
Chapter 5
Electro-Thermal Simulations
with Skin-Layers and Contacts
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Abstract We show a coupled electro-thermal simulation of a large, complex
industrial device that yields a steady state temperature distribution with only small
deviations from measurements. Firstly, the Ohmic losses in the conductors are
calculated by a FEM-solver for the time-harmonic full Maxwell equations. To
this end, we introduce a model to account for electric contact resistances, and a
gradient based error indicator for adaptive mesh refinement. Secondly, the steady
state temperature distribution is computed by a commercial CFD solver, taking into
account convective and radiative cooling to balance the Ohmic heating. Theoretical
arguments and simulation results hint that good predictions of total Ohmic losses
and temperature distributions can be obtained on comparably coarse meshes which
do not fully resolve the skin layer.

5.1 Background

Industrial power devices are usually large and geometrically complex. Examples of
such devices are transformers or circuit breakers (CB). During nominal operation,
the alternating current produces Ohmic losses that heat up the device. Losses that
occur at the connections of the parts due to contact resistances sometimes amount up
to 50% of all Ohmic losses. The devices are cooled by convection and by radiation.
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In order to prevent damage, the temperature needs to be kept below device-specific
limits everywhere. The experimental determination of the temperature distribution
is possible but expensive. Simulations are a much cheaper and more enlightening
alternative [1].

To do that, one first needs to calculate the Ohmic loss distribution in the device.
Thereby, contact resistances that occur at the mentioned electrical connections
cannot be neglected. Moreover, the skin layers are of particular concern as their
thickness may be orders of magnitude smaller than the dimension of the device and
therefore require—at first sight—a prohibitive number of mesh elements to resolve
them.

In a former research project, we developed a time-harmonic A − ϕ based full
Maxwell solver in Coulomb gauge that is stable in the low frequency limit [2]. We
use this existing solver for the electromagnetic part of the coupled electro-thermal
simulation. We develop models for the electrical contacts and for adaptive mesh
refinement, and implement them there. They are introduced in Sects. 5.2 and 5.3,
respectively. In Sect. 5.4, we analyze the convergence of the predictions of the
Ohmic losses and the steady state temperature distribution under mesh refinement.

The steady state temperature distribution is calculated by using the commercial
CFD solver ANSYS Fluent [3]. In Sect. 5.5 we show an electro-thermal simulation
of a CB and compare the results with measurements.

5.2 Electric Contacts

Electric contact resistances (ECR) are a consequence of the roughness of the
contacting surfaces [4]. As the actual thin layer with increased resistance and strong
voltage drop cannot be resolved by the mesh, we introduce an actual jump in the
voltage. We model this jump by adding to the initial formulation [2] a function s in
the electric scalar potential ϕ = ϕ̂ + s which is discontinuous at the surface Γ of the
contact. Herein, ϕ̂ represents the continuous part of the potential, see Fig. 5.1. The
test function for the scalar potential is modified analogously as ϕ′ = ϕ̂′ + s′. Since
the total current is divergence-free, we find

0 =
∫

V C
Γ

divjt s′ dV �⇒ 0 =
∫

∂V C
Γ

jt · n s′ dS −
∫

V C
Γ

jt grad s′ dV.

Herein, V C
Γ is an adjacent volume inside the conductor on the side of the disconti-

nuity where s and s′ have support, shaded in blue in Fig. 5.1. The jump occurs only
at the contact surface Γ . In the boundary integral, we neglect currents over the part
of ∂V C

Γ which coincides with the boundary of the conductor, and note that s′ = 0
on the part inside the conductor away from the contact. Hence, only the part over
Γ remains. There we assume that the electric field at the contact with very small
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Fig. 5.1 FE approach for the electric contact

thickness d is given by E = s
d

n. Then it follows

0 =
∫

Γ

(σΓ + iωεΓ )
s

d
s′ dS +

∫
V C

Γ

(σ +iωε)(grad(ϕ̂ + s) + iωA) grad s′ dV.

Herein, σ is the electric conductivity, ε the permittivity, σΓ , εΓ the respective
quantities inside the electrical contact, ω the angular frequency, and A the magnetic
vector potential. Since we aim to compute electro-thermal phenomena at low
frequencies, we neglect all displacement currents. Introducing the contact resistance
RΓ = d/(|Γ |σΓ ), where |Γ | denotes the area of Γ , we obtain the implemented
formulation [5]:

0 = 1

RΓ |Γ |
∫

Γ

s s′ dS +
∫

V C
Γ

σ (grad(ϕ̂ + s) + iωA) grad s′ dV.

We have tested the formulation with several configurations, see Fig. 5.2.
We plan to validate the formulation in the future by comparison of simulations

and experiments of industrial power devices.
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Fig. 5.2 Left: Current density in a bar with an ECR in the center at 50 Hz. Right: Current density
in a setup with two ECRs R1/R2 = 2 at 0 Hz ⇒ I1/I2 = 1/2

5.3 Adaptive Refinement for Ohmic Losses

We perform adaptive mesh refinement to reduce the error in the calculated Ohmic
losses. The mesh refinement is adaptive in the sense that we refine the mesh where
we expect the biggest error in the Ohmic losses. Hence, an estimate or at least an
indication of this error has to be computed. One could use a rigorous error estimator,
e.g. as presented in [6–8]. Instead, we choose to develop an ad-hoc error indicator.
We will refine all conductor cells with an error indicator greater than a threshold
which is chosen such that the number of cells of the final mesh does not exceed a
specified hard limit. Our error indicator ηT for cell T is defined as the maximum of
a gradient indicator and a skin indicator: ηT = max(ηT ,g, ηT ,s).

The gradient indicator ηT ,g = |T |√qT /σT maxT ′∈N(T ) ||jT −jT ′ ||2 approximates
the error in the Ohmic losses in cell T using loss density q , conductivity σ , and
current density j on neighboring conductor cells T ′ ∈ N(T ).

If there is only one cell across the conductor thickness, neighboring conductor
cells will have very similar values, hence ηT ,g will be very small, although there
could be a very fine skin layer and strong under-resolution of the loss distribution.
In these cases, the error is strongly underestimated by ηT ,g. This issue is overcome
by the skin indicator ηT ,s = qT |T | (1 − e−hT /δT

)
which approximates the value that

ηT ,g would take if the actual current density in T is assumed to decay to a fictitious
neighboring conductor cell like in a flat skin layer, using diameter hT , skin depth
δT = √

2/(μT σT ω) and permeabilityμ of cell T . Therefore, ηT ,s is consistent with
ηT ,g in terms of unit and scaling, and taking the larger of the two ensures that skin
layers are robustly detected also on coarse meshes.

We use the bar with ECR from Fig. 5.2 (left) as a test case. Figure 5.3 shows the
error indicator per cell for a coarse mesh. One can see that it reliably detects cells at
the ECR, next to edges and to surfaces.

Using the cell-wise error indicator ηT we can also construct an error indicator ηP

for the total losses on some part P of the conductor: η2P = ∑
T ⊂P η2T . As we show

in Sect. 5.4.2 by comparing to a solution on a much finer mesh, this error indicator
for parts corresponds well to the actual errors.



5 Electro-Thermal Simulations with Skin-Layers and Contacts 47

Fig. 5.3 Cell-wise error indicator ηT in Watt

5.4 Approximation Quality on Coarse Meshes

The Wiedemann-Franz law states that good electrical conductors are also good
thermal conductors. Therefore, any non-uniform distribution of loss densities in a
part made of a good electric conductor can be expected to be strongly smoothed out
in the steady state temperature profile. The temperature can still differ significantly
between parts, especially if they are separated by thermal contact resistances.
Consequently, we can expect that the actual skin layer does not need to be resolved
for the prediction of the steady state temperature distribution, as long as the total
losses per part are well approximated.

5.4.1 Theory

A good approximation of the total losses per part can be expected from theory [9],
as we will show below for a simplified setting. We consider the A-based variational
formulation of the eddy-current problem in a simply connected domain Ω :

a(A, A′) :=
∫

Ω

μ−1curl A · curl A′dV + iω
∫

Ω

σA · A′dV =
∫

Ω

jG · A′dV (5.1)

with boundary condition A × n = 0. Herein, jG denotes the prescribed solenoidal
generator current density. We solve the problem (5.1) on the quotient space H =
H0(curl,Ω)/ {A ∈ H0(curl,Ω) : ||A||E = 0}, where ||A||E = |a(A, A)|1/2 is the
energy norm. Thus, the sesqui-linear form a satisfies the inf-sup condition. The total
Ohmic losses on a part P ⊂ Ω is the continuously differentiable output functional
F(A) := ω2

∫
P

σ |A|2dV . We consider a Galerkin discretization of (5.1) on the
space of first order edge elementsRh, for some mesh size h, and let Ah be a solution
of it.
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Because the output functional is differentiable, we can write the output error as

|F(Ah) − F(A)| = | 〈F ′(A), Ah − A
〉 | + R(Ah, A)

where the remainder R can be bounded as |R(Ah, A)| ≤ C||A − Ah||2E . By
considering the dual problem in H : a(A′, w) = 〈

F ′(A), A′〉, where w ∈ H is the
dual solution, and using Galerkin orthogonality with an arbitrary A′

h ∈ Rh, we can
further estimate the output error as

|F(Ah) − F(A)| = a(Ah − A, w − A′
h) + R(Ah, A)

≤ Ca ||Ah − A||E inf
A′

h∈Rh

||w − A′
h||E + C||A − Ah||2E, (5.2)

where Ca is the continuity constant of the sesqui-linear form a. While it is clear that
||Ah −A||E ≤ Ch if A is sufficiently smooth, the duality term infA′

h∈Rh
||w−A′

h||E
requires further attention. Its behavior depends on the regularity of the dual solution
w which in turn depends on the geometry of the conductor(s). If w ∈ Hs(Ω) and
curl w ∈ Hs(Ω) for 1/2 < s ≤ 1, then using local interpolation estimates we
obtain infA′

h∈Rh
||w−A′

h||E ≤ Chs for shape-regular sequences of meshes. Inserting

this into eq. (5.2), we obtain |F(Ah) − F(A)| ≤ Ch1+s although we have only
||A − Ah||E ≤ Ch for first order edge elements.

In conclusion: While the local error of the current density iωσA converges with
first order in h, the error of the total losses per part converges with up to second
order in h, provided the dual solution is sufficiently smooth.

5.4.2 Numerical Experiments

In order to further analyze the mesh quality required for electro-thermal simulations,
we perform simulations on a series of meshes for the setup depicted in Fig. 5.4. A
total current of 1250 A (peak) at 50 Hz is prescribed in the bar, which will induce an
eddy current in the plate. Both parts are made of steel with a relative permeability of
μR = 250 (linear) and a conductivity of σ = 5 · 106 S/m. The resulting skin depth
δ is 2 mm. As reference values, we use values on a much finer mesh.

The relative errors in the Ohmic losses per part are plotted against the ratio of
mesh cell size h (on the surface) over the skin depth δ in Fig. 5.5. It can be seen that
an acceptable error of less than 4% in the bar can be reached when the cell size is
twice as big as the skin depth, despite the fact that the Ohmic loss distribution shown
in Fig. 5.4 is clearly a very bad approximation of reality. However, in the plate where
the current is not prescribed but induced, the mesh needs to be about 3 times finer
to reach the same level of accuracy. Note that on the two coarsest meshes, we have
only one element in plate thickness which has to describe the current flowing in
opposite directions on either side of the plate. We observe second order convergence
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Fig. 5.4 Ohmic loss density on coarsest mesh of bar (10 by 10 by 50 mm, above) and plate (20 by
20 by 2 mm, below), 10 mm apart, two different color scales
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Fig. 5.5 Relative errors in Ohmic losses per part

of the errors predicted by theory in Sect. 5.4.1. Also, the error indicator per part ηP

introduced in Sect. 5.3 predicts the actual error well.
In order to assess the required mesh quality for the loss computation of the

coupled electro-thermal problem, we solve a stationary heat equation on each part
with heat transfer boundary conditions on their boundary, using a heat transfer
coefficient of 1000W/(m2K). The relative errors in the maximum temperature rise
on the surface of the respective parts are plotted against the ratio of mesh cell size
h on the surface and skin depth δ in Fig. 5.6. By comparison to Fig. 5.5, it can
be seen that the relative error of the temperature rise is essentially the same as the
relative error of the Ohmic losses per part.We can conclude that even for iron, which
is a relatively bad thermal conductor compared to usual materials like aluminum
or copper, it is not necessary to fully resolve the actual current distribution. All
that counts is the precision of the computation of the total losses, which confirms
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Fig. 5.6 Relative errors in
maximum surface
temperature rise per part
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our initial expectation. However, if transient effects come into play rather than
considering only the steady state, like e.g. for inductive hardening, resolution of the
local distribution of the Ohmic losses is crucial. In these cases, it is recommended
to consider adapted methods like the one presented in [10].

5.5 Electro-Thermal Simulation

If no electro-magnetic material parameter depends on temperature, a one-way
coupling is exact: First, we perform a full Maxwell simulation to obtain the Ohmic
losses. Then, we perform a simulation of convective and radiative cooling in
ANSYS Fluent [3] with the Ohmic losses as source terms until a steady state is
reached. Electric and thermal contact resistances are included, both of which are
equally important. The mesh is different from the electric computation, and resolves
thermal boundary layers. The Ohmic losses are interpolated from the electric to the
thermal mesh.

We apply our simulation procedure to predict the steady temperature distribution
in a CB at nominal operation. The CB is 7.5 m long, with wall thicknesses and skin
depths in the order of 10 mm. The streamlines inside the CB are depicted in Fig. 5.7.
They show the natural convection.

In Fig. 5.8 we compare the simulation with an experiment by plotting the mean
temperature rise along both the inner conductor part and the enclosure. Simulation
and experiment agree within 3 K, although there is often only one mesh cell in
thickness direction. This again confirms that it is not necessary to fully resolve skin
layers to obtain accurate predictions of steady state temperatures.
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Fig. 5.7 Streamlines in CB
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Fig. 5.8 Temperature rise along CB
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5.6 Conclusions

We have shown that in order to obtain reliable predictions of temperature distri-
butions in a power device, it is necessary to include electric and thermal contact
resistances. However, it is sufficient to accurately predict the total Ohmic losses per
part of the device, without necessarily resolving the skin layers, at least in steady
state. In order to reach this goal, the required mesh resolution can in general be
attained by moderate adaptive refinement, due to the quadratic convergence of the
total losses per part. The error indicator, which is used for the refinement procedure,
predicts the relative errors in the Ohmic losses accurately.
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