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Abstract. In this paper, we propose a fully automatic method for seg-
mentation of left ventricle, right ventricle and myocardium from cardiac
Magnetic Resonance (MR) images using densely connected fully convolu-
tional neural network. Dense Convolutional neural network (DenseNet)
facilitates multi-path flow for gradients between layers during training
by back-propagation and feature propagation. DenseNet also encourages
feature reuse & thus substantially reduces the number of parameters
while maintaining good performance, which is ideal in scenarios with
limited data. The training data was subjected to Fourier analysis and
classical computer vision (CV) techniques for Region of Interest (ROI)
extraction. The parameters of the network were optimized by training
with a dual cost function i.e. weighted cross-entropy and Dice co-efficient.
For the task of automated heart diagnosis, cardiac parameters such as
ejection fraction, volumes of ventricles etc. where calculated from seg-
mentation masks predicted by the network at the end systole and diastole
phases. Further these parameters were used as features to train a Random
forest classifier. On the exclusively held-out test set (10% of training set)
the proposed method for segmentation task achieved a mean dice score
of 0.92, 0.87 and 0.86 for left ventricle, right ventricle and myocardium
respectively. For automated cardiac disease diagnosis, the Random For-
est classifier achieved an accuracy of 90%.
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1 Introduction and Related Work

In clinical practice, MRI is preferred over ultrasound and CT due to its supe-
rior spatial-temporal resolution and non-ionizing radiation. Cardiac parameters
such as left ventricular ejection fraction, volumes of the left ventricle and right
ventricle, myocardial thickness are calculated routinely to diagnose a subject as
healthy or diseased. For the aforementioned reason, segmentation of the struc-
tures such as left ventricle, right ventricle and myocardium from MR images
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becomes a pivotal step. Manual segmentation of the structures from the sur-
rounding tissues is a tedious task and often introduces inter-rater variability.

Convolutional neural networks (CNNs) [1] have been applied to wide variety
of pattern recognition tasks, most common ones are image classification [2–4]
and semantic segmentation using fully convolutional networks (FCN) [5]. CNNs
have also been applied to medical image segmentation and classification [7,8].
In this paper, we propose a CNN based architecture for segmentation of the left
ventricle, right ventricle and myocardium from short-axis view of cardiac MR
images. Our network’s connectivity pattern was inspired from DenseNets [10].
DenseNets connects each layer to every other layer in a feed-forward fashion by
concatenation of all feature outputs. The output of the lth layer is defined as

xl = Hl([xl−1, xl−2, · · · , x0]) (1)

where xl represents the feature maps at the lth layer and [· · · ] represents the
concatenation operation. In our case, H is the layer comprising of Batch Normal-
ization (BN) [22], followed by Exponential Linear Unit (ELU) [23], a convolution
and dropout [21]. This kind of connectivity pattern aids in reuse of features and
allows implicit deep supervision during training. The output dimension of each
layer has k (growth rate parameter) feature maps. The number of feature maps
in DenseNets grow linearly with depth. A Transition Down layer in DenseNets is
introduced for reducing spatial dimension of feature maps which is accomplished
by using a 1× 1 convolution (depth preserving) followed by a 2× 2 max-pooling
operation. A Dense-Block refers to concatenation of new feature maps created
at a given resolution.

2 Our Method

2.1 Data Pre-processing Pipeline

Region of Interest (ROI) Detection. The cardiac MR images of the patient
comprises of the heart and various surrounding structures like the lungs and
diaphragm. Since the task at hand was segmentation of various heart structures,
an automated method for region of interest detection was carried out to delineate
the heart structures from the surrounding tissues. The Fourier based techniques
[13], employ the fact that each slice sequence in time captures one heartbeat.
Fourier analysis was done to extract first harmonic images which captured the
maximal activity at the corresponding heartbeat frequency. Assuming that the
left ventricle approximates a circle, the first harmonic images were subjected to
canny edge detector. The approximate radius & center of the left ventricle were
calculated from the edge maps using circular Hough transform approach [14].
Figure 1 shows the extraction of ROI using the proposed technique.

Data Augmentation. Data augmentation was done to artificially increase the
size of the dataset. Pixel-Spacing information was used to rescale the images to
1 mm spacing. The ROI detection estimates the approximate center of the left
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Fig. 1. Fourier based Region of interest (ROI) detection scheme is based on capturing
pixel regions where there is maximal intensity variation over one full cardiac cycle.
These pixels mostly correspond to ventricular regions of heart. Cropping a patch of fixed
size centered around the left ventricle (LV) leads to removal of irrelevant structures.
The steps involved in ROI detection are (a) Temporal slices, (b) Estimation of first
harmonic image using Fourier Analysis, (c) Canny edge-detection on the harmonic
image, (d) Circular Hough Transform on edge-map to localize LV, (e)–(f) ROI cropping
on the input & ground-truth image

ventricle C, further a patch of size 128 × 128 centered around C was extracted
from the rescaled image. This method helped in alleviating the huge class-
imbalance problem associated with labels for heart structures seen in the full
sized cardiac MR images. In addition, the proposed technique enables the net-
work to precisely learn the fine-grained structures of the heart. Most importantly,
this approach reduces the computation time required for learning the parameters
of network and also during inference. The data augmentation scheme employed
were:

– rotation: random angle between −5 and 5◦ (uniform)
– translation x-axis: random shift between −5 and 5 mm (uniform)
– translation y-axis: random shift between −5 and 5 mm (uniform)
– rescaling: random zoom factor between .6 and 1.4 (uniform)
– horizontal and vertical flipping: yes or no (bernoulli)



Densely Connected Fully Convolutional Network 143

Normalization. Each slice of the patient’s voxel intensities were normalized to
the range of 0–1 using Eq. (2)

Xnorm =
X − Xmin

Xmax − Xmin
(2)

where X is voxel intensity.

2.2 Proposed Network Architecture: Densely Connected Fully
Convolutional Network (DFCN)

Figure 2 illustrates the schematic diagram of our proposed network for segmen-
tation. The down-sampling and up-sampling components adopts the fully con-
volutional DenseNets architecture for semantic segmentation as described in [9].
Each layer in the dense block is sequentially composed of BN-ELU and a 3 × 3
convolution layers. The first Dense-Block was prefixed with a naive version of
Inception module [11] comprising of convolution filters of size 3 × 3, 5 × 5 and
7 × 7. In the down-sampling path, the input to a dense block was concatenated
with its output, leading to a linear growth of the number of feature maps. The
Transition-Down block (TD) consists of BN-ELU a 1×1 convolution and a 2×2
max-pooling layers. The last layer of the down-sampling path is referred to as
Bottleneck.

Fig. 2. Architecture of DFCN.

In the up-sampling path, the input of a Dense-Block is not concatenated with
its output. Transition-Up (TU) block comprises of 3 × 3 transposed convolution
layer with a stride of 2. The output feature maps of the TU block was concate-
nated (via skip connection) with the feature maps corresponding to those DB’s
from down-sampling path. The feature maps of the hindmost up-sampling com-
ponent was convolved with a 1×1 convolution layer followed by a soft-max layer
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to generate the final label map of the segmentation. To prevent over-fitting, a
dropout of 0.2 was implemented following each convolution layer.
Table 1 summaries the individual blocks of our architecture. For the segmenta-
tion task, the proposed network’s architecture is summarized in Table 2. The
number of trainable parameters is about 4×106 (4M) in total, which is far lesser
than number of trainable parameters in U-Net [6] (30M parameters). It was
observed that using exponential linear units (ELUs) instead of rectified linear
units (ReLUs) led to faster convergence.

Table 1. Building blocks of DFCN. From left to right: layer used in the model, Tran-
sition Down (TD) and Transition Up (TU).

Layer
Batch Normalization

Exponential Linear Unit
3× 3 Convolution
Dropout p = 0.2

TD
Batch Normalization

Exponential Linear Unit
1× 1 Convolution
Dropout p = 0.2

2× 2 Max Pooling

TU
3× 3 Transposed

Convolution
stride = 2

Table 2. Architecture details of model used in our experiments. The growth rate
parameter k = 8

DFCN Architecture

Input Size: (128× 128), channels=1
Inception X:

3× 3 (16), 5×5 (4), 7× 7 (4) convolutions, features = 24
Dense Block (3 layers) + Transition Down, features = 48
Dense Block (4 layers) + Transition Down, features = 80
Dense Block (5 layers) + Transition Down, features = 120

BottleNeck (8 layers), features = 176
Transition Up + Dense Block (5 layers), features = 216
TransitionUp + Dense Block (4 layers), features = 144
Transition Up + Dense Block (3 layers), features = 104

1× 1 convolution, channels = 4
Softmax Layer

Number of Convolutional layers : 42
Number of parameters : 374292

2.3 Loss Function

The anatomical structures of interest in the medical images are sparsely repre-
sented in whole volume. This leads to class imbalance in the dataset, thereby
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making it hard for the network to learn subtle structures in the region of inter-
est. In order to address this issue, the loss function used, weighting mechanism
based on class frequencies. A weighted combination of two loss function, namely:-
cross-entropy loss and a loss function based on Dice overlap co-efficient [12] was
used to train the network.

The dice co-efficient is an overlap metric used for assessing the quality of
segmentation maps. The dice coefficient between two binary volumes can be
written as:

DICE =
2
∑N

i pigi
∑N

i p2i +
∑N

i g2i
(3)

where the sums run over the N voxels, of the predicted binary segmentation
volume pi ∈ P and the ground truth binary volume gi ∈ G.

For multi-class problem the dice loss can be written as weighted sum of
Eq. 3. The weights are empirically determined based on the their relative class
frequencies. The total dice loss for multi-class segmentation problem is given in
Eq. (4):

dice loss =
Wclass1DICEclass1 + · · · + WclassNDICEclassN

Wclass1 + · · · + WclassN
(4)

where WclassN is the empirically assigned weight based on its relative frequency,
smaller the frequency higher the assigned weight.

The parameters of the network were optimized so as to minimize the
total loss, Eq. (5).

total loss = λ(cross entropy loss) + γ(1 − dice loss) + L2 loss (5)

where λ and γ are empirically assigned weights to individual losses. During
training it was observed that the Dice loss allowed higher overlap scores than
when trained with the loss function based on the cross entropy loss alone. In this
work we set γ = 0.75 and λ = 0.25.

The proposed model was trained on a batch size of 10 2D-MR images for 200
epochs using ADAM [20] as the optimizer. The learning rate was set to 10−4

and additionally a L2 weight decay of 10−4 was added to the cost function as a
regularizer.

2.4 Post-processing

The results of segmentation predicted by DFCN network were subjected to con-
nected component analysis to remove false positives. The largest the component
(heart structures) was retained, while the rest were discarded.

2.5 Cardiac Disease Diagnosis

To develop an automated cardiac diagnosis system the following 10 attributes
from the training dataset were used:



146 M. Khened et al.

– Ejection fraction of left ventricle and right ventricle
– Volume of the left ventricle at end systole and end diastoles phases
– Volume of the right ventricle at end systole and end diastole phases
– Mass of the myocardium at end diastole and its volume at end systole
– Patient height and weight

Initially, these 11 attributes were calculated from the training set and were used
for training a Random Forest classifier [19]. The proposed Random Forest classi-
fier comprises of 100 trees. On the test set, the segmentation maps predicted from
the trained neural network was used for calculating the above listed 11 cardiac
parameters. These parameters were fed as input to the trained Random Forest
classifier to diagnose the patient as: Dilated cardiomyopathy (DCM), Hyper-
trophic cardiomyopathy (HCM), Myocardial infarction (MNF), Abnormal right
ventricle (ARV) and normal patients (NOR).

3 Experimental Setup and Results

3.1 Dataset and Evaluation Criteria

The network was trained and tested on the ACDC STACOM 2017 challenge
dataset, comprising of 100 patients. The patients were divided into 5 evenly dis-
tributed groups: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), myocardial infarction (MNF), abnormal right ventricle (ARV) and nor-
mal patients (NOR). The end diastolic (ED) and the end systolic (ES) phases
come with a pixel-accurate manual delineation by two independent medical
experts. The dataset was split into 70 for training, 20 for validation and 10
for testing using stratified sampling (strata for sampling is based on the cardiac
disease). In order to gauge performances on the held out test set, we report the
clinical metrics such as the average ejection fraction (EF) error, the average left
ventricle (LV) and right ventricle (RV) systolic and diastolic volume errors, and
the average myocardium (MYO) mass error. For the geometrical metrics, we
report the Dice and the Hausdorff distances for all 3 regions at the ED and ES
phases. For the cardiac disease diagnosis the metrics used was accuracy, precision
and recall.

3.2 Experimental Results

The proposed model was evaluated on the exclusively held-out testing data
(n = 10). Table 3 shows the average dice scores achieved by the model at ED
and ES phases of the heart. The model achieves a relatively higher dice score for
LV when compared to RV and MYO. The proposed method relies on localiza-
tion of the LV and cropping a patch of fixed size from the LV region’s center as
pre-processing step before feeding into the network. So, in cases of abnormally
large RV, the model slightly under-performs when RV region extends beyond
the patch size. The aforementioned reasons & irregular shape of RV when com-
pared to LV leads to a dip in dice score & higher Hausdorff distance of RV.
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Figures 3 and 4 shows the results of segmentation produced by the proposed
network at ED and ES phase of the heart. It was observed that model generates
good segmentations throughout the volume. However due to small structures at
the base and close proximity of valves such as aorta at the apex regions leads to
erroneous segmentation. For example, in Fig. 3(h) myocardium is slightly over-
segmented at the apex region of the heart, while in Fig. 4(b) the model does
some erroneous segmentation in the basal slices near valves of the heart.

The model’s geometric metrics are slightly better at ED phase than at ES
phase, whereas the clinical metrics (Tables 4 and 5) namely the LV & RV volume
error and MYO mass error are relatively better at ES phase.

Table 6 compares the effect of training a network with proposed loss function
as opposed to training with the vanilla cross-entropy. It was observed that the pro-
posed loss function manifested in producing better segmentations when compared
to vanilla cross entropy and thus led to improvement of dice score by 2%.

Table 7 shows the result of the cardiac disease diagnosis on the testing data.
The Random Forest classifier’s accuracy heavily depends on the clinical metrics,
which in-turn depends on the segmentation results of the proposed model.

Table 3. Results of geometrical metrics on the testing dataset.

Cardiac phase

End diastole End systole

Geometric metric LV RV MYO LV RV MYO

Dice score .94 .89 .84 .89 .84 .87

Hausdorff distance 12.13 18.97 17.05 12.04 23.97 12.92

Table 4. Results of clinical metrics on the testing dataset.

Ejection fraction error (%) Left ventricle
volume error (mL)

Right ventricle
volume error (mL)

MYO mass
error (g)

Left ventricle Right ventricle Diastole Systole Diastole Systole Diastole Systole

2 11.1 3.2 1.7 9.7 4 14.1 10.6

Table 5. Results of clinical metrics on the testing dataset.

Clinical

metric

Ejection

fraction (%)

Volume ED (ml) Volume ES (ml) Mass ED (g)

LV RV LV RV LV RV MYO MYO

Correlation

coefficient

0.980 0.889 0.968 0.903 0.983 0.960 0.894 0.859

BIAS 3.77 11.73 9.68 13.26 2.07 −6.98 −4.03 −10.09

LOA [−6.21;

13.75]

[−9.37;

32.83]

[−11.86;

31.22]

[−28.63;

55.15]

[−27.02;

31.16]

[−29.03;

15.07]

[−39.07;

31.01]

[−48.53; 28.35]
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Fig. 3. The figure shows the segmentation results generated by the proposed model
on test-set at ED phase of heart. The columns from left to right indicate: the input
images, segmentations generated by the model and their associated ground-truths. The
rows from top to bottom indicate: short axis slices of the heart at basal, mid and apex.
In all figures the colors red, green and blue indicate RV, MYO and LV respectively.
(Color figure online)

Table 6. Evaluation comparison for the proposed loss function

Average dice score

Heart Structure Left ventricle Right ventricle Myocardium

Proposed loss function .92 .87 .86

Vanilla cross-entropy loss .90 .85 .83



Densely Connected Fully Convolutional Network 149

Table 7. Results of automated cardiac diagnosis on the testing dataset.

Disease → NOR DCM HCM MINF ARV

Recall 1 1 1 1 1

Precision 1 0.67 0.5 1 1

Overall classification accuracy: 0.90

Fig. 4. The figure shows the segmentation results generated by the proposed model on
test-set at ES phase of heart. The columns from left to right indicate: the input images,
segmentations generated by the model and their associated ground-truths. The rows
from top to bottom indicate: short axis slices of the heart at basal, mid and apex. In all
figures the colors red, green and blue indicate RV, MYO and LV respectively. (Color
figure online)
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3.3 Conclusion

We propose a new CNN based method for cardiac MR image segmentation which
is based on DenseNet connectivity pattern and inception modules.

– The proposed architecture showed that higher performance can be achieved
with fewer trainable parameters by properly designing the network connec-
tivity pattern and loss function.

– The customized loss function was observed to perform to better when com-
pared to vanilla cross-entropy loss.

– Replacing ReLUs with ELUs manifested in faster convergence & improved
segmentation metrics.

The proposed model was implemented in Tensorflow [17] and Theano [15,16].
The network was trained on NVIDIA K20c GPU. The entire pipeline (ROI
extraction, prediction and post-processing) takes about 3 s for one patient’s heart
volume comprising of 10 SAX-slices at ED and ES phases of heart.
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