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Element Models
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Gersem

Abstract The functional behavior of an electronic device is represented by
an idealized circuit. Undesired parasitic interactions, such as electromagnetic-
compatibility (EMC) problems, are modeled by additional lumped elements in
the circuit. Device design parameters, e.g. partial inductances, must be optimized
to improve EMC. This paper presents a sensitivity analysis method which relates
changes to circuit parameters to changes to 3D model parameters.

4.1 Introduction

The increasing integration density in modern electromechanical systems requires
considering electromagnetic-compatibility (EMC) issues at an early design stage in
order to avoid costly changes later on. Historically, the electronic behavior of the
system is modeled using a purely functional electronic circuit. Due to undesired
parasitic effects, the physical realization behaves differently than the idealized
model. In [1, 2], a method was proposed for automating the extraction of lumped
elements between a given set of terminals from a 3D finite-element (FE) model. This
approach is comparable to the more commonmodel order reduction (MOR) [3] and
partial element equivalent circuit (PEEC) [4, 5] techniques but has as a benefit that
it preserves interpretability, as the reduced model still embeds the functional aspects
of the circuit and merely adds additional lumped elements accounting for parasitics.
This enables engineers to use their intuition in designing mitigation strategies.
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The sensitivity of the EMC performance on the circuit parameters is easily
calculated. Once this is known, the question arises how to adapt the physical
realization model to improve the EMC. To guide this adaptation, we propose a
method that visualizes all parasitic dependencies and thus allows to make informed
decisions on geometry modifications.

Section 4.2 first recapitulates the circuit parameter extraction approach. This is
followed by the derivation of the sensitivity analysis using an adjoint technique
[6]. It will be discussed how changes in geometry or material parameters relate to
changes in the extracted circuit parameters, and it is shown how sensitivity maps are
generated. Academic and industrial example applications are presented in Sect. 4.3.

4.2 Extraction and Sensitivity Analysis of Circuit Parameters

A robust extraction of an equivalent electric circuit (EEC) is achieved if ohmic losses
are extracted in the stationary-current approximation to Maxwell’s equations, static
capacitances in the electrostatic approximation [7] and inductances and coupling
factors in Darwin’s approximation [8]. This section briefly recapitulates these three
extraction approaches and then derives the sensitivity analysis for each of them. The
sensitivity analysis is achieved by computing the derivatives of the lumped element
parameters in the EEC to all model geometry and material parameters. The results
are presented in the form of sensitivity maps. The adjoint variable method [6] allows
for an efficient computation of the derivative of an extracted circuit parameter with
respect to all model parameters.

4.2.1 Partial Inductances

Darwin’s approximation is used to extract partial inductances and equivalent
partial capacitances as it describes capacitive as well as inductive behavior [9]. It
provides an approximation to Maxwell’s equations that excludes wave propagation
phenomena and naturally confirms to a network description [7].

The formulation reads
(
S + s2T

)
x = y , (4.1)

where

S =
(

ε� 0

0 0

)
; T =

(
−ε2μ ε∇·
ε∇ −∇ × μ−1∇×

)
; x =

(
s2ϕ

Eσ

)
; y = s3

(
εg

−∇μ−1g

)
,

ε is the permittivity, μ the permeability, s = iω the Laplace variable, ω the angular
frequency, ϕ the electric scalar potential, Eσ the electric field strength related to
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currents within the model and g an auxiliary field calculated a-priori by solving a
magnetostatic problem for the external currents. A derivation and more detailed
discussion of this formulation can be found in [10] and [2]. The formulation is
discretized by the FE method. For conciseness, the discrete counterpart of (4.1)
keeps the same notation. Hence, x now collects the degrees of freedom (DOFs) for
s2ϕ and Eσ .

Once the field solution x to (4.1) is known for as many orthogonal excitations
as there are partial inductances (collected by the extended current matrix I), the
impedance matrix Z is calculated by:

Z(s) = s−2 (Px) I−1 . (4.2)

The projection operator P links the electrical scalar potential ϕ at the FE DOFs to
the potentials at the vertices in the EEC. The network equivalent for the impedance
matrix Z is given by a parallel connection of a capacitance and an inductance:

Z(s) = ((sL)−1 + sC)−1 . (4.3)

By computing the impedance matrices at multiple frequencies well below the first
resonance of the system, a least squares fit leads to the inductance.

In order to calculate the sensitivities of the inductances, we first have to calculate
the change of the impedance Z with regards to a model parameter pi :

dZ
dpi

=
(

∂Z
∂x

)T dx
dpi

. (4.4)

The second factor is the change of the solution vector x by the model parameter pi

and can be obtained using Eq. (4.1):

dx
dpi

=
(
S + s2T

)−1
[
dy
dpi

−
(
dS
dpi

+ s2
dT
dpi

)
x
]

. (4.5)

We use the adjoint technique, which requires the so-called adjoint solution λ which
needs to be computed only once for each EEC parameter according to

(
S + s2T

)T

λ = ∂Z
∂x

. (4.6)

The sensitivities are then

dZ
dpi

= λT

[
dy
dpi

−
(
dS
dpi

+ s2
dT
dpi

)
x
]

. (4.7)

The adjoint technique avoids the costly matrix inversion in Eq. (4.5). The matrices
dS/dpi and dT/dpi have to be computed for every parameter but are very sparse
and can thus be assembled efficiently. This overall method is therefore a fast and
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efficient way to compute the sensitivities of a few quantities with respect to a much
larger number of 3D model parameters.

4.2.2 Capacitances and Conductances

The extraction of capacitances C and conductances G from the field model is
accomplished by matching the electric energy WEEC = W3D and the power loss
PEEC = P3D between circuit and field model:

1
2C U2 = 1

2

∫
(ε ∇ϕ) · (∇ϕ) dV = 1

2xε
TLεxε ; (4.8)

G U2 =
∫

(σ ∇ϕ) · (∇ϕ) dV = xσ
TLσ xσ , (4.9)

where U is the potential difference applied between the nodes in the EEC and
accordingly on the inner boundaries of the field model. The discrete Laplacians
Lε and Lσ correspond to the electrostatic and stationary-current formulations
respectively, and xε and xσ are the solutions of the discrete Laplace problems
accomplished with the above mentioned imprinted potential boundary conditions.

Applying the adjoint sensitivity method [6] to (4.8) or (4.9), the change of a
circuit parameter Q = (C,G) to a model parameter p reads:

dQ

dp
= 2xTε,σ

(
dbε,σ

dp
− dLε,σ

dp
xε,σ

)
+ xTε,σ

dLε,σ

dp
xε,σ = xTε,σ

dLε,σ

dp
xε,σ ,

(4.10)

where dbε,σ

dp denotes the change of the boundary condition terms with the imprinted
potentials. In contrast to determining the sensitivities of the partial inductances,
here, the adjoint solution does not have to be computed explicitly. As can be shown,
the first term between the brackets in (4.10) does not contribute to the sensitivity, as
the imprinted boundary potentials are independent from the geometric changes.

4.3 Application Examples

4.3.1 Plate Capacitor

An idealized plate capacitor with relative permittivity εr , surface area S and distance
d between both plates, is considered. The analytic solutions for the capacitance and
for its sensitivity to d are:

Canalytic =ε0εr
S

d
; dCanalytic

dd
= −ε0εr

S

d2
. (4.11)
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Fig. 4.1 Sensitivity maps generated by calculating the geometric sensitivity for predefined
partitioned surface parts with respect to their normal vectors. The assigned sensitivities are
represented by a color scale on the partitioned parts. (a) Sensitivity map for a plate capacitor, with
surface area S = 25 cm2, plate distance d = 4.2 cm and relative dielectric permittivity between
the plates εr = 80. Also shown is the potential distribution between the plates. (b) Sensitivity map
of a conductive ring with ring diameter D = 200mm and wire diameter d = 10mm

The application of the described method to the 3D field model shown in Fig. 4.1a
gives the results tabulated below. Magnetic boundaries were put around the capac-
itor, such that the electric field between the plates is perfectly perpendicular to the
plates, which represents the “idealized” plate capacitor.

Ccalculated Canalytic dCadjoint/dd dCanalytic/dd

42.16280 pF 42.16280 pF −10.06852 pF
cm −10.03876 pF

cm

4.3.2 Conducting Wire

To test the extraction method, a conducting ring with ring diameterD, wire diameter
d and in a medium with permeability μ is considered (Fig. 4.1b). The analytic
solutions for the self inductance Lanalytic[11] and its derivative with respect to d

are

Lanalytic = 1
2μD

(
ln

8D

d
− 2

)
; dLanalytic

dd
= −μ

(
D

2d

)
. (4.12)

The mesh faces of the ring (Fig. 4.1b) are displaced along their face normals. Note
that the analytic solution is derived for a ring in free space whilst magnetic boundary
conditions are used in the numerical experiment, with a distance to the object of four
times the ring’s diameter.

Lcalculated Lanalytic dLadjoint/dd dLanalytic/dd

384.4 nH 386.0 nH −25.29 nH
mm −25.13 nH

mm
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4.3.3 Low-Pass π -Filter

The 3Dmodel of the π-filter in Fig. 4.3 contains a coil that stands for the inductance
and the two bails that represent the inductance of the capacitor. The manually
created functional circuit is presented in Fig. 4.2b and the extracted EEC is shown
in Fig. 4.2a. Figure 4.2c shows the network simulation results of the idealized
functional low-pass filter compared to the results for the EEC. The EEC behavior is
non-ideal at frequencies above 5MHz. A sensitivity analysis on the network level

(a) (b)

(c)

Fig. 4.2 (a) Extracted EEC (b) Idealized functional π-filter circuit (c) Filter transmission S21(f ):
Idealized circuit (b) (dashed green curve). EEC of (a) (red curve). EEC without coupling between
the capacitors (blue curve)
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Fig. 4.3 Realization of a π-filter (only conducting parts are shown). Sensitivity map of the
inductive coupling factor dk/dpi between the modeled inductance of both capacitors with respect
to the surface element normal vectors pi . The values of the sensitivities are represented on the
surface parts using a color scale

performed for the extracted EEC shows that the coupling between inductances L1
and L2 is responsible for most of the undesired high-frequency behavior. To verify
this, the coupling factor k21 between the inductances L1 and L2 was set to 0. The
corresponding result is compared to the raw EEC S-parameter in Fig. 4.2c. This
change improves the filter performance by more than 20 dB.

Knowing that the coupling between the two bails improves the filter performance,
its geometric sensitivity map is calculated by applying the adjoint sensitivity
method. The geometric sensitivity map (Fig. 4.3) indicates that moving the surface
of the bails to the outside and making the embedded area smaller decreases the
coupling factor, whereas moving the surfaces to the inside increases the coupling,
as expected.

4.4 Conclusions

In this paper, we provide an extension to a physically interpretable, reduced
equivalent electric circuit extraction approach (as described in [1] and [2]). We
provide the sensitivity analysis for passive lumped elements by using the adjoint
technique. This method allows for an efficient computation of the derivatives of a
lumped element parameter with regards to a large number of model parameters.
The exemplary validation of the method presents interpretable sensitivity maps that
show the sensitivity of a selected circuit parameter visualized on the geometry.

Acknowledgements The π-filter model used in Sect. 4.3.3 was kindly provided by Dr. Christoph
Keller, Robert Bosch GmbH (CR/ARE1).
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