
Chapter 18
Sparse Model Order Reduction
for Electro-Thermal Problems
with Many Inputs

Nicodemus Banagaaya, Lihong Feng, Wim Schoenmaker, Peter Meuris,
Renaud Gillon, and Peter Benner

Abstract Recently, the block-diagonal structured model order reduction method
for electro-thermal coupled problems with many inputs (BDSM-ET) was proposed
in Banagaaya et al. (Model order reduction for nanoelectronics coupled problems
with many inputs. In: Proceedings 2016 design, automation & test in Europe
conference & exhibition, DATE 2016, Dresden, March 14–16, pp 313–318, 2016).
After splitting the electro-thermal (ET) coupled problems into electrical and thermal
subsystems, the BDSM-ET method reduces both subsystems separately, using
Gaussian elimination and the block-diagonal structured MOR (BDSM) method,
respectively. However, the reduced electrical subsystem has dense matrices and the
nonlinear part of the reduced-order thermal subsystem is computationally expensive.
We propose a modified BDSM-ET method which leads to sparser reduced-order
models (ROMs) for both the electrical and thermal subsystems. Simulation of a very
large-scale model with up to one million state variables shows that the proposed
method achieves significant speed-up as compared with the BDSM-ET method.
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18.1 Introduction

In several computational nanoelectronic problems, the spatial discretization of ET
coupled problems leads to a nonlinear quadratic dynamical system of the following
form:

Ex′(t) = Ax(t) + x(t)T Fx(t) + Bu(t), x(0) = x0, (18.1a)

y(t) = Cx(t) + Du(t), (18.1b)

where E ∈ R
n×n is singular, indicating that (18.1) is a system of differential-

algebraic equations (DAEs), and A ∈ R
n×n, B ∈ R

n×m, C ∈ R
�×n, D ∈ R

�×m,

while F is a 3-way tensor. n is called the order of the system, which is usually
large. A tensor is a multi-way array and its order is the number of dimensions, also
known as ways or modes, see [7]. Here, F = (

FT
1 , . . . ,FT

n

)T ∈ R
n×n×n is a 3-

way tensor of n matrices Fi ∈ R
n×n. Each element in x(t)T Fx(t) ∈ R

n is a scalar
x(t)T Fix(t) ∈ R, i = 1, . . . , n. The state vector x(t) = (xv(t)

T , xT (t)T )T ∈ R
n

includes the nodal voltages xv(t) ∈ R
nv , and the nodal temperatures xT (t) ∈ R

nT .

u(t) ∈ R
m and y(t) ∈ R

� are the inputs (excitations) and the desired outputs
(observations), respectively. We assume system (18.1) to be solvable, i.e., the matrix
pencil λE − A is regular for all λ ∈ C. In practice, more realistic models have very
large dimension n compared to the number of inputs m and outputs �. Despite the
ever increasing computational power, simulation of these systems in acceptable time
is still challenging. MOR aims to reduce the computational burden by generating
ROMs that are faster and cheaper to simulate, yet accurately represent the original
large-scale system behavior. MOR replaces (18.1) by a ROM

Erx′
r (t) = Arxr (t) + xr (t)

T Frxr (t) + Bru(t), xr (0) = xr0, (18.2a)

yr(t) = Crxr (t) + Dru(t), (18.2b)

where Er ,Ar ∈ R
r×r , Br ∈ R

r×m, Cr ∈ R
�×r ,Dr = D and Fr ∈ R

r×r×r .

xr (t) ∈ R
r , r � n, is the reduced state vector and r is the order of the ROM.

A good ROM should have small approximation error ‖y − yr‖ in a suitable norm
‖ · ‖ for every arbitrary input u(t). There exist many MOR methods for nonlinear
(quadratic) systems such as the snapshot and implicit moment-matching methods,
see [4] for a general discussion of MOR methods. The snapshot methods are not
flexible for input-dependent systems as considered in this work, hence, we consider
input-independent MOR methods, such as implicit moment-matching methods [4].
However, it is well known that as the number of inputs increases, the efficiency
of moment-matching MOR methods decreases, since the size of the ROM is
proportional to the number of inputs. Moreover, they cannot be applied directly
to quadratic DAEs [3]. In general, models with numerous inputs and outputs are
challenging for MOR, and most MOR methods produce large and dense ROMs for
such systems. In [2], the BDSM-ET and SIP-ET methods for ET coupled problems
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with many inputs are proposed to overcome this problem. The BDSM-ET method is
more accurate and leads to much smaller ROMs than the SIP-ET method. However,
the BDSM-ET ROMs have dense matrices in the electrical subsystem and a dense
3-way tensor in the thermal subsystem, which restricts their applicability to small
and medium sized ET systems. In this paper, we modify the BDSM-ET method
proposed in [2]. In Sect. 18.2, we review the BDSM-ET method. Section 18.3
introduces the proposed modification of the BDSM-ET methods. Finally, we present
numerical experiments and conclusions. For simplicity, we remove (t) for time
dependent variables in the next sections.

18.2 BDSM-ET Method for ET Coupled Problems with
Many Inputs

In this section, we discuss the BDSM-ET method proposed in [2]. We consider a
structure arising naturally in nanoelectronic coupled problems with many inputs,
taking the form of (18.1) with system matrices and tensor structures as below,

E =
(

0 0

0 ET

)

, A =
(
Av 0

0 AT

)

, B =
(
Bv 0

0 BT

)

, C =
(
Cv CT

)
, D =

(
Dv DT

)
,

F = (
0, . . . , 0,FT

nv+1, . . . ,FT
n

)T
, Fi =

(
Fvi 0

0 0

)

∈ R
n×n, i = nv + 1, . . . , n, u =

(
uv

uT

)

,

with Av ∈ R
nv×nv , Bv ∈ R

nv×m̃, ET ∈ R
nT ×nT , AT ∈ R

nT ×nT , BT ∈ R
nT ×m̃,

Cv ∈ R
�×nv , Fvi ∈ R

nv×nv CT ∈ R
�×nT , Dv ∈ R

�×m̃, DT ∈ R
�×m̃, and uv,uT ∈

R
m̃, m̃ = m/2. Thus, substituting the above matrices and the tensor F into (18.1)

leads to an equivalent decoupled system given by

Avxv = −Bvuv, (18.3a)

ET x′
T = AT xT + xT

v FT xv + BT uT , xT (0) = xT0, (18.3b)

y = Cvxv + CT xT + Dvuv + DT uT , (18.3c)

with FT = (
FT

T1
, . . . ,FT

TnT

)T ∈ R
nv×nv×nT ,FTj = Fvnv+j , j = 1, . . . , nT

and Fvi is as defined earlier. Equations (18.3a) and (18.3b) are the electrical and
thermal subsystems, respectively. After decoupling, the system (18.3) is now a one-
way coupled system. Since the solution of the electrical and thermal subsystems
can be computed consecutively, we call it decoupled, in contrast to the fully
coupled original system, for which the electrical and the thermal subsystem must
be solved simultaneously. We can observe that the nonlinear term xT

v FT xv can
be treated as part of the thermal input, since it is obtained by first simulating the
electrical subsystem. The output can be obtained through (18.3c). Even after the
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above simplification, system (18.3) is still computationally expensive to simulate.
Moreover, the decoupled system still has numerous inputs for both the electrical and
the thermal subsystems. MOR replaces the decoupled system (18.3) with a reduced-
order decoupled system

Avr xvr = −Bvruv, (18.4a)

ETr x
′
Tr

= ATr xTr + xT
vr
FTrxvr + BTruT , xTr (0) = xTr0

, (18.4b)

yr = Cvr xvr + CTr xTr + Dvuv + DT uT , (18.4c)

where Avr ∈ R
rv×rv , Bvr ∈ R

rv×m̃, ETr ∈ R
rT ×rT , ATr ∈ R

rT ×rT , BTr ∈ R
rT ×m̃,

Cvr ∈ R
�×rv , CTr ∈ R

�×rT , FTr ∈ R
rv×rv×rT , with the reduced order r =

rv + rT � n. In order to obtain the ROM (18.4), we combine the MOR techniques
for algebraic and differential subsystems to obtain (18.4a) and (18.4b), respectively.
MOR for general algebraic systems is still underdeveloped and the existing methods
are often application specific, such as the method based on Gaussian elimination for
algebraic systems arising from circuit simulations, see [5, 6, 9, 10] for details. MOR
methods based on Gaussian elimination could be applied to algebraic systems, if
the input matrix Bv has many zero rows, see [2]. The most challenging step is
to reduce the nonlinear term in the thermal subsystem. The BDSM-ET method
[2] was proposed to overcome this problem for the case of ET coupled problems
which can be written in the form of (18.3). This method combines the Gaussian
elimination based methods, such as SIP [10], with the BDSM method [11] to reduce
the electrical and thermal subsystems, respectively. This can be briefly described as
follows. Assume that Bv has many zero rows, then the electrical subsystem (18.3a)
can be reformulated and partitioned as

(
Av11 Av12

A
T

v12
Av22

)(
xve

xvI

)

= −
(
Bve

0

)

uv, yv = (
Cve 0

)
(
xve

xvI

)
+ Dvuv, (18.5)

where xve ∈ R
nve and xvI ∈ R

nvI represent the port and the internal nodal voltages,
respectively, and nv = nve + nvI . Eliminating all internal nodes from (18.5) leads
to the reduced-order electrical subsystem (18.4a) with matrix coefficients

Avr = [
Av11 − Av12Wv

] ∈ R
rv×rv , Bvr = Bve ∈ R

rv×m̃, Cvr = Cve ∈ R
�×rv ,

(18.6)

where Wv = A−1
v22

AT
v12

∈ R
nvI

×nve , xvr = xve ∈ R
rv , and the order of the

reduced electrical subsystem rv = nve � nv. The reduction is based on the
assumption that the input matrix Bv is very sparse in the sense that it has much
fewer nonzero rows than the total row number, i.e. nve � nv. According to [11],
the reduced matrix Avr is the Schur complement of the block Av22 of the matrix
Av. However, the Schur complement is dense due to the large number of fill-in. In
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many cases, eliminating all internal nodes at once is not advisable because it makes
the construction of Wv = A−1

v22
AT

v12
responsible for the reduction, either costly or

infeasible, since the matrix Av22 can be very large due to a large number of internal
nodes. It then produces a ROM (18.6) with very dense matrix Avr which may even
be more computationally expensive than the original model. A sparse Avr can be
obtained using sparsity control algorithms such as reduceR [9], which minimizes
fill-in in the reduced matrix Avr by using fill-in reducing reordering algorithms,
e.g., approximation minimum degree (AMD) [1], so that internal nodes responsible
for fill-in are placed toward the end of the elimination sequence, along with the other
nodes.

The reduction in the electrical subsystem induces a reduction in the thermal
subsystem through the nonlinear part, leading to

ET x′
T = AT xT + xT

vr
F̃T xvr + BT uT , xT (0) = xT0 ,

yT = CT xT + DT uT ,
(18.7)

where F̃T = FT11 − WT
v FT21 − FT12Wv + WT

v FT22Wv ∈ R
rv×rv×nT is a 3-

way tensor. The 3-way tensors FT11 ∈ R
nve ×nve ×nT , F12 ∈ R

nve ×nvI
×nT , F21 ∈

R
nvI

×nve ×nT , F22 ∈ R
nvI

×nvI
×nT are the partitions of the tensor FT corresponding

to the partitions in (18.5). The next step is to apply the superposition principle to
(18.7). Assume that the thermal input matrix BT has no zero columns, so that it
can be split into BT = ∑m̃

i=1 BTi , where BTi ∈ R
nT ×m̃ are column rank-1 matrices

defined as

BTi (:, j) =
{
bTi ∈ R

nT , if j = i,

0, otherwise,
i = 1, . . . , m̃.

Here and below, blkdiag denotes the block-diagonal matrix defined by the input
arguments. Applying the two-stage superposition principle from [2] to (18.7) leads
to a block-diagonal structured system of dimension m̃nT given by

E T x̃
′
T = A T x̃T + xT

vr
F T xvr + BT uT , x̃T (0) = [

xT (0), 0
]T

,

yT = C T x̃T + DT uT ,
(18.8)

where ET = blkdiag(ET , . . . ,ET ) ∈ R
m̃nT ×m̃nT , CT = (CT , . . . ,CT ) ∈

R
�×m̃nT , AT = blkdiag(AT , . . . ,AT ) ∈ R

m̃nT ×m̃nT , BT = (BT1
T , . . . ,BTm̃

T )T ∈
R

m̃nT ×m̃, and F T =
(
F̃T

0

)
∈ R

rv×rv×m̃nT . The corresponding reduced-order

thermal subsystem in the form of (18.4b) has block-diagonal structured matrices
given by

ETr = VTETV, ATr = VTAT V, BTr = VTBT , CTr = CT V, (18.9)
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where V = blkdiag(V(1), . . . ,V(m̃)). The projection matrices V(i) can be con-
structed from each subsystem of (18.8) as (see [2] for details)

range(V(i)) = span{Ri ,MRi , . . . ,MrTi
−1Ri}, rTi � nT , (18.10)

whereM = (s0ET −AT )−1ET ∈ R
nT ×nT , andRi = (s0ET −AT )−1bTi ∈ R

nT , i =
1, . . . , m̃. The nonlinear term VT

(
xT
vr
F T xvr

)
can be reformulated as a reduced-

order nonlinear term xT
vr
FTr xvr using the following proposition from [3].

Proposition 18.1 Let W = (
wij

) ∈ R
n×r be a matrix, xr ∈ R

r , and F̃ =
[
F̃

T

1 , . . . , F̃
T

n

]T ∈ R
r×r×n be a 3D tensor, then there exist a 3D tensorFr ∈ R

r×r×r ,

such that:

WT
(
xT
r F̃xr

)
= xT

r Frxr ,

where Fr = [
FT

r1
, . . . ,FT

rr

]T
with Frj =

n∑

i=1

wij F̃i ∈ R
r×r , j = 1, . . . , r.

From Proposition 18.1, we see that Fr in the reduced-order nonlinear term is
independent of the time t and can be precomputed before simulating the ROM.
Therefore reformulating the nonlinear term further improves the efficiency of
simulating the ROM. It can be seen that V(i) depends only on the single column
bTi , rather than BT with many columns, leading to a block-wise sparse ROM as
compared with the standard moment-matching methods, such as PRIMA [8]. Here,
s0 ∈ C is chosen arbitrarily. Finally, the order of the reduced thermal subsystem
(18.4b) is rT = ∑m̃

i=1 rTi . From the analysis in [2, 11], the block-diagonal system
(18.8) yields a system equivalent to (18.7) , so that the block-diagonal ROM of
(18.8) can be considered as the ROM of (18.7). However, the matrix Avr and the
tensor FTr in the ROM are dense which is still a computational and storage burden.
In the next section, we propose a modified BDSM-ET method which leads to sparser
ROMs.

18.3 Proposed Modified BDSM-ET Method

In this section, we propose the modified BDSM-ET method. The goal of the
modified BDSM-ET method is to reduce the computational and storage demand
of simulating the reduced electrical subsystem and the reduced nonlinear term in
the thermal subsystem, obtained using the BDSM-ET method. Actually, the BDSM
method in [11] can be extended to the electrical subsystem in algebraic form.
Assume that the electrical input matrix Bv has no zero columns, so that it can be
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split into Bv = ∑m̃
i=1 Bvi , where Bvi ∈ R

nv×m̃ is a column rank-1 matrix defined as

Bvi (:, j) =
{
bvi ∈ R

nv , if j = i,

0, otherwise,
i = 1, . . . , m̃.

Applying the superposition principle to the electrical subsystem in (18.3) results in
an equivalent block-diagonal algebraic system

Avξv = −Bvuv, yv = Cvξv, (18.11)

where Av = blkdiag(Av, . . . ,Av), Bv = (BT
v1

, . . . ,BT
vm̃

)T , Cv = (Cv, . . . ,Cv),

ξv = (xT
v1

, . . . , xT
vm̃

)T . The next step is to reduce the dimension of (18.11). This
is done by applying reordering and elimination techniques to each subsystem of
(18.11):

Avxvi = −Bviuv, yvi = Cvxvi , i = 1, . . . , m̃. (18.12)

Assuming each Bvi has many zero rows, then each subsystem in (18.12) can be
reformulated as

⎛

⎝
A(i)

v11 A(i)
v12

A(i)T

v12 A(i)
v22

⎞

⎠

(
x(i)
ve

x(i)
vI

)

= −
(
B(i)

ve

0

)

uv, yvi =
(
C(i)

ve 0
)

(
x(i)
ve

x(i)
vI

)

, (18.13)

where x(i)
ve ∈ R

n
(i)
ve and x(i)

vI
∈ R

n
(i)
vI represent the port and the internal nodal voltages,

respectively, and nv = n
(i)
ve + n

(i)
vI

, i = 1, . . . , m̃. Eliminating all internal nodes
from (18.13) leads to the ROM of each subsystem as below

Avri
xvri

= Bvri
uv, yvri

= Cvri
xvri

, (18.14)

where Avri
= [

A(i)
v11 −A(i)

v12Wvi

] ∈ R
rvi ×rvi , Bvri

= −B(i)
ve ∈ R

rvi ×m̃, Cvri
= C(i)

ve ∈
R

�×rvi , Wvi = A(i)−1

v22 A(i)T

v12 ∈ R
n

(i)
vI

×n
(i)
ve , xvri

= x(i)
ve ∈ R

rvi , and rvi = n
(i)
ve � nv.

Replacing each Av,Bvi ,Cv, xvi in (18.11) with Avri
,Bvri

,Cvri
, xvri

leads to the

ROM of (18.11), which is also the ROM of (18.3a) of dimension rv = ∑m̃
i=1 rvi and

with matrices

Avr = blkdiag(Avr1
, . . . ,Avrm̃

), Bvr = (BT
vr1

, . . . ,BT
vrm̃

)T , Cvr = (Cvr1
, . . . ,Cvrm̃

).

Finally, we reduce the thermal subsystem (18.3b). Here, we propose the approach
which leads to a much sparser reduced 3-way tensor than that obtained using the
BDSM-ET method. Applying the superposition principle to the algebraic subsystem
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(18.3a) introduces
(∑m̃

i=1 x
T
vi

)
FT

(∑m̃
i=1 xvi

)
into the thermal subsystem, i.e. xv is

replaced by
∑m̃

i=1 xvi in the nonlinear part. In order to obtain a sparse tensor, the

approximation
(∑m̃

i=1 x
T
vi

)
FT

(∑m̃
i=1 xvi

)
≈ ∑m̃

i=1 x
T
vi
FT xvi is introduced for the

thermal subsystem. From numerical simulations results, we have observed that the
error introduced by the approximation is very small and can be neglected for the
nanoelectronic problems considered.

Thus (18.3b) can be approximated as

ET x′
T = AT xT + ξT

v FT ξv,+BT uT , xT (0) = xT0, (18.15a)

yT = CT xT + DT uT . (18.15b)

Here we have used the equality

m̃∑

i=1

xT
vi
FT xvi = ξT

v FT ξv,

where FT = [
F T

T1
, . . . ,F T

TnT

]T ∈ R
ñv×ñv×nT , ñv = m̃nv, FTi =

blkdiag(FTi , . . . ,FTi ) ∈ R
ñv×ñv , FTi ∈ R

nv×nv and ξv is defined as in (18.11).
We can see that each reduced state in (18.14) induces a reduction in (18.15) leading
to

ET x′
T = AT xT + ξT

vr
FTr ξvr + BT uT , xT (0) = xT0, (18.16a)

yT = CT xT + DT uT , (18.16b)

where ξvr = (xT
vr1

, . . . , xT
vrm̃

)T , FTr = [
F T

Tr1
, . . . ,F T

TrnT

]T ∈ R
rv×rv×nT ,

with FTri
= blkdiag(FTri

, . . . ,FTri
) ∈ R

rv×rv , where FTri
= F(i)

T11
− WT

vi
F(i)

T21
−

F(i)
T12

Wvi + WT
vi
F(i)

T22
Wvi ∈ R

rvi ×rvi . Here F(i)
T11

,F(i)
T12

,F(i)
T21

,F(i)
T22

are the sub-blocks

of FTi partitioned according to the partition of Av in (18.13). Since
∑m̃

i=1 x
T
vi
FT xvi

can be considered as an extra input for the thermal subsystem, the superposition
principle still applies to the thermal subsystem. Therefore, (18.16) can also be split
into m̃ subsystems, the thermal state xT of (18.16) can be reduced following the
steps from (18.8) till the end of Sect. 18.2. The reduced thermal system is in the form
of (18.4b) with the reduced matrices being defined in (18.9). Using Proposition 18.1,

the nonlinear term VT
(
ξT
vr
F̃ T ξvr

)
, where F̃ T =

(
FTr

0

)
∈ R

rv×rv×m̃nT , F̃ T =
[
F̃ T

T1
, . . . , F̃ T

Tm̃nT

]T
with F̃ Ti ∈ R

rv×rv can also be reformulated as ξT
vr
F̃ Tr ξvr ,

where F̃ Tr = [
F̃ T

Tr1
, . . . , F̃ T

TrrT

]T ∈ R
rv×rv×rT with F̃Trj

=
m̃nT∑

i=1

vjiF̃ Ti ∈
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R
rv×rv , j = 1, . . . , rT , V = (

vij

) ∈ R
m̃nT ×rT . Here, the reduction matrix V is

defined and computed as in (18.10). Instead of a dense tensor as in the previous
section, here F̃ Tr is in block-diagonal form which is sparse. Combining the above
block structured reduced electrical and thermal subsystems, we obtain the modified
BDSM-ET ROMs of (18.1) in the form of (18.2) with system matrices

Er =
(

0 0

0 ETr

)

, Ar =
(
Avr 0

0 ATr

)

, Br =
(
Bvr 0

0 BTr

)

, Cr =
(
Cvr CTr

)
, D =

(
Dv DT

)
,

Fr = (
0, . . . , 0,FT

rv+1, . . . ,F
T
rv+rT

)T
, Frv+j =

(
F̃Trj

0

0 0

)

∈ R
r×r , j = 1, . . . , rT .

Hence, by construction, the modified BDSM-ET method constructs sparser ROMs
than the BDSM-ET method proposed in [2], since all its reduced matrices and the
tensor are block-wise sparse as also illustrated in the next section.

18.4 Numerical Experiments

In this section, we illustrate the efficiency of the modified BDSM-ET method by
examining three ET coupled models from industrial applications, namely, a package
model (n = 9193,m = 34, � = 68), a power-MOS model (n = 13,216,m =
6, � = 12), and a power cell model (n = 925,286,m = 408, � = 816) as shown
in Table 18.1. The first two ET models are nonlinear quadratic DAEs of the form
(18.1), while the last model is a linear DAE, i.e., F = 0. Simulations on the first two
ET models are done in MATLAB R©Version 2012b on a Laptop with 6 GB RAM,
CPU@ 2.00 GHz. Simulation on the power cell model is done on a Unix compute
server with 1 TB main memory.

All these models can be reformulated into an equivalent decoupled system
of the form (18.3). Then, the numerical solutions are obtained by applying the
built-in MATLAB function mldivide(/) to the electrical subsystem and the implicit-
Euler integration scheme to the thermal subsystem in the desired time interval.
We reduce each ET decoupled model using the PRIMA-ET, BDSM-ET and the
proposed modified BDSM-ET methods. The PRIMA-ET method uses the Gaussian
elimination and PRIMA methods, to reduce the order of the electrical and thermal
subsystems, without applying the superposition principle. The other two MOR
methods are as discussed in Sects. 18.2 and 18.3, respectively.

In Table 18.1, nT is the order of the thermal subsystem, nv is the order of
the electrical subsystem, rv is the order of the reduced electrical subsystem, rT
is the order of the reduced thermal subsystem, r = rv + rT is the order of the
reduced ET coupled model, “%Red” means the reduction rate in % w.r.t. the original
order n. In Table 18.2, “Stor. (Mb)” is the storage requirement, “Error” is the
maximum output relative error in time domain, “Speed-up” represents the speed-
up factor w.r.t. the time for simulating the original large model. From Table 18.1,
we can see that PRIMA-ET was unable to reduce the large model with dimension
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Table 18.1 Dimension comparison of ROMs, r = rv + rT

Models Decoupled models PRIMA-ET BDSM-ET Modified BDSM-ET

n m � nv nT rv rT r % Red rv rT r % Red rv rT r % Red

9193 34 68 8071 1122 188 198 386 95.8 188 198 386 95.8 238 198 436 95.3

13,216 6 12 11,556 1660 160 63 223 98.3 160 84 244 98.15 160 84 244 98.15

925,286 408 816 392,773 532,513 – – – – 9264 4305 13,569 98.53 9396 4305 13,701 98.52

Table 18.2 Efficiency comparison of ROMs

Models PRIMA-ET BDSM-ET Modified BDSM-ET

n r Stor. (Mb) Error Speedup r Stor. (Mb) Error Speed-up r Stor. (Mb) Error Speed-up

9193 386 140.3 7.2 × 10−9 12.3 386 16 2.1 × 10−2 65.7 436 2.6 2.1 × 10−2 70.6

13,216 223 27.01 3.5 × 10−5 74.3 244 27.03 1.4 × 10−2 120 244 14.2 1.4 × 10−2 157.1

925,286 – – – – 13,569 385.3 6.3 × 10−8 5.7 13,701 56.4 7.0 × 10−7 972.7

925,286, because of memory limitations. Comparing the BDSM-ET type methods
with the PRIMA-ET method, we see that both methods produce accurate ROMs
with large speed-ups as shown in Table 18.2. The modified BDSM-ET ROMs
are computationally cheaper than the BDSM-ET ROMs yet with almost the same
accuracy, especially for large models. For the case of the power cell model, the
modified BDSM-ET ROM is 170.6 faster than the BDSM-ET method. This is due
to the fact that the resulting reduced model is completely block-wise sparse (see
Fig. 18.4), and each block is very small w.r.t. the original order n, which results
in a very sparse ROM. Furthermore, it requires much less storage requirements,
since it constructs sparse ROMs as illustrated in Figs. 18.1, 18.2, 18.3 and 18.4.
In Table 18.3, we compare the off-line costs which are the times to construct the
ROMs. We can observe that modified BDSM-ET ROMs are computationally more
expensive to construct compared to the other ROMs and their computational cost
depends on the number of inputs.
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Fig. 18.1 Comparison of the sparsity of the reduced matrix Er , n = 9193
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Fig. 18.2 Comparison of the sparsity of the reduced matrix Ar , n = 9193
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Fig. 18.3 Comparison of the sparsity of the first nonzero slice of the reduced tensor Fr , n = 9193

Fig. 18.4 Comparison of the sparsity of the reduced power cell matrix Ar , n = 925,286
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Table 18.3 Off-line cost comparison of ROMs

Models PRIMA-ET BDSM-ET Modified BDSM-ET

n r Off-line cost (s) r Offline-cost r Offline-cost (s)

9193 386 22 386 18.5 436 256.2

13,216 223 12.1 244 13 244 1172.7
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Fig. 18.5 Comparison of the outputs at port 611, (y611, n = 925,286). (a) The thermal flux. (b)
The relative error

In Fig. 18.5, we compare the outputs at port 611, y611, given by the BDSM-ET
type ROMs and the original power-cell model. The power-cell model corresponds
to a power-transistor design of ONN that is intended for use in smart-power ICs.
The system is excited by 408 inputs defined as below.

ui =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5, 1 ≤ i ≤ 200,

0, i = 201,

0, i = 202, t ∈ [0, 10−7),

1.5(107t − 1), i = 202, t ∈ [10−7, 2 × 10−7],
1.5, i = 202, t ∈ (2 × 10−7, 5 × 10−7],
10, i = 203,

0, i = 204,

26.85 205 ≤ i ≤ 408.

The initial condition for all electrical state variables is 0 V, and the initial condition
for all thermal state variables is 26.85 ◦C. We used the implicit-Euler integration
scheme on a nonuniform grid in the time interval [0, 0.002 s] to simulate the thermal
subsystem.
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Both methods introduce very small relative errors as shown in Fig. 18.5b. The
ROM error is defined as

max
i∈{t1,...,t29}

‖yi − yri‖2/‖yi‖,

where yi ∈ R
n×� is the output, obtained from the original power-cell model, it is

a vector containing all the output values at the ith nonuniform time step ti , i =
1, . . . , 29 in the time interval [0, 2.0 × 10−3 s].

18.5 Conclusion

We have proposed a modified BDSM-ET method for ET coupled problems with
many inputs arising from industrial applications. The modified BDSM-ET method
produces sparse yet accurate ROMs compared with the BDSM-ET method. Finally,
the proposed method allows independent calculations which attracts parallelization.
This could be a topic in the future.
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