
Chapter 9
Multirate DAE/ODE-Simulation
and Model Order Reduction
for Coupled Field-Circuit Systems

Christoph Hachtel, Johanna Kerler-Back, Andreas Bartel, Michael Günther,
and Tatjana Stykel

Abstract Considering distributed and lumped electromagnetic effects in device si-
mulation yields coupled field-circuit systems, which are high dimensional systems
of partial-differential-algebraic equations. Moreover, such systems exhibit largely
varying time scales and are difficult in the numerical handling. To exploit the diffe-
rent dynamical behaviour of circuit and field equations, we propose multirate time
integration schemes which are extended to differential-algebraic equations. These
schemes are also combined with model reduction of a slow changing subsystem
of magneto-quasistatic equations which significantly decreases the computational
effort.

9.1 Introduction

For the development of modern electrical devices, the influence of electromagnetic
effects has to be considered in the simulation process very often. In general,
this leads to a coupled problem where the subsystems provide a quite different
behaviour. In magneto-quasistatic (MQS) problems, the electromagnetic field is
described by Maxwell’s equation in the magnetic potential formulation

σ ∂A
∂t

+ ∇ × (ν∇ × A) = J in Ω × (0, T ) (9.1)

with appropriate boundary and initial conditions, where Ω is a bounded two-
or three-dimensional domain composed of conducting and nonconducting
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subdomains, A is the magnetic vector potential, ν is the magnetic reluctivity
which may depend nonlinearly on A on the conducting subdomain, σ is the
electric conductivity vanishing on the non-conducting subdomain, and J is the
current density applied by external sources. Using modified nodal analysis, electric
networks with distributedMQS devices can be modelled by a system of differential-
algebraic equations (DAEs)

E(y) d
d t

y = f (t, y, iM), (9.2)

where y contains all node potentials and currents through flux and voltage controlled
elements [1]. These equations are coupled to the MQS equation (9.1) via the vector
of lumped currents iM through the distributed MQS devices. Taking J = χiM with
a divergence-free winding function χ , the coupling equation connecting Maxwell’s
equation (9.1) to the network equation (9.2) is given by

∫
Ω

χT ∂
∂t

A dξ + R iM = u, (9.3)

where R is the resistance matrix and u is the vector of applied voltages.
Often, the network equations provide a faster dynamic behaviour than Maxwell’s

equation for the MQS devices. Such coupled systems can be solved efficiently
by multirate time integration schemes, where the slow changing components
are integrated with large macro-step sizes, while the fast changing components
are integrated with small micro-step sizes. For systems of ordinary differential
equations (ODEs), there are different approaches how the coupling between the
subsystems can be realised, e.g. [2–4].

The novelty of the paper is twofold. First we extend the multirate concept of
Savcenco et al. [4] to systems consisting of a fast changing subsystem of ODEs and
a slow changing subsystem of DAEs. This method can be used for an ODE system
describing an electrical circuit (9.2) after an index reduction and a DAE system
obtained by a spatial discretisation of Maxwell’s equation (9.1). Such a coupled
system has high dimension and is time consuming in simulation. To decrease the
computational effort, model order reduction is combined with the multirate time
integration scheme. This is the second novelty of the paper. For model reduction of
the semidiscretised MQS equations, we use a method which was developed in [5],
this method starts with a full-order DAE system and ends up with a reduced-order
ODE system.

The outline of the paper is as follows: First, we present a balanced truncation
based model order reduction technique for the DAE formulation of a MQS equation
which provides a reduced-ordermodel in ODE form. Next, we introduce a multirate
time integration scheme for a coupled system that consists of a fast changing ODE
subsystem and a slow changing DAE subsystem. Finally, we apply the multirate
time integration scheme combined with model reduction to the MQS equation for
a single-phase 2D transformer embedded in an electrical circuit and present some
results of numerical experiments.
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9.2 Model Order Reduction for Magneto-Quasistatic
Equations

In this section, we briefly discuss model order reduction of the MQS equations. For
more details, we refer to [5]. Applying the finite element discretisation method to
(9.1) and (9.3), we obtain a nonlinear system of DAEs

M d
dt

[
a

iM

]
= F(a)

[
a

iM

]
+ Bu, w = BT

[
a

iM

]
(9.4)

with a singular mass matrix M, a semidiscretized vector of magnetic potentials a,
an input u and an output w = iM . The properties of the involved system matrices
guarantee that (9.4) is of index one and it can be transformed into a system of ODEs

M d
dt

z = F(z)z + Bu, w = −BT M−1F(z)z (9.5)

with a nonsingular matrix M and a corresponding vector of unknowns z = z(t).
Note that system (9.5) has the same input u and the same output w as the DAE
system (9.4) meaning that the input-output relation of (9.4) is preserved in (9.5).

If the magnetic reluctivity is constant on the conducting domain, then F(z) in
(9.5) is independent of z resulting in a linear time-invariant system

Mż = Fz + Bu, w = −BT M−1Fz (9.6)

with the symmetric, positive definite matrices M and −F [5]. These conditions
guarantee that (9.6) is asymptotically stable and passive. For model reduction of
(9.6), we use a balanced truncation approach based on the controllability Gramian
P which is defined as a unique symmetric and positive semidefinite solution to the
generalized Lyapunov equation

FPM + MPF = −BBT . (9.7)

Due to the symmetry conditions, the observability Gramian Q satisfies MQM =
FPF . Let P = SST be a Cholesky factorization of P . We compute the eigenvalue
decomposition

−ST FS = [U1, U0 ] diag(Λ1, Λ0) [U1, U0 ]T ,

where Λ1 and Λ0 are diagonal matrices and Λ1 contains all kept Hankel singular
values and Λ0 all truncated ones. Now, we can determine the reduced-order model
by projection

M̃ ˙̃z = F̃ z̃ + B̃u, w̃ = C̃z̃, (9.8)
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where M̃ = WTMV , F̃ = WTFV , B̃ = WTB and C̃ = −BT M−1FV with
the projection matrices V = SU1Λ

−1/2
1 and W = −M−1FV . One can show that

the reduced matrices M̃ and −F̃ are symmetric, positive definite and C̃ = B̃T

guarantees that system (9.8) is passive. Moreover, we have the L2-norm error bound
for the output

‖w − w̃‖2 ≤ 2 trace(Λ0) ‖u‖2.
For solving the generalized Lyapunov equation (9.7), we can use the low-rank
alternating direction implicit method or (rational) Krylov subspace method [6, 7].
In both methods, we need to solve linear systems of the form (τM + F)v = b for
a vector v with possibly dense M and F . Exploiting the block structure of these
matrices, we can overcome this computational difficulty by solving linear systems
(τM + F)v̂ = b̂ with the sparse matricesM and F as in (9.4) instead [5].

For model reduction of the nonlinear system (9.5), we can use the proper orthog-
onal decomposition technique combined with the discrete empirical interpolation
method (DEIM) for efficient evaluation of the nonlinearity g(z) = F(z)z and matrix
DEIM for fast computation of the Jacobi matrix Jg(z), see [5] for details.

9.3 Multirate Time Integration for ODE/DAE-Systems

Now, we present an efficient time integration scheme to simulate electromagnetic
effects in electrical devices. For theMQS equations, we consider the semidiscretised
DAE formulation (9.4) and set x = [a�, i�M ]�. We claim that the surrounding
electrical circuit can be described by a system of ODEs and its solution is denoted
by y. Then the coupled system of equations reads:

ẏ = f (t, y, x) (9.9)

Mẋ = F(x)x + Bu. (9.10)

The coupling from the ODE to the DAE is realised by the input function u = u(y) in
(9.3). The network ODE provides a faster dynamic behaviour than the DAE model
of Maxwell’s equations. Since the DAE (9.10) is a result from a finite elements
semi-discretisation its dimension is much larger than the dimension of the circuit’s
ODE system. However, the coupled system can be written in the form of one DAE

G(t, ẏ, ẋ, y, x) = 0. (9.11)

For given input u, it was shown in [5] that the DAE (9.10) is of tractability index 1.
Thus the DAE (9.11) is also of index 1 and therefore it can be integrated by an
implicit Runge-Kutta method [8]. We apply the LobattoIIIC method to this DAE



9 Multirate Simulation and MOR for Coupled Field-Circuit Systems 95

with given consistent initial values y(t0) = y0, x(t0) = x0. For the first time step
t0 → t0 + H this reads for the increments k

y
1 , k

y
2 , kx

1 , kx
2 as

G(t0, k
y
1 , kx

1 , y0 + H
2 (k

y
1 − k

y
2 ), x0 + H

2 (kx
1 − kx

2 )) = 0,

G(t0 + H, k
y
2 , kx

2 , y0 + H
2 (k

y
1 + k

y
2 ), x0 + H

2 (kx
1 + kx

2 )) = 0.
(9.12)

System (9.12) has to be solved with respect to k
y
1 , k

y
2 , kx

1 and kx
2 . Then, the

approximations for y and x at t0 + H are given by

yH = y0 + H
2 (k

y

1 + k
y

2 ), (9.13)

xH = x0 + H
2 (kx

1 + kx
2 ) (9.14)

Here, the fast changing ODE subsystem dictates the step size H for the whole
coupled DAE (9.11). This leads to a large computational effort since the whole high
dimensional system has to be integrated with relatively small step sizes to resolve
the network dynamics appropriately and it makes the time domain simulation of the
coupled system inefficient.

A multirate time integration scheme decreases the computational effort and
preserves the accuracy of the numerical approximation. The slow changing sub-
system (9.10) is integrated with a large macro-step size H while the fast changing
subsystem (9.9) is integratedwith a small micro-step size h � H . The crucial part is
how the unknown function values of x at the intermediate time steps are achieved.
For coupled systems of ODEs there are several approaches based upon inter- and
extrapolation of the unknown values [2] or modified Runge-Kutta methods with
inherent time steps for the coupled system [3].

Here we follow the idea of [4] and extend this technique to coupled ODE/DAE
systems. First, the system (9.12) is solved for the overall coupled system (9.11) with
macro-step size H which is chosen according to the system properties of the slow
changing DAE subsystem (9.10). The approximation at t0 + H is only accepted
for the slow changing subsystem according to (9.14) since an approximation with
stepsize H for the fast changing ODE subsystem is inaccurate.

Now, the fast changing ODE subsystem (9.9) is integrated with a smaller micro-
step size h over the time interval [t0, t0+H ]. The system for the increments k

y,h
1 k

y,h
2

of the first micro step t0 → t0 + h reads

k
y,h

1 = f (t0, y0 + h
2 (k

y,h

1 − k
y,h

2 ), x̄1),

k
y,h
2 = f (t0 + h, y0 + h

2 (k
y,h
1 + k

y,h
2 ), x̄2),

where x̄1 and x̄2 denote linearly interpolated values of x0 and xH at time t0 and
t0 + h, respectively. The approximation of y at t0 + h is given by

yh = y0 + h
2 (k

y,h

1 + k
y,h

2 ). (9.15)
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The micro-step size h has to be chosen according to the dynamical properties of the
solution y (fast circuit subsystem). It is also possible to include a step size control by
embedding a lower order method. For LobattoIIIC the lower order approximation
ȳh can be computed by ȳh = y0 + hk

y,h
1 . After a certain number of micro-steps, an

approximation ŷH of y at t0 + H is achieved and the next macro-step t0 + H →
t0 + 2H can be computed with corresponding initial values ŷH and xH as described
above.

In case of a coupled field-circuit system, the fast changing circuit subsystem
(9.9) depends on the current im, which is an algebraic variable of the slow changing
MQS subsystem (9.10). To compute the micro-steps of the fast changing subsystem
(circuit), an interpolation of im is needed. However, on the macro-step scale, the
LobattoIIIC is stiffly accurate, thus the algebraic constraints will be satisfied.

9.4 Simulation of a Coupled Electric Field-Circuit System

We simulate the electromagnetic effects of a single-phase 2D transformer in a cou-
pled field-circuit system. Since the transformer does not react immediately on fast
changes in the input voltage, this system suits for integration by a multirate scheme.
The fast changing subsystem describes the circuit, while the slow subsystem is used
to model the electromagnetic effects of the transformer. Figure 9.1 shows a circuit
diagram of the coupled system, where the electromagnetic effects are represented
by the lumped devices of a transformer in the box.

MQS-Device Modeling We consider the linear MQS equations for a single-phase
2D transformer with an iron core and two coils in the form (9.4). The material
parameters are σ = 5 · 105
−1 m−1, ν1 = 14,872Am/(Vs) = 14,872m/H on the
conducting and ν2 = 1Am/(Vs) = 1m/H on the non-conducting subdomain. The
FEM discretisation is done by the free available software FEniCS.1 To apply a time
domain simulation, the system matrices of the semidiscretised MQS system (9.4) of
dimension nL = 7823 were exported to MATLAB. The input of the subsystem is
given by the voltage u at the primary coil, and the output is the current iM through

Fig. 9.1 Circuit diagram for
no load test of the coupled
systems with lumped
elements for the
electromagnetic effects (box) Uin

G

C

e1

1http://fenicsproject.org.

http://fenicsproject.org
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the primary coil. The reduced model was computed by the balanced truncation
method as described in Sect. 9.2. The dimension of the reduced model is r = 4.

Circuit Modeling and Coupling The electric circuit and the transformer are
coupled by the source coupling approach [9]. That is, add an additional controlled
current source to the circuit subsystem and an additional voltage source to the
transformer’s subsystem. In this case, the circuit is described by the following ODE

C d
dt

e1(t) = G(e1(t) − Uin(t)) − iM(t)

for the node potential e1, while iM denotes the coupling current (as controlled
current source) through the primary coil of the transformer. The circuit parameters
are given by C = 1 nF and G = 10−3 S. The input voltage is given by two
superposed sine functions Uin(t) = 45.5 · 103 sin(900πt) + 103 sin(45000πt), and
the output is e1.

Simulation Results We integrate the system by the multirate LobattoIIIC scheme
over the time interval [0 s, 0.0055 s] as described in Sect. 9.3. Since we are inter-
ested in the influence of the multirate approach,we consider a reference solution that
is computed by the LobattoIIIC method with constant global step size using 2500
time steps. We also integrated the coupled system with constant global step size
using the double amount of time steps. The maximum relative 2-norm error in the
outputs of the subsystems between both solutions was 3.9 · 10−3. So we accepted
the 2500 time step solution as reference solution with a moderate accuracy. The
simulation was run on a Intel Core2 Duo P7450 with 2.13GHz with 4GB RAM.
For the coupled DAE/ODE system of full-order, the computation time was 728.2 s.
Figure 9.2 shows the outputs of the two subsystems: (a) the node potentials e1,
which belongs to the fast changing subsystem (basically we see the superposition
of the sinusoidal oscillations) and (b) the current through the primary coil of the
transformer, which belongs to the slow subsystem.
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Fig. 9.2 Numerical solution of the subsystems. (a) Node potential of e1. (b) Current through the
primary coil
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To investigate the influence of the multirate approach on the full order DAE
system, the time interval is discretised into 250 macro-step and each macro-step
is refined into 10 micro-steps. 250 macro-steps are sufficient to integrate the slow
changing field subsystem and 2500 micro-steps are needed for the fast changing
circuit subsystem to reach an adequate approximation. Here the computation ended
after 77.4 s. We computed the error between the single-rate reference solution and
the multirate approximation separately for both subsystems. For the fast changing
subsystem, the error is computed by the absolute value of the difference between
the node potential of the reference solution and the node potential achieved by the
multirate approximation at each micro-step. For the slow changing subsystem, we
computed the absolute value of the difference in the output of the subsystem iM at
the macro-steps. Figure 9.3 illustrates these errors. In the fast changing subsystem
the error increases during one macro-step since there is an additional error that is
caused by interpolating the values of the slow changing subsystem. At the macro-
steps the subsystems are integrated together, so that the error at these time points is
usually a bit smaller. In the slow subsystem, every second approximation gives better
results while the intermediate approximation is worse. Until now, this phenomena
is not yet understood completely. Since the size of the error is in total small, the
improvement in computation time motivates and justifies the usage of multirate time
integration schemes for these DAEs.

The reduced-order coupled system is integrated by the same multirate method
with the same integration parameters as for the full-order system. The simulation
needed 0.20 s to compute. Figure 9.4 shows the absolute error between both
multirate approximations. The error here is very small and fits to the error bound
results of [5].

Finally, we integrated the coupled system with the reducedMQS subsystem (9.8)
without multirating, so we used the same integration parameters as for the DAE
reference solution. The computation time was 0.13 s, so it was a bit faster than with
multirating. This phenomena can be explained by the ratio between the number of
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Fig. 9.3 Absolute error between multirate and singlerate approximations. (a) Circuit subsystem.
(b) Electromagnetic subsystem
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Fig. 9.4 Absolute errors in the subsystems resulting from model reduction of theMQS subsystem.
(a) Circuit subsystem. (b) Electromagnetic subsystem

fast and slow changing variables. In our case, the full-order system has a ratio of
1 : 7821, while for the reduced-order system, it is 1 : 4.

This ratio is an indicator for the gain of efficiency between the singlerate and
multirate approximation. If there is a large number of slow changing variables
compared to a small number of fast changing variables, a multirate time integration
scheme saves many function evaluation of the large dimensional slow subsystem.
However, the implementation of a multirate scheme is more complex than for a
classical singlerate scheme. So if the dimension of the slow changing subsystem is
only a little bit larger than the dimension of the fast changing subsystem, a multirate
scheme can be even less efficient than the corresponding singlerate scheme.

9.5 Conclusions

We combined two approaches for an efficient simulation of coupled circuit-field sys-
tems. By extending multirate time integration to DAE systems, these schemes can
be applied to a larger class of problems to reduce the computation time significantly.
Model order reduction forMQS equations decreases further the computational effort
and the numerical handling is much easier since we only have to deal with a system
of ODEs. Both approaches and their combination provide reliable approximations
with small errors. We pointed out that the efficiency of multirate time integration
schemes strongly depends on the ratio between the number of fast and slow
changing variables. The combination of model order reduction and multirate time
integration is advisable for systems where the dimension of the reduced order
subsystem remains high compared to the dimension of the fast changing subsystem.
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