applicable and the argument [⇒
φ] ∈ S, so r ∈ DR(S). If n > 0, as Ante(r) ⊆ Conc(S), then for each θi

for 1 ≤ i ≤ n there is some argument Ai ∈ S such that Conc(Ai) := θi. By
Lemma 1, DR (Ai) ⊆ R. As Args(R) contains all arguments freely constructed
from all premises, strict rules and defeasible rules in R, we can construct the
argument B := [A1, . . . , An ⇒ φ] such that TopRule(B) = r. Clearly, DR(B) =⋃n

i=1 DR (Ai) ∪ {r} ⊆ R, hence B ∈ S and hence r ∈ DR(S). As r is arbitrary,
we conclude R ⊆ DR(S). By Lemma 1, it follows that R = DR(S). �

Theorem 3. Let T := 〈D,W,<〉 be an LPDT with corresponding Reiter default
theory T∅ := 〈D,W 〉. For i = 1, 2 let Ei be an extension of T∅ generated by
R ∪ {di} ⊆ D, for di /∈ R. Let <PDLSP be the SP default priority (Definition
6). If d2 <PDLSP d1 then E2 is not an extension of T .

Proof. Let i = 1, 2. By [6, Section 2] and Definition 5, NBD (Ei) = R ∪ {di}.
Recall our order isomorphism F : D → Rd implicit in Eq. 13. Then by the
definition of the image of a function, Definition 5 and our notation from Footnote
15, F (NBD (Ei)) = F (R) ∪ {ri} ⊆ Rd. Applying Definition 6, we have that
d2 <PDLSP d1 ⇔ r2 <SP r1.

Now assume for contradiction that E2 is the extension of T . By Theorem
1, the defeat graph of T , DG (T ), has its unique stable extension E2 such that
Conc (E2) = E2. In the paragraph after the statement of Theorem 1, we have
mentioned E2 = Args (F (NBD (E))). By Definition 5 and Theorem 1, and that
E2 is deductively closed, (∀r ∈ F (NBD (E2)))Ante(r) ⊆ E2 = Conc (E2). By
Lemma 2, we conclude that DR (E2) = F (NBD (E2)).

Now consider E1. Define E1 := Args (F (NBD (E1))) ⊆ A, which is well-
defined and not a stable extension of DG (T ), because DG(T ) has the unique
stable extension E2. As E1 is consistent by Eq. 11, it can be shown that E1 is
conflict-free. Clearly, r1 ∈ DR (E1) because d1 is a generating default of E1.
As there are no irrelevant rules,16 there is some argument A ∈ E1 such that
r1 := TopRule (A).

Either A ∈ E2 or A /∈ E2. If A ∈ E2 then DR(A) ⊆ DR (E2) and hence
r1 ∈ DR (E2) = F (NBD (E2)) = F (R) ∪ {r2}, which is impossible. Therefore,
A /∈ E2. As E2 is the stable extension for DG(T ), we have that (∃B ∈ E2) B ↪→ A.
Given this B ∈ E2 defeating A, we see that DR (B) ⊆ DR (E2) = F (R) ∪ {r2}.

Either r2 ∈ DR(B) or r2 /∈ DR(B). If r2 /∈ DR(B) then DR(B) ⊆ F (R),
and hence B ∈ E1 – contradiction as E1 is conflict free. If r2 ∈ DR(B), then r2 ∈
DR(B) − DR(A) and r1 ∈ DR(A) − DR(B), but by our hypothesis, r2 <SP r1
and hence B ≺SP A (Eqs. 9 and 10), so B �↪→ A – contradiction. Therefore, E2

cannot be a stable extension of DG (T ). By Theorem 1, E2 = Conc (E2) cannot
be a PDE of T . �

One way to see why Principle I failed for Eq. 11 is because if the priority
relation < of an LPDT 〈D,W,<〉 does not take the order of applicability of

16 Recall after Definition 1, an irrelevant rule r ∈ Rd is one where r /∈ DR (A).
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defeasible rules into account, then it is possible for a default of low priority
to block a default of high priority because the former is applicable before the
latter; this was what happened in the example of Corollary 1 (where d3 < d1 but
d1 <PDLSP d3). This is remedied by transforming the prescriptive preference <
into its corresponding descriptive preference <PDLSP .

In summary, PDL is a way of using preferences to guide default reason-
ing. One inference mechanism is Eq. 11, which offers a constructive definition of
extending facts with non-monotonic conclusions from the defaults. Brewka and
Eiter articulated two principles (Principles I and II) that they argued any PDL
should satisfy, and pointed out that Eq. 11 does not satisfy Principle I (Corollary
1). We apply the insights from the sound and complete argumentation seman-
tics of PDL to show that Eq. 11, when reasoning with the PDL analogue of <SP

(Definition 6), does satisfy Principle I. Further, we have shown that Principle II
is already satisfied (Theorem 2).

5 Related Work

Preferences have been used to enhance the reasoning capabilities of NMLs and
logic programs. A variety of approaches and attempts have been made to classify
them [9]. For example, Schaub and Wang have uniformly characterised three dif-
ferent approaches to preferences in logic programming [18], where they clarified
that an answer set (analogous to extensions in argumentation) is preference-
preserving if the preference on the rules also reflects their order of applicability.
Delgrande, Schaub and Tompits developed a transformation of arbitrary prefer-
ences on the rules of a logic program into a preference that is aligned with the
applications of the rules such that the answer sets are preserved [8]. Our work
here investigates analogues of such a transformation in structured argumenta-
tion theory inspired by ideas from how preferences are used in NMLs. It may
be interesting to pursue some comparisons between how descriptive preferences
similar to <SP are used in other NML systems, and how that relates to their
ASPIC+ argumentation semantics.

We are not the first to investigate descriptive preferences in argumentation.
Dung has investigated the analogue of a preference-preserving answer set, called
an enumeration-based extension, while articulating axioms suitable for the study
of structured argumentation with preferences [11,12]. Dung defined an ordi-
nary attack relation (a type of defeat relation) that satisfies all of his axioms
as well as Brewka and Eiter’s two principles. Dung then investigated soundness
and completeness of enumeration-based extensions with respect to the ordinary
attack relation. He discovered that enumeration-based extensions are stable with
respect to this attack, but only exist when the underlying knowledge base is well-
ranked. Intuitively, this means that the underlying preference is already descrip-
tive. Our work in this paper has provided a way of transforming a prescriptive
preference into a descriptive preference, such that a corresponding stable exten-
sion can always be shown to exist.
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Finally, Liao et al. [13] have undertook a similar investigation using abstract
normative systems to endow various NMLs with argumentation semantics, moti-
vated by a deontic interpretation of defaults and their priorities. One result is an
argumentation semantics for Brewka and Eiter’s extended logic programming [5].
This work differs from ours as Liao et al. used abstract normative systems, which
is a different structured argumentation theory to ASPIC+. Although the version
of abstract normative systems used by Liao et al. is analogous to ASPIC+ where
Rs = ∅, it is still expressive enough to endow extended logic programming with
argumentation semantics, and also elucidates the preferences used.

6 Conclusions and Future Work

We have defined the structure-preference (SP) order <SP on ASPIC+ defeasible
rules, which provides a descriptive account of the use of preferences in structured
argumentation theory (Sect. 3). This argument preference is interesting because
it can endow Brewka’s PDL with sound and complete argumentation semantics
(Sect. 4.1) and it makes the original PDL inference mechanism satisfy Brewka
and Eiter’s postulates (Sect. 4.2, Theorems 2 and 3).

Future work would incorporate Kp into <SP . As there is no explicit struc-
ture,17 intuitively <K should be unchanged but still somehow “prior” to <SP

on Rd, because rules cannot be applied without premises. By representing W
as Kp instead of Kn, we can consider PDTs where W is inconsistent. Further,
what would the SP order look like when <K and <D are partial orders instead
of total orders? One approach could be to consider all possible linearisations <+

K

and <+
D, transform each into the appropriate total order <SP and then aggre-

gate preferences using some appropriate social welfare function [19, Chap. 9].
Finally, it will be interesting to study the SP argument preference under other
ASPIC+ argument preference relations, or in other structured argumentation
theories with preferences over the defeasible rules and a well-defined notion of
argument construction.

Acknowledgements. We thank the anonymous referees for their constructive criti-
cisms, which have improved the paper.
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Abstract. We propose ASPIC-END, an adaptation of the structured
argumentation framework ASPIC+ which can incorporate explanations
and natural deduction style arguments. We discuss an instantiation of
ASPIC-END that models argumentation about explanations of seman-
tic paradoxes (e.g. the Liar paradox), and we show that ASPIC-END
satisfies rationality postulates akin to those satisfied by ASPIC+.

1 Introduction

In order to develop tools that intelligently support scientists in their interpreta-
tion of data and evaluation of theories, it is important to develop formal models
of the argumentation and reasoning about conflicting information found in many
academic disciplines. One promising methodology for approaching this problem
is structured argumentation theory [4], which allows for a fine-grained model
of argumentation and argumentative reasoning based on a logical language and
evaluated according to the principles developed in abstract argumentation theory.

One of the dominant formal frameworks for structured argumentation is the
ASPIC+ framework [12]. In ASPIC+, arguments are built from axioms and
premises as well as from strict and defeasible rules, in a similar manner as proofs
are built from axioms and rules in a Hilbert-style proof system. Three kinds
of attacks between arguments, undermines, undercuts and rebuttals, are defined
between arguments, and finally an argumentation semantics from Dung-style
abstract argumentation theory [1,8] is applied to determine which sets of argu-
ments can be rationally accepted.

Scientific discourse is characterized not only by the exchange of arguments in
favour and against various scientific hypotheses, but also by the attempt to scien-
tifically explain observed phenomena. In the context of abstract argumentation,
Šešelja and Straßer [16] have therefore proposed to incorporate the notion of
explanation into argumentation theory, in order to model scientific debate more
faithfully. So far, this incorporation of explanation into argumentation theory
has not been extended to the case of structured argumentation. One goal of the
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current paper is to work towards filling this gap by presenting on the one hand a
general framework for incorporating explanation into structured argumentation,
and on the other hand a particular proposal for how to define explanations in
instantiations of that framework within a specific domain.

Scientific arguments often involve hypothetical reasoning, which involves rea-
soning based on an assumption or hypothesis that is locally assumed to be true
for the sake of the argument, but to which there is no commitment on the global
level. Such hypothetical reasoning is captured well by natural deduction proof
systems, whereas the Hilbert-style definition of arguments in ASPIC+ cannot
account for such hypothetical reasoning.

We propose an adaptation of the ASPIC+ framework called ASPIC-END
that allows for incorporating explanations and hypothetical reasoning. In order
to illustrate the usage of ASPIC-END, we consider its application to argumenta-
tion about explanations of semantic paradoxes, a research topic within the field
of philosophical logic, and present a specific instantiation of the framework that
models a simple example from this domain.

In order to ensure that the ASPIC-END framework behaves as one would
rationally expect, we have proved multiple rationality postulates about ASPIC-
END, as was previously done for ASPIC+ [11].

The paper is structured as follows: In Sect. 2, we discuss related work and
motivate ASPIC-END. In Sect. 3, we formally define the ASPIC-END frame-
work, and in Sect. 4, we instantiate it for argumentation about explanation of
semantic paradoxes. In Sect. 5, we present, motivate and prove six rationality
postulates for ASPIC-END, and in Sect. 6 we conclude.

2 Related Work and Motivation for ASPIC-END

The work of Dung [8] introduced the theory of abstract argumentation, in which
one models arguments by abstracting away from their internal structure to
focus on the relations of conflict between them. In structured argumentation,
one models also the internal structure of arguments through a formal language
in which arguments and counterarguments can be constructed [4]. One impor-
tant family of frameworks for structured argumentation is the family of ASPIC-
like frameworks, consisting among others of the original ASPIC framework [13],
the ASPIC+ framework [12], and the ASPIC- framework [7]. We briefly sketch
ASPIC+, as it is the basis for our framework ASPIC-END.

In ASPIC+, one starts with a knowledge base and a set of rules which allow
one to make inferences from given knowledge. There are two kinds of rules:
Strict rules logically entail their conclusion, whereas defeasible rules only cre-
ate a presumption in favour of their conclusion. Arguments are built either by
introducing an element of the knowledge base into the framework, or by making
an inference based on a rule and the conclusions of previous arguments. Attacks
between arguments are constructed either by attacking a fallible premise of an
argument (undermining), by attacking the conclusion of a defeasible inference
made within an argument (rebuttal), or by questioning the applicability of such a
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rule (undercutting). Preferences between arguments can be derived from prefer-
ences between rules. An abstract argumentation framework has then been built
and acceptable arguments can be selected using any abstract argumentation
semantics.

Caminada and Amgoud [6] have introduced the notion of rationality postu-
lates for structured argumentation frameworks. These are conditions that struc-
tured argumentation frameworks would rationally be expected to satisfy, such
as closure under strict rules of the output and consistency of the conclusions
given consistency of the strict rules. Caminada and Amgoud [6] showed that
the original ASPIC system did not satisfy these postulates, but proposed minor
changes that made it satisfy them. These changes have been incorporated into
ASPIC+ [11].

ASPIC-END features three main differences from ASPIC+. The first is that
it allows for arguments to introduce an assumption on which to reason hypo-
thetically, just like in natural deduction. In natural deduction, hypothetical
derivations are employed in the inference schemes called ¬-Introduction (or proof
by contradiction), →-Introduction, and ∨-Elimination (or reasoning by cases).
Allowing for the usage of defeasible rules within hypothetical reasoning leads
to specific problems that have been studied for the inference scheme of rea-
soning by cases in a recent paper by Beirlaen et al. [3]. In the current paper we
avoid these problems by not allowing defeasible rules within hypothetical reason-
ing. However, a conclusion made on the basis of an inference scheme involving
hypothetical reasoning may still be incorporated into an argument that uses
defeasible rules, so that there is some integration of defeasible and hypotheti-
cal reasoning. In order to keep the presentation simple, our formal definition of
ASPIC-END will only cover the case of the inference scheme of proof by contra-
diction, but reasoning by cases and →-Introduction can be treated analogously.
Our proof-by-contradiction arguments bear a vague similarity to Caminada’s
S-arguments [5], which can attack an argument by showing that its conclusion
leads to an absurdity. But unlike S-arguments, proof-by-contradiction arguments
can be embedded into more complex arguments which make use of the negated
conclusion of the proof-by-contradiction argument to conclude something else.

The second difference is that ASPIC-END has a notion of explanations addi-
tionally to the notion of arguments. This feature is based on the work of Šešelja
and Straßer [16], who have extended Dung-style abstract argumentation with
explananda (phenomena that need to be explained) and an explanatory relation,
which allows arguments to either explain these explananda or deepen another
argument’s explanation. In Sect. 3, we will need some definitions from [16]:

Definition 1. An explanatory argumentation framework (EAF) is a tuple
〈A,X ,→, ���〉, where A is a set of arguments, X is a set of explananda, →
is an attack relation between arguments and ��� is an explanatory relation from
arguments to either explananda or arguments.

Sets of admissible arguments are then selected:
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Definition 2. Let Δ = 〈A,X ,→, ���〉 be an EAF, A ∈ A and S ⊆ A. We say
that S is conflict-free iff there are no arguments B,C ∈ S such that B → C. We
say that S defends A iff for every B ∈ A such that B → A, there exists C ∈ S
such that C → B. We say that S is admissible iff S is conflict-free and for all
B ∈ S, S defends B.

The most suitable admissible sets are then selected by also taking into
account their explanatory power and depth. These are measured by first identi-
fying the explanations present in each set of arguments.

Definition 3. Let Δ = 〈A,X ,→, ���〉 be an EAF, S ⊆ A and E ∈ X . An
explanation X[E] for E offered by S is a set S′ ⊆ S such that there exists a
unique argument A ∈ S′ such that A ��� E and for all A′ ∈ S′ \ {A}, there
exists a path in ��� from A′ to A.

In order to be able to compare sets of arguments on how many explananda
they can explain and in how much detail, the two following measures are required:

Definition 4. Let Δ = 〈A,X ,→, ���〉 be an EAF and S, S′ ⊆ A. Let E be the
set of explananda S offers an explanation for and E ′ the set of explananda S′

offers an explanation for. We say that S is explanatory more powerful than S′

(S >p S′) if and only if E � E′.

Definition 5. Let Δ = 〈A,X ,→, ���〉 be an EAF and S, S′ ⊆ A. We say that
S is explanatory deeper than S′ (S >d S′) if and only if for each explanation X ′

offered by S′, there is an explanation X offered by S such that X ′ ⊆ X and for
at least one such X and X ′ pair, X ′ � X.

Šešelja and Straßer [16] define two procedures for selecting the most suit-
able sets of arguments. The first procedure (for the argumentative core) consists
in selecting the most explanatory powerful conflict-free sets, from which the
maximal most defended sets are then retained. The second procedure (for the
explanatory core) selects the most explanatory powerful conflict-free sets, from
which the most defended sets are taken, and then from those selects the minimal
explanatory deepest sets. In our formalism, we will slightly alter and reformulate
these procedures.

The third difference is that ASPIC-END allows for arguments about the cor-
rect rules of logical reasoning. In ASPIC+, such arguments cannot be modeled, as
the rules of logical reasoning represented by strict rules, and arguments involving
only strict rules can never be attacked. Argumentation about the correct rules
of logical reasoning is quite common within the field of philosophical logic, and
additionally occurs not only in other areas of philosophy, e.g. in philosophy of
science, but also in the study of logic within fields other than philosophy, e.g. in
relation to the applications of logic to linguistics, law and Artificial Intelligence.
For example, our prima facie intuitions suggest that it is a law of logic that a
sentence that is not true must be false. However, the Kripke-Feferman solution
to the Liar paradox [9,15] suggests that some sentences, such as the Liar sen-
tence, are neither true nor false, since giving them either one of the two truth
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values leads to a contradiction. This solution is not putting forward an argument
against the falsehood of the sentence by rebutting it, nor is it undermining any
of the argument’s premises. It is undercutting the argument by attacking the
inference made from the negation of truth to falsehood.

It is true that outside the academic disciplines of philosophy and logic, argu-
mentation about the correct rules of logical reasoning is very rare. But the goal
of structured argumentation frameworks like ASPIC+ and ASPIC-END is to
be largely domain-independent, and to therefore incorporate domain-specific
assumptions into instantiations of the framework rather than into the frame-
work itself. Given that there are some domains in which arguments about the
correct rules of logical reasoning are sometimes put forward, the restriction that
disallows such arguments to be modeled in ASPIC+ should be moved from the
definition of the framework to the definition of those instantiations of the frame-
work in which such arguments should indeed be disallowed.

To allow such arguments about the correct laws of logic to be modeled in
ASPIC-END, we replace strict rules by intuitively strict rules whose applicability
can be questioned, as in the case of defeasible rules in ASPIC+, but which behave
like strict rules when their applicability is accepted. This means that conclusions
of intuitively strict rules cannot be rebutted, just as for strict rules in ASPIC+.
Intuitively strict rules represent prima facie laws of logic, i.e. purportedly logical
inference rules which make sense at first but are open to debate.

3 ASPIC-END

In this section, we define ASPIC-END and motivate the details of its definition.

Definition 6. An argumentation theory is a tuple (L,R, n,≤), where:

– L is a logical language closed under the two unary connectives negation (¬)
and assumability (Assumable) such that ⊥ ∈ L.

– R = Ris ∪ Rd is a set of intuitively strict (Ris) and defeasible (Rd) rules of
the form ϕ1, . . . , ϕn � ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively, where n ≥ 0 and
ϕi, ϕ ∈ L.

– n : R → L is a partial function.
– Rce := {(⊥ � α) | α ∈ L} ⊆ Ris, ∀r′ ∈ Ris \ Rce, n(r′) ∈ L, and ∀r ∈ Rce,

n(r) is undefined.
– ≤ is a reflexive and transitive relation over Rd which represents preference,

with a < b iff a ≤ b and b � a.

Note that we interpret ⊥ not just as any contradiction but as the conjunction
of all formulas in the language.

We now inductively define how to construct arguments. At the same time,
we define five functions on arguments that specify certain features of any given
argument: Conc(A) denotes the conclusion of argument A. As(A) denotes the set
of assumptions under which argument A is operating (so whenever As(A) �= ∅,
A is a hypothetical argument). Sub(A) denotes the set of sub-arguments of A.
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DefRules(A) denotes the set of all defeasible rules used in A. TopRule(A) denotes
the last inference rule which has been used in the argument if such a rule exists,
and is undefined otherwise.

Definition 7. An argument A on the basis of an argumentation theory Σ =
(L,R, n,≤) has one of the following forms:

1. A1, . . . , An � ψ, where A1, . . . , An are arguments such that there exists an
intuitively strict rule Conc(A1), . . . ,Conc(An) � ψ in Ris.
Conc(A) := ψ, As(A) := As(A1) ∪ · · · ∪ As(An),
Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An),
TopRule(A) := Conc(A1), . . . ,Conc(An) � ψ.

2. A1, . . . , An ⇒ ψ, where A1, . . . , An are arguments s.t. As(A1)∪· · ·∪As(An) =
∅ and there exists a defeasible rule Conc(A1), . . . ,Conc(An) ⇒ ψ in Rd.
Conc(A) := ψ, As(A) := ∅,
Sub(A) := Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A},
DefRules(A) := DefRules(A1) ∪ · · · ∪ DefRules(An) ∪
{Conc(A1), . . . ,Conc(An) ⇒ ψ},
TopRule(A) := Conc(A1), . . . ,Conc(An) ⇒ ψ.

3. Assume(ϕ), where ϕ ∈ L. Conc(A) := ϕ, As(A) := {ϕ}, Sub(A) :=
{Assume(ϕ)}, DefRules(A) := ∅, TopRule(A) is undefined.

4. ProofByContrad(¬ϕ,A′), where A′ is an argument such that ϕ ∈ As(A′) and
Conc(A′) = ⊥, with:
Conc(A) = ¬ϕ, As(A) = As(A′) \ {ϕ},
Sub(A) = Sub(A′) ∪ {ProofByContrad(¬ϕ,A′)},
DefRules(A) = DefRules(A′),
TopRule(A) is undefined.

Notice that we do not allow for the use of defeasible rules within hypothetical
arguments. We do however allow for the conclusions of defeasible arguments to
be imported inside of a proof by contradiction. This is motivated by the fact
that allowing for proofs by contradiction amounts to allowing for transpositions
of any rule that can be used within a proof by contradiction, and transpositions
are usually assumed only for strict rules in structured argumentation [6,11].

We now need to define the attack relation in our framework. Notice that in
ASPIC-END, we also allow for an argument A to attack an argument B which
makes an assumption ϕ if A concludes that ϕ is not assumable. For example, if
one were to assume that the number 5 is yellow, since numbers do not have colors,
it should be possible to attack the argument that introduces this assumption and
any argument making an inference from this assumption.

Definition 8. Let Σ = (L,R, n,≤) be an argumentation theory and A,B two
arguments on the basis of Σ. We say that A attacks B iff A rebuts, undercuts or
assumption-attacks B, where:

– A rebuts argument B (on B′) iff Conc(A) = ¬ϕ or ¬Conc(A) = ϕ for some
B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ ϕ and As(A) = ∅.
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– A undercuts argument B (on B′) iff Conc(A) = ¬n(r) or ¬Conc(A) = n(r)
for some B′ ∈ Sub(B) such that TopRule(B′) = r, there is no ϕ ∈ As(B′)
such that ¬ϕ = Conc(A′) or ϕ = ¬Conc(A′) for some A′ ∈ Sub(A), and there
are arguments B1, ..., Bn such that B1 = B′, Bn = B, Bi ∈ Sub(Bi+1) for
1 ≤ i < n and As(A) ⊆ As(B1) ∪ · · · ∪ As(Bn).

– A assumption-attacks B (on B′) iff for some B′ ∈ Sub(B) such that B′ =
Assume(ϕ), Conc(A) = ¬Assumable(ϕ) and As(A) = ∅.

We require that any attacking argument A is making fewer assumptions
than the B′ it attacks, as to prevent arguments from attacking outside of their
assumption scope. Note that in the case of rebuttal, since the attacked argument
cannot have assumptions, we require that the attacking argument have none
either.

In the case of undercutting, we also have the requirement that A does not use
the contrary of any assumptions made by B′ in any of its inferences, since the
attack would not stand in the scope of B′. Additionally, we allow A to make use
of any assumptions appearing in the chain of arguments leading B′ to B, as these
assumptions, even if they have been retracted, still constitute valid grounds on
which to form an attack.

Similarly as in ASPIC+, one can also define a notion of successful attack by
lifting the preference relation from rules to arguments as follows:

Definition 9. Let Σ = (L,R, n,≤) be an argumentation theory and A,B be
two arguments on the basis of Σ. We define the lifting of ≤ to arguments �
to be such that A � B iff there exists ra ∈ DefRules(A), such that for all
rb ∈ DefRules(B), we have ra ≤ rb. We also define A ≺ B by replacing ≤ with
< in the definition of �.

Notice that this lifting corresponds to elitist weakest-link as described in
[12]. We believe that this ordering is best suited for modeling philosophical and
scientific arguments.

We now define what it means for an attack to be successful:

Definition 10. Let Σ = (L,R, n,≤) be an argumentation theory, A,B be two
arguments on the basis of Σ. We say that A successfully rebuts B iff A rebuts B
on B′ for some argument B′ and A ⊀ B′, and that A defeats B iff A assumption-
attacks, undercuts or successfully rebuts B.

The aim of our system is to generate an EAF as defined in Sect. 2. For this
three things need to be specified: A set X of explananda, a condition under
which an argument explains an explanandum, and a condition under which an
argument explains another argument. The first two of these three details are
domain-specific, and are thus to be specified in an instantiation of the ASPIC-
END framework. The third one, on the other hand, should be the same in all
domains. The reason for this can be found in the informal clarification that
Šešelja and Straßer [16] provided for what it means to say that an argument b
explains an argument a: “argument b can be used to explain one of the premises
of argument a [. . . ] or the link between the premises and the conclusion.”
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In the context of structured argumentation, this informal clarification can be
turned into a formal definition:

Definition 11. Let A,B be arguments. We say that B explains A (on A′) iff
A′ ∈ Sub(A), As(B) ⊆ As(A′) and at least one of the following two cases holds:

– A′ /∈ Sub(B) and either A′ = (� Conc(B)) or A′ = (⇒ Conc(B)).
– Conc(B) = n(TopRule(A′)) and �B′ ∈ Sub(B) such that TopRule(B′) =
TopRule(A′).

Intuitively, the idea behind this definition is that an argument B explains another
argument A if B non-trivially concludes one of A’s premises or one of the infer-
ence rules used by A.

We now have all the elements needed to build an EAF.

Definition 12. Let Σ = (L,R, n,≤) be an argumentation theory. Let X be a
set of explananda, and let C be a criterion for determining whether an argument
constructed from Σ explains a given explanandum E ∈ X . The explanatory
argumentation framework (EAF) defined by (Σ,X , C) is a tuple 〈A,X ,→, ���〉,
where:

– A is the set of all arguments that can be constructed from Σ satisfying Defi-
nition 7;

– (A,B) ∈ → iff A defeats B, where A,B ∈ A;
– (A,E) ∈ ��� iff criterion C is satisfied with respect to A and E, where A ∈ A

and E ∈ X ;
– (A,B) ∈ ��� iff A explains B according to Definition 11, where A,B ∈ A.

Once such a framework has been generated, we want to be able to extract
the most interesting sets of arguments. Such a set should be able to explain as
many explananda in as much detail as possible, while being self-consistent and
plausible.

We define two kinds of extensions corresponding to the two selection proce-
dures defined by Šešelja and Straßer [16]. As suggested in the informal discussion
in their paper, we chose to give higher importance to the criterion of defense com-
pared to the criterion of explanatory power. This prevents some absurd theories
which manage to explain all explananda but cannot defend themselves against
all attacks from beating plausible theories which fail to explain some of the
explananda but are sound and fully defended.

Definition 13. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 the EAF defined by Σ and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S′ ⊆ A such
that S′ >p S and S′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S′ ⊆ A such
that S′ >d S and S′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of Δ iff S
is satisfactory and there is no S′ ⊃ S such that S′ is satisfactory.
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4. We say that S is an explanatory core extension (EC-extension) of Δ iff S is
insightful and there is no S′ ⊂ S such that S′ is insightful.

The AC-extensions are sets of arguments which represent the theories
explaining the most explananda, together with all other compatible beliefs
present in the framework. EC-extensions represent the core of those theories
and only include the arguments which defend or provide details for them.

We define the conclusions of the arguments in a given extension as follows:

Definition 14. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 be the EAF defined by Σ and S be an extension of Δ. Then, we
define the conclusions of S, denoted Concs(S), to be Concs(S) = {Conc(A)|A ∈
S s.t. As(A) = ∅}.

4 Modelling Explanations of Semantic Paradoxes in
ASPIC-END

In this section, we discuss how ASPIC-END can be applied to modelling argu-
mentation about explanations of semantic paradoxes, and illustrate this potential
application with a simple example. We start by briefly motivating this applica-
tion of structured argumentation theory.

Philosophy is an academic discipline in which good argumentative skills are
a central part of every student’s training. Philosophical texts are often much
richer in explicit formulation of arguments than texts from other academic disci-
plines. For these reasons, we believe that modeling arguments from philosophical
textbooks, monographs and papers can be an interesting test case for structured
argumentation theory.

Different areas of philosophy vary with respect to how much logical rigor is
commonly applied in the presentation of arguments. Even logically rigorous argu-
mentation poses many interesting problems, as the rich literature on abstract
and structured argumentation attests. In order to not confound these interest-
ing problems with issues arising from the lack of logical rigor, it is a good idea
to concentrate on the study of logically rigorous argumentation. Philosophical
logic is an area of logic where logically rigorous arguments abound. One topic
that has gained a lot of attention in philosophical logic is the study of semantic
paradoxes such as the Liar paradox and Curry’s paradox [2,10]. We therefore
use the argumentation about the various explanations of the paradoxes that
have been proposed in the philosophical literature as a test case for structured
argumentation theory.

In our application of ASPIC-END to argumentation about explanations of
semantic paradoxes, the explananda are the paradoxes (i.e. arguments that
derive an absurdity under no assumption without using defeasible rules), which
other arguments can explain by attacking the said derivation. So we instantiate
the set X of explananda and criterion C for an explanation of an explanandum
by an argument as specified in the following two definitions:
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Definition 15. Let Σ = (L,R, n,≤) be an argumentation theory. For every
argument A on the basis of Σ such that DefRules(A) = ∅,As(A) = ∅ and
Conc(A) = ⊥, we stipulate an explanandum EA, and say that Source(EA) = A.
We define the set X of explananda based on Σ to be the set of all explananda
EA that we have thus stipulated.

Definition 16. Let Σ = (L,R, n,≤) be an argumentation theory, A,B argu-
ments and E an explanandum based on Σ. We say that A explains E iff A
defeats Source(E).

The following example illustrates an application of ASPIC-END to a version
of the Liar paradox and two very simple explanations of it:1

Example: Define L to be the sentence “L is false”. If L is true, i.e. “L is false”
is true, then L is false, which is a contradiction. So L is not true, i.e. L is false.
So “L is false” is true, i.e. L is true. So we have the contradiction that L is both
true and false from no assumption.

A truth-value gap explanation: L is neither true nor false. When concluding that
L is false because L is not true, we are making the assumption that any sentence
is either true or false. This assumption does not hold for problematically self-
referential sentences such as L.

A paracomplete explanation: The reasoning that led to the conclusion that L
is not true is a proof by contradiction that derives a contradiction from the
assumption that L is true. However, a proof by contradiction based on assump-
tion φ can only be accepted once one accepts that the law of excluded middle
holds for φ, i.e. that φ ∨ ¬φ. However, the law of excluded middle should not be
accepted for problematically self-referential statements like L, and thus also not
to the statement “L is true”. So “L is true” cannot be assumed for a proof by
contradiction.

We now proceed to the ASPIC-END model of the reasoning and argumen-
tation involved in the paradox and the two explananda. We use T , F and Psr
to mean true, false and problematically self-referential respectively. The rules
in our model are Ris = {T (L)� T (F (L));T (F (L))� F (L);T (L), F (L)� ⊥;
¬T (L)� F (L);F (L)� T (F (L));T (F (L))� T (L)} with n(¬T (L)� F (L)) =
r1 and Rd = { ⇒ ¬T (L) ∧ ¬F (L);¬T (L) ∧ ¬F (L)⇒ ¬r1; ⇒ Psr(L);Psr(L)⇒
¬T (L)∧¬F (L); ¬T (L)∧¬F (L) ⇒ ¬Assumable(T (L))}. We also define the pred-
icate Expl to be: Expl(A) iff DefRules(A) = ∅,As(A) = ∅ and Conc(A) = ⊥.

Infinitely many arguments can be constructed from this argumentation the-
ory. However, the following set of arguments is the set of most relevant argu-
ments, in the sense that other arguments will not defeat these arguments and
will not add relevant new conclusions.

1 See [10] for comprehensive presentations of truth-value gap and paracomplete expla-
nations, besides many others.
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A1 = ProofByContrad(¬T (L), (Assume(T (L)),
((Assume(T (L))� T (F (L)))� F (L))� ⊥))� F (L)

A2 = ((A1 �T (F (L)))� T (L)), A1 � ⊥
B1 = (⇒ Psr(L))⇒ ¬T (L) ∧ ¬F (L)
B2 = (⇒ ¬T (L) ∧ ¬F (L))⇒ ¬r1

C = ((⇒ Psr(L))⇒ ¬T (L) ∧ ¬F (L))⇒ ¬Assumable(T (L))

We get the explanandum E with Source(E) = A2. B2 defeats A2 on A1 and
C defeats A2 on Assume(T (L)), thus they both explain E. B1 explains B2 by
non-trivially concluding ¬T (L) ∧ ¬F (L). The AC-extension is {B1, B2, C} and
the EC-extensions are {B1, B2} and {C} (Fig. 1).2

A1

A2

E

B2 B1C

Assume(T (L))

Fig. 1. The relevant arguments, explanandum, attacks and explanations from Example

5 Closure and Rationality Postulates

In this section, we show that ASPIC-END satisfies four rationality postulates
analogous to the four postulates that Modgil and Prakken [11] have established
for ASPIC+, as well as two new postulates motivated by the application of
structured argumentation to the domain of philosophical logic.

The first postulate concerns the closure of the extensions under the sub-
argument relation. The idea is that one cannot accept an argument while reject-
ing part of it.

Theorem 1. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, for all
A ∈ S, Sub(A) ⊆ S.

The proof of Theorem1 rests on the following lemma, which can be proven
in a straightforward way as in the case of ASPIC+ (see Lemma 35 of [11]):

2 Notice that both solutions appear in the same AC-extension. This is only due to
the brevity of our example. In a more comprehensive exposition of these explana-
tions, arguments attacking other explanations would be included, and thus each
AC-extension would contain no more than one solution.
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Lemma 1. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ, S ⊆ A and A,B ∈ A. We have that:

1. If S defends A and S ⊆ S′, then S′ defends A.
2. If A defeats B′ and B′ ∈ Sub(B), then A defeats B.
3. If S defends A and A′ ∈ Sub(A), then S defends A′.

Proof of Theorem 1: Let A ∈ S and A′ ∈ Sub(A). Suppose S ∪ {A′} is not
conflict-free. Then, either some B ∈ S defeats A′, or A′ defeats some B′ ∈ S.
Since S defends itself, if A′ defeats B′ ∈ S, then there exists B which defeats A′.
So in both cases there exists B ∈ S which defeats A′. But then by Lemma 1.2,
B defeats A, so S is not conflict-free, which is a contradiction. So S ∪ {A′} is
conflict-free. Also, since S defends A, by Lemma 1.3, S also defends A′. Hence,
by maximality of the AC-extensions, A′ ∈ S. ��

Notice that this postulate does not hold for EC-extensions, as they are by
definition minimal in their inclusion of arguments, and thus will often leave out
low-level sub-arguments.

The second postulate concerns the closure of the conclusions under intuitively
strict rules. In the case of ASPIC+, the corresponding postulate concerned the
closure of the conclusions under all strict rules (see Theorem 13 in [11]). But since
ASPIC-END allows for the rejection of intuitively strict rules, it is undesirable
to consider the closure under all of them. Instead, we consider the closure under
the accepted intuitively strict rule. The following two definitions define the set
of accepted intuitively strict rules and the closure under a given set of intuitively
strict rules:

Definition 17. Let Σ = (L,R, n,≤) be an argumentation theory, Δ =
〈A,X ,→, ���〉 be the EAF defined by Σ and S be an extension of Δ. The set of
intuitively strict rules accepted by S is Risa(S) = {r ∈ Ris|∀A ∈ A s.t.As(A) =
∅ andConc(A) = ¬n(r) or ¬Conc(A) = n(r),∃B ∈ S s.t. B defeats A}.

Definition 18. Let Σ = (L,R, n,≤) be an argumentation theory, P ⊆ L and
R′ ⊆ Ris. We define the closure of P under the set of rules R′, denoted ClR′(P ),
as the smallest set such that P ⊆ ClR′(P ), and when (ϕ1, ..., ϕn � ψ) ∈ R′ and
ϕ1, ..., ϕn ∈ ClR′(P ), then ψ ∈ ClR′(P ).

Now the postulate on the closure under accepted intuitively strict rules can
be formulated as follows:

Theorem 2. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, Conc(S) =
ClRisa(S)(Concs(S)).

Proof: We need to show that if (ϕ1, ..., ϕn � ψ) ∈ Risa(S) and ϕ1, ..., ϕn ∈
Concs(S), then ψ ∈ Concs(S). Supposing these conditions are met, there exist
arguments A1, ..., An with conclusions ϕ1, ..., ϕn respectively. We can then con-
struct A = A1, ..., An � ψ. Since A1, ..., An are defended by S and TopRule(A)
is accepted by S, A is also defended by S, so A ∈ S. Hence, ψ ∈ Concs(S). ��
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The last two postulates presented in [11] are direct and indirect consistency,
which state that when the set of strict rules is consistent, the set of conclusions
and the closure of this set under strict rules are consistent.

We have three requirements for applying the consistency postulates. The first
is that there cannot be non-defeasible arguments which contradict each other.
The second requirement ensures that a formula and its negation are considered as
contradictory and the third guarantees that no assumptions are prevented. The
last two requirements are motivated by the consideration that in the applications
of ASPIC-END not related to paradoxes, one would likely accept classical or
intuitionistic logic, for both of which these requirements hold.

Definition 19. Let Σ = (L,R, n,≤) be an argumentation theory. We say that
Σ is consistency-inducing iff:

1. there are no A,B ∈ A such that DefRules(A) = DefRules(B) = ∅ and
Conc(A) = ¬Conc(B),

2. for each ϕ ∈ L there is a rule rϕ of the form ϕ,¬ϕ � ⊥ ∈ Ris such that
n(rϕ) is undefined,

3. there is no rule r ∈ R such that the conclusion of r is of the form
¬Assumable(ϕ).

The following theorem establishes direct consistency for ASPIC-END:

Theorem 3. Let Σ = (L,R, n,≤) be a consistency-inducing argumentation
theory, Δ = 〈A,X ,→, ���〉 be the EAF defined by Σ and S be an AC
or EC-extension of Δ. Then, there does not exist ϕ ∈ Concs(S) such that
¬ϕ ∈ Concs(S).

Proof: Suppose for a contradiction that there exists ϕ ∈ Conc(S) such
that ¬ϕ ∈ Conc(S). Then, there exist two arguments A,B ∈ S such that
Conc(A) = ϕ and Conc(B) = ¬ϕ. Since Σ is consistency-inducing, at least
one of A and B has a defeasible sub-argument. For each maximal (w.r.t Sub)
sub-argument C of A with a defeasible top rule, let AC be the copy of A that
has Assume(Conc(C)) instead of C (so As(AC) = {Conc(C)}), and let DC be
ProofByContrad(¬Conc(C), AC , B � ⊥) (so DC rebuts C). We can do this as
well for every maximal sub-argument of B with a defeasible top rule. Then for
at least one such sub-argument C of A or B, say of A, AC ⊀ C and B ⊀ C,
hence DC ⊀ C, and so DC will defeat C. Then DC defeats A on C. So some
F ∈ S defeats DC . Since B ∈ S, F does not defeat B, so F defeats AC . Since
Conc(F ) �= ¬Assumable(Conc(C)) by item 3 of Definition 19 and F does not
defeat A, As(F ) = {C}. By Theorem 1, C ∈ S. Let F ′ be hte copy of F that has
C instead of Assume(C). Then F ′ defeats A. So some argument G ∈ S defeats
F ′. but then G defeats F or C, which is a contradiction. ��

Indirect consistency of AC-extensions follows from closure under accepted
intuitively strict rules together with direct consistency:



64 J. Dauphin and M. Cramer

Theorem 4. Let Σ = (L,R, n,≤) be a consistency-inducing argumentation
theory, Δ = 〈A,X ,→, ���〉 be the EAF defined by Σ and S be an AC-
extension of Δ. Then, there does not exist ϕ ∈ ClRisa(S)(Concs(S)) such that
¬ϕ ∈ ClRisa(S)(Concs(S)).

As explained in Sect. 2, we want ASPIC-END to be applicable to domains
like philosophical logic, in which the correctness of logical rules can be up for
debate. Among the proposals made by philosophers of how to handle the seman-
tic paradoxes, there is paraconsistent dialetheism [14], which accepts some incon-
sistencies as true and uses a paraconsistent logic to avoid that everything can
be derived. And in order to be able to show the internal structure of the para-
dox, we need to have an inconsistency arise from intuitively strict rules under
no assumptions. For these reasons, the consistency postulates do not make sense
for this kind of application of ASPIC-END.

However, there is a property similar to consistency that should still hold
even when the intuitively strict rules lead to paradoxes and when the output
extensions contain one that accepts paraconsistent dialetheism, namely that an
extension should never be trivial, i.e. conclude everything.

For the non-triviality of the extensions, we require that rules are present in
the framework which allow one to derive any formula from ⊥.3 We also require
these rules of conjunction elimination from ⊥ not to have a corresponding for-
mula in L as a name, which prevents them from being attackable. Also, we
require every other intuitively strict rule to have a name so that it can be
attacked. We say that the argumentation theory is well-defined if it satisfies
these requirements, and assume well-definedness in the non-triviality postulate
stated in Theorem 5.

Theorem 5. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ, and S be an AC or EC-extension of Δ. Then,
⊥ /∈ Concs(S).

Proof: Suppose for a contradiction that ⊥ ∈ Concs(S). Then there exists a
minimal (under sub-argument relation) argument A ∈ S such that Conc(A) = ⊥
and As(A) = ∅. Let r = TopRule(A). If r ∈ Ris, then from Definition 6, n(r) ∈ L
and so let B = A � ¬n(r). Otherwise, let B = A � ¬⊥. By Definition 9,
B ⊀ A. Then B undercuts or successfully rebuts A on A, so B defeats A. Since
S is an AC- or EC-extension of Δ, it defends itself, so there exists C ∈ S such
that C defeats B. Suppose for a contradiction that C defeats B on B′ �= B.
Since Sub(B) = Sub(A) ∪ {B}, B′ ∈ Sub(A). Then, by Lemma 1.2, C defeats
A on B′. But S is conflict-free, so we have a contradiction. Hence, C defeats B
on B. Since B = A � ¬n(r), B cannot be rebutted nor assumption-attacked.
Hence, C undercuts B on B. But from Definition 6 and since TopRule(B) ∈ Rce,
n(TopRule(B)) is undefined, i.e. no argument undercuts B on B, a contradiction.
Hence, ⊥ /∈ Concs(S). ��
3 As noted earlier, we interpret ⊥ as the conjunction of all formulas in L, so these

rules are in effect conjunction elimination rules.
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Indirect non-triviality of AC-extensions then follows from closure under
accepted intuitively strict rules and direct non-triviality:

Theorem 6. Let Σ = (L,R, n,≤) be an argumentation theory, Δ = 〈A,X ,→
, ���〉 be the EAF defined by Σ and S be an AC-extension of Δ. Then, ⊥ /∈
ClRisa(S)(Concs(S)).

6 Conclusion and Future Work

We have proposed a modification of ASPIC+ called ASPIC-END, which incorpo-
rates a formal model of explanations, and features natural-deduction style argu-
ments. We have shown how ASPIC-END can be instantiated for modelling argu-
mentation about explanations of semantic paradoxes in ASPIC-END. Finally, we
have shown that ASPIC-END satisfies rationality postulates analogous to those
satisfied by ASPIC+, as well as non-triviality postulates that are relevant in the
application to semantic paradoxes.

One topic of our future work on ASPIC-END is to study possible ways of
instantiating explananda and explanations in other scientific domains. For expla-
nations from the natural sciences, this might require an instantiation of ASPIC-
END with a language covering causal notions. Furthermore, we will study the
possibility of integrating the new results of Beirlaen et al. [3] on reasoning by
cases in structured argumentation with our work on ASPIC-END.
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Abstract. In this paper we investigate the links between instantiated
argumentation systems and the axioms for non-monotonic reasoning
described in [15] with the aim of characterising the nature of argument
based reasoning. In doing so, we consider two possible interpretations of
the consequence relation, and describe which axioms are met by aspic+

under each of these interpretations. We then consider the links between
these axioms and the rationality postulates. Our results indicate that
argument based reasoning as characterised by aspic+ is—according to
the axioms of [15]—non-cumulative and non-monotonic, and therefore
weaker than the weakest non-monotonic reasoning systems considered
in [15]. This weakness underpins aspic+’s success in modelling other
reasoning systems. We conclude by considering the relationship between
aspic+ and other weak logical systems.

1 Introduction

The rationality postulates proposed by Caminada and Amgoud [4] have been
influential in the development of instantiated argumentation systems. These pos-
tulates identify desirable properties for the conclusions drawn from an argument
based reasoning process, and focus on the effects of non-defeasible rules within
an argumentation system. However, these postulates provide no desiderata with
regards to the conclusions drawn from the defeasible rules found within an argu-
mentation system. This latter type of rule is critical to argumentation, and
identifying postulates for such rules is therefore important. At the same time,
a large body of work exists which deals with non-monotonic reasoning (NMR).
Such NMR systems (exemplified by approaches such as circumscription [18],
default logic [23] and auto-epistemic logic [21]) introduce various approaches to
handling defeasible reasoning, and axioms have been proposed to categorise such
systems [15].
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In this paper we seek to combine the rich existing body of work on NMR with
structured argumentation systems. We aim to identify what axioms structured
argument systems, exemplified by aspic+ [19] meet1. In doing so, we also wish
to investigate the links between NMR axioms and the rationality postulates.
This latter strand of work will, in the future, potentially allow us to identify
additional rationality postulates which have not been considered to date.

2 The ASPIC+ Argumentation Framework

aspic+ [19] is a widely used formalism for structured argumentation, which sat-
isfies the rationality postulates of [4]2. Arguments within aspic+ are constructed
by chaining two types of inference rules, beginning with elements of a knowledge
base. The first type of inference rule is referred to as a strict rule, and represents
rules whose conclusion can be unconditionally drawn from a set of premises.
This is in contrast to defeasible inference rules, which allow for a conclusion to
be drawn from a set of premises as long as no exceptions or contrary conclusions
exist.

Definition 1. An argumentation system is a triple AS = 〈L,R, n〉 where:

– L is a logical language.
– ·̄ is a function from L to 2L, such that:

• φ is a contrary of ψ if φ ∈ ψ, ψ �∈ φ
• φ is a contradictory of ψ (denoted by ‘φ = −ψ’), if φ ∈ ψ, ψ ∈ φ
• each φ ∈ L has at least one contradictory.

– R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of
the form φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respectively (where φi, φ are
meta-variables ranging over wff in L), and Rs ∩ Rd = ∅.

– n : Rd �→ L is a naming convention for defeasible rules.

We write φ1, . . . , φn � φ if R contains a strict rule φ1, . . . , φn → φ or a defeasible
rule φ1, . . . , φn ⇒ φ.

Definition 2. A knowledge base in an argumentation system 〈L,R, n〉 is a set
K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary
premises).

An argumentation theory consists of an argumentation system and knowledge
base.

Definition 3. An argumentation theory AT is a pair 〈AS ,K〉, where AS is an
argumentation system AS and K is a knowledge base.

1 aspic+ was selected for this study due to its popularity, and its ability to model a
variety of other structured systems [20].

2 While additional rationality postulates have been proposed [24], we do not consider
them in this paper.
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An argumentation theory is strict iff Rd = ∅ and Kp = ∅, and is defeasible
otherwise.

To ensure that reasoning meets norms for rational reasoning according to
the rationality postulates of [4], an aspic+ argumentation system’s strict rules
must be closed under transposition. That is, given a strict rule with premises
ϕ = {φ1, . . . , φn} and conclusion φ (written ϕ → φ), a set of n additional rules
of the following form must be present in the system: {φ} ∪ ϕ\{φi} → φi for all
1 ≤ i ≤ n.

Arguments are defined recursively in terms of sub-arguments and through
the use of several functions: Prem(A) returns all the premises of argument A;
Conc(A) returns A’s conclusion, and TopRule(A) returns the last rule used within
the argument. Sub(A) returns all of A’s sub-arguments. Given this, arguments
are defined as follows.

Definition 4. An argument A on the basis of an argumentation theory AT =
〈〈L,R, n〉,K〉 is:

1. φ if φ ∈ K with: Prem(A) = {φ}; Conc(A) = {φ}; Sub(A) = {A}; TopRule(A)
= undefined.

2. A1, . . . , An →/⇒ φ if Ai are arguments such that there respectively exists a
strict/defeasible rule Conc(A1), . . . , Conc(An) →/⇒ φ in Rs/Rd. Prem(A) =
Prem(A1)∪ . . .∪Prem(An); Conc(A) = φ; Sub(A) = Sub(A1)∪ . . .∪Sub(An)∪
{A}; TopRule(A) = Conc(A1), . . . , Conc(An) →/⇒ φ.

We write A(AT ) to denote the set of arguments on the basis of the theory AT ,
and given a set of arguments A, we write Concs(A) to denote the conclusions
of those arguments, that is:

Concs(A) = {Conc(A)|A ∈ A}

Like other argumentation systems, aspic+ utilises conflict between arguments—
represented through attacks—to determine what conclusions are justified.

An argument can be attacked in three ways: on its ordinary premises, on
its conclusion, or on its inference rules. These three kinds of attack are called
undermining, rebutting and undercutting attacks, respectively.

Definition 5. An argument A attacks an argument B iff A undermines, rebuts
or undercuts B, where:

– A undermines B (on B′) iff Conc(A) = φ for some B′ = φ ∈ Prem(B) and
φ ∈ Kp.

– A rebuts B (on B′) iff Conc(A) = φ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
2 ⇒ φ.

– A undercuts B (on B′) iff Conc(A) = n(r) for some B′ ∈ Sub(B) such that
TopRule(B) is a defeasible rule r of the form φ1, . . . , φn ⇒ φ.

Note that, in aspic+ rebutting is restricted : an argument with a strict TopRule
can rebut an argument with a defeasible TopRule, but not vice versa. ([5,16]
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introduce the aspic- and aspic+
D systems which use unrestricted rebut). Finally,

a set of arguments is said to be consistent iff there is no attack between any
arguments in the set.

Attacks can be distinguished by whether they are preference-dependent
(rebutting and undermining) or preference-independent (undercutting). The for-
mer succeed only when the attacker is preferred. The latter succeed whether or
not the attacker is preferred. Within aspic+ preferences over defeasible rules
and ordinary premises are combined to obtain a preference ordering over argu-
ments [19]. Here, we are not concerned about the means of combination, but,
following [19], we only consider reasonable orderings. For our purposes, a rea-
sonable ordering is one such that adding a strict rule or axiom to an argument
will neither increase nor decrease its preference level.

Definition 6. A preference ordering � is a binary relation over arguments, i.e.,
� ⊆ A × A, where A is the set of all arguments constructed from the knowledge
base in an argumentation system.

Combining these elements results in the following.

Definition 7. A structured argumentation framework is a triple 〈A, att ,�〉,
where A is the set of all arguments constructed from the argumentation system,
att is the attack relation, and � is a preference ordering on A.

Preferences over arguments interact with attacks such that preference-dependent
attacks succeed when the attacking argument is preferred. In contrast preference-
independent attacks always succeed. Attacks that succeed are called defeats.
Using Definition 4 and the notion of defeat, we can instantiate an abstract argu-
mentation framework from a structured argumentation framework.

Definition 8. An (abstract) argumentation framework AF corresponding to a
structured argumentation framework SAF = 〈A, att ,�〉 is a pair 〈A,Defeats〉
such that Defeats is the defeat relation on A determined by SAF .

This abstract argumentation framework can be evaluated using standard argu-
mentation semantics [8], defining the notion of an extension:

Definition 9. Let AF = 〈A,Defeats〉 be an argumentation framework, let A ∈
A and E ⊆ A. E is said to be conflict-free iff there does not exist a B,C ∈ E such
that B defeats C. E is said to defend A iff for every B ∈ A such that B defeats A,
there exists a C ∈ E such that C defeats B. The characteristic function F : 2A →
2A is defined as F (E) = {A ∈ A|E defends A}. E is called (1) an admissible set
iff E is conflict-free and E ⊆ F (E); (2) a complete extension iff E is conflict-
free and E = F (E); (3) a grounded extension iff E is the minimal complete
extension; (4) a preferred extension iff E is a maximal complete extension, where
minimality and maximality are w.r.t. set inclusion; and (5) a stable extension
iff E is a preferred extension which attacks all arguments in A − E.

We note in passing that other extensions have been defined and refer the reader
to [1] for further details.
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For a given semantics, if an argument is in an extension, it is said to be
justified, given the information in the argumentation framework, and given the
semantics that have been adopted. Dealing with structured arguments, we are
not only interested in what arguments hold, but which propositions are the
conclusions of arguments that hold, given some semantics. Thus we say that a
proposition is a justified conclusion if it is the conclusion of an argument that
is in an extension under some semantics. In fact, as [6] points out, the situation
is more complex than that, since under some semantics there may be multiple
extensions. Thus [6] defines the notions of sceptically, credulously and universally
justified conclusions under a given semantics as follows.

Definition 10. For T ∈ {admissible, complete, preferred, grounded, stable}, if
AF = 〈A,Defeats〉 is an argumentation framework. we say that:

– φ is a T credulously justified conclusion of AF iff there exists an argument A
and a T extension E such that A ∈ E and Conc(A) = φ.

– φ is a T sceptically justified conclusion of AF iff for every T extension E,
there exists an argument A ∈ E such that Conc(A) = φ.

– φ is a T universally justified conclusion of AF iff there exists an argument A
for every T extension E, such that A ∈ E and Conc(A) = φ.

3 Axiomatic Reasoning and ASPIC+

Kraus et al. [15], building on earlier work by Gabbay [11], identified a set of
axioms which characterise non-monotonic inference in logical systems, and stud-
ied the relationships between sets of these axioms. Their goal was to characterise
different kinds of reasoning; to pin down what it means for a logical system to
be monotonic or non-monotonic; and—in particular—to be able to distinguish
between the two. Table 1 presents the axioms of [15], which we will use to char-
acterise reasoning in aspic+. The symbol |∼ encodes a consequence relation,
while |= identifies the statements obtainable from the underlying theory. We
have altered some of the symbols used in [15] to avoid confusion with the nota-
tion of aspic+. Equivalence is denoted ≡ (rather than ↔), and ↪→ (rather than
→) denotes the existence of a strict or defeasible rule.

Consequence relations that satisfy Ref, LLE, RW, Cut and CM are said to
be cumulative, and [15] describes them as being the weakest interesting logical
system. Cumulative consequence relations which also satisfy CP are monotonic,
while consequence relations that are cumulative and satisfy M are called cumula-
tive monotonic. Such relations are stronger than cumulative but not monotonic
in the usual sense.

To determine which axioms aspic+ does or does not comply with, we must
decide how different aspects of the axioms should be interpreted. We interpret the
consequence relation |∼ in two ways that are natural in the context of aspic+—
describing these in detail later—and which fit with the high level meaning of “if
α is in the knowledge base, then β follows”, or “β is a consequence of α”.
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Table 1. The axioms from [15] that we will consider.

Abbr. Axiom Name
Ref α |∼ α Reflexivity

LLE |= α ≡ β α |∼ γ

β |∼ γ
Left Logical Equivalence

RW |= α ↪→ β γ |∼ α

γ |∼ β
Right Weakening

Cut α ∧ β |∼ γ α |∼ β

α |∼ γ
Cut

CM α |∼ β α |∼ γ

α ∧ β |∼ γ
Cautious Monotonicity

M |= α ↪→ β β |∼ γ

α |∼ γ
Monotonicity

T α |∼ β β |∼ γ

α |∼ γ
Transitivity

CP α |∼ β

β |∼ α
Contraposition

Assuming such an interpretation of α |∼ β we can consider the meaning of
the axioms. Some axioms are clear. For example, axiom T says that if β is a
consequence of α, and γ is a consequence of β, then γ is a consequence of α.
Other axioms are more ambiguous. Does α ∧ β |∼ γ in Cut mean that γ is a
consequence of the conjunction α ∧ β, or a consequence of α and β together? In
other words is ∧ a feature of the language underlying the reasoning system, or
a feature of the meta-language in which the properties are written? Similarly,
given the distinction between strict and defeasible rules, is α ↪→ β a strict rule
in aspic+, a defeasible rule, or some statement in the property meta-language?

We interpret the symbols found in the axioms as follows:

– |= α means that α is an element of the relevant knowledge base.
– α ∧ β means both α and β, in particular in Cut and CM, ∧ means that both

α and β are in the knowledge base.
– α ≡ β is taken—as usual—to abbreviate the formula (α ↪→ β)∧ (β ↪→ α). We

assume α ↪→ β and β ↪→ α have the same interpretation, i.e., both or neither
are strict.

– α ↪→ β has two interpretations. We have the strict interpretation in which
α ↪→ β denotes a strict rule α → β in aspic+, and the defeasible interpreta-
tion in which α ↪→ β denotes either a strict or defeasible rule. We denote the
latter interpretation by writing α � β.
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4 Axioms and Consequences in ASPIC+

In this section we examine which of the axioms aspic+ satisfies. Before doing
so however, we must further pin down some aspects of aspic+ rules.

4.1 Preliminaries

To evaluate aspic+, we have to be a bit more precise about exactly what we
are evaluating. We start by saying that we assume an arbitrary aspic+ argu-
mentation theory AT = 〈〈L,R, n〉,K〉, in the sense that we say nothing about
the contents of the knowledge base, or what domain-specific rules it contains.
However, we distinguish between two classes of theory, with respect to the base
logic that the theory contains.

The idea we capture by this is that in addition to domain specific rules—
rules, for example, about birds and penguins flying—an aspic+ theory might
also contain rules for reasoning in some logic. For example, we might equip an
aspic+ theory with the axioms and inference rules of classical logic. Such a
theory would be able to construct arguments using all the rules of classical logic,
as well as all the domain-specific rules in the theory. The two base logics that we
consider are classical logic, and what we call the “empty” base logic, where the
aspic+ theory only contains domain-specific rules. (We make some observations
about other base logics—intuitionistic logic and defeasible logic [2], but show no
formal results for them.)

For each of the base logics, we consider the two different interpretations of
the non-monotonic consequence relation |∼ described above, identifying which
axioms each interpretation satisfies. For our theory AT , we write ATx to denote
an extension of this augmentation theory also containing proposition x: ATx =
〈〈L,R, n〉,K ∪ {x}〉. An argument present in the latter, but not former, theory
is denoted Ax.

4.2 Argument Construction

We begin by considering the consequence relation as representing argument con-
struction. In other words, we interpret α |∼ β as meaning that if α is in the
axioms or ordinary premises of a theory, we can construct an argument for β.
More precisely:

Definition 11. We write α |∼B,a β, if for every aspic+ argumentation theory
AT = 〈〈L,R, n〉,K〉 with base logic B such that β �∈ Concs(A(AT )), it is the
case that β ∈ Concs(A(ATα)), where B = {∅, c}, representing the empty and
classical base logics respectively.

Proposition 1. Ref, LLE, RW, Cut and CM hold for |∼∅,a in strict and defea-
sible theories.
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Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [Ref] Given a the-
ory ATα, we have an argument Aα = [α], so Ref holds for |∼∅,a. [LLE] Since
α |∼∅,a γ, ATα contains a chain of arguments Aα

1 , Aα
2 , . . . , Aα

n with Aα
1 = [α]

and Conc(Aα
n) = γ. Given |= α ≡ β, we have that both α � β and β � α are

in the theory AT , so are in the theory ATβ. Within ATβ, we obtain a chain of
arguments Bβ

0 = [β], Bβ
1 = [Bβ

0 � α], Aβ
2 , . . . , Aβ

n. That is β |∼∅,a γ. Therefore,
both strict and defeasible versions of LLE hold for |∼∅,a. [RW] Since γ |∼∅,a α

in theory ATγ , there is a chain of arguments Aγ
1 , Aγ

2 , . . . , Aγ
n with Aγ

1 = [γ] and
Conc(Aγ

n) = α. Given |= α ↪→ β, theory AT must contain α � β, as must ATγ .
In ATγ , we have a chain of arguments Aγ

1 , . . . , Aγ
n, Aγ

n+1 = [Aγ
n ⇒ β]. Thus,

γ |∼∅,a β, and both strict and defeasible versions of RW hold for |∼∅,a. [Cut]

Since α ∧ β |∼∅,a γ, there is a chain of arguments Aα,β
1 , Aα,β

2 , . . . , Aα,β
n with

Aα,β
1 = [α], Aα,β

2 = [β] in theory ATα,β, and Conc(Aα,β
n ) = γ. In theory ATα,

since α |∼∅,a β, there is a chain of arguments Bα
1 , Bα

2 , . . . , Bα
m with Bα

1 = [α] and
Conc(Bα

m) = β. There is also a chain of arguments Bα
1 , Bα

2 , . . . , Bα
m, Aα

3 , . . . , Aα
n.

That is α |∼∅,a γ. Therefore, cut holds for |∼∅,a. [CM] Since α |∼∅,a γ ATα has
a chain of arguments Aα

1 , . . . , Aα
n with Aα

1 = [α] and Conc(Aα
n) = γ. ATα,β has a

similar chain of arguments Aα,β
1 , . . . , Aα,β

n , so α ∧ β |∼∅,a γ. CM thus holds for
|∼∅,a.

Since Ref, LLE, RW, Cut and CM hold, |∼∅,a is cumulative for both strict and
defeasible theories.

Proposition 2. M and T hold for |∼∅,a in strict and defeasible theories.

Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [M] Since β |∼∅,a γ,
in the theory ATβ, there is a chain of arguments Aβ

1 , Aβ
2 , . . . , Aβ

n with Aβ
1 = [β]

and Conc(Aβ
n) = γ. Given |= α ↪→ β, we have α � β in the theory AT , and also

in the theory ATα. In the latter, there is a chain of arguments Bα
0 = [α], Bα

1 =
[Bα

0 � β], Aα
2 , . . . , Aα

n. That is α |∼∅,a γ. Therefore, both strict and defeasible
versions of M hold for |∼∅,a. [T] Since β |∼∅,a γ, in ATβ, there is a chain
of arguments Bβ

1 , Bβ
2 , . . . , Bβ

m with Bβ
1 = [β] and Conc(Bβ

m) = γ. Similarly,
since α |∼∅,a β, in ATα, there is a chain of arguments Aα

1 , Aα
2 , . . . , Aα

n with
Aα

1 = [α] and Conc(Aα
n) = β. Combining this with Bα

1 , Bα
2 , . . . , Bα

m, we obtain
the combined chain of arguments Aα

1 , Aα
2 , . . . , Aα

n, Bα
2 , . . . , Bα

m. That is α |∼∅,a γ.
Therefore, T holds for |∼∅,a.

Thus |∼∅,a is cumulative monotonic for strict or defeasible theories. It is not,
however, monotonic.

Proposition 3. CP does not hold for |∼∅,a in strict or defeasible theories.

Proof. Consider an aspic+ theory which contains: K = {c}, Rs = {α, c →
d;α, d → c; c, d → α;α → e; e → α; d, e → β; d, β → e;β, e → d} We have
α |∼∅,a β but not β |∼∅,a α. Therefore, CP does not hold for |∼∅,a.
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Having characterised |∼∅,a, we consider |∼c,a. Clearly this will satisfy all the
properties that are satisfied by |∼∅,a, since it includes all the inference rules of
|∼∅,a. In addition, we have the following.

Proposition 4. CP holds for |∼c,a in strict theories.

Proof. Any strict aspic+ theory with a classical base logic will generate the same
set of consequences as classical logic. Furthermore, we know that CP is satisfied
under classical logic. Therefore, the consequence relation |∼c,a satisfies CP for
any strict theory.

Thus |∼c,a is monotonic for strict theories. However:

Proposition 5. CP does not hold for |∼c,a in defeasible theories.

Proof. Consider the counter-example from Proposition 3 where all rules are
defeasible. Since the defeasible portion of the theory does not contain a rule of
the form β → d ∨ e, CP will not be satisfied.

4.3 Justified Conclusions

Next we interpret α |∼ β as meaning that if α is in a theory, we can construct
an argument for β such that β is in the set of justified conclusions (regardless of
preferences). We will consider only the grounded and preferred semantics, but,
as we will see, we have to bring in the ideas from Definition 10 since different
kinds of justified conclusion lead to α |∼ β satisfying different properties. We
start with:

Definition 12. Let AF = 〈A,Defeats〉 be an abstract argumentation frame-
work, we define

Justg(A(AT )) = {φ|φ is a grounded justified conclusion}
Justc

p(A(AT )) = {φ|φ is a preferred credulously justified conclusion}
Justs

p(A(AT )) = {φ|φ is a preferred sceptically justified conclusion}
Justu

p(A(AT )) = {φ|φ is a preferred universally justified conclusion}

Note that we don’t have to distinguish between different classes of grounded
justified conclusion because, since there is exactly one grounded extension, the
three different classes of grounded justified conclusion coincide. Then:

Definition 13. We write α |∼g
B,j β, if for every aspic+ argumentation theory

AT = 〈〈L,R, n〉,K〉 with the B base logic such that β �∈ Justg(A(AT )), it is the
case that β ∈ Justg(A(ATα)), where B = {∅, c}.

Definition 14. We write α |∼p,Sem
B,j β, if for every aspic+ argumentation theory

AT = 〈〈L,R, n〉,K〉 with the B base logic such that β �∈ JustSem
p (A(AT )), it is

the case that β ∈ JustSem
p (A(ATα)), where B = {∅, c} and Sem ⊆ {c, s, u}.
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We also write |∼p,∗
∅,j to denote the union of |∼p,c

∅,j , |∼p,s
∅,j and |∼p,u

∅,j . Thus, α |∼p,∗
∅,j β

means that a conclusion holds under (at least one of) the consequence relations.
We write |∼p,∩{S}

∅,j to denote that a conclusion holds under all the consequence

relations in S. Thus, for example if we have that α |∼p,∩{c,s}
∅,j β, then it is the

case that α |∼p,c
∅,j β and α |∼p,s

∅,j β. Similarly, when we say an axiom holds for
|∼p,∗

∅,j , it means that the axiom holds for at least one of |∼p,s
∅,j , |∼p,u

∅,j , and |∼p
∅,j .

The same interpretation applies for axioms holding with respect to |∼p,∩{s}
∅,j .

It is worth noting the following result.

Proposition 6. If α |∼g
B,j β or α |∼p,∗

B,j β then α |∼B,a β.

Proof. Follows immediately from the definitions—for β to be a justified conclu-
sion, there must first be an argument with β as a conclusion.

Since there are, in general, less justified conclusions of a theory than there are
arguments, |∼g

∅,j and |∼p,∗
∅,j are more restrictive notions of consequence than |∼∅,a.

It is therefore no surprise to find that fewer of the axioms from [15] hold. We
have the following.

Proposition 7. Ref, and the defeasible versions of LLE and RW, do not hold
for |∼g

∅,j, |∼p,∗
∅,j in defeasible theories.

Proof. [Ref] Consider an aspic+ theory that contains: Kn = {α} and R = ∅.
Here, we have an argument A = [α]. If a is in the knowledge base Kp, we have
another argument B = [a]. However, B is defeated by A, but not vice versa. So B
is not in any extension. Thus, Ref does not hold for either |∼g

∅,j or |∼p,∗
∅,j . [LLE

(defeasible version)] Consider an aspic+ theory that contains Kn = {c} and
R = {α ⇒ β;β ⇒ α;α ⇒ γ; c → n1} where n(β ⇒ α) = n1. Here, α |∼g

∅,j γ and
α |∼p,∗

∅,j γ, but, β �|∼g
∅,j γ and β �|∼p,∗

∅,j γ. Therefore, the defeasible version of LLE
does not hold for either |∼g

∅,j or |∼p,∗
∅,j . [RW (defeasible version)] Consider

an aspic+ theory that contains β in its axioms. For such a theory, β will not
appear in any justified conclusions. Therefore, the defeasible version of RW does
not hold for either |∼g

∅,j or |∼p,∗
∅,j .

Proposition 8. The strict version of LLE and RW hold for |∼g
∅,j and |∼p,∗

∅,j in
strict and defeasible theories.

Proof. Consider an arbitrary theory AT = 〈〈L,R, n〉,K〉. [RW (strict ver-
sion)] Consider the extension Eγ in ATγ containing an argument Aγ with
Conc(Aγ) = α. Since |= α � β, under the strict interpretation, we know that
α → β is in ATγ . Therefore, we can construct an argument Bγ = Aγ → β.
Furthermore, the attackers of B are the attackers of A because TopRule(B) is
a strict rule. Since Aγ is in the extension Eγ , Bγ is in the same extension
Eγ . Therefore the strict version of RW holds for |∼g

∅,j and |∼p,∗
∅,j . [LLE (strict

version)] Since |= α ≡ β, under the strict interpretation, the rules β → α
and α → β are in AT , ATα, ATβ and ATα,β. Thus ATα, ATβ, ATα,β have the
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same extensions, just as for RW(strict version). If α |∼p,∗
∅,j γ, then β |∼p,∗

∅,j γ. If
α |∼g

∅,j γ, then β |∼g
∅,j γ. Therefore, the strict version of LLE holds for |∼g

∅,j and
|∼p,∗

∅,j .

Proposition 9. Cut holds for |∼g
∅,j and |∼p,s

∅,j in strict and defeasible theories.

Proof. Since α |∼g
∅,j β, the grounded justified conclusions of ATα contain α and

β. By adding β into the knowledge base, the grounded justified conclusions will
not change – if the newly added β is not justified, then it has not effect; if the
newly added β is justified, it will remain in the justified conclusions. The same
argument applies for |∼p,s

∅,j .

Proposition 10. Cut does not hold for either |∼p,c
∅,j or |∼p,u

∅,j in defeasible theo-
ries.

Proof. We will give a counter-example. Consider the aspic+ theory that include
K = ∅ and R = {a ⇒ c; c ⇒ b; b ⇒ c; c ⇒ r; }. The credulous or universal
justified conclusions of ATα are {a, b, c}. The credulous or universal justified
conclusions of ATα,β are {a, b, c, r, c}. That is a∧b |∼p

∅,j r, a |∼p
∅,j b, but a �|∼p

∅,j r.
Therefore Cut does not hold for either |∼p,c

∅,j or |∼p,u
∅,j .

Proposition 11. CM holds for |∼g
∅,j in strict and defeasible theories.

Proof. Since α |∼g
∅,j γ, the grounded justified conclusions of ATα contain α and

γ. By adding β into the knowledge base, the grounded justified conclusions will
not change. The justification is same as in the proof of Proposition 9.

Proposition 12. CM does not hold for |∼p,∗
∅,j in defeasible theories.

Proof. We will give counter-examples. Consider an aspic+ theory that include
K = ∅ and R = {a ⇒ b; a ⇒ r; b → n1; r → n2; }, where n(a ⇒ b) = n1
and n(a ⇒ r) = n2. The credulous or universal justified conclusions of ATα are
{a, r, n1, b, n2}. And the credulous or universal justified conclusions of ATα,β

are {a, b, n2}. That is a |∼p
∅,j b, a |∼p

∅,j r, but a ∧ b �|∼p
∅,j r. Therefore CM does

not hold for either |∼p,c
∅,j or |∼p,u

∅,j . Now, consider an aspic+ theory that include
K = ∅, R = {a ⇒ r; r ⇒ b; b ⇒ r}. The sceptical justified conclusions of ATα

are {a, b, r}. And the sceptical justified conclusions of ATα,β are {a, b}. a |∼p
∅,j b,

a |∼p
∅,j r, but a ∧ b �|∼p

∅,j r. Therefore CM does not hold for |∼p,s
∅,j .

Proposition 13. M, T and CP do not hold for |∼g
∅,j or |∼p,∗

∅,j in defeasible the-
ories.

Proof. We will give counter-examples. [M] Consider an aspic+ theory that
contains Kn = {α} and R = {α → β;β → α;β ⇒ γ}. Thus, β |∼g

∅,j γ

and β |∼p,∗
∅,j γ, however, α �|∼g

∅,j γ and α �|∼p,∗
∅,j γ. Therefore, M does not hold

for |∼g
∅,j or |∼p,∗

∅,j . [T] Consider an aspic+ theory which includes K = ∅ and
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R = {α ⇒ β;β ⇒ c; c ⇒ γ;α ⇒ n1} where n(c ⇒ γ) = n1. Thus, a |∼g
∅,j b,

b |∼g
∅,j r, a |∼p,∗

∅,j b and b |∼p,∗
∅,j r, but a �|∼g

∅,j r and a �|∼p,∗
∅,j r. Therefore, T does

not hold for |∼g
∅,j or |∼p,∗

∅,j . [CP] Since contraposition does not hold for |∼∅,a, by
Proposition 3 it cannot hold for |∼g

∅,j or |∼p,∗
∅,j .

If we consider only strict theories, the following holds.

Proposition 14. Ref, CM, M and T hold for |∼g
∅,j and |∼p,∗

∅,j in strict theories.

Proof. If the theory is strict, then for any argumentation theory, all conclusions
are justified. Therefore, for any strict theory, if α |∼∅,a β, then α |∼g

∅,j β and
α |∼p,∗

∅,j β. We know that |∼∅,a holds for Ref, CM, M and T, therefore, |∼g
∅,j and

|∼p,∗
∅,j holds for Ref, CM, M and T in strict theories.

Proposition 15. CP does not hold for |∼g
∅,j or |∼p,∗

∅,j in strict theories.

Proof. Since CP does not hold for |∼∅,a under strict theories, CP can not hold
for |∼g

∅,j or |∼p,∗
∅,j .

This completes the characterisation of |∼g
∅,j , |∼p,s

∅,j , |∼p,c
∅,j and |∼p,u

∅,j . As we argued
above, adding classical logic as a base logic will create consequence relations that
satisfy the same properties as each of these since they will includes all the same
inference rules. In addition, we have the following:

Proposition 16. CP holds for |∼g
c,j and |∼p,∗

c,j in strict theories.

Proof. As above, |∼c,a satisfies CP in strict theories. Since the strict part of
the theory is always consistent, any conclusions from the argument construction
are justified. Therefore, the consequence relation |∼g

c,j and |∼p,∗
c,j satisfies CP for

strict theories.

4.4 Summary

The results for the two forms of consequence and the two base logics are sum-
marized in Table 2. This shows, for example, that Ref is satisfied by |∼c,j for
strict theories whether the proposition in question is a premise or an axiom;
that for defeasible theories, Ref is never satisfied by |∼c,j for propositions that
are premises, but is always satisfied for propositions that are axioms. Similarly,
the table shows that CP does not hold for |∼∅,a for either strict or defeasible
theories; that CP holds for |∼c,a for strict theories, but not for defeasible theories.

Recall from Sect. 3 that a consequence relation which satisfies axioms Ref,
LLE, RW, Cut and CM is said to be “cumulative”, a cumulative consequence
relation that also satisfies M is said to be “cumulative monotonic”, and a conse-
quence relation that satisfies CP is monotonic. Given this, it is clear that Table 2
is telling us that |∼∅,a is cumulative monotonic for both strict and defeasible the-
ories, while |∼c,a is monotonic for strict theories and cumulative monotonic for
defeasible theories. Similarly, |∼g

∅,j is cumulative monotonic for strict theories,
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and cumulative for the strict portions of defeasible theories (if Ref is applied
to axioms and LLE, RW and M are applied to strict rules only), but not even
cumulative for the defeasible parts of defeasible theories (if Ref is applied to
ordinary premises and LLE, RW or M are applied to defeasible rules, none of
them hold). |∼p,s

∅,j is weaker than |∼g
∅,j , since CM doesn’t hold, and |∼p,{c,u}

∅,j is
weaker still since Cut doesn’t hold. Adding classical logic as a base logic means
that CP holds, so |∼g

c,j is monotonic for strict theories, and behaves exactly like
|∼g

∅,j for defeasible theories. Again |∼p,s
c,j is weaker than |∼g

c,j , since CM doesn’t

hold, and |∼p,{c,u}
c,j is weaker still since Cut doesn’t hold.

4.5 Discussion

What light do the results in Table 2 shine on aspic+ and argumentation-based
reasoning in general? We will answer that question by considering each of the
consequence relations in turn.

Starting with |∼∅,a, it is no surprise that the relation is cumulative monotonic
and satisfies the axiom M which captures a form of monotonicity. It is clear from
the detail of aspic+, and indeed any argumentation system, that the number
of arguments grows over time, and that once introduced, arguments do not
disappear. However, the fact that |∼∅,a is not monotonic in the same strict sense
as classical logic, and so is strictly weaker, as a result of not satisfying CP, is a
bit more interesting. This is, of course, because arguments are not subject to the
law of the excluded middle—it is perfectly possible for there to be arguments
for α and α from the same theory.

Turning to the various versions of consequence built around justified con-
clusions, they are perhaps more reasonable notions of consequence for aspic+

than |∼∅,a. If β is a justified conclusion of α, then there is an argument for β
which holds despite any attacks (in the scenario we have considered, where all
attacks may be defeats for some preference ordering—and therefore succeed—
there can still be attacks on the argument for β, but the attacking arguments
must themselves be defeated). This is quite a restrictive notion of consequence
in a representation that allows for conflicting information, and as Table 2 makes
clear, even |∼g

∅,j , which is the strongest of the consequence relations based on
justified conclusions, is a relatively weak notion of consequence and obeys less
of the axioms than the non-monotonic logics analysed in [15], for example. For
defeasible theories |∼g

∅,j is not cumulative, and only satisfies LLE and RW if the
rules applied in those axioms are strict. As we pointed out above, at the time
that [15] was published, cumulativity was considered the minimum requirement
of a useful logic3. Whether or not one accepts this, it is clear that aspic+ is
weak. But is it too weak? To answer this, we should consider reason that |∼g

∅,j

is not cumulative, which as Table 2 shows is due to LLE, RW and Ref.

3 This position was doubtless a side-effect of the fact that at that time there were no
logics that did not obey cumulativity. The subsequent discovery of logics of causality
that are not cumulative suggests that this view should be revised.
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LLE and RW only hold in the case of strict rules, either because the theory
is strict, or because the case in question is of a strict rule in a defeasible theory.
For both LLE and RW, the effect of the axiom is to extend an existing argument,
either switching one premise for another (LLE), or adding a rule to the conclusion
of an argument (RW). While having these axioms hold for defeasible rules would
allow |∼g

∅,j to be cumulative for defeasible theories, this is not reasonable. Using
LLE or RW to extend arguments with defeasible rules—by definition—means
that the new arguments created by this extension can be defeated. Thus their
conclusions may not be justified, and |∼g

∅,j must not be cumulative for defeasible
rules. In other words |∼g

∅,j is not cumulative for defeasible rules exactly because
it makes no sense for a system of defeasible rules to be cumulative.

This weakness raises the question of whether reasoning in aspic+ can be
strengthened. When we add classical logic as a base logic, we get a family of
consequence relations that satisfy CP. Thus |∼g

c,j is monotonic, but only if all
elements are strict. For theories with defeasible elements, |∼g

c,j cannot guarantee
that CP will hold for arbitrary α and β, and, as above, LLE and RW will only
hold for strict rules. Adding a base logic that is weaker than classical logic does
not help in strengthening conclusions. If we add intuitionistic logic, for example,
we don’t get CP, because intuitionistic logic explicitly rejects this pattern of
reasoning. A similar argument applies to Ref. Proposition 14 tells us that Ref
holds for |∼g

∅,j and |∼p,∗
∅,j for strict theories, meaning that α has to be an axiom4.

If Ref were to hold for defeasible theories, α could be a premise. But premises
can be defeated, again by definition, so it is not appropriate to directly conclude
that any premise is a justified conclusion (it is necessary to go through the whole
process of constructing arguments and establishing extensions to determine this).

From this we conclude that although |∼g
∅,j and |∼g

c,j are not cumulative, and
hence aspic+ is, in some sense, weaker than non-monotonic logics like circum-
scription [18] and default logic [23], it is not clear that it is too weak. That
is strengthening |∼g

∅,j or |∼g
c,j so that they would be cumulative for defeasible

theories would allow for conclusions that make no sense from the point of view
of argumentation-based reasoning. Whether there are other ways to strengthen
aspic+ that do make sense is an open question, and one we intend to investigate
in the future.

5 The Rationality Postulates

Finally, we consider the three postulates of [4] (which aspic+ complies with),
namely (1) closure under strict rules; and (2) direct and (3) indirect consistency.
We ask whether the axioms discussed in this paper are equivalent to any of these
postulates. In what follows, we assume that strict rules are consistent.

4 This is exactly how defeasible logic [2] satisfies Ref.
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5.1 Closure Under Strict Rules

Proposition 17. An argumentation framework meets closure under strict rules
if and only if the consequence relation for strict rules complies with right weak-
ening (RW) with regards to justified conclusions.

Proof. Given an argumentation framework AF , assume that α is in the justified
conclusions. Therefore � |∼j α, and assume that there is a strict rule |= α → β.
Using RW, we obtain � |∼j β. Therefore RW implies closure under strict rules.
Furthermore, having γ |∼j α, as well as a strict rule α → β results in γ |∼j β,
i.e., the strict form of RW.

5.2 Direct Consistency

Direct consistency with regards to |∼j requires that no extension contains incon-
sistent arguments (and therefore inconsistent conclusions). This is equivalent to
the following axiom, unobtainable from the axioms discussed previously.

α |∼j β

α �|∼j β

5.3 Indirect Consistency

Proposition 18. Assume we have direct consistency, and that strict rules are
consistent. Any system which satisfies monotonicity under strict rules will satisfy
indirect consistency, and vice-versa.

Proof. From [4, Proposition 7], direct consistency and closure yield indirect con-
sistency. We assume direct consistency, and monotonicity gives closure.

In this section we have shown that the rationality postulates described in [4]
can be described using axioms from classical logic and non-monotonic reasoning.
In future work, we intend to determine whether these axioms can help identify
additional rationality postulates. In addition, we will investigate whether these
axioms can represent the additional rationality postulates described in [24].

6 Related Work

There are several papers describing work that is similar in some respects to
what we report here. Billington [2] describes Defeasible Logic, a logic that, as its
name implies, differs from classical logic in that it deals with defeasible reason-
ing. In addition to introducing the logic, [2] shows that defeasible logic satisfies
the axioms of reflexivity, cut and cautious monotonicity suggested in [11], thus
satisfying what [11] describes as the basic requirements for a non-monotonic
system (such a system is equivalent to a cumulative system in [15]). [13] sub-
sequently established significant links between reasoning in defeasible logic and
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argumentation-based reasoning. To do this, [13] provides an argumentation sys-
tem that makes use of defeasible logic as its underlying logic, and shows that the
system is compatible with Dung’s semantics [8]. Given Defeasible Logic’s close
relation to Prolog [22], this line of work is closely related to Defeasible Logic Pro-
gramming (DeLP) [12], a formalism combining results of Logic Programming
and Defeasible Argumentation. As a rule-based argumentation system, DeLP
also has strict/defeasible rules and a set of facts. DeLP differs from aspic+ in
the types of attack relation it permits (no undermining) and in the way that it
computes conclusions (it does not implement Dung’s semantics).

[17] first introduce an argument system, containing two kinds of inference
rules, namely, monotonic inference rules and non-monotonic inference rules.
They show that most well-known non-monotonic systems, such as default logic,
autoepistemic logic, negation as failure and circumscription, can be formulated as
instances of their argument system. [3] continues this line of work, presenting an
abstract framework for default reasoning which includes Theorist, default logic,
logic programming, autoepistemic logic, non-monotonic modal logics, and cer-
tain instances of circumscription as special cases. [13] subsequently established
significant links between reasoning in defeasible logic and argumentation-based
reasoning. To do this, [13] provides an argumentation system that makes use of
defeasible logic as its underlying logic, and shows that the system is compatible
with Dung’s semantics [8]. Similar to the current work, [14] investigates various
consequence relations of deductive argumentation and their satisfaction of vari-
ous properties. However, [14] focuses entirely on argument construction and says
nothing about justified conclusions.

Also related are [9,10], which investigate cumulativity of aspic-like struc-
tured argumentation frameworks. Finally, [7] analyzes cautious monotonicity
and cumulative transitivity with respect to Assumption-Based Argumentation.

7 Conclusions

In this paper we considered which of the axioms of [15] aspic+ meets based on
two different interpretations of the consequence relation. We demonstrated that,
in terms of those axioms, the most natural forms of consequence in aspic+ are
rather weak. This is the case even when we assume aspic+ theories contain all
the inference rules of classical logic. However, as we discuss, strengthening the
consequence relation (to, for example, be cumulative) neither makes sense in
terms of argumentation-based reasoning, nor can easily be achieved by adding
additional inference rules to aspic+ theories. We also investigated the relation-
ship between the axioms of [15] and the rationality postulates, and suggested an
alternative, axiom based formulation of the latter.

As mentioned above, in the future we will investigate whether additional
axioms can encode the rationality postulates described in [24]. We will also exam-
ine the properties of different interpretations of the logical symbols. For example,
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we assumed that ≡ encodes the presence of two rules, but says nothing about
their preferences or defeaters. Finally, we may consider other interpretations
of the consequence relation. This paper therefore opens up several significant
avenues of future investigation.
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Abstract. Multiple extensions of Dung’s argumentation frameworks
(AFs) have been proposed in order to model features of argumenta-
tion that cannot be directly modeled in AFs. One technique that has
already previously proven useful to study and combine such extensions
is the meta-argumentation methodology involving the notion of a flat-
tening. In order to faithfully model the interaction between explana-
tion argumentation in scientific debates, Šešelja and Straßer have intro-
duced Explanatory Argumentation Frameworks (EAFs). In this paper, we
first prove that the flattening technique works as expected for recursive
(higher-order) attacks. Then we apply this technique in order to com-
bine EAFs with multiple other extensions that have been proposed to
AFs, namely with recursive attacks, joint attacks and a support relation
between arguments. This gives rise to Extended Explanatory Argumen-
tation Frameworks (EEAFs). We illustrate the applicability of EEAFs
by using them to model a piece of argumentation from a research-level
philosophy book.

1 Introduction

Dung’s argumentation frameworks (AFs) [7] are a powerful and flexible for-
mal tool for formally modelling argumentative discourse. However, various
researchers have felt the need to extend AFs in order to model features of argu-
mentation that cannot be directly modeled in AFs, e.g. by enriching them with
recursive (higher-order) attacks [2], joint attacks [9], a support relation between
arguments [4,5], or explanatory features [10].

One technique that has already previously proven useful to study and com-
bine such extensions is the meta-argumentation methodology involving the
notion of a flattening [3]. A flattening is a function that maps some extended
variant of argumentation frameworks into standard AFs. If the definition of the
various argumentation semantics for that extended variant of AFs is indepen-
dent from the definition of that flattening function, one wants the flattening to
satisfy the property that it preserves these semantics, in the sense that applying
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the flattening function, then calculating the extensions according to some argu-
mentation semantics, and finally unflattening the extensions should yield the
same result as directly calculating the extensions according to the correspond-
ing argumentation semantics for the extended variant of argumentation frame-
works. However, flattenings can also be used to define argumentation semantics
for extended variants of AFs for which there is no definition of the seman-
tics independent of flattenings. This approach has proven particularly useful for
combining multiple extensions of AFs [3], because in this case, it is often much
clearer what the “right” definition of a flattening is than what the “right” direct
definition of the various argumentation semantics is.

Previous work on flattening argumentation frameworks with recursive attacks
(AFRAs) was limited to second-order attacks [1,3], even though the original def-
inition of recursive attacks was for arbitrarily deeply nested higher-order attacks
[2]. This means that for the purpose of defining the flattening, attacking an
attack between two arguments was allowed, but attacking such a second-order
attack was already not allowed. In Sect. 3.1, we show how to define a flattening
of arbitrary AFRAs, and prove that it conforms with the direct definition of the
semantics of AFRAs.

The rest of the paper is devoted to applying the meta-argumentation method-
ology of flattening and unflattening in order to incorporate recursive attacks,
joint attacks and a support relation between arguments into Explanatory Argu-
mentation Frameworks (EAFs), which have been proposed by Šešelja and Straßer
[10] in order to faithfully model the interaction between explanation and argu-
mentation in scientific debate. EAFs feature explananda and an explanatory rela-
tion that can hold either between an argument and an explanandum, or between
two arguments. We use the terms Extended Explanatory Argumentation Frame-
works (EEAFs) for this enriched formalism that incorporates recursive attacks,
joint attacks and a support relation into EAFs.

The explanatory relation from EAFs cannot be easily flattened. Therefore, for
defining the semantics of EEAFs, we apply the meta-argumentation methodology
by allowing the output of the flattening function to be an EAF rather than an
AF. In other words, we flatten away recursive attacks, joint attacks and the
support relation, but we do not flatten away explanations, instead making use
of the semantics of EAFs instead of the semantics of standard AFs.

Finally, we illustrate the applicability of EEAFs by using them to model
a piece of argumentation from the introduction to Hartry Field’s book Sav-
ing Truth from Paradox [8], an important, relatively recent, monograph about
semantic paradoxes, a major research topic within the field of philosophical logic.

The rest of the paper is structured as follows: In Sect. 2, we describe
the various proposed extensions to AFs and outline the meta-argumentation
methodology of flattening and unflattening. In Sect. 3, we first extend the meta-
argumentation methodology to arbitrarily deeply nested AFRAs, and then use
this methodology to formally define the semantics of EEAFs. In Sect. 4 we
present an example that illustrates the applicability of EEAFs, before concluding
the paper in Sect. 5.
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2 Basics of Formal Argumentation

We use the standard notions of abstract argumentation frameworks as defined
by Dung in 1995 [7].

2.1 Explanatory Argumentation Frameworks

In scientific debates, the discussions are usually centered around some phe-
nomenons or evidence and the different parties propose theories to explain them.
With this idea in mind, Šešelja and Straßer have extended abstract argumenta-
tion framework with explanatory features [10]. In these frameworks, there are
not only arguments but also explananda. These are scientific phenomenons of
which, unlike arguments, the acceptability is not being questioned.

Definition 1. An explanatory argumentation framework (EAF) is a tuple
〈A,X , →, ���,∼〉, where A is a set of arguments, X is a set of explananda,
→ ⊆ A × A is an attack relation, ��� ⊆ A × (A ∪ X ) is an explanation relation
from arguments to either explananda or other arguments, and ∼ ⊆ A × A is a
symmetric incompatibility relation.

Note that the incompatibility relation’s purpose is to differentiate between
the opposing theories, as scientists usually do not accept multiple explanations
of a given phenomenon at the same time.

Definition 2. Let 〈A,X ,→, ���,∼〉 be an EAF. A set of arguments S ⊆ A is
said to be conflict-free if and only if there are no arguments a, b ∈ S such that
(a, b) ∈ → ∪ ∼.

Note that the definition of admissible sets still stands but with the revised
definition of conflict-freeness.

Definition 3. An explanation X[e] for e ∈ X offered by a set of arguments S
is a subset S′ of S such that there exists a unique argument a ∈ S′ such that
a ��� e and for all a′ ∈ S′ \ a, there exists a path in ��� from a′ to a.

Fig. 1. Example EAF1



Extended Explanatory Argumentation Frameworks 89

Example 1. Consider the EAF on Fig. 1. Note that the incompatibility relation
has been represented by a straight line with no arrow between a and b.

Here we have two explananda, e1 and e2. a explains both e1 and e2 while b
explains only e2. Consider the conflict-free set {a, d, f}. It contains two expla-
nations for e1, namely X1[e1] = {a} and X2[e1] = {a, d}. Similarly, it offers two
explanations for e2. The conflict-free set {b, f} however offers an explanation
only for e2.

For our goal of selecting the best theory from our model, we need a way to
compare how much and how well a given set of arguments is able to explain.

Definition 4. A set of arguments S1 is explanatory more powerful than a set
of arguments S2 (S1 >p S2) if and only if the set of explananda for which S1

offers an explanation is a strict super-set of the set of explananda for which S2

offers an explanation.
An explanation X1[e] is explanatory deeper than another explanation X2[e]

(X1[e] >d X2[e]) if and only if X2[e] ⊂ X1[e].

In our previous example, we have that {a, d} >p {b} since {a, d} offers an
explanation for {e1, e2} while {b} only offers an explanation for {e2}. Addition-
ally, we have that {a, d} >d {a} and {a, d, f} >d {a, f}.

Šešelja and Straßer [10] then propose two procedures for the selection of the
best sets of arguments with respect to these notions. We have redefined them as
extensions, in order to be more in line with abstract argumentation extensions,
while preserving their concepts.

Definition 5. Let 〈A,X ,→, ���,∼〉 be an EAF and S ⊆ A a set of arguments.

1. We say that S is satisfactory iff S is admissible and there is no S′ ⊆ A such
that S′ >p S and S′ is admissible.

2. We say that S is insightful iff S is satisfactory and there is no S′ ⊆ A such
that S′ >d S and S′ is satisfactory.

3. We say that S is an argumentative core extension (AC-extension) of Δ iff S
is satisfactory and there is no S′ ⊃ S such that S′ is satisfactory.

4. We say that S is an explanatory core extension (EC-extension) of Δ iff S is
insightful and there is no S′ ⊂ S such that S′ is insightful.

In our example, the AC-extension is {a, d, f}, while the EC-extension is
{a, d}.

2.2 Argumentation Frameworks with Recursive Attacks

While EAFs add explanatory features to abstract argumentation frameworks,
Baroni et al. [2] have developed an extension which enhances the expressive
power of the attack relation. In their frameworks, they allow for attacks to target
other attacks. This way, an argument may refute an attack relation between two
other arguments without contesting the acceptability of any of them.
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Definition 6. An Argumentation Framework with Recursive Attacks (AFRA)
is a pair 〈A,→〉 where A is a set of arguments and → ⊆ A × (A ∪ →) is an
attack relation from arguments to either arguments or attacks.

For a given attack α = (A,X) ∈ →, we say that the source of α is src(α) = A
and its target is trg(α) = X.

Now that attacks can be targeted, we need to extend our notions of accep-
tance to also include them.

Definition 7. Let F = 〈A,→〉 be an AFRA, ϕ ∈ →, ψ ∈ (A ∪ →) and S ⊆
(A ∪ →). We say that ϕ defeats ψ iff either ψ = trg(ϕ) or src(ψ) = trg(ϕ).

Additionally, we say that S is conflict-free iff there do not exist ϕ,ψ ∈ S
such that ϕ defeats ψ.

The notions of defense and admissibility then follows with a similar idea as
in standard abstract argumentation frameworks.

Definition 8. Let F = 〈A,→〉 be an AFRA, ϕ ∈ (A ∪ →) and S ⊆ (A ∪ →).
We say that S defends ϕ iff for every ψ ∈ → such that ψ defeats ϕ, there exists
a δ ∈ S such that δ defeats ψ. We say that S is admissible iff S is conflict-free
and defends its elements.

The complete semantics then follows with a similar definition as in classical
abstract argumentation but using the adapted notions just defined.

Definition 9. Let F = 〈A,→〉 be an AFRA and S ⊆ (A ∪ →). We say that S
is a complete extension of F iff S is admissible and contains every ϕ ∈ (A ∪ →)
it defends.

2.3 Support in Abstract Argumentation

While classical abstract argumentation revolves around attacks, there has been
research on extending it with a positive relation of support between arguments.
We will first examine the formalism introduced by Cayrol and Lagasquie-Schiex
called bipolar argumentation framework [5], as summarized by Boella et al. in [4].

Definition 10. A bipolar argumentation framework (BAF) is a triple 〈A,→,⇒〉
where A is a set of arguments, →⊆ A × A is an attack relation and ⇒⊆ A × A
is a support relation.

Boella et al. [4] treat support in a deductive sense and thus introduce medi-
ated attacks. The intuition behind these attacks is that if from a we can deduce
b, then if we do not have b, we also cannot have a.

Definition 11. Let 〈A,→,⇒〉 be a bipolar argumentation framework. For a, b ∈
A, there is a mediated attack from a to b if and only if there is a sequence
a1 ⇒ a2, ..., an−1 ⇒ an such that n ≥ 2, a = a1 and b → an.
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They then define the semantics of bipolar argumentation frameworks with
respect to their flattening. The flattened framework will consist of meta-
arguments and an attack relation only, with the support relation from the BAFs
being represented as a combination of auxiliary meta-arguments and attack
relations.

Definition 12. Given a bipolar argumentation framework 〈A,→,⇒〉, the set
of corresponding meta-arguments MA is {acc(a) | a ∈ A} ∪ {Xa,b, Ya,b | a, b ∈
A} ∪ {Za,b | a, b ∈ A} and →2⊆ MA × MA is a binary relation on MA such
that:

– For all a, b ∈ A such that a → b, we have acc(a) →2 Xa,b, Xa,b →2 Ya,b and
Ya,b →2 acc(b)

– For all a, b ∈ A such that a ⇒ b, we have acc(b) →2 Za,b and Za,b →2 acc(a).

Example 2. The example represented in Fig. 2 is flattened in Fig. 3:

Fig. 2. Example bipolar argumentation framework

Fig. 3. Flattened BAF from Fig. 2

In the flattening, the mediated attacks are made apparent. By applying the
semantics of classical abstract argumentation frameworks we can then retrieve
the corresponding extensions of the BAF.

Note that Cohen et al. [6] have combined higher-order attacks and supports,
with semantics defined directly on the higher-level frameworks. However, unlike
with the flattening approach, it is unclear how to take further features into
account in those direct semantics.
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2.4 Joint Attacks

Another extension of AFs allows for joint attacks, where multiple arguments join
forces to attack another argument.

Gabbay [9] calls this kind of relation a joint attack. He defines it as follows:

Definition 13. A higher level argumentation framework is a triple (S, S0,→),
where S = ∅ is a set of arguments, S0 is the family of all finite non-empty subsets
of S and →⊆ S0 × S is an attack relation.

For simplicity of notation we will identify the singleton set {x} with x.

Fig. 4. Higher level argumentation framework

Similarly as before, the semantics of higher level networks will be defined in
terms of their flattening. We define the flattening as follows:

Definition 14. Given a higher level argumentation framework (S, S0,→), the
set of corresponding meta-arguments MA is {acc(a), rej(a) | a ∈ A} ∪ {e(X) |
X ∈ S0} and →2⊆ MA × MA is a binary relation on MA such that:

– For all a ∈ A, we have acc(a) →2 rej(a)
– For all X ∈ S0, and every b ∈ A such that X → b, we have that e(X) →2

acc(b) and rej(a) →2 e(X) for every a ∈ X.

In the flattening, the success of a joint attack depends solely on the accep-
tance of the meta-argument e(X), which itself depends on the acceptance of
every argument in the coalition.

The flattening of the framework from Fig. 4 is depicted in Fig. 5.

Fig. 5. Flattened version of the framework from Fig. 4
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3 Aggregating Multiple Extensions of Abstract
Argumentation Frameworks: EEAFs

In this section, we will introduce Extended Explanatory Argumentation Frame-
works (EEAFs), an extension of EAFs from Sect. 2.1 with meta-argumentation
features such as higher order attacks, support and joint attacks.

In order to motivate the semantics of EEAFs based on a flattening function,
we will start by suggesting a flattening for AFRAs of any order. We will prove
that this flattening leads to the same extensions as the AFRA semantics defined
by Baroni et al. [2].

3.1 Flattening AFRAs

Boella et al. [3] define a flattening function for second-order AFRAs, which
allows one to obtain for a given AFRA an equivalent abstract argumentation
framework. We will now propose a flattening function for AFRAs of any order.

We will first define a function m which will associate each argument and
each attack relation to the corresponding meta-argument. For an argument a, it
will be the meta-argument acc(a), while for an attack, it will be the Y auxiliary
argument, since its acceptability is synonym of success for the attack.

Definition 15. Let F = 〈A,→〉 be an AFRA. The set of corresponding meta-
arguments is MA = {acc(a) | a ∈ A} ∪ {Xa,ψ, Ya,ψ | a ∈ A, ψ ∈ (A ∪ →)}. We
define a partial function m: (A ∪ →) �→ MA, such that:

– if ϕ ∈ A, then m(ϕ) = acc(ϕ).
– if ϕ ∈→ such that for some ψ ∈ A and some δ ∈ (A∪ →), ϕ = (ψ, δ), then

m(ϕ) = Yψ,δ.

We define the flattening function f to be f(F ) = 〈MA,→2〉, where →2⊆
MA × MA is a binary relations on MA such that

acc(a) →2 Xa,ψ,Xa,ψ →2 Ya,ψ and Ya,ψ →2 m(ψ) for all a ∈ A, ψ ∈ (A ∪ →)

One can then apply the classical abstract argumentation semantics such as
complete, stable, preferred and grounded. We then need to define a function
which can transform a meta-extension from the flattened AFRA to an extension
for the original AFRA. A similar unflattening function has been introduced in
[3], and has been slightly modified here to also unflatten attacks.

Definition 16. Given a set of meta-arguments B ⊆ MA, we define the unflat-
tening function g as:

g(B) = {a | acc(a) ∈ B} ∪ {(a, ψ) | Ya,ψ ∈ B}
We also define a function f̄ which provides a correspondence between a set

of arguments and attacks from an AFRA and a set of meta-arguments from its
flattened version.
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Definition 17. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 its flattening
and S ⊆ (A ∪ →). We define the correspondence function f̄ : P(A ∪ →) �→
P(MA) as follows:

f̄(S) = {acc(a) | a ∈ S ∩ A} ∪ {Ya,ψ | (a, ψ) ∈ S ∩ →} ∪
{Xb,ψ | (a, b) ∈ S ∩ →, ψ ∈ →}

Notice that g(f̄(S)) = S. We add the extra Xi,j meta-arguments in order to
represent the indirect attacks which the arguments in S might carry out, i.e. the
attacks which are indirectly attacked by arguments in S due to them attacking
the source of these attacks.

In [2], Baroni et al. define the semantics of AFRAs without having recourse
to flattening. We will show that the process of flattening, applying complete
semantics on the flattened frameworks and then unflattening it is equivalent to
the directly applying the semantics they define for the complete semantics. We
will show this gradually by first stating and proving three lemmas:

Lemma 1. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).
S is conflict-free in F if and only if f̄(S) is conflict-free in f(F ).

Proof:
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Assume that S is conflict-free in F . Then, there is no ϕ,ψ ∈ S such that
trg(ϕ) = ψ or trg(ϕ) = src(ψ). Suppose for a contradiction that f̄(S) is
not conflict-free in f(F ). This means that there exists two arguments p, q ∈
f̄(S) such that p →2 q. By the construction of →2 defined by the flattening
function, there are only four possible cases, which all lead to the contradiction
that S is not conflict-free. Therefore f̄(S) is conflict-free.

2. ⇐: Suppose f̄(S) is conflict-free. Suppose for a contradiction that S is not
conflict-free. Then, there exists (a, ϕ), (b, ψ) ∈ S such that ϕ = (b, ψ) or
ϕ = b.
In both cases we can reach the contradiction that f̄(S) is not conflict-free,
therefore S is conflict-free. �

Lemma 2. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →)
and S ⊆ (A ∪ →). We have that:

ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S, iff
m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is also

defended by f̄(S).

Proof:
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉, ϕ ∈ (A ∪ →) and S ⊆

(A ∪ →).

1. ⇒: Suppose that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have
a ∈ S. Consider m(ϕ) in f(F ). Suppose for some p ∈ MA, p →2 m(ϕ). By
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the construction of →2 defined by the flattening function, either p = Ya,ϕ for
some a ∈ A, or p = Xsrc(ϕ),trg(ϕ).
In both cases, m(ϕ) is defended by f̄(S). Hence, if ϕ is defended by S in F ,
then m(ϕ) is defended by f̄(S) in f(F ). We now have to show that if ϕ ∈ →,
then acc(src(ϕ)) is also defended by f̄(S).
Suppose ϕ ∈ → and p ∈ MA such that p →2 acc(src(ϕ)). Then, p must be
of the form Ya,src(ϕ) for some a ∈ A, and hence there exists (a, src(ϕ)) ∈ →.
Since (a, src(ϕ)) defeats ϕ, there exists some δ ∈ S such that δ defeats
(a, src(ϕ)). We distinguish two cases:
Either δ = (b, a) or δ = (b, (a, src(ϕ))) for some b ∈ A. In both cases,
acc(src(ϕ)) is also defended by f̄(S).
Therefore, if ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we have a ∈ S,
then m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ)) is
also defended by f̄(S).

2. ⇐: Suppose m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then acc(src(ϕ))
is also defended by f̄(S). Consider ϕ in F . Suppose that for some ψ ∈ →,
ψ defeats ϕ. This means that either ψ = (a, ϕ) or ψ = (a, src(ϕ)) for some
a ∈ A. In both cases, we can conclude that there exists a δ ∈ S such that δ
defeats ψ by contradiction. Therefore, ϕ is defended by S.
We now have to show that if ϕ = (a, ψ) ∈ →, we have a ∈ S, still under
the assumption that m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S).
Suppose that ϕ = (a, ψ) ∈ →. Then, by the construction of →2 defined by the
flattening function, we have Xa,ψ →2 Ya,ψ. Since m(ϕ) = Ya,ψ is defended by
f̄(S), there exists p ∈ f̄(S) such that p →2 Xa,ψ. By the construction of →2,
the only possibility is p = acc(a). Hence, acc(a) ∈ f̄(S). Therefore, we have
a ∈ S.

Thus, we can conclude that ϕ is defended by S in F and if ϕ = (a, ψ) ∈ →, we
have a ∈ S, if and only if m(ϕ) is defended by f̄(S) in f(F ) and if ϕ ∈ →, then
acc(src(ϕ)) is also defended by f̄(S). �

Lemma 3. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).
We have that:

S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S
if and only if

f̄(S) is admissible in f(F ).

Proof: Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Suppose f̄(S) is admissible in f(F ). Then, f̄(S) is conflict-free. Hence,
according to Lemma 1, S is also conflict-free.
Let ϕ ∈ S. We need to show that ϕ is defended by S. We do this by applying
Lemma 2, i.e. by establishing that m(ϕ) is defended by f̄(S) in f(F ) and if
ϕ ∈ →, then acc(src(ϕ)) is also defended by f̄(S). We have m(ϕ) ∈ f̄(S) and
m(ϕ) is defended by f̄(S) since f̄(S) is admissible. By the definition of f̄ , for
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every (a, ψ) ∈ (S ∩ →), we have Ya,ψ ∈ f̄(S). Therefore, acc(a) ∈ f̄(S), since
it is the only argument which can defend Ya,ψ from Xa,ψ’s attack and f̄(S) is
admissible. This means that acc(a) is defended by f̄(S). Thus, according to
Lemma 2, every ϕ ∈ S is defended by S, which means that S is admissible,
and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S.

2. ⇐: Suppose S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have
that a ∈ S. Then, S is conflict-free and so, according to Lemma 1, f̄(S) is
also conflict-free.
Let p ∈ f̄(S). p is either of the form m(ϕ) for some ϕ ∈ S, or of the form
Xa,b for some a, b ∈ MA and (ψ, a) ∈ S.
In both cases, p is defended by f̄(S). Hence, f̄(S) is admissible in f(F ).

Therefore, S is admissible in F and for every (a, ψ) ∈ (S ∩ →), we have that
a ∈ S, if and only if f̄(S) is admissible in f(F ). �

Theorem 1. Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆
(A ∪ →). S is a complete extension of F if and only if f̄(S) is a complete
extension of f(F ).

Proof:
Let F = 〈A,→〉 be an AFRA, f(F ) = 〈MA,→2〉 and S ⊆ (A ∪ →).

1. ⇒: Suppose S is a complete extension of F . For every (a, ψ) ∈ (S ∩ →), by
the definition of defeat, a is defended by S, and thus a ∈ S. Therefore, by
Lemma 3, f̄(S) is admissible.
Take some arbitrary p ∈ MA and suppose that p is defended by f̄(S). Then,
either p = m(ϕ) for some ϕ ∈ (A ∪ →), or p = Xa,b for some a, b ∈ A.
(a) Suppose that p = m(ϕ) for some ϕ ∈ (A ∪ →). Now assume that

ϕ ∈→. Then, m(ϕ) = Ysrc(ϕ),trg(ϕ). By construction of →2, we have
that Xsrc(ϕ),trg(ϕ) →2 Ysrc(ϕ),trg(ϕ). The only argument which can
defend Ysrc(ϕ),trg(ϕ) from Xsrc(ϕ),trg(ϕ) is acc(src(ϕ)). Since f̄(S) defends
Ysrc(ϕ),trg(ϕ), we have that acc(src(ϕ)) ∈ f̄(S). As f̄(S) is admissible,
acc(src(ϕ)) is defended by f̄(S). Hence, if ϕ ∈ →, then acc(src(ϕ)) is
defended by f̄(S).
Therefore, by Lemma 2, ϕ is defended by S. Since S is a complete exten-
sion, this means that ϕ ∈ S. Therefore, p = m(ϕ) ∈ f̄(S).

(b) Now suppose that p = Xa,b for some a, b ∈ A. According to our assump-
tions, f̄(S) defends Xa,b. By construction of ⇒2, the only argument which
attacks Xa,b is acc(a). Hence, there exists Yc,a ∈ f̄(S) for some c ∈ A.
So, by definition of f̄ , we have that p = Xa,b ∈ f̄(S).

In either case, we have that p ∈ f̄(S). Hence, f̄(S) contains all arguments it
defends. Since it is also admissible, f̄(S) is a complete extension of f(F ).

2. ⇐ :Suppose that f̄(S) is a complete extension of f(F ). Then, f̄(S) is admissi-
ble and contains all arguments it defends. According to Lemma3, we have that
S is admissible and for every (a, ψ) ∈ (S ∩ →), we have that a ∈ S. Suppose
that for some ϕ ∈ (A ∪ →), ϕ is defended by S. Hence, by Lemma 2, m(ϕ) is
defended by f̄(S). Since f̄(S) is a complete extension of f(F ), m(ϕ) ∈ f̄(S).
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Hence, by construction of f̄(S), we have that ϕ ∈ S. Therefore, for any
ϕ ∈ (A ∪ →) such that ϕ is defended by S, we have ϕ ∈ S. Since S is also
admissible, S is a complete extension of F .

Hence, S is a complete extension of F if and only if f̄(S) is a complete extension
of f(F ). �

3.2 Extended Explanatory Argumentation Frameworks

We will now extend EAFs, as seen in Sect. 2.1, by integrating them with the
meta-argumentation techniques we have discussed so far.

Definition 18. An extended explanatory argumentation framework (EEAF) is
a tuple 〈A,X ,→, ���,∼,⇒〉, where A is a set of arguments, X is a set of
explananda, ���⊆ (A×A)∪(A×X ) is an explanatory relation, →⊆ (P(A)∪ ���
∪ →) × (A∪ ��� ∪ → ∪ ⇒) is a higher-order attack relation, ∼⊆ A × A is an
incompatibility relation and ⇒⊆ A × A is a support relation.

We then define the semantics of EEAFs in terms of their flattening.

Definition 19. Let F = 〈A,X ,→, ���,∼,⇒〉 be an EEAF. The set of
meta-arguments corresponding to F is MA = {acc(a), rej(a) | a ∈ A} ∪
{Xm(ϕ),m(ψ), Ym(ϕ),m(ψ) | ϕ ∈ (A∪→∪ ���), ψ ∈ (A∪ → ∪ ��� ∪ ⇒)}∪ {e(S) |
S ⊆ A with at least two elements} ∪ {Pa,ψ, Qa,ψ | a ∈ A, ψ ∈ (A∪X )}∪{Za,b |
a, b ∈ A} and the set of meta-explananda is MX = X . We define a partial
function m which assigns for each element of the framework a corresponding
meta-argument.

m : (A∪ → ∪ ��� ∪ ⇒) �→ MA.

such that:

– if ϕ ∈ A, then m(ϕ) = acc(ϕ);
– if ϕ ∈ X , then m(ϕ) = ϕ;
– if ϕ ∈⇒ such that for some a, b ∈ A, ϕ = (a ⇒ b), then m(ϕ) = Za,b;
– if ϕ ∈→ such that for some S ⊆ A with at least two elements and some

ψ ∈ (A∪ ��� ∪ → ∪ ⇒), ϕ = (S → ψ), then m(ϕ) = e(S);
– if ϕ ∈→ such that for some ψ ∈ (A∪ ��� ∪ →) and some δ ∈ (A∪ ���

∪ → ∪ ⇒), ϕ = (ψ → δ), then m(ϕ) = Yψ,δ;
– if ϕ ∈��� such that for some a ∈ A and ψ ∈ (A ∪ X ), ϕ = (a ��� ψ), then

m(ϕ) = Pa,ψ.

We define the flattening function f to be f(F ) = 〈MA,X ,→2, ���2,∼2〉,
where →2,∼2⊆ MA × MA and ���2⊆ MA × (MA ∪ X ) are such that:

– Xm(ϕ),m(ψ) →2 Ym(ϕ),m(ψ), Ym(ϕ),m(ψ) →2 m(ψ) for all ϕ,ψ ∈ (A ∪ → ∪ ���
∪ ⇒);

– m(ϕ) →2 Xm(ϕ),m(ψ) if and only if ϕ → ψ and ϕ is not a set of arguments
with at least two elements;
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– acc(a) →2 rej(a) for all a ∈ A;
– e(S) →2 m(ϕ) if and only if S → ϕ for S ⊆ A with at least 2 elements;
– rej(a) →2 e(S) if and only if a ∈ S;
– Za,b →2 acc(a) for all a, b ∈ A;
– acc(b) →2 Za,b if and only if a ⇒ b;
– acc(a) ���2 Pa,ϕ, Pa,ϕ ���2 m(ϕ), acc(a) →2 Qa,ϕ and Qa,ϕ →2 Pa,ϕ if and

only if a ��� ϕ;
– acc(a) ∼2 acc(b) if and only if a ∼ b.

Notice that the set of meta-arguments MA and the correspondence function
m are defined through a simultaneous inductive definition, which is well-founded,
because → is a well-founded relation (assuming that the set theory presupposed
in Definition 6 is a standard set theory like ZFC that satisfies the Axiom of
Foundation).

Note that we do not fully flatten the explanatory relation and flatten EEAFs
into EAFs instead of AFs. This is due to the fact that the explanatory relation
is not easily flattened, and extensions can still be extracted from explanatory
argumentation frameworks via the two EAF extensions which are well-suited for
our task. In order to do this, we need to define an unflattening function which
will map a set of meta-arguments from a flattened EEAF to the corresponding
set of arguments from the original EEAF.

Definition 20. Given an EEAF F and a set of meta-arguments B ⊆ MA such
that MA corresponds to F , we define the unflattening function g to be:

g(B) = {a | acc(a) ∈ B}
Notice that in the unflattening, we only care about the arguments and do

not unflatten the meta-arguments which represent the other elements of EEAFs.
This is due to the fact that we are only interested in selecting the arguments of
the EEAF, which make up the argumentative and explanatory cores.

Definition 21. Let F be an EEAF and G = f(F ) its flattening. We say that
S ⊆ A is an AC-extension of F iff S = g(S′), where S′ is an AC-extension of G.
Similarly, we say that S ⊆ A is an EC-extension of F iff S = g(S′), where S′ is
an EC-extension of G.

4 Applying EEAFs to the Liar Paradox

Let us now move on to an example, which focuses on two groups of solutions for
the liar paradox. The arguments are extracted from Saving Truth from Paradox
[8]. The first group is the solutions which weaken classical logic, namely the
paracomplete, paraconsistent and semi-classical solutions. The second group is
comprised of the underspill and overspill solutions.

We have the following arguments:

– Ep: This explanandum represents the paradox.
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– A: The paracomplete, paraconsistent and semi-classical solutions which pro-
vide explanations for the paradox by weakening classical logic.

– B: The underspill and overspill solutions which provide their own explanation
of the paradox by suggesting that for some predicates F, F is true of some
objects that aren’t F or vice-versa.

– C: We did not change logic to hide the defects in other flawed theories such
as Ptolemaic astronomy, so why should we change the logic simply to hide
these paradoxes?

– D: There is no known way of saving these flawed theories such as Ptolemaic
astronomy and even if there was, there is little benefit to doing so.

– F : We have worked out the details of the new logics and they allow us to
conserve the theory of truth.

– G: Changing the logic implies changing the meaning.
– H: Change of meaning is bad.
– I: The change is mere.
– J : This is no ‘mere’ relabelling.
– K: Change of truth schema is a change of the meaning of ‘true’.
– L: The paradox forces a change of meaning.

The framework is represented in Fig. 6 and its flattening in Fig. 7. We have
omitted less-relevant auxiliary arguments for the sake of visibility.

We get that the AC-extensions are {A,C,D, F, L,G, J,K} and {B,C,D, F,
L,G, J,K}. We can distinguish here the two rivaling solutions which are both
selected. This is due to the fact that even though the author might have a
preference for one or another, in the excerpt we have analyzed, he is merely
defending the solutions represented in A from attacks and making no argument
which attacks the solutions represented in B.

The EC-extensions are {A,D,F, L}, {A,D,F, J} and {B, J}. Notice that
there are two different EC-extensions which contain A, as there are two argu-
ments which individually defend A from the coalition attack of {G,H}.

Fig. 6. EEAF representing the reasoning behind the excerpt
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Fig. 7. Flattened EEAF representing the reasoning behind the excerpt

5 Conclusion and Future Work

We have examined several extensions of abstract argumentation frameworks that
add explanatory features, recursive attacks, support and joint attacks. In the
cases of recursive attacks, support and joint attacks, we have presented a flat-
tening function, which allows us to instantiate these extended framework as stan-
dard AFs. We have shown that in the case of AFRAs, the complete semantics
defined in terms of the flattening is equivalent to the complete semantics which
has been defined directly on AFRAs. We have then aggregated these extensions
into one framework, EEAFs, and defined the semantics in terms of its flattening
to EAFs. Finally, we have explored an application of EEAFs to argumentation
from a research-level philosophy book.

Concerning future work in the line of research of this paper, we plan to extend
the result about the flattening of AFRAs to other argumentation semantics
than the complete semantics. Furthermore, it might be interesting to investigate
flattening the explanatory relation and explananda. Due to their intricate nature,
it is not obvious how to flatten them and obtain semantics equivalent to the ones
defined on EAFs. Another point of interest would be to apply EEAFs to other
areas of scientific debates and examine whether the current features provide
enough expressive power.
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Abstract. Combining computational models of argumentation with
probability theory has recently gained increasing attention, in particular
with respect to abstract argumentation frameworks. Approaches follow-
ing this idea can be categorised into the constellations and the epistemic
approach. While the former considers probability functions on the sub-
graphs of abstract argumentation frameworks, the latter uses probability
theory to represent degrees of belief in arguments, given a fixed frame-
work. In this paper, we investigate the case where probability functions
are given on the extensions of abstract argumentation frameworks. This
generalises classical semantics in a straightforward fashion and we show
that our approach also complies with many postulates for epistemic prob-
abilistic argumentation.

1 Introduction

Computational models of argumentation are non-monotonic reasoning for-
malisms that focus on the role of arguments, i.e., defeasible reasons supporting a
certain claim, and their relationships. In this context, the well-known formalism
of abstract argumentation frameworks [11] abstracts from the inner structure of
arguments and only models conflict between them, thus representing argumen-
tation scenarios as directed graphs where arguments are vertices and an attack
of one argument on another is modelled by a directed edge. Still, this approach is
quite expressive, subsumes many other approaches to non-monotonic reasoning,
and provides an active research field. Many research topics have been spawned
around these frameworks including, among others, semantical issues [3], exten-
sions on support [10], algorithms [9], and systems [30].

In their original form, abstract argumentation frameworks are a qualitative
approach to non-monotonic reasoning as their semantics is set-based (it amounts
to identifying sets of collectively acceptable arguments, called extensions) and
inferences consist of statements regarding the acceptance status of arguments,
which can be binary (an argument is simply “accepted” or “rejected”) or three-
valued (where a third option “undecided” is also possible). In recent years, many
c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 102–119, 2018.
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approaches have been developed that incorporate some quantitative aspects into
abstract argumentation frameworks. These can be categorised into two families.
In the first family, the syntactic representation of argumentation frameworks is
extended with quantities, in order to incorporate more information explicitly.
For example, in [25] arguments and attacks can be annotated with probabilities
that model user-supplied information about the likelihood that these objects
actually appear in the argumentation framework. This approach is also called
the constellations approach to probabilistic argumentation [19]. The main aim
of these works is then to generalise classical semantics and other notions to the
extended approach. See also [12,32] for some other examples from this family
based on weights and fuzzy logic, respectively. The other family is about bringing
quantities into the semantics of vanilla argumentation frameworks themselves.
Here, the syntactic representation is not extended and the aim is to derive quan-
titative information which is implicit in the topology of the graph. Concrete
approaches within this family are, e.g., numerical ranking functions [1,7,18,27]
and the equational approach [16,17]. The epistemic approach to probabilistic
argumentation [5,21,22,28] considers the use of probability functions to capture
the degrees of belief of an agent in (sets of) arguments (see [21] for a discussion).
In this sense the epistemic approach shares some properties with both the fami-
lies introduced above: on the one hand, the probability values are user-supplied,
since they represent the belief of some agent, on the other hand, they can be put
in relationship with the semantics of vanilla argumentation frameworks, since it
is reasonable to assume that the beliefs of an agent take into account (and/or
are constrained by) the topology of the graph.

In this paper, we contribute to the research trend on probabilistic argumen-
tation by considering a further option, which consists in adding a probabilistic
layer on top of classical semantics of abstract argumentation frameworks, i.e., we
consider probability functions on extensions. This investigation is motivated by
the fact that given an argumentation framework, capturing the attacks existing
between arguments, each extension prescribed by an argumentation semantics
can be regarded as an alternative answer to the question: “which arguments are
able to survive the conflict together?”. Thus the set of extensions can be regarded
as a set of alternative reasonable options, each satisfying the “survival criterion”
encoded by the argumentation semantics, which however does not provide any
indication on which extension to select, in case the agents needs to finally choose
one of them. This is required in particular in the case of practical reasoning
where arguments concern reasons about what to do and alternative extensions
may be put in correspondence with different available courses of action. In this
context probabilities on extensions may encode additional information, external
to the argumentation process, about which option is more likely to be selected
by an agent. For instance suppose that in the context of some reasoning activity
involving a health problem, two extensions emerge as reasonable, say one corre-
sponding to undergoing surgery and the other to assuming a drug for a long time.
The final choice is uncertain and is in the hands of the patient, whose (possibly
non-rational) attitude towards the two options can be modeled by a probability
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assignment on the two extensions, e.g. you may assign a higher probability to the
second extension if you know that the patient is particularly worried about the
scars caused by surgery. These probability values could be acquired for instance
using an approach to probabilistic user modeling, as proposed in [20].

Besides modelling the attitudes of a single agent, probabilities on extensions
may be used to model collective attitudes too. Consider the case where two or
more politicians argue about their government programmes and assume that
their different positions are acceptable from an argumentative point of view.
Then a probability assignment on the extensions corresponding to the positions
of the candidates may reflect the outcomes of an opinion poll among the voters
(note that the use of votes in the context of argumentation frameworks to support
an initial numerical assessment, though not of probabilistic nature, has been
considered in [14,24]).

Probability assignments on extensions provide then the basis for further infer-
ential activities, for instance an argument can in general be included in differ-
ent extensions and it is interesting to consider the probability that a specific
argument (or sets of arguments) is selected. In the political example, different
candidates, say all candidates, may share the argument that “we should cut
taxes since this will promote economical growth”, then the probability that this
argument is accepted and that tax cuts are in the next government programme
is 1, independently of the individual probabilities assigned to the various exten-
sions/candidates (provided that you trust that politicians keep faith with their
promises).

Altogether, the general idea is to provide a contribution to the investigation
of integrated uncertain reasoning models encompassing both qualitative (in our
case, based on abstract argumentation) and quantitative (in our case, proba-
bilistic) evaluation aspects.

To provide a formal basis to this kind of modelling and reasoning activities, in
this paper we investigate probability functions on extensions, and in particular,

1. we introduce our approach to probability functions over extensions and we
draw some relationships with the maximum entropy principle and with impre-
cise probabilities (Sect. 3);

2. we investigate the properties of this extension, in particular wrt. rationality
postulates usually considered for the epistemic approach (Sect. 4);

3. we investigate some computational issues of the approach (Sect. 5).

Necessary preliminaries are introduced in Sect. 2 and we conclude with a sum-
mary in Sect. 6.

2 Preliminaries

Abstract argumentation frameworks [11] take a very simple view on argumenta-
tion as they abstract away any detail about the internal structure of an argu-
ment, its origin and nature and so on. Abstract argumentation frameworks only
capture the conflicts between arguments by means of a binary attack relation.
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Definition 1. An abstract argumentation framework AF is a tuple AF =
(Arg,→) where Arg is a set of arguments and → is a relation →⊆ Arg × Arg.

For the sake of simplicity, in this paper we assume that the set Arg is finite.
For two arguments A,B ∈ Arg the relation A → B means that argument A
attacks argument B. We abbreviate AttAF(A) = {B | B → A}. Abstract argu-
mentation frameworks can be concisely represented by directed graphs, where
arguments are represented as nodes and edges model the attack relation.

Example 1. Consider the abstract argumentation framework AF1 = (Arg1,→1)
depicted in Fig. 1. Here it is Arg1 = {A1,A2,A3,A4,A5} and →1= {(A1,A2),
(A2,A1), (A2,A3), (A3,A4), (A4,A5), (A5,A4), (A3,A5)}.

A1 A2 A3

A4

A5

Fig. 1. The argumentation framework AF1 from Example 1

An argumentation semantics is a formal criterion to determine the conflict
outcomes. Two main approaches to semantics definition are available in the lit-
erature, namely the extension-based approach [11] and the labeling-based app-
roach [33]. In this paper we focus on the extension-based approach, the reader
is referred to [3] for a review and an analysis of the correspondence between the
two approaches. An extension E of an argumentation framework AF = (Arg,→)
is a set of arguments E ⊆ Arg that corresponds to a coherent and tenable view in
the argumentation process underlying AF. Intuively an extension is a set of argu-
ments which are “collectively acceptable” or “can survive the conflict together”.

In the literature [3,8,11] a wide variety of different types of semantics has
been proposed. The definition of a semantics typically builds on some basic prop-
erties that an extension should satisfy: arguably, conflict-freeness and admissi-
bility are among the most important extension properties.

Definition 2. An extension E ⊆ Arg is conflict-free if for all A,B ∈ E it is not
the case that A → B. An extension E ⊆ Arg defends an argument A ∈ Arg if for
all C ∈ Arg, if C → A then there is B ∈ E with B → C. An extension E ⊆ Arg
is admissible if it is conflict-free and defends all its elements.

We abbreviate by cf(AF) the set of conflict-free extensions, by mcf(AF) the max-
imal (wrt. set inclusion) conflict-free extensions, and by adm(AF) the set of
admissible extensions. Dung’s traditional semantics are defined by imposing fur-
ther constraints.

Definition 3. Let AF = (Arg,→) be an abstract argumentation framework and
E an admissible extension.
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– E is complete if for all A ∈ Arg, if E defends A then A ∈ E.
– E is grounded if and only if E is minimal among complete extensions.
– E is preferred if and only if E is maximal among complete extensions.
– E is stable if and only if E is complete and attacks all other arguments.

All statements on minimality/maximality are meant to be with respect to set
inclusion.

We denote by comp(AF), ground(AF), pref(AF), and st(AF) the sets of com-
plete, grounded, preferred, and stable extensions of AF, respectively. Note that
a grounded extension is uniquely determined and always exists [11], so we also
abbreviate by GE(AF) the unique grounded extension of AF, i.e., ground(AF) =
{GE(AF)}. Furthermore, we have the following relationships, cf. [3].

Proposition 1. Let AF = (Arg,→) be an abstract argumentation framework.
Then

1. st(AF) ⊆ mcf(AF) ⊆ cf(AF),
2. st(AF) ⊆ pref(AF) ⊆ comp(AF) ⊆ adm(AF) ⊆ cf(AF), and
3. ground(AF) ⊆ comp(AF).

Besides the above mentioned four traditional semantics, a variety of further
proposals have been considered in the literature such as CF2 semantics [2],
which is not based on the admissibility property. However, in this paper we
focus on complete, grounded, preferred, and stable semantics.

Example 2. We continue Example 1. There, the sets E1, . . . , E6 given via

E1 = ∅ E2 = {A1} E3 = {A2}
E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}

are admissible. Furthermore, E1, E3, . . . , E6 are complete, E1 is grounded, and
E4, E5, E6 are both preferred and stable.

As shown by the above example, in general argumentation semantics are
multi-extension or multiple-status i.e. they may prescribe more than one exten-
sion for a given argumentation framework. When a semantics prescribes exactly
one extension for every argumentation framework it is called single-extension
or single-status. Among the semantics considered in this paper, only grounded
semantics is single-status.

The possible existence of multiple extensions gives rise to different notions of
the justification status of an argument. Given a semantics S, an argument A is
credulously justified if there is an S-extension E such that A ∈ E; A is skeptically
justified if for all S-extensions E it holds that A ∈ E. Note that, unless the set of
extensions is empty, being skeptically justified implies being credulously justified
and that the two notions coincide for single-extension semantics.

Example 3. We continue Example 2. Here, no argument is skeptically justified
wrt. grounded, complete, preferred, and stable semantics. Furthermore, no argu-
ment is credulously justified wrt. grounded semantics and all arguments are
credulously justified wrt. the other semantics.
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3 Probabilities on Extensions

Let AF = (Arg,→) be fixed. As in the epistemic approach to probabilistic argu-
mentation [5,21,22,28], we consider probability functions on sets of arguments,
namely functions P : 2Arg → [0, 1] with

∑

E⊆Arg

P (E) = 1

The idea being that P (E) indicates the probability that the extension E is
selected as the final outcome of the semantics evaluation of AF. We denote as
PAF the set of all such probability functions. For P1, P2 ∈ PAF we define P1 = P2

iff P1(E) = P2(E) for all E ⊆ Arg.
Central to our approach is the following definition.

Definition 4. We say that P ∈ PAF is semantically based on a set E ⊆ 2Arg, if
P (E) = 0 for all E /∈ E.

We denote as PE
AF ⊆ PAF the set of all probability functions that are seman-

tically based on E . For example, Pmcf(AF)
AF is the set of all probability functions

that are semantically based on the maximal conflict-free subsets of AF. Note that
in many cases one can assume that the set E is known a priori, e.g. the set of
extensions prescribed by a given semantics for a given argumentation framework
can be computed using one of the available implemented systems for abstract
argumentation [9,29,30]. In this case one can of course easily ensure that a prob-
ability function is semantically based on E by construction. The issue of studying
computational procedures for indirectly enforcing that a probability function is
semantically based on a set E and for transforming an arbitrary probability
function into the “closest” one which is semantically based on a given set E are
interesting issues of future work.

Example 4. We continue Example 3 and consider the probability functions
P1, . . . , P7 defined in Table 1. All these functions are semantically based on the
admissible sets of AF0, i.e., P1, . . . , P7 ∈ Padm(AF1)

AF1
. Furthermore, we have

– P4, . . . , P7 ∈ Pcomp(AF1)
AF1

,

– P4, P5, P6 ∈ Pst(AF1)
AF1

= Ppref(AF1)
AF1

, and

– P7 ∈ Pground(AF1)
AF1

.

A first observation is that we obtain the same hierarchy of the probabilistic
versions of semantics as in Proposition 1.

Proposition 2. If E ⊆ E ′ then PE
AF ⊆ PE′

AF. In particular

1. Pst(AF)
AF ⊆ Pmcf(AF)

AF ⊆ Pcf(AF)
AF ,

2. Pst(AF)
AF ⊆ Ppref(AF)

AF ⊆ Pcomp(AF)
AF ⊆ Padm(AF)

AF ⊆ Pcf(AF)
AF , and

3. Pground(AF)
AF ⊆ Pcomp(AF)

AF .
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Table 1. Definition of probability functions from Example 4; Pi(E) = 0 for all remain-
ing E /∈ {E1, . . . , E6} for i = 1, . . . , 7

E1 = ∅ E2 = {A1} E3 = {A2} E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}
P1 0.2 0.1 0.3 0.2 0.1 0.1

P2 0 0.3 0.2 0.3 0.1 0.1

P3 0 0.2 0.2 0.2 0.2 0.2

P4 0 0 0 0.3 0.1 0.6

P5 0 0 0 1/3 1/3 1/3

P6 0 0 0 0.5 0.5 0.0

P7 1 0 0 0 0 0

Proof. This follows directly from Definition 4 and Proposition 1. ��
Furthermore, as in the classical case we have that probabilistic reasoning wrt.

grounded semantics is uniquely defined.

Proposition 3. |Pground(AF)
AF | = 1.

Proof. As every AF has a unique grounded extension E, any P semantically
based on grounded semantics must have P (E) = 1 and P (E′) = 0 for all other
sets E′. Therefore, P is uniquely determined. ��

Given a probability function P ∈ PAF representing uncertainty about which
extension is selected, an agent may be focused on a single argument or, more
generally on a set of arguments, and be interested in the probability that this
argument or sets of arguments is included in the selected extension E. In other
words the probability P can be extended to the events of the kind (F ⊆ E)
where F is a generic set of arguments and E is the selected extension. For a
set of arguments F , this extended probability will be denoted as P⊆(E) and is
derived from P as follows

P⊆(F ) =
∑

E∈2Arg,F⊆E

P (E) (1)

For individual arguments A ∈ Arg we introduce a special notation

P∈(A) � P⊆({A}) =
∑

E∈2Arg,A∈E

P (E) (2)

Example 5. Continuing Example 4, we have, e.g.

P∈
2 (A2) = P2(E3) + P2(E5) + P2(E6) = 0.4

P∈
4 (A5) = P4(E6) = 0.6

The following propositions report some basic observations.



Probabilities on Extensions in Abstract Argumentation 109

Proposition 4. For P ∈ Pcf(AF)
AF , P∈(A) = 0 for all self-attacking arguments A.

Proof. If A is self-attacking then A is not member of any conflict-free set E of
AF. Therefore P∈(A) =

∑
A∈E∈cf(AF) P (E) = 0. ��

Proposition 5. For P ∈ Pcomp(AF)
AF , P⊆(GE(AF)) = 1 and P∈(A) = 1 for

every argument A ∈ GE(AF).

Proof. The statement follows from the fact that the grounded extension of AF is
included in every complete extension of AF. ��

While some basic results, as shown above, hold for every probability function
P , provided that P is semantically based on a given set of extensions, more
specific properties of the beliefs of an agent may depend on the actual probability
function P adopted by the agent within PE

AF. In case an agent has no information
or criteria to adopt a specific P , the well-known maximum entropy principle
[23,26] states that the uniform probability assignment is adopted. In our case, the
assignment of uniform nonzero probability values is restricted to the prescribed
set of extensions.

Definition 5. Let P ∈ PAF. We say that P is semantically uniform on E ⊆ 2Arg,
if P ∈ PE

AF and for all E,E′ ∈ E we have P (E) = P (E′).

Of course semantically uniform probability functions are uniquely deter-
mined, given AF and E and the value of P∈(A) for each argument A is easily
characterised.

Proposition 6. Let E ⊆ 2Arg.

1. If P, P ′ ∈ PE
AF are semantically uniform on E, then P = P ′, i.e. ∀E ∈ E

P (E) = P ′(E).
2. If P ∈ PE

AF is semantically uniform on E, then for all A ∈ Arg

P∈(A) =
|{E ∈ E | A ∈ E}|

|E|
Proof. This follows directly from Definition 5. ��

Also we are interested to characterise the case where the set of possible
extensions is restricted (e.g. from admissible extensions to complete extensions)
while still applying the maximum entropy principle.

Definition 6. P ∈ PAF is a semantically uniform restriction of P ′ ∈ PAF, if P
is semantically uniform on E, P ′ is semantically uniform on E ′, and E ⊆ E ′.

Example 6. We continue Example 4. While both P2 and P3 are semantically
based on E = {E2, . . . , E6}, only P3 is semantically uniform wrt. E . Furthermore,
P4, P5, P6 are semantically based on the stable/preferred extensions and P5 is
also semantically uniform on those. P5 is also a semantically uniform restriction
of P3 and P6 is a semantically uniform restriction of P5.
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The maximum entropy principle offers a simple criterion to select one repre-
sentative element in the (usually uncountably large) set of probability functions
that are semantically based on some set of extensions. By construction, the infor-
mation content of this representative element is rather weak: in particular, as to
individual arguments, it boils down to counting how often an argument appears
in extensions, cf. item 2 of Proposition 6.

In general, given a set of probability functions, their lower envelope [31] can
be regarded as another synthetic representative of the set itself.

Definition 7. Given a set of probability functions P on a set E the lower enve-
lope P of P is defined for each E ∈ E as P (E) = infP∈P P (E).

The lower envelope of a set of probabilities has interesting formal properties
since it belongs to the family of imprecise probabilities and in particular is a
coherent lower probability [31] (see Theorem 1 below). In words, P (E) identifies
the minimum degree of belief in E given the set P. The function P can therefore
be regarded as a sort of cautious representation of the information content of P.
Specialising this notion to our context we get the following definition.

Definition 8. Given a set of probability functions P ⊆ PAF we define1

– P (E) = infP∈P P (E) for every E ∈ 2Arg

– P⊆(E) = infP∈P P⊆(E) for every E ∈ 2Arg

– P∈(A) = infP∈P P∈(A) for every A ∈ Arg

It is worth noting that each coherent lower probability P function has a
conjugate upper probability P which for each E is defined by the following
conjugacy relation

P (E) = 1 − P (¬E) (3)

Thus for instance the upper probability that a given extension E is selected
is equal to 1 minus the lower probability that E is not selected. Given the set
of probability functions P of which P is the lower envelope, P can be equiv-
alently characterized as the upper envelope of P, replacing inf with sup and
making other obvious adjustments in Definitions 7 and 8. In this sense, dually
with respecty to P , the function P can be regarded as a sort of optimistic rep-
resentation of the information content of P.

In general, for an event E, the interval [P (E), P (E)] gives an account of the
distance between a cautious and an optimistic reading of the set P with respect to
E. In particular if P (E) = P (E), the set P provides a precise information about
the probability of E, while at the other extreme, if P (E) = 0 and P (E) = 1, the
set P provides no information at all about the probability of E.

1 Note that the definitional relation for P ⊆(E) in (1) does not carry over to P ⊆(E),
i.e. in general it does not hold that P ⊆(E) =

∑
E′∈2Arg,E⊆E′ P (E′). An analogous

consideration applies to P ∈(A).
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The reader is referred to [31] for an extensive treatment of these concepts. In
particular in [31] the values P (E) and P (E) were given a behavioral interpreta-
tion in an idealized betting scheme on E.

To make this notion clearer, we recall that this interpretation is rooted in
de Finetti’s subjective probability theory [15], of which the theory of imprecise
probabilities introduced in [31] is a generalisation.

In de Finetti’s approach a (precise) probability assessment is a function P :
E → R, where E is an arbitrary (finite or infinite) set of events and R is the set
of real numbers. For each event E ∈ E , P (E) is the “fair” price of a (unitary)
bet on E, i.e. P (E) is the amount of money that an agent is ready to pay to
an opponent in order to receive the sum of 1 if E turns out to be true and 0
otherwise, and, indifferently, the sum that the agent is ready to receive from an
opponent as a payment for the commitment to pay the sum of 1 if E turns out
to be true and 0 otherwise. More formally, P (E) is the price, according to the
agent, of the indicator of E, denoted as I(E), namely the random number which
takes value 1 if E is true, and value 0 if E is false. It is assumed that the agent
is indifferently ready to buy or sell I(E) at price P (E). In the case of buying,
the random gain of the agent is I(E)−P (E), while it is P (E)− I(E) in the case
of selling. A not necessarily unitary bet is characterized by a real coefficient (or
stake) s ∈ R, so that the gain of the agent is given by s(I(E)−P (E)). A positive
(negative) value of s corresponds to a buying (selling) choice by the agent.

According to the betting interpretation, a probability assessment has to sat-
isfy some conditions ensuring that the bet makes sense for both participants.
In particular, de Finetti has established a property of coherence, called dF-
coherence in the sequel.

Definition 9. Given an arbitrary set of events E, P : E → R is a dF-coherent
probability if and only if ∀n ∈ N+, ∀s1, . . . , sn ∈ R, ∀E1, . . . En ∈ E, it holds that

max

[
n∑

i=1

si(I(Ei) − P (Ei))

]
≥ 0 (4)

where N+ is the set of positive integer numbers.

Intuitively dF-coherence states that for any finite combination of bets, the
maximum value of the random gain of the agent is non-negative, hence the agent
avoids a sure loss. It is well-known that dF-coherence implies several fundamental
properties2 of probability assessments, including in particular the fact that 0 ≤
P (E) ≤ 1 for every event E and the following self-conjugacy relation:

P (E) = 1 − P (¬E). (5)

Considering the same betting context, imprecise probabilities [31] can be
introduced by lifting the assumption that the agent has a precise price estima-
tion, used indifferently for buying or selling event indicators. Rather (as typical
2 In fact, on finite algebras of events the notions of dF-coherent probabilities, finitely

additive probabilities and σ-additive probabilities coincide.
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in real markets) the agent considers, for each event E, two different prices, one
for buying and one for selling I(E), denoted respectively as P (E) and P (E).
Clearly, P (E) ≤ P (E). Moreover, the agent is of course ready to buy also at
any price lesser than P (E), which hence represents the supremum buying price
for I(E). Similarly, P (E) is the infimum selling price for I(E). Given that, for
any event E, I(¬E) = 1 − I(E), it turns out that buying an event is equiva-
lent to selling its complement and vice versa. Hence, in the context of imprecise
probabilities, the following conjugacy relation replaces condition (5):

P (E) = 1 − P (¬E) (6)

In virtue of the conjugacy relation, one can focus on lower or upper proba-
bilities only.

Definition 10 provides the notion of coherence for lower probabilities [31].

Definition 10. Given an arbitrary set of events E, P : E → R is a coherent
lower probability if and only if ∀n ∈ N = N+ ∪ {0}, and for all real and non-
negative s0, . . . , sn, ∀E0, . . . En ∈ E, it holds that

max

[[
n∑

i=1

si(I(Ei) − P (Ei))

]
− s0(I(E0) − P (E0))

]
≥ 0 (7)

The coherence condition requires that the maximum of the gain of the agent
is non negative for every (including the empty) combination of buying bets with
at most one selling bet of a single (arbitrarily selected) event E0. In a sense
Definition 10 allows the agent to use its supremum buying price for any buying
transaction but also forces the agent to use the same price for (at most one)
selling transaction. Intuitively, this ensures that the assessment P by the agent
is not too unfair.

As already mentioned, the lower envelope theorem, one of the main results
of the theory of imprecise probabilities developed in [31], provides a nice char-
acterization of coherent lower probabilities by relating them to sets of precise
probabilities.

Theorem 1 [31]. Given a set E, P is a coherent lower probability on E if and
only if there is a set P of (precise) dF-coherent probabilities on E such that
P (E) = infP∈P P (E) for every E ∈ E.

In words, a lower probability P is coherent if and only if it can be obtained
as the lower envelope of a set (P) of dF-coherent precise probabilities (P ). This
result provides both a constructive procedure for coherent lower probabilities
and a motivation for their existence: when a set of different probability assess-
ments is given, coherent lower probabilities arise by aggregating them in the
least committed way.

Example 7. With reference to Table 1, let P = {P1, . . . , P6}, P be its lower
envelope and P its conjugate upper envelope. We have P (E1) = P (E2) =
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P (E3) = P (E6) = 0; P (E4) = 0.2; P (E5) = 0.1 and P (E1) = 0.2;
P (E2) = P (E3) = 0.3; P (E4) = P (E5) = 0.5; P (E6) = 0.6. Also, for
instance, P∈(A2) = infP∈P{P (E3) + P (E5) + P (E6)} = 0.4 and dually
P

∈
(A2) = supP∈P{P (E3)+P (E5)+P (E6)} = 0.7. We have also P∈(A1) = 0.3;

P
∈
(A1) = 0.6; P∈(A3) = 0.2; P

∈
(A3) = 0.5; P∈(A4) = 0.1; P

∈
(A4) = 0.5;

P∈(A5) = 0; P
∈
(A5) = 0.6.

When the set P coincides with the set PE
AF of all probability functions that

are semantically based on E , then for each argument A the possible values of
P (A) and P (A) are limited, so that the provided information is either extremely
precise (both values are either 0 or 1) or completely vague (P (A) = 0 and
P (A) = 1).

Proposition 7. Given the set of probability functions PE
AF for some set of exten-

sions E, let P be its lower envelope and P its conjugate upper envelope. For each
argument A ∈ Arg it holds that:

– P∈(A) = 1 iff ∀E ∈ E A ∈ E; P∈(A) = 0 otherwise;
– P

∈
(A) = 1 iff ∃E ∈ E : A ∈ E; P

∈
(A) = 0 otherwise.

Proof. If ∀E ∈ E A ∈ E then ∀P ∈ PE
AF it holds P∈(A) = 1 from which

P∈(A) = P
∈
(A) = 1. Otherwise if ∃E ∈ E : A /∈ E then the probability

function given by P (E) = 1 and P (E′) = 0 for every E′ = E belongs to PE
AF

from which P∈(A) = 0 and P∈(A) = 0. Analogously, if ∃E ∈ E : A ∈ E the
probability function given by P (E) = 1 and P (E′) = 0 for every E′ = E belongs
to PE

AF from which P∈(A) = 1 and P
∈
(A) = 1. Otherwise �E ∈ E : A ∈ E and

then ∀P ∈ PE
AF it holds P∈(A) = 0 from which P

∈
(A) = 0.

In general, the lower (or upper) envelope and the upper envelope of a set of
precise probabilities are not precise probabilities themselves. However in some
special cases some interesting correspondences between lower (or upper) values
and precise probability assignments can be obtained. This is in particular the
case when considering the set PE

AF of all probability functions that are semanti-
cally based on E : it can be seen that for each argument A the lower probability
value P∈(A) induced by the lower envelope of PE

AF coincides with the precise
probability value P∈(A) induced by the precise probability P ∈ PAF which gives
probability 1 to the intersection of the elements of E .

Proposition 8. Given the set of probability functions PE
AF for some set of exten-

sions E, let P be its lower envelope and let P ∈ PAF be defined as P (
⋂

E∈E E) = 1,
P (E′) = 0 for every E′ = ⋂

E∈E E. For each argument A ∈ Arg it holds that
P∈(A) = P∈(A).

Proof. By definition, P∈(A) = 1 if A ∈ ⋂
E∈E E, P∈(A) = 0 otherwise. From

Proposition 7 we have P∈(A) = 1 if A ∈ ⋂
E∈E E, P∈(A) = 0 otherwise, which

proves the statement.
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A corollary of Proposition 8 concerns the set Pcomp(AF)
AF of probabilities seman-

tically based on complete extensions. It follows from the fact that the grounded
extension is the least complete extension and coincides with the intersection of
all complete extensions and provides a nice counterpart of Proposition 5.

Corollary 1. Given the set of probability functions Pcomp(AF)
AF , let P be its lower

envelope and let P be the unique member of Pground(AF)
AF . For each argument

A ∈ Arg it holds that P∈(A) = P∈(A).

In general, similar considerations could be applied to strict subsets of PAF

(e.g. satisfying some constraints induced by the beliefs of the considered agent(s))
in order to identify some representative and/or to analyse their information
contents. This line of development is left to future work.

4 Comparison to Epistemic Probabilistic Argumentation

In this section we analyze our approach to semantically based probabilities with
respect to some general properties considered in the literature for the epistemic
approach [5,21,22,28].

First, unattacked arguments play a special role as they are, in a sense, unques-
tioned. The Foundation postulate from [21] requires that the probability of
unattacked arguments is 1. In our context this is guaranteed if a probability
function is based on a semantic notion at least as strong as completeness.

Proposition 9. If P ∈ Pcomp(AF)
AF then P∈(A) = 1 for all unattacked

arguments A.

Proof. If A is not attacked in AF then A ∈ E for every complete extension E of
AF. Then P∈(A) =

∑
E∈comp(AF) P (E) = 1. ��

Furthermore, a central postulate in the above-mentioned approaches is
Coherence, which states that the sum of the probabilities of two conflicting
arguments must be at most one. In our context, conflict freeness is enough to
guarantee this property.

Proposition 10. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B,

P∈(B) ≤ 1 − P∈(A).

Proof. Let A,B ∈ Arg with A → B. Then for every E ∈ cf(AF) it cannot be the
case that both A ∈ E and B ∈ E. Therefore

P∈(A) + P∈(B) =
∑

A∈E⊆Arg

P (E) +
∑

B∈E⊆Arg

P (E)

=
∑

A∈E∈cf(AF)

P (E) +
∑

B∈E∈cf(AF)

P (E)

≤
∑

E∈cf(AF)

P (E) = 1

��
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The Rationality postulate [19] states that if an argument has a probability
greater than 0.5 then any conflicting argument should have a probability lesser
than 0.5. Since this property is implied by Coherence, we directly obtain the
satisfaction of the Rationality postulate too.

Corollary 2. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B, if P∈(A) >

0.5 then P∈(B) ≤ 0.5.

The postulate Optimism has been used [28] to establish a certain correspon-
dence to traditional semantics. It states that the sum of the probability of an
argument and the probabilities of its attackers should be at least 1. In our context
this holds under stable semantics.

Proposition 11. If P ∈ Pst(AF)
AF then for every E ∈ st(AF), A ∈ E, P∈(A) ≥

1 − ∑
B→A P∈(B).

Proof. We have that P∈(A) = 1−∑
A/∈E P (E). By definition every stable exten-

sion S attacks all arguments not included in S. Then in particular every stable
extension not including A includes an attacker of A from which it follows that∑

B→A P∈(B) ≥ ∑
A/∈E P (E) from which P∈(A) ≥ 1 − ∑

B→A P∈(B).

Moreover two extreme cases have been considered in [21], namely maximal
(respectively, minimal) epistemic probabilities where the probability of every
argument is 1 (respectively 0). In our context they can be put in direct cor-
respondence with special topological cases. Assuming probabilities which are
semantically based on conflict-free sets, a maximal probability can be obtained
only for argumentation frameworks with an empty attack relation.

Proposition 12. If P ∈ Pcf(AF)
AF then P∈(A) = 1 for every argument A ∈ Arg

only if →= ∅.
Proof. From the fact that P∈(A) = 1 for every argument A ∈ Arg it follows
that it must be the case that P (Arg) = 1 and P (E) = 0 for every E such that
E � Arg. For such a probability P to belong to Pcf(AF)

AF it must be the case that
Arg is conflict-free, i.e. →= ∅.

By the way when →= ∅, the whole set of arguments Arg is the unique exten-
sion prescribed by all semantics considered in this paper but the conflict-free
and the admissible semantics. Thus the maximal probability is also the unique
probability compatible with those semantics when no attacks are present.

Conversely, it is clear thar a minimal probability is achieved only when the
empty set has probability 1.

Proposition 13. For P ∈ PAF then P∈(A) = 0 for every argument A ∈ Arg if
and only if P (∅) = 1 and P (E) = 0 for every E such that ∅ � E ⊆ Arg.

Then, the minimal probability can be semantically based only if the empty
set belongs to the set of extensions. In particular, the following proposition is
directly derived from basic properties of the grounded and complete semantics
(and is related with Proposition 5).
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Proposition 14. Let P∅ ∈ PAF be defined as P∅(∅) = 1 and P∅(E) = 0 for
every E such that ∅ = E ⊆ Arg. P∅ ∈ Pcomp(AF)

AF iff GE(AF) = ∅ iff ∀A ∈ Arg
∃B ∈ Arg : B → A.

Proof. P∅ ∈ Pcomp(AF)
AF holds if and only if the empty set is a complete extension,

which in turn holds if and only if GE(AF) = ∅, given that the grounded extension
GE(AF) is the minimal complete extension. By well-known properties of the
grounded semantics [11] GE(AF) = ∅ holds if and only if every argument has at
least an attacker (since every unattacked argument belongs to GE(AF)).

5 Computational Issues

We now discuss some computational issues of our approach, in particular, we
make some straightforward comments on computational complexity.

Our approach is about probabilistic reasoning [26] with abstract argumen-
tation frameworks. In general, bringing quantities into a qualitative reasoning
problem also adds computational complexity. When reasoning with infinite sets
such as PE

AF several properties of this set ensure that this can be done effectively.
The next result shows that the set PE

AFis well-behaved wrt. important properties.

Proposition 15. For every E ⊆ 2Arg, PE
AF is a connected, closed, and convex

set.

Proof. Let P1, P2 ∈ PE
AF, δ ∈ (0, 1), and define the δ-convex combination P3 ∈

PAF of P1 and P2 via

P3(E) = δP1(E) + (1 − δ)P2(E)

for all E ⊆ 2Arg. Then for E′ /∈ E we have

P3(E′) = δP1(E′) + (1 − δ)P2(E′) = 0

and therefore P3 ∈ PE
AF showing that PE

AF is convex. Every convex set is also
connected.

To show closure, let P1, P2, . . . be a sequence of probability functions in PE
AF

such that limi→∞ Pi(E) exists for all E ⊆ 2Arg and define P ∈ PAF via

P (E) = lim
i→∞

Pi(E)

Note that it is straightforward to see that indeed P ∈ PAF. Then for E′ /∈ E we
have

P (E′) = lim
i→∞

Pi(E′) = lim
i→∞

0 = 0

and therefore P ∈ PE
AF showing that PE

AF is closed. ��
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Note that due to the above result pertaining the closure of sets PE
AF, we

can substitute “infimum” by “minimum” in Definition 8. Due to connected-
ness and convexity, minima and maxima can be effectively computed by convex
optimisation techniques3. We are currently investigating how to exploit this for
algorithmic issues.

Regarding computational complexity, the following result immediately follows
from well-known complexity results for abstract argumentation, see e.g. [13].

Proposition 16. Let AF be an abstract argumentation framework and P ∈ PE
AF

semantically uniform.

1. Deciding whether P (A) > 0 for some A ∈ Arg is
(a) NP-complete for E = comp(AF),
(b) NP-complete for E = pref(AF),
(c) NP-complete for E = st(AF), and
(d) in P for E = ground(AF).

2. Deciding whether P (A) = 1 for some A ∈ Arg is
(a) in P for E = comp(AF),
(b) ΠP

2 -complete for E = pref(AF),
(c) coNP-complete for E = st(AF), and
(d) in P for E = ground(AF).

Proof. Observe that P (A) > 0 is equivalent to asking whether A is credulously
inferred. Correspondingly, P (A) = 1 is equivalent to asking whether A is skep-
tically inferred. For the complexity of these problems see e.g. [13]. ��

6 Summary

We proposed a novel perspective to combine probability theory with abstract
argumentation. In our approach, we combine classical extension-based semantics
with quantitative uncertainty by considering probability functions on extensions
and analysing some relevant reasoning tasks. We did some preliminary inves-
tigation and showed that our proposal faithfully generalises classical semantics
and is compatible with some postulates considered in the epistemic approach
to probabilistic argumentation. Some relationships with imprecise probability
theory were also pointed out and finally, we made some observations regarding
computational complexity.

The work reported in this paper is preliminary and a deeper investigation
of the proposed formalism and of its potential applications is called for. In par-
ticular, the development of algorithmic approaches for using our framework is
part of ongoing work. Finally, concerning the issue of where do the probability
values come from, we suggest that an interesting direction of investigation is
learning or estimating the probabilities of extensions or of arguments from the
past choices of an agent or of a community of agents (e.g. an electoral body) in
similar decision contexts.
3 The size of the optimization problem depends of course on the size of the set E which

might be large in some cases. The reader may refer to [4,6] for studies on the size of
the set of extensions prescribed by a given semantics.
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Abstract. In this paper we propose a novel algorithm for the com-
putation of the semantics of argumentation frameworks. The algorithm
can generate all complete extensions and thus can be used in problems
involving the grounded, complete, preferred and stable semantics. The
algorithm takes advantage of the constraints imposed on legal labelling
functions to prune the search space of possible solutions.

1 Introduction

This paper describes a new algorithm for the computation of the semantics of
argumentation frameworks based on the idea of forward propagation of in labels
of accepted argument. The basic mechanism is very simple: the construction of
complete extensions is done by attempting to re-label in all undecided (und)
arguments that could potentially be labelled in by a labelling function and check-
ing whether the resulting function can be made “legal”.

The algorithm works on the strongly connected components (SCCs) of an
argumentation framework which are arranged into layers following the direction
of attacks. Because of the dependencies between the valid assignments of labels
of attacking and attacked arguments, a solution for one layer may impose con-
straints on the possible solutions for SCCs of subsequent layers. In such cases, we
say that the solution of one layer conditions the possible legal label assignments
of the attacked SCC. So we take this idea further by looking at the consequences
of legally labelling an argument in in an SCC: we search for labelling assign-
ments of the SCC satisfying an increasing set of constraints. All solutions thus
found are combined in the way described in [11].

We start with the undecided arguments of an SCC that could potentially be
labelled in in some solution. By labelling one of these arguments in, we are forced
to label all of its attackers out (i.e., reject them). If all attackers of an argument
are re-labelled out, then the argument must be re-labelled in, imposing new
constraints on the labels of the arguments that it attacks, and so forth. Forcing
the attacker of an argument to be labelled out is done analogously by requiring
that at least one of the attacker’s attacker is labelled in, so the whole process
can be done through a series of recursive forward propagation operations of in
labels each of smaller complexity than the original one.
c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 120–136, 2018.
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Searching for extensions in this way has several advantages. The constraints
can prune the search space considerably by ruling out assignments that violate
the admissibility conditions. Thus, the algorithm is designed to incrementally
“fill in” the gaps of an admissible but partially uncommitted labelling function
by successively swapping labels from und to in or out, and as a result generating
all complete extensions along the way. As a by-product, we can pick an argument
of interest and attempt to construct a legal labelling assignment that labels the
argument in a particular way (e.g., in), without necessarily having to look at all
solutions of the SCC or the argumentation framework as a whole.

The rest of the paper is structured as follows. In Sect. 2, we provide some
background material for the paper. This is followed by the presentation of the
algorithm itself in Sect. 3.1 In Sect. 4, we compare our algorithm with others in
the literature. Section 5 provides some empirical evaluation of the algorithm and
we conclude in Sect. 6 with a discussion and some future work.

2 Background

An abstract argumentation framework is a system for reasoning about arguments
proposed by Dung [9] and defined in terms of a directed graph 〈A,R〉, where A
is a finite non-empty set of arguments and R is a binary relation on A, called
the attack relation. If (X,Y ) ∈ R, we say that X attacks Y and denote it in the
graph with an edge from X to Y . In what follows, X− = {Y ∈ A|(Y,X) ∈ R};
and X+ = {Y ∈ A|(X,Y) ∈ R}. For sets E ⊆ A, E− and E+ are defined in an
obvious way via set union. We write E → X as a shorthand for X ∈ E+. The
path-equivalence relation ∼R⊆ A∈ is defined as X ∼R Y iff X = Y or there is a
path from X to Y and a path from Y to X in R. A strongly connected component
(SCC) is an equivalence class of arguments under ∼R.

One of the main purposes of an argumentation framework is to provide a
way of reasoning about the status of its arguments, i.e., whether an argument
is accepted or is defeated by other arguments. Arguments that have no attacks
are always accepted. However, an attack from X to Y may not be sufficient to
defeat Y , because X may itself be defeated, and thus the statuses of arguments
need to be determined systematically. In Dung’s original formulation, this is
usually done through acceptability conditions for the arguments. A semantics
can then be defined in terms of extensions—subsets of A with special properties.
A set E ⊆ A is said to be conflict-free if for all elements X,Y ∈ E, we have
that (X,Y ) �∈ R. Although a conflict-free set only contains elements that do
not attack each other, this does not necessarily mean that all arguments in
the set are properly supported. Well-supported sets satisfy special admissibility
criteria. An argument X ∈ A is acceptable with respect to E, if for all Y ∈ X−,
E ∩Y − �= ∅. A set E is admissible if it is conflict-free and all of its elements are
acceptable with respect to itself. An admissible set E is a complete extension iff
E contains all arguments which are acceptable with respect to itself; E is called

1 For easier understanding the algorithm is broken into functional sub-components.
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a preferred extension iff E is a ⊆-maximal complete extension; and E is stable
if E is preferred and E ∪ E+ = A.

Dung’s semantics can also be presented in terms of a Caminada labelling
function of the form λ : A −→ {in,out,und} satisfying certain conditions [4,
5,15]. Let dom denote the domain of a function and λ a labelling function, we
define in(λ) = {X ∈ dom λ|λ(X) = in}; und(λ) = {X ∈ dom λ|λ(X) = und};
and out(λ) = {X ∈ dom λ|λ(X) = out}. The notion of extension is recovered
from the set in(λ) for some labelling function λ. Furthermore, we say that an
argument X is illegally labelled inby λ, if X− �⊆ out(λ); X is illegally labelled
out by λ, if X− ∩ in(λ) = ∅; and X is illegally labelled und by λ, if either
X− ⊆ out(λ) or X− ∩ in(λ) �= ∅. Finally, X is super-illegally labelled in if it
is attacked by an argument that is legally labelled in or labelled und [12]. A
labelling function is legal it does not illegally label any arguments.

2.1 Computing Extensions via Decomposition into SCCs

Baroni et al. proposed a general recursive schema for argumentation semantics in
[1]. The schema employs the decomposition of an argumentation framework into
SCCs and can be used to obtain Dung’s admissibility-based semantics. Based on
that, many researchers showed how to compute the extensions of argumentation
frameworks under several semantics. Baumann adapted the Modgil-Caminada’s
algorithms [12] to compute extensions under the grounded, preferred and sta-
ble semantics in what he called “split” frameworks [2]. Preliminary experimen-
tal results of the advantages of these techniques were then shown in [3]. Liao
described the use of the decomposition idea for computation of argumentation
semantics in a more general way [11].

The overall process can be summarised as follows. Firstly, the SCCs of an
argumentation framework are arranged into layers following the direction of
attack. Then the solutions for each layer are computed using an appropriate
algorithm for the semantics at hand and the solutions of the previous layers.
Finally, the solutions of subsequent layers are combined in a systematic way.
To illustrate this idea, consider the argumentation framework N in Fig. 1 with
SCCs S1 = {X}, S2 = {W,Y } and S3 = {A,B,C,D,E}. Following the attack
relation, these SCCs can be arranged into two layers, the first containing S1 and
S2 and the second containing S3. The solutions of the SCCs in a given layer are
all independent from each other, but the attacks between arguments of different
layers create dependencies of the solutions of an SCC on the solutions of the
SCCs attacking it. For example, the computation of the solutions of S3 depends
on the labels assigned to X and W , and thus on the solutions of S1 and S2. As S1

and S2 have no external attackers, their solutions can be computed completely
independently of the rest of the framework. S2 has three legal assignments: one
in which both W and Y are labelled und and the other two in which one of them
is labelled in and the other is labelled out. X = in is the only solution to S1,
so each of the partial solutions to S2 must be augmented with the assignment
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X = in, giving all partial solutions to layer 0: f1 : X = Y = in,W = out,
f2 : X = W = in, Y = out, and f3 : X = in,W = Y = und.2 [11].

Now consider the computation of the solutions for S3. We say that S3’s
solutions are conditioned by the labels of the external attackers X and W in the
partial solutions f1, f2 and f3. In any such solution, X = in, but the label of W
could be either out, in or und. In order to generate all complete extensions for
N , each partial solution f1, f2 and f3 needs to be expanded with the solutions
for S3 under the constraints that they impose.

Definition 1 (Initial Conditioned Solution for an SCC). Let f be a con-
ditioning solution for an SCC S. The initial solution for S conditioned by f
λf
S : S �−→ {out,und,in} is a legal labelling function whose set in(λf

S) is ⊆-
minimal with respect to all legal labelling functions conditioned by f .

λf
S is the “minimal” (grounded) solution for S under f . It is a special case

of forward propagation from external attackers starting with the all undecided
labelling (all-und). The Discrete Gabbay-Rodrigues Iteration Schema [10] is an
example of a method that can perform this propagation very efficiently.

Since f1(X) = in and f1(W ) = out, the search for the solutions for S3 con-
ditioned by f1 consists of the search for all solutions to S3 with the constraint
A =out or the search of all possible ways to “expand” λf1

S by swapping labels
from und to in or out. Similarly, since the f2(X)=f2(W )= in, under f2 we need
to satisfy the constraint A=B=out. A similar reasoning applies to solution f3
in which we have the “implicit” constraint λf3

S (B) �= in (since λf3
S (W )=und).

More generally speaking, the whole process can be thought of as follows: given a
SCC S, a conditioning solution f , and a partial labelling function λf

S , compute
the set Λ of all expansions of λf

S satisfying some constraints.

X W Y

A B C D E

S1

S3

S2

layer 0

layer 1

Fig. 1. A complex argumentation framework and its decomposition into layers.

Decomposition breaks the argumentation problem into smaller sub-problems,
but an algorithm is still needed to find the solutions for each SCC. Modgil-
Caminada’s algorithm for preferred extensions is one algorithm that can be
adapted for this [12].

2 This is called the horizontal combination of solutions of the layer.
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2.2 Modgil-Caminada’s Algorithm for Preferred Extensions

For space limitations we cannot present Modgil-Caminada’s algorithm in full,
but we will describe it in general terms. This should suffice for our discussion.

Since preferred extensions are associated with maximal sets of arguments that
are labelled in, Modgil-Caminada’s algorithm starts with the labelling function
that labels all arguments in (all-in) and then successively “corrects” illegally
labelled arguments via a so-called transition step. Eventually, all illegal labels get
corrected, and the set of arguments labelled in will correspond to an extension –
those that are maximal will correspond to the preferred extensions.3 A transition
step consists of the following. If the argument X is illegally labelled in, then it is
re-labelled out, if it can be legally re-labelled so. Otherwise it is re-labelled und.
Afterwards, the labels of all arguments in X+ that become illegally labelled out
by the fact that X has been re-labelled from in to out or und, are then also
changed to und. The algorithm applies transition steps as follows. If there is any
argument X in λ that is super illegally labelled in, then the algorithm performs a
single transition step on X generating a new labelling function λ′ and then calls
itself recursively from λ′. If there is no such argument, the algorithm will instead
iterate through all arguments that are illegally labelled in; apply a transition
step on each; and call itself recursively from the new labelling functions thus
generated. Eventually, all labels will become legal and the algorithm will simply
return the labelling functions with maximal sets of arguments labelled in.

In Sects. 4 and 5, we will see that the strategy used by Modgil-Caminada’s
algorithm may result in a very high number of operations.

3 A New Algorithm for Enumeration and Decision
Problems of Argumentation Semantics

Our algorithm’s strategy takes advantage of the constraints that a legal labelling
function must satisfy. These constraints come from two sources: (i) the labels of
the external attacking arguments in the conditioning solutions (which already
partially determine the SCC’s solution); and (ii) the internal constraints aris-
ing from re-labelling the seed argument in. The constraints help to reduce the
search space. The successful implementation of this strategy relies on an efficient
propagation mechanism (see Sect. 6) and a bottom-up method for constructing
all extensions.

This way of looking into the problem has two major implications. By gener-
ating all complete extensions, the method can be used in problems involving the
grounded, complete, stable and preferred semantics. For the grounded seman-
tics, all we need to do is to propagate the (unique) conditioning solution; for the
preferred semantics, we generate alternative solutions but only keep those that
maximise the set of nodes labelled in; and for the stable semantics we exclude
preferred solutions with undecided nodes. Secondly, because we only work on an
3 Unlike ours, Modgil-Caminada’s algorithm does not guarantee the generation of all

complete extensions.
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individual argument at a time, we can define decision procedures for argument
acceptability that do not need to necessarily generate all extensions.

In order to lighten the notation, we will drop the subscript and superscript
in λf

S when the context makes the SCC S and the conditioning solution f clear.
Given a partial solution λ conditioned by a solution f , an argument X of an
SCC S can potentially be re-labelled from und to in if it satisfies the following
conditions: (I1) λ(X) =und; (I2) X �∈ X− (it does not attack itself); and (I3)
{Y ∈ X−|f(Y )=und}=∅. 4 The set possInsS ⊆ S is the set of nodes satisfying
conditions (I1)–(I3). Thus the starting point for Algorithm 1 is an SCC S; the
set possInsS ; a conditioning solution f for previous layers; and a partial solution
λ for S conditioned by f . The algorithm will compute the set Λ of all complete
(or preferred)5 labelling functions that “expand” λ by successively searching
for complete/preferred labelling functions that label an element of possInsS in.
Each search is done via Algorithm 4, which we now explain.

Algorithm 1 Finding extensions from a given set of arguments
Input: possInsS , a SCC S, a conditioning labelling function f, a conditioned legal labelling function

λ for S, and a set of candidate labelling functions Λ
Output: true (success) or false (failure) and an updated set Λ

1 Function findExtsFromArgs(S,possInsS,f ,λ,Λ)
2 while possInsS �= ∅ do
3 Pick X ∈ possInsS

4 possInsS← possInsS\{X}
5 findExtsFromArg(X, S, f, λ, Λ)
6 end while

7 end

In Sect. 2, we saw that an argument X is legally labelled in in a solution λ
if all arguments that it attacks are labelled out and that if all arguments that
attack X are labelled out then X must be labelled in in λ. Thus, to re-label
X in we must re-label out all arguments that it attacks. By re-labelling some
arguments out, we may also be forced to re-label in some other arguments,
and so forth. We call this process the forward propagation of the in label. All
attackers of X must also be labelled out for X to be legally labelled in in λ.
Thus, all external attackers of X must be labelled out (by f) and all internal
attackers that are still labelled und must be re-labelled out. This can be done
by ensuring that every internal attacker Y that is labelled und, gets an attacker
Z to be legally re-labelled in. We call the process of ensuring that all attackers
of X are legally labelled out the backward propagation of the in label. Backward
propagations can be done in terms of one or more forward propagations and this
is the motivation for the title of the algorithm.

Although we start with “good enough” candidates, i.e., arguments satisfy-
ing (I1)–(I3), both types of propagations may fail, since we have no control
over the assignments of conditioning solutions and the propagations may result
in inconsistent label requirements. A failed propagation simply means that we

4 We know that λ(X) = und by (I1), but we still want to make sure that X can be
re-labelled in which is not the case if an external attacker Y ∈ X− has f(Y ) = und.

5 The set Λ is updated according to the desired semantics (see Sect. 3.3).
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cannot construct a legal labelling function meeting the required constraints, so
we backtrack to any available alternatives. We now explain the details.

3.1 Propagating Forwards

A forward propagation essentially requires changing the label of a seed node in
a partial solution λ from und to in and then following the direction of attacks
to re-label any nodes that may have thus have been rendered illegally labelled.
One important aspect of a forward propagation is that (if successful) it will
generate a single solution λ′ from a partial solution λ which, by construction, has
less undecided nodes than λ itself. A forward propagation is carried out by the
function propagateIN in Algorithm 2. Figure 2 illustrates the labelling function
λ′ obtained as the result of a successful forward propagation from X = in and
f =∅ and a failed forward propagation from W2= in and f =∅. The latter fails
because by labelling W2 in, we must label U out, which then requires T to be
labelled in, which in turn requires W2 to be labelled out, which is not possible.

Algorithm 2 Forward propagation of an IN label
Input: argument X to label in, its SCC S, a partial legal labelling function λ, and a

conditioning labelling function f
Output: false if failure; or true if successful, with the new partial labelling function λ′

1 Function propagateIN(X,S,f ,λ,λ′)
2 if {Z ∈ X+ | λ(Z) = in} �= ∅ then
3 return false
4 else
5 λ′ ← λ; λ′(X) = in

6 forall Y ∈ {Z ∈ X+ | λ′(Z) = und} do
7 λ′(Y) ← out
8 end forall

9 newIns← {Z ∈ S | λ′(Z) = und and for all Y ∈ Z−, λ′(Y ) = out}
10 while newIns �= ∅ do
11 Pick W ∈ newIns

12 if propagateIN(W ,S,f ,λ′,λ′′) then
13 λ′← λ′′

14 newIns← newIns\{W}
15 else
16 return false
17 end if

18 end while
19 return true

20 end if

21 end

Y1 T

W1 X W2

Y2 U

SCC S, f = ∅, λ is all-und

propagateIN(X, S, f, λ, λ′) succeeds with
in(λ′) = {X, U}, out(λ′) = {T, W2, Y2},
und(λ′) = {W1, Y1}

propagateIN(W2, S, f , λ, λ′) fails since we
cannot label W2 both in and out

Fig. 2. Results of forward propagations from X = in and W2 = in.
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If the forward propagation from a node X is successful, we must then ensure
that all of X’s attackers are legally labelled out in order to guarantee that the
solution is legal. This is done by a backward propagation.

3.2 Propagating Backwards

In the example in Fig. 2, it is easy to see that λ′ is not legal, since λ′(X)= in,
Y1 → X, but λ′(Y1) = und. We can perform a backward propagation from
X by performing one or more forward propagations using any of the attackers
of each attacker of X as the seed. X− = {Y1,W2}, so we want a labelling
function that labels at least one of the arguments in Y −

1 and in W−
2 in (X

itself already satisfies the latter). It is easy to see that the labelling function
λ′′ ={X =U =W1= in, Y2=W2=T =Y1=out} satisfies these requirements.

Naturally, a backward propagation may also fail. Consider the network in
Fig. 3. After a successful forward propagation from X = in, f = ∅, and λ=all-
und, we get the labelling function λ′ ={X = in, Y =out,W1=W2=W3=und},
which is not legal, since W3 → X and λ′(W3) �= out. So we attempt to backward
propagate from X, f = ∅ and λ′. We need to label W3 out, which requires
labelling W2 = in, which is not possible since it attacks itself, and thus the
backward propagation fails. What this means in practice is that X cannot be
part of any extension (this reasoning can be used in decision problems).

Y W1 W2 W3 X

Fig. 3. Backward propagation.

Unlike a forward propagation, a backward propagation can generate multiple
labelling functions. Consider the SCC S in the network in Fig. 4(L). A call to
propagateIN(X,S, f, λ, λ′) will succeed with λ′ = {X = in, Y = out, Z1 = Z2 =
Z3 = Z4 = W1 = W2 =und}. We must now legally label both W1 and W2 out.
But here we have a choice between labelling Z1 or Z2 in. So both λ′

C = {X =
in, Y = out, Z1 = in,W1 = W2 = Z3 = out, Z2 = Z4 = und} (Fig. 4(C)) and
λ′

R ={X = in, Y =out, Z2 = in,W1 =W2 =Z4 =out, Z1 =Z3 =und} (Fig. 4(R))
are returned in Λ from an invocation to propagateOUT(X,S, f, λ′, Λ).

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

und und

und

und

und und

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

in out

out

out

und und

Z3 Z1 W1

X Y

Z4 Z2 W2

in out

und out

out

und

out in

)R()C()L(

Initial configuration λ′ Backward prop., Z1 = in (λ′
C) Backward prop., Z2 = in (λ′

R)

Fig. 4. A sample network and two successful backward propagations from X = in.
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There are two more important considerations to make. First, all of the attack-
ers of the seed node must be labelled out. Therefore any solution returned by
propagateOUT must satisfy this requirement. Our implementation approach in
Algorithm 3 was to work with two lists. makeOuts contains the nodes that still
need to be labelled out and starts with all undecided attackers of the seed
node (Algorithm 3, line 5). At least one solution must be found labelling all of
these nodes out. If this is not possible, propagateOUT simply fails (Algorithm 3,
line 27). This essentially complements propagateIN to guarantee the correct-
ness of the algorithm. The solutions are stored in the list sols, which is ini-
tialised with the result of the forward propagation of the seed node (Algorithm 3,
line 12). For each node in makeOuts, sols is replaced with a new set of satis-
fying solutions. Each successive node is then checked against all new solutions
thus generated which, by construction, label out all of the previously removed
nodes in makeOuts. If we successfully exhaust all of the nodes in makeOuts,
then propagateOUT succeeds and returns all corresponding solutions (line 30).
Otherwise, it fails and Λ is not updated.

Algorithm 3 Backward propagation of an IN label
Input: argument X labelled in, its SCC S, a conditioning labelling function f , and a

labelling function λ′ obtained from propagating X = in forward
Output: false or true with a set of new partial labelling functions Λ

1 Function propagateOUT(X,S,f ,λ′,Λ)
2 if there exists W ∈ X− such that W is in a previous layer and f(W ) �= out or there exists

W ∈ X− such that W ∈ S and f(W ) = in then
3 return false
4 else
5 makeOuts(X)← {W ∈ X− | W ∈ S and λ′(W ) = und}
6 forall W ∈ makeOuts(X) do
7 makeIns(W )← {Z ∈ W − | Z ∈ S and λ′(Z) = und}
8 if makeIns(W ) = ∅ then
9 return false

10 end if

11 end forall

12 sols← {λ′}
13 while makeOuts(X) �= ∅ do
14 Pick W ∈ makeOuts(X) such that |makeIns(W )| is minimal
15 makeOuts(X)← makeOuts(X)\{W}
16 newSols← ∅

17 forall λ′ ∈ sols do
18 forall Y ∈ makeIns(W ) do

fi91 findExtsFromArg(Y,f ,λ′,newSols) then
20 success← true

fidne12

22 end forall

23 end forall
24 if success then
25 sols← newSols
26 else
27 return false
28 end if

29 end while
30 Λ← newSols
31 return true

32 end if

33 end
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λ′
C λ′

R

W1

Y Z4 Z2

W2

undundout
out

out
W1

Y Z3 Z1

W2

undundout
out

out

Fig. 5. Undecided sub-cycles within solutions.

The story does not end here though, and this takes us to the second impor-
tant consideration which has to do with completeness. The result of a successful
backward propagation may still leave some nodes of an SCC in what are effec-
tively induced sub-SCCs ring-fenced by out-labelled nodes. Consider the network
of Fig. 4(L) again. In order to legally label X in we need to label W1 and W2

out. We have seen that this can be done by labelling either Z1 or Z2 in, giving
us the solutions λ′

C (extension {X,Z1}) and λ′
R ({X,Z2}) of Fig. 4(C) and (R),

respectively. However, λ′
C leaves Z2 and Z4 undecided, whereas λ′

R leaves Z1

and Z3 undecided. In order to break these cycles (and hence guarantee complete-
ness w.r.t. all complete extensions), all we have to do is to simply treat Z4–Z2

and Z3–Z1 as “sub-SCCs” and restart the whole process from the same original
conditioning solution but now with initial conditioned solutions λ′

C and λ′
R (see

Fig. 5). This is implemented in lines 8 and 10 of Algorithm 4. In our example, λ′
C

will generate sub-solutions Z4 = in, Z2 = out and Z4 = out, Z2 = in; whereas
λ′

R will generate sub-solutions Z3 = in, Z1 = out and Z3 = out, Z1 = in. The
search will eventually terminate because recursive calls are only made with ini-
tial solutions containing less und labels than their parents’ and the fact that
the argumentation graph is finite.

3.3 Combining All Steps

Algorithm 1 will attempt to label in all candidate arguments that can be possibly
labelled in. We then generate all possible solutions starting from each of these
arguments with Algorithm 4. This requires to attempt to propagate forward from
X = in (line 3). If this is successful, it will generate a new labelling function
λ′′ with at least two less undecided arguments than λ′. We then attempt to
propagate backwards from λ′′ (line 5), to guarantee that all attackers of X are
legally labelled out. If this is successful, it will generate a number of possible
solutions Λ′, which we add to the current set of solutions (line 7). These solutions
may still leave some undecided nodes, so we restart the process from each solution
σ in Λ′ and the remaining candidate undecided nodes (lines 8 and 10), adding
again the results to the set of solutions (line 12). At this point, we can filter out
the solutions that do not yield preferred extensions if needed (see Algorithm 5).



130 O. Rodrigues

Algorithm 4 Finding extensions from a given argument
Input: argument X to label in, its SCC S, a conditioning labelling function f , a legal

labelling function λ, and a set of candidate labelling functions Λ
Output: false or true with an updated set of candidate labelling functions Λ

1 Function findExtsFromArg(X,S,f ,λ,Λ)
2 λ′ ← λ; λ′(X) = in

3 if propagateIN(X,S, f ,λ′,λ′′) then
4 Λ′← ∅

5 if propagateOUT(X,f ,λ′′,Λ′) then
6 for σ ∈ Λ′ do
7 updateExts(σ,Λ)

8 possInsS ← {Y ∈ S|σ(Y ) = und, Y �∈ Y +, {X ∈ Y −\S|f(X) = und} = ∅}
9 if possIns �= ∅ then

10 Λ′′← ∅; findExtsFromArgs(S,possInsS,f ,σ,Λ′′)
11 for σ′ ∈ Λ′′ do
12 updateExts(σ′,Λ)
13 end for

14 end if

15 end for

16 else
17 return false
18 end if

19 else
20 return false
21 end if

22 end

Algorithm 5 Updating the set of candidate solutions
Input: a solution λ and a set of candidate solutions Λ
Output: an updated set of candidate solutions Λ, according to the semantics

1 Function updateExts(λ,Λ)
2 if preferred semantics then
3 Remove all solutions γ in Λ whose set of in-nodes is contained in the set of in-nodes of λ
4 end if
5 Λ← Λ ∪ {λ}
6 end

Proposition 1 (Soundness and Completeness). Let S be an SCC, f an
admissible conditioning labelling function, and λ a labelling function for S con-
ditioned by f (cf. Definition 1), then (1) all labelling functions returned by Algo-
rithm 1 are legal; and (2) these are all the legal labelling functions for S.
Proof. Omitted, but soundness comes from the fact that lines 7 and 12 of Algo-
rithm 4 only add legal labelling functions and completeness from the facts that all
alternative solutions are tried in line 2 of Algorithm1 and line 10 of Algorithm4.

4 Analysis and Comparisons with Other Work

In Sect. 2, we briefly described the Modgil-Caminada’s algorithm for preferred
extensions and mentioned that it could behave very inefficiently. In fact, Charwat
et al. pointed out that for the class of argumentation frameworks 〈A,A2〉, the
algorithm produces n! branches (where n = |A|), all with the same extension
[8]. Since each node in each branch of execution corresponds to a transition
step, the total number of transition steps is at least twice as many. In fact, it
is n! +

∑n−1
i=1

n!
(n−i)! ≥ 2n!, to be precise. Although arguably unrealistic, this
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class of argumentation frameworks is particularly hard for Modgil-Caminada’s
algorithm, but it is dealt with trivially by our algorithm, requiring only n steps
to identify that no nodes can be possibly labelled in and then producing the
empty extension. This is because the higher the degree of attacks, the higher the
degree of constraints and hence the lower the number of alternatives to check
by our algorithm. Perhaps a more interesting class of frameworks to compare
is what we call bi-directed cycle graphs involving a cycle with all nodes in both
directions (see Fig. 6 (Start)). We now discuss the behaviour of both algorithms
for this class of graphs. Modgil-Caminada’s algorithm would start with the all-
in labelling function and hence all nodes would be initially illegally labelled in.
None is super-illegally labelled in, so the algorithm would iterate through all
nodes, performing a transition step on each one and then recursively calling
itself with the labelling functions resulting from the transitions. For the sake of
argument, let us assume that the algorithm picks node A1 first. A1’s label would
be changed from in to out. As it would become legally labelled out and none of
the nodes that it attacks is labelled out, the first transition step would result in
the labelling TS1 of Fig. 6.6 None of the nodes in TS1 are legally labelled in or
super-illegally labelled in, so the algorithm would then again iterate through all
nodes that remain illegally labelled in (4 in total). In the branches that pick a
node adjacent to A1, say A2, the following would happen. The algorithm would
change A2’s label to out (which is illegal), and then to und. A1 is the only node
that A2 attacks and it is labelled out, but it is legally labelled so. The algorithm
would then choose from one of the remaining illegally labelled nodes (of which
there would be 3). If it agains picks an adjacent node, say A3, it would change
its label to out and then to und, and this process would continue until all nodes
were re-labelled und. This sequence of transitions is depicted in graphs TS1,
TS2,. . . , TS5 of Fig. 6. The algorithm would eventually pick A3 or A4 as an
alternative choice to A2 and in those branches it would eventually produce the
preferred extensions. However, the number of recursive calls would still remain
close to factorial (See Fig. 7). Our algorithm by contrast would start with all
nodes labelled und and pick any initial seed node. In enumeration problems
the choice is actually irrelevant as all eligible undecided nodes are attempted.
In decision problems, we can start with an argument of interest and continue
only if an appropriate extension can be constructed. If we start by propagating
A1 = in, we are immediately forced to label A2 and A5 out, giving us only two
further choices to generate the preferred extensions, i.e., either to label A3 = in
or to label A4 = in. Figure 7 shows the number of transition steps performed
by Modgil-Caminada’s algorithm in bi-directed cycle graphs of up to 24 nodes
and the number of recursive calls in our own algorithm (both implemented in
EqArgSolver). For comparison, we included the factorial and 2x functions.

In [6], Cerutti et al.’s proposed a meta-algorithm that decomposes the original
argumentation framework into SCCs and uses a “base algorithm” at the base of
the recursion to solve the original problem at the SCC level. As an illustration of
the approach, the base algorithm employed a SAT solver. It should be possible

6 There is an analogous branch for all other arguments A2,. . . ,A5.
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Fig. 6. Bi-directed cycle graph behaviour

Fig. 7. Transition steps × calls to propagateIN and propagateOUT

to swap the algorithm here proposed for the call to the SAT solver [6, Line
19, Algorithm 2] or vice-versa using an appropriate translation of the problem,
since a conditioning solution simply constrains the set of possible models. This
investigation will appear in a forthcoming paper. Finally, Nofal et al. proposed
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algorithms for decision problems in the preferred semantics [13]. The algorithm
presented here is not restricted to this semantics only. We will however compare
the approaches of these algorithms and ours in future work.

5 Empirical Evaluation

Apart from the special cases discussed above, we also conducted some exper-
iments to compare Modgil-Caminada’s algorithm with ours in randomly gen-
erated graphs. Our objective was not to conduct an extensive empirical eval-
uation between general solvers, as this will be done by the 2nd International
Competition of Computational Models of Argumentation (ICCMA), but merely
to provide a first-hand evaluation of the two labelling approaches. In order to
eliminate any implementation factors that could directly affect the comparison
between the two, they were both embedded within two versions of EqArgSolver
which was invoked for the preferred semantics only. For further comparison we
also recorded the results provided by Tweetysolver v1.2, which also uses decom-
position into SCCs but uses a SAT solver for solutions. Tweetysolver was chosen
because it is an off-the-peg easy-to-deploy solver and a “good enough” initial
marker for the performance of SAT-based solvers in this class of problems.

We generated 3 datasets of 1,000 graphs each with maximum cardinality of
15, 25 and 35 nodes using probo’s SCC generator. The maximum number of
SCCs in each graph was set to 2. Each dataset was divided into 10 sets of 100
graphs with probability p = 0.1, p = 0.2, . . . , p = 1 of a node attacking another
within an SCC. We submitted the 3,000 graphs thus generated to the solvers
running on a PC with an Intel i7 4690 K processor and 32 Gb RAM. The left of
Fig. 8 shows the comparative average time per graph successfully solved by each
solver and the right shows the percentage of instances timed out within 180 s.

The graphs turned out to be rather too small to effectively stress test EqArg-
Solver using our algorithm. However, they clearly show the differences in per-
formance between the two algorithms (and Tweetysolver). Both the version of
EqArgSolver using our algorithm as well as Tweetysolver successfully solved all
graphs submitted within the time limit. As expected, the version using Modgil-
Caminada’s algorithm timed out more frequently the more nodes the datasets
contained. For graphs with up to 15 nodes, it timed out in roughly 10% of the
problems, increasing to 40% of timeouts in graphs with up to 25 nodes; and then
to 70% timeouts in graphs with up to 35 nodes. The actual average time per
graph successfully solved varied rather erratically in the version using Modgil-
Caminada’s algorithm and this deserves further investigation. Our algorithm
was clearly the fastest (just above 0 ms per graph on average). The execution
times for Tweetysolver stayed relatively constant at around 1,000–1,250 ms per
graph in all datasets. This shows some advancements in catching up with SAT
reduction approaches.7

7 A more robust SAT-based argumentation solver would employ special techniques to
maximise the performance of the underlying SAT solver.
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Fig. 8. Average execution time and % of time-outs for graphs with up to 15, 25 and
35 nodes.

6 Conclusions and Future Work

It is well known that the computation of grounded extensions is simply a matter
of propagation of the in labels of unattacked arguments, which can be done very
efficiently using the Discrete Gabbay-Rodrigues Iteration Schema [10]. In this
paper we proposed a novel algorithm for the computation of all other complete
extensions by looking for solutions to the SCCs of an argumentation framework.
With minor modifications the algorithm can be used for the preferred and stable
semantics as well.

The motivation for the development of this algorithm came from the fol-
lowing. In the solver GRIS [14], we used Modgil-Caminada’s algorithm to com-
pute the preferred extensions of an argumentation framework. However, Modgil-
Caminada’s algorithm proved very inefficient for all but the simplest graphs
and can only compute the preferred extensions. We wanted a more efficient
algorithm that could compute all complete extensions and that could also
check argument acceptability without necessarily having to generate all exten-
sions. The algorithm here proposed achieves all that and successfully replaced
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Modgil-Caminada’s algorithm in the solver EqArgSolver, which we submitted to
the 2nd ICCMA (see http://argumentationcompetition.org/).

Given that solvers using reduction-based approaches to the computation of
argumentation semantics took the top spots in the 1st ICCMA, the reader might
ask if the development of direct algorithms and tools for argumentation seman-
tics is worthwhile or whether we should simply concentrate on improving the
reduction-based techniques. We would side with Cerutti et al.’s to argue that
both approaches have a role to play [7] and combining them could be advanta-
geous. In addition, we would claim that direct approaches are the only alternative
in applications for which a translation to logic is either not possible at all or very
cumbersome, e.g., in certain numerical argumentation networks.

We tested the new algorithm over tens of thousands of graphs of cardinality
of up to 100,000 nodes. Rather than the number of nodes in the framework
as a whole, it is the complexity and the number of SCCs involved that can
stress a solver using the algorithm. Although some of these characteristics are
unavoidable and intrinsic to the problem, the complexity could be reduced in our
algorithm by avoiding multiple generation of the same solution arising in different
search branches. As it stands, we attempt to label in every candidate argument
in an SCC in order to guarantee the completeness of the set of solutions found,
but this could be improved. Optimisations in this area are under investigation.

A further point to make is that within an SCC we can start the algorithm at
an argument of interest to aid in decision problems of argument acceptability. It
should also be possible to work backwards from a specific argument to see if an
extension containing it can be constructed. This is work in progress.

Finally, each in labelling of a node forces the arguments that it attacks to be
labelled out, which means that in each non-trivial SCC, each forward propaga-
tion reduces the complexity of the original problem by at least two arguments,
but possibly many more in cases where the seed node attacks multiple argu-
ments. We therefore expect the probability of attacks between nodes within an
SCC to be inversely proportional to the execution time of our algorithm. This
needs to be fully demonstrated and we also want to compare the performance of
our algorithm with Nofal et al.’s [13] which, as for Modgil-Caminada’s algorithm,
can only generate the preferred extensions.
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Abstract. We provide an overview on the argumentation libraries of the
Tweety library collection to artificial intelligence and knowledge repre-
sentation. These libraries comprise of implementations to abstract argu-
mentation frameworks, as well as the most popular approaches to struc-
tured argumentation, and various further aspects. We briefly sketch the
functionalities of these libraries and give some pointers to how they can
be used.

1 Introduction

The Tweety libraries for logical aspects of artificial intelligence and knowledge
representation1 [20,21] are a comprehensive collection of Java libraries for various
logical approaches to artificial intelligence. The Tweety libraries provide imple-
mentations of formalisms such as default logic [17], answer set programming
[9], belief revision [11], and, in particular, formal argumentation [1,3,6,8,12–
16,19,23].

The popularity of the International Competition on Computational Models
of Argumentation2 (ICCMA) has shown that there is a growing interest in algo-
rithmic approaches to formal argumentation. The formal argumentation libraries
of Tweety address this by providing a general and versatile collection of Java
classes to deal with various aspects of different approaches. The aim of this is not
to provide highly efficient implementations, but rather a simple and clear repre-
sentation of argumentation concepts in an object-oriented manner that can be
easily understood and used by researchers and students not trained in algorithm
and software engineering.

The remainder of this paper gives a brief overview on the functionalities
provided within Tweety for the area of formal argumentation.

2 Overview

Tweety aims at providing a common framework for implementing different
approaches to artificial intelligence in general and knowledge representation in
1 http://tweetyproject.org.
2 http://argumentationcompetition.org.
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particular. It can be used by undergraduate students to better understand log-
ical approaches to knowledge representation by actually working with them in
a familiar object-oriented manner. Moreover, the main purpose of Tweety is to
allow the easy implementation of new approaches by following a given strict
framework and with the benefit of easily integrating concepts and methods of
other formalisms. This allows for early testing of ideas and experimental evalu-
ation in terms of feasibility studies.

Tweety is organized as a modular collection of Java libraries with a clear
dependence structure. Each knowledge representation formalism has a dedicated
Tweety library which provides implementations for both syntactic and seman-
tic constructs of the given formalism as well as reasoning capabilities. Several
libraries provide basic functionalities that can be used in other libraries. Among
those is the Tweety Commons library which contains abstract classes and inter-
faces for all kinds of knowledge representation formalisms. Furthermore, the
library Math contains classes for dealing with mathematical problems such as
constraint satisfaction or optimization problems that often occur, in particu-
lar, in probabilistic approaches to reasoning. Most other Tweety projects deal
with specific approaches to knowledge representation. Each Tweety library is
organized as a Maven3 project. Most libraries can be used right away as they
only have dependencies to other Tweety libraries. Some libraries provide bridges
to third-party libraries such as numerical optimization solvers which are not
automatically found by Maven and have to be installed beforehand. However,
all necessary third-party libraries can be installed by executing a single install
file located within the Tweety distribution. We refer to [21] for a more detailed
description of Tweety in general.

3 Argumentation Libraries

The package net.sf.tweety.arg is the general parent package for all approaches
pertaining to formal argumentation. In the following, we briefly sketch the func-
tionalities of the sub-package net.sf.tweety.arg.dung for abstract argumen-
tation (Sect. 3.1), various sub-packages for structured argumentation (Sect. 3.2),
and further approaches (Sect. 3.3).

3.1 Abstract Argumentation

Abstract argumentation frameworks (AAFs) due to Dung [6] are arguably the
most investigated formalism for formal argumentation. An AAF is a tuple AF =
(A,R) where A is a set of arguments—atomic entities without inner structure—
and R is a relation R ⊆ A × A modelling directed attack between arguments.
Thus, an AAF can be represented as a directed graph. Semantics are given to
these graphs using extensions, i.e. sets of arguments that are jointly acceptable
according to some specific acceptance condition [1,6].

3 http://maven.apache.org.

http://maven.apache.org
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The Tweety package net.sf.tweety.arg.dung contains several classes for
dealing with AAFs. The class DungTheory4 models an AAF and provides sev-
eral convenience methods for accessing the data structure and manipulate it.
Abstract argumentation frameworks can be imported using the APX format [7]
or programmatically using specific methods (see also Fig. 1). Tweety supports
reasoning with AAFs using the extension-based approaches of grounded, sta-
ble, complete, preferred, ideal, semi-stable, CF2, and stage semantics as well as
the ranking-based approaches of [10,22]. Finally, the package contains an imple-
mentation of the logic of dialectical outcomes of [13] that allows modelling and
reasoning with extensions of subgraphs, and several factory classes for generating
random AAFs.

Fig. 1. Code snippet for manually creating a simple AAF and determining its stable
extensions.

Figure 1 shows a code snippet for creating a simple AAF and determining its
stable extensions.

3.2 Structured Argumentation Approaches

Tweety contains implementations of the most popular approaches to structured
argumentation, namely ASPIC+ [16], Assumption-based Argumentation (ABA)
[23], Defeasible Logic Programming (DeLP) [8], and deductive argumentation [3].
In general, an approach to structured argumentation aims at providing an inner
structure to arguments by allowing the representation of those through sets of
formulas in some logic. For example, in the framework of deductive argumentation
[3] classical logic—propositional and first-order logic—is used as the underlying
knowledge representation formalism. Arguments are build from classical formulas
by identifying a set of classical formulas as the premise and a single formula as
the conclusion of an argument, such that the premise entails the conclusion.
Therefore, arguments correspond to minimal proofs in the classic logical sense.
If a knowledge base is inconsistent, arguments and counterarguments for different
conclusions can be extracted from this knowledge base and put in relation to
each other. While [3] bases its framework on classical logic, ASPIC+, ABA, and
DeLP also incorporate aspects of non-classical formalisms that allow e.g. the use
of default reasoning techniques for the construction of arguments.
4 The class name DungTheory was chosen in favour of the class name
AbstractArgumentationFramework in order to avoid confusion with the Java term
abstract which is usually used as a prefix of an abstract class.
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Tweety provides several functionalities for importing and working with
knowledge bases in ASPIC+, ABA, DeLP, and deductive argumentation. In
particular, reasoning with these approaches can be reduced to reasoning with
abstract argumentation frameworks by determining the corresponding AAF and
using AAF reasoners as discussed above. Note that this is the standard seman-
tical approach for ASPIC+ and ABA. Note, however, that both DeLP and
the deductive argumentation approach of [3] also provide proprietary reasoning
mechanisms based on the construction of dialectical trees (or argument graphs
in [3]) and their evaluation. Tweety provides implementation of these reasoning
mechanisms as well, in particular the approach through knowledge base com-
pilation for deductive argumentation from [2]. Finally, a web interface for the
Defeasible Logic Programming approach is also available5 and similar interfaces
for other approaches are currently in development.

Figure 2 shows a small example using Tweety’s ASPIC+ implementation.

Fig. 2. The Tweety format of the classical ASPIC+ example of the bachelor [16] (left)
and a code snippet for reading this file into an AspicArgumentationTheory, inducing its
abstract argumentation framework, and determining the latter’s preferred extensions
(right).

3.3 Further Approaches

Tweety also provides implementations to further approaches to formal argu-
mentation, in particular to various approaches to probabilistic argumentation
[12,13,15,19] and how those can be used for opponent modelling in strategies
for persuasion [18]. Finally, Tweety provides an implementation of the approach
of social abstract argumentation [14].

4 Conclusion

We gave a brief overview on the argumentation libraries of Tweety. In particular,
we sketched the functionalities of libraries pertaining to abstract argumentation,
structured argumentation, and further approaches.

Tweety is an active project and new approaches are added to the collec-
tion regularly. Current work is on an implementation for Abstract Dialectical
Frameworks [5] as well as further approaches to ranking semantics [4].
5 http://tweetyproject.org/w/delp.

http://tweetyproject.org/w/delp
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Abstract. The heureka solver is a general-purpose solver for various
problems in abstract argumentation frameworks pertaining to complete,
grounded, preferred and stable semantics. It is based on a backtracking
approach and makes use of various heuristics to optimize the search.

ευρηκα! ευρηκα! – I have found it! I have
found it!
– Archimedes of Syracuse (287–212 BC)

1 Introduction

An abstract argumentation framework (AAF) as defined by Dung [3] is a tuple
Γ = (A,R) where A is a set of arguments and R ⊆ A2 an attack relation
between arguments. An attack a → b ∈ R models that argument a defeats
argument b. For any argument set E ⊆ A, let E+ be the set of arguments which
are attacked by an element of E and let E− be the set of arguments which attack
an element of E. An AAF Γ is interpreted through the use of extensions, i.e.,
sets of arguments that provide a coherent view on the argumentation represented
by Γ . An extension E ⊆ A is conflict-free iff there are no a, b ∈ E with a → b.
An extension E is stable iff it is conflict-free and for every b ∈ A \ E there is
a ∈ E with a → b. Other notions of extensions include complete, grounded, and
preferred extensions, see [3] for the formal definitions.

heureka is a software system that implements a direct backtracking app-
roach for solving reasoning problems with respect to stable, complete, grounded,
and preferred semantics. The backtracking approach makes use of a variety of
heuristics to dynamically (re-)order the arguments to minimize the backtracking
steps. heureka is able to solve the problems of

– enumerating all extensions (EE),
– determining a single extension (SE),
– checking whether an argument is part of at least one extension, i.e., whether

it is creduously justifiable (DC), and

c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 143–149, 2018.
https://doi.org/10.1007/978-3-319-75553-3_10
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– checking whether an argument is part of every extension, i.e., whether it is
sceptically justifiable (DS)

with respect to the four mentioned semantics. heureka is written in C++ and
available under the LGPL v3.0 licence on GitHub1.

In the remainder of this paper, we describe the architecture of heureka as it
has been submitted to the Second International Competition on Computational
Models of Argumentation (ICCMA’17)2. Note that a slightly shorter version of
this paper has also been submitted as a system description to the competition.

2 Backtracking Algorithm

heureka consists of a family of backtracking algorithms, one for each com-
plete, preferred, and stable semantics which are similar to the algorithm defined
in [5] but use dynamic heuristics to (re-)order how arguments are processed.
The concrete algorithms differ only slightly so we focus our presentation here
on the stable semantics and, in particular, on the task of computing all stable
extensions.

At any time during the execution, a labelling function Lab, which assigns to
each argument either the value IN if it should be contained in the extension,
OUT if it should be ruled out, or UNDEC if it is undecided, is maintained by
the algorithm that keeps track of the current (partial) extension. A fourth label
(BLANK) is used to indicated that an argument is not labelled yet. Let further
IN(Lab) be the set of all arguments labelled IN by Lab, and therefore the current
solution. In a first step, the grounded extension EGR is computed using a purely
iterative algorithm which does not require backtracking [4] and an intial labelling
is constructed. For an AAF Γ = (A,R) with the grounded extension EGR let
the initial labelling Labinit : A → {IN,OUT,UNDEC,BLANK} be defined as

Labinit(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

IN if a ∈ EGR

OUT if a ∈ E+
GR

UNDEC if a → a

BLANK otherwise

Using a specific heuristic (see next section) a new argument a is selected and
set to IN in Lab. Setting this argument to IN may require that other arguments
have to be rejected (because they are attacked by a) or need to be set to IN
as well (because all attackers of them are now attacked by some IN-labelled
argument), and so on, see [5] for the corresponding lookahead strategies. Those
arguments are then marked correspondingly in Lab. This step is repeated until
either a stable extension has been determined or a contradiction occurs (an
argument is labelled with two different labels). In the latter case, the algorithm
backtracks and rejects an argument previously accepted. Algorithm1 shows a
1 https://github.com/nilsgeilen/heureka.
2 http://www.dbai.tuwien.ac.at/iccma17.

https://github.com/nilsgeilen/heureka
http://www.dbai.tuwien.ac.at/iccma17
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Algorithm 1. Enumerate All Stable Extensions
Input: Γ = (A, R) AAF

h heuristic
Labinit initial labelling

Output: EST ⊆ 2A stable extensions

1: Enumerate Extensions(Labinit)

2: function Set In(Lab, a)
3: Lab(a) ← IN
4: for all b ∈ {a}− do
5: if not Set Undec(Lab, b) then
6: return false
7: for all b ∈ {a}+ do
8: Lab(b) ← OUT

9: for all c ∈ ({a}+)+ do
10: if {c}− ⊆ IN(Lab)+ then
11: if Lab(c) = UNDEC then
12: return false
13: else if not Set In(Lab, c) then
14: return false
15: if Is Stable(Lab) then
16: add IN(Lab) to EST

17: return false
18: else return true

19: function Set Undec(Lab, a)
20: Lab(a) ← UNDEC
21: if |{a}− \ IN(Lab)+| = 1 then
22: find b ∈ {a}− \ IN(Lab)+

23: if not Set In(Lab, b) then
24: return false
25: return true

26: procedure Enumerate Extensions(Lab)
27: let h choose next argument a, if there is none, stop
28: if Lab(a) = BLANK then
29: Lab′ ← Lab
30: if Set In(Lab′, a) then
31: Enumerate Extensions(Lab′)

32: if Set Undec(Lab, a) then
33: Enumerate Extensions(Lab)

34: else Enumerate Extensions(Lab)

shortened version of this procedure. The functions Set In and Set Undec set
the labelling of the current argument to IN or undec, respectively, and propa-
gate the changes following the mentioned lookahead strategies. For example all
arguments attacked ba an argument labelled IN are set to OUT. At the end
of Set In, the algorithm checks whether the current extension, i.e., the set of
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IN-labelled arguments in Lab, is stable, then it is reported as a stable extension
and the algorithm backtracks as the current branch cannot contain any more
extensions.

Fig. 1. AAF Γ (left) and algorithm steps (right) from Example 1; arguments not
present in any set are BLANK

Example 1. Consider the AAF Γ = (A,R) depicted in Fig. 1 (left). Assume our
heuristic function determines the following order of arguments: (a, b, c, d, e). In
the first step, we determine that the grounded extension is empty and that there
is no self-attacking argument, so we start with an empty labelling (all arguments
are blank).

1. decision: a is picked by the heuristic and set to IN
2. as a consequence of step 1, all attackers/attackees of a are set to UNDEC/

OUT respectively, {a} is not stable
3. decision: c is picked by the heuristic and set to IN
4. as a consequence of step 3, all attackers/attackees of c are set to UNDEC/

OUT respectively, {a, c} is not stable
5. there are no more arguments which are still undecided, so the algorithm

backtracks to the last decision in step 3 and sets c to OUT
6. decision: d is picked by the heuristic and set IN
7. as a consequence of step 6, all attackers/attackees of d are set to UNDEC/

OUT respectively, {a, d} is stable ⇒ stop

The backtracking algorithms for preferred and complete semantics are simi-
lar to the one for stable semantics. Reasoning problems pertaining to credu-
lous/sceptical justification are solved by the same algorithms but with different
termination criteria and slightly different initial steps.

3 Heuristics

While it is clear that the backtracking approach outlined before is a sound and
complete procedure to enumerate extensions, its performance is highly dependent
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on the order in which arguments are processed. Observe that if this order is
perfect, i.e., all arguments within the final extension are processed first, then
no backtracking is needed and the algorithm has polynomial runtime. However,
this runtime performance cannot, of course, be guaranteed but the choice of the
heuristic used in ordering the arguments can deeply influence the runtime in
general. heureka comes with a series of different heuristics for this purpose.

In general, a heuristic h is a function h : 2A × A → R that maps the current
partial extension E ⊆ A, i.e., the set of IN-labelled arguments in Lab, and an
argument a ∈ A to a real number h(E, a). A large value h(E, a) indicates that a
should be likely included in the extension E and should be processed earlier than
arguments with lower score. Some of our heuristics are defined independently of
E and therefore need not to be recomputed after every modification of E. In
general, however, heureka allows for dynamic heuristics that are updated after
every step.

A simple example of such a heuristic is the number of undefeated aggres-
sors, i.e., the number of arguments which attack a but are not defeated by E.
The number of undefeated aggressors hUA(E, a) should be used as a negatively
weighted component in a compound heuristic as every aggressor increases the
vulnerability of an argument.

hUA(E, a) =
∣
∣{a}−\E+

∣
∣

Another example which is independent of E is the ratio of an argument’s in-
degree and out-degree:

h÷
deg(E, a) =

|{a}+| + ε

|{a}−| + ε
with ε ∈ R

Path-based heuristics have proven useful in many cases. Let d+
i (a) be the

number of paths of length i originating in a and let d−
i (a) be the number of

paths of length i ending in a. The path-based components h+
path and h−

path map
an argument to a combination of its outgoing paths or ingoing paths respectively.

h+
path(E, a) =

k∑

i=1

αid+
i (a)

h−
path(E, a) =

k∑

i=1

βid−
i (a)

These heuristics can be combined into more complex path-based heuristics like
hΣ

path = h−
path + h+

path or hΠ
path = (−1) · (h−

path + ε) · (h+
path + ε).

Further heuristics have been implemented on top of well-known graph metrics
such as betweenness centrality, eigenvector centrality, and matrix exponential.
Another approach are SCC-based heuristics, which order arguments according to
the ordering number of the strongly connected component, which they are part
of, thus implementing ideas on SCC-recursiveness [1]. On top of the individual
heuristics, heureka also allows heuristics to be combined arithmetically.
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For ICCMA’17, we fixed a heuristic for every problem based on a small
experimental evaluation. For all tasks except SE-ST (enumerating some stable
extension) we used the heuristic h1, i.e., h+

path with fixed parameters α = 0.5
and k = 3, defined as

h1(E, a) =
3∑

i=1

d+
i (a)
2i

This heuristic shows the power of an argument to defend and defeat arguments.
For the task SE-ST we used the heuristic h2, which combines h+

path with h−
path

and hUA.

h2(E, a) = h1(E, a) +
3∑

i=1

d−
i (a)

(−2)i
− |{a}−\E+|

2

This heuristic is influenced by the matrix exponential which has been suggested
for this use in [2].

Later a systematic evaluation of the implemented heuristics has been con-
ducted. During this evaluation h÷

deg has proven most useful for solving problems
under stable semantics while hΠ

path worked best when solving problems under
complete or preferred semantics. For some graphs the performance could be
substantially increased by adding an SCC-based component to the heuristic. In
future work, heuristics could be explored, which also discriminate between OUT
and UNDEC arguments intead of only analysing the partial extension.

4 Summary

We presented heureka, a general-purpose argumentation solver based on the
backtracking paradigm. The solver is backed by a number of heuristics that
(dynamically) order the arguments of an abstract argumentation framework to
minimize the number of necessary backtracking steps. During ICCMA’17, all
results returned by heureka have been correct. It landed in the center field
for most tasks, while it was the fastest to find the grounded extension. Current
and future work comprises analytical and empirical evaluation of the solver and
its heuristics, as well as the development of new heuristics and combinations
thereof.
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Abstract. This paper provides a general overview of EqArgSolver, a
solver for enumeration and decision problems in argumentation theory.
The solver is implemented from the ground up as a self-contained appli-
cation in C++ without the use of any other external solver (e.g., SAT,
ASP, CSP) or libraries.

1 Introduction

EqArgSolver is a computer application that can be used to solve enumeration
and decision problems in argumentation theory. EqArgSolver builds and expands
on the prototype GRIS [9] submitted to the 1st International Competition on
Computational Models of Argumentation (ICCMA, [1]). It includes two technical
advances that result in significant improvements in performance [7] and func-
tionality. Firstly, EqArgSolver uses the discrete version of the Gabbay-Rodrigues
Iteration Schema (dGR-iteration schema) [4], which can be implemented in a
much more efficient way than its full-fledged counterpart [3]. Secondly, the com-
ponent in GRIS responsible for computing preferred extensions (and based on
Modgil and Caminada’s algorithm for the computation of preferred labellings
[6]) has been replaced by a novel and more efficient algorithm [7] that can com-
pute all complete extensions. This allows EqArgSolver to handle the following
two types of problems: (i) Given an argumentation network 〈S,R〉, to produce
one or all of the extensions of the network under the grounded, complete, pre-
ferred or stable semantics; and (ii) Given an argument X ∈ S, to decide whether
X is accepted credulously or sceptically according to one of those semantics.

The solver follows the general process of computation described in [5], which
requires the decomposition of the framework into SCCs and the arrangement of
these into layers following the direction of attacks between the arguments.

The dGR-iteration schema is employed in what we call a grounding module
that propagates a (conditioning) solution f (under a particular semantics) to
an attacked SCC in a subsequent layer. Provided f is an assignment that gives
the correct label for every argument in the graph according to Dung’s seman-
tics (see [6])1 the result of the propagation will also be legal. The numerical
computations of the dGR-iteration schema are optimised by using the integer

1 Henceforth, these assignments will be referred to as legal assignments.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 150–158, 2018.
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values 0 = out (rejected), 1 = und (undecided), and 2 = in (accepted) which
are more efficient than the real values {0, 1

2 , 1}. It is worth emphasising, that
although the dGR-iteration schema is employed in these computational tasks,
EqArgSolver actually uses a direct approach to the problem (in the sense of [2]),
i.e., argumentation problems are solved via operations performed directly on the
graph. We will refer to the labels 0/out, 1/und and 2/in interchangeably.

The newly proposed algorithm [7] ensures that all arguments left undecided
by the propagation of solutions to SCCs are systematically tried for inclusion in
some extension (this is explained in more detail in Sect. 2).

EqArgSolver has been submitted to the 2nd iteration of ICCMA, whose
results will be announced at the 2017 International Workshop on Theory and
Applications of Formal Argument (TAFA-17).

2 System Overview

EqArgSolver accepts problems submitted according to probo’s syntax (see [1]).
Theproblemspecification is fully validatedbefore the computationproceeds.Algo-
rithm1 gives a high-level overview of the computation process, which we now
briefly describe. Some shortcuts allowing early termination are described in Sect. 4.

The framework is first divided into SCCs and arranged into layers (line 3).
The starting point is an initial partial solution labelling all arguments as unde-
cided (all-und, line 4). The solutions to each layer expand on the previous layers’
solutions to include the new labelling assignments for the layer’s arguments.

The composition of a typical layer is shown in Fig. 2(L). It consists of a block
of trivial SCCs that are mutually dependent and operated on in one step, and
a set of non-trivial SCCs that are independent from each other (and can be
computed in parallel). Before working on a layer, each partial solution generated
for the preceding layer is propagated to the layer’s SCCs in order to condition
its argument values—a process that we call grounding. Grounding will fully
determine all of the values of the arguments in the trivial block (line 9) but
not all of the values of the arguments in the non-trivial SCCs. Some of these
arguments will be left undecided although they could potentially be labelled
in in a larger extension (line 12). A newly proposed algorithm [7] ensures that
all such arguments are systematically tried for inclusion generating all solutions
for the SCC (line 13). These solutions are only partial to the argumentation
framework as a whole and are combined with each other in a process called by
Liao [5] the horizontal and vertical combinations of partial solutions (lines 14
and 16, respectively).2

This systematic process is repeated until all relevant layers are processed.
The resulting solutions are then output as extensions (line 20). This may involve
removing some of the extensions that are not relevant to the problem at hand
(i.e., non-preferred or non-stable extensions in problems in the preferred and
stable semantics, respectively).

2 Some filtering to eliminate solutions not leading to maximal extensions in pre-
ferred/stable semantics problems is also done, although this is not shown in Algo-
rithm 1. For full details, refer to [7].
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The computation of the solutions to the problems in the grounded semantics
does not require the decomposition of the framework into layers. The dGR-
iteration schema mentioned previously can be applied to the entire argumen-
tation framework (without decomposition) to compute the grounded extension.
However, since the decomposition of the network into SCCs and their arrange-
ment into layers can be performed very efficiently, the extra decomposition cost
is offset by the performance gain obtained through the computation by layers in
all but a few special cases, and is therefore our preferred choice for all semantics.
Further optimisation here is possible but left as future work.

2.1 How Grounding Works

Propagation of the conditioning values of a solution is done using the dGR-
iteration schema, whose behaviour we can only outline due to space limita-
tions. Each node X ∈ S gets an equation describing its value at iteration i + 1
(Vi+1(X)) based on the nodes’ values at iteration i. Let Att(X) denote the
attackers of X, then the general format of the equations for a node X is

Vi+1(X) = 1 − max
Y ∈Att(X)

{Vi(Y )}

with the values 0 = out, 1
2 = und, 1 = in. However, by multiplying the equations

by 2 we can take advantage of integer operations, which are faster. Therefore,
in EqArgSolver we use the equivalence

0 out

1 und

2 in

All nodes get initial value und (i.e., we set V0(X) = 1, for all X ∈ S).
The sequence of values V0, v1, . . . of all nodes will converge in time linear to
the cardinality of the set of nodes involved in the system of equations. The
final values in the sequence will correspond to an extension (see [4] for details).
Even though each iteration involves the computation of the values of n nodes,
in practice a topological sorting of the nodes can be used to achieve convergence
in linear time.3

Figure 1, depicts a sample argumentation framework, its associated system of
equations, and the behaviour of the schema in several grounding scenarios until
convergence is achieved. In layer 0 the schema produces the solution X = 2,
A = 0, and W,Y = 1. It is easy to see that besides X, arguments W and Y
could also be included in (distinct) complete extensions. The new algorithm is
invoked at this point considering all candidate arguments that could potentially

3 The version of EqArgSolver submitted to the 2nd ICCMA did not take advantage
of this simple optimisation, but since submission it has been incorporated offering a
huge performance improvement in certain classes of large graphs.
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be labelled in. This imposes some constraints on any additional candidate partial
solutions. In this example, it will produce the two remaining partial solutions
to layer 0: W = 2, Y = 0 and W = 0, Y = 2. Propagating layer 0’s three
conditioning solutions to layer 1 is done again by grounding SCC4 with the
solutions. The result of these groundings can be seen in Fig. 1(R). It produces
extensions {X}, {X,W} and {X,Y,D}.

Full details of the dGR iteration schema can be found in [4].
The behaviour loosely described above is implemented in a component that

we refer to as the grounding module, whose main function is to propagate the
results of a conditioning solution through the nodes of an SCC of interest.

2.2 Generating All Complete Extensions

As mentioned, the grounding module may leave some nodes with label und which
could potentially be labelled in yielding a larger extension (e.g., nodes W,Y in
layer 0 or the nodes in layer 1 of Fig. 1). Our algorithm attempts to label in all
such undecided nodes, propagating the results as required. When this is employed
judiciously, it not only generates all remaining complete extensions, but also
offers significant performance gains because the legal labelling of an argument
imposes constraints that help prune the search space of feasible solutions. Full
details are given in [7].

Input: Graph G
Output: Extensions of G

1 EqArgSolver
2 Read and validate graph G
3 Decompose G into SCCs and arrange them into layers L0, L1, . . . , Lk−1

4 Sols←{all-und}
5 for i ← 0 to k − 1 do /* Iterate through layers */

6 newSols←∅

7 foreach f ∈ Sols do
8 λ←GR-ground(Li, f); TSB← trivial SCC block of Li

9 LayerSols←{λ ↓ TSB}
10 S← non-trivial SCCs in Li

11 foreach S ∈ S do
12 possIns← candidate in-nodes of S according to λ
13 SCC-sols←findExtsFromArgs(possIns, S, f, λ ↓ S)
14 Horizontally combine SCC-sols with solutions in LayerSols

15 end foreach
16 Add vertical combination of f with each γ ∈ LayerSols to newSols

17 end foreach
18 Sols ←newSols

19 end for
20 Output Sols

21 end
Algorithm 1. EqArgSolver’s overall processing sequence.
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Argumentation Framework:

W Y X A

B C E F

D

Layer 0

SCC4, layer 1

Equations:

Vi+1(X) = 2
Vi+1(A) = 2− Vi(X)
Vi+1(W ) = 2− Vi(Y )
Vi+1(Y ) = 2− Vi(W )
Vi+1(B) = 2−max{Vi(W ), Vi(D)}
Vi+1(C) = 2−max{Vi(B), Vi(Y ), Vi(E)}
Vi+1(E) = 2−max{Vi(C), Vi(F )}
Vi+1(D) = 2−max{Vi(C)}
Vi+1(F ) = 2−max{Vi(E)}

Results of grounding:

Layer 0
X A W Y

V0 1 1 1 1
V1 2 1 1 1
V2 2 0 1 1

in out und und

Layer 1, sol W =2, Y =0
B C D E F

V0 1 1 1 1 1
V1 0 1 1 1 1

out und und und und

Layer 1, sol W =1, Y =1
B C D E F

V0 1 1 1 1 1
und und und und und

Layer 1, sol W =0, Y =2
B C D E F

V0 1 1 1 1 1
V1 1 0 1 1 1
V2 1 0 2 1 1
V3 0 0 2 1 1

out out in und und

Fig. 1. Examples of grounding invocations.

3 Functionality and Design Choices

EqArgSolver can tackle enumeration and decision problems (sceptical and cred-
ulous) of the grounded, complete, preferred and stable semantics. EqArgSolver
can also provide solutions for the Dung’s Triathlon, i.e., to compute in sequence
the grounded extension, all stable extensions, and all preferred extensions of an
argumentation framework. Graphs must be supplied as a trivial graph format
text file, consisting of a sequence of argument designators one per line, followed
by the separator “#” in its own line, followed by a list of pairs of argument
designators, a pair per line, where the first element of the pair is the attacking
argument and the second element is the attacked argument.

Each argument in EqArgSolver is assigned an internal identifier (an unsigned
integer) and the argumentation graph is represented internally as an enhanced
adjacency list. The argument data structure used is shown in Fig. 2(C) and (R).
layer is the graph layer assigned by the decomposition; extArgId is the exter-
nal argument identifier (the string given in the graph’s input file); and attsIn
and attsOut give, respectively, the list of incoming and outgoing attacks of the
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argument. This data structure is associated with the internal argument identifier
using C++’s associative container unordered map.

Storing both directions of the attack relation in the vectors attsIn and
attsOut makes it more efficient to traverse the graph as needed. Similarly, a sec-
ond associative container is created using the external node identifier as key and
the internal node identifier as value (this is useful in decision problems). A (par-
tial) solution is just a mapping from node identifiers to unsigned integers.

Layer structure Node definition Node structure

X1 X2
. . . Xk

SCC1 SCC2
. . . SCCn

Y1

Y2 Y3

trivial SCC

block

Li

Li+1

non-trivial

SCC block

struct
ArgNode_T {

int layer;
ExtArgId_T extArgId;
vector<IntArgId_T> attsIn;
vector<IntArgId_T> attsOut;

};

Z1 Z2 Zk

layer X extArgId

Y1 Y2 Yn

attsIn . . .

. . .attsOut

)R()C()L(

Fig. 2. Data representation in EqArgSolver

In order to avoid resizing of the associative container at creation time (which
in large graphs can be very inefficient), EqArgSolver looks ahead in the input
graph file to count the total number of arguments. It then creates a hash map
with a sufficiently large number of buckets to represent the entire graph. This
ensures that even graphs with many hundreds of thousands of nodes can be
created in a just a few seconds.

4 Optimisations in Decision Problems

We now give a brief overview of some “shortcuts” that can be taken during the
computation of some decision problems. The presentation here is not compre-
hensive but it serves to illustrate some of the details omitted in Algorithm 1. The
shortcuts can in many cases avoid the full computation of all (or some of the)
extensions of the argumentation framework. The left hand side of Fig. 3 contains
the general schema of computation using layers and its right hand side contains
an example that will be used to explain the main concepts involved.

As mentioned in Sect. 2, the decomposition of the argumentation framework
will divide it into layers, where each layer is composed of a block containing the
trivial SCCs of the layer and a block containing the layer’s non-trivial SCCs.
For example, in the sample argumentation framework shown on the right of
Fig. 3, layer 0 contains only the non-trivial SCC block (NTSB) containing the
SCC A ↔ B; layer 1 contains the trivial SCC block (TSB) containing the single
trivial SCC with argument U and the NTSB containing the non-trivial SCCs
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A B

X1

X2 SCC1
. . . SCCk U X W Y Z

. . .

Xk

C D

trivial SCC

block (TSB)

non-trivial SCC

block (NTSB)

TSB NTSB

Conditioning solution
of layer i− 1

Conditioning solutions
for layer i+ 1

Layer i− 1 Layer 0

Layer i Layer 1

Layer i+ 1 Layer 2

Fig. 3. Relationship between partial solutions and layers of the argumentation frame-
work.

X ↔ W and Y ↔ Z; and layer 2 contains only the NTSB containing the non-
trivial SCC C ↔ D.

Let us start our considerations with the grounded semantics, which produces
one single solution and is therefore simpler. From our discussion in Sect. 2.1, it
should be clear that an answer to an argument acceptability decision problem
under this semantics depends only on the computation of the solution up to
the layer containing the argument in question. So for instance, if the problem
is to decide whether U belongs to the grounded extension, there is no need to
compute the solution to layer 2, as U belongs to layer 1 and the nodes in layer 2
cannot affect the acceptability of U in any way. Similarly, as U is in the TSB of
layer 1, we can safely restrict the propagation of the solution of layer 0 to this
block alone ignoring all SCCs in the NTSB. If the propagation labels U in, then
the answer is positive, otherwise it is negative. In our example, the grounded
solution to layer 0 is A = B = und. When this is propagated to the TSB of
layer 1 we get U = und and we can stop there with a negative answer.

Consider now the credulous approach to the complete semantics. A posi-
tive answer must be given if any complete extension contains the argument in
question. For example, if the problem is to determine whether X is credulously
accepted under the complete semantics, then it should also be clear that the
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computation can be stopped at layer 1 of the graph. Moreover, the solutions to
the SCCs in the NTSB are independent of each other, so we can restrict the
computation in layer 1 to the SCC X ↔ W . There are three solutions to layer 0,
all of which condition layer 1: f1 = {A = in, B = out}; f2 = {A = out, B = in}
and f3 = {A = und, B = und}. In this case a (positive) answer can be obtained
when solution f1 is propagated to the SCC X ↔ W . This solution will force
W to be labelled out, and hence X to be labelled in. In general, a negative
answer to the credulous approach can only be given when all options have been
exhausted and no solution includes the argument. This means generating all par-
tial solutions for the SCC under all conditioning solutions. The situation with
the sceptical approach is symmetrical to this. If the decision problem is scepti-
cal, then we can provide a negative answer as soon as we obtain a solution that
assigns a label other than in to X. An example of this is when we propagate f3
to X ↔ W , leaving both X and W undecided (which is a solution correspond-
ing to an extension that does not contain X). A positive answer can only be
given once all solutions have been considered and they all include the argument
in question.

The considerations for the preferred semantics are slightly more complex as
only the solutions that maximise the nodes labelled in will yield preferred exten-
sions. The stable semantics on the other hand will require the full computation
of the framework because in general one cannot guarantee that a partial solution
will form the basis of a stable extension. For example, a partial solution may
include the argument X; label all arguments up to the current layer in or out;
and then have an expansion through propagation to a subsequent layer that
leaves some arguments undecided (therefore not yielding a stable extension).
Consider the partial solution f11 = {A = in, B = out, U = out,X = in,W =
out, Y = in, Z = out}. As far as layers 0 and 1 are concerned, no arguments
are undecided. However, no stable extension of the argumentation framework in
Fig. 3 contains {A,X, Y }, even though it is itself a preferred extension.

5 Conclusions and Discussion

Many further improvements continue to be made to EqArgSolver. After the
submission to the 2nd ICCMA, we improved the internal data representation
of solutions and employed topological sorting of the TSB improving the per-
formance of the grounding module considerably in some frameworks containing
very large acyclic chains of attacks. Topological sorting of TSBs allows for the
exclusion of nodes from the dGR iteration schema computation as soon as their
values converge.

At the time of writing, further data representation alternatives are being
considered to speed up some critical operations and the forward propagation
algorithm is being optimised in two ways: (1) we want to avoid the multiple
generation of the same solution (see [7]); and (2) we want to “learn” from failed
forward propagations to help prune the search space of solutions further.
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Finally, we have identified a number of randomly generated graphs with
problem instances that were particularly difficult to solve. Work is under way to
understand why these graphs are so challenging.

It is worth emphasising that the implementation aspects of a particular tech-
nique or algorithm play a fundamental role in the efficiency of any solver employ-
ing them. In the large graphs used in the 2nd ICCMA (some of which have mil-
lions of nodes), even the efficiency of reading, representing the graph internally,
and outputting the solutions have a direct impact on the solver’s performance.

The remarkable achievement of argumentation solvers employing SAT-
reduction techniques can be largely (but not solely) attributed to recent advances
in SAT-solving techniques, notably conflict-driven clause learning [8]. On top
of that, any efficient reduction-based solver will exploit whatever optimisation
parameters the underlying solver has to offer.

As SAT solvers operate on the logical translations of constraints arising from
the argumentation context and learns from irreconcilable clauses to prune unfea-
sible solutions early, it should be possible to do the same in algorithms operating
directly on the argumentation graph itself.
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Abstract. We consider two teams of agents engaging in a debate to
persuade an audience of the acceptability of a central argument. This is
modelled by a bipartite abstract argumentation framework with a distin-
guished topic argument, where each argument is asserted by a distinct
agent. One partition defends the topic argument and the other parti-
tion attacks the topic argument. The dynamics are based on flag coor-
dination games: in each round, each agent decides whether to assert its
argument based on local knowledge. The audience can see the induced
sub-framework of all asserted arguments in a given round, and thus the
audience can determine whether the topic argument is acceptable, and
therefore which team is winning. We derive an analytical expression for
the probability of either team winning given the initially asserted argu-
ments, where in each round, each agent probabilistically decides whether
to assert or withdraw its argument given the number of attackers.

1 Introduction

Argument-based persuasion dialogues provide an effective mechanism for agents
to communicate their beliefs and reasoning in order to convince other agents of
some central topic argument [11]. In complex environments, persuasion is a dis-
tributed process. To determine the acceptability of claims, a sophisticated agent
or audience should consider multiple, possibly conflicting, sources of informa-
tion that can have some level of agent-hood. In this paper, we consider teams
of agents that work together in order to convince some audience of a topic
argument. While strategic considerations have been investigated for one-to-one
persuasion (e.g. [15]), and for one-to-many persuasion (e.g. [9]), the act of per-
suading as a team is a largely unexplored problem.

Consider a political referendum, where two campaigns seek to persuade the
general public of whether or not they should vote for or against an important
proposition. Each campaign consists of separate agents, where each agent is an
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expert in a single argument. For example, an environmentalist might argue how
a favourable outcome in the referendum would reduce air pollution. Each agent
can assert its argument to the public, and each agent is aware of counterargu-
ments that other agents can make. However, no agent can completely grasp all
aspects of the campaign, for example the environmentalist may be ignorant of
relevant economic issues. If the agent thinks there are no counterarguments to
its argument, then it should keep asserting its argument, as it is beneficial for its
team. While each agent wishes to further their team’s persuasion goal, they do
not want to risk having their argument publicly defeated by counterarguments.

From this example, we consider a team of agents to have three key properties
that differentiate them from an individual agent when persuading. Firstly, each
agent may have localised knowledge which is inaccessible and non-communicable
to other agents in the same team. Secondly, agents may not be wholly benevo-
lent, potentially acting in their own interest before that of their team; reconciling
this conflict between individual and team goals makes strategising more com-
plex. Thirdly, there is no omniscient or authoritative agent able to determine
the actions of the other agents in the team, meaning each agent must act inde-
pendently, making the problem a distributed one. This problem is distinct from
that of an individual persuader, and therefore requires a different approach to
model the outcomes of persuasion.

We approach the problem of modelling team persuasion by exploring a par-
ticular team persuasion game, in which two opposing teams attempt to convince
an audience of whether some central issue, termed the topic, is acceptable or not.
For simplicity, we assume that each agent in a team is individually responsible
for one argument in the domain, being an expert on that particular argument.
As such, each agent must independently decide whether to actively assert its
argument to the audience, or to hold back from asserting its argument. The per-
suasion game proceeds in rounds, where in each round an agent decides whether
to assert its argument. An agent can decide to stop asserting its argument even
if in previous rounds they had asserted it. Teams aim to reach a state in which
the topic is acceptable or unacceptable according to the audience (depending on
whether the agent is defending or attacking the topic), and in which no individ-
ual agent will change its decision of whether to assert its argument; in such a
state the topic is guaranteed to retain its (un)acceptability indefinitely. When
deciding whether to assert its argument, an agent takes into account whether the
other agents are currently asserting their arguments. It aims to have a positive
effect on its team’s persuasion goal, but may also wish to avoid having its own
argument publicly defeated (since this may, for example, negatively affect their
public standing or reputation). When deciding whether to assert its argument,
the agent must therefore balance the potential positive effect of this on its team’s
persuasion goal with the risk of its own argument being publicly defeated.

The audience determines whether they find the topic argument acceptable
in a particular round by considering the set of arguments that are currently
asserted. Note that the audience has no knowledge of which arguments were
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Michael Gove:
“We have

heard enough
from experts”

YouGov: “Polls
show most
people think

hospital waiting
times will fall
if UK leave”

Alistair Heath:
“Financial

institutions are
often wrong
and therefore
untrustworthy”

The UK should
leave the EU

Richard
Dawkins:

“The public is
ill-informed,
experts know
more so we
should listen
to them”

Financial
Times:

“Financial
institutions
have many
experts and
so are often
correct”

Bank of
England:
“Inflation
will fall to
dangerous
levels if
we leave”

Treasury:
“The value of
sterling will

fall if we leave”

NHS: “Authori-
tative academic
studies show
that leaving
the EU will

cause hospital
waiting times
to increase”

Leave; arguments defending the topic

Remain; arguments attacking the topic

Topic argument

Fig. 1. An instantiated example of a bipartite argumentation framework.

asserted in previous rounds; we consider the audience to be memoryless, only
considering the arguments that are asserted in the current round.

For example, consider the arguments in Fig. 1, in which the directed edges
represent conflict between arguments. The topic argument in this example is that
the United Kingdom should leave the European Union, with three arguments
defending the topic and five arguments attacking the topic (some indirectly).
Each argument is controlled by a particular individual or institution. The agents
are organised into two teams, those defending the topic (the Leave campaign),
and those attacking the topic (the Remain campaign). Consider the argument
that might be asserted by the Treasury: the Treasury is motivated to assert their
argument as it directly attacks the topic argument (which they are seeking to
dissuade the audience of). If they are aware of the argument possibly asserted by
Alistair Heath, they may decide not to assert their own argument to avoid the
risk of being publicly defeated. The public decides whether leaving the European
Union is acceptable depending on which arguments are currently being asserted.
The contribution of this paper is the application of team persuasion games [10]
to model public debates of this form. We answer the following:

Q1 How do we formalise the situation where one team has definitively
won? We define such a situation to be a state where agents that are assert-
ing their arguments will continue to do so, and agents not asserting their
arguments will never do so.
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Q2 What is the probability that a particular team (e.g. the Remain
Campaign) has definitively won? We prove an expression for this prob-
ability, given the initially asserted arguments and the attacks between them.

In Sect. 2 we define a team persuasion game on a bipartite abstract argumen-
tation framework [6], which is a special case of a flag coordination game [10].
In Sect. 3, we use our framework to answer Questions Q1 and Q2. We discuss
related work in Sect. 4, and conclude in Sect. 5.

2 Team Persuasion Games

In this section we present our model of team persuasion games. We begin by
briefly reviewing the relevant aspects of abstract argumentation [6].

Definition 1. An argumentation framework is a directed graph (digraph)
AF := 〈A,R〉 where A is the set of arguments and R ⊆ A × A is the attack
relation, where (a, b) ∈ R denotes that the argument a attacks the argument b.

Figure 1 is an example argumentation framework. We will only consider finite,
non-empty argumentation frameworks, i.e. where A �= ∅ is finite. Given an argu-
mentation framework, we can determine which sets of arguments (extensions)
are justified given the attacks [6]. There are many ways (semantics) to do this,
each based on different intuitions of justification. We do not assume a specific
semantics in this paper, only that all agents and the audience use the same
semantics.

Definition 2. Let AF be an argumentation framework. The set Acc(AF ) ⊆ A
is the set of acceptable arguments of AF , with respect to some argumenta-
tion semantics under credulous or sceptical inference. An argument a is said to
be acceptable with respect to AF iff a ∈ Acc(AF ).

We model team persuasion as an instance of a flag coordination game over an
argumentation framework [10]. A flag coordination game consists of a network
of agents and an index representing discrete time. Each agent has a set of flags
of different colors (representing e.g. choices or states) and a set of other agents
it can see. In each round, each agent raises a colored flag synchronously and
independently, as the output of some (possibly random) decision procedure given
what the agent sees other agents doing in the preceding round. Such models have
been studied in the context of the adoption of new technology standards, voting
and achieving consensus [10, Section 1]. We now adopt a specific instance of a
flag coordination game for our purposes.

Definition 3. A team persuasion framework is a tuple 〈AF,X, β, Γ, φ, Λ〉 =:
F . Let AF = 〈A,R〉 be an argumentation framework, where the nodes repre-
sent arguments, each owned by distinct agents.1 Let φ : A → P (A) be the

1 As each argument is owned by a distinct agent, we use the terms interchangeably.
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visibility function,2 i.e. φ(a) ⊆ A is the set of arguments that a can see. Let
X := {on, off, topic} denote the set of states. Let t ∈ A be a distinguished argu-
ment called the topic (argument). Define the state function β : A → X such
that β(t) := topic and (∀a ∈ A − {t}) β(a) ∈ {on, off}.3

Let S := XA be the space of functions that assigns a state to each argument,
which defines a configuration. Let Γ ⊆ S be the set of goal states. For a ∈ A
let λa be the decision algorithm of agent a, that takes input β and φ and
outputs s(a) ∈ X, for s ∈ S. We define Λ as the set of algorithms for all a ∈ A.

The team persuasion framework is such that each agent asserts a single argu-
ment, which can attack and be attacked by other asserted arguments, so it is
isomorphic to an argument framework. Each of the agents can assert their argu-
ment (turning it on) or not assert their argument (turning it off ). The topic is
a special argument that is labelled topic throughout the duration of the game.

Definition 4. Let F denote a team persuasion framework. Let i ∈ N denote
discrete time. Consider the sequence of configurations [s0, s1, ...], indexed by i.
We call s0 the initial configuration, and si is the ith configuration. The
update rule is such that for all a ∈ A−{t}, si+1(a) ∈ X is the output of λa given
si(b) ∈ X for all b ∈ φ(a) and possibly β(a). Further, (∀i ∈ N) si(t) := topic. A
team persuasion game with initial configuration s0 is the tuple 〈F , s0〉.
Initially, the agents start in some initial configuration defined by whether each
agent asserts its argument. In each subsequent round, the agents decide using
their own decision procedure whether to assert or stop asserting their argument
in the next round, given the actions of other agents they see.

Both teams are presenting their arguments to an audience who are assumed
to be memoryless across rounds and can only see the topic and the arguments
that are being currently presented. This prompts the following definition.

Definition 5. Given a team persuasion game, the set of arguments that are
on in round i is Aon

i := {a ∈ A si(a) = on} ∪ {t}. The induced argument
framework is AF on

i := 〈Aon
i , Ron

i 〉, where Ron
i := R ∩ [Aon

i × Aon
i ].

The audience will therefore see a sequence of argument frameworks (AF on
i )i∈N

as the teams debate each other about the topic. The audience can determine
which team is winning based on whether the topic is justified in a given round.

Definition 6. In a given round i ∈ N of a team persuasion game, we say that
the team of defenders are winning iff t ∈ Acc (AF on

i ) iff the team of
attackers are not winning.

In each round the acceptability of the topic may change, and hence the winner
can change. We are interested in definitively winning states, as defined in Q1 in
Sect. 1. We explore the existence of such states in Sect. 3.

2 If X is a set, then P (X) is its power set.
3 We further assume that φ is such that if b ∈ φ(a) then a can also see β(b) ∈ X.
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Since we are modelling the arguments between two teams, each trying to
persuade or dissuade an audience of the topic, we specialise to bipartite argu-
mentation frameworks because no agent should attack an argument of another
agent in its own team. Further, the framework is weakly connected because all
arguments asserted are relevant to the debate. Further, we assume that every
argument has a counterargument, and that the topic is not capable of defending
itself, so it does not directly attack any argument.

Definition 7. Our team persuasion frameworks F = 〈AF,X, β, Γ, φ, Λ〉 have
an underlying argument framework AF = 〈A,R〉 that is bipartite and weakly
connected, with the requirements that (∀a ∈ A) a− �= ∅ and t+ = ∅.4 As AF
is bipartite, let U and W be the two partitions of A such that t ∈ U . We call
U the set of defenders of the topic, and W the set of attackers of the
topic. The set of goal states is Γ := {γu, γw}, where γu(U −{t}) = {on} and
γu(W ) = {off}, and γw(U − {t}) = {off} and γw(W ) = {on}.5

The goal states indicate that each team has the goal of unilaterally assert-
ing their arguments and making the opposing team unilaterally withdraw their
arguments. See Fig. 2 for an example of γu, and Fig. 3 for an example of γw. In
our figures, white (resp. black) nodes are arguments that are on (resp. off ).

u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 2. The defenders’ goal state γu; all
defenders are asserting their argument.

u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 3. The attackers’ goal state γw; all
attackers are asserting their argument.

2.1 Agent Visibility

There are several possible forms of the agents’ visibilities, φ, for example:

V1 (∀a ∈ A) φ(a) = a− := {b ∈ A (b, a) ∈ R},
V2 (∀a ∈ A) φ(a) = a+ := {b ∈ A (a, b) ∈ R}, or
V3 (∀a ∈ A) φ(a) = a− ∪ a+ (both).

4 Recall that for an AF 〈A, R〉 where a, t ∈ A, a− := {b ∈ A (b, a) ∈ R}, and t+ :=
{b ∈ A (t, b) ∈ R}.

5 Recall that for a function f : X → Y and A ⊆ X the image set of A under f is
f(A) := {y ∈ Y (∃x ∈ A) f(x) = y}.
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Recall from (see footnote 3) that if b ∈ φ(a), then a can also see the state s(b)
of b. It is possible to define φ(a) ⊆ A to be completely arbitrary, beyond the
immediate neighbours of a. However, it is not currently clear how the behaviour
of an agent might be influenced by knowledge of the states of arguments beyond
the immediate neighbours especially if there is to be localised knowledge (see
Sect. 3). In this paper, we focus on V1, leaving the other cases for future work.

2.2 The Agents’ Decision Algorithm

We claim that agents with visibility of a− can be motivated by two factors: their
desire to make the topic acceptable/unacceptable to the audience (the goal of the
team), and their desire not to have their argument publicly defeated (the goal
of the individual). An individual does not want to have its argument publicly
defeated (that is, its argument is asserted, but is not considered acceptable by
the audience in the current round), as it is somehow a challenge to the agent’s
authority, and therefore reflects negatively on its ego. An agent can estimate
how likely it is that their argument will be publicly defeated by considering
how many attacking arguments the agent could see are being asserted: the more
attackers that are asserted, the more likely one of the attacks will be successful,
and therefore the higher the chance its argument is defeated.

• Altruistic: An agent which is only motivated by the team goal of making
the topic (un)acceptable would always assert its argument a, regardless of the
state of the arguments in a−. We call such selfless agents altruistic.

• Timid: An agent which is only motivated by its individual goal of not having
its argument being publicly defeated would never assert its argument, regard-
less of which arguments in a− are being asserted. If the agent never asserts
its argument, it can never be defeated, and therefore will always achieve its
individual goal.

• Balanced: An agent motivated by both factors must find a way to balance
these two goals. Such an agent is certain to assert its argument when none
of its attackers are asserted, because the chance of a successful defeat is
minimal. Similarly, the agent is least likely to assert when all of its attackers
are asserted because the chance of successful defeat is maximised.

As a starting point for our analysis we will consider balanced agents. We
define the probability of the agent not asserting its argument when all of its
attackers are on as 1, and conversely the probability of the agent not asserting
its argument when all of its attackers are off as 0. To begin with, we assume
this probability increases linearly, proportional to the number of arguments a−

that are on.

Definition 8. Let F be a team persuasion framework on an argument frame-
work AF as defined in Definition 7. An agent a ∈ A − {t} is balanced iff λa

(Definition 3) is defined as follows. For i ∈ N, λa outputs si+1(a) = off with
conditional probability
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P (si+1(a) = off si) :=
|a− ∩ Aon

i |
|a−| ∈ [0, 1]. (1)

Further, λa outputs si+1(a) = on given si with probability 1−P (si+1(a) = off si).
We will assume that for all a ∈ A − {t}, a is balanced.

Example 1. Consider Fig. 4, which represents the situation in Fig. 1 as a team
persuasion framework with the initial configuration where the on arguments
are u2, u3, w2, and w3, with the rest of the arguments being off. Consider the
argument w3. It is attacked by u1 and u2, which are respectively off and on.
Therefore, the probability of w3 remaining on in the next round is 1

2 .

u1 u2 u3 t

w1 w2 w3 w4 w5

Fig. 4. An initial configuration (F , s0)
for the example in Fig. 1.

u1, u2, w1, w3

w4

w5

u3, w2 t

Fig. 5. Condensation graph of Fig. 4,
showing strongly connected compo-
nents.

3 Results

From the setup described in Sect. 2, we can now answer more precise versions of
the two questions posed at the end of Sect. 1.

F1 Are there any states of the arguments (on or off ) in which no agent is going
to change their state in any future round according to λa as defined in Eq. 1?
We call such a state a state-stable configuration.6

F2 What is the probability of a particular team winning, i.e. achieving a state-
stable configuration, where the topic is either acceptable or unacceptable?

3.1 State-Stable Configurations

We now answer Question F1, which concerns state-stable configurations.

Definition 9. A state-stable configuration is a function s ∈ S such that, if
attained at round i ∈ N of the team persuasion game following Eq. 1, will also
be the state of the game in all subsequent rounds.

6 This is to avoid confusion with the notion of stable semantics [6].
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This formalises the intuition that no agent is going to change their state in any
future round once a state-stable configuration is reached.

Proposition 1. Given the setup of Sect. 2, the two goal states, γu and γw (Def-
inition 7) are the only state-stable configurations.

Proof. Please refer to Appendix A for all proofs in this paper.

3.2 Probabilities for State-Stable Configurations

We now answer Question F2. We first translate our team persuasion game into a
consensus game. In a consensus game, the update is such that in round i+1, every
digraph node a copies the color of a randomly (uniformly) sampled neighbour
in a−, rather than adopting the opposite color as in Eq. 1 [10].

The translation is as follows. We consider the finite, weakly connected, bipar-
tite digraph G := 〈V,E〉 which is the induced subgraph of 〈A,R〉 with nodes
V := A − {t}. For each configuration s : A − {t} → X := {on, off} we define a
coloring function s′ : V → X ′ := {0, 1} such that

s′(a) := 1 if [(a ∈ U and s(a) = on) or (a ∈ W and s(a) = off)] . (2)
s′(a) := 0 if [(a ∈ U and s(a) = off) or (a ∈ W and s(a) = on)] . (3)

We intuitively associate the color 1 with the state on and similarly, 0 with off,
but notice how this association is swapped for a ∈ W . Thus, the correspondence
s �→ s′ is well-defined and bijective.

Example 2. Consider the digraph in Fig. 4.7 Given this initial configuration s0
such that s0 (u1) = off, s0 (u2) = on... etc. (see Example 1), we get a correspond-
ing s′ where s′ ({u2, u3, w1, w4, w5}) = {1} and s′ ({u1, w2, w3}) = {0}, by (see
footnote 5). If we arrange V = {u1, . . . , u3, w1, . . . , w5}, we can represent s′

0 as
the boolean vector (0, 1, 1, 1, 0, 0, 1, 1).

We now give some definitions and results for consensus games on digraphs.

Definition 10. Let G = 〈V,E〉 be a finite digraph. Given some fixed order of
the nodes V =

{
a1, . . . , a|V |

}
,8 the (row-normalised) in-matrix of G is the

|V | × |V | matrix H := (hij), where

if (vj , vi) ∈ E then hij =
1∣

∣v−
i

∣
∣ , else hij = 0. (4)

The intuition of Eq. 4 is that the ith node vi ∈ V has a probability hij > 0 to
copy the color of vj when (vj , vi) ∈ E.

7 Note that Fig. 5 will be relevant for a following proof.
8 In the context of team persuasion games, we write all nodes in U first and then the

nodes in W , as in Example 2.
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Definition 11. Let G = 〈V,E〉 be a digraph. Its condensation is the digraph
〈K, E〉 such that K ⊆ P (V ) is the set of strongly connected components (SCCs)
of G and (K,K ′) ∈ E ⊆ K2 iff [(∃a ∈ K) (∃b ∈ K ′) (a, b) ∈ E and K �= K ′]. A
source component is a component with no in degree.

Example 3. The condensation of Fig. 4 is Fig. 5. The only source component is
{u1, u2, w1, w3}.

The following theorem answers Question F2 with an analytic expression of
the probability of a particular team winning. We then apply this to solve our
motivating example in Example 4. Intuitively, we first look at the condensation
of a given bipartite AF . Since source components are not going to be influenced
by any external argument, the probability of them reaching either one of the
state-stable configurations is independent of the eventual state of the rest of the
AF . Also, non-source components have no influence over the final outcome, since
once the source components stabilise, they will be a constant influence in either
defending or attacking the topic. Thus, we need all source SCCs to converge to
the same state-stable configuration, otherwise a global state-stable configuration
will not be reached. Finally, in order to calculate the probability of either the
defender or the attacker to win in each source SCC, we find each individual
agents’ influence in the network.

Theorem 1. Consider a team persuasion game on a bipartite AF = 〈A,R〉
with initial coloring s′

0. Let K = {{t},K1, . . . , Km} be the set of SCCs of AF
(for some m ∈ N

+), where {t} is the component that contains only the topic
argument. We also define sourceK ⊆ K as the set of source SCCs in the con-
densation of AF . Let K{t} ⊆ sourceK denote the set of SCCs for which there is
a E-path in the condensation of AF to {t}.

Let μK be the stationary distribution of HK , where HK
9 is the in-matrix of

the subgraph of AF induced by K ∈ K (Definition 10). Let μ(K) =
∑

a∈K μ(a)
for K ⊂ A. Finally, each set K ∈ K{t} has a value g that stands for the greatest
common divisor (gcd) of the lengths of all cycles in K. This generates a g-partite
AF with partitions {K1, . . . , Kg} as in Lemma 2 (Appendix A). We have that10

P(γuis reached | s0) =
∏

K∈K{t}

g∏

i=1

(
1

μ(Ki)

∑

a∈Ki

μKi(a)s′
0(a)

)

. (5)

Example 4. Consider the bipartite AF = 〈V,E〉 in Fig. 1 and s0 as in Fig. 4. The
condensation graph can be seen in Fig. 5, so K = {{t},K1,K2,K3,K4}, where
K1 = {u1, u2, w1, w3}, K2 = {u3, w2}, K3 = {w4} and K4 = {w5}. K1 is the
only source component. Since K1 (indirectly) influences the acceptability of the

9 Recall the row vector μ is the stationary distribution of H iff μH = μ.
10 We have abused notation here: we have considered γu to be a state configuration not

on the entire AF , but just on the subgraph induced by the arguments that have a
path to the topic. In other words, we exclude arguments that do not even indirectly
influence the acceptability of the topic.
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topic, we have K{t} = {K1}. We now need to evaluate μ = μK1 , a stationary
distribution of the in-matrix HK1 , the induced subgraph of AF generated by
K1. Then, we have

μHK1 = μ ⇔ μ

⎛

⎜
⎜
⎝

0 0 1 0
0 0 1

2
1
2

0 1 0 0
1
2

1
2 0 0

⎞

⎟
⎟
⎠ = μ ⇒ μ =

1
10

(1, 4, 3, 2). (6)

Note that g = 2. We now use the initial configuration s0 and the translation
to s′

0 according to Eqs. 2 and 3. We have s′
0(u1) = 0, s′

0(u2) = 1, s′
0(w1) = 1,

s′
0(w3) = 0, therefore, by Theorem 1, we have

P(γuis reached | s0) =
∏

K∈K{t}

g∏

i=1

(
1

μ(Ki)

∑

a∈Ki

μKi(a)s′
0(a)

)

=
(

1
μ(K1

1 )
(4)

) (
1

μ(K2
1 )

(3)
)

=
12
25

= 48%. (7)

Therefore, the probability of the topic being accepted is 48%. Analogously, the
probability of the topic being rejected is given by

P(γwis reached | s0) =
(

1
μ(K1

1 )
(1)

) (
1

μ(K2
1 )

(2)
)

=
2
25

= 8%. (8)

The probability for this game not reaching a state-stable configuration is 44%.

4 Related Work

In this paper we have presented and analysed an argumentation model for a very
common form of public debate. Our work has made two novel contributions. The
first contribution is the formalisation using argumentation frameworks of pub-
lic policy debates where multiple parties with only local information propose
arguments to support (or attack) claims of interest to a wider audience, seeking
to persuade that audience of a claim (or not, as the case may be). The second
contribution is the use of flag coordination games, specifically its analysis of the
dynamics of graph coloring, to understand the properties of this formal frame-
work. Analogues of graph coloring have been used in argumentation, for example,
in labelling semantics to determine acceptability of arguments [3]. However, to
the best of our knowledge, interpreting such colorings as the argument having
been asserted or not, and the dynamics of how such a coloring changes, have not
previously been used in argumentation theory.

The general problem of two parties with contradictory viewpoints, each seek-
ing to persuade an impartial third party of their viewpoint, has been investigated
in economics, e.g. using game theory [13,14] or mechanism design [7,8]. Applying
argumentation theory to study multi-agent persuasion with two teams, in which
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one is arguing for the acceptability of a topic and the other against, has been
investigated in the work by Bonzon and Maudet [2]. They focus specifically on
the problem with respect to the kinds of dialogue that occur on social websites,
specifying that agents “vote” on the attack relations between arguments. One of
the main differences between their work and ours is that they assume that each
agent has a total view of the argumentation framework, where as we assume
agents have a specific area of expertise and thus, in general, do not have com-
plete knowledge of the structure of the argumentation framework. Furthermore,
agents in their formulation do not have any motivation to act in a way that
might be detrimental to their team’s goal, whereas agents in our work may also
be motivated by their own individual goals.

Dignum and Vreeswijk developed a testbed that allows an unrestricted num-
ber of agents to take part in an inquiry dialogue [5]. The focus of their work is
on the practicalities of conducting a multi-party dialogue, concerned with issues
like turn-taking, rather than in the strategising of agents participating in such a
dialogue. Bodanza et al. [1] survey work on how multiple argumentation frame-
works may be aggregated into a single framework. While this direction of work
considers how frameworks from multiple agents might be merged, it removes the
strategic aspect of persuasion which we are interested in here.

5 Conclusion and Future Work

We have shown how to determine the probability of each team winning in a
team persuasion game (Theorem 1). However, we have shown that not all games
become state-stable (Appendix A, Theorem 1), having no definite winner. Con-
sidering games which do not become state-stable, we are interested in deter-
mining (1) in what proportion of rounds is the topic acceptable, and (2) what
is the probability the topic being acceptable at a specific round in the future.
With respect to the first question, we might determine the winning team to be
the one who makes the topic acceptable/unacceptable in the majority of rounds.
The second question is particularly interesting in the context of referendum-like
domains, in which there is a set date (round n) in which the audience determines
whether the topic is acceptable (and thus which team wins): in this case it does
not matter whether there is state-stability, only that the topic is acceptable in
round n.

Future work will apply the techniques of [10] to the situation investigated in
this paper. Specifically, if the team persuasion game will reach a goal state, we
can calculate the expected number of rounds until that happens [10, Proposition
4]. Further, we can study the game-theoretic implications of some knowledge-
able external agent “bribing” a specific agent to either assert or stop asserting
its argument [10, Section 3]. We will also investigate different generalisations
of the team persuasion game. There are various assumptions on the digraph
that we can modify. For example, generalising from bipartite to multipartite
argumentation frameworks where many teams seek to persuade the audience.
Additionally, we can lift the assumption that no agent attacks its fellow agents
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of the same team. Such a team seems quite unlikely (and thus is not considered
here), but occasionally this may occur, e.g. a campaigner who wishes to leave the
EU because their environmental laws are too restrictive on UK businesses, and a
campaigner who wishes to leave the EU because they do not have strong enough
environmental laws; both campaigners would be on the same team, but their
arguments are seemingly in conflict. Further generalisations include: considera-
tion of the different visibility functions φ for each agent, or the more realistic
case where each agent can assert more than one argument, or when each agent
has a non-linear version of Eq. 1, or the consideration of heterogeneous agents in
the same framework that can also be altruistic or timid. We will show that the
results also apply to the case when the attacking arguments are weighted dif-
ferently by agents in Eq. 1, which we will articulate in future work. Ultimately,
we hope such generalisations can give insight into situations where individual
goals and societal goals conflict to a greater extent, and how this conflict can be
resolved.

A Lemmas and Proofs

Proof. (of Proposition 1). To show that γu is a state stable configuration, notice
that in round i ∈ N, if γu is attained, then for a ∈ U − {t}, the probability
(Eq. 1) a will be off in round i + 1 is zero, because a− ⊆ W and all attackers
of a are off. Therefore, a will still be on in round i + 1. Similarly, we can show
that the probability of being off for all b ∈ W in round i+1 is one. Therefore, in
round i + 1, the state is still γu. A similar argument to this proves that if γw is
attained in round i, then it will also be the state for round i + 1. By induction
over i, γu and γw satisfy Definition 9.

We now show that both γu and γw are the only state stable configurations.
Assuming the contrary. Then, we have a configuration different from γu and
γw in which no argument has a positive probability of changing their state. In
this case, we would have two nodes, say u1 and u2, in the same partition, say
U , that have different colors (otherwise we have γu and γw). Since G is weakly
connected, there is a path that ignores edges’ directions from u1 to u2. This
path has even length and, therefore, since u1 to u2 are different, there must be
at least two consecutive nodes in this path with the same color. One it attacking
the other, therefore, the attacked one has a positive probability of changing their
color. We have a contradiction. Thus γu and γw must be the only state-stable
configurations in a bipartite AF . �

We now answer a more general version of Question F2 using the framework of
consensus games and colors. We derive a formula for a color to win the consensus
game on a strongly connected digraph, given that consensus will be achieved. We
then investigate the necessary conditions for consensus to be achieved, and derive
an expression for the probability of failing to achieve consensus that depends
on s′

0. We then generalise to the case of weakly connected graphs, and answer
Question F2 via our translation back into team persuasion games.
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The in-matrix H of the digraph G can be seen as a transition matrix of a
time homogeneous Markov chain, where the each node v represents a state and
the reversed edges represent the transitions. If the Markov chain is irreducible
and finite, there is a unique stationary distribution, which is a row vector μ ∈ R

V
+

that satisfies μH = μ.

Proof. (of Theorem 1). The theorem follows from the following lemmas. Note
that these lemmas are considering a general digraph G = (V,E) and colors 0
and 1. We also denote 0 and 1 as the consensus on color 0 and 1 respectively.

Lemma 1. A consensus game on a strongly-connected digraph G = 〈V,E〉
reaches consensus with probability for all initial configurations 1 iff gcd C = 1,
where C ⊆ N is the set of the lengths of all cycles in G. In the case gcd C = g > 1,
then G is g-partite with parts V1, . . . , Vg where all edges go from Vi to Vi+1.

Proof. (of Lemma 1). (⇐) Assuming gcd C = 1. Then, given an initial configura-
tion, a game has already reached consensus or it has not. If not, we can assume,
WLOG, that there is at least one v ∈ V colored 0. We note that the gcd Cv = 1,
where Cv is the set of the lengths of the cycles passing through v. This follows
from the fact that G is strongly connected. We can then show that there is a
large enough n0 > 0 such that for any n ≥ n0, we have P(sn(u) = 0 | s0) > 0
for all u ∈ V . For that it is enough to show that there is finite n0, such that for
every n ≥ n0 there is a directed path from v to u of length n. The existence of
such n0 follows from Lemma 2.1 of [12]. Thus, if the game runs long enough, it
will reach consensus (either 0 or 1) with probability 1.

(⇒) We now want to prove that if the game reaches consensus with probabil-
ity 1, then gcdC = 1. We are going to prove this by showing that if gcdC > 1,
then there is a positive chance that the game never reaches consensus. Let
gcd C = g > 1. We start by showing that the graph must be not only a g-
partite graph, but also of the form that every edge from a node in partition i
points to a node in partition i + 1(mod g). Let v ∈ V . For all w ∈ V , we define
the partition that w belongs to by taking the x(mod g), where x is the length of
any path from v to w.

We show that this is well defined. First, the existence of such a path is
guaranteed by the strongly connectivity of G. Also, the lengths of all paths from
v to w must coincide modulo g. If not, by concatenating both paths to the same
returning path from w to v, we would have created two cycles from v to v that
differ in length modulo g (by assumption, all cycles must be 0(mod g)).

We now observe that, if the game reaches a configuration in which a partition
is all 0 and another all 1, consensus will never be reached. Thus it can not be
reaching consensus for sure from all possible initial configurations. We will show
that no non-consensual initial configuration reaches consensus with probability
1. �
Lemma 2. Consider a consensus game in a strongly connected and direct graph
G = 〈V,E〉 in which gcd C = g. Then, we know by Lemma 1 that G is g-partite11

11 By 1-partite, we mean gcd C = 1 and V1 = V .
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and we denote the partitions V1, . . . , Vg. We further denote μ(U) =
∑

v∈U μ(v)
for U ⊂ V . In these conditions,

P(Colour 1 wins in G | s0) =
g∏

i=1

(
1

μ(Vi)

∑

v∈Vi

μ(v)s0(v)

)

(9)

Proof. (of Lemma 2). We use a similar approach to the one in [10] and apply
Theorem 1 of [4]. Note that the state of vertices of Vi+1 in the round n + 1,
depends only in the state of vertices of Vi in the round n. We can then consider
g parallel consensus games on g copies of G, where in the i-th consensus game
we set the initial state of the vertices in Vi to their original initial state in the
consensus game, but set the state of all other vertices to 1. Denote by pi the
probability of the i-th consensus game reaching a 1 winning state. It is then easy
to see that P(1 wins in G | s0) =

∏g
i=1 pi.

We are left to show that pi =
1

μ(Vi)
∑

v∈Vi
μ(v)s0(v). For that end, over

the i-th consensus game define the random variable Xn =
∑

v∈Vj
μ(v)sn(v),

where j = n + i − 1(mod g). We show that the process (Xn)n∈N is a martingale
with respect to the sequence sn. We need to show that E(Xn+1|sn) = Xn.
By linearity of expectation E(Xn+1|sn) =

∑
v∈Vj+1

μ(v)E(sn+1(v)|sn). Note
that E(sn+1(v)|sn) =

∑
u∈Vj

hvusn(u) and by changing the order of summa-
tion we get that: E(Xn+1|sn) =

∑
u∈Vj

sn(u)
∑

v∈Vj+1
μ(v)hvu. Due to station-

arity of μ and the fact that hvu is non-zero only for v ∈ Vj+1, we have that∑
v∈Vj+1

μ(v)hvu = μ(u), which implies that E(Xn+1|sn) = Xn.
Now, it is easy to see that μ(Vi)pi = E(X∞|X0) = E(X0) and this proves

that pi =
1

μ(Vi)
∑

v∈Vi
μ(v)s0(v), which concludes the result. �

Lemma 3. Consider a consensus game played in a weekly connected digraph
G = 〈V,E〉 and let K = {K1, . . . , Kn} be the set of strongly connected compo-
nents (SCC) of G. We define sourceK as the set of SCCs that have no attack
coming from the outside, i.e., if K ∈ K, then K ∈ sourceK if for every (a, b) ∈ E
such that b ∈ K, we have a ∈ K. Then,

P(Colour 1 wins in G | s0) =
∏

K∈sourceK

P(Colour 1 wins in K | s0) (10)

Proof. (of Lemma 3). First note that each K ∈ sourceK is independent of each
other, since they are independent from anything outside each of these SCCs.
Then, we cannot have consensus if they reach different consensus. It remains
now to observe that, in the case they reach same consensus colors, then all the
other SCCs will eventually stabilise in the same color. That happens because of
the influence they receive from components in sourceK, so consensus cannot be
achieved by any other color. Finally, for every node not in a source component,
there is a path from a source node to it, therefore there is a non-zero probability
that the game achieves the sources’ color. �
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Abstract. Argumentation theory provides foundations for distributed
non- monotonic reasoning in the form of inter-agent dialogues. However
current dialogue models do not accommodate reasoning about possi-
bly conflicting preferences used in arbitrating amongst attacking argu-
ments. We provide a framework for persuasion dialogues that accommo-
dates such reasoning. Agents exchange locutions that implicitly define an
ASPIC+ theory consisting of rules and premises. The theory’s defined
arguments instantiate an extended argumentation framework (EAF )
that accommodates arguments claiming preferences over other argu-
ments, so that evaluation of the EAF ’s justified arguments determines
the outcome of the dialogue. We also evaluate the outcome of a dialogue
based on the dialectical status of moves in the dialogue, propose restric-
tions on dialogue moves and conjecture correspondences between the two
outcome definitions.

Keywords: Argumentation · Dialogue · Preferences · ASPIC+

1 Introduction

In Dung’s theory of argumentation [8], arguments and attacks are defined by a
belief base (B) of logical formulae. An argument X may then be said to success-
fully attack (defeat) Y if Y is not strictly preferred to X (assuming a given strict
ordering ≺ over arguments [1,3,18]). Preferences can thus be used to arbitrate
amongst attacking arguments. The claims of justified arguments in the Dung
framework (AF ) of arguments related by defeats, identify the non-monotonic
inferences from B, where these claims may correspond to non-monotonic infer-
ence relations defined directly over B.

The dialectical characterisation of non-monotonic inference paves the way
for distributed non-monotonic reasoning in the form of argumentation-based
dialogues in which agents persuade interlocutors as to the truth of a claimed
belief or deliberate over a choice of action (see [13] for a review). Dialogue pro-
tocols sanction when locutions are legal replies to other locutions. At any stage
in a dialogue, an outcome in favour of a topic (e.g., the claimed belief or pro-
posed action) can be affirmed if the topic is non-monotonically inferred from the
c© Springer International Publishing AG, part of Springer Nature 2018
E. Black et al. (Eds.): TAFA 2017, LNAI 10757, pp. 175–191, 2018.
https://doi.org/10.1007/978-3-319-75553-3_13
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contents of exchanged locutions (e.g., [7,10]) or the claim of a justified argument
in the AF incrementally constructed from the contents of locutions (e.g., [9,19]).
However current formalisms assume a fixed exogenously given preference relation
over arguments (which in turn may be based on preferences over the arguments’
constituents.) that is assumed to be agreed upon by the agents. Agents can-
not therefore justify, reason about, and resolve conflicts amongst preferences, so
limiting the range of applicability of these dialogue models.

The main contribution of this paper is a framework for formalising persua-
sion dialogues accommodating argumentation based reasoning about possibly
conflicting preference information; information that is now part of the domain
of discourse. We focus on persuasion dialogues as these are often embedded in
dialogues of other types. Locutions define an ASPIC+ argumentation theory
[18,21], whose defined arguments are subsequently evaluated in Extended Argu-
mentation Frameworks (EAF s) [15] which extend AF s to include arguments
claiming preferences over other arguments, rather than assume a single exoge-
nously given preference ordering. We choose ASPIC+, as this framework for
structured argumentation is shown in [18,21,24] to capture a range of argu-
mentation formalisms (e.g., [4,11,22]) and non-monotonic logics (e.g., [5,6]), so
bestowing a considerable degree of generality to our dialogical framework.

In Sect. 2 we review the ASPIC+ framework, EAF s and the instantiation
of EAF s by ASPIC+ arguments. We modify ASPIC+ so as to accommodate
dialogue protocols that have a ‘public semantics’ in that no reference to the
contents of participating agents’ beliefs bases (argumentation theories) is made.
Rather, it is the contents of locutions that incrementally define an argumenta-
tion theory. Section 3 then presents our main contributions. Firstly, we define a
protocol that regulates use of some typical dialogue locutions, as well as locu-
tions that include arguments claiming preferences over other arguments. A key
challenge is to accommodate the ubiquitous use of ‘why’ locutions in dialogues.
For example, an agent submits ‘α since β’ (A) and then when questioned “why
β”, submits ‘β since γ’ (B), where B ‘backward extends’ A to define the argu-
ment A′ = ‘α since β and β since γ’. Such backward extensions usually limit
the types of preferences assumed in dialogues in which counter-arguments are
required to defeat their targets. For example (assuming a given fixed ≺), if A
were moved as a defeat on C given that A ⊀ C, then one must assume that
A is not weakened when backward extended to define A′ (e.g., see [19]; note
that this assumption precludes use of the weakest link principle for evaluating
the strength of arguments) as it may then be that A′ ≺ C, and so the legality
of moving A as a defeat on C is negated. However, we will see that this prob-
lem does not arise when agents are able to reason and argue about preferences
as part of the dialogue. Secondly, we define how the outcome of a dialogue is
determined. The ASPIC+ arguments defined by the contents of exchanged locu-
tions are evaluated in an EAF . If the dialogue topic is the claim of a justified
argument, then the proponent of the topic is said to be winning the dialogue.
We additionally formalise an approach taken in [9,19], whereby an outcome in
favour of a topic is affirmed by reference to the ‘dialectical status’ of moves in
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the tree of locutions generated by the dialogue. We then propose restrictions
on moves, adapting those used in argument game proof theories for establishing
membership of an argument in a preferred extension of an AF [16], and conjec-
ture a correspondence between the dialectical status of moves made under these
restrictions and the justified status of arguments in the EAF defined by the
dialogue. We conclude in Sect. 4, pointing to directions for future research.

2 Background

ASPIC+ arguments are inference trees constructed from an agent’s ‘axiom’ and
‘ordinary’ premises, and defeasible and strict inference rules. Only the fallible
ordinary premises and fallible consequents of defeasible rules can be attacked
(axiom premises are infallible). For example, (informally) an argument conclud-
ing γ constructed from a premise α by chaining the inference rules β if α and then
γ if β. However, in this paper we are interested in distributed agents exchanging
ASPIC+ arguments that are defined without explicit reference to the premises
and rules of these agents; rather the contents of locutions incrementally define
the premises and rules from which arguments are constructed and evaluated to
determine who is currently ‘winning’ the dialogue. An agent might thus move
an ‘incomplete’ argument α since β, where β is not a premise in the agent’s
knowledge base. Only on being challenged as to why β is the case, might the
agent then backward extend his initial argument by moving β since γ. Hence, in
what follows we define arguments without reference to a specific agent’s belief
base (premises and rules), and such that we refer to the leaves of an ASPIC+

inference tree simply as ‘leaves’ and not as ‘premises’.
All agents are assumed to share: (1) a language L (lower case greek letters

will refer to arbitrary formulae in L); (2) a naming function for defeasible rules
that allows agents to undercut attack an argument on a defeasible rule, and; (3)
a function − that generalises negation, and specifies the set of wffs in conflict
with any ψ ∈ L. Formally:

Definition 1. − is a function from L to 2L, such that: ϕ is a contrary of ψ if
ϕ ∈ ψ, ψ �∈ ϕ; ϕ is a contradictory of ψ (denoted ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ.

Definition 2. We assume the universal argumentation system (L,R, n, −)
where R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules
which are respectively of the form:

ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ

(where ϕi, ϕ are meta-variables ranging over wff in L), and Rs ∩ Rd = ∅,
and n is a partial function such that n : Rd −→ L.

We assume a set of agents {Ag1, . . . , Agn} where each agent is equipped with
an argumentation theory (ASi,KBi) consisting of an argumentation system ASi

= (L,Ri, n, −), Ri ⊆ R and a knowledge base KBi ⊆ {α|α ∈ L} consisting of
disjoints sets of ordinary (KBp

i ) and axiom premises (KBn
i ).
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We now define ASPIC+ arguments as in [18], but without reference to a
given set of inference rules and premises in an argumentation theory. Hence,
unlike [18] we do not refer to the leaves of an argument as premises, and nodes
are labelled f for fallible and if for infallible. Intuitively, a leaf node formula
labelled f indicates that either the formula is an ordinary premise or inferred
using a defeasible rule in the agent’s theory, and if indicates either an axiom
premise or inferred using a strict rule in the agent’s theory. A non-leaf formula
labelled f (if ) indicates that the formula is inferred from a defeasible (strict)
inference rule whose antecedents are the children of the non-leaf node.

Definition 3. An argument A is either:
(1) a single node φ ∈ L, labelled f or if, in which case A is said to be elementary:
Leaves(A) = {φ}; Conc(A) = φ; DefRules(A) = StRules(A) = ∅; Sub(A) =
{φ}, or:
(2) a tree of nodes (in which case A is said to be complex) with root node
Conc(A) = φ, child nodes φ1, . . . , φn of φ, where each φ, φi=1...n is labelled f or
if, and for i = 1 . . . n, φi is the root node Conc(Ai) of an argument Ai. We say
that:
Leaves(A) = Leaves(A1)∪. . .∪Leaves(An); Sub(A) = Sub(A1)∪. . .∪Sub(An)∪
{A}; DefRules(A) = DefRules(A1)∪. . .∪DefRules(An) ∪{φ1, . . . , φn ⇒ φ} if φ
is labelled f. StRules(A) = StRules(A1)∪. . .∪StRules(An) ∪{φ1, . . . , φn → φ}
if φ is labelled if.
Finally, for any argument A, Concs(A) = {Conc(A′)|A′ ∈ Sub(A)} denotes the
set of all nodes in the argument A.

Note that in [18], arguments are defined as above, but with reference to an
argumentation theory (AS,KB), so that in (1) an argument is a φ that is an
ordinary or axiom premise in KB, and in (2) any rule in an argument must be
in R in AS, and the notation Prem(A) replaces Leaves(A).

We define here arguments extending an argument A on leaf nodes, to
define A′.

Definition 4. Let Leaves(A) = {φ1, . . . , φn}, and let A′ be the argument A
where for each φj ∈ {φi, . . . , φk} ⊆ {φ1, . . . , φn}, φj is replaced by a complex
argument A′′

j such that Conc(A′′
j ) = φj. Then A′ extends A on φi, . . . , φk with

A′′
i , . . . , A′′

k.

ASPIC+ attacks include undercuts on applications of defeasible rules and
rebut attacks on the conclusions of defeasible rules or undermine attacks on
ordinary premises. Since in this paper the leaves of an argument exchanged in a
dialogue are not necessarily premises, we group rebut and undermining attacks
under the term ‘formula attacks’.

Definition 5. A attacks B on B′ iff A undercuts or (contrary) formula
attacks B on B′, where:

– A undercuts B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.
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– A formula attacks B on B′ iff Conc(A) is a contradictory of ϕ for some B′ ∈
Sub(B) such that Conc(B′) = ϕ, and ϕ is labelled f. A contrary formula
attacks B on B′ iff Conc(A) is a contrary of ϕ for some B′ ∈ Sub(B) such
that Conc(B′) = ϕ, and ϕ is labelled f

Given a strict preference relation ≺ over arguments, one can determine the
success of the ‘preference-dependent’ formula attacks (as defeats). Undercuts
and contrary formula attacks succeed as defeats independently of preferences
(see [18]).

Definition 6. A defeats B if A undercuts, or contrary formula attacks B, or
A formula attacks B on B′ and A ⊀ B′.

Example 1. Figure 1(i) shows ASPIC+ arguments A and A′′ exchanged in a
dialogue, where A′ extends A on β with A′′. B formula attacks A′ on A′′. Note
the argument B in which ε is labelled if, indicating that ε is infallible.

Fig. 1. (i) A′ extends A on β with A′′. B formula attacks A′; (ii) EAF for weather
example; dashed arrows are attacks invalidated by preference arguments.

Extended Argumentation Frameworks (EAF s). [15] extend AF s to include
arguments that express preferences over other arguments, thus providing for
instantiation by formalisms that accommodate reasoning about possibly conflict-
ing preference information. For example, consider the following dialogue between
agents P and O:

P1 “Today will be dry in London since CNN forecast sunshine” = A
O2 “Today will be wet in London since BBC forecast rain” = B
P3 “But CNN are statistically more accurate than the BBC” = C
O4 “However the BBC are more trustworthy than CNN” = D
P5 “But statistics basis for comparison than your instincts about their relative

trustworthiness” = E.
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A and B attack each other since they express contradictory conclusions. C
is an argument justifying the preference B ≺ A, and so attacks (invalidates) the
attack from B to A. Similarly, D attacks the attack from A to B. Since C and
D express contradictory preferences, they attack each other. However E justifies
a preference for C over D and so attacks the attack from D to C. Hence C and
so A (at the expense of B) is justified.

Definition 7. An Extended Argumentation Framework (EAF) is a tuple (A,
C, D) such that A is a set of arguments, C ⊆ (A × A) is the attack relation
(A → B denotes (A,B) ∈ C), and:

– D ⊆ (A × C) (C � (A → B) denotes (C, (A,B)) ∈ D)
– If (X,(Y,Z)), (X ′,(Z, Y )) ∈ D then (X,X ′), (X ′,X) ∈ C

S ⊆ A is conflict free iff ∀A,B ∈ S, if (A,B) ∈ R then (B,A) /∈ R and
∃C ∈ S s.t. (C, (A,B)) ∈ D. Defeats are parameterised by a set of arguments
S: if A attacks B then A defeats B w.r.t. S if there is no argument C in S
that claims a preference for B over A. An argument A is then acceptable w.r.t.
a set S if every argument B defeating A (w.r.t. S) is defeated (w.r.t. S) by some
C ∈ S and there is a ‘reinstatement set’ for this latter defeat. The extensions of
an EAF are then defined as for Dung frameworks:

Definition 8. Let (A, C, D) be an (EAF), and S ⊆ A.

– A defeats B w.r.t. S (denoted A →S B) iff (A,B) ∈ C and ¬∃C ∈ S s.t.
(C, (A,B)) ∈ D.

– RS = {X1 →S Y1, . . . , Xn →S Yn} is a reinstatement set for C →S B, iff:
1. C →S B ∈ RS

2. for i = 1 . . . n, Xi ∈ S
3. ∀X →S Y ∈ RS, ∀Y ′ s.t. (Y ′,(X,Y )) ∈ D, there is a X ′ →S Y ′ in RS

– A is acceptable w.r.t. S iff ∀B s.t. B →S A, there is a C in S s.t. C →S B
and there is a reinstatement set for C →S B.

Let S be conflict free. Then S is: an admissible extension iff every argument
in S is acceptable w.r.t. S; complete iff admissible and each argument which
is acceptable w.r.t. S is in S; preferred iff a set inclusion maximal complete
extension; stable iff ∀B /∈ S, ∃A ∈ S such that A →S B

In Example 1, {E,C,A} is the single complete extension. For arbitrary fini-
tary1 EAF s, the grounded extension is defined by the fixed point reached by
iteration of an EAF s characteristic function F , beginning with ∅, where F(S) =
{X|Xacceptable w.r.t. S}. This is because in general F is not monotonic and so
one cannot guarantee existence of a least fixed point. However, F is monotonic
for hierarchical EAF s [15] in which case one can identify the grounded extension
as the least fixed point of F .

1 Each argument (attack) is attacked by a finite number of arguments.
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We now instantiate EAF s by ASPIC+ arguments and attacks [17], whereby
we assume a function P that maps the conclusion of an individual argument to
strict preferences over other arguments; e.g., given A and B with respective sets
of defeasible rules {r1} and {r2, r3} then if C concludes (r1 < r2) ∧ (r1 < r3),
then P(Conc(C)) = A ≺ B (under the Elitist set ordering [18]):

Definition 9. Let A be a set of ASPIC+ arguments, C the attack relation
defined over A, and P : L �→ 2A×A. Then (A, C, D) is defined as in Definition 7,
where (C, (A,B)) ∈ D iff A formula attacks B on B′ and A ≺ B′ ∈ P(Conc(C)).

3 A Framework for Dialogues

3.1 Defining the Dialogue Moves and Protocol

We formalise a framework for two party persuasion dialogues in which each agent
can construct arguments from their own argumentation theories and the contents
of the locutions submitted during the course of the dialogue. The proponent
P starts a dialogue by submitting either an elementary or complex argument,
whose claim is the ‘topic’ of the dialogue about which she wishes to persuade
her opponent. A dialogue is then a sequence of moves consisting of locutions,
where each agent replies to a move of her interlocutor. Since agents can move
multiple replies to an interlocutor’s move (either all at once or on backtracking),
a dialogue can be represented as a tree in which each path from root to leaf
consists of alternating moves by P and O.

Definition 10. Let (L,R, n, −) be the universal argumentation system (recall
Definition 2) and A the set of all arguments whose nodes are formulae in L and
whose strict and defeasible rules are in R. A locution is of the form pf(c) where
pf is the performative argue or prefer, in which case c is an argument X ∈ A,
else pf is the performative why or concede, in which case c is a formula φ ∈ L.

Definition 11. A move m is a tuple < i, ag, l, j > where id(m) = i ∈ N is the
identifier of the move, pl(m) = ag ∈ {P,O} is the player of the move (henceforth
ag = O if ag = P , ag = P if ag = O), s(m) = l is the locution, and t(m) = j ∈ N

is the identifier of the target of m (i.e., the id of the move that m replies to). M
denotes the set of all possible moves, and for any m, if s(m) = pf(c) we say m
is a ‘pf move’.
We may refer to a move m by its locution s(m), and instead of writing ‘m is the
move s.t. t(m′) = i, id(m) = i’, we may simply write ‘m = t(m′)’ or ‘m′ replies
to m’.
A dialogue D is a sequence m1, . . . ,mi, . . . s.t. each ith move has identifier i,
t(m1) = 0, and for i > 1, t(mi) = j for some j < i.
A finite dialogue D = m1, . . . ,mi, . . . can be represented as a dialogue tree TD

consisting of a set of disputes {d1, . . . , dl} where each dispute is a sequence of
moves m1, . . . ,mn

2, m is a move in D iff m is a move in some dispute, and for
j = 1 . . . n − 1, t(mj+1) = id(mj) (i.e., each move in a dispute is a reply to the
preceding move).
2 In this representation each i = 1 . . . n does not denote the identifier of the move.
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Fig. 2. Dialogue tree beginning with P1, continuing from O9 shown on right. Inset the
EAF defined by the dialogue.

Consider the example dialogue tree in Fig. 2, showing the locutions and the
order in which they are moved by P or O. Notice the two disputes generated
by the successive moves O4 and O5. Notice also the potential additional dispute
generated by P backtracking by moving P10′ to reply to O5 after O9 (we will
see later that this move is prohibited by the dialogue protocol).

The locutions in Definition 10 are common to many argumentation based
models of dialogues, apart from the prefer locution which we introduce to
enable moving arguments claiming preferences over other arguments. Why moves
account for the fact that agents may: construct arguments for conclusions that
are then added to their premises (cf. lemmas); often submit ‘incomplete’ argu-
ments that are not fully backward extended, or; assume premises that are in
need of further justification. For example, suppose an argument X instantiat-
ing the scheme for practical reasoning [2]: ‘In circumstances S doing action A
will have effect E so achieving goal G and promoting value V ’ (e.g., S might
be a patient diagnosis warranting a medical treatment A). One of the scheme’s
critical questions ‘why is S true ?’ can be addressed as a why move, eliciting a
reply providing an argument for S, so effectively backward extending X on S
(note that the agent might be able to both construct a complex argument for
S – possibly having had to first acquire information in order to do so – and
have S included as a premise, c.f. a lemma as described above). Hence, we define
sequences of moves that successively backward extend an argument:

Definition 12. Let TD be a dialogue tree, mi a move in some dispute d =
m1, . . . ,mi, . . . . in TD s.t. s(mi) = argue(X), mi+1 is not a why move. Let
j < i be the smallest j s.t. mj is an argue or prefer move, mj−1 is not a why
move, and for k = j +1 . . . i, mk is either a why move replying to an argue move
or an argue move replying to a why move. Then mj , . . . ,mi is an argument
extension sequence (aes) in d and in D, that begins with mj and terminates
with mi.

An aes therefore begins with argue(X) or prefer(X), and thereafter consists
of alternate why and argue moves that terminates in an argue move.
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Definition 13. Let pf(X1), why(φ1), . . ., why(φn), argue(Xn+1) be an aes
where pf ∈ {argue, prefer}. Suppose for i = 1 . . . n, φi ∈ Leaves(Xi), and
for 1 < i ≤ n + 1, Conc(Xi) = φi−1. Let X ′

1 = X1, and (recalling Definition 4)
define for i = 1 . . . n:

X ′
i+1 extends X ′

i onφi with Xi+1

We say that the aes defines the argument X ′
n+1.

In Fig. 2, P1–P3 is an aes that defines the argument A in Fig. 1, and O5–O7
and O5–O9 are aess that define B in Fig. 1.

The preference Z ≺ Y , claimed by an argument in a prefer locution, may
refer to a Z moved as an attack on some Y , where Z is defined by a aes.

Definition 14. Let d = m1, . . . ,mn be a dispute in a dialogue tree TD. Then a
sub-dispute mi, . . . ,mk of d is an attack pair (Z, Y ) on Y ′ in d iff Z attacks
Y on Y ′, and: mi = prefer(Y ) or argue(Y ), and either:

1. k = i + 1, mk = argue(Z), and mk does not begin an aes in d, or;
2. mi+1 = argue(Z1), . . . ,mk = argue(Zn) is an aes in d that defines the

argument Z.

If ¬∃d′ �= d ∈ TD such that mi, . . . ,mk, . . . ,mj is an aes then mi, . . . ,mk is
a maximal attack pair (Z, Y ) on Y ′ in d. We say that mk terminates the
(maximal) attack pair, and ‘the attack pair is moved in d by pl(mk)’.

Letting A and B be the arguments in Fig. 1. P3, O5 is an attack pair (−β,A)
on β in the dispute P1, . . . , P10′ in Fig. 2, whereas it is not a maximal attack
pair. P3,. . . , O9 is a maximal attack pair (B,A) on β in the dispute P1, . . . , P12.

We define a dialogue protocol by defining the set of all legal dialogues, which
in turn are defined by the conditions under which a move can be a legal reply
to another move. Since these conditions make no reference to the beliefs of
the participating agents, we give a ‘public semantics’ for the protocol [20]. The
protocol allows a considerable degree of freedom as to the moves that agents
can make, and can be considered a ‘core protocol’ to which further rules and
restrictions can be added depending on specific requirements (as we illustrate
later).

Definition 15. D is set of all possible legal dialogues, s.t.:
1. ∀m ∈ M s.t. pl(m) = P , s(m) = argue(X): m1 = m is a dialogue in D.
2. If D = m1, . . . ,mn−1 ∈ D then D′ = m1, . . . ,mn−1,mn ∈ D iff

2.1 For i = 2 . . . n, pl(mi) = P or pl(mi) = O;
2.2 If mn replies to mi, then pl(mn) = pl(mi) and there is no reply mj �=n to

mi such that s(mn) = s(mj);
2.3 If s(mn) = argue(X), t(mn) = mi, then either:

2.3.1 s(mi) = argue(Y ) or prefer(Y ), and X attacks Y on Y ′, or;
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2.3.2 s(mi) = prefer(Y ), P(Conc(Y )) = A < B, P(Conc(X)) = B <
A, or;

2.3.3 s(mi) = why(φ) and Conc(X) = φ.
2.4 If s(mn) = prefer(X), then letting TD be the dialogue tree for D and d

the dispute m1, . . . ,mn ∈ TD:
mi, . . . ,mn−1 (i ≥ 1) is a maximal attack pair (Z, Y ) on Y ′ in d such
that the attack (Z, Y ) is a formula attack, and P(X) = Z < Y ′. We say
mn is a reply to an attack pair.

2.5 If s(mn) = why(φ), t(mn) = mi, then s(mi) = argue(X) or prefer(X),
and φ ∈ Leaves(X), and there is no m in D that replies to mi such that
s(m) = concede(φ).

2.6 If s(mn) = concede(φ), t(mn) = mi, then s(mi) = argue(X), φ ∈
Concs(X).

The first condition states that every dialogue begins with an argue move
by P. 2.1 allows P (O) to make multiple moves in one turn (e.g., O4 and O5
in Fig. 2), and 2.2 prohibits players replying to their own moves or repeating a
locution in reply to a move.

An argue move can be used to attack another argument Y on Y ′ (2.3.1). An
argument X can also be moved against a Y claiming a preference that has been
used to invalidate the success of an attack, if X claims a contradictory preference
(2.3.2). For example O4 replying to P3 in the dialogue in Fig. 3(i). An agent can
also move an argument concluding φ as a reply to a why move questioning φ
(2.3.3).

A prefer move submits an argument that declares a strict preference for some
Y ′ over Z, where (Z, Y ) is a maximal attack pair, so that Z is either an argument
moved in a single move, or defined by a aes consisting of a series of backward
extensions, and Z formula attacks Y (on Y ′) (recall that undercuts and contrary
formula attacks succeed as defeats independently of preferences). Thus the attack
is rendered un-successful by the preference argument. Note that we avoid the
problem (described in Sect. 1) with approaches (e.g., [19]) that need to assume
arguments are not weakened on backward extending. In Fig. 2, O5 moves −β to

Fig. 3. Weather dialogues (i) and (ii). Two argue moves in reply to same why move
shown in (iii) .



Towards a General Framework for Dialogues That Accommodate Reasoning 185

attack A in P3 on β. O5, . . . ,O9 backward extends −β to define the argument
B, and P10 then moves an argument claiming B ≺ β, so invalidating B’s attack
on A. Also note that P10′ would not be a valid reply given that O5 begins the
aes O5, . . . ,O9 that defines B in another dispute (i.e., P3,O5 is not a maximal
attack pair). However, what if P10′ was moved prior to P6 and the subsequent
backward extension of −β? We show later that P10′ will not then affect the
outcome of the dialogue.

An agent can at any point concede (2.6) some φ that is the conclusion of
any sub-argument (i.e,. Concs(X)) of a moved argument X (for example she
earlier questions φ and then when presented with an argument for φ concedes φ
to explicitly indicate that she is persuaded). Although an agent may concede the
conclusion φ of an argument, she may still question or attack a premise or attack
an intermediate conclusion of the argument, indicating that although persuaded
as to the truth of φ, she is not persuaded as to reasons (i.e., the argument) given
for φ. Of course if every φ ∈ Concs(X) is conceded, she must be persuaded as to
the line of reasoning concluding φ. Indeed, 2.5 precludes questioning a φ that has
been conceded. However, 2.3.1 does not require that no move concede(Conc(Y ′))
replies to mi in order that one can move an argument attacking Y on Y ′. Thus,
although γ is conceded in Fig. 2 (O4), O may subsequently acquire information
to construct an argument for −γ. Such information may be acquired from the
contents of arguments submitted by P. The use of premises/rules supplied by
an interlocutor is illustrated by P’s use (in P7) of O’s premise π (in O6) in
Fig. 3(iii).

3.2 Commitments and Dialogue Outcomes

During a dialogue, the contents of locutions are added to the participants’ com-
mitment stores. These commitments may be used to enforce an agent’s dialogical
consistency (e.g., requiring his commitments to be consistent at all times), enable
agents to use the beliefs of their interlocutors, and attach dialogical obligations
to the contents of commitment stores [23]. Commitments can also be used to
determine the termination and outcome of a dialogue. For example, the propo-
nent wins as soon as the opponent concedes the topic. However, since our focus
is on providing dialogical characterisations of non-monotonic reasoning, we want
that a dialogue is won just in case there is a justified ASPIC+ argument for
the topic in the EAF instantiated by the agents’ commitment stores. Moreover,
this allows for an any-time outcome definition [19]; at any stage in the dialogue
the current winner can be identified based on the commitments.

We now define updates to agents’ commitment stores (CS s). Unlike standard
accounts, the update is not defined based only on the moved locution, but also
accounts for the other locutions thus far moved. To illustrate, observe that in
Fig. 3(iii), P1 commits the defeasible rule β, γ ⇒ α. If the dialogue were not to
proceed further, then by default one assumes that P constructs this argument
given premises β and γ. However, O2’s why(β) obliges P3 to backward extend
on β, so committing to δ ⇒ β in place of β as a premise. Now δ is committed to
as a premise, but when O4’s why(δ) challenges δ, the burden of proof on P to
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justify why δ is the case has thus far not been met, and so one no longer includes
δ as a premise. P5 backtracks to provide an alternative argument for β, which
is attacked by O6, and then P7 uses O’s premise π to backtrack and provide an
argument for δ. In general then, at any stage of the dialogue the rules in any
argue move are committed, and a leaf node φ is added as a premise just in case
at least one why(φ) move is replied to by an argue(φ).

Definition 16. Let D = m1, . . . ,mn be a dialogue, and for ag ∈ {P,O} let
arg(ag,D) = {X|∃mi s.t. pl(mi) = ag, s(mi) = argue(X) or prefer(X)}.
Then:
CS(ag,D) = Rl(ag,D) ∪ Pr(ag,D), where:

Rl(ag,D) =
⋃

X∈arg(ag,D) DefRules(X) ∪ StRules(X)

Pr(ag,D) =
⋃

X∈arg(ag,D){φ|φ ∈ Leaves(X), if ∃m in D s.t. s(m) = why(φ)

then for some mj in D s.t. s(mj)=why(φ), ∃mk that replies to mj,

pl(mk) = ag, s(mk) = argue(φ)3}.
In Fig. 3(iii), Pr(P,D) = {δ, γ} after move P3, {γ} after O4, and {ε, π, γ}

after P7. We now define the argumentation theory defined by a dialogue:

Definition 17. Let D be a dialogue and CS = CS(ag,D) ∪ CS(ag,D). Then:

– RD = {r|r is either a strict or defeasible rule in CS};
– KBp = {φ|φ ∈ CS, φ is a leaf labelled ‘f ’ in an argument moved in D};
– KBn = {φ|φ ∈ CS, φ is a leaf labelled ‘if ’ in an argument moved in D}.
Then ATD = (ASD = (L,RD, n, −), (KBp,KBn)) is the argumentation theory
defined by D (equivalently TD)

Arguments are then defined as in [18]; that is, as in Definition 3, but now
with reference to ATD as described after Definition 3. The EAF defined by the
dialogue is then defined as in Definition 9. An any-time outcome for the dialogue
can now be defined:

Definition 18. Let D be a dialogue and (A, C,D) the EAF defined by ATD.
Let X be an initial argument defined by a maximal aes that begins with m1, else
if m1 does not begin an aes, m1 = argue(X) is the initial argument.
Then P wins under s semantics (s ∈ {preferred, stable, grounded}) iff ∃X ′

that extends X on Ω ⊆ Leaves(X) s.t. X ′ is in some s extension of (A, C,D),
else O wins.

Note there may be many initial arguments; e.g., m1 = argue(α), m2 =
why(α) and P replies with argue(β ⇒ α) and argue(γ ⇒ α), which are both
initial arguments. Moreover, suppose these two aess are maximal, and a why(β)
moved elsewhere in the dialogue is replied to with argue(δ ⇒ β). Hence β would

3 Note that if agents play ‘logically perfectly’ whereby agents make all move that are
legal, argue(φ) would be moved as a reply against all why(φ) moves, including m.
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not be a premise in KBp(n), and P is the winner only if the argument extending
β ⇒ α with δ ⇒ β is justified4.

Example 2. For Fig. 2’s dialogue: CS(P,D) = {(β, γ ⇒ α), (ψ, κ ⇒ μ), β, γ,
ψ, κ} and CS(O,D) = {(φ, ε → −β), φ, ε,−ψ}. The ATD contains the rules and
ordinary premises {β, γ, ψ, κ, φ,−ψ} and axiom premises {ε} in these commit-
ment stores, and the EAF defined by AST is shown (inset) in Fig. 1. P wins under
the preferred semantics (the arguments concluding α and μ are in an admissible
and hence preferred extension of the EAF ), whereas P loses under the grounded
semantics.

Following Prakken [19], we now define the dialectical status of moves – in
or out – in a dialogue tree DT , so as to determine the winner of the dialogue.
Concede moves cannot be replied to, and are effectively ‘surrendering’ replies
[19] that do not affect the dialectical status of their targets. Hence these moves
are not assigned any status. However why(φ) attacks its target argument since
the burden of proof is on the agent moving the argument to justify φ. An argue
reply also attacks its target if the target is an argument, or a why move (in the
latter case by fulfilling the burden of proof), and a prefer reply attacks its target
argument by invalidating an attack from the target argument. However, in the
latter case the preference Z ≺ Y ′ should only invalidate an attack from Z to Y
on Y ′, if (Z, Y ) is a maximal attack pair (recall Definition 14).

Definition 19. m is an attacking reply iff m is an argue, why or prefer move,
where if s(m) = prefer(X) then m is a reply to a maximal attack pair. An argue,
prefer or why move m is then said to be in iff if m′ is an attacking reply to m
then m′ is out. Otherwise m is out.

In Fig. 2, Pi is in for i = 1, 3, 6, 8, 10, 12 and Oi is out for i = 2, 5, 7, 9, 11.
Suppose P10 ′ had been moved before O7 (which is allowed by the protocol). P10’
would then attack reply O5 so that P10’ would be in and O5 out. If the dialogue
then continued and terminated at O7, O5 would then be in since P10’ would
no longer attack reply O5 (as it would be a prefer move that does not reply to
a maximal attack pair) and so would no longer be in. In Fig. 3(iii), P7, P3, P1
and O6 are in, and O2, O4 and P5 are out.

In [19], Prakken shows that if P and O play logically perfectly (see Foot-
note 3), the topic of persuasion φ is in (i.e., P wins) iff there is an argument
concluding φ in the grounded extension of the AF instantiated by the theory
defined by the dialogue. We now augment Definition 15’s protocol so as to define
a dialogue for the preferred semantics. We then conjecture that an initial argu-
ment X is in iff X is in an admissible (and hence preferred) extension of the
EAF defined by the dialogue. Proof of this conjecture will then be established
in future work, as a result that applies to this paper’s protocol extended to allow
moves that retract arguments.
4 Under ‘logically perfect’ play, why(β)-argue(δ ⇒ β) would extend the aes that

terminates with argue(β ⇒ α) and so it would suffice to check that the now initial
argument – (δ ⇒ β, β ⇒ α) – is justified in the EAF .
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We adapt the rules in [14] in which an argument game proof theory is defined
for a given EAF . In [14], a game tree consists of all possible proponent (pro) and
opponent (opp) arguments that attack their adversary’s arguments or attacks
(as indicated by the given EAF ). Pro’s initial argument is in an admissible
extension of the EAF iff there is a winning strategy (a sub-tree of the game
tree) in which every opp argument or attack is attacked by a pro argument,
and the pro arguments in the winning strategy (i.e., the candidate admissible
extension) are conflict free. Opp is restricted so that if in a dispute d, an opp
argument or attack has already been replied to (attacked) by pro, then opp
cannot repeat the argument/attack. To see why these restrictions are needed,
consider an EAF consisting of two symmetrically attacking arguments A and B.
A is in an admissible extension, but if opp can repeat, one might have an infinite
dispute A − B − A − B . . .. The non-repetition restriction on opp means that
A − B − A cannot be continued, and defines a winning strategy. We now adapt
this non-repetition rule to disputes in a dialogue tree (we will later consider the
repetition of why moves as a condition of logically perfect play which applies to
P and O).

Definition 20. Let d be a dispute m1, . . . ,mn. An attack pair (X,Y ) on
Y ′ by ag ∈ {P,O} in d is said to fail if the attack pair terminates in mk,
pl(mk) = ag, s(mk+1) = prefer(Z), P(Conc(Z)) = X ≺ Y ′.
The dispute d′ = m1, . . . ,mn,mn+1 where pl(mn+1) = ag, is legal under non-
repetition for ag, iff:
s(mn+1) = argue(X) or prefer(X) implies there is no attack pair (Z,X ′) on
X ′′ moved in d by ag such that X ′′ ∈ Sub(X), and if s(mn+1) terminates an
attack pair (X ′, Y ) on Y ′, then there is no attack pair (X ′, Y ) on Y ′ by ag in d
that fails.

Note we do not require above that the attack pair (X ′, Y ) on Y ′ by ag in d
is maximal. Hence if P10′ were moved prior to O7, and the dispute P1, . . . , P10′

was extended by further moves to P1, . . . , P10′,m, . . . ,m′, then if amongst
m, . . . ,m′, P moves an argument with fallible premise or defeasible conclusion β,
the non-repetition rule applied to O would prohibit O from moving argue(−β)
as an attacking reply. This is despite the fact that the attack by O5 (−β) on
P3 (β) does not define a maximal attack pair. However, recall (Definition 19)
that P10′ is not an attacking reply and does not have an effect on the dialogical
status of O5, and so any restrictions on O in a dispute that extends P10′ will
make no difference to the outcome of the dialogue.

A protocol for the preferred semantics is defined as follows.

Definition 21. D is the set of all possible legal dialogues under the pre-
ferred semantics if all dialogues in D satisfy 1, 2.1, 2.2, and 2.6 in Defi-
nition 15, and if D = m1, . . . ,mn−1 ∈ D, then D′ = m1, . . . ,mn−1,mn ∈ D,
where:
• if pl(mn) = P then D′ satisfies 2.3, 2.4 and 2.5 in Definition 15.
• if pl(mn) = O then D′ satisfies 2.3, 2.4 and 2.5 in Definition 15, and the
dispute d in TD that terminates in mn is legal under non-repetition for O.
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To illustrate the non-repetition rule, suppose a continuation of the dispute
ending in P12. O cannot make argue moves that define the argument X = φ, ε ⇒
−β and such that X attacks β in this continuation. This is because P10 already
invalidates this attack with a preference. However, O could repeat X if it is
not used to attack β (e.g., in reply to a why(−β) move), as X is not directly
attacked by P in the dispute. However, in the dialogue in Fig. 3(ii), O cannot
move argue(D) as a reply to P5.

We now define a dialogue outcome that declares P the winner just in case
P’s initial move is in, and the contents of P’s moves define a conflict free set of
arguments.

Definition 22. Let D = m1, . . . ,mn, in(D) = {m|m is in, pl(m) = P} and
CS(P, in(D)) be defined as in Definition 16 with ‘in(D)’ replacing ‘D’. Let S
be the set of all ASPIC+ arguments that can be constructed from the premises
{φ|φ ∈ CS(P, in(D))} and the defeasible and strict rules in CS(P, in(D)).
Then if m1 is in and S is a conflict free set in the EAF defined by D, then P
is the winner of D, else O is the winner.

Definition 23. Let (A, C,D) be the EAF defined by the dialogue D =
m1, . . . ,mn, and TD the dialogue tree for D. D is logically perfect iff:

– For any X ∈ A if m is a legal reply to some mi, where s(m) = argue(X) or
s(m) = prefer(X), then m is a reply to mi in D, and

– If m = why(φ) is a legal reply to some mi = argue(X) or mi terminating
an aes defining X, then m is a reply to mi in D, unless why(φ) appears in
the dispute d = m1, . . . ,mi in TD as a reply to some mj<i = argue(X) or an
aes in d that terminates in mj<i and defines X.

Note the second condition above excludes either player from moving a why(φ)
to an argument whose leaf node he has already challenged. This prevents filibus-
tering by both players; e.g., argue(φ) − why(φ) − argue(φ) − why(φ) . . ..

Conjecture 1. P is the winner (according to Definition 22) of a logically per-
fect dialogue D played under the preferred semantics protocol iff P wins under
preferred semantics (according to Definition 18).

Example 3. In Fig. 3(iii), logically perfect play would entail P repeating P5 as
a reply to O6. In Fig. 2, logically perfect play would entail P moving why(ε) in
reply to O7, and O replying why(β) to P3, and why(ψ), why(κ) to P10. Note
that after these why moves, none of ε, β, ψ or κ remain in the commitment
stores, so that the corresponding elementary arguments would not be in the
dialogue’s defined EAF and would not be moved under logically perfect play.

4 Conclusions

To the best of our knowledge, this paper is the first to formalise dialogues that
accommodate argumentation-based reasoning about preferences over arguments.
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In [12], prefer locutions express an ordering over proposals in deliberation dia-
logues, but reasoning about preferences is not accommodated. Other dialogue
models that formalise distributed reasoning through relating the dialogue out-
come to the justified arguments defined by the contents of the locutions, include
[9,19]. The former define assumption based argumentation (ABA) frameworks
[4] and do not accommodate preferences. The general framework for persuasion
in [19] does not assume ASPIC+ arguments, and assumes a fixed exogenously
given preference relation. Moreover, [19] requires that if A is used to defeat an
argument B, then A is not weakened on being backward extended (recall the
discussion in Sect. 1).

In future work we will further develop this paper’s proposed framework.
We intend extending this paper’s protocols to accommodate retract moves, and
will then define a grounded semantics protocol that essentially ‘flips’ the non-
repetition restriction so that it applies to P rather than O. We will then formally
prove correspondence theorems of the type described in Conjecture 1, so fully
establishing formal frameworks for distributed non-monotonic reasoning that
accommodate reasoning about preferences.
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Abstract. This paper seeks to better understand the links between
human reasoning and preferred extensions as found within formal argu-
mentation, especially in the context of uncertainty. The degree of believ-
ability of a conclusion may be associated with the number of preferred
extensions in which the conclusion is credulously accepted. We are inter-
ested in whether people agree with this evaluation. A set of experiments
with human participants is presented to investigate the validity of such
an association. Our results show that people tend to agree with the
outcome of a version of Thimm’s probabilistic semantics in purely qual-
itative domains as well as in domains in which conclusions express event
likelihood. Furthermore, we are able to characterise this behaviour: the
heuristics employed by people in understanding preferred extensions are
similar to those employed in understanding probabilities.

Keywords: Argumentation · Probabilistic semantics · User evaluation

1 Introduction

One of the strengths of argumentation theory is its qualitative nature. For exam-
ple, in Dung’s theory, arguments are either within, or outside an extension,
and no notion of argument strength is required in order to obtain desirable
features—such as reinstatement—from the system. More recently, researchers
have begun considering more quantitative frameworks, particularly in the con-
text of probabilistic argumentation (e.g., [8,10,11,18]), through weighted argu-
mentation systems [2,7] and graduality within argumentation [4]. The immediate
question then arises as to whether such quantitative representations appropri-
ately capture human reasoning and intuitions, as well as questions regarding the
relationship between formal qualitative representations and human quantitative
(or semi-quantitative) reasoning. As a concrete example—which we focus on in
this paper—one could view multiple extension semantics, such as the preferred
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semantics, as capturing different possible worlds. This would then suggest that
even qualitative argumentation can capture some notion of uncertainty.

This view can be further extended by considering situations where the argu-
ments within an extension are themselves about uncertain facts, effectively
changing the likelihood of each extension. If this is the case, then even in
purely qualitative domains (represented through logical argumentation), where
no quantified information exists, the degree of acceptability of a conclusion is
associated with the number of preferred extensions in which the conclusion is
credulously accepted. This paper investigates the validity of this claim, by means
of an experiment with human participants.

The remainder of the paper is structured as follows. In Sect. 2, we expand the
motivations of this work. In Sect. 3, we introduce an ASPIC-like argumentation
framework followed by an overview of its use and key assumptions underpinning
our experiments (Sect. 4). Section 5 details our experimental settings. In Sect. 6,
methodology, hypotheses and results are discussed. We present our conclusions
in Sect. 8.

2 Background and Motivation

Haenni [8] considers uncertainty as being an evaluation of probability on the
premises which propagates throughout the argumentation system. Similarly,
other studies such as [15,18] model uncertainty on the premises as being associ-
ated with the uncertainty of the sources, in the latter case due to the different
degrees of trustworthiness of the sources themselves. Li et al. [11] consider a dif-
ferent take on probability, namely that the probability of an argument represents
a prediction on how likely it is that the argument is justified.

In this work, we are interested in studying the links between the preferred
extensions as used in argumentation, and how these are interpreted as proba-
bilities by people with regards to the acceptability of a conclusion. Let us con-
sider a conclusion of an argument within a structured argumentation framework.
Generally, argumentation frameworks presented in the literature use extensions
to decide whether a conclusion is accepted. In purely qualitative argumentation
frameworks, this acceptance is either credulous (when there is at least one exten-
sion in which the argument under consideration is accepted), or sceptical (when
the argument is accepted in all extensions) [13]. As dictated by the nature of
qualitative frameworks, the enumeration of extensions in which a conclusion is
accepted does not influence the decision as to whether a conclusion is accepted.
However, here we claim that the number of extensions in which a conclusion is
accepted has an effect on deciding whether the conclusion is to be considered
justified, even if the argumentation framework is fully qualitative1.

1 Note that we use the terms argument and conclusion somewhat interchangeably as
in the work we describe, a specific conclusion was the result of a unique argument.
In future work, we will consider situations where multiple arguments may lead to
the same conclusion, c.f., the so called universal semantics [6].
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The problem of understanding the role of enumeration of extensions has
been studied by Thimm [16] in abstract argumentation. Thimm presents a novel
argumentation framework in which a probabilistic semantics is used to associate
an argument with a degree of belief. This belief is computed as function of the
number of extensions in which the argument appears to be justified. In our
work, we use a similar approach where we consider the enumeration of preferred
extensions in evaluating the believability of a conclusion. Thimm claims that
this assessment provides a degree of confidence when selecting an option. Here
we want to understand whether this is the case, i.e., whether people actually
do use a similar heuristic to make a decision on what conclusions are the most
believable. In Thimm’s work, a probability is associated with each extension,
and this influences the degree of belief placed in an argument. In our study we
want to understand whether doing so is comparable to human reasoning with
probability.

Unlike Thimm’s work, we use structured argumentation frameworks, as we
are interested in the believability of conclusions rather than arguments. Our
core research question is then as follows: do people agree with the evaluation
given by probabilistic interpretation of argumentation semantics? To address this
question, we define an ASPIC-like structured argumentation framework from
which we can formalise the problem.

3 An ASPIC-Like Framework with Probabilistic
Semantics

In order to identify plausible conclusions, we use a simplified ASPIC-like argu-
mentation framework with ordinary premises and defeasible rules without prefer-
ences or undercuts [13,14]. We derive the degree of belief in a conclusion obtained
by applying argumentation semantics to arguments obtained from the frame-
work, and then considering a probabilistic interpretation of the results.

3.1 Argumentation Framework

Definition 1. An argumentation system AS is a tuple 〈L,̄ ,R〉 where
L is a logical language,¯ is a contrariness function, and R is a set of defeasi-
ble rules. The contrariness function¯ is defined from L to 2L, such that given
ϕ ∈ φ̄ with ϕ, φ ∈ L, if φ �∈ ϕ̄, ϕ is called the contrary of φ, otherwise if
φ ∈ ϕ̄ they are contradictory (including classical negation ¬). A defeasible rule
is ϕ0, . . . , ϕj ⇒ ϕn where ϕi ∈ L.

Definition 2. A knowledge-base K in AS is a subset of the language L. An
argumentation theory is a pair AT = 〈K,AS〉.
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An argument A is derived from K of theory AT . Let Prem(A) indicate the
premises of A, Conc(A) the conclusion, and Sub(A) the subarguments:

Definition 3. Given a set of arguments Arg, argument A ∈ Arg is defined as:

– A = {ϕ} with ϕ ∈ K where Prem(A) ={ϕ}, Conc(A) =ϕ, Sub(A) ={ϕ}.
– A = {A1 , . . . ,An ⇒ φ} if there exists a defeasible rule in AS s.t. Conc(A1 ),

. . . ,Conc(An) ⇒ φ ∈ R with Prem(A) = Prem(A1 ) ∪ · · · ∪ Prem(An),
Conc(A) = φ and Sub(A) = Sub(A1 ) ∪ · · · ∪ Sub(An) ∪ A.

Attacks are defined as those arguments that challenge others, while defeats are
those attacks that succeed:

Definition 4. Given two arguments AA and AB :

– AA rebuts AB on ArgB ′ iff Conc(AA) ∈ ϕ̄ for AB ′ ∈ Sub(AB ) such that
AB ′ = {AB1”, . . . ,ABn” ⇒ ϕ}.

– AA undermines AB on ϕ iff Conc(AA) ∈ ϕ̄ such that ϕ ∈ Prem(AB ).

Definition 5. Defeat is a binary relationship Def : Arg ×Arg where a defeat is
represented as (AA,AB ) ∈ Def . An argument AA defeats an argument AB iff:
(i) AA rebuts AB on AB ′ ; or (ii) AA undermines AB on ϕ.

Definition 6. An abstract argumentation framework AF = (Arg ,Def ) corre-
sponding to an AT contains the set of arguments Arg as defined in Definition 3
and a set of defeats Def as in Definition 5.

Sets of acceptable arguments (i.e., extensions ξ) in an AF can be computed
according to a semantics. Here we use the preferred semantics. The set of cred-
ulous preferred extensions is ξ̂P = {ξ1, . . . , ξn}, where every ξi is a maximal set
of arguments (with respect to set inclusion) that is conflict free and admissible.

Definition 7. Given an abstract argumentation framework AF = (Arg ,Def ),
a set of arguments S ⊆ Arg is conflict-free iff there is no AA, AB ∈ S such that
(AA, AB) ∈ Def . An argument AA ∈ S is admissible iff for every AB such that
(AB , AA) ∈ Def , there is a AC ∈ S such that (AC , AB) ∈ Def .

3.2 Probabilistic Semantics for an Argument Theory

Having described a simple ASPIC-like framework, we now describe how Thimm’s
probabilistic semantics [16] is used to associate probabilities with conclusions.

The set of all possible sets of arguments is referred to as K = 2Arg , and the
set of preferred extensions ξ̂P is a subset of K. A probability function of the form
P : 2K → [0, 1] assigns a probability to each set of possible extensions of AF .
For ξ ∈ K, P (ξ) is the probability that ξ is an extension. For now, we make the
assumption that extensions are equiprobable. Then the probability of ξ is:

P (ξ) =
{

1/|ξ̂P | ξ ∈ ξ̂P

0 ξ �∈ ξ̂P
(1)
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K = {r1; r2; r3; r4} R = {r4 ⇒ r5}
¯= {(r2, r3); (r3, r2); (r2, r1); (r3, p1); (r5, r1)}
Arguments:

A1 : r4 A2 : r2 A3 : r3 A4 : r1 A5 : A1 ⇒ r5

Preferred extensions: ξ1 = {A1 , A3 , A5 } ξ2 = {A1 , A2 , A5 }

A3

A2

A4

A5A1

Fig. 1. Example of argumentation theory

For P (ξ) and argument A ∈ Arg:

P̂ (A) =
∑

A∈ξ⊆Arg

P (ξ) (2)

Given the probability function P , P̂ (A) represents the degree of belief that an
argument A is in an extension according to P .

As Thimm suggests we now have an indication of the degree of belief of each
argument that gives a characterisation of the uncertainty which is inherent in
the AF. We must define several additional concepts in order to describe the
acceptability of conclusions within the argumentation framework.

From [13] we know that a wff ϕ ∈ L is sceptically justified if ϕ is the con-
clusion of a sceptically justified argument, and credulously justified if ϕ is not
sceptically justified and is the conclusion of a credulously justified argument.
Hence we define a justification ratio μ of a conclusion ϕ as follows.

Definition 8. Given a set of arguments A = {A1, . . . , An} such that for any
Ai, Conc(Ai) = ϕ, we define the justification ratio as μ(ϕ) =

∑
Ai∈A P̂ (Ai).

The justification ratio μ(φ) captures the probability of a conclusion being jus-
tified based on the likelihood of the arguments which justify it. If equiprobable
extensions are assumed—as well as unique conclusions for each argument—then
we obtain:

μ(ϕ) = P̂ (A) =
∑

A∈ξ⊆Arg

1/|ξ̂P | where ϕ ∈ Conc(A)

Example 1. We now illustrate the framework with the following example. Con-
sider the AT presented in Fig. 1. We obtain two preferred extensions ξ1, ξ2 with
P (ξ1) = P (ξ2) = 0.5. The justification ratios are then as follows:

μ(r1) = 0 μ(r2) = μ(r3) = 0.5 μ(r4) = μ(r5) = 1

4 Characterising Reasoning with Extensions

In the previous section, we explored a method to assign a degree of belief to
a conclusion (which we denoted as the justification ratio) in relation to the
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enumeration of extensions by adapting Thimm’s probabilistic semantics. Our
main objective is to determine whether people agree with these probabilistic
semantics; i.e., whether the justification ratio has a correlation with people’s
opinion of the believability of a conclusion. We believe that this is the case
on the basis of the assumption that people’s reasoning with extensions may be
understood in relation to reasoning with the rules of classical probability. This
assumption leads us to a second objective, namely characterising how people
rate the believability of a conclusion.

Our analysis is based on the following observations:

– Classical probability assigns a likelihood to a piece of information ϕ on the
basis of the ratio between the number of favourable and unfavourable cases
which support or attack the information. Hence, consider a set of possible
worlds W and a subset of the worlds V ⊂ W in which a proposition ri ∈ L
holds, the probability of ri is as follows.

p(ri) =
# of worlds where ri holds

total # possible worlds
=

|V |
|W |

– Similarly, we can consider the set of preferred extensions ξ̂P as the set of
possible explanations of a world, and the degree of belief of a conclusion ri as
given by the justification ratio μ(ri). Let us refer to the subset of extensions
in which ri is acceptable as ξ̂ri

P . From Definition 8 we obtain the following.

μ(ri) =
∑

A∈ξ⊆Arg

1/|ξ̂P | =
# extensions in which ri is acceptable

total # extensions
=

|ξ̂ri

P |
|ξ̂P |

In the above situation, we assume that the information is purely qualitative.
However, the information may refer to the likelihood of an event or a fact [1]. For
example, an event E described in ri can be subject of a proposition rj = “there
is a ω chance that event E may occur”. Continuing with the similarity between
reasoning with extensions and reasoning with probability, we also seek to under-
stand the behaviour in the case in which the user is presented with information
that is about the likelihood of events, as well as the uncertainty introduced via
the possibility of some information being, or not being, inferred. In this case,
the believability of a conclusion may be explained by two heuristics depending
on whether people consider these as dependent or independent events. The sim-
ilarity with an argumentation framework outcome can then be established in
the former case through the use of conditional probability, or in the latter by
using the multiplication law of probability. For this research, we assume that the
second heuristic is adopted, resulting in the following observations:

– ω indicates the probability of the event p(E). Given p(ri), the probability of
rj using the multiplication law for independent events is: p(rj) = ω ∗ p(ri)

– Similarly, in an argumentation framework with probabilistic semantics, given
the justification ratio μ(ri), the justification ratio of rj is: μ(rj) = ω ∗ μ(ri).
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We are now in a position to describe our experiments, designed to determine (1)
whether the probabilistic interpretation of argumentation semantics described
above represents human reasoning, and (2) whether the similarities observed
between probabilistic and argument based reasoning are valid.

5 Experiment Design

Our overall objective is to understand whether people agree with the outcome of
Thimm’s probabilistic semantics. In our experiments, we asked a participant to
rate the believability of a proposition under different experimental conditions α,
as defined below. While considering different experimental conditions, we posed
the following question to our subjects: “Given the condition α, how likely is that
you believe ri”? The subjects were asked to respond on a 5-points Likert scale,
a commonly used scale for user studies, recorded as user evaluation u(ri) of a
conclusion ri (with 1: Extremely Unlikely – 5: Extremely Likely). Our hypothesis
is that there is a positive correlation between the user rating uμ(ri) and the
justification ratio μ(ri). We also hypothesise that there is a positive correlation
between the user evaluation of the likelihood of a piece of information ri—
up(ri)—and its associated probability p(ri). Finally, we show that there is a
similarity between the two ratings up(ri) and uμ(ri).

Definition 9. An experimental condition α is a tuple α = 〈Domain, Scenario,
Proposition, Interpretation, Percentage, Fraction, Ratio〉.
We now define the components of an experimental condition α.

5.1 Two Types of Information

As discussed in Sect. 4, information—represented via propositions—can be clas-
sified into two categories, or domain types in the context of the experiment.

Domain 1: Purely qualitative propositions ri ∈ L in which the text is about a
piece of information.

Domain 2: Propositions rj ∈ L in which the text is about a piece of information
and its probability of occurring.

In the former, we want to demonstrate that even in purely qualitative scenarios,
people agree with the outcome of Thimm’s probabilistic semantics: that the
believability of a conclusion is related to the number of extensions in which that
conclusion is accepted. With the latter domain, we want to demonstrate that in
scenarios in which conclusions are about the probability of some information, the
outcome of the probabilistic semantics is still an important factor in assessing
the believability of a conclusion. The two types of propositions lead to two sets
of experiments.
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5.2 Scenarios and Propositions

In the experiments we use seven base scenarios within a social inference domain—
inferences drawn from social media information and corroborated with back-
ground knowledge to draw potentially unwanted conclusions [12]. While our work
is generalisable to other domains, this seemed to lend itself well to the design
of the experiments. The base scenarios are derived from reported incidents in
the context of sharing political views [9], and location data or temporal informa-
tion [12]. These base scenarios are built using a combination of arguments from
position to know and cause to effect [17].

Each scenario is referred to as Xi with 1 ≤ i ≤ 7 and designed as a set of
propositions, where each proposition rj ∈ L. In order to collect a relatively large
amount of data with less cognitive effort for the user, two propositions per base
scenario are chosen and tested by a single subject within our experiments. We
combine propositions and base scenario using the same notation, writing Xi j,
where j = {0, 1} refers to the proposition being tested. For convenience, we call
Xi j a scenario. Given 7 base scenarios and 2 propositions, we obtain a total of
14 scenarios.

5.3 Interpretations

For each scenario, two interpretations can be made:

At: An interpretation building on the number of extensions in which the con-
clusion is acceptable (via an argument theory AT , with rules and contraries
between propositions), in which a justification ratio μ(ri) is associated with
each proposition ri.

Pt: A possible worlds based probabilistic interpretation, in which each proposi-
tion ri is associated with a probability p(ri) of its information being verified.

We associate the justification ratio of a conclusion ri as the outcome of the prob-
ability semantics, with the likelihood that that piece of information is verified
(e.g., is shared). Given that both interpretations are based on the same set of
propositions, the key design link is such that the justification ratio of ri within
At is the same as the probability of ri in Pt. Given this equivalence, we refer
to this ratio as τ = μ(ri) = p(ri). With two interpretations per scenario, we
obtain 28 experimental conditions α. The next factors are further characteristics
of conditions α.

5.4 Fractions, Percentages, and Ratios

In Domain 1 (see Sect. 5.1), the ratio τ of a proposition is an irreducible fraction
varied between 1/6 and 2/3. That is, we ensured that the conclusion occurred in
τ of the extensions. Besides the main objectives of the experiments, we want to
show two further properties: that the scenario has limited influence on the results,
and that the ratio—rather than the number of extensions—is the key factor that
influences user believability ratings. For demonstrating the latter, we introduce
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redundant equivalent fractions γ (e.g., 1/2, 2/4, 3/6) corresponding to the ratios
τ using experimental conditions with 2, 3, 4, or 6 extensions. Each scenario Xi j
is associated with a fraction γ.

In Domain 2, we maintain the same fractions γ but also introduce another
value, ω, representing the likelihood of the event described within the content
of a proposition. For example, a proposition ra = “Joe is a Republican” becomes
rb = “There is 70% chance that Joe is a Republican”. We vary ω between 20%
and 80% and the overall ratio is given by the product τ = γ ∗ω. Fractions γ and
percentages ω in a scenario are associated using different combinations of both
low or high ω and γ, or high ω and low γ and vice-versa.

User experiment task
In this domain, we intend to identify whether Joe is a Republican. Please read the following
information and inference rules representing the domain.

• Initial Information:
- Joe was not at the Labor Union (LU) office

last week
- Joe was offered a job at the LU
- Joe is a member of a political party

• Inference rules:
- If Joe is a member of a political party,

then Joe could be a Democrat
- If Joe is a member of a political party,

then Joe could be a Republican
- If Joe is a Republican,

then Joe would not believe in LUs
- If Joe does not believe in LUs,

then Joe could not have taken the job
- If Joe was offered a job at the LU,

then Joe could have taken the job
- If Joe has taken the job,

then Joe could have a job at the LU
- If Joe was not at the LU office last week,

then Joe could not have a job at the LU

From this representation we also obtain the
following 3 possible worlds.

• Possible Worlds:
1: (Joe is a Democrat,

Joe has taken the job,
Joe has got a job at the LU)

2: (Joe is a Democrat,
Joe does not have a job at the LU,
Joe has taken the job)

3: (Joe is a Republican++,
Joe does not have a job at the LU,
Joe does not believe in LUs)

Corresponding argument framework

Mapping:
- roffice =“Joe was at the LU office last week”
- roffer =“Joe was offered a job at the LU”
- rparty =“Joe is a member of a political party”
- rdem =“Joe is a Democrat”
- rrep =“Joe is a Republican”
- rtaken =“Joe has taken the job”
- rjob =“Joe has got a job at the LU”
- rbel =“Joe believes in Labor Unions”

Knowledge base:
• K = {¬roffice ; roffer ; rparty}
• R = {rparty ⇒ rdem ; rparty ⇒ rrep ;

rrep ⇒ ¬rbel ; roffer ⇒ rtaken ;
rtaken ⇒ rjob ; ¬roffice ⇒ ¬rjob}

• ¯= {(¬rbel , rtaken); (rdem , rrep); (rrep , rdem)}

Arguments:
- A1 : ¬roffice
- A2 : roffer
- A3 : rparty
- A4 : A3 ⇒ rdem
- A5 : A3 ⇒ rrep

- A6 : A5 ⇒ ¬rbel
- A7 : A2 ⇒ rtaken
- A8 : A7 ⇒ rjob
- A9 : A1 ⇒ ¬rjob

Extensions:
- ξ1 = {A1 , A2 , A3 , A4 , A7 , A8 }
- ξ2 = {A1 , A2 , A3 , A5 , A6 , A9 }
- ξ3 = {A1 , A2 , A3 , A4 , A7 , A9 }

Abstract framework:

A1 A2 A3

A4 A6A5 A8

A7

A9

Fig. 2. User experiment argument interpretation & framework – Domain 1
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Example 2. To obtain an argument theory based interpretation, one of our sce-
narios presented the user with a set of premises, and grounded defeasible rules
from which arguments can be formed. We then only presented the conclusions
of arguments from the preferred extensions which result from our framework.
For example, Fig. 2 presents an example of the argument theory interpretation
that is shown to the user during the experiment, and below its correspondent
argument framework. In this scenario, 3 preferred extensions existed referred to
as possible worlds, and the conclusion rrep = “Joe is a Republican” is valid in
one of these extensions. The experimental condition corresponding to this exam-
ple is α1 = 〈Domain:1, Scenario:X1 1, Proposition rrep:“Joe is a Republican”,
Interpretation:At, Percentage ω:1, Fraction γ:1/3, Ratio τ :1/3〉. We then asked
the user:

Given the 3 stated possible worlds, how likely is that you would believe that
“Joe is a Republican”?

The user’s response to the question is recorded as uμ(rrep) = {1, . . . , 5} on a
5-points Likert scale. Assuming that the extensions are equiprobable, we obtain:
P (ξ1) = P (ξ2) = P (ξ3) = 1/3 as shown in Fig. 2. The justification ratio for the
tested proposition rrep obtained is μ(rrep) = 1/3.

User experiment task
In this domain, we intend to identify whether Joe is a Republican. Assume that we have a stream
of information composed by one or many copies of the following messages.
- Joe was not at the Labor Union office last week
- Joe was offered a job at the Labor Union
- Joe is a member of a political party
- Joe is a Democrat
- Joe is a Republican ++
- Joe has taken the job
- Joe has got a job at the Labor Union
- Joe does not have a job at the Labor Union
- Joe does not believe in Labor Unions

Fig. 3. User experiment probabilistic interpretation – Domain 1

To obtain a correspondent probabilistic interpretation, we presented the set
of propositions to the user as a list of hypothetical messages, which included
both premises and conclusions of the above argumentation framework in no
particular order. In Fig. 3 we present the corresponding experimental scenario.
The user was informed that a stream of information would release a number of
messages from the list, and asked to comment on the likelihood that a message
would state the tested proposition. In this scenario, we also informed the user
that 1 out of 3 messages reported that “Joe is a Republican”. The experimen-
tal condition corresponding to this example is α2 = 〈Domain:1, Scenario:X1 1,
Proposition rrep:“Joe is a Republican”, Interpretation:Pt, Percentage ω:1, Frac-
tion γ:1/3, Ratio τ :1/3〉, where the only difference with α1 is the interpretation.
To determine up(rrep), the user was asked the question:



202 A. Toniolo et al.

If 3 messages are released, how likely is that a message would state that
“Joe is a Republican”?.

For these scenarios, τ = 1/3, and γ = 1/3. In the experiments we also
tested for situations in which τ = 1/3, and γ = 2/6 for example constructing
a similar domain with 6 extensions, where rrep was valid in only 2 of those.
The justification ratio of a proposition in At corresponds to the probability
in Pt in Domain 1 such that p(rrep) = μ(rrep) = γ = τ . In Domain 2, the
proposition rprep =“There is 90% chance that Joe is a Republican” is used
instead, with ω = 0.9 in both interpretations and ω∗p(ra) = ω∗μ(ra) = ω∗γ = τ .
Figure 4 shows an example of the experiment scenario including rprep for the
argument interpretation At. The corresponding probabilistic interpretation Pt
can be derived by extracting all the propositions from this scenario.

User experiment task
In this domain, we intend to identify whether Joe is a Republican. Please read the following
information and inference rules representing the domain.

• Initial Information:
- Joe was not at the Labor Union (LU) office

last week
- Joe was offered a job at the LU
- Joe is a member of a political party

• Inference rules:
- If Joe is a member of a political party,

then there is 10% chance that Joe could
be a Democrat

- If Joe is a member of a political party,
then there is 90% chance that Joe could
be a Republican

- If Joe is a Republican,
then Joe would not believe in LUs

- If Joe does not believe in LUs,
then Joe could not have taken the job

- If Joe was offered a job at the LU,
then Joe could have taken the job

- If Joe has taken the job,
then Joe could have a job at the LU

- If Joe was not at the LU office last week,
then Joe could not have a job at the LU

From this representation we also obtain the
following 3 possible worlds.

• Possible Worlds:
1: (There is 10% chance that Joe is a

Democrat
Joe has taken the job,
Joe has got a job at the LU)

2: (There is 10% chance that Joe is a
Democrat
Joe does not have a job at the LU,
Joe has taken the job)

3: (There is 90% chance that Joe is a
Republican++,
Joe does not have a job at the LU,
Joe does not believe in LUs)

Fig. 4. User experiment argument interpretation – Domain 2

6 Methodology and Results

We ran our experiments using Amazon Mechanical Turk2, a web service that
recruits participants to complete tasks. We recruited 420 participants for the
experiment from the USA3. Data collection was performed with a questionnaire
2 Amazon Mechanical Turk: https://www.mturk.com/.
3 Ethical approval for these experiments was granted by the College Ethics Review
Board of the University of Aberdeen on 10/08/2016.

https://www.mturk.com/
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including four experimental conditions, such that a participant would see two
different scenarios, and respond to questions of both problems and interpreta-
tions. Initially participants were shown a training example for the argumentation
theory to provide them with a basic understanding of argumentation. Each par-
ticipant was then asked to respond to four combinations of different experimental
conditions (α as described in Sect. 5).

– Domain 1: two questions within a scenario Xi, related to conditions Xi 0 and
Xi 1 and an interpretation At (or Pt).

– Domain 2: two questions within a scenario Xj, where i �= j, related to condi-
tions Xj 0 and Xj 1, and an interpretation Pt (or At respectively).

Hence, no user would respond to an interpretation At and its corresponding
interpretation Pt, and each user would see two different domains. We obtained
30 responses per condition α. In the remainder of the section, we detail they
hypotheses associated with each type of problem, and describe our results.

6.1 Domain 1: Hypotheses

The aim of the first set of experiments is to understand whether people agree
with the outcome of the probabilistic semantics when the propositions are purely
qualitative. We study the believability rating of a proposition ri in interpretation
At as the outcome of the probabilistic semantics uμ(ri), and in the corresponding
probabilistic interpretation Pt, up(ri). Our hypotheses are as follows.

H1.1: There is a correlation between the believability rating of At, uμ(ri), and
the justification ratio of the conclusions, μ(ri), obtained via the outcome
of the probabilistic semantics.

H1.2: There is a correlation between the believability rating of Pt, up(ri), and
the probability of the information being verified p(ri).

H1.3: The two correlations in At and Pt are similar.

We also test the following secondary hypotheses:

H1.4: The scenario does not influence the results: for any two scenarios with the
same fraction γ there is no difference in the believability rating.

H1.5: The number of extensions does not influence the results: for any two sce-
narios with same τ but different γ there is no difference in the believability
rating.

6.2 Domain 1: Results

Figure 5 presents the believability ratings uμ(ri) and up(ri) recorded for Domain
1. The horizontal axis is ordered according to the fraction γ associated with the
experimental conditions. We also report the ratio τ corresponding to the fraction.
For each scenario, uμ(ri) of At is shown besides up(ri) of Pt. The graph uses
a divergent colour palette; the neutral rating is associated with the brightest
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colour, ratings below correspond to participants who consider the proposition
unlikely, ratings above correspond to those who consider the conclusion likely.
Moving from lower to higher γ (left to right), we observe that the darker area
above the neutral bars increases for both At and Pt interpretations. Within
each scenario, the neutral bar is approximately within the same range, with
some exceptions. This provides some initial evidence that there is a correlation
between the believability ratings and fractions γ.

A Spearman’s rank-order correlation was run for each scenario Xi j to deter-
mine the relationship between the believability ratings uμ(ri) in At and the
justification ratios μ(ri) = γ, the outcome of the probabilistic semantics. This
non-parametric test is used since the results are not normally distributed. The
test showed a positive correlation value, rs, which was statistically significant
(rs(418) = .288, p  0.001). This provides evidence for hypothesis H1.1—that
there is a correlation between the probabilistic semantics and the user believabil-
ity rating of a conclusion. A similar test determined that there is a statistically
significant positive correlation between the believability ratings up(ri) in Pt and
the probabilities p(ri) = γ (rs(418) = .280, p  0.001). This validates hypothe-
sis H1.2; i.e., there is a correlation between the believability rating of a piece of
information and its probability. A comparison between the two correlations was
examined using a Fisher’s r-to-z transformation. The overall z-score value (based
on the difference between the correlations and their variance) was observed to
be z = 0.13 with p = 0.448. Here, we accept the null hypotheses that the two

Fig. 5. Believability ratings uµ(ri) and up(ri) - Domain 1



Enumerating Preferred Extensions: A Case Study of Human Reasoning 205

Table 1. Mann-Whitney U tests on uµ(ri) vs. up(ri) within scenarios

Scenario X6 0 X3 1 X4 1 X1 1 X2 0 X7 0 X5 0

p-value 0.824 0.516 0.010* 0.265 0.888 0.247 0.744

Scenario X5 1 X3 0 X4 0 X6 1 X1 0 X2 1 X7 1

p-value 0.005* 0.015* 0.254 0.710 0.771 0.357 0.014*

correlations are not significantly different. This confirms hypothesis H1.3, and
characterises how people interpret the outcome of the probabilistic semantics.

There are, however, some outliers that can be noticed in Fig. 5. This was
investigated with a post-hoc analysis using a series of Mann-Whitney U tests
for each scenario Xi j comparing uμ(ri) and up(ri). Table 1 reports only the
p-values, where we consider significance at p < 0.001. None of the comparisons
shows a significant difference, however, for the three scenarios marked with a
star (*), the p-value tends to be low indicating the outliers.

Similar tests are used for the two secondary hypotheses. H1.4 seeks to prove
that given the same fraction γ (e.g. 1/3), there is no difference between the
believability rate of different scenarios associated to that fraction (e.g. X1 1
vs. X2 0). In Table 2 we report the p-values of comparisons between different
conditions, where significant values are highlighted in bold. Hypothesis H1.4 is
only partially supported: the scenario tends not to influence the results in Pt,
however, in At, the hypothesis is only supported in 3 out of 5 conditions.

Hypothesis H1.5 focussed on understanding the believability ratings in exper-
imental conditions associated with different fractions γ but same ratio τ (e.g.
1/2 for X5 0 vs. 3/6 for X6 1). In Table 3 we report the p-values for comparisons
between these conditions. H1.5 is mainly supported, with the exception of three
cases in At. This provides partial evidence that it is the ratio rather than the
fraction that influences the believability ratings among different conditions.

Table 2. Mann-Whitney U tests on At and Pt between scenarios with similar γ

Fraction γ Xa Xb uµ(ri) vs. μ(ri) up(ri) vs. p(ri)

1/4 X3 1 X4 1 0.403 0.000

1/3 X1 1 X2 0 0.407 0.660

1/2 X5 0 X5 1 0.259 0.000

2/4 X3 0 X4 0 0.669 0.208

2/3 X1 0 X2 1 0.147 0.056
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Table 3. Mann-Whitney U tests on At and Pt between scenarios with similar τ

Ratio τ Xa Xb uµ(ri) vs. μ(ri) up(ri) vs. p(ri)

1/3 X1 1 X7 0 0.201 0.187

1/3 X2 0 X7 0 0.629 0.579

1/2 X5 0 X3 0 0.147 0.001

1/2 X5 0 X4 0 0.068 0.006

1/2 X5 0 X6 1 0.417 0.526

1/2 X5 1 X3 0 0.932 0.370

1/2 X5 1 X4 0 0.677 0.016

1/2 X5 1 X6 1 0.574 0.000

1/2 X3 0 X6 1 0.353 0.003

1/2 X4 0 X6 1 0.147 0.035

2/3 X1 0 X7 1 0.244 0.169

2/3 X2 1 X7 1 0.799 0.001

6.3 Domain 2: Hypotheses

The second problem focusses on understanding whether the outcome of the prob-
abilistic semantics is a factor in assessing the believability of conclusions that
are about event likelihood. We hypothesised that the product between the jus-
tification ratio of a conclusion and its likelihood influences people’s believability
ratings in the At interpretation and is comparable with the multiplication law in
the probability interpretation Pt. We consider similar hypotheses as in Domain
1, with the difference that the believability rating is now tested for correlation
with the product of the fraction γ and the likelihood ω expressed within the
content of a proposition (τ = γ ∗ω). Hypothesis H2.1 tests for correlation in the
interpretation At where μ(rj) = τ . Hypothesis H2.2 tests for correlation in Pt
where p(rj) = τ and H2.3 tests for similarity between the two correlations.

6.4 Domain 2: Results

Our initial tests study the correlation between the believability ratings and the
fractions γ or the likelihood ω alone. Statistical tests were performed using the
Spearman’s rank-order correlation, and similarity is tested using the Fisher’s
r-to-z transformation, with significance at p < 0.001. We observed no correla-
tion for fraction γ in both interpretations At (rs(418) = .59, p = 0.228) and
Pt (rs(418) = .26, p = 0.596). There is, instead, a low correlation with ω in
both At (rs(418) = .193, p  0.001) and Pt (rs(418) = .184, p  0.001) with
high similarity (z = 0.13, p = 0.448). More interestingly, we found a correlation
between the product of γ and ω reflecting the multiplication law of probability
in both At (rs(418) = .293, p  0.001) and Pt (rs(418) = .250, p  0.001) with
similar behaviour (z = 0.67, p = 0.251). We now focus on this last result.
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Fig. 6. Believability rating uµ(ri) and up(ri) - Domain 2

In Fig. 6, we present the believability rating uμ(ri) and up(ri) recorded for
Domain 2. The horizontal axis is ordered according to τ = γ ∗ ω. The results
support hypothesis H2.1 for At: there is a positive correlation between the believ-
ability rating and the product of the likelihood expressed within a conclusion
and the justification ratio due to the probabilistic semantics. The outcome of the
probabilistic semantics is a factor required to interpret the believability ratings:
the correlation with the likelihood expressed within a conclusion alone is low
(rs = .193) and moderately improves when the product is used (rs = .293). Sim-
ilar behaviour is observed in Pt supporting H2.2: there is a correlation between
the believability rating and the product of the likelihood expressed within the
proposition and its probability of occurring. This is stronger than the correlation
with the former only (rs = .250 vs. rs = .184). Finally, H2.3 is supported as no
significant difference between the two correlations values is observed.

7 Discussion

We have demonstrated that the outcome of Thimm’s probabilistic semantics is
an important factor in understanding the believability ratings of the conclusions,
even in the case in which a proposition is about the likelihood of an event. The
results indicate that people tend to agree with the outcome of the probabilistic
semantics. Furthermore, our results confirm that the outcome of the probability
semantics may be understood by people in a way similar to the understanding
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of probability. In the second problem, we showed that this similarity is due
to a heuristic associating the product of probabilities to the believability of
conclusions. Note that as discussed in Sect. 4, the multiplication law assumes that
there is independence between the event reported by the proposition and it being
inferred. We also tested for τ representing dependent events, using the law of
conditional probability. The results showed no correlation with the believability
ratings. Due to space constraints, we have omitted these results.

The results of our study are built on a standard (structured) approach to
argumentation. While other techniques, such as weighted argumentation could
have been used (and will be investigated as future work), we selected the app-
roach used in this paper due to (1) the widely accepted and well understood
nature of the standard argumentation semantics; and (2) the ease with which
multi-extension semantics from such an approach can be mapped to a many
worlds interpretation, from which the comparison to a frequentist probability
interpretation can be performed.

The results presented here are—in a sense—preliminary. There are many
aspects of this research that need further investigation. To name some, both
correlation coefficients are significantly positive but show a moderate correla-
tion between the degree of believability and the justification ratio or associated
probability. This suggests that other factors need to be investigated further in
the future. One of these aspects is the role of the domains used within the
scenarios as we have shown that in the argumentation interpretation this has
a more significant role than in the probabilistic view. From an argumentation
perspective, further studies should focus on considering other semantics, such
as the ranking-based semantics [3]. Further studies should also focus on under-
standing how people combine probabilities and on analysing human factors, for
example, by considering the background of participants involved. We also wish
to investigate how cycles and self attacks in the argument graphs, as well as the
introduction of preferences may affect our results.

8 Conclusions

We investigated whether qualitative argumentation captures some notion of
uncertainty by associating a degree of believability of conclusions with the num-
ber of preferred extensions. To do so, we examined whether people agree with
the outcome of the probabilistic semantics. More broadly, our work can be seen
to follow a strand of research similar to that of Cerutti et al. [5], aiming to study
the alignment between argumentation semantics and human intuition. The nov-
elty of our work is in that we focus on the particular role that multiple extensions
play in evaluating the believability of a conclusion.

In this paper, we designed our experiments with a two-fold objective: to deter-
mine whether our claim was valid; and to investigate whether there is a similarity
between probabilistic and argumentation-based reasoning. Our results show that
people tend to agree with the outcome of the probabilistic semantics and that
people employ a similar heuristic in understanding both preferred extensions
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and probabilities. Through our experiments, we obtained some initial promising
insights into the use of probability within argumentation frameworks that may
guide researchers in better supporting human reasoning in their work.
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of Aberdeen made by the UK Economic and Social Research Council; Grant reference
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Abstract. In human interactions, trust is regularly updated during a
discussion. For example, if someone is caught lying, any further utter-
ances they make will be discounted, until trust is regained. This paper
seeks to model such behaviour by introducing a dialogue game which
operates over several iterations, with trust updates occurring at the end
of each iteration. In turn, trust changes are computed based on intuitive
properties, captured through three rules. By representing agent knowl-
edge within a preference-based argumentation framework, we demon-
strate how trust can change over the course of a dialogue.

1 Introduction

Within a dialogue, participants exchange arguments, aiming to achieve some
overarching goals. Typically, these participants have partial information and
individual preferences and goals, and the parties aim to achieve an outcome
based on these individual contexts. Importantly, some dialogue participants may
be malicious or incompetent, and—to achieve desirable dialogical outcomes—
the inputs from these parties should be discounted. In human dialogues, such
participants are characterised by the lack of trust ascribed to them, and in this
work we consider how such trust should be computed.

While previous work [12] has considered how the trust of participants should
be updated following a dialogue, we observe that in long-lasting human dis-
cussions, trust can change during the dialogue itself. For example, within a
courtroom, a witness who repeatedly appears to lie will not be believed even
if they later act honestly. Trust can be viewed as making the arguments of more
trusted agents be preferred—in the eyes of those observing the dialogue—to the
arguments of less trusted agents. Importantly, there appears to be a feedback
cycle at play within dialogue: low trust in a dialogue participant can lead to
further reductions of trust as they are unable to provide sufficient evidence to
be believed. To accurately model dialogue and reason about the trust ascribed
to its participants, it is critical to take this feedback cycle between utterances
and trust into account. This paper considers such a feedback cycle.
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The research questions we address in this work are as follows. (1) How should
trust change during the course of a dialogue based on the utterances made by dia-
logue participants? (2) How should trust affect the justified conclusions obtained
from a dialogue?

To answer these questions, we describe a dialogue model in which participants
interact by exchanging arguments. Within this model, we define a trust relation
for each participant with respect to other participants (encoded as a preference
ordering over the participants), and describe how each participant updates its
trust relation. In particular, each participant observes the behaviours of others
and uses these observations as an input to update its trust relation (for the other
participants) through a trust update function.

To compute the justified conclusions of a dialogue, we instantiate a
preference-based argumentation framework (PAF) [1]. As a result, each par-
ticipant can identify its own set of preferred conclusions, and a set of justified
conclusions can be identified from these sets.

The proposed framework permits us to better represent the feedback rela-
tionship between trust and dialogue. The remainder of the paper is organised as
follows: Sect. 2 recalls preference-based argumentation frameworks [1] and pro-
vides a brief overview of our notion of trust in dialogues. Section 3 describes
our proposed dialogue model. Section 4 describes the trust update rules and
the process we considered for dynamically updating trust within our dialogue
model. Section 5 describes how the preference-based argumentation framework is
instantiated in our model. Section 6 illustrates how trust update rules are applied
through an example. Section 7 compares our approach with some existing works.
Section 8 presents our conclusions and some directions for future work.

2 Background

Preference-based argumentation frameworks extend abstract argumentation
frameworks [7], and we therefore begin by describing the former.

Definition 1. An Argumentation Framework F is defined as a pair 〈A,R〉
where A is a set of arguments and R is a binary attack relation on A.

Extensions are sets of arguments that are, in some sense, justified. These
extensions are computed using one of several argumentation semantics.

Preference-based argumentation frameworks [1] seek to capture the relative
strengths of arguments and can be instantiated in different ways. In this paper,
we will use preference-based argumentation frameworks to encode trust in other
dialogue participants, allowing us to compute which arguments should, or should
not be considered justified.

Within a preference-based argumentation framework, preferences are
encoded through a reflexive and transitive binary relation ≥ over the arguments
of A. Given two arguments φ1, φ2 ∈ A, φ1 ≥ φ2 means that φ1 is at least as
preferred as φ2. The relation > is the strict version of ≥ i.e., φ1 > φ2 iff φ1 ≥ φ2

but φ2 � φ1. As usual, φ1 = φ2 iff φ1 ≥ φ2 and φ2 ≥ φ1.
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Given this, a preference-based argumentation framework is defined as follows.

Definition 2. A Preference-based argumentation framework (PAF for short)
[1] is a tuple T = 〈A,R,≥〉 where A is a set of arguments, R ⊆ A × A is
an attack relation and ≥ ⊆ A × A is a (partial or total) preorder on A. The
extensions of T under a given semantics are the extensions of the argumentation
framework (A,Rr), called the repaired framework, under the same semantics
with Rr = {(φ1, φ2)|(φ1, φ2) ∈ R and (φ2 �> φ1)}

⋃
{(φ2, φ1)|(φ1, φ2) ∈ R and

φ2 > φ1}.

Given a PAF, one can identify different sets of justified conclusions by
considering different extensions. PAFs extend standard Dung argumentation
frameworks with the addition of preferences between arguments to repair crit-
ical attacks and refine the extension of the repaired PAF. Therefore, we also
define the semantics of standard argumentation frameworks, the notion of criti-
cal attacks and extension refinement. In this paper we will focus on the preferred
semantics.

Definition 3. Given F = 〈A,R〉, a set of arguments E ⊆ A is said to be
conflict-free iff ∀φ1, φ2 ∈ E, there is no (φ1, φ2) ∈ R. Given an argument φ1 ∈ E,
E is said to defend φ1 iff for all φ2 ∈ A, if (φ2, φ1) ∈ R then there is a φ3 ∈ E
such that (φ3, φ2) ∈ R. E is admissible iff it is conflict-free and defends all
its elements. E is a complete extension iff there are no other arguments which
it defends. E is a preferred extension iff it is a maximal (with respect to set
inclusion) complete extension.

Preferred semantics admit multiple extensions; here, such an extension rep-
resents a potentially justified view (which conflicts with other views). If an argu-
ment is present in all extensions, then it is sceptically justified; while if it is
present in at least one extension, it is credulously justified.

Definition 4. (Critical attack) [1]. Let F be an argumentation framework and
≥⊆ A × A. An attack (φ2, φ1) ∈ R is critical iff φ1 > φ2.

PAFs repair critical attacks on the graph of attacks by inverting the arrow
of the attack relation (i.e., (φ2, φ1) ∈ R with φ1 > φ2 becomes (φ1, φ2) ∈
R). This repair property ensures that arguments that are more preferred in an
argumentation framework defeat arguments that are less preferred. An argument
φ1 defeats φ2 iff ((φ1, φ2) or (φ2, φ1)) ∈ R and φ1 > φ2. For a symmetric attack
relation, removing critical attacks gives the same results as inverting attacks.
Extensions are then constructed from the corresponding repaired PAF using the
semantics of F . In addition, in PAFs, a refinement relation is used to refine the
results of a framework by comparing its extensions.

Definition 5. (Refinement relation) [1]. Let (A,≥) be such that A is a set of
arguments and ≥ ⊆ A×A is a (partial or total) preorder. A refinement relation
denoted by ≥r, is a binary relation on P(A)2 such that ≥r is reflexive, transitive
and for all E ⊆ A, for all φ1, φ2 ∈ A\E , if φ1 > φ2 then E

⋃
{φ1} >r E

⋃
{φ2}.
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Let Ags be a set of participants within a dialogue. We consider that each
dialogue participant Ag i∈Ags, for i = 1, . . . , n, has an associated trust relation
over other participants, encoded through a preference ordering 	Agi .

Definition 6. Let Ags be a set of dialogue participants. The trust relation of
a given participant Ag i over Ags is a preference ordering 	Agi ⊆ Ags × Ags.
Agj 	Agi Agk denotes that Ag i prefers (trusts) Agj to Agk.

We consider the following properties for the trust relation:

– Non-Symmetric: if a participant Ag i trusts another participant Agj , this does
not imply that Agj trusts Ag i.

– Transitive: Unlike some other works on trust [9,17], we assume that transi-
tivity of trust (also known as derived trust) is not required in our model. As
a result, we assume that a given participant has the ability to decide whether
or not to trust another participant at any stage of the dialogue.

The trust relation represents the viewpoint of a given participant indepen-
dently of the trust relations of other participants. Therefore, unlike the systems
described in, for example, [9,17], there is no need to represent a ‘global map’ of
trust relations—a trust network—in our model.

3 A Formal Dialogue Model

We consider a dialogue system where each participant Ag i has two main com-
ponents: a knowledge base (containing its trust relation over other participants,
a set of arguments, and a set of attacks between arguments) and a commitment
store. We follow Hamblin (as cited in [19]) in defining a commitment store as
a “store of statements” that represents the arguments a participant is publicly
committed to.

Definition 7. The knowledge base of a participant Ag i ∈ Ags is a tuple
KBAgi

= 〈AAgi ,RAgi ,	Agi 〉, where AAgi is the set of arguments known by Ag i

(representing their own knowledge); RAgi ⊆ AAgi ×AAgj is a set of attacks where
(φ1, φ2) ∈ RAgi iff φ1 ∈ AAgi and φ2 is an argument provided by any participant
Agj; and 	Agi is the trust relation (c.f., Definition 6) of Ag i with regards to
other participants.

Each participant updates its knowledge base at the end of each iteration
of a dialogue. Intuitively, an iteration represents a subdialogue, including an
exchange of arguments arising from a participant’s (potentially) controversial
assertion. Unlike the knowledge base, the commitment store is updated after
every dialogue move made by the participant.

Definition 8. The commitment store of a participant Ag i ∈ Ags at iteration
t ∈ {1 . . . n} is a set CS t

Agi
= {φ1, . . . , φn} which contains arguments introduced

into the dialogue by Ag i at iteration t such that CS0
Agi

= ∅.
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The union of the commitment stores of all participants is called the universal
commitment store UCSt =

⋃
Agi

CS t
Agi

. An argument put forward by a partici-
pant may be attacked by an argument from another participant. Therefore, in
our dialogue system, an argumentation framework 〈UCSt,R〉 is induced by the
set of arguments exchanged during dialogue in the universal commitment store
and their respective attacking relationships as in [7]. Hence, (φ1, φ2) ∈ R if
(φ1, φ2) ∈ RAgi , φ1 ∈ CSAgi and φ2 ∈ UCSt. The universal commitment store
can be viewed as the global state of the dialogue at a given iteration.

We now turn our attention to the dialogue game itself. A dialogue game like
the one described in [13] specifies the major elements of a dialogue, such as its
commencement, combination, and termination rules among others. Likewise, the
system described in [11] specifies how the topic of discussion in a dialogue can
be represented in some logical language. We are interested in how a participant
updates its commitment store and its trust relation in a dialogue when it, or other
participants, introduce arguments. We assume that at iteration t, a participant
is allowed to add arguments to its commitment store if it is not already present
within the store (and was not previously present), and retract arguments from
its commitment store only if the argument was already present in the store.

3.1 Protocol Rules and Speech Acts

Protocol rules regulate the set of legal moves that are permitted at each iteration
of a dialogue. In our framework, a dialogue consists of multiple discrete iterations
t within which the moves are made. A dialogue move is referred to as M t

x where
x , t ∈N, denoting that a move with identifier x is made at iteration t. At its most
general, a protocol identifies a legal move based on all previous dialogue moves.

Definition 9. A dialogue D consists of a sequence of iterations such that
D = [[M1

1 , . . . ,M1
x ], . . . , [M t

1, . . . ,M
t
x]]. The dialogue involves n participants

Ag1, . . . , Agn where (n ≥ 2 ). Within a dialogue D, iteration j consists of a
sequence of moves [M j

1 , . . .M j
x].

A dialogue participant evaluates the set of arguments exchanged within an iter-
ation to update its trust relation over other participants. Within each iteration,
there is a claim to be discussed and arguments that attack or defend the claim.
Note that a claim is abstractly represented as an argument. An iteration there-
fore represents a sub-discussion focused around a single topic of the overarching
dialogue, which can be treated in an atomic manner with regards to trust.

The dialogue protocol is as described in Fig. 1. Each node—except the ‘update’
node (described in detail later)—represents a speech act, and the outgoing arcs
from a node indicate possible responding speech acts. We consider four types of
speech acts, denoted assert(Agi , φ, t), contradict(Agi , φ1 , φ2 , t), retract(Agi , φ, t),
and exit respectively. A participant Ag i uses assert(Agi , φ, t) to put forward a
claim φ ∈ AAgi at iteration t. A contradict(Agi , φ1 , φ2 , t) move attacks a previ-
ous argument φ1 ∈ AAgj from another participant Agj by argument φ2 ∈ AAgi

from participant Ag i. A participant Ag i uses retract(Agi , φ, t) to retract its pre-
vious argument. A participant uses exit to exit an iteration. This move is made
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when a participant has no more arguments to advance within the iteration. When
an iteration concludes (shown by the terminal update node in the figure), trust
is updated. The dialogue then proceeds to the next iteration, or may terminate.
A dialogue therefore consists of at least one, but potentially many more, iterations.

In addition to the constraints on the type of speech act that can be made in
a dialogue, we also consider the relevance of a move. A move M t

x+i , for x, i ≥ 1 is
relevant to iteration t if the argument of the move will affect the justification of
the argument of the move M t

x . Specifically, an argument φ2 in move M t
x+i affects

the justification of an argument φ1 in M t
x if it attacks φ1 (c.f., [14]). Relevance is

defined from the second move of an iteration (i.e., when x ≥ 1) because the first
move is taken to introduce the claim to be discussed in the iteration. The protocol
rules enforce that φ2 is relevant to an iteration t if it affects the justification of
φ1 that has been previously moved in the iteration. However, if φ1 is retracted in
the iteration, φ2 is no longer relevant and must be retracted except if it affects
the justification of another argument φ3. Furthermore, as the outgoing arcs in
Fig. 1 depict, a move to exit an iteration is also considered relevant from the
second move but a move to retract an argument is only considered relevant from
the third move (i.e., when x ≥ 2). These constraints help to prevent participants
from making moves that are not relevant to the current iteration.

update

Assert
(Agi, φ, t)

contradict
(Agi, φ1, φ2, t)

retract
(Agi, φ, t)

exit

Fig. 1. Protocol rules

3.2 Commitment Rules

A participant’s commitment store is revised throughout the dialogue as it
advances arguments. Therefore, it is important to define how each of the pro-
posed speech acts updates a participant’s commitment store.
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Definition 10. The commitment store of a participant Ag i ∈ Ags is updated as
follows:

CS t
Agi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ iff t = 0,
CS t−1

Agi

⋃
{φ} iff mt

x = assert(Agi , φ, t),
CS t−1

Agi

⋃
{φ2} iff mt

x = contradict(Agi , φ1 , φ2 , t)
CS t−1

Agi
\ {φ} iff mt

x = retract(Agi , φ, t)
CS t−1

Agi
iff mt

x = exit

4 Updating Trust

We now turn our attention to how trust should be updated as a dialogue pro-
gresses. We limit our focus to how the trust relation component of a participant’s
knowledge base (	Agi) is updated. A trust update function is used to perform
this update when an iteration concludes, as represented by the ‘update’ node in
Fig. 1.

As input, the trust update function takes a participant’s trust update rules
and its preference on the trust update rules. In the remainder of this section, we
formalise both of these concepts.

Trust update rules describe the situations in which trust in a dialogue par-
ticipant should change. In this paper, we consider the following trust update
rules.

– A dialogue participant whose arguments are self-contradicting should be less
trusted than a consistent participant.

– A dialogue participant who is unable to justify its arguments should be less
trusted than one who can.

– A dialogue participant who regularly retracts arguments should be less
trusted than one who does not.

These rules are similar to some of the properties that have been considered in the
literature of ranking-based semantics for abstract argumentation (for a review
on ranking-based semantics for abstract argumentation, see [3]). These rules are
also supported by extension-based semantics (i.e., Dung’s semantics [7]). For
instance, the second rule could be represented as a participant having an argu-
ment φ in its commitment store, but not within an extension: φ /∈ E(〈UCS,R〉)1.
We do not claim that the three trust update rules considered in this paper are
exhaustive, and intend to investigate additional rules, taken from sources such
as [3], in the future. We formalise the three trust update rules as follows.

Definition 11. Self Contradicting Arguments (SC): A participant Ag i is self
contradicting if CSAgi is not conflict free.

1 Here, E represents the extension(s) obtained on the argumentation framework
〈UCS, R〉.
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Definition 12. Lack of Justification (LJ): A participant Ag i lacks justification
for an argument φ1 iff φ1 ∈ CSAgi and there is a φ2 ∈ UCS\CSAgi such that φ2

defeats φ1.

Defeats consider preferences among attacks and are defined in Sect. 2.

Definition 13. Argument Retraction (AR): A participant Ag i is inconsistent
iff φ1 ∈ CSAgi and there is a φ2 ∈ UCS\CSAgi such that φ2 attacks φ1 and Ag i

retracts φ1 from CSAgi .

This rule also requires that if φ2 attacks φ1 and φ1 is retracted by Ag i, Agj is
expected to retract φ2 as enforced by the dialogue protocol without any loss of
trust for Agj except if φ2 attacks another argument φ3 that is not retracted.

Given the three trust update rules considered, there are four possible com-
binations of these rules in an iteration. These possible combinations are given
below.

– (SC, LJ, AR): This combination means all the three trust updates rules occur
within a particular iteration under consideration.

– (SC, LJ): This combination means self contradiction and lack of justification
occur within a particular iteration under consideration.

– (SC, AR): This combination means self contradiction and argument retraction
occur within a particular iteration under consideration.

– (LJ, AR): This combination means lack of justification and argument retrac-
tion occur within a particular iteration under consideration.

Note that within an iteration, the arrangement of trust update rules in a com-
bination is not important. For instance, (SC, AR) and (AR, SC) is considered
to be the same combination.

Agents have preferences over trust update rules. For example, one may trust
somebody who contradicts themselves much less than they trust someone who
regularly retracts arguments. Such preferences on trust update rules are a partial
order over trust update rules. This partial order specifies the order of importance
a given participant attaches to the trust update rules.

Definition 14. Let TRt
Ags = {SC,LJ,AR} be a set of trust update rules for the

set of participants Ags at iteration t. A given participant’s preference on TRt
Ags

is a partial ordering 	t
Agi(TR)

such that for rules X ,Y ∈ TRt
Ags , X 	t

Agi (TR) Y

denotes rule X has preference over rule Y in 	t
Agi(TR)

.

Since we are concerned with the viewpoint of a given participant, dialogue
participants may have varying preferences on trust update rules. Furthermore,
such preferences may change from one iteration to another. For instance, in a
particular iteration, a given participant may consider argument retraction as
the least inconsistent behaviour if a target participant retracts an argument
from its commitment store as a result of learning from the arguments of other
participants that the retracted argument is inaccurate. This may not be the case
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if the target participant is forced to retract an argument from its commitment
store as a result of its inability to advance other arguments to defend it.

If the preference on the trust update rules of a given participant Ag i is
	Agi(TR)

= (SC �Agi(TR)
LJ �Agi(TR)

AR), then, self contradiction is most
important when updating the participant’s trust relation, followed by lack of
justification and argument retraction respectively.

Consider a dialogue participant Ag i, with a trust update function denoted by
UF at iteration t of a dialogue. The participant exchanges arguments with other
participants in the dialogue through defined speech acts and protocol rules. It
updates its commitment store CS t

Agi
after each of its moves mt

x in the dialogue.
It observes some trust updates rules based on the observed behaviours of other
participants in a particular iteration of the dialogue. As earlier stated, the com-
mitment store of all dialogue participants is publicly observable. Ag i updates its
trust relation 	Agi

over other participants based on its trust update rules and
preference on the rules 	t

Agi(TR)
, repeating the process in the next iteration.

We formalise the trust update function as follows.

Definition 15. Let TRt
Agi

be the trust update rules of a given participant Ag i;
	t

Agi(TR)
be the participant’s preference on the trust update rules; and 	t

Agi
its

trust relation over other participants at iteration t ∈ {1 . . . n}. The trust update
function UF is a function of the form UF : (TRt

Agi
× 	t

Agi(TR)
) →	t

Agi
which

takes in Agi’s trust update rules and current trust preferences, and returns an
updated set of trust preferences.

A given participant’s trust relation over other participants is updated via the
trust update function. Such a relation provides the basis for computing what the
participant deems justified in an iteration.

In the next section, we analyse how each participant computes extensions in
their personalised preference-based argumentation frameworks.

5 Dialogue Outcome

Given an argumentation framework induced by the set of arguments exchanged
during dialogue in the universal commitment store and their respective attack-
ing relationships. Also, given a preference ordering over dialogue participants,
we instantiate a PAF by providing a rational basis for the preferences between
arguments. We prefer arguments φ1 ≥ φ2 (or strictly prefer arguments φ1 > φ2)
iff there are some dialogue participants Ag i and Agj such that φ1 ∈ CSAgi , φ2 ∈
CSAgj and Agi 	 Agj (respectively Agi � Agj ). If there are critical attacks in
〈UCS,R〉, the attacks are repaired (c.f., Sect. 2). Moreover, the extensions gen-
erated from the 〈UCS,R〉 are refined as shown in Sect. 2.

Since the preference orderings over dialogue participants represent the view-
point of a given participant in our model, it is possible to have as many prefer-
ence orderings over participants as the number of participants in a dialogue. By
implication, the notions of preferences between arguments; critical attacks; and



220 G. Ogunniye et al.

argument defeat are relative to each participant. In what follows, we introduce
the notion of a participant for a PAF similar to the notion of an audience in
[2]. Participants are individuated by their preferences over other dialogue par-
ticipants leading to their preferences between arguments. The arguments in the
UCS will then be evaluated by each participant in accordance with its preferences
between arguments. This leads to the following argument framework.

Definition 16. Let Ags be a set of participants {Ag1 , . . . ,Agn}
then for i = 1 , . . . ,n, the preference-base argumentation framework of partici-
pant Ag i is a tuple TAgi

= 〈A,R,	A
Agi

〉 where A ⊆ UCS is a set of arguments,
R ⊆ A×A is an attack relation and 	A

Agi
⊆ A×A is a (partial or total) preorder

on A according to Ag i.

An attack succeeds in the preference-based argumentation framework of a
participant if it is not a critical attack or if the participant has no preference
between the arguments. Thus, the set of defeat relations (attacks that succeed) in
one participant’s context may be different from the one in another participant’s
context. An argument φ1 ∈ A defeats another argument φ2 ∈ A iff (φ1, φ2) ∈ R
and φ2 �	A

Agi
φ1. Further, note that the preferred semantics of TAgi

may return
a different refined preferred extension EAgi

to the preferred semantics of TAgj
.

Definition 17. A set of arguments EAgi
in a preference-based argumentation

framework TAgi
is a preferred extension for a participant Ag i if it is maximal

(with respect to set inclusion) complete extension obtained from TAgi
.

To define the set of justified conclusions in our model, we borrow the notions
of objectively acceptable and subjectively acceptable arguments from [2].

Definition 18. Given a preference-based argumentation framework
TAgs = 〈A,R,	A

Ags〉 for some participants Ags, an argument φ is objectively
acceptable iff for all Ag i ∈ Ags, φ is in every EAgi

. On the other hand, φ is
subjectively acceptable iff for some Ag i ∈ Ags, φ is in some EAgi

.

In the discussion thus far, we have shown that each dialogue participant com-
putes its preferred extensions in a dialogue based on preference ordering (i.e.,
trust) over the other dialogue participants—leading to preference ordering over
arguments. It then follows that out of the set of preferred extensions a given
participant may have, the refined preferred extension is the extension whose
arguments are more trusted than the other extensions in the set. Consequently,
the set of objectively acceptable arguments is the set that the participants simul-
taneously considered as the most trusted set of arguments in the dialogue. We
consider this set as the most justified conclusion of a dialogue similar to how the
set of sceptically justified arguments is considered as the set of most justified
arguments in standard argumentation frameworks and PAF. With this property,
we show how trust can have an effect on the justified conclusions of a dialogue.

Next, we consider the notion of a cycle within the preference ordering.

Definition 19. A preference-based argumentation framework
TAgs = 〈A,R,	A

Ags〉 for participants Ags has a cycle iff there are two arguments
φ1, φ2 ∈ A such that φ1 	A

Ags φ2 and φ2 	A
Ags φ1.
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Proposition 1. Assume preferred semantics, for any TAgi
, if (φ1, φ2) ∈ R and

φ2 �A
Agi

φ1, then φ1 is not accepted—φ1 �∈ EAgi
.

Proof. For any TAgi
that is cycle free, there is a unique corresponding F , FAgi =

〈A,R〉, such that an element of attack relation (φ1, φ2) ∈ R in FAgi
is an element

of defeat relation (φ1, φ2) ∈ R in TAgi
. Therefore, the preferred extension of

FAgi
will contain the same arguments as the preferred extension of TAgi

. If
TAgi

is cycle free, it means there is a preference ordering 	A
Ags over A. For

φ1, φ2 ∈ A, (φ1, φ2) ∈ R and φ2 �A
Agi

φ1. The attack from φ1 to φ2 will be
inverted. Therefore, this attack will not appear in FAgi . Instead, an attack from
φ2 to φ1 will appear and since attack from φ1 to φ2 is not in FAgi , φ2 is accepted
in a preferred extension of FAgi and φ1 rejected. This applies to TAgi

since TAgi

corresponds to FAgi .

Proposition 2. Suppose TAgi
has a cycle between all arguments (i.e., (∀φ1, φ2 ∈

A) s.t .(φ1, φ2) ∈ R, φ1 =A
Agi

φ2), then any extension of TAgi
is also an extension

of Dung’s framework F = (A,R) and vice versa under the same semantics.

Proof. This follows from Definition 2 and Proposition 1.

This property ensures that when Ag i has equal or no preferences for some argu-
ments in TAgi

, then there can be no critical attacks between these arguments
and preferences play no role in the evaluation of this set of arguments.

Proposition 3. If a set of arguments S ∈ A is objectively acceptable in all
preferred extensions EAgs of TAgs for all the participants Ags in a dialogue, then
the set S is the set of most trusted arguments in the dialogue.

Proof. Since every EAgi
is conflict free as the preferred extensions of PAF and

corresponding F are conflict free, it follows that in TAgi
, every φ1 ∈ EAgi

is either
unattacked or attacked by some argument φ2 ∈ A\EAgi

such that φ1 �A
Agi

φ2.
For the latter, we know that such attack is critical and is repaired such that
(φ2, φ1) ∈ R becomes (φ1, φ2) ∈ R. If φ1 is objectively acceptable in all preferred
extensions EAgs of TAgs , it follows that in all TAgi

⊆ TAgs , φ1 is either unattacked
or is attacked by some less preferred argument φ2. Since, φ1 �A

Agi
φ2 denotes that

φ1 is more trusted (more preferred) than φ2, it follows that the set of arguments
S ⊆ EAgs = {φ1| � ∃φ2 ∈ A\EAgs such that (φ2, φ1) ∈ R and φ1 �A

Agi
φ2} is the

set of most trusted arguments.

6 Example

To illustrate how a participant updates its trust relation with regards to other
participants, we provide an extended example, adapted from [16]. We connect
the arguments in the dialogue to the participants that advance them as shown in
the Speech Acts column of Table 1. The Moves column of the table shows that the
dialogue has two iterations with five moves in the first iteration and four moves in
the second iteration. Figures 2 and 3 show the argumentation frameworks derived
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from the dialogue by one of the participants Agk. T t
Agk

represents argumentation
framework of Agk at iteration t where nodes are arguments and edges are attack
relation. Let us consider that participant Agk evaluates T 1

Agk
and T 2

Agk
.

1stIteration : Trust Update Rules TR1
Agk

—In this iteration, Agk observes
two trust update rules SC w.r.t Ag i and LJ w.r.t Agj . Agk observes contradic-
tion in the commitment store of Ag i (i.e., φ4 attacks φ1 by defending φ2 that
attacks φ1). Furthermore, Agk observes that Agj lacks justification for φ2 as
φ5 defeats φ2 (φ2 is defeated by an undefeated argument φ5 ). Note that the
symmetric attack between φ3 and φ4 is obtained by the attack from φ4 to φ3

exchanged via the contradict move, while the φ3 to φ4 attack is known by Agk

from its knowledge base KBAgk
.

Preference on Trust Update Rules 	1
Agi(TR)

—Let Agk’s preference on the
trust update rules be LJ �1

Agk(TR)
SC �1

Agk(TR)
AR.

Trust Update 	1
Agk

—Given the trust update rules and Agk’s preference on
the rules, from Definition 15, we can infer that Agk prefers (i.e., trusts) Ag i to
Agj . Likewise, Agk prefers itself to Agi (i.e., 	1

Agk
= Agk�1

Agk
Agi�1

Agk
Agj).

Agk’s Conclusion EAgk —In T 1
Agk

, Agk considers that φ1 and φ5 defeat φ2, φ3

defeats φ4, and E1
Agk

is {φ1, φ3, φ5}.

Table 1. Example: Dialogue

Moves Speech acts Arguments

m1
1 assert(Agi , φ1 , 1 ) φ1: Death penalty is a legitimate form

of punishment

m1
2 contradict(Agj , φ1 , φ2 , 1 ) φ2: God does not want us to kill

m1
3 contradict(Agk , φ2 , φ3 , 1 ) φ3: God does not exist

m1
4 contradict(Agi , φ3 , φ4 , 1 ) φ4: Some people believe in God

m1
5 contradict(Agk , φ2 , φ5 , 1 ) φ5: The legal status of the death

penalty should not depend on some
random people’s belief

m2
1 assert(Agj , φ6 , 2 ) φ6: The state has no right to put its

subjects to death

m2
2 contradict(Agi , φ6 , φ7 , 2 ) φ7: If child rapists and murderers are

put to death it will reduce the number
of suicides by the survivors

m2
3 contradict(Agk , φ6 , φ8 , 2 ) φ8: Majority opinion in some

democratic countries favour death
penalty

m2
4 contradict(Agj , φ7 , φ9 , 2 ) φ9: There is no strong evidence that

the death penalty makes victims of
child abuse feel good



A Dynamic Model of Trust in Dialogues 223

φ2 Agj

φ1 Agi φ5Agk

φ3

Agk

φ4

Agi

Fig. 2. T 1
Agk

for 1st iteration

φ7 Agi

φ6 Agj

φ9Agjφ8Agk

Fig. 3. T 2
Agk

for 2nd iteration

2ndIteration : Trust Update Rules TR2
Agk

—Agk observes that Agj lacks jus-
tification for φ6 and Ag i lacks justification for φ7. Therefore, Agk observes one
trust update rule LJ w.r.t to both Ag i and Agj .
Preference on Trust Update Rules 	2

Agk(TR)
—Agk observes just one trust

update rule. Therefore, preference over the trust update rules is not applicable
in this iteration.
Trust Update 	2

Agk
—Note that, Agj has an undefeated argument φ9 in this

iteration while Ag i has none. Therefore, Agk prefers Agj to Ag i and itself to Agj
(i.e., 	2

Agk
= Agk�2

Agk
Agi�2

Agk
Agj).

Agk’s Conclusion EAgk —In T 2
Agk

, Agk considers that φ8 defeats φ6, φ9 defeats
φ7, and E2

Agk
is {φ8, φ9}.

This example demonstrates how trust evolves in a dialogue and how such
trust is used as a basis for expressing preferences between the arguments
exchanged in the dialogue. In addition, the example illustrates how trust affects
the justified conclusions obtained from a dialogue.

7 Related Work

Recent works on the integration of trust and argumentation has provided
paradigms for handling inherent uncertainties in the interactions among agents
in multi-agent systems. The importance of relating trust and argumentation
was highlighted in [6]. In [10], arguments are considered as a separate source of
information for trust computation.

There are four works in the literature which are closely related to the research
described in this paper. The first is [12], where the authors propose a model
of argumentation where arguments are related to their sources and a degree
of acceptability is computed on the basis of the trustworthiness degree of the
sources. The model also provides a feedback such that the final quality of the
arguments influences the source evaluation as well. In this approach, different
dimensions of trust are represented as graded beliefs ranging between 0 and 1
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which change across different domains and arguments evaluated by a labelling
algorithm. The labelling algorithm computes a fuzzy set of accepted arguments
whose membership assigns to each argument a degree of acceptability unlike the
extension-based semantics that we apply in our approach.

While related, the work of [12] differs from the current paper in several ways.
First, the approach does not consider the cumulative effect of converging sources
on argument acceptability. We consider this effect in our model by categorising
accepted arguments into two categories namely objectively acceptable and subjec-
tively acceptable extensions, based on the number of sources that have the argu-
ments acceptable in their extensions. Second, unlike our approach, the evaluation
of the trustworthiness degree of a target agent is not induced by the trusting
agent’s argumentation framework, but determined by the internal mechanism of
the trusting agent. Third, [12] considers that in a dialogue, the final acceptability
value of the arguments provides a feedback on the trustworthiness degree in the
information source. In our approach, we observe that trust can change during
the dialogue itself and as such the trust rating of a target participant should be
updated at every stage (iteration) of a dialogue.

The works in [15,17] are closely related to ours. The authors present a frame-
work which considers the source of arguments, and expresses a degree of trust in
them. They define trust-extended argumentation graphs in which each premise,
inference rule and conclusion of an argument is associated with the trustworthi-
ness degree of the source proposing it. In this approach, the trust rating asso-
ciated with the arguments and their sources does not change. In our approach,
trust ratings associated with arguments and sources change between iterations.
This notion of dynamic trust rating is captured by socio-cognitive models of
trust [4] and other computational trust approaches [5,8].

Lastly, [18] models the connection between arguments about the trustwor-
thiness of information sources and the arguments from the sources—as well as
the attacks between the arguments. An information source is introduced into an
argumentation framework as a meta-argument and an attack on the trustwor-
thiness of the source is modelled as an attack on the meta-argument. A source
is considered trustworthy if its meta-argument is accepted. Like us, [18] model
the feedback from sources to arguments and vice-versa. However, like [12], they
do not consider how trust evolves in the course of a dialogue.

8 Conclusions

This paper describes how trust changes during argumentation-based dialogues
and how such change affects the justified conclusion of the dialogue. In particular,
as arguments are exchanged in a dialogue, we formalise a number of trust update
rules that a given participant can take into consideration for updating its trust
relation over other target participants. The first contribution of our approach is
that it captures how trust is dynamically updated in dialectical argumentation
and how trust can affect the set of justified conclusions.

It is worth mentioning that the semantics of abstract argumentation frame-
works have only focused on identifying which points of view are defensible and
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preference-based argumentation frameworks have extended these semantics to
deal with preferences between arguments. However, they do not describe why
one argument should be preferred over another. In our approach, the trust rat-
ing of the sources of arguments provides such a basis.

As future work, we intend to find out how change in trust in dialectical argu-
mentation can affect the goals and argumentative strategies of participants. In
addition, change in trust during a dialogue may require less trusted participants
to present more evidence for their arguments to be believed, while the burden of
proof reduces on more trusted participants. This is also an issue for future work.
Finally, we are investigating an orthogonal approach to modelling changes in
trust within an ongoing dialogue through the use of meta-argumentation. Doing
so will eliminate the need for discrete iterations as used in the current work, and
an empirical evaluation of the two approaches with regard to human intuitions
will allow us to determine which approach is more realistic and useful.
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