
Chapter 11
Multirate Shooting Method
with Frequency Sweep for Circuit
Simulation

Kai Bittner and Hans Georg Brachtendorf

Abstract We introduce multirate shootings methods to compute the response
of radio frequency (RF) circuits with frequency modulated stimuli. The mul-
tirate technique is based on reformulating the system of ordinary differential
algebraic equations (DAE) by partial differential equations (PDE). The PDE is semi-
discretized by Rothe’s method, i.e. by first discretizing the initial value problem. The
resulting periodic boundary value problems are then solved by shooting techniques.
Second, the instantaneous frequency is an additional unknown and concurrently
estimated.

11.1 Introduction

The multirate simulation technique (see e.g. [1–4]) has been introduced to circuit
simulation to handle RF signals with widely separated time scales in an efficient
way, by reformulating the circuit equations as PDEs in different time scales.
A semi-discretization of the multirate PDEs leads to a series of Periodic Steady
State (PSS) problems, which are usually solved by waveform relaxation methods
(Harmonic Balance, Finite Difference, Galerkin discretization), which approximate
the periodic solution over a whole period. However, for some problems this can lead
to convergence problems of nonlinear solvers (e.g. Newton) and large problem sizes
with prohibitive memory and time requirements.

Here, we consider shooting (e.g. [5–11]) as an alternative approach for PSS.
The advantage of shooting methods is that they can handle most problems for
which a transient analysis is feasible. Furthermore, the size of linear and nonlinear
problems to be solved is determined by the size of the circuit and not by the
waveform, which can reduce memory requirements essentially and a speedup might
be possible at least for some problems. Our goal here is to give a complete
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description of the shooting method in circuit simulation as an alternative to other
PSS solvers.

We develop a shooting method based on multistep methods for circuit simulation
in Sects. 11.2 and 11.3. Then shooting is applied to the multirate method in
Sect. 11.4. Various approaches for an optimal frequency sweep are presented in
Sect. 11.5. A numerical test in Sect. 11.6 concludes the results.

11.2 Circuit Equations and Multistep Methods

Consider the circuit equations in the charge/flux oriented modified nodal analysis
(MNA) formulation, which yields a mathematical model in the form of a system of
differential-algebraic equations (DAEs):

d
dt

q
(
x(t)

) + i
(
x(t)

) + s(t)
︸ ︷︷ ︸

g(x,t)

= 0, x(0) = x0 (11.1)

Here x(t) ∈ R
n is the vector of node potentials and specific branch currents and

q(x) ∈ R
n is the vector of charges and fluxes. The vector i(x) ∈ R

n comprises static
contributions, while s(t) ∈ R

n contains the contributions of independent sources.
The DAEs in (11.1) are usually solved by time integration formulas for stiff

systems. Here, we consider implicit linear multistep methods, which approximate
the solution at a discrete time step tk based on approximations at previous time
steps t� < tk as follows. Let the approximations x� ≈ x(t�), 0 ≤ � < k, be already
computed. The approximation xk ≈ x(tk) is found as the solution of the nonlinear
system

F(xk) :=
sk∑

�=0

αk
� q(xk−�) + βk

� g(xk−�, tk−�) = 0, sk ≤ k. (11.2)

Usually the trapezoidal rule or Gear’s backward difference formulas (BDF) are
used in circuit simulation. A further choice, in particular for high Q oscillators,
are the trigonometric BDF formulas from [12], which avoid artificial energy loss by
numerical damping.

The nonlinear system is solved by Newton’s method, where we need the Jacobian

DF(xk) = αk
0 C(xk) + βk

0 G(xk).

The computation of the Jacobians C(x) := q ′(x) and G(x) := i ′(x) is usually
implemented in a circuit simulator, together with the evaluation of q(x) and g(x, t).
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11.3 Periodic Steady States and Shooting

To determine the periodic steady state (PSS) of a circuit means to solve the periodic
boundary value problem

d
dt

q
(
x(t)

) + i
(
x(t)

) + s(t) = 0, x(0) = x(P ) (11.3)

instead of the initial value problem (11.1), where the source term s(t) is required
to be P -periodic to assure existence of a periodic solution. One approach to solve a
boundary value problem are shooting methods [5–9]. The principal idea is to solve
initial value problems and to adapt the initial values so that the boundary conditions
are fulfilled. That is, a nonlinear equation for the boundary value problem has to be
solved. However, the computation of the corresponding Jacobian matrix is not trivial
in general. An approach for circuit simulation based on the backward Euler method
was given in [10]. A generalization to BDF and trapezoidal rule can be found in
[11]. Here we give a short description of the shooting method for periodic steady
states of circuits, using multistep methods as introduced in Sect. 11.2.

In the sequel, we assume that a periodic steady state exists, and that the solution
depends smoothly on the consistent initial value, which is true for many practical
problems. Let x(t; ξ) be the solution of the initial value problem with initial value
ξ , i.e.,

d
dt

q
(
x(t; ξ)

) + i
(
x(t; ξ)

) + s(t) = 0, x(0; ξ) = ξ. (11.4)

Further, Φ(ξ) := x(P ; ξ) is the value of the solution after one period. To find a
PSS one has to determine an initial value ξ ∈ R

n such that Φ(ξ) − ξ = 0, i.e., we
have to solve a nonlinear system. For the application of Newton’s method we need
the Jacobian d

dξ

(
Φ(ξ) − ξ

) = Φ ′(ξ) − I . Numerical differentiation is prohibitive
expensive for larger circuits. Therefore, we consider an alternative approach.

Since Φ(ξ) = x(P ; ξ) cannot be determined exactly, we replace Φ(ξ) by the
approximation

Φ̃(ξ) := xN := xN(ξ),

where xk := xk(ξ) is the solution from the multistep method (11.2) with x0 = ξ

and tN = P . While we need a consistent initial value ξ in (11.4), we can avoid this
requirement if we use one or more (depending on the index of the DAE) backward
Euler steps (BDF1) at the begin of the time integration [11, Lemma 4.2]. However,
projecting the initial guess for Newton’s method onto a consistent solution can
improve the convergence of the shooting method [13].

The Jacobian Φ̃ ′(ξ) is determined as follows. By differentiating (11.2) one
obtains

sk∑

�=0

(
αk

� C(xk−�) + βk
�G(xk−�)

)
dxk−�

dξ
= 0. (11.5)
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This leads to the recursion

dxk

dξ
= −

(
αk

0 C(xk) + βk
0 G(xk)

)−1
( sk∑

�=1

(
αk

� C(xk−�) + βk
� G(xk−�)

)dxk−�

dξ

)
,

(11.6)
for k = 1, . . . , N with dx0

dξ
= I .

Computing Φ̃ ′(ξ) = dxN

dξ
using direct solvers will be rather expensive. The

good news are that C(xk) and G(xk) are sparse and that the LU-decomposition
of the sparse matrix αk

0 C(xk) + βk
0 G(xk) has to be computed anyway in order to

solve (11.2).1 The bad news are that the inverse matrices are dense and thus the
matrices dxk

dξ
are dense, too. That is, the computational complexity for computing

Φ̃ ′(ξ) amounts to O(n1+γ N), if we assume the computational cost for the sparse
forward-backward-substitutions (during Transient analysis) to be O(nγ ) for some
γ > 1. Additionally, we have to solve a linear system with the dense matrix
Φ̃ ′(ξ) − I , for the outer Newton iteration to determine ξ , which requires O(n3)

operations. However, this direct computation needs only limited memory of order
O(n2) (independent of N), if it is done immediately during the transient analysis.

However, we can attempt to solve the linear system by an iterative method, e.g.,
GMRES. This requires an efficient matrix vector multiplication Φ̃ ′(ξ) y for any
given y ∈ R

n. Using the recursion (11.6) we can do this, without knowing the
matrix Φ̃ ′(ξ) itself. We define yk := dxk

dξ
y, which yields yN = Φ̃ ′(ξ) y by the

recursion

(
αk

0 C(xk) + βk
0 G(xk)

)
yk =

s∑

�=1

(
αk

� C(xk−�) + βk
� G(xk−�)

)
yk−�, y0 = y.

(11.7)
This approach requires to store all matrices C(xk) and G(xk), k = 0, . . . , N ,

since the vector y = Φ̃(ξ) − ξ is only available after the transient analysis is
complete. This results in a memory consumption O(N nγ ) for some small γ > 1.
The computational cost of one matrix vector multiplication would be essentially the
same as for the transient analysis (without device evaluation), i.e., O(N nγ ). This
has to be multiplied by the number of iterations K needed by the iterative solver.

The iteration count K can be expected to be small in many cases due to the
following statement (see e.g. [14, Prop. 4]). We assume that the matrix Φ̃ ′(ξ) is
diagonizable, which is the typical case. The error for the residual rm after m iteration
steps can be estimated as

‖rm‖ ≤ c ‖r0‖ min
p∈Πm−1, p(0)=1

max
λ∈σ

|p(λ)|

1We assume that a direct sparse solver is used to solve (11.2) and (11.6), which is reasonable in
circuit simulation. For an iterative solver we have only to determine a preconditioner once for the
multiple solves, i.e., similar considerations apply.
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where c is a constant depending on the matrix, Πm−1 are the polynomials of degree
less than m and σ is the set of eigenvalues of the system matrix Φ̃ ′(ξ). If the
eigenvalues are clustered around few values one can choose polynomials with the
zeros in this clusters to prove a fast decay of the residuals.

In a circuit many components of an initial value are damped out over a period of
a periodic signal, which corresponds to small eigenvalues of Φ̃ ′(ξ), while only few
eigenvalues may be away from zero (e.g. due to an oscillator). Thus, the Jacobian
Φ̃ ′(ξ) − I may have mainly eigenvalues close to −1 with only a few exceptions,
resulting in a fast convergence of GMRES, even without preconditioning.

The direct solver is suitable if n is not too large and accuracy of the linear solver
is important, while for larger circuits the iterative solver might be favored.

11.4 Multirate Shooting Method

To separate different time scales, the circuit equation (11.1) can be replaced by
partial differential equations [1–4], namely

∂
∂τ

q
(
x̂(τ, t)

) + ω(τ) ∂
∂t

q
(
x̂(τ, t)

) + i
(
x̂(τ, t)

) + ŝ
(
τ, t

) = 0 (11.8)

where ω(τ) is an estimate of the (scaled) angular frequency. The bivariate function
x̂(τ, t) is related to the univariate solution x(t) of (11.1) as follows. For any solution
x̂(τ, t) of (11.8) we get by xθ (t) = x̂

(
t,Ωθ(t)

)
, Ωθ(t) = θ + ∫ t

0 ω(s) ds a solution
of

d
dt

q
(
x(t)

) + i
(
x(t)

) + ŝ
(
t,Ωθ(t)

) = 0.

Thus, if we choose ŝ such that s(t) = ŝ
(
t,Ω0(t)

)
, then the solution of (11.8)

provides also a solution of (11.1), i.e., x(t) = x0(t) = x̂
(
t,Ω0(t)

)
.

The multirate equation (11.8) are usually solved under periodicity conditions
x̂(τ, t) = x̂(τ, t + P) in t and initial conditions x̂(0, t) = X0(t) in τ . The source
term has then to be periodic, too, i.e., ŝ(τ, t) = ŝ(τ, t + P). The term ω(τ) can
be used to adapt to frequency modulated signals. In [3] it was shown that we can
improve the smoothness of x̂ in τ , if P and ω(τ) are chosen such that ω(τ)

P
equals

the instantaneous frequency.
Following [3, 4] we use Rothe’s method for semi-discretization. Using Gear’s

BDF2 method of order s with respect to τ one obtains

s∑

i=0

α̃k
i q

(
Xk−i (t)

) + ωk
d

dt
q
(
Xk(t)

) + i
(
Xk(t)

) + ŝ
(
τk, t

) = 0 (11.9)

2Other multistep method (e.g. trapezoidal rule) can be used, too.
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With the definition

gk(x, t) := α̃k
0q(x) + i(x) + ŝ

(
τk, t

) +
s∑

i=1

α̃k
i q

(
Xk−i (t)

)
,

Xk is the solution of the periodic boundary value problem

ωk
d

dt
q
(
x(t)

) + gk(x(t), t) = 0, x(t) = x(t + P). (11.10)

The new problem (11.10) is closely related to the original periodic steady
state problem of the circuit, only modified by the additional ‘source term’∑s

i=1 α̃k
i q

(
Xk−i (t)

)
. Analogous to (11.5) one obtains

sm∑

�=0

(
ωkα

m
� C(xm−�) + βm

�

(
G(xm−�) + α̃k

0 C(xm−�)
)) dxm−�

dξ
= 0. (11.11)

Thus, Xk can be approximated by the shooting method from Sect. 11.3. The only
additional problem is to compute

∑s
i=1 α̃k

i q
(
Xk−i (t)

)
at the transient time steps for

tk,i for Xk . This requires to store the values q� = q
(
X�,i

) ≈ q
(
X�(t�,i)

)
. These

values can be used to approximate q
(
X�(tk,i)

)
, k > �, e.g. by interpolation.

11.5 Frequency Sweep and Smoothness Conditions

As pointed out in [3, 15, 16] the function ω(τ) can be chosen in order to obtain a
smoother solution, which accelerates the simulation due to larger time steps in τ .
The observation that a modification of ω(τ) for τ < τk results in a phase shift of
x̂(τk, ·) leads to the proposition of a smoothness condition of the form

∥
∥ ∂

∂τ
x̂(τ, ·)∥∥

L2 → min, (11.12)

(cf. [3, 15, 16]) or

∥
∥ ∂

∂τ
q
(
x̂(τ, ·))∥∥

L2 → min, (11.13)

(cf. [15–17]) which should reduce changes with respect to τ . Here, we use the
norm ‖x‖2

L2 := ∫ P

0

∑n
k=1 |xk(t)

∣
∣2

dt and the corresponding inner product 〈x, y〉 :=
∫ P

0

∑n
k=1 xk(t) yk(t) dt . In many cases a (near) optimal choice of ω(τ) is known in

advance, e.g., from the (instantaneous) frequency of sources in a driven circuit.
Often, a good choice of ω(τ) is not known in advance, but central for the

success of the simulation, e.g., for the simulation of high Q oscillators without
numerical damping [12] or voltage controlled oscillators (VCO) (in a Phase-Locked
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Loop (PLL)) [3, 4]. For the existence and uniqueness of an optimal ω(τ) we
refer to [18]. There have been several approaches to include the above smoothness
conditions into simulation methods, e.g. if finite differences or collocation or
Galerkin methods (Harmonic Balance, spline wavelets) are applied to solve the
periodic problem (11.10). During our investigations it turned out that the application
of these approaches to the shooting method is not straightforward. In this section we
will develop frequency sweep following methods for the shooting methods, based
on established methods for other periodic solvers.

11.5.1 An Explicit Approach

We first refer to an approach of Houben [17] based on condition (11.13), which
leads to the equality

ω(τ) = −
〈

∂
∂t

q
(
x̂(τ, ·)), i(x̂(τ, ·)) + ŝ

(
τ, ·)〉

∥∥ ∂
∂t

q
(
x̂(τ, ·))∥∥2

L2

. (11.14)

Apparently, we can determine ω(τ) only after x̂(τ, ·) is known. However in the
Rothe discretization (11.9) we can use the guess

ωk ≈ ω(τk−1) = −
〈

d
dt

q(Xk−1), i(Xk−1) + ŝ
(
τk−1, ·

)〉

∥∥ d
dt

q(Xk−1)
∥∥2

L2

, (11.15)

based on the solution of the previous time step. From the shooting method we know
not only approximations Xk−1,� ≈ Xk−1(t�), but also gk−1,� = i

(
Xk−1(t�)

) +
ŝ
(
τk−1, t�

)
and qk−1,� = q

(
Xk−1(t�)

)
. Approximations Dqk−1,� = d

dt
q
(
Xk−1(t�)

)

for the derivatives can be computed using finite differences, as it is done in the BDF
method anyway. Numerical integration leads to the formulation

ωk = −
∑N

�=0 wk,�〈Dqk−1,�, gk−1,�〉
∑N

�=0 wk,�‖Dqk−1,�‖2
L2

, (11.16)

where the wk� are quadrature weights for the grid {tk,�}. The original approach in
[17] uses the method of lines, but it works with Rothe’s method as well.

Although the method is simple and easy to implement, also in a shooting method,
it has limits. Since the computation uses only data from the previous time step, the
accuracy of this approach is limited. In many circuits an accurate estimate for the
optimal ωk is essential for the efficiency of the multirate algorithm. In the sequel
we will consider methods, where ωk is determined in the Newton iteration of the
shooting method for Xk .
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11.5.2 An Additional Equation

Treating ωk in Eq. (11.10) as an unknown requires two things. We need derivatives
with respect to ωk for the Jacobian, and an additional equation and its derivatives.
Since our shooting equation depends now also on ω, we replace Φ̃(ξ) by Φ̃(ξ, ω).

We obtain the derivative with respect to ω as ∂
∂ω

(
Φ̃(ξ, ω) − ξ

)
= ∂

∂ω
Φ̃(ξ, ω) =

dxN

dω
. Obviously the initial value is independent of ω, i.e., dx0

dω
= 0. Differentiating

the discretized version of Eq. (11.10) with respect to ω yields

sm∑

�=0

αm
�

(
q
(
xm−�

) + ωC(xm−�)
dxm−�

dω

)
+ βm

�

(
Gk(xm−�) + α̃k

0 C(xm−�)
)

dxm−�

dω
= 0.

(11.17)
Thus ∂

∂ω
Φ̃(ξ, ω) can be computed during the transient simulation of the shooting

using the recursion over dxk

dω
similar to (11.6). Pulch [15, 16] suggests the following

approach. Based on the Gâteaux derivative, he shows that the smoothness condition
(11.12) is equivalent to

0 = 〈
∂
∂τ

x̂(τ, ·), ∂
∂t

x̂(τ, ·)〉. (11.18)

The challenge is to incorporate this equation into the shooting method, which is
done as follows. First we semi-discretize by replacing ∂

∂τ
x̂(τk, ·) and ∂

∂t
x̂(τk, ·) by

Xk−Xk−1
τk−τk−1

and X′
k , respectively. Thus condition (11.18) is substituted by

0 = 〈
Xk − Xk−1, X

′
k

〉

= 1
2

∫ P

0

d
dt

‖Xk(t)‖2 dt −
(

Xk−1(P︸ ︷︷ ︸
Xk−1(0)

)T Xk(P ) − Xk−1(0)T Xk(0)
)

+
∫ P

0
X′

k−1(t)
T Xk(t) dt

= 1
2

(
‖Xk(P )‖2 − ‖Xk(0)‖2

)
+ Xk−1(0)T

(
Xk(0) − Xk(P )

)
+

∫ P

0
X′

k−1(t)
T Xk(t) dt,

i.e., the solution (x, ωk) of the periodic problem (11.10) shall satisfy

1
2

(
‖x(P )‖2 − ‖x(0)‖2

)
+ Xk−1(0)T

(
x(0) − x(P )

)
+

∫ P

0
X′

k−1(t)
T x(t) dt = 0.

(11.19)
Although x is P -periodic, we cannot assume x(P ) = x(0) during the Newton
iteration of the shooting method, i.e., none of terms above can be neglected.

By numerical integration we approximate (11.19) by

Ψ (ξ, ω) := 1
2

(
xT
NxN − xT

0 x0

)
+ x̃T

k−1,0

(
x0 − xN

)
+

N∑

i=0

wi x̃T
k−1,i xi = 0,

(11.20)
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where the wk are quadrature weights and x̃k−1,i are approximations of X′
k−1(tk,i).

Now we have to solve the system Φ̃(ξ, ω) = 0, Ψ (ξ, ω) = 0 with n + 1 unknowns
and n + 1 equations.

For Newton’s method one needs the derivatives of Ψ (ξ, ω), which are

∂
∂ξ

Ψ (ξ, ω) = (
xN − x̃k−1,0

)T dxN

dξ
− (

x0 − x̃k−1,0
)T +

N∑

i=0

wi x̃T
k−1,i

dxi

dξ
,

∂
∂ω

Ψ (ξ, ω) = (
xN − x̃k−1,0

)T dxN

dω
+

N∑

i=0

wi x̃T
k−1,i

dxi

dω
.

This does not increase the computational cost essentially, since dxi

dξ
is already

computed during the recursion (11.6) (with the modification from (11.11)) and dxi

dω
is determined in the recursion (11.17). The only extra effort is to add up the terms
dxi

dξ
X′

k−1(tk,i) and dxi

dω
X′

k−1(tk,i) during the computation.
If we replace (11.12) by (11.13) one obtains by an analogous argument

Ψq(ξ, ω) := 1
2

(
qT
NqN − qT

0 q0
) + q̃T

k−1,0

(
q0 − qN

) +
N∑

i=0

wiq̃
T
i qi = 0, (11.21)

as well as the derivatives with respect to ξ and ω.

11.5.3 A Discrete Smoothness Criterion

We start from the smoothness criterion (11.12), which we discretize instead of
formulating an equivalent equation, namely as

‖Xk(t) − Xk−1(t)‖2
L2 → min . (11.22)

A similar criterion was introduced in [3] for waveform relaxation methods. Using
numerical integration, condition (11.22) becomes

N∑

�=0

w�

∣
∣x�(ξ, ω) − x̃k−1,�

∣
∣2 → min, (11.23)

with suitable quadrature weights w� and approximations x̃k−1,� of Xk−1(tk,�). This
optimization condition has to be solved under the condition that Φ(ξ, ω) − ξ = 0
(remember x0(ξ, ω) = ξ and xN(ξ, ω) = Φ(ξ, ω) with tN = P ). Using a Lagrange
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multiplier approach we obtain

1
2

∑N
�=0 w�

∣
∣x�(ξ, ω) − x̃k−1,�

∣
∣2 + λT

(
Φ(ξ, ω) − ξ

) → min . (11.24)

To establish a Gauss-Newton type method, we linearize the problem as follows.
For a given initial guess (ξ, ω) we use the linear approximation

x�(ξ − dξ , ω − dω) ≈ x�(ξ, ω) − ∂x�

∂ξ
(ξ, ω) dξ − dω

∂x�

∂ω
(ξ, ω)

Φ(ξ − dξ , ω − dω)−(ξ − dξ )

≈ Φ(ξ, ω) − ξ −
(

∂Φ
∂ξ

(ξ, ω) − I
)

dξ − dω
∂Φ
∂ω

(ξ, ω).

Substituting this into (11.24) and setting the derivatives with respect to dξ , dω, and
λ to zero we obtain the equations

−
N∑

�=0

w�

(
∂x�

∂ξ
(ξ, ω)

)T (
x�(ξ, ω) − ∂x�

∂ξ
(ξ, ω) dξ − dω

∂
∂ω

x�(ξ, ω) − x̃k−1,�

)

−(
∂
∂ξ

Φ(ξ, ω) − I
)T

λ = 0

−
N∑

�=0

w�

(
∂x�

∂ω
(ξ, ω)

)T (
x�(ξ, ω) − ∂x�

∂ξ
(ξ, ω) dξ − dω

∂
∂ω

x�(ξ, ω) − x̃k−1,�

)

−(
∂
∂ω

Φ(ξ, ω)
)T

λ = 0

Φ(ξ, ω) − ξ − (
∂Φ
∂ξ

(ξ, ω) − I
)
dξ − dω

∂Φ
∂ω

(ξ, ω) = 0.

For abbreviation we introduce U,A ∈ R
N×N , v, c, z, b ∈ R

N and ρ, η ∈ R

U :=
N∑

�=0

w�

(
∂x�
∂ξ

(ξ, ω)
)T ∂x�

∂ξ
(ξ, ω), A := ∂Φ

∂ξ
(ξ, ω) − I ; (11.25)

v :=
N∑

�=0

w�

(
∂x�
∂ξ

(ξ, ω)
)T ∂x�

∂ω
(ξ, ω), c :=

N∑

�=0

w�

(
∂x�
∂ξ

(ξ, ω)
)T(

x�(ξ, ω) − x̃k−1,�

)
,

z := ∂Φ
∂ω

(ξ, ω), b := Φ(ξ, ω) − ξ ;

ρ :=
N∑

�=0

w�

(
∂x�
∂ω (ξ, ω)

)T ∂x�
∂ω (ξ, ω), η :=

N∑

�=0

w�

(
∂x�
∂ω (ξ, ω)

)T(
x�(ξ, ω) − x̃k−1,�

)

such that the above linear system becomes (in block matrix notation)

⎛

⎝
U v AT

vT ρ zT

A z 0

⎞

⎠ ·
⎛

⎝
dξ

dω

λ

⎞

⎠ =
⎛

⎝
c

η

b

⎞

⎠ .
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By a Schur complement elimination we obtain the solutions

dω = η − vT b̃ − z̃T
(
c − Ub̃

)

ρ − 2vT z̃ + z̃T Uz̃
and dξ = b̃ − dω z̃.

for Newton updates of ξ and ω, where Ab̃ = b and Az̃ = z.
This requires to solve a linear system with two right hand sides, which can be

done nearly as efficient as in the original shooting. However, the computation of U

is rather expensive since it requires N + 1 matrix-matrix multiplications. A faster
way is to compute first the vectors ζ� = ∂x�

∂ξ
(ξ, ω) z̃. Then z̃T Uz̃ is computed by

z̃T Uz̃ = ∑N
�=0 w� ζ T

� ζ�, (11.26)

which needs only N +1 inner products and N +1 matrix vector products. The value
of z̃T Ub̃ can be computed analogously. However, we need to store the Jacobians
∂x�

∂ξ
(ξ, ω). That is, if we follow the memory saving approach (with a direct shooting

solver) we will compute U directly using the formula in (11.25). For the time
saving approach (with GMRES in shooting) we will use the stored data to do a
fast computation based on (11.26) (cf. Sect. 11.3).

11.6 Numerical Test

The described methods have been implemented in C++ and incorporated in our
circuit simulator LinzFrame. We have tested the method on a PLL (containing 145
MOSFETs and 80 unknowns), leading to a DAE of index 1. Here we show the
multirate simulation of the locking phase using the frequency sweep method from
Sect. 11.5.2. In Fig. 11.1 one can see that the reference and feedback signal are in-
phase after ca. 200 μs. This is reflected by the charge pump output in Fig. 11.2 which
measures the phase difference of both signals and is low pass filtered to control the
VCO. The instantaneous frequency estimate in Fig. 11.2 provides information on
the frequency modulation of the signals.

Fig. 11.1 Reference and feedback signal of the PLL
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Fig. 11.2 Charge pump output and instantaneous frequency estimate based on ω(τ)

It turned out that the shooting method performs much better than e.g. the adaptive
spline-Galerkin method from [4] in this locking phase. This is due to the fact that
the transient simulation does not rely on a good initial guess for the PSS, which is
taken from the previous envelope time step for Galerkin or finite difference schemes.
In the locking phase, signals as the charge pump output depicted in Fig. 11.2
will require very small envelope time steps to achieve convergence of Newton’s
method. However, if all signals are sufficiently smooth (e.g. after locking of the
PLL), adaptive Galerkin or FD schemes often perform better since they can employ
information on grid and signal shape from the previous envelope time step.

11.7 Conclusion

A shooting method to determine PSS of circuits has been developed and imple-
mented. Possible modifications of this method have been introduced to solve
sub-problems in the PDE based multirate circuit simulation method for RF circuits.
The new method provides an alternative to waveform relaxation methods if the latter
fail due to prohibitive time or memory requirements, or convergence problems.
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