
Chapter 13
Survey on Semi-explicit Time
Integration of Eddy Current Problems

Jennifer Dutiné, Markus Clemens, and Sebastian Schöps

Abstract The spatial discretization of the magnetic vector potential formulation of
magnetoquasistatic field problems results in an infinitely stiff differential-algebraic
equation system. It is transformed into a finitely stiff ordinary differential equation
system by applying a generalized Schur complement. Applying the explicit Euler
time integration scheme to this system results in a small maximum stable time step
size. Fast computations are required in every time step to yield an acceptable overall
simulation time. Several acceleration methods are presented.

13.1 Introduction

Spatially discretizing the magnetic vector potential formulation of eddy current
problems, e.g by the Finite Element Method (FEM), yields a differential-algebraic
equation system (DAE) [1]. Commonly, only unconditionally stable implicit time
integration methods as e.g. the implicit Euler method or the singly diagonal implicit
Runge-Kutta schemes can be used for time integration of the infinitely stiff DAE
system [2]. In every time step at least one large nonlinear algebraic equation system
needs to be solved due to the nonlinear BH-characteristic in ferromagneticmaterials.
The Newton-Raphson method is frequently used for linearization and requires at
least one iteration per time step. Here, the Jacobian and the resulting stiffness matrix
are updated in each iteration and the resulting linear algebraic equation system needs
to be solved efficiently.

Applying explicit time integration schemes avoids the necessity of linearization,
because nonlinearities only appear in right-hand side expressions. A first approach
to use an explicit time integration method for eddy current problems has been
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proposed in [3], where in the conducting regions of the problems the Finite
Difference Time Domain (FDTD) method is used. In the nonconducting regions,
i.e., in the air, the corresponding parts of the solution are computed using the
boundary element method (BEM) [3]. In a second approach presented in [4], the
Discontinuous Galerkin FEM and an explicit time integration method are used for
computations in the conducting regions. Continuous FEM ansatz functions and an
implicit time integration scheme are applied to the nonconducting regions of the
problem [4]. Both approaches in [3] and [4] are based on a separate treatment of
conducting and nonconducting regions. A different approach presented in [1] and
[5] proposes a Schur complement reformulation of the eddy current problem. In [6]
the use of a generalized Schur complement is proposed. Here, a pseudo-inverse
of the singular curl-curl matrix in nonconducting regions is evaluated using the
preconditioned conjugate gradient (PCG) method. This evaluation forms a multiple-
right hand side problem and suitable start vectors for the PCG method are computed
using the cascaded Subspace Projection Extrapolation (CSPE) method, which is
a modification of the Subspace Projection Extrapolation (SPE) method [6, 7].
Alternatively, the Proper Orthogonal Decomposition (POD) method can be used
for computing improved start vectors [8]. Computations can be accelerated further
by using a selective update strategy for updating the reluctivity matrix in conducting
regions [9]. This paper presents a survey on the methods presented in [6, 8, 9].

13.2 Mathematical Formulation

The partial differential equation

κ
∂A(t)

∂t
+ ∇ × (ν (A(t)) ∇ × A(t)) = Js(t), (13.1)

describes magnetoquasistatic field problems using the time-dependent magnetic
vector potential A(t), where κ is the electrical conductivity, ν is the eventually
ferromagnetic, i.e., nonlinearly field dependent, reluctivity and Js(t) is the transient
source current density.

Discretizing (13.1) in space, e.g. by FEM using edge elements [10, 11], yields a
differential-algebraic equation system (DAE) described by

M
d

dt
a + K(a)a = js, (13.2)

where M is the mass-matrix, a is the time dependent vector of the magnetic vector
potential, K is the stiffness-matrix and js is the vector of the transient source
currents. The degrees of freedom (DoFs) are separated into two vectors ac and an for
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conducting and nonconducting material, respectively and (13.2) is re-ordered into

(
Mcc 0
0 0

)
d

dt

(
ac
an

)
+

(
Kcc (ac) Kcn

KT
cn Knn

)(
ac
an

)
=

(
0
js,n

)
, (13.3)

whereMcc is the conductivitymatrix in conducting regions,Kcc (ac) is the nonlinear
part of the reluctivity related stiffness matrix in conducting regions, Knn is the part
of the curl-curl operator in air, which is singular, and js,n is the source current vector
corresponding to excitations in nonconducting regions. Mcc is positive definite if
using a conventional Galerkin scheme with (possibly high-order) edge elements as
test and ansatz functions [10, 11].

The generalized Schur complement expression

KS := KcnK+
nnK

�
cn, (13.4)

where K+
nn is the matrix representation of a pseudo-inverse of Knn, is applied to

(13.3) and transforms the DAE into an ordinary differential equation (ODE) system

Mcc
d

dt
ac + (Kcc (ac) − KS) ac = −KcnK+

nnjs,n, (13.5)

an = K+
nnjs,n − K+

nnK
�
cnac, (13.6)

for the vector ac, i.e., the degrees of freedom only situated in conductive material
[1, 5, 6]. The preconditioned conjugate gradient (PCG) method is used for eval-
uating a pseudo-inverse of Knn [6]. Alternatively, the singular matrix Knn can be
regularized using a grad-div regularization by which Knn is transformed into the
discrete Laplacian operator in free space [5]. Due to finite stiffness, (13.5) can be
integrated in time using explicit time integration schemes as e.g. the explicit Euler
method. Here, in the m-th time step the expressions

am
c : = am−1

c + ΔtM−1
cc

[
−KcnK+

nnj
m
s,n −

(
Kcc(am−1

c ) − KS

)
am−1
c

]
, (13.7)

am
n : = K+

nnj
m
s,n − K+

nnK
�
cna

m
c , (13.8)

are evaluated for the degrees of freedom in the conductor domain and in the
nonconductive domains consecutively, where Δt is the time step size.

Evaluating a pseudo-inverse of Knn and the inverse of Mcc in (13.7) and (13.8)
repeatedly using the PCG method forms multiple right-hand side (mrhs) problems
since the matrices involved remain constant. The subspace extrapolation (SPE)
method can be used for computing improved start vectors for the PCG method
[6, 7]. Solution vectors from n previous time steps are orthonormalized using the
modified Gram-Schmidt method and form the linearly independent column vectors
of the operator V. The projected system

V�KnnVz = V�r, (13.9)
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where r represents the new right-hand side for the full system, is solved for z ∈ R
n

using a direct method. The linear combination of the column vectors in V weighted
with the coefficients in z yields the improved start vector x0,CSPE:

x0,CSPE := Vz. (13.10)

Only the last column vector in the operatorV changes in every time step. Therefore,
when computingKnnV in (13.9), all other matrix-column-vector products evaluated
can be reused from previous time steps. This modification of the SPE start vector
generation method is referred to as “cascaded SPE” (CSPE).

Alternatively, the proper orthogonal decomposition (POD) method can be used
for computing improved start vectors for the PCGmethod [8, 12]. A snapshot matrix
X is assembled using solutions from previous time steps as column vectors. This
matrix is decomposed by the singular value decomposition (SVD) [13] into:

X = UΣV�, (13.11)

where Σ is a diagonal matrix of the singular values and U and V are orthogonal
matrices. The first k column vectors of U corresponding to the k largest singular
values σ1, . . . , σk, for which holds

σi ≥ σj, for i < j, (13.12)

σ1

σk
≥ tolPOD, (13.13)

become the column vectors of the reduced matrix Ur with a threshold value tolPOD.
A threshold value commonly used in practical computations is tolPOD := 104. The
improved start vector x0,POD for the PCG method is computed by

x0,POD := Ur

[
U�
r KnnUr

]−1
U�
r K

�
cnac. (13.14)

The explicit Euler method is only stable for time step sizes Δt smaller than a
Courant-Friedrich-Levy-type time step size ΔtCFL given by [1]:

ΔtCFL ≤ 2

λmax

(
M−1

cc (Kcc (ac) − KS)

) , (13.15)

where the maximum eigenvalue λmax is proportional to

λmax

(
M−1

cc (Kcc (ac) − KS)

)
∝ 1

h2κμ
, (13.16)

assuming non-singularity ofMcc. Here, h is the smallest edge length in the mesh, κ
is the electrical conductivity, and μ is the permeability. Numerical tests have shown
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that 1/(h2κμ) unfortunately does not give a sharp estimate of λmax, such that the
largest eigenvalue has to be computed numerically.

Fine spatial discretization can result in small stable time step sizes, due to
(13.15), that can be in the micro- to nano second range. Considering the dynamics
of the usual excitation currents in magnetoquasistatic problems, this corresponds to
a strong over-sampling. It is assumed that the excitation current does not change
significantly between succeeding time steps. Therefore it is expected that the vector
ac in (13.7), (13.8) also only changes marginally between succeeding time steps.
The matrix Kcc (ac) is thus only updated if the change between the vector am

c at the
time step m and the vector al

c from the time step l < m at which the matrixKcc
(
al
c

)
has last been updated is larger than a chosen tolerance tol, as described by [9]:

‖am
c − al

c‖
‖al

c‖
> tol, (13.17)

where ‖·‖ denotes the l2-norm.However, depending on the gauging used, a different
norm might be more appropriate, e.g. using the magnetic energy norm.

13.3 Numerical Validation

The ferromagnetic TEAM 10 benchmark problem is spatially discretized using first
order edge element FEM ansatz functions [14, 15]. The model geometry is shown
in Fig. 13.1. The excitation current is described by a (1 − exp (−t/τ )) function.
A time interval of 120ms duration is calculated. The accuracy of the employed
simulation code is proven using an implicit time integration method and a fine mesh
discretization of about 700,000 DoFs. The resulting average magnetic flux density
is compared with the measurement results published in [14] in Fig. 13.2. As this
simulation takes a simulation time of 5.38 days on a workstation with an Intel Xeon

Fig. 13.1 TEAM 10 model
geometry and position S1.
Steel plates are colored in
blue and red, the coil in
green. There is a 0.5mm wide
air gap between the blue and
red steel plates
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Fig. 13.2 Comparison of simulation results using a mesh of 700,000 DoFs and the measured
results published in [14] at position S1

Fig. 13.3 Averagely required number of PCG iterations for evaluating the pseudo-inverse of Knn
using either CSPE, POD, or the solution from the previous time step as start vector for the PCG
method

E5 processor, a coarser mesh is applied for the simulations using the explicit Euler
method for time integration. The applied coarse spatial discretization yields 29,532
DoFs and results in a maximum stable time step size ΔtCFL = 1.2 μs, such that
100,000 explicit Euler time steps are required for this problem.

Computing improved start vectors for the PCG method using either CSPE or
POD reduces the average number of required PCG iterations compared to using the
solution from the previous time step as start vector. An algebraic multigrid method
is used as preconditioner. The results for the evaluation of the pseudo-inverse ofKnn
using a PCG tolerance of 10−6 are shown in Fig. 13.3. Using the selective update
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strategy for updating the matrixKcc (ac) does not significantly decrease accuracy, as
is shown in Fig. 13.4. The number of required updates and the simulation time are
significantly reduced, as is depicted in Figs. 13.5 and 13.6. If Kcc (ac) is updated
in every time step 100,000 updates are performed during the entire simulation.
A workstation with an Intel Xeon E5 processor and an NVIDIA TESLA K80
GPU are used for these simulations. The matrix Mcc is inverted directly using
GPU acceleration. This is only possible, as the matrix Mcc is only of dimension
5955× 5955 in this test problem. For more refined discretizations the PCG method
should be used for inverting the matrixMcc.

Fig. 13.4 Average magnetic flux density at position S1

Fig. 13.5 Number of updates of Kcc (ac) for different tolerances tol in (13.17)
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Fig. 13.6 Comparison of simulation times for a simulation using implicit Euler method, the
explicit Euler method with updates of Kcc (ac) in every time step and the explicit Euler method
using the selective update strategy and different tolerances tol

13.4 Conclusion

The application of a generalized Schur complement to the spatially discretized mag-
netic vector potential formulation of magnetoquasistatic field problems transformed
a DAE of infinite stiffness into a finitely stiff system of ODEs. This ODE system
is integrated with the explicit Euler method. For the evaluation of a pseudo-inverse
the PCGmethod was adopted. Improved start vectors were computedwith the CSPE
and the PODmethod, reducing the number of required PCG iterations in simulations
of the ferromagnetic TEAM 10 benchmark problem. A selective update strategy for
the reluctivity matrix taking into account the specific problem dynamics reduced
the number of required updates and the simulation time. So far, the small stable
time step size of the explicit Euler method results in high computational effort
which can be overcome using massive GPU-parallelization to reduce the required
computational time per time step significantly.
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