
Chapter 12
A Trefftz Method
for the Time-Harmonic Eddy Current
Equation

Raffael Casagrande, Christoph Winkelmann, Ralf Hiptmair,
and Jörg Ostrowski

Abstract We present a discontinuous finite element method to resolve the skin
effect in conductors on coarse meshes. The idea is to take into account the
exponential decay in the finite element trial space, which enables to resolve the skin
layer independent of the size of the mesh cells. The discontinuous, Trefftz-type
basis functions are coupled across the element boundaries by the interior penalty-
/Nitsche’s method and numerical experiments affirm the effectiveness of the method
for thin boundary layers.

12.1 Introduction

We consider the vector potential formulation of the eddy current problem in the
frequency domain with temporal gauge (ϕ = 0),

curl
(
μ−1curlA

)
+ iωσA = ji . (12.1)

Here

• A(x) is a vector potential,
• B = ∇ × A is the magnetic flux density,
• ji (x) is the impressed, solenoidal electric current,
• ω > 0 is the angular frequency, and
• σ(x) is the electric conductivity (which can be zero in parts of the domain and is

assumed to be piecewise constant).
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It is well known that the solution of (12.1) exhibits singularities in edges (and
corners) of conductors [4], as well as exponential boundary layers along the surface
of conductors (skin effect). I.e. the induced current iωσA is concentrated at the
surface of conductors and decays rapidly towards the interior. The thickness of
the boundary layer is characterized by the skin-depth δ.

Induction has many applications in industry. An example is inductive hardening
[8], where the workpiece is heated quickly at the surface, and is then rapidly cooled
down before the heat is distributed into the interior by heat conduction. In this case
the skin effect plays a fundamental technical role and resolving the skin layer is
essential.

For the classical low order Finite Element Method (FEM) this means that the
boundary layers must be resolved by the underlying mesh. This can be achieved by
adapting the mesh manually or by refining an existing mesh towards the boundary
layers, which can be automated (h-refinement). However, in industrial applications
the skin depth δ can be orders of magnitude smaller than the diameter of the
conductor so that the mesh must be refined multiple times towards the boundary
layer(s). This leads to a vast increase in the number of degrees of freedom (DOF)
which may render the solution of the linear system prohibitively expensive.

Alternatively one can refine the mesh just once to create a mesh layer of thickness
O(kδ) where k is the polynomial degree of the test functions [9, 10]. However
creating such a 3D mesh for industrial applications can be hard, especially if
tetrahedral elements are used.

A partial remedy for this problem are Impedance Boundary Conditions (IBC)
[8]: The conductor is replaced by Robin-type boundary conditions and the electro-
magnetic fields are only calculated at the surface of the conductor. Since the IBC
approximation assumes that the conductor surface is flat, the solution deteriorates
as the radius of curvature of the conductor surface becomes comparable to the skin-
depth δ. In particular the IBC solution deviates strongly from the physically correct
fields at edges and corners of the conductor.

In this work we propose to resolve the boundary layers directly on coarse meshes
(we assume the meshsize h � δ) by enriching the approximation space with
suitable functions. More precisely, our approximation space will contain two types
of (discontinuous) basis functions:

• Edge elements Rk [7], and
• Exponential boundary layer functions modulated/multiplied with polynomials.

We deal with the discontinuous nature of the basis functions in the framework of
Discontinuous Galerkin (DG) methods and discretize (12.1) by the Non-Symmetric
Weighted Interior Penalty (NWIP) method [3].

12.2 Non-symmetric Weighted Interior Penalty Framework

We consider the time-harmonic eddy current equation (12.1) on a bounded, open,
polyhedral domain Ω ⊂ R

3 with Lipschitz boundary. Furthermore we denote by
Ω0 ⊂ Ω the open subdomain where σ = 0 and define Ωσ = Ω \ Ω0.
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Perturbed Problem It is well-known that the time-harmonic eddy current equa-
tion (12.1) does not uniquely determine the vector potentialA in Ω0, i.e. (12.1) is an
ungauged formulation. In this work we restore the uniqueness of A by considering
the perturbed time-harmonic eddy current problem [1],

curl
(
μ−1curlAα

)
+ καAα = ji , in L2(Ω)3 (12.2a)

n × Aα = 0 on ∂Ω. (12.2b)

Here the boundary condition (12.2b) implies n · curlA = n · B = 0 which reflects
the decay of the magnetic field far away from the source ji . Moreover,

κα(x) :=
{

iωσ(x) for x ∈ Ωσ,

α for x ∈ Ω0,

with α > 0 being the regularization parameter. One expects that for α → 0 also
Aα → A, or more precisely [1, Lemma 33],

Lemma 12.1 Under the above assumptions we have, ‖A − Aα‖H(curl;Ω) ≤
Cα ‖A‖L2(Ω)3 , where C is independent of α but depends on μ, σ , ω and the
domain Ω .

Broken Sobolev Spaces We assume that there exists a partition PΩ = {Ωi}i such
that each Ωi is a polyhedron and such that the permeability 0 < μ < ∞ and the
coefficient function 0 < κα < ∞ are constant on each Ωi . We will assume that the
solution Aα lies in the broken Sobolev space

V ∗(PΩ) :=
{
A ∈ L2(Ω)3

∣∣∣A|K ∈ H 1(K)3, curlA|K ∈ H 1(K)3 ∀K ∈ PΩ

}
.

Here H 1(K) := {f ∈ L2(K)| gradf ∈ L2(K)3} denotes the usual Sobolev space.
Meshes, Jumps, Averages Let Th denote a hybrid (tetrahedras, pyramids, prisms,
hexahedras), affine, conformingmesh onΩ that is compatiblewith the partitionPΩ ,
that is every mesh element T ∈ Th lies in exactly one Ωi ∈ PΩ . Thus κα , μ are
constant on every mesh cell T ∈ Th and we have V ∗(PΩ) ⊂ V ∗(Th). Furthermore
we letF i

h denote the set of inner intersections of Th and define the tangential jump
and weighted average of a vector valued function A ∈ V ∗(Th) on an inner face
F ∈ F i

h, F = ∂Ti ∩ ∂Tj , as follows:

�Ah�T = nF ×
(
Ah|Ti

− Ah|Tj

)
,

{{Ah}}w = w1 Ah|Ti
+ w2 Ah|Tj

,

(jump)

(average)

Here nF always points from Ti to Tj and wi ∈ [0, 1] are such that w1 + w2 = 1.
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NWIP-Formulation We discretize the perturbed eddy current problem (12.2) using
a finite dimensional subspace Vh ⊂ V ∗

h
:= {A ∈ V ∗(Th)| n × A = 0 on ∂Ω}.

Multiplying (12.2) with a discontinuous test function A′
h ∈ Vh and integrating by

parts on each element, one arrives at [3]: Find Aα
h ∈ Vh such that for all A′

h ∈ Vh:

aNWIP
h (Aα

h,A′
h) +

∫

Ω

καAα
h · A′

h =
∫

Ω

ji · A′
h, (12.3)

with sesquilinear form

aNWIP
h (Aα

h,A′
h) :=

∫

Ω

μ−1curlAα
h · curlA′

h −
∑

F∈F i
h

∫

F

{{
μ−1curlAα

h

}}
w

· �A′
h

�
T

+
∑

F∈F i
h

∫

F

{{
μ−1curlA′

h

}}
w

· �Aα
h�T +

∑

F∈F i
h

ηγμ,F

hF

∫

F

�Aα
h�T · �A′

h

�
T
.

Here hF is the diameter of face F and η > 0 is the penalty parameter. The weights
for an inner face F = ∂T1 ∩ ∂T2 are chosen as

γμ,F := 2

μ1 + μ2
, w1 := μ1

μ1 + μ2
, w2 := μ2

μ1 + μ2
.

We have the following best approximation result, cf. [3, Theorem 3.3.13]:

Theorem 12.1 Let Aα ∈ V ∗(PΩ) be the solution of the perturbed problem (12.2)
and let Aα

h ∈ Vh solve the NWIP formulation (12.3). Then there exist constants
C > 0, Cη > 0, both independent of h, μ, κ such that for η > Cη

∥∥Aα − Aα
h

∥∥
IP

< C inf
vh∈Vh

‖A − vh‖IP ,∗ , (12.4)

and the discrete problem (12.3) is well-posed. The constants Cη, C depend on the
choice of the subspace Vh ⊂ V ∗

h and Cη depends on C.

The associated (semi-) norms are defined as:

‖A‖2IP :=
∥∥∥μ−1/2curlA

∥∥∥
2

L2(Ω)3
+

∥∥∥
√|κα|A

∥∥∥
2

L2(Ω)3
+

∑

F∈F i
h

γμ,F

hF

∥∥�A�T

∥∥2
L2(F )3

,

‖A‖2IP,∗ := ‖A‖2IP +
∑

T ∈Th

hT

∥∥∥μ−1/2curlA
∥∥∥
2

L2(T )3
.
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12.3 Enriched Approximation Space

Trefftz Functions Let n be a unit vector and consider problem (12.1) on the whole
space R3 such that σ is zero in the half-space Ω0 = {x ∈ R

3| x · n > 0} and equal
to a positive constant σ in the other half-spaceΩσ = R

3 \Ω0. Furthermore, assume
that there is an external excitation by a magnetic field H0 which is constant along
the surface F := {x ∈ R

3| x · n = 0} and that μ ≡ const , ji = 0 in Ωσ . Simple
manipulations (cf. [5]) show that inside the conductor Ωσ (x · n < 0) we can write
the solution A of (12.1) explicitly as

A(x) = AF,τ (x) := |H0| δ/(1 + i) τ exp ((1 + i)(x − x0) · n/δ) , (12.5)

where x0 ∈ F , τ ∈ R
3 is a vector tangential to F , and δ =

√
2

μσω
is the skin-depth.

Modulated Trefftz Functions Let Pk(T ) denote the space of polynomials of total
degree ≤ k on mesh element T ∈ Th. For each element T ∈ Th, T ⊂ Ωσ we
define the space

Ak(T ) :=
{
pAF,τ | p ∈ Pk(T ), F ∈ F i

h, F ⊂ ∂T ∩ ∂Ω0, τ tangential of F
}

.

Note that the dimension of the space Ak(T ) is 2n dim(Pk(T )), where n is the
number of faces of T that are at the conductor surface, since for every flat surface
there are only two linearly independent tangentials τ . We define T A

h
:= {T ∈

Th| dim(A1(T )) > 0, σ (T ) > 0} to be the set of elements with at least one adjacent
boundary layer and we let ΩA ⊂ Ω be the union of all elements in T A

h . We then
define the broken, modulated Trefftz approximation space by

Ak(Th) :=
{
A ∈ L2(ΩA )3| A|T ∈ Ak(T ) ∀T ∈ T A

h

}
.

Broken Edge Element Space Our idea is to use a conforming edge element space
wherever possible and to “break” this space only around elements containing the
modulated Trefftz functions:

Rk,A (Th) :=
{
A ∈ L2(Ω)3

∣∣∣ A|T ∈ Rk(T ) ∀T ∈ Th, n × A = 0 on ∂Ω,

and A|Ω\ΩA
∈ H(curl; Ω \ ΩA )

}
.

Here Rk(T ) is the space of k-th order edge elements of the first kind on mesh
element T ∈ Th, cf. [2, 7] and H(curl; Ω) := {A ∈ L2(Ω)3| curlA ∈ L2(Ω)3}.
We define the enriched approximation space Vh on mesh Th as

Vh := Rk,A (Th) ⊕ Ak(Th).
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Note that this space is tangentially continuous across a face F ∈ F i
h if and only if

both the adjacent elements do not belong to T A
h . I.e. the DG-terms on these faces

drop out of the NWIP formulation (12.3) and the method resembles “locally” the
standard finite element method. Moreover we note that Vh is a superset of the space
of conforming edge elements, Rk,h := {A ∈ H(curl; Ω)| A|T ∈ Rk(T ) ∀T ∈ Th}.
In light of the best approximation result (12.4) we can thus expect that the space Vh

has equal or better approximation properties than the space Rk,h.

12.4 Numerical Example

We pose problem (12.2) on a cylindrical shaped domainΩ with two conductorsΩσ :
The “plate” Ωplate (green) is the cuboid (−0.7,−0.5) × (−1, 1)2 whereas the “bar”
(gray) has dimensions (0.5, 1.5) × (−2.5, 2.5) × (−0.5, 0.5). We mesh Ω with the
coarse, hybridmeshTh shown in Fig. 12.1 that has only one layer of elements across
the plate. This reflects the constraints encountered with more complex geometries
where it is prohibitively expensive to resolve the boundary layers with a fine mesh.

The system is excited by a homogeneous generator current, ji = (0, 2000, 0) in
Ωbar, which induces an electric current in the plate. We will vary σplate to simulate
boundary layers of arbitrary thickness in the plate and keep all other (material)
parameters constant: μ ≡ 4π · 10−7 globally, σbar = 104, ω = 50, and α = 10−6.

Figure 12.2 shows a first, qualitative comparison of the current distribution in a
cross section of the plate. Comparing the reference solution1 with the solution of

Fig. 12.1 Coarse, hybrid mesh of domain Ω with airbox (left) and without airbox (right), h = 0.2

1The reference solution was obtained on an refined mesh, which is adapted to the local features of
the solution, using second order edge elements.
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Fig. 12.2 Current distribution |j| = |ωσAα | in plate plotted over cross-section y = 0 for σplate =
5 · 107, δplate/h = 0.063

Fig. 12.3 Local surface error vs. skin-depth δ for the mesh shown in Fig. 12.1

the standard, first order FEM, we see that the top and bottom boundary layers are
not resolved at all and the behavior in the edges is completely wrong. The proposed
(modulated) Trefftz method with k = 1 can resolve the bottom and top boundary
layer much better but the error is still considerable in the edges.

Figure 12.3 shows the relative local surface error
‖n×(A−Aα

h)‖L2(∂Ωplate)
3

‖n×A‖
L2(∂Ωplate)

3
for

different values of σplate (and hence δplate). We observe that the error of the enriched
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method is always equal or better than simple first-order edge functions R1,h. In
particular for δ � h the modulated Trefftz functions clearly outperform the classical
edge elements, cf. Fig. 12.2. For reference we also show the error for a standard,
first-order FEM formulation where the plate has been replaced by IBC [8]. We see
that the IBC approximation becomes valid as δplate → 0 and does in fact reach the
precision of the enriched method for small δ. The former is expected since for flat
surfaces the IBC solution tends to A with rate O(δ2) [6].

12.5 Concluding Remarks

The enriched approximation space Vh can resolve the boundary layers of problem
(12.1) locally much better than pure, standard first order Nédélec/edge elements. In
contrast to IBC, the presented method also resolves the electromagnetic fields inside
of the conductor. In particular, it is applicable to cases where the excitation current
ji generates boundary layers.2 We remark that the construction of the functions
AF,τ is based on the same principle that is used to derive the IBC [8]. In particular,
both methods perform very well along flat surfaces but lead to considerable error in
edges/corners of the geometry where the assumptions of Sect. 12.3 become invalid
and the solution shows singular behavior. A more extensive numerical study unveils
that the smaller δ, the more the approximation error Aα −Aα

h is concentrated in the
edges/corners of the plate. I.e. the approximation error is dominated by the error
at corners/edges and choosing a higher order of approximation, k > 1 in Vh, will
generally not improve the approximation. Instead one has to resolve the singularities
either by refining the mesh towards edges/corners or by including the singularities
in the approximation space Vh. The latter is particularly attractive since this is just
another “enrichment” of the approximation space Vh.

However, finding explicit expressions for the singularities of the 3D eddy current
problem at corner points is extremely difficult. For the 2D eddy current equation
explicit expressions for these singularities exist [4] and can be used to construct
a highly efficient method that shows exponential convergence in the polynomial
degree k independent of δ, that is the method is robust in δ in the sense of [9,
Definition 3.54]. We will present the details of our investigation of this method in a
future work.

Acknowledgements This work has be co-funded by the Swiss Commission for Technology and
Innovation (CTI).

2This is confirmed by numerical experiments not shown in this work.
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