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Foreword

In the name of Johannes Kepler University Linz I have the honor to welcome you to
the 11th international conference on scientific computing in electrical engineering.

I have learned your conference is a very special one. You are not only connecting
people, you are at the same time connecting scientific disciplines and building
bridges between science and industry. Almost two decades of successfully bringing
together applied mathematicians and electrical engineers prove the initial idea of the
conference right. What started with visionary and very ambitious goals is now fully
realized and working out well. I congratulate your community on your pioneering
spirit, on your collaborative approach, and of course on consistently pursuing your
goals over the years.

I recognized a few similarities to the last five decades of JKU. In this academic
year Johannes Kepler University celebrates its 50th anniversary. JKU is a relatively
young university but though has an eventful history. Generations of courageous and
persistent JKU teachers and researchers have contributed to what the university is
today: a vivid place of innovation, education, and know-how transfer.

LCM and RICAM—your conference hosts this year—are two institutions at our
university we are proud of.

Mathematicians fostered the establishment of the mechatronics department and
supported Europe’s first academic degree program in mechatronics, which was
created at our university in Linz in 1990. It led to the successful Comet K2 center
Linz Center of Mechatronics. Currently there are intense preparations going on for
the next funding period of this Comet competence center.

The structure of RICAM serves a little bit as a template for new organizational
units we want to develop at JKU. We have just founded the Linz Institute of
Technology (LIT) with the aim of bundling our technological competence across
all disciplines. The LIT focuses on practically oriented research in all areas of
science and technology along the entire innovation chain. We want to foster
interdisciplinary collaboration to solve problems of tomorrow and also deal with
the societal consequences of constant technological innovation.

The LIT will also be the umbrella brand for all our technological degree pro-
grams. Research-guided teaching is of great importance. Students should become
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vi Foreword

involved in research groups and applied project work as early as possible. The
RICAM concept of special semesters I think is just great. It sets a pattern for what
we want to develop for JKU students on a broad basis.

I have heard that this conference also serves as the kick-off meeting for the next
RICAM Special Semester on Computational Methods in Science and Engineering
held from October to December. I wish you all the best for your work during the
special semester.

For the conference, I wish you inspiring discussions and successful sessions with
many new ideas for your further work. I thank the conference chair and the editors
of the SCEE proceedings Prof. Ulrich Langer, Prof. Wolfgang Amrhein, and Prof.
Walter Zulehner as well as the scientific and the organizational committee for your
efforts. Have a good time here at the beautiful Wolfgangsee.

Johannes Kepler University Linz Meinhard Lukas
Linz, Austria Rector
October 2016



Preface

The 11th International Conference on “Scientific Computing in Electrical Engi-
neering” (SCEE) was held at the Federal Institute for Adult Education (BIfEB—
Bundesinstitut für Erwachsenenbildung) in St. Wolfgang/Strobl, Austria, from
October 3 to October 7, 2016. The SCEE 2016 was jointly organized by the doctoral
program “Computational Mathematics” and the Institute of Computational Mathe-
matics at the Johannes Kepler University Linz, the Linz Center of Mechatronics
GmbH, and the Johann Radon Institute for Computational and Applied Mathematics
(RICAM) at the Austrian Academy of Sciences.

With more than 80 scientists from 15 countries participating, the conference
brought together applied mathematicians and electrical engineers, academics and
industry practitioners, and, last but not least, different communities, namely those
working in electromagnetic field computation and those working in circuit and
device simulation. The BIfEB creates an inspiring, “Oberwolfach-like” work atmo-
sphere. All talks and the poster introductions were presented in the plenary session
in order to avoid splitting up the different communities mentioned above. This led
to fruitful discussions both within and across the communities.

The scientific committee invited eight experts to give keynote presentations on
the main topics in the regular program. Our keynote speakers were (in alphabetical
order):

Ram Achar (Ottawa, Ontario, Canada), Challenges and Opportunities: Modeling
and Simulation for the Emerging High-Speed Multifunction Designs,

Peter Benner and Lihong Feng (Magdeburg, Germany), Parametric Model Order
Reduction for ET Simulation in Nanoelectronics,

Hans-Georg Brachtendorf (Hagenberg, Austria), Coupled Multirate Simulation by
the MPDE Technique for Radio Frequency Circuits,

Carlo de Falco (Milano, Italy), Numerical Modeling of Organic Electronic and
Photovoltaic Devices,

Victorita Dolean (Glasgow, UK), Microwave Tomographic Imaging of Cerebrovas-
cular Accidents by Using High-Performance Computing,

vii



viii Preface

Eric Keiter, Albuquerque (New Mexico, USA), Gradient-Enhanced Polynomial
Chaos Methods for Circuit Simulation,

Roland Pulch, Greifswald (Germany), Global Sensitivity Analysis for Parameter
Variations in Electric Circuits,

Joachim Schöberl (Vienna, Austria), Mapped Tent-Pitching Methods for Maxwell
Equations.

Moreover, we organized an industrial day where five scientists from industry
presented challenging industrial problems and discussed their solution. These
speakers were (in alphabetical order):

Massimiliano Cremonesi (Polimi, Milano, Italy), A Lagrangian Finite Element
Approach for the Simulation of a Vacuum Arc,

Lars Kielhorn (TailSiT GmbH, Graz, Austria), A Symmetric FEM-BEM Formula-
tion for Magnetostatics,

Stefan Reitzinger (CST, Darmstadt, Germany), Broadband Solution Methods for
Maxwell’s Equations in Laplace Domain,

Ehrenfried Seebacher (austriamicrosystems, Unterpremstätten, Austria), Compact
Modeling for HV CMOS Technologies,

Siegfried Silber (LCM GmBH, Linz, Austria), Optimization of Mechatronic Com-
ponents with MagOpt.

In addition to the invited keynote talks, there were also 19 contributed talks. Twenty-
six posters were presented and discussed in two poster sessions; the first poster
session was devoted to applications including industrial applications, while the
second poster session collected posters presenting new computational methods.
Each session started with a fast-forward presentation of the posters by one of the
authors.

For our excursion on Wednesday we planned to visit the “Five Fingers” on
Krippenstein mountain and Hallstatt town and lake. However, weather conditions
were so bad that we had to visit the “Giant Ice Cave” near Hallstatt instead. We took
the first section of the cable car to Krippenstein, then walked for 20 min to the cave,
where we had an hour-long guided tour before returning to the BIfEB—without
getting too wet. The picture shows the participants in front of the main lecture hall
at the BIfEB (see Fig. 1). More pictures including photos of the excursion can be
found on the conference homepage

https://www.ricam.oeaw.ac.at/events/conferences/scee2016/
We would like to thank Nicodemus Banagaaya and Ewald Lindner for providing
these pictures.

The contributions to these proceedings are divided into six parts:

I Computational Electromagnetics,
II Circuit and Device Modeling and Simulation,

III Coupled Problems and Multi-Scale Approaches in Space and Time,
IV Mathematical and Computational Methods Including Uncertainty Quantifica-

tion,

https://www.ricam.oeaw.ac.at/events/conferences/scee2016/
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Fig. 1 Participants in front of the main lecture hall at the BIfEB

V Model Order Reduction,
VI Industrial Applications.

We very much hope that this collection of papers will be of interest to many
applied mathematicians and electrical engineers working at universities and research
institutions as well as to scientists working in industry. We would like to thank all
participants for their valued contributions to the SCEE 2016 and, in particular, we
are grateful to the authors of the papers published in these proceedings.

Linz, Austria Ulrich Langer
Linz, Austria Wolfgang Amrhein
Linz, Austria Walter Zulehner
December 2017
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Part I
Computational Electromagnetics

Today Computational Electromagnetics (CEM) is one of the most established
computational sciences, with applications in a broad range of areas. The devel-
opment and design of electromagnetic devices is based on numerical simulation
and optimization. The growing e-mobility has forced the industry to develop more
efficient electrical motors. Moreover, CEM plays an important part in the life
sciences. Here, we are often faced with highly complex mathematical models
in which the electromagnetic fields interact with other fields. The simulation of
the human heart is one such example. CEM is based on Maxwell’s equations,
which are composed of eight coupled Partial Differential Equations (PDEs) called
Gauss’ electric and magnetic laws, Faraday’s law of induction, and Ampère’s law
with Maxwell’s famous addition. Though these field equations were completed by
James Clerk Maxwell (1831–1879) more than 150 years ago, they still provide
challenging topics in the context of mathematical analysis, numerical analysis,
scientific computing, and electrical engineering.

We assigned five papers to the CEM part of these proceedings, although most of
the contributions of this book can be assigned to CEM:

U. van Rienen et al. conduct a first study on the application of electrical
stimulation for intrinsic activation of bone healing processes in critical size defects
of the facial skeleton in their paper “Preliminary Numerical Study on Electrical
Stimulation at Alloplastic Reconstruction Plates of the Mandible”. The finite
element simulation is based on the CT data and the potential equation for recon-
structing the electric field strength. This is another example of how CEM is applied
in the life sciences.

The paper “Evaluation of Capacitive EMG Sensor Geometries by Simulation
and Measurement” by T. Roland et al. also makes a contribution to the application
of CEM in medicine. The finite element COMSOL simulation, combined with a
MATLAB nodal analysis, enables an efficient optimization of prostheses-sensor
geometry.
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In the paper “Stability Analysis of Electromagnetic Transient Simulations”,
W. Schoenmaker et al. present an analysis of the stability characteristics of the
discretized Maxwell-Ampère equations that result from a finite integration of the
potential formulation of Maxwell’s equations.

S. Schuhmacher et al. propose an efficient method for sensitivity analysis that
relates changes in circuit parameters to changes in 3D model parameters, as detailed
in their contribution “Sensitivity of Lumped Parameters to Geometry Changes in
Finite Element Models”.

The paper “Electro-Thermal Simulations with Skin-Layers and Contacts” by C.
Winkelmann et al. proposes an adaptive finite element method for computing ohmic
losses in conductors. In a second step, the steady state temperature distribution
is computed using the commercial CFD solver ANSYS Fluent. This approach is
used to compute the temperature distribution in a circuit breaker, and the simulation
results are in good agreement with the experimental data.



Chapter 1
Preliminary Numerical Study
on Electrical Stimulation at Alloplastic
Reconstruction Plates of the Mandible

Ursula van Rienen, Ulf Zimmermann, Hendrikje Raben,
and Peer W. Kämmerer

Abstract It is well known that external biophysical stimulation via application of
electric currents enhances bone healing and restores its structural strength. However,
it has not yet been applied to treat large bone defects. We conducted a first study on
application of electrical stimulation for intrinsic activation of bone healing processes
in critical size defects of the facial skeleton. Basing on CT images of a patient
with a critical size defect, a volume conductor model has been set up in which the
stimulation electrodes are integrated. The problem can be modelled as a stationary
current problem. It is solved by the finite element method. Different stimulation
sites are studied with respect to the desired therapeutic range of the electric field
strength. In future works, the model shall be further refined. The long-range aim is
a patient-specific simulation within the therapy planning.

1.1 Medical Background and Previous Work

The integrity of the bony mandible plays a prominent role for function and aesthetics
in the facial area. If there is disruption of the mandibular continuity, mainly due
to tumour resection but also by the therapy of pronounced infections and after
traumatic events, the affected patients suffer significant functional limitations and
aesthetic shortcomings of the orofacial system. In selected cases alloplastic, usually
made of titanium, bridging plates are used together with appropriate fixing screws
on the remaining residual bone, which are introduced after resection of the tumour
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and the mandible for reconstruction of mandibular continuity defects. The goal
is to maintain the mandibular guidance and prevention of mandible deflection by
unilateral extension by muscles and scars. However, during the healing process
often complications occur such as fractures of the titanium plates or loosening
of the fixing screws, so that the survival of this system lasts often only for one
year [1]. Such complications always require replacement of the osteosynthesis
system and thus a re-invasive procedure with increased mortality and morbidity
(and mortality rate impairment). It would therefore be of high priority, to realise
a better growth of bone cells to the fixation system, thus ensuring an implant with
improved fit and great longevity. Especially in the elderly further arises the problem
of general decline of bone mass, which additionally complicates the mounting of
osteosynthesis systems.

On the other hand, it is well known that the application of electromagnetic
fields can enhance bone growth and bone remodelling. Assumedly, the natural
piezoelectricity of bone and streaming potentials in the trabecular bone structure
play an important role. Since the 1950s, the piezoelectricity of bone is common
knowledge [2]. However, the evidence of enhanced bone growth due to artificial
electromagnetic fields was provided by Bassett et al. only as late as in 1974 [3].
They also suspected that the piezoelectric behaviour is one major influencing factor
in natural bone growth. Pollack et al. [4] published an early anatomical model
for streaming potentials in osteons after first experimental observations. A more
actual view on the role of streaming potentials may be found in [5]. Since the
1980s, magnetically induced electrical stimulation is commonly used as an adjunct
in treating complications in bony healing [6]. This study considers macroscopic
simulation models and thus does not deal with the microscopic processes such as
piezoelectricity or streaming potentials but rather with electric field distributions
aiming for field strengths that empirically lead to bone regeneration.

Recently, an electro-stimulative hip revision system applying such magnetically
induced electrical stimulation has been designed [7, 8] and tested in vitro [9]:
Based on tomographic data, a numerical model has been created employing a
homogenisation approach for the soft tissue in the hip region and for the trabecular
(inner) part of the hip bone, respectively. A number of stimulation electrodes have
been placed on top of a commonly used acetabular cup. Their exact number and
positions have been optimised for certain stages of bone damage exploiting the
superposition property of the fields. To complement that electrically stimulating
acetabular cup, flat electrodes have been designed for the hip stem. The stimulation
principle has been validated in vitro and in vivo as well, the latter in a rabbit model.

To enhance the patient‘s comfort, now the aim is to develop medical devices
that employ direct electrical stimulation, making an external primary induction coil
redundant. Here, the mandible is studied as bone to be stimulated.

In the animal mandible, during the first 14–90 days of healing, accelerated
bone growth was shown when using implants made of gold wires connected to a
3-V microlithium cell [10]. Another study stated a similar effect when applying
intermittent 10 Vp-p, 60 kHz sine-wave signals during osseointegration of dental
implants [11]. The authors concluded that minimal direct electrical current resulting
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from an electric field around the implant could stimulate bone formation and
decrease the time of osseointegration. Even so, further studies considering such
treatment of bone defects are lacking.

All these findings encourage incorporating electrical stimulation into the therapy
of critical size defects of facial skeleton. It seems to be a suitable way to promote
the bone growth close to the osteosynthesis plates by means of electrical stimula-
tion. For this, patient-individual numerical simulation models are highly desirable
for therapy planning. Thus, in our preliminary study we consider a mandible
reconstructed from fibula bone, for which we compare two different models. In
future, we aim for using common alloplastic reconstruction plates [12] for electrical
stimulation devices.

1.2 Set-Up and Solution of the Bio-Electric Model

In the sequel, we will describe the macroscopic bio-electric modelling and simu-
lation step by step—each first in general, following the nomenclature of [13], and
then for our specific problem under study:

Anatomic Modelling comprises determining the tissue distribution and, if
applicable, e.g. fibre orientation and other physiological quantities, but also possible
implants already in place, from tomographical data like e.g. Computer Tomography
(CT) or Magnet Resonance Imaging (MRI). The resulting data sets are typically
volume-oriented and consist of several hundreds of slices comprising a regular raster
of so-called voxels, i.e. hexahedral volumes, which in general have nowadays a sub-
millimetre resolution. Spatial resolution and total picture volume (image resolution),
temporal resolution (acquisition speed) and tissue differentiability (tissue contrast,
artefacts, and noise) comprise central parameters and limitations. In context of
designing an electrically stimulating implant, the anatomical model will typically
be supplemented with an implant and its stimulation electrodes and insulators.

Basing on sectional images from CT data of a patient with a critical size defect
of the mandible caused by cancer, we registered and segmented the slices using
Materialise Mimics R© version 19 (http://www.materialise.com) and thus built a CAD
model for the subsequent use in an electromagnetic field simulation. Figure 1.1
displays exemplary CT slices of the full data set consisting of 302 slices, each with
512× 512 voxels of dimension 0.327× 0.327× 0.4 mm.

We employed the individual gray values for a tissue or material. For segmenta-
tion, first the gray scale ranges were defined for the individual substances (air, soft
tissue, bone, metal). This yields an intermediate, coarsely segmented model. This
model was subsequently reduced by removing artefacts and parts that are outside
of the region of interest. Thus nearly all bones, the ears and other small items were
removed to minimise the model size. Of all bone tissue, only the jaw bone was kept.
Afterwards the inner tissue boundaries were smoothed. Figure 1.2(left) shows the
three-dimensional (3D) data after registration plus segmentation.

http://www.materialise.com
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Fig. 1.1 Slices from computer tomography of a patient with a critical size defect of the mandible

Fig. 1.2 (left) 3D data after registration and segmentation. This preliminary model differentiates
between highly conductive titanium (red), conductive soft tissue (blue), and resistive bone (yellow).
(right) CAD model. The metallic implant and the fixation screws are shown in blue. The two screws
that are defined as field sources as well as the embedded stimulation electrode are highlighted. Note
that only the relevant part of the bone (the mandible) is kept for the simulation model

As a further step, unwanted geometric features like spikes, self-intersections, and
small components and holes where removed from the resulting STL object using the
software GEOMAGIC Studio 12 (3D Systems, http://www.geomagic.com). After
further smoothing, the polygon surface is converted into a NURBS surface which
then can be easily imported into the simulation software.

Finally, Fig. 1.2(right) shows the anatomical 3D CAD model for which the
so-called volume conductor model (VCM) [13] is set up. Note that ultimately the
VCM, and thus the problem size, is further reduced such that only the mandible
bone in a soft tissue background is modelled since this is sufficient to cover the

http://www.geomagic.com
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region of interest, i.e. that volume where the field has not yet decayed to irrelevant
size. That VCM serves as a representative model for our subsequent studies.

PhysicalModelling constitutes determining tissue properties as well as the prop-
erties of the implant and assigning them to the anatomical model. The tissue proper-
ties depend on the specific tissue, fibre orientation, frequency, temperature, etc.. The
tissue properties may be anisotropic or nonlinear, e.g. the electric conductivity could
be nonlinear on the electric field. Also, they show large variations on individual and
measurement, especially for low frequencies below 1 kHz [14]. These variations can
be taken into account by Uncertainty Quantification, see e.g. [15]. Furthermore, the
location of the field sources and their type of variation has to be specified.

We use the finite element (FEM) software COMSOL Multiphysics R© version
5.2a (COMSOL, https://www.comsol.com) to set up the physical VCM from the
anatomical CAD model. The electrical conductivity is taken from [14] and amounts
to 7.4 × 105 S/m for titanium (Ti beta-21S), 0.7 S/m for soft tissue and 0.02 S/m
for bone (cortical bone). We define sources using the implanted titanium prosthesis
and screws as highlighted in Fig. 1.2b. According to the method of Kraus [6], we
apply an alternating voltage of 20 Hz aiming at electric fields between 5 and 70 V/m.
Below the threshold of 5 V/m, no beneficial effect to accelerated bone growth will
be achieved, whereas electric fields above 70 V/m could damage adjacent soft tissue.

The next step involves the set-up of the appropriate boundary value problem.
In bio-electric problems with low stimulation frequencies like the 20 Hz applied in
this study, it is possible to simplify Maxwell’s equations assuming that propagation
and inductive effects are negligible [16–18]. This yields the so-called electro-
quasistatic (EQS) approximation. Since the EQS field is free from eddy currents,
it is uniquely defined by some scalar potential function. In time-harmonic case,
the complex amplitude E of the electric field strength can thus be expressed by a
complex scalar potential ϕ via E = −∇ϕ.

Plugging this into the EQS equations and assuming no impressed currents,
implies the following Laplace equation

∇ ·
(

[jωε(r)+ σ (r)]∇ϕ(r)
)
= 0 (1.1)

with the angular frequency ω, the electric permittivity ε(r) and the electric
conductivity σ (r).

In case that further ωε
σ
� 1, the problem can be thought of as a stationary current

problem and

∇ · (σ (r)∇ϕ(r)) = 0 (1.2)

results, i.e. also the capacitive effects are neglected.
For the cortical bone involved in this preliminary study with εr = 25,100 and

σ = 0.02 S/m the error in solving the stationary current problem (1.2) instead of
the EQS problem (1.1) is estimated using the relation ωε

σ
= 0.001396 to be below

0.14% at the given frequency of 20 Hz. Indeed, calculations comparing the electric

https://www.comsol.com
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field norm in the stationary and frequency domain studies showed the relative error
to be below 0.14%. For this reason, we may well solve for the stationary current
problem (1.2) instead of the EQS problem (1.1). The computation time reduces
approximately by one third compared to an EQS approach.

Solution of the Boundary Value Problem We compute the electric potential
ϕ(r) in the bone tissue and at the implant surface solving the Laplace equation
(1.2) in the computational domain. The boundary conditions are set to Dirichlet
conditions with±0.2 V at the field-inducing screws, to 0.4 V at the central electrode
and to ground potential at the outer posterior boundaries of the bone where the
metallic implant would be directly adjacent to the mandible, respectively. Neumann
boundary condition has been applied for the outer shell of the soft tissue to represent
the non-conductive air. We implied the Stationary Current Solver of COMSOL for
the solution of this boundary value problem.

On basis of a mesh convergence study, the preliminary models used about
320,000 (screws) resp. 535,000 (electrode) tetrahedral mesh elements of an average
quality 0.6 (a value of 1 would refer to equilateral mesh elements). This will be
further improved in future works.

The resulting problem with 430,000 (screws) resp. 715,000 (electrode) degrees
of freedom was solved with the conjugate gradient solver with a relative tolerance
of tol = 1 × 10−3 and a factor ρ = 400 in COMSOL’s error estimate to
ensure the desired tolerance even for ill-conditioned problems. We used a Windows
workstation with 24×3.00 GHz CPU and 256 GB RAM. The computation time was
around 2 min per simulation run for both of the models described below allowing for
extensive further parameter and optimisation studies in reasonable time, in future.

1.3 Comparison of Two Stimulation Sites

In this preliminary study, we compare two different stimulation sites. Firstly, in
model 1, we allocate the stimulation site within the screws or nails that are anyhow
involved in the implant. Details like cables are neglected in the simplified models
described here. We use a stimulation voltage of 0.4 V.

Figure 1.3(left) displays a surface plot of the electric field norm on the mandible.
It clearly elucidates that electric field strengths of 70 V/m and more are reached in
the surrounding of the screws and therefore could lead to an undesired overstimu-
lation of the adjacent soft tissue. Thus, a detailed parameter study will be done if
smaller stimulation voltages would be applicable for this set-up to stay below the
70 V/m limit.

In a second case, in model 2, instead of using the screws as stimulation site we
deliberately insert a stimulation electrode into the implanted bone. Specifically, we
use a cylinder with diameter of 2 mm and height of 5 mm, see Fig. 1.2(right). Again
we stimulate with 0.4 V. Figure 1.3(middle) similarly displays a surface plot of the
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Fig. 1.3 (left) Model 1: surface plot of the electric field norm on the mandible in case of two
screws as stimulation site. (middle) Model 2: surface plot of the electric field norm on the mandible
for central stimulation site with implanted electrode. (right) Histogram showing the percentage
of understimulated bone (|E| < 5 V/m), optimally stimulated bone (5 ≤ |E| ≤ 70 V/m), and
overstimulated bone (|E| > 70 V/m), respectively

electric field norm |E| on the mandible. Now, the maximum at the frontal surface
stays below 35 V/m. Yet, Fig. 1.3(middle) reveals a broad region on the inner surface
of the mandible where overstimulation with more than 70 V/m occurs.

To compare both stimulation sites, the percentage of beneficially stimulated bone
is a good indicator. The histogram in Fig. 1.3(right) illustrates that the beneficially
stimulated percentage of bone volume in the case with two stimulating screws
(model 1) is more than twice the percentage of the electrode case (model 2). In
addition, the (unwanted) overstimulated volume is slightly smaller in the screw
configuration than in the electrode case. The non-stimulated volume is nearly the
same in both cases. Thus, overall, the screw stimulation shows the better results.
If imbedded stimulation electrodes would nevertheless be preferred, further studies
should focus on the optimisation of the electrode position and stimulation voltage
to ensure optimal stimulation in the defective region with electric field strengths
between 5 and 70 V/m [15]. In any case, room for further improvement is expected
in both models since this was only a preliminary study of first design ideas and
a systematic parameter and optimisation study is pending. The optimisation will
aim on the stimulation of the individual defective region. From that a region of
interest will be defined. Analogous to [7], number and location of electrodes will
be optimised for a maximal percentage of optimally stimulated bone regarding the
region of interest. Next, we will also set up a numerical model that shall be compared
with results from in vivo experiments, which are currently in preparation.

1.4 Conclusion and Outlook

Electromagnetic and electric stimulation is becoming a well-established method
to enhance bone regeneration after surgeries. Our preliminary data shows that
stimulation within facial skeleton defects can provide electric field strengths in
the appropriate range to have a positive influence on the intrinsic activation of
bone healing properties. These results are crucial for further investigations using
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electrostimulative implants. As next steps, the VCM will be enhanced by taking
further technical details as well as a detailed differentiation between heterogeneous
bone- and soft tissue into account and accordingly raising the mesh resolution. In
close cooperation with the Department of Oral, Maxillofacial and Plastic Surgery at
the University Medical Centre Rostock, various electrode geometries, localisations
and other stimulation parameters as well as implanted bone substitute material as
scaffold will be considered. Next, the propagation of parametric uncertainties will
be accounted for using Uncertainty Quantification. In the long run, the simulation
pipeline shall be carried over to an open source simulation tool implying higher-
order FEM and being prepared for augmentation to a patient-individual therapy
planning.
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Chapter 2
Evaluation of Capacitive EMG Sensor
Geometries by Simulation
and Measurement

Theresa Roland, Sabrina Mairhofer, Wolfgang Roland, Christian Diskus,
Sebastian Amsuess, Michael Friedrich Russold, Christoph Wolf,
and Werner Baumgartner

Abstract Myoelectric prostheses use electromyography (EMG) signals to control
the movements of the prosthesis. EMG-signals are electric potentials on the skin
which originate from voluntarily contracted muscles within a person’s residual
limb. Thus prostheses of this type utilize the residual neuro-muscular system of
the human body to control the functions of an electrically powered prosthesis.
Standard measurements are done using conductive electrodes on the skin surface.
For technical reasons a capacitive coupling of the EMG to the prosthesis control
would be preferable. To design optimal settings of the sensors, a detailed knowledge
of the temporal electric potential distribution is vital. Here we show the simulation
of the EMG using finite elements employing COMSOL based on MRI data.
Then a node-based approach in MATLAB was derived and the comparison with
the FE-results show that this approach yields excellent results and offers the
advantage of high speed computation which allows for optimization of the sensor
geometry. The simulation results were verified using measurements on volunteers
showing that indeed our model assumptions and simplifications made are valid.
The developed nodal analysis model enables fast and simple determination of the
optimal prostheses-sensor geometry for the individual amputee.
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2.1 Introduction

Electromyography (EMG) measures the electrical signal generated by electrochem-
ical effects in the muscles. It is used to control active, myoelectric prostheses.
Amputees regain better quality of life and independence with these prostheses.
In state-of-the-art EMG systems, conductive electrodes are used. This research
deals with the approach to measure the EMG signal capacitively. In the capacitive
measurement, no conductive connection between skin and sensor layer is necessary.
This makes the system more independent of the skin condition. Pressure marks,
which occur at conductive measurement, are avoided. This makes the system more
applicable for people with circulation disorders. There are already some dealing
with capacitive measurement of biosignals. Most of them deal with capacitive
electrocardiogram, which has higher amplitudes compared to EMG (cf. [1] and [2]).
Successful application of capacitive EMG signal to provide a new measurement
system in prostheses is the aim of this research. This paper focuses on optimization
of the sensor geometry by simulation and measurement.

2.2 Simulation of EMG

The simulation of the transmission of the action potential in the muscle fibre through
the tissues is made by an FE model in COMSOL Multiphysics and with a nodal
analysis in MATLAB. The tissue parameters are σSkin = 1.14 S/m, εR Skin = 2,
σFat = 457 S/m, εR Fat = 20.81, σMuscle = 9329 S/m and εR Muscle = 266.71 [3].
These parameters are used for both simulations.

2.2.1 Simulation in COMSOL Multiphysics

The COMSOL Multiphysics simulations are based on the results of Honeder’s
work [3]. An MRI image is segmented and used as a model for different tissues. The
FE model consists of 86,585 elements. As a static signal source, the action potential
described by Rosenfalck [4] is used. This potential, shown in Fig. 2.1, depends
on the position z along the muscle fibre. The fibre is simulated at depth starting
from 5 to 36 mm distance from the skin. The positions of the simulated muscle
fibres are indicated in Fig. 2.2 by red dots. The resulting electric fields of those six
muscle fibres are superpositioned in MATLAB, using the Helmholtz superposition
principle. The muscle fibres at different depth are weighted with their circle segment
area (the muscle is approximated to be circular). The circle used for the calculation
is shown in Fig. 2.2 (red circle). The separation between two circle segments is at
the midpoint between two neighboring muscle fibres.
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Fig. 2.1 Intracellular action potential V(z) along muscle fibre according to [4]

Fig. 2.2 MRI rendered human forearm [3]; simulated superposition muscle fibres (red dots);
assumptive circular muscle for superposition (red circle); radius and ulna (bone tissue)

2.2.2 Simulation in MATLAB (Nodal Analysis)

The transmission of the action potential through the tissues in the human forearm is
also simulated by nodal analysis. The basic principle of nodal analysis is explained
in [5]. For this application, a three dimensional nodal analysis model was set up by
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Fig. 2.3 Discreet 3D nodal analysis modelling forearm tissue layers; signal source, representing
the action potential; snippet of voltage nodes and conductances; the signal is coupled to the
measurement circuit via capacitances

the authors. A sketch of this discreet model is shown in Fig. 2.3. The model consists
of homogenous tissue layers. Above the activated muscle fibre 10 mm muscle tissue,
4 mm fat and 2 mm skin are located. The nodal analysis model has eight discreet
elements in the x-direction, which is the depth of the tissue. In the y-direction,
longitudinal to the forearm, 80 discreet elements are applied. And in the z-direction,
transverse to the forearm, 20 elements are used. This leads to a total of 12,800 nodes.
The use of more discreet elements leads to a higher resolution of the electric field.
The wave is smoother at a higher number of nodes, nevertheless, the shape basically
remains the same. The choice of 12,800 nodes was determined empirically. The
equidistant nodes are connected in all directions via these conductances. To achieve
the voltages at the nodes, 2D conductance arrays were set up for each direction (Gx,
Gy, Gz). The conductance arrays are automatically calculated, using the number
of discreet elements and the dimensions in space. These 2D conductance arrays
are transformed into a 3D matrix, which then is used for further calculation. In
the transformation from 2D to 3D the model’s edges are considered. This results
in the 3D matrix G, containing the conductance values. With this matrix G a
system of linear equations is set up (2.1). I0 corresponds to the input current due
to the action potential U0 in the muscle fibre. G0 is a 2D matrix containing the
conductance values at the muscle tissue connecting the actuated muscle fibre. By



2 Evaluation of Capacitive EMG Sensor Geometries by Simulation and Measurement 17

transformation of the equation, the voltage values U can be calculated for each node.
The voltages at the surface of the skin are of relevance for further evaluation. The
action potential, represented by a 100 mV pulse, is applied at one discreet element.
The action potential propagation speed is chosen to be 4 m/s in this model [6]. The
action potentials are conducted with this propagation speed. The spatial distance
between two action potentials is then defined by the action potential propagation
speed and the action potential repetition rate. The typical EMG frequencies are in the
range of 10–500 Hz. With a fatigued muscle lower frequencies (<100 Hz) dominate
[7]. In this paper, an exemplary action potential repetition rate of 45 Hz is simulated
in the nodal analysis. So after each 25 ms, another action potential with an amplitude
of 100 mV is introduced. The effects of different action potential repetition rates and
different tissue thicknesses are not focused on in this work.

G ∗ U + I0 = 0 −→ U = −G−1 ∗ I0 I0 = U0 ∗GT
0 (2.1)

For the nodal analysis evaluation, the voltages at the nodes at the skin surface are
used. The sensor is simulated with different areas, distances and with circular and
rectangular geometry. The mean value of the skin surface voltage nodes located
under the sensor is calculated as in the actual measurement. The measurement
electronics with an amplifier gain of 1700 and the capacitive voltage divider at the
input are considered in the simulation. The circuit input impedance is calculated
with an input capacity of 16 pF. The nonlinear input resistance of the instrumentation
amplifier is neglected. The coupling capacity is dependent on the sensor geometry.
For the calculation of the coupling capacity, the εR of the insulation is 4, and a
0.8 mm sensor skin distance, due to the thickness of the insulation and a thin layer
of dry skin, is used.

2.3 Experimental Methods

To compare the results of the simulations with real-world data, proband mea-
surements were done and evaluated. Therefore the following measurement setup
was used.

2.3.1 Measurement Setup

The sensors are made up of a flexible multi-layer construct of conducting and
insulating material. Different layers are used for actual sensor and shielding. The
sensor layers are separated from the skin by insulation as the EMG is measured
capacitively. Two sensor layers are used to measure the differential signal. The
measurement system developed by the research group is used for this work [2].
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Fig. 2.4 Sensor geometry, (copper) sensor layer, (gray) active shield, (green) reference; a sensor
layer distance to center, b sensor layer width/diameter, h sensor layer height, s active shield
overhang

Table 2.1 Sensor geometries

Sensor S1 S2 S3 S4 S5 S6 S7 S8

Sensor shape (rectangular (r), circular (c)) r r r r c c c r

a (mm) 2.5 7.5 5 5 5 5 7.5 10

b (mm) 15 15 10 20 20 25 20 20

ASensorlayer (mm2) 300 300 200 400 314 490 314 400

Figure 2.4 shows a sketch of the sensor geometry. The parameters a and b are
varied, s remains constant at 2 mm and h is 20 mm in the rectangular sensors.
The EMG was measured with rectangular and circular sensor layers. The area of
the reference should not influence the results, so the reference area is equal for
every sensor. Table 2.1 lists the sensors used for the measurements. S5 equals the
proposed geometry for conductive EMG according to SENIAM [8]. This range of
sensor geometries is used due to practical reasons. The sensor size is limited by the
physical size of the muscle group. It would not make sense to use a sensor larger
than the muscle group. Same is valid for the sensor distance.

2.3.2 EMG Measurement

The measurements with eight different sensor geometries were done at seven
probands. Each proband was measured at four contraction levels on the left and
right forearm. The four contraction levels were relaxed muscle, forming a fist
with maximum possible force, 10 and 15 kg at a 66fit spin grip hand training
device. The sensor was positioned above the flexor digitorum superficialis muscle,
at the center of the muscle belly. It was held in place with a stretchable stocking.
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The measurement order was randomized, to prevent fatigue from influencing the
evaluation results. At proband A, B and C order 1 (S9, S1, S2, S7, S8, S3, S4, S6)
was chosen. For proband D, E, F and G order 2, the inverse of order 1, was chosen.
The seven probands are in the range of 15–25 years old. The mean VRMS value is
used for the evaluation of the sensor geometries. For the calculation, a contraction
sequence of 8 s at 10 kHz sampling frequency is used. A mean VRMS value is
calculated, comprising all measurements per sensor at the different contraction
intensities at the left and right forearm of proband A-G. The VRMS value of the
measurements at relaxed muscle are subtracted to prevent noise from influencing
the comparison of the sensors.

2.4 Results

The electric field at the skin surface, resulting from the superposition of the
simulated muscle fibres in COMSOL Multiphysics, is shown in Fig. 2.5a. The
results of the nodal analysis, simulating one action potential, are shown in Fig. 2.5b.
The 3D representation of both simulations are cut along the length axis at forearm
circumference 40 mm, see Fig. 2.5c. Differences in the amplitude and the broadness
of the peaks are explained by different tissue models and superpositioning. In the
FE simulation an MRI model is loaded, while in the nodal analysis a model of

Fig. 2.5 (a) Electric field at skin surface determined by superposition of muscle fibres (COMSOL
Multiphysics simulation); (b) electric field at skin surface resulting from one action potential
determined by nodal analysis (MATLAB); (c) cut of 3D representation at forearm circumference
40 mm (FE simulation in COMSOL Multiphysics and nodal analysis in MATLAB); (d) normalized
area of cut along length axis
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homogenous tissue layers is applied. The quantitative difference in amplitude has
no effect on the optimal sensor geometry, only the signal form is of importance
(Fig. 2.5d). Figure 2.5d shows the cut along the length axis normalized to area.
This normalization is done to compare the shape of the signals. For evaluation the
absolute amplitude is of no importance for finding the optimum sensor geometry.
The minor difference in shape are due to different tissue models applied. The
relative difference between the two simulations results to 10%. The difference is
calculated between the curves of the COMSOL and the MATLAB simulation. The
area of the difference is calculated and referred to the area of the MATLAB Nodal
Analysis curve. This difference is assessed by the authors as being acceptable for
this application. In contrast to COMSOL, the nodal analysis model enables a simple
implementation of the measurement with different sensor geometries. In COMSOL,
the calculation of the resulting electric field at the skin surface from an action
potential in one muscle fibre at one time step takes 22 s. In the nodal analysis in
MATLAB, this calculation for one time step results to 0.23 s. Both computation
times were determined on the same system (64 Bit Windows 7 Professional, Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz, 8 GB RAM). For this reason, the nodal
analysis voltage values are used for further evaluation.

Figure 2.6 shows the results with an exemplary action potential repetition rate
of 45 Hz. The measured amplitude at different sensor distances a is plotted over
time in Fig. 2.6a. A sensor with an area of 400 mm2 is used in this plot. Due to
the transmission through the tissue the action potential peak has an expansion at
the skin surface. Therefore, at small sensor distances, the output voltage results
to a smaller differential voltage, as it is measured by both sensor layers. If the
sensor distance is too large and corresponding to the action potential repetition
rate, the action potentials are cancelling each other out. The repetition rate and
tissue thicknesses effect the damping and cancelling out of the action potentials
and therefore determining the optimal distance. However, these two parameters

Fig. 2.6 Nodal analysis results; action potential repetition rate of 45 Hz. (a) Measured and
amplified voltages at different sensor distances a over time at a rectangular sensor geometry with
an area of 400 mm2; (b) VRMS at different sensor areas and sensor distances for rectangular sensor
geometry
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remain constant in this evaluation, their impact will be studied in future work.
Figure 2.6b plots the measured VRMS over sensor area A and sensor distance a. The
VRMS is calculated using the measurement values over time. At small sensor areas,
the amplitude increases with sensor area. This results from the capacitive voltage
divider at the input. For this reason, the circuit impedance, respectively the input
capacity, has to be minimized and the coupling capacity shall be increased e.g. by
thinner insulation. At smaller circuit input capacities the VRMS maximum would
be shifted to smaller sensor areas. Due to a limited width of the action potential
peak, the voltage is decreasing at sensor areas larger than the optimum. For this
reason, it is essential to know the circuit input characteristics and to determine the
optimal sensor area for the used measurement system. The optimal sensor geometry
for measuring the action potentials with a 45 Hz repetition rate is calculated in
MATLAB. It is resulting to a sensor distance a of 10 mm and a sensor area A of
676 mm2. This maximum is calculated using the MATLAB function ‘fmincon’. The
costs which are minimized are the inverse of VRMS. The inverse of the VRMS is used
for the minimization procedure, as we want to find the VRMS’s maximum. There
are constraints in sensor area and sensor distance, due to the limited size of the
nodal analysis model. The sensor distance has a lower bound of 2 mm and an upper
bound of 36 mm. The sensor area’s lower bound is 4 mm2 and the upper bound is
1600 mm2. The starting point used for this optimization is equivalent to the lower
bounds. The ‘Global Search’ method in MATLAB is used to prevent stopping at
local extrema. This maximum found can be seen in Fig. 2.6b.

In Fig. 2.7 the VRMS values of the proband measurements are plotted (S1–
S8). The shape of the marker indicates whether the sensor geometry is circular or
rectangular (cf. Table 2.1). The results of the nodal analysis simulation are plotted
for different sensor distances and for circular and rectangular sensors over the sensor
area. The signals are plotted for sensor distances in the range 2–10 mm according to
real sensors used for the measurements. The unevenness in the curve of the circular
geometry is explained by discretization of the circular measurement sensor element.
The circular sensor shows slightly higher amplitudes at higher sensor areas, because
its shape is similar to the action potential at the surface of the skin. At smaller
areas, the difference between circular and rectangular geometry is dominated by the
sensor area.

Exemplifying sensor 8 is plotted for the nodal analysis (S8NA) and for the finite
element model (S8FE). A sensor element with the size of sensor 8 is placed above
the action potential peak calculated by the nodal analysis and the finite element
simulation. The mean value of the electric field at the skin surface beneath the sensor
is calculated for both simulations. The calculation of the mean value represents the
physical measurement, as it is explained in Sect. 2.2.2. As can be seen in Fig. 2.7,
the nodal analysis (S8NA) overestimated the signal amplitude by about 0.02 V
while the FE-analysis (S8FE) underestimated the amplitude of the physiological
signal (S8) by about 0.01 V. The nodal analysis deviates from the FE-analysis by
about 12%. Given the measured amplitude of 0.2 V and being aware, that a lot of
physiological parameters are unknown or had to be estimated, the deviations of
10% of the areas of the 2D slice are tolerable (see Fig. 2.5d). This is true especially
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Fig. 2.7 Nodal analysis simulated VRMS for circular and rectangular sensor geometry by sensor
area A at different distances a; real-world measurement values for different sensor geometries
(Table 2.1)

when considering that the absolute amplitude does not influence the optimal sensor
geometry, only the shape of the electric field at the skin surface is doing so. Given
the fact that the FE-analysis relies on NMR-data and a much more sophisticated
and more time consuming mathematical approach, we are convinced that the simple
and fast nodal analysis is well suited for the practical application of the design and
personally individualized optimization of sensor geometries for different patients.

2.5 Conclusion

With this work, the geometry of capacitive sensors to achieve maximal signal
coupling is determined. The distance between the sensor layers should be large
enough to measure the differential voltage due to the action potential. This sensor
layer distance should not correspond to the distance between the action potentials, as
two action potentials would cancel each other out. Different EMG frequencies and
different tissue thicknesses influence the damping and cancellation within the tissue,
this will be investigated in future work. The sensor area should be chosen large
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enough to have sufficient signal coupling, but not too large to prevent capacities
towards low voltage. The circular geometry should be preferred over the rectangular
one, although this difference is minute. A small circuit input impedance leads to
better signal coupling and the optimal sensor area shifts to smaller dimensions,
which leads to better applicability in myoelectric prostheses. In future work, input
capacity neutralization circuits will be investigated. The input circuit has to be
designed in a way to reduce parasitic capacities. Active guarding plays an important
role to do so. The nodal analysis is a very fast and simple approximation and
its validity is verified by FE-simulation and measurements. The optimal sensor
geometries can now be determined easily for the individual patient using this
method.
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Chapter 3
Stability Analysis of Electromagnetic
Transient Simulations

Wim Schoenmaker, Christian Strohm, Kai Bittner,
Hans Georg Brachtendorf, and Caren Tischendorf

Abstract We present an analysis of the stability characteristics of the discretized
Maxwell-Ampere equations that result from a finite integration of the potential
formulation. We demonstrate that the derivation of the discrete versions of these
equations will result into unstable formulations unless, in the conversion from
a continuous expression to a discrete expression, one accounts for the original
motivation of the presence of the prior form.

3.1 Introduction

It is a well-known fact that electrical systems containing resistors will respond to
transient signals in such a way that when the stimulus stops at some time instant the
electromagnetic fields will gradually decay due to two physical mechanisms. First
of all the resistances convert electrical energy into heat such that the electric energy
decreases. Secondly for open systems there is radiation loss which also results into
the situation that the electrical energy decays when time proceeds.

When constructing a transient simulation tool of electrical systems it is required
that the basic fact of above energy decay mechanism is mimicked by the simulator.
For circuit simulation tools this fact is easily reproduced because the circuit
equations that contain resistors are in general stable. We can identify stability as
a property of the circuit equations in the following way.
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Let X(t) be the collection of all system or circuit variables. The complete system
of circuit equations is given by the state-space equations

E
d

dt
X+ AX = 0 . (3.1)

If E is a non-singular matrix we may rewrite (3.1) as

d

dt
X+ JX = 0, J = E−1A . (3.2)

Stability corresponds to the property of J that all its eigenvalues have real parts
larger than or equal zero. If some eigenvalues have real part less than zero, the
system has modes that explode when time proceeds which conflicts the energy
conservation law and the system is therefore unphysical. Of course if it is impossible
to create initial conditions such that when decomposed into the eigenvector base
there are no components corresponding to negative real-part eigenvalues one may
conclude that these modes will neither develop in the future and therefore the
formulation is physical acceptable. Unfortunately this does not mean that if such a
formulation of the system equations exists, e.g. J has negative real-part eigenvalues
but the initial condition projected onto the negative real-part eigenvectors is empty,
the simulation set up is physically save. While the transient time steps accumulate,
numerical noise can mix into the transient solution and after some time leap the
solution can still explode and yet becomes physically unacceptable. This was nicely
demonstrated in [1].

As is seen from (3.2), the stability criterion could be straightforwardly connected
to the formal solution

X(t) = X(0)e−J t . (3.3)

This solution is easily obtained because the system equations are first order in time.
When the Maxwell-Ampere equations are considered we must account for the wave-
like solutions and these equations are second order in time. The stability analysis
must be revised. The Maxwell-Ampere equations in the potential formulation are
given in [2]. By introducing the variable � = ∂tA the second-order system
of equations is converted to first-order. Of course this step does not change the
characteristic features of the solution, but it makes the system accessible to regular
stability analysis.

3.2 Discretization Procedure for the Maxwell-Ampere
Equation

The four Maxwell’s equations read

∇ × E = −∂tB, ∇ ×H = J+ ∂tD, ∇ ·D = ρ, ∇ · B = 0 . (3.4)
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where E, D are the electric field strength and the displacement, and H, B the
magnetic field strength and induction, respectively. Moreoverρ and J are the electric
charge density and current density, respectively. In what follows we assume linear
isotropic materials, i.e.

D = ε E, B = μH, E = −(∇V + ∂tA), B = ∇ ×A . (3.5)

where ε is the dielectric constant and μ the permeability. It should be noted that
materials of different types can be stacked or blocks of different materials can be
placed next to each other. This results into abrupt jumps in the overall permittivity
ε and permeability μ. However, generally we assume that the parameters depend
on the space coordinate. Furthermore, we rewrite the Maxwell equations using the
scalar potential V and vector potential A.

3.2.1 Spatial Discretization

In what follows we introduce the following notation. For numbering the space grid
points of adjacent grid nodes we use i and j . Moreover, let Δwi be a finite volume
element, associated with a grid node i, and σij = ±1 the orientation of a link
connecting node i and node j . It is set positive when oriented from inside to outside
of the volume. The links between nodes i and j are denoted with 〈ij 〉 and have
an associated length hij and an area ΔSij for the dual surface. Every link has an
intrinsic orientation vector of length 1 and is denoted by eij . The projection of the
vector potential onto a link 〈ij 〉 is marked with index i and j , e.g. eij · A = Aij .
When applying the finite-volume method, each node generates a balance equation
corresponding to elaborating the divergence of a flux over the surface of the dual
volume element of each node. Each surface element naturally gets a normal vector
pointing away from the node under consideration. This vector n, that is also found
on each link, can be parallel or anti-parallel to e. The resulting sign is denoted as
s, e.g. sij = n · e = ±1. The discretization of Gauss law is done using the usual
finite-volume method or finite-integration technique.

The Maxwell-Ampère law is addressed in a slightly different way. Let Jc be the
conduction current. It reads

1

μ
∇ × ∇ × A = Jc − ε

∂

∂t
(∇ V +�) . (3.6)

In order to obtain a unique solution we must impose a gauge condition. Here we use

1

μ
∇ (∇ · A)+ ξε∇

(
∂

∂t
V

)
= 0 , (3.7)
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where 0 ≤ ξ ≤ 1 is a free parameter. The Coulomb gauge is obtained with ξ = 0
and the Lorenz gauge with ξ = 1 as special cases. Adding the gauge condition (i.e.
zero to the right-hand side of (3.6), performing an integration over a dual-surface
area ΔS of a link 〈ij 〉 and multiplying the result with the length L = hij of the link
under consideration gives with Jc = σE

εL
∂

∂t

∫

ΔS

dS ·� = −L

∫

ΔS

dS · ∇ ×
(

1

μ
∇ ×A

)
+ L

∫

ΔS

dS · 1

μ
∇ (∇ · A)

− L

∫

ΔS

dS · σ∇V − L

∫

ΔS

dS · σ�

− εL

∫

ΔS

dS · ∂

∂t
(∇V )+ ξεL

∫

ΔS

dS · ∇
(

∂

∂t
V

)
.

(3.8)

The discretization of each term will now be discussed. Starting at the left-hand
side, we define a link variable Πij for the link going from node i to node j . The
surface integral is approximated by taking � constant over the dual area. Thus

εL
∂

∂t

∫

ΔS

dS ·� 
 εL ΔSij
dΠij

dt
. (3.9)

We can assign to each link a volume being Δvij = L ΔSij .

Remark 3.1 Note that Δvij �= Δwij , since Δvij is the volume corresponding to
the area of a dual surface multiplied with the length of a primary-mesh link whereas
Δwij is a dual volume of a primary-mesh node.

The first term on the right-hand side is dealt with using Stokes theorem twice in
order to evaluate the circulations

− L

∫

ΔS

dS · ∇ ×
(

1

μ
∇ × A

)
= −L

∮

∂(ΔS)

dl ·
(

1

μ
∇ ×A

)
. (3.10)

The circumference ∂(ΔS) consists of N segments. Each segment corresponds
to a dual link that pierces through a primary-mesh surface. Therefore, we may
approximate the right-hand side of (3.10) as

− L

∮

∂(ΔS)

dl ·
(

1

μ
∇ ×A

)
= −L

N∑
k=1

Δlk
1

μk
(∇ × A)k , (3.11)

where the sum goes over all primary-mesh surfaces that were identified above as
belonging to the circulation around the starting link. Note that we also attached
an index on μ. This will guarantee that the correct value is taken depending in
which material the segment Δlk is located. Next we must obtain an appropriate
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expression for (∇ ×A)k . For that purpose, we consider the primary-mesh surfaces.
In particular, an approximation for this expression is found by using

(∇ ×A)k 
 1

ΔSk

∫

ΔSk

dS · ∇ ×A = 1

ΔSk

∮

∂(ΔSk)

dl · A . (3.12)

The last contour integral is evidently replaced by the collection of primary-mesh
links variables around the primary-mesh surface. As a consequence, the first term at
the right-hand side of (3.8) becomes

− L

N∑
k=1

Δlk
1

μk

1

ΔSk

⎛
⎝

N ′∑
l=1

Δl〈kl〉A〈kl〉

⎞
⎠ , (3.13)

where we distinguished the link labeling from node labeling (ij) to surface labeling
〈kl〉.

Next we consider the second term of (3.8). Now we use the fact that each link
has a specific intrinsic orientation from ‘front’ to ‘back’ that was earlier set equal
to e,

L

∫

ΔS

dS · 1

μ
∇ (∇ ·A) 


∫

ΔS

dS · 1

μ
(∇ · A)back −

∫

ΔS

dS · 1

μ
(∇ ·A)f ront .

(3.14)

The two terms in (3.14) are now discretized as

∫

ΔS

dS· 1
μ

(∇ · A) = ΔS

μΔv

∫

Δv

dv∇·A = ΔS

μΔv

∮

∂(Δv)

dS·A = ΔS

μΔv

n∑
j

ΔSijAij ,

where the sum is now from the front or back node to their corresponding neighbor
nodes. The boundary conditions enter this analysis in a specific way. Suppose the
front or back node is on the surface of the simulation domain. Then the closed
surface integral around such a node will require a dual area contribution from a dual
area outside the simulation domain. These surfaces are by definition not considered.
However, we can return to the gauge condition and use

∫

ΔS

dS · 1

μ
(∇ ·A) = −ξΔS ε

∂V

∂t
. (3.15)

At first sight this looks weird: First we insert the gauge condition to get rid of the
singular character of the curl-curl operation and now we ‘undo’ this for nodes at the
surface. This is however fine because for the Dirichlet boundary conditions for A
there are no closed circulations around primary surfaces and there is no uniqueness
problem and therefore the double circulation operator is well defined.
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The next two terms are rather straightforward: For the third term we consider
∇V constant over the dual surface. Thus we obtain

− L

∫

ΔS

dS · σ∇V = (Vf ront − Vback)
(∑

ΔSiσi

)
. (3.16)

The variation of σ is taken into account by looking at each volume contribution
separately. The fourth term can be dealt with in a similar manner

− L

∫

ΔS

dS · σ� = L Πij

(∑
ΔSiσi

)
. (3.17)

Of critical importance are the details of the implementation of the gauge
condition. In order to make the double-curl operator more Laplacian-like we added
the gauge condition to this equation. There are two terms that contain a mixture of
a spatial and a time derivative, i.e.

− ∂

∂t
(ε∇V ) and ξ∇

(
ε
∂V

∂t

)
. (3.18)

It turns out that these terms need a different discretization based on the origin of
appearance in the Maxwell-Ampere equation. The first term in (3.18) needs to be
discretized as is done for the term ∂

∂t
(−μ0ε�). The discretization is based on the

finite-surface integration, whereas the second term in (3.18) needs to be discretized
as is done for the term ∇(∇ · A). The latter is discretized using the finite-volume
discretization. We observed that dealing with both terms using the finite-volume
discretization leads to an unstable discretized formulation of the Maxwell-Ampere
system. This is demonstrated in the following numerical example. In Fig. 3.1, a

Fig. 3.1 Twisted bar used for computing the spectrum of the matrix that determines the system
stability
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Fig. 3.2 Zoom-in to the eigenvalue spectrum around the real axis using exclusively finite-volume
discretization for terms containing a mixed temporal and spatial differentiation (left). Zoom-in to
the eigenvalue spectrum around the real axis using finite-volume discretization and finite-surface
integration for terms containing a mixed temporal and spatial differentiation (right)

twisted bar is shown and a coarse mesh is used. This allows us to do a detailed
eigenvalue analysis of the discretized system. In Fig. 3.2 left panel, the spectrum of
the matrix J is shown based on a finite-volume implementation of both terms in
(3.8). In Fig. 3.2 right panel, the spectrum of J is shown where J results from a
discretization of (3.18) using the finite-surface integration method for the left term
and keeping the discretization of the right term unaltered. We demonstrated that the
conversion of continuous terms to discrete representative terms must account for the
original motivation behind their presence.

3.3 Some Theoretical Considerations

Let us return to the Maxwell-Ampere equation (3.6). Since Jc = σ (−∇V −�)

and � = ∂tA we obtain

ε
∂2

∂t2 A+ σ
∂

∂t
A = MopA+ Js , (3.19)

Mop = ∇
(
∇ ·

(
1

μ

))
−∇ ×

(
1

μ
∇×

)


(

1

μ

)
∇2 . (3.20)

In here Mop is a spatial differential operator and Js is a source term. For a planar
structure, the component Az decouples from the equations system. Moreover the
source term for this component is zero. The second order spatial derivative will lead
to wave-like solutions. Consider the very simple one-DOF equation and k2 is the
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result of the Laplace operator:

ε
∂2x

∂t2 + σ
∂x

∂t
+ k2x = 0 . (3.21)

There are solutions of the type x(t) = x0 exp(λt). Inserting this solution gives:

ελ2 + σλ+ k2 = 0 . (3.22)

The solutions of this equation for σ > 0 are:

λ1,2 = − σ

2ε

⎛
⎝1±

√
1− 4εk2

σ 2

⎞
⎠ . (3.23)

This cannot lead to an unstable eigenvalue since the argument of the square root is
a number less than one. If the argument is less than zero we get wave-like solutions.
Our observation critically depends on the assumption that the ’Laplace operator’
Mop gives rise to k2 ≥ 0. Unstable eigenvalues can arise if Mop gives rise to negative
eigenvalues for the imposed boundary conditions. It should also be noted that if
σ = 0 then the eigenvalues become pure imaginary.

3.4 The Impact of Meshing

In this section we consider a structure with contacts at the edge of the simulation
domain. The structure and its mesh are shown in Fig. 3.3. The Manhattan meshing
gives rise to an eigenvalue spectrum which has no negative real-parts. However,

Fig. 3.3 Test structure: 2D view (left) and 3D view (right)
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when using 2D—Delaunay meshing, we find that the spectrum has severe negative
real-part eigenvalues: (−1.92 1010+0.0i), (−4.92+4.26 103i), (−4.92−4.26 103i).
As is seen in Fig. 3.3 left panel, some cells have obtuse angles. This will lead to
negative dual areas. One may modify the meshing algorithm by assigning a dual
volume to each node in each cell by starting from the center of gravity for the
surfaces of the cell and the cell volume. Using this modified method of obtaining
dual volumes and dual areas, the negative real-part eigenvalues are removed again.

3.5 Conclusion

Converting the Maxwell-Ampere equations that are second-order in time differentia-
tion into equations that are first-order in time differentiation, the standard techniques
for stability consideration become applicable. We found that the discretization
of each term must be done in accordance with the original motivation of the
appearance of the term. Carelessly swapping temporal and spatial differential
operators may quickly lead to erroneous discretization set up. We also noted
that a stable implementation requires that the discrete Laplace operator must be
implemented such that its continuous spectrum property, i.e. semi-definiteness must
be preserved.

Acknowledgements This work is funded by the European FP7 project nanoCOPS under grant
619166.
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Chapter 4
Sensitivity of Lumped Parameters
to Geometry Changes in Finite
Element Models

Sebastian Schuhmacher, Carsten Potratz, Andreas Klaedtke, and Herbert De
Gersem

Abstract The functional behavior of an electronic device is represented by
an idealized circuit. Undesired parasitic interactions, such as electromagnetic-
compatibility (EMC) problems, are modeled by additional lumped elements in
the circuit. Device design parameters, e.g. partial inductances, must be optimized
to improve EMC. This paper presents a sensitivity analysis method which relates
changes to circuit parameters to changes to 3D model parameters.

4.1 Introduction

The increasing integration density in modern electromechanical systems requires
considering electromagnetic-compatibility (EMC) issues at an early design stage in
order to avoid costly changes later on. Historically, the electronic behavior of the
system is modeled using a purely functional electronic circuit. Due to undesired
parasitic effects, the physical realization behaves differently than the idealized
model. In [1, 2], a method was proposed for automating the extraction of lumped
elements between a given set of terminals from a 3D finite-element (FE) model. This
approach is comparable to the more common model order reduction (MOR) [3] and
partial element equivalent circuit (PEEC) [4, 5] techniques but has as a benefit that
it preserves interpretability, as the reduced model still embeds the functional aspects
of the circuit and merely adds additional lumped elements accounting for parasitics.
This enables engineers to use their intuition in designing mitigation strategies.
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The sensitivity of the EMC performance on the circuit parameters is easily
calculated. Once this is known, the question arises how to adapt the physical
realization model to improve the EMC. To guide this adaptation, we propose a
method that visualizes all parasitic dependencies and thus allows to make informed
decisions on geometry modifications.

Section 4.2 first recapitulates the circuit parameter extraction approach. This is
followed by the derivation of the sensitivity analysis using an adjoint technique
[6]. It will be discussed how changes in geometry or material parameters relate to
changes in the extracted circuit parameters, and it is shown how sensitivity maps are
generated. Academic and industrial example applications are presented in Sect. 4.3.

4.2 Extraction and Sensitivity Analysis of Circuit Parameters

A robust extraction of an equivalent electric circuit (EEC) is achieved if ohmic losses
are extracted in the stationary-current approximation to Maxwell’s equations, static
capacitances in the electrostatic approximation [7] and inductances and coupling
factors in Darwin’s approximation [8]. This section briefly recapitulates these three
extraction approaches and then derives the sensitivity analysis for each of them. The
sensitivity analysis is achieved by computing the derivatives of the lumped element
parameters in the EEC to all model geometry and material parameters. The results
are presented in the form of sensitivity maps. The adjoint variable method [6] allows
for an efficient computation of the derivative of an extracted circuit parameter with
respect to all model parameters.

4.2.1 Partial Inductances

Darwin’s approximation is used to extract partial inductances and equivalent
partial capacitances as it describes capacitive as well as inductive behavior [9]. It
provides an approximation to Maxwell’s equations that excludes wave propagation
phenomena and naturally confirms to a network description [7].

The formulation reads
(
S+ s2T

)
x = y , (4.1)

where

S =
(
ε� 0

0 0

)
; T =

(
−ε2μ ε∇·
ε∇ −∇ × μ−1∇×

)
; x =

(
s2ϕ

Eσ

)
; y = s3

(
εg

−∇μ−1g

)
,

ε is the permittivity, μ the permeability, s = iω the Laplace variable, ω the angular
frequency, ϕ the electric scalar potential, Eσ the electric field strength related to
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currents within the model and g an auxiliary field calculated a-priori by solving a
magnetostatic problem for the external currents. A derivation and more detailed
discussion of this formulation can be found in [10] and [2]. The formulation is
discretized by the FE method. For conciseness, the discrete counterpart of (4.1)
keeps the same notation. Hence, x now collects the degrees of freedom (DOFs) for
s2ϕ and Eσ .

Once the field solution x to (4.1) is known for as many orthogonal excitations
as there are partial inductances (collected by the extended current matrix I), the
impedance matrix Z is calculated by:

Z(s) = s−2 (Px) I−1 . (4.2)

The projection operator P links the electrical scalar potential ϕ at the FE DOFs to
the potentials at the vertices in the EEC. The network equivalent for the impedance
matrix Z is given by a parallel connection of a capacitance and an inductance:

Z(s) = ((sL)−1 + sC)−1 . (4.3)

By computing the impedance matrices at multiple frequencies well below the first
resonance of the system, a least squares fit leads to the inductance.

In order to calculate the sensitivities of the inductances, we first have to calculate
the change of the impedance Z with regards to a model parameter pi :

dZ
dpi

=
(
∂Z
∂x

)T dx
dpi

. (4.4)

The second factor is the change of the solution vector x by the model parameter pi

and can be obtained using Eq. (4.1):

dx
dpi

=
(
S+ s2T

)−1
[

dy
dpi

−
(

dS
dpi

+ s2 dT
dpi

)
x
]

. (4.5)

We use the adjoint technique, which requires the so-called adjoint solution λ which
needs to be computed only once for each EEC parameter according to

(
S+ s2T

)T
λ = ∂Z

∂x
. (4.6)

The sensitivities are then

dZ
dpi

= λT
[

dy
dpi

−
(

dS
dpi

+ s2 dT
dpi

)
x
]
. (4.7)

The adjoint technique avoids the costly matrix inversion in Eq. (4.5). The matrices
dS/dpi and dT/dpi have to be computed for every parameter but are very sparse
and can thus be assembled efficiently. This overall method is therefore a fast and
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efficient way to compute the sensitivities of a few quantities with respect to a much
larger number of 3D model parameters.

4.2.2 Capacitances and Conductances

The extraction of capacitances C and conductances G from the field model is
accomplished by matching the electric energy WEEC = W3D and the power loss
PEEC = P3D between circuit and field model:

1
2C U2 = 1

2

∫
(ε∇ϕ) · (∇ϕ) dV = 1

2xε
TLεxε ; (4.8)

GU2 =
∫

(σ ∇ϕ) · (∇ϕ) dV = xσ TLσ xσ , (4.9)

where U is the potential difference applied between the nodes in the EEC and
accordingly on the inner boundaries of the field model. The discrete Laplacians
Lε and Lσ correspond to the electrostatic and stationary-current formulations
respectively, and xε and xσ are the solutions of the discrete Laplace problems
accomplished with the above mentioned imprinted potential boundary conditions.

Applying the adjoint sensitivity method [6] to (4.8) or (4.9), the change of a
circuit parameter Q = (C,G) to a model parameter p reads:

dQ

dp
= 2xT

ε,σ

(
dbε,σ

dp
− dLε,σ

dp
xε,σ

)
+ xT

ε,σ

dLε,σ

dp
xε,σ = xT

ε,σ

dLε,σ

dp
xε,σ ,

(4.10)

where dbε,σ
dp denotes the change of the boundary condition terms with the imprinted

potentials. In contrast to determining the sensitivities of the partial inductances,
here, the adjoint solution does not have to be computed explicitly. As can be shown,
the first term between the brackets in (4.10) does not contribute to the sensitivity, as
the imprinted boundary potentials are independent from the geometric changes.

4.3 Application Examples

4.3.1 Plate Capacitor

An idealized plate capacitor with relative permittivity εr , surface area S and distance
d between both plates, is considered. The analytic solutions for the capacitance and
for its sensitivity to d are:

Canalytic =ε0εr
S

d
; dCanalytic

dd
= −ε0εr

S

d2
. (4.11)
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Fig. 4.1 Sensitivity maps generated by calculating the geometric sensitivity for predefined
partitioned surface parts with respect to their normal vectors. The assigned sensitivities are
represented by a color scale on the partitioned parts. (a) Sensitivity map for a plate capacitor, with
surface area S = 25 cm2, plate distance d = 4.2 cm and relative dielectric permittivity between
the plates εr = 80. Also shown is the potential distribution between the plates. (b) Sensitivity map
of a conductive ring with ring diameter D = 200 mm and wire diameter d = 10 mm

The application of the described method to the 3D field model shown in Fig. 4.1a
gives the results tabulated below. Magnetic boundaries were put around the capac-
itor, such that the electric field between the plates is perfectly perpendicular to the
plates, which represents the “idealized” plate capacitor.

Ccalculated Canalytic dCadjoint/dd dCanalytic/dd

42.16280 pF 42.16280 pF −10.06852 pF
cm −10.03876 pF

cm

4.3.2 Conducting Wire

To test the extraction method, a conducting ring with ring diameter D, wire diameter
d and in a medium with permeability μ is considered (Fig. 4.1b). The analytic
solutions for the self inductance Lanalytic[11] and its derivative with respect to d

are

Lanalytic = 1
2μD

(
ln

8D

d
− 2

)
; dLanalytic

dd
= −μ

(
D

2d

)
. (4.12)

The mesh faces of the ring (Fig. 4.1b) are displaced along their face normals. Note
that the analytic solution is derived for a ring in free space whilst magnetic boundary
conditions are used in the numerical experiment, with a distance to the object of four
times the ring’s diameter.

Lcalculated Lanalytic dLadjoint/dd dLanalytic/dd

384.4 nH 386.0 nH −25.29 nH
mm −25.13 nH

mm
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4.3.3 Low-Pass π -Filter

The 3D model of the π-filter in Fig. 4.3 contains a coil that stands for the inductance
and the two bails that represent the inductance of the capacitor. The manually
created functional circuit is presented in Fig. 4.2b and the extracted EEC is shown
in Fig. 4.2a. Figure 4.2c shows the network simulation results of the idealized
functional low-pass filter compared to the results for the EEC. The EEC behavior is
non-ideal at frequencies above 5 MHz. A sensitivity analysis on the network level

(a) (b)

(c)

Fig. 4.2 (a) Extracted EEC (b) Idealized functional π-filter circuit (c) Filter transmission S21(f ):
Idealized circuit (b) (dashed green curve). EEC of (a) (red curve). EEC without coupling between
the capacitors (blue curve)
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Fig. 4.3 Realization of a π-filter (only conducting parts are shown). Sensitivity map of the
inductive coupling factor dk/dpi between the modeled inductance of both capacitors with respect
to the surface element normal vectors pi . The values of the sensitivities are represented on the
surface parts using a color scale

performed for the extracted EEC shows that the coupling between inductances L1
and L2 is responsible for most of the undesired high-frequency behavior. To verify
this, the coupling factor k21 between the inductances L1 and L2 was set to 0. The
corresponding result is compared to the raw EEC S-parameter in Fig. 4.2c. This
change improves the filter performance by more than 20 dB.

Knowing that the coupling between the two bails improves the filter performance,
its geometric sensitivity map is calculated by applying the adjoint sensitivity
method. The geometric sensitivity map (Fig. 4.3) indicates that moving the surface
of the bails to the outside and making the embedded area smaller decreases the
coupling factor, whereas moving the surfaces to the inside increases the coupling,
as expected.

4.4 Conclusions

In this paper, we provide an extension to a physically interpretable, reduced
equivalent electric circuit extraction approach (as described in [1] and [2]). We
provide the sensitivity analysis for passive lumped elements by using the adjoint
technique. This method allows for an efficient computation of the derivatives of a
lumped element parameter with regards to a large number of model parameters.
The exemplary validation of the method presents interpretable sensitivity maps that
show the sensitivity of a selected circuit parameter visualized on the geometry.

Acknowledgements The π-filter model used in Sect. 4.3.3 was kindly provided by Dr. Christoph
Keller, Robert Bosch GmbH (CR/ARE1).
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Chapter 5
Electro-Thermal Simulations
with Skin-Layers and Contacts

Christoph Winkelmann, Raffael Casagrande, Ralf Hiptmair,
Philipp-Thomas Müller, Jörg Ostrowski, and Thomas Werder Schläpfer

Abstract We show a coupled electro-thermal simulation of a large, complex
industrial device that yields a steady state temperature distribution with only small
deviations from measurements. Firstly, the Ohmic losses in the conductors are
calculated by a FEM-solver for the time-harmonic full Maxwell equations. To
this end, we introduce a model to account for electric contact resistances, and a
gradient based error indicator for adaptive mesh refinement. Secondly, the steady
state temperature distribution is computed by a commercial CFD solver, taking into
account convective and radiative cooling to balance the Ohmic heating. Theoretical
arguments and simulation results hint that good predictions of total Ohmic losses
and temperature distributions can be obtained on comparably coarse meshes which
do not fully resolve the skin layer.

5.1 Background

Industrial power devices are usually large and geometrically complex. Examples of
such devices are transformers or circuit breakers (CB). During nominal operation,
the alternating current produces Ohmic losses that heat up the device. Losses that
occur at the connections of the parts due to contact resistances sometimes amount up
to 50% of all Ohmic losses. The devices are cooled by convection and by radiation.
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In order to prevent damage, the temperature needs to be kept below device-specific
limits everywhere. The experimental determination of the temperature distribution
is possible but expensive. Simulations are a much cheaper and more enlightening
alternative [1].

To do that, one first needs to calculate the Ohmic loss distribution in the device.
Thereby, contact resistances that occur at the mentioned electrical connections
cannot be neglected. Moreover, the skin layers are of particular concern as their
thickness may be orders of magnitude smaller than the dimension of the device and
therefore require—at first sight—a prohibitive number of mesh elements to resolve
them.

In a former research project, we developed a time-harmonic A − ϕ based full
Maxwell solver in Coulomb gauge that is stable in the low frequency limit [2]. We
use this existing solver for the electromagnetic part of the coupled electro-thermal
simulation. We develop models for the electrical contacts and for adaptive mesh
refinement, and implement them there. They are introduced in Sects. 5.2 and 5.3,
respectively. In Sect. 5.4, we analyze the convergence of the predictions of the
Ohmic losses and the steady state temperature distribution under mesh refinement.

The steady state temperature distribution is calculated by using the commercial
CFD solver ANSYS Fluent [3]. In Sect. 5.5 we show an electro-thermal simulation
of a CB and compare the results with measurements.

5.2 Electric Contacts

Electric contact resistances (ECR) are a consequence of the roughness of the
contacting surfaces [4]. As the actual thin layer with increased resistance and strong
voltage drop cannot be resolved by the mesh, we introduce an actual jump in the
voltage. We model this jump by adding to the initial formulation [2] a function s in
the electric scalar potential ϕ = ϕ̂+ s which is discontinuous at the surface Γ of the
contact. Herein, ϕ̂ represents the continuous part of the potential, see Fig. 5.1. The
test function for the scalar potential is modified analogously as ϕ′ = ϕ̂′ + s′. Since
the total current is divergence-free, we find

0 =
∫

V C
Γ

divjt s′ dV �⇒ 0 =
∫

∂V C
Γ

jt · n s′ dS −
∫

V C
Γ

jt grad s′ dV.

Herein, V C
Γ is an adjacent volume inside the conductor on the side of the disconti-

nuity where s and s′ have support, shaded in blue in Fig. 5.1. The jump occurs only
at the contact surface Γ . In the boundary integral, we neglect currents over the part
of ∂V C

Γ which coincides with the boundary of the conductor, and note that s′ = 0
on the part inside the conductor away from the contact. Hence, only the part over
Γ remains. There we assume that the electric field at the contact with very small
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Fig. 5.1 FE approach for the electric contact

thickness d is given by E = s
d
n. Then it follows

0 =
∫

Γ

(σΓ + iωεΓ )
s

d
s′ dS +

∫

V C
Γ

(σ+iωε)(grad(ϕ̂ + s)+ iωA) grad s′ dV.

Herein, σ is the electric conductivity, ε the permittivity, σΓ , εΓ the respective
quantities inside the electrical contact, ω the angular frequency, and A the magnetic
vector potential. Since we aim to compute electro-thermal phenomena at low
frequencies, we neglect all displacement currents. Introducing the contact resistance
RΓ = d/(|Γ |σΓ ), where |Γ | denotes the area of Γ , we obtain the implemented
formulation [5]:

0 = 1

RΓ |Γ |
∫

Γ

s s′ dS +
∫

VC
Γ

σ (grad(ϕ̂ + s)+ iωA) grad s′ dV.

We have tested the formulation with several configurations, see Fig. 5.2.
We plan to validate the formulation in the future by comparison of simulations

and experiments of industrial power devices.
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Fig. 5.2 Left: Current density in a bar with an ECR in the center at 50 Hz. Right: Current density
in a setup with two ECRs R1/R2 = 2 at 0 Hz⇒ I1/I2 = 1/2

5.3 Adaptive Refinement for Ohmic Losses

We perform adaptive mesh refinement to reduce the error in the calculated Ohmic
losses. The mesh refinement is adaptive in the sense that we refine the mesh where
we expect the biggest error in the Ohmic losses. Hence, an estimate or at least an
indication of this error has to be computed. One could use a rigorous error estimator,
e.g. as presented in [6–8]. Instead, we choose to develop an ad-hoc error indicator.
We will refine all conductor cells with an error indicator greater than a threshold
which is chosen such that the number of cells of the final mesh does not exceed a
specified hard limit. Our error indicator ηT for cell T is defined as the maximum of
a gradient indicator and a skin indicator: ηT = max(ηT ,g, ηT ,s).

The gradient indicator ηT ,g = |T |√qT /σT maxT ′∈N(T ) ||jT−jT ′ ||2 approximates
the error in the Ohmic losses in cell T using loss density q , conductivity σ , and
current density j on neighboring conductor cells T ′ ∈ N(T ).

If there is only one cell across the conductor thickness, neighboring conductor
cells will have very similar values, hence ηT ,g will be very small, although there
could be a very fine skin layer and strong under-resolution of the loss distribution.
In these cases, the error is strongly underestimated by ηT ,g. This issue is overcome
by the skin indicator ηT ,s = qT |T |

(
1− e−hT /δT

)
which approximates the value that

ηT ,g would take if the actual current density in T is assumed to decay to a fictitious
neighboring conductor cell like in a flat skin layer, using diameter hT , skin depth
δT = √2/(μT σT ω) and permeability μ of cell T . Therefore, ηT ,s is consistent with
ηT ,g in terms of unit and scaling, and taking the larger of the two ensures that skin
layers are robustly detected also on coarse meshes.

We use the bar with ECR from Fig. 5.2 (left) as a test case. Figure 5.3 shows the
error indicator per cell for a coarse mesh. One can see that it reliably detects cells at
the ECR, next to edges and to surfaces.

Using the cell-wise error indicator ηT we can also construct an error indicator ηP
for the total losses on some part P of the conductor: η2

P =
∑

T⊂P η2
T . As we show

in Sect. 5.4.2 by comparing to a solution on a much finer mesh, this error indicator
for parts corresponds well to the actual errors.
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Fig. 5.3 Cell-wise error indicator ηT in Watt

5.4 Approximation Quality on Coarse Meshes

The Wiedemann-Franz law states that good electrical conductors are also good
thermal conductors. Therefore, any non-uniform distribution of loss densities in a
part made of a good electric conductor can be expected to be strongly smoothed out
in the steady state temperature profile. The temperature can still differ significantly
between parts, especially if they are separated by thermal contact resistances.
Consequently, we can expect that the actual skin layer does not need to be resolved
for the prediction of the steady state temperature distribution, as long as the total
losses per part are well approximated.

5.4.1 Theory

A good approximation of the total losses per part can be expected from theory [9],
as we will show below for a simplified setting. We consider the A-based variational
formulation of the eddy-current problem in a simply connected domain Ω :

a(A,A′) :=
∫

Ω

μ−1curl A · curl A′dV + iω
∫

Ω

σA · A′dV =
∫

Ω

jG ·A′dV (5.1)

with boundary condition A × n = 0. Herein, jG denotes the prescribed solenoidal
generator current density. We solve the problem (5.1) on the quotient space H =
H0(curl,Ω)/ {A ∈ H0(curl,Ω) : ||A||E = 0}, where ||A||E = |a(A,A)|1/2 is the
energy norm. Thus, the sesqui-linear form a satisfies the inf-sup condition. The total
Ohmic losses on a part P ⊂ Ω is the continuously differentiable output functional
F(A) := ω2

∫
P
σ |A|2dV . We consider a Galerkin discretization of (5.1) on the

space of first order edge elements Rh, for some mesh size h, and let Ah be a solution
of it.
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Because the output functional is differentiable, we can write the output error as

|F(Ah)− F(A)| = | 〈F ′(A),Ah − A
〉 | + R(Ah,A)

where the remainder R can be bounded as |R(Ah,A)| ≤ C||A − Ah||2E . By
considering the dual problem in H : a(A′,w) = 〈

F ′(A),A′
〉
, where w ∈ H is the

dual solution, and using Galerkin orthogonality with an arbitrary A′h ∈ Rh, we can
further estimate the output error as

|F(Ah)− F(A)| = a(Ah − A,w− A′h)+ R(Ah,A)

≤ Ca ||Ah − A||E inf
A′h∈Rh

||w− A′h||E + C||A− Ah||2E, (5.2)

where Ca is the continuity constant of the sesqui-linear form a. While it is clear that
||Ah−A||E ≤ Ch if A is sufficiently smooth, the duality term infA′h∈Rh

||w−A′h||E
requires further attention. Its behavior depends on the regularity of the dual solution
w which in turn depends on the geometry of the conductor(s). If w ∈ Hs(Ω) and
curl w ∈ Hs(Ω) for 1/2 < s ≤ 1, then using local interpolation estimates we
obtain infA′h∈Rh

||w−A′h||E ≤ Chs for shape-regular sequences of meshes. Inserting

this into eq. (5.2), we obtain |F(Ah) − F(A)| ≤ Ch1+s although we have only
||A− Ah||E ≤ Ch for first order edge elements.

In conclusion: While the local error of the current density iωσA converges with
first order in h, the error of the total losses per part converges with up to second
order in h, provided the dual solution is sufficiently smooth.

5.4.2 Numerical Experiments

In order to further analyze the mesh quality required for electro-thermal simulations,
we perform simulations on a series of meshes for the setup depicted in Fig. 5.4. A
total current of 1250 A (peak) at 50 Hz is prescribed in the bar, which will induce an
eddy current in the plate. Both parts are made of steel with a relative permeability of
μR = 250 (linear) and a conductivity of σ = 5 · 106 S/m. The resulting skin depth
δ is 2 mm. As reference values, we use values on a much finer mesh.

The relative errors in the Ohmic losses per part are plotted against the ratio of
mesh cell size h (on the surface) over the skin depth δ in Fig. 5.5. It can be seen that
an acceptable error of less than 4% in the bar can be reached when the cell size is
twice as big as the skin depth, despite the fact that the Ohmic loss distribution shown
in Fig. 5.4 is clearly a very bad approximation of reality. However, in the plate where
the current is not prescribed but induced, the mesh needs to be about 3 times finer
to reach the same level of accuracy. Note that on the two coarsest meshes, we have
only one element in plate thickness which has to describe the current flowing in
opposite directions on either side of the plate. We observe second order convergence
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Fig. 5.4 Ohmic loss density on coarsest mesh of bar (10 by 10 by 50 mm, above) and plate (20 by
20 by 2 mm, below), 10 mm apart, two different color scales

0.02%
0.06%
0.25%
1.00%
4.00%

16.00%
64.00%

256.00%

0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00

re
la

ti
ve

 e
rr

or
 o

f 
to

ta
l 
lo

ss
es

 p
er

pa
rt

h/

error in bar error in plate indicator bar
indicator plate O(h 2)

Fig. 5.5 Relative errors in Ohmic losses per part

of the errors predicted by theory in Sect. 5.4.1. Also, the error indicator per part ηP
introduced in Sect. 5.3 predicts the actual error well.

In order to assess the required mesh quality for the loss computation of the
coupled electro-thermal problem, we solve a stationary heat equation on each part
with heat transfer boundary conditions on their boundary, using a heat transfer
coefficient of 1000 W/(m2K). The relative errors in the maximum temperature rise
on the surface of the respective parts are plotted against the ratio of mesh cell size
h on the surface and skin depth δ in Fig. 5.6. By comparison to Fig. 5.5, it can
be seen that the relative error of the temperature rise is essentially the same as the
relative error of the Ohmic losses per part. We can conclude that even for iron, which
is a relatively bad thermal conductor compared to usual materials like aluminum
or copper, it is not necessary to fully resolve the actual current distribution. All
that counts is the precision of the computation of the total losses, which confirms
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Fig. 5.6 Relative errors in
maximum surface
temperature rise per part
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our initial expectation. However, if transient effects come into play rather than
considering only the steady state, like e.g. for inductive hardening, resolution of the
local distribution of the Ohmic losses is crucial. In these cases, it is recommended
to consider adapted methods like the one presented in [10].

5.5 Electro-Thermal Simulation

If no electro-magnetic material parameter depends on temperature, a one-way
coupling is exact: First, we perform a full Maxwell simulation to obtain the Ohmic
losses. Then, we perform a simulation of convective and radiative cooling in
ANSYS Fluent [3] with the Ohmic losses as source terms until a steady state is
reached. Electric and thermal contact resistances are included, both of which are
equally important. The mesh is different from the electric computation, and resolves
thermal boundary layers. The Ohmic losses are interpolated from the electric to the
thermal mesh.

We apply our simulation procedure to predict the steady temperature distribution
in a CB at nominal operation. The CB is 7.5 m long, with wall thicknesses and skin
depths in the order of 10 mm. The streamlines inside the CB are depicted in Fig. 5.7.
They show the natural convection.

In Fig. 5.8 we compare the simulation with an experiment by plotting the mean
temperature rise along both the inner conductor part and the enclosure. Simulation
and experiment agree within 3 K, although there is often only one mesh cell in
thickness direction. This again confirms that it is not necessary to fully resolve skin
layers to obtain accurate predictions of steady state temperatures.
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Fig. 5.7 Streamlines in CB
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5.6 Conclusions

We have shown that in order to obtain reliable predictions of temperature distri-
butions in a power device, it is necessary to include electric and thermal contact
resistances. However, it is sufficient to accurately predict the total Ohmic losses per
part of the device, without necessarily resolving the skin layers, at least in steady
state. In order to reach this goal, the required mesh resolution can in general be
attained by moderate adaptive refinement, due to the quadratic convergence of the
total losses per part. The error indicator, which is used for the refinement procedure,
predicts the relative errors in the Ohmic losses accurately.
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Part II
Circuit and Device Modeling

and Simulation

Circuit/device modeling and simulation are indispensable tools for the improvement
of existing and the development of new electronic devices. Modeling and simulation
help to reduce development costs and can substantially reduce the time to market
for these devices. The increasing complexity of modern electronic devices poses
significant new challenges for modeling and simulation with regard to the accuracy
of the models and the efficiency of the computational methods for simulation. These
aspects are addressed by the two contributions in this part, though with different
focuses.

The first contribution is based on the keynote talk “Gradient-Enhanced Polyno-
mial Chaos Methods for Circuit Simulation” by E.R. Keiter et al. A new approach
to circuit level uncertainty quantification (UQ) by means of polynomial chaos
expansion (PCE) methods is presented. PCE is a non-sampling, projection-based
technique, in which parametric uncertainties are approximated using an expansion
of orthogonal polynomials. This paper employs regression-based PCE, which
requires less burdensome simulator modifications than fully intrusive Galerkin-
based PCE. However, this comes at the cost of accuracy. The idea of enhancing
the accuracy of regression-based PCE using gradient information is explored.
The gradient information is provided by an intrusive adjoint sensitivity algorithm
embedded in the circuit simulator.

The second paper, “Coupled Circuit Device Simulation” by K. Bittner et al.,
presents an approach for the coupling of electromagnetic field simulation with
circuit simulation. A lumped device model is replaced by a full 3D model, which
provides the data of the field model for use in the circuit simulator. The field model
is based on (discretized) Maxwell equations provided by an interface to Magwel’s
electromagnetic simulation tool devEM. Numerical examples show that the coupled
simulator can be used to test complex devices in the context of a larger circuit.



Chapter 6
Gradient-Enhanced Polynomial Chaos
Methods for Circuit Simulation

Eric R. Keiter, Laura P. Swiler, and Ian Z. Wilcox

Abstract Uncertainty Quantification (UQ) is an important and emerging topic in
electronic design automation (EDA), as parametric uncertainties are a significant
concern for the design of integrated circuits. Historically, various sampling methods
such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) have been
employed, but these methods can be prohibitively expensive. Polynomial Chaos
Expansion (PCE) methods are often proposed as an alternative to sampling. PCE
methods have a number of variations, representing tradeoffs. Regression-based PCE
methods, for example, can be applied to existing sample sets and don’t require
specific quadrature points. However, this comes at the cost of accuracy. In this paper
we explore the idea of enhancing regression-based PCE methods using gradient
information. The gradient information is provided by an intrusive adjoint sensitivity
algorithm embedded in the circuit simulator.

6.1 Introduction

Sensitivity analysis and uncertainty quantification (UQ) are important capabilities
for circuit simulation. In this paper, sensitivities refer to the derivatives of an
objective function with respect to parameters. These parameter sensitivities give
a local indication of the important parameters governing a response at a particular
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point. UQ allows one to understand the probability distribution of the response,
given probability distributions on the input parameters.

Sampling methods are commonly used to perform UQ. While sampling is an
attractive approach for several reasons (e.g. it is repeatable given a particular seed,
it is fault tolerant in the sense one can drop failed sample evaluations, and it is
easy to understand), sampling suffers from the curse of dimensionality. A large
number of samples are required to estimate the output statistics, especially to
resolve small tail probabilities. The accuracy of the mean estimate obtained from
a set of random samples exhibits 1/

√
N convergence, meaning that on average one

needs to quadruple the number of sample points N to halve the error. Although
many improvements on sampling schemes have been developed to overcome these
limitations, such as Latin Hypercube Sampling [1, 2] and space-filling designs, the
essential limitations of sampling still remain.

A recent interest in the computational simulation community is the use of more
“embedded” UQ methods, in which the UQ algorithm is intrusively built into the
simulator. As an example, in [3], an intrusive Galerkin based polynomial chaos
expansion (PCE) method was demonstrated in a circuit simulator. However, the
implementation required heavy instrumentation of the device models, which would
be impractical in most production simulators.

There are categories of UQ method which require some simulator modification,
but for which the required modifications are less burdensome than those necessary
for fully intrusive Galerkin-based PCE. Specifically, if a simulator has been
instrumented to efficiently produce parameter sensitivities [4–6], these can be used
to enhance both the accuracy and runtime of several nominally non-intrusive UQ
methods [7].

We outline the formulations for this UQ method, and demonstrate the com-
putational savings that can be gained when using accurate sensitivities from an
application code in the UQ process. The approaches and algorithms described in
this paper are in implemented in two software frameworks: Xyce [8], a parallel
circuit simulator developed at Sandia National Laboratories, and Dakota [9], an opti-
mization and UQ toolkit also developed at Sandia. Both are open-source software
packages available at https://info.sandia.gov/xyce and https://dakota.sandia.gov,
respectively. However, it should be emphasized that the algorithms and approaches
presented here are general, and applicable in other computational domains.

6.2 Transient Sensitivities

Many UQ techniques can be enhanced if the application code is able to produce
parameter sensitivities with respect to objective functions of interest. In this paper, a
high-level overview of direct and adjoint transient sensitivities are given. For a more
detailed description the reader is encouraged to look at [4–6]. For this work, our
interest is in transient dynamical systems represented by the differential-algebraic

https://info.sandia.gov/xyce
https://dakota.sandia.gov
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equation (DAE) form:

F(x, t, p) = dq(x(t, p), p)

dt
+ j (x(t, p), p) − b(t, p) = 0, (6.1)

where x ∈ R
nx is the DAE solution, which will satisfy F = 0 for all p. In

circuit simulation, x consists of nodal voltages and branch currents. p ∈ R
np is

a set of input parameters. q and j are functions representing the dynamic and static
circuit elements respectively, and b(t) ∈ R

nx is the input vector. In circuit analysis,
q mostly contains capacitor charges, j contains resistance terms and b contains
independent current and voltage sources. As such q , j and b are populated by the
various circuit element models (also referred to as “compact models”) supported
by the circuit simulator. Transient analysis of Eq. (6.1) requires an implicit time
integration method such as Backward Euler (BE) or the trapezoid rule. F ∈ R

nx

is the residual equation vector that is minimized by Newton’s method at each time
step to solve for x.

We are also interested in objective functions of the dynamical system, O(x, p) ∈
R

nO . For circuit simulation, the objective function could be a circuit output voltage,
or something more complex, such as a signal delay. A sensitivity is the derivative of
O with respect to p, which can be expressed using the chain rule giving:

dO

dp
= −∂O

∂x

(
∂F

∂x

)−1 ∂F

∂p
+ ∂O

∂p
, (6.2)

where x and F have the same meaning as in Eq. (6.1). The right-hand side
of Eq. (6.2) contains the product of several matrices, which each have different
dimensions. ∂O/∂x is of dimension nO × nx . The Jacobian matrix ∂F/∂x is of
dimension nx × nx , and will generally be available in any simulator that solves
Eq. (6.1) using implicit methods. The derivative vector ∂F/∂p is referred to as
the “function derivative”, is of dimension nx × np, and must be populated by the
various compact device models. In modern circuit simulators, with complicated
device compact models, computing ∂F/∂p can be challenging and may only be
practical with automatic differentiation (AD). For this Xyce uses the Sacado AD
library [10].

Sensitivities can be computed using two different methods; the direct method
and the adjoint method. The difference between direct and adjoint is related to
the order in which the terms of Eq. (6.2) are computed. For problems with large
numbers of parameters np, and a small number of objectives nO , the adjoint
method is usually more efficient. For the opposite case, the direct method is a better
choice. Transient direct and adjoint sensitivities are briefly described in Sects. 6.2.1
and 6.2.2 respectively.
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6.2.1 Transient Direct Sensitivities

Transient direct sensitivities can be derived by following the approach described by
Hocevar [4]. For any integration method, a transient direct sensitivity DAE equation
can be derived by differentiating the original DAE (Eq. (6.1)) with respect to a
parameter, p:

dF(x, t, p)

dp
= d

dp

[
dq(x(t), p)

dt
+ j (x(t), p)− b(t, p)

]
= 0 (6.3)

A numerical solution to Eq. (6.3) is obtained using an implicit time integration
method. If using BE, the expanded direct sensitivity DAE equation is determined
by substituting the BE formula for dq/dt and expanding the q and j derivatives
using the chain rule (for example dq/dp = ∂q/∂x · ∂x/∂p + ∂q/∂p). This gives:

Jacobian︷ ︸︸ ︷[
1

hi

∂qi

∂xi
+ ∂ji

∂xi

]
∂xi

∂p
= −

Function Derivative︷ ︸︸ ︷(
1

hi

[
∂qi

∂p
− ∂qi−1

∂p

]
+ ∂ji

∂p
− ∂bi

∂p

)
+

Chain Rule term︷ ︸︸ ︷
1

hi

[
∂qi−1

∂xi−1

]
∂xi−1

∂p
,

11 (6.4)

where i is the time step index, and hi is the time step size going from step i−1 to step
i. Similar formulas can be derived for other integration methods. Equation (6.4) is
solved at each time step once the Newton loop for the original DAE has converged.
The Jacobian matrix on the left-hand side of Eq. (6.4) is the same Jacobian as the one
used in the original DAE solve, so it can simply be reused. Note that the “function
derivative” on the right-hand side of Eq. (6.4) is equivalent to ∂F/∂p in Eq. (6.2),
and the Jacobian in Eq. (6.4) is the equivalent to ∂F/∂x from Eq. (6.2).

6.2.2 Transient Adjoint Sensitivities

Transient adjoint sensitivities [5, 6] can be broadly classified into two categories:
discrete adjoint sensitivities (in which one applies the adjoint operator after
discretizing the direct sensitivity DAE) and continuous adjoint sensitivities (in
which one applies the adjoint operator first, and then discretizes). For the sake of
brevity, this paper describes the discrete adjoint form [5].

For the discrete transient case, it is convenient to consider the entire transient in
block matrix form. If a transient simulation consists of N time points, then all the
time points can be considered in a single block matrix equation:

F = Q̇+ J− B = 0, (6.5)
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where F is the block residual vector given by F = [F0, F1, . . . , FN ]T . The other
terms in the equation: X, Q̇, J, and B are block analogies of the original DAE
equation terms: x, q , j , and b, respectively. For conventional time integration
methods, the block Jacobian is a lower triangular block matrix:

∂F(X)

∂X
=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
∂F0
∂x0

)
(
∂F1
∂x0

) (
∂F1
∂x1

)

...
...

. . . (
∂FN

∂xN

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.6)

where the block linear system is:

∂F
∂X

Θ = ∂F
∂p

, (6.7)

and where Θ = [Θ0,Θ1, . . . ,ΘN ]T is the derivative of the solution X =
[x0, x1, . . . , xN ]T with respect to a parameter value p. e.g., Θ0 = dF0/dp. The
block matrix is banded and lower triangular. Intuitively, solving this block linear
system requires one to start with the upper left-hand corner of the matrix (at the first
time point), and use forward substitution to solve the system. Doing this is analogous
to integrating forward in time. For BE, the equivalent equation corresponding to
block row i in Eq. (6.6) is:

(
∂Fi

∂xi

)
∂xi

∂p
= −

(
∂Fi

∂xi−1

)
∂xi−1

∂p
+ ∂Fi

∂p
(6.8)

Equation (6.8) is equivalent to Eq. (6.4), when the residual F is expanded using the
BE formula. ∂Fi/∂xi is the Jacobian, ∂Fi/∂p the function derivative and ∂Fi/∂xi−1
the block matrix off-diagonal, or “chain rule term”.

One can obtain the discrete adjoint form by taking the transpose of Eq. (6.6). The
resulting block Jacobian has the form of an upper triangular matrix:

(
∂F(X)

∂X

)T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
∂F0
∂x0

)T (
∂F1
∂x0

)T
(
∂F1
∂x1

)T

. . .
...(

∂FN

∂xN

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6.9)
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where the block linear system is:

(
∂F
∂X

)T

Θ�
k =

∂Ok

∂X
, (6.10)

and where Θ� is often referred to as the adjoint. There is a unique adjoint
solution for each time point k. Similarly, the local objective function O at each
time point k is considered to be a unique objective function, so Ok, is ∂Ok

∂X =[
0, 0, . . . , ∂Ok

∂xk
, . . . , 0, 0

]T
. The matrix in Eq. (6.9) is upper triangular, so the

solution requires a backsolve, starting in the lower right-hand corner at the final time
point. This corresponds to integrating backward in time. As with direct methods,
a variety of integration methods can be used to compute Θ�. The BE form,
corresponding to a single block row of the transposed block system, is given by:

[
1

hi

∂qi

∂xi
+ ∂ji

∂xi

]T
θ�i =

[
1

hi+1

∂qi+1

∂xi+1

]T
θ�i+1 +

(
∂O

∂xi

)T

. (6.11)

Equation (6.11) is evaluated in a loop stepping backward from the final time to the
initial time.

Once Θ�
k has been computed for a specific time point k, it can be used to obtain

dOk/dp by taking the dot product with ∂F/∂p. In block matrix form this is given
by:

dOk

dp
= Θ�

k ·
∂F
∂p

. (6.12)

The derivative ∂F/∂p is the function derivative. In the special case where O = x,
then ∂Ok

∂X = [0, 0, . . . , 1, . . . , 0, 0]T and Eq. (6.12) provides dx/dp for a specific
time point. If computing dx/dp for multiple time points, then a separate reverse
integration and dot product evaluation is required for each one.

For transient adjoint sensitivities, it is necessary to completely solve the original
DAE (Eq. (6.1)) for the entire time range first, before solving the adjoint equations
to obtain sensitivities. Information must be saved during the forward solve in order
to populate the Jacobians in Eq. (6.9), and the function derivatives in Eq. (6.12). For
long transients this can require a lot of storage, a drawback of transient adjoints.

6.3 Polynomial Chaos Expansion Methods

Stochastic expansion UQ methods approximate the functional dependence of the
simulation response on uncertain model parameters by expansion in a polynomial
basis [11, 12]. The polynomials used are tailored to the characterization of the
uncertain parameters. PCE is based on a multidimensional orthogonal polynomial
approximation.
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In PCE, the output response is modeled as a function of the input random
variables using a carefully chosen set of polynomials. For example, PCE employs
Hermite polynomials to model Gaussian random variables, as originally employed
by Wiener [13]. Dakota implements the generalized PCE approach using the
Wiener-Askey scheme [11], in which Hermite, Legendre, Laguerre, Jacobi, and
generalized Laguerre orthogonal polynomials are used for modeling the effect of
continuous random variables described by Gaussian, uniform, exponential, beta,
and gamma probability distributions, respectively. These orthogonal polynomial
selections are optimal for these distribution types since the inner product weighting
function corresponds to the probability density functions for these continuous
distributions.

To propagate input uncertainty through a model using PCE, Dakota performs
the following steps: (1) input uncertainties are transformed to a set of uncorrelated
random variables, (2) a basis such as Hermite polynomials is selected, and (3) the
parameters of the functional approximation are determined. The general PCE for a
response O has the form:

O(p) ≈
J∑

j=0

αjΨj (p), (6.13)

where each multivariate basis polynomial Ψj(p) involves products of univariate
polynomials that are tailored to the individual random variables. The response O

is analogous to the objective function O described in Sect. 6.2, except that here the
input parameters p are considered to be random variables and in Sect. 6.2 they are
considered deterministic. If a total-order polynomial basis is used (e.g. a total order
of 2 would involve terms whose exponents are less than or equal to 2, such as p1

2,
p2

2, and p1p2 but not p1
2p2

2), the total number of terms N in a PCE of arbitrary
order k for a response function involving n uncertain input variables is given by:
(n + k)!/(n!k!). If on the other hand, an isotropic tensor product expansion is used
with order k in each dimension, the number of terms is (k+1)n. If the order k of the
expansion captures the behavior of the true function, PCE methods will give very
accurate results for the output statistics of the response.

In non-intrusive PCE, as in Dakota, simulations are used as black boxes and
the calculation of the expansion coefficients αj for response metrics of interest
is based on a set of simulation response evaluations. To calculate these response
PCE coefficients, two primary classes of approaches are used: spectral projection
and regression. The spectral projection approach projects the response against
each basis function Ψj(p) using inner products and employs the polynomial
orthogonality properties to extract each coefficient. Each inner product involves a
multidimensional integral over the support range of the weighting function, which
can be evaluated numerically using sampling, tensor-product quadrature, Smolyak
sparse grid [14], or cubature [15] approaches. One advantage of PCE methods
is their convergence rate [12]. For smooth functions (i.e., analytic, infinitely-
differentiable) in L2 (i.e., possessing finite variance), exponential convergence rates
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can be obtained under order refinement for integrated statistical quantities of interest
such as mean and variance. A disadvantage of non-intrusive PCE methods is that
they may not scale well to high dimensions. Recent research in adaptive refinement
and sparse recovery methods strives to address this limitation [16].

In this work, we use regression-based PCE. Regression-based PCE approaches
aim to solve the linear system:

Ψ α ≈ R (6.14)

for a set of PCE coefficients α that best reproduce a set of response values R.
The regression approach finds a set of PCE coefficients αj which best match a
set of response values obtained from a sampling study (e.g. a design of computer
experiments producing an unstructured grid of sample points sometimes called
collocation points.) on the density function of the uncertain parameters [17]. The
convergence of regression-based PCE approaches has been studied. It is possible
to bound the number of samples necessary to identify the coefficients in the PCE
expansion by using the bounds on the spectral radius of a random matrix consisting
of the sample points [18]. Convergence analyses focus on the number of samples
and sampling approaches for stable and accurate solution recovery. The concept
of a coherence parameter is used, which is a bound on the realized spectral radius
of WΨ , where W is a diagonal, positive definite matrix. Solution recovery of the
PCE coefficients using regression PCE can be guaranteed with a number of samples
that is proportional to the coherence times logarithmic factor in J , the total number
of basis polynomials. In some cases, the number of samples required to recover
the PCE coefficients scales linearly or nearly-linearly with the number of basis
polynomials [18].

Additional regression equations can be obtained through the use of derivative
information (gradients and Hessians) from each collocation point, which can aid
in scaling with respect to the number of random variables, particularly for adjoint-
based derivative approaches. This idea is the main subject investigated in this paper.
The derivative equations are added to the set of regression equations as follows:

dO(p)

dp
≈

J∑
j=0

αj

dΨj (p)

dp
. (6.15)

Equation (6.15) is simply the derivative of the PCE response equation (Eq. (6.13))
with respect to the random variables of the UQ analysis. The left-hand side is ideally
provided by sensitivity calculations performed by the simulator, such as described
in Sect. 6.2.

Various methods can be employed to solve Eq. (6.14). The relative accuracy
of each method is problem-dependent. Traditionally, the most frequently used
method has been least squares regression. However when Ψ is under-determined,
minimizing the residual with respect to the L2 norm typically produces poor
solutions. Compressed sensing methods have been successfully used to address
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this limitation [19, 20]. Such methods attempt to only identify the elements of the
coefficient vector α with the largest magnitude and enforce as many elements as
possible to be zero. Such solutions are often called sparse solutions.

The convergence of gradient-enhanced regression PCE has been studied
recently [21], where the authors show that the inclusion of derivative information
and appropriate normalization will almost-surely lead to improved conditions for
successful solution recovery. Reference [21] presents theoretical, probabilistic
bounds regarding solution recovery for regression-based Hermite PCE with
derivative information. This work suggests that adding gradients to the regression
formulation will improve the solution recovery at a lower overall computational
cost.

Dakota provides several algorithms that solve the regression formulations for
PCE, including orthogonal matching pursuit, least angle regression (LARS), least
absolute shrinkage (LASSO), basis pursuit, and a standard least squares. Typically,
we recommend using least squares for over-determined systems and compressed
sensing methods for under-determined systems, which is the case when the basis
functions are augmented with additional basis functions representing gradient terms.
Details of these methods are documented in the Linear Regression section of the
Dakota Theory Manual [22].

6.4 Results for CMOS Inverter Circuit

In this section, we demonstrate the use of gradient-enhanced PCE methods on a five-
stage CMOS inverter (Fig. 6.1). This circuit uses 10 instances of the BSIM6 [23]
compact model, which in Xyce is instrumented with AD [10] to provide analytical
parameter sensitivities (the “function derivative” term described in Sect. 6.2). The
only other circuit element is a step input voltage source. The system to be solved
is has 60 unknowns, most of which are nodal voltages. The dq/dx Jacobian is
singular, so the system is a pure DAE system. The transistor models all include
nonlinear capacitances. The capacitances from the first inverter form loops with the
ideal voltage source input, meaning the circuit has a DAE index of two [24, 25].

Vdd Vdd Vdd Vdd Vdd

Vout

Fig. 6.1 CMOS circuit with five inverters
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In digital circuits signal delay is an important performance metric. Capacitive
effects are significant delay contributors, and in this circuit example each inverter
stage adds to signal delay primarily through the gate oxide capacitors. Gate oxide
thickness (referred to here as δ) is thus a critical uncertain parameter, and is specified
as a parametric input to the BSIM6. For the purposes of this study, all five NMOS
devices are assumed to have the same δN and all five PMOS devices are assumed
to have the same δP , giving two uncertain scalar parameters. We model these as
Gaussian-distributed uncertainties, centered around a nominal value with a standard
deviation of 10% of nominal. The means of δN and δP were 1.74E−9m and
2.34E−9m, respectively. The other non-uncertain transistor parameters we used are
taken from the BSIM6 benchmark tests.

The output of interest is the output voltage Vout , and a result from a forward Xyce
calculation is plotted in Fig. 6.2. The left plot shows transient voltages for the input
node, the third inverter output node, and the fifth inverter output node (Vout ). In an
ideal circuit, there would be no delay between the input and output transitions, but
in this more realistic circuit that is not the case. The output voltages transition from
the high state to low with some time delay after the step input, and each inverter
adds additional delay to the signal. The Vout sensitivity with respect to δN and δP is
shown on the right. Both are sharply peaked near the Vout transition. In this example
np = 2, so the direct method (Sect. 6.2.1) was used to compute the sensitivities.
However, an adjoint method (Sect. 6.2.2) produces identical results.
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Fig. 6.2 Behavior of CMOS circuit exhibiting signal delay
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To quantify delay, we used a generalized Elmore delay [6] as our objective
function. If g(t) = Vout is the transient response of a node in an electrical network
to a step input, the delay TD is approximated as the centroid of its time derivative
g′(t):

TD =
∫ B

A
g′(t) · t · dt∫ B

A g′(t)dt
=
∫ B

A
g′(t) · t · dt

g(B)− g(A)
. (6.16)

The parameter derivative formula for TD is given by:

dTD

dp
=
∫ B

A
dg′
dp

(t) · t · dt − TD
d
dp [g(B) − g(A)]

g(B)− g(A)
. (6.17)

The quantities TD , dTD/dδN and dTD/dδP are computed with Eqs. (6.16) and
(6.17) using Xyce-computed values of Vout , dVout/dδN and dVout/dδP for a
sequence of time steps. The integrals are approximated numerically using trapezoid
rule. The time points A and B are simply the initial and final times of the simulation.

We performed UQ on the CMOS circuit using a variety of UQ techniques. As
a baseline, we performed LHS with 100 and 1000 samples. Then, we performed
PCE using a full tensor product quadrature of order 5 for each of the two
input parameters, requiring 25 sample points. Finally, we performed two types
of regression-based PCE. In the first, we used 30 samples without gradients.
In the second, we used 10 samples, where each sample included two gradient
values, dTD/dδN and dTD/dδP . Thus, the last PCE calculation used 30 pieces of
information comparable to the 30 sample regression PCE with no gradients, but only
required 10 samples.

The use of sensitivities in performing uncertainty analysis is highlighted in
Fig. 6.3 and Table 6.1. As shown in the figure, the cumulative distribution function
(CDF), which gives the probability that TD is less than a particular value, is almost
the same for an LHS sample of size 1000 and all of the PCE methods. The CDF
curves for LHS 1000 and for all of the PCE variants overlay each other. The only
one that is noticeably different is the 100 sample LHS result. Table 6.1 shows that the
mean TD values are very similar, differing only in the fifth significant digit. Finally,
the standard deviations show a little more variability, but again are reasonably close.
We conclude that a PCE using sensitivities from Xyce (the 10 PCE regression
case) performs comparably to 1000 LHS samples. Including gradients increases
the cost per sample, but this additional cost is negligible for small problems. For
small nx , linear solves are less than 10% of total runtime. As a result, the two extra
linear solves for each direct sensitivity time step do not incur much computational
expense.
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Fig. 6.3 CDFs for inverter delay (TD )

Table 6.1 Various UQ
method results

Number of samples TD

and UQ method Mean Std dev.

100 LHS 2.0781E−7 6.6309E−9

1000 LHS 2.0782E−7 6.6935E−9

25 PCE quadrature 2.0783E−7 6.6954E−9

30 PCE regression 2.0783E−7 6.7131E−9

10 PCE regression 2.0782E−7 6.7035E−9

with derivatives

6.5 Conclusions

This paper explored a new approach to circuit level UQ, based on gradient-enhanced
PCE. PCE is a non-sampling, projection-based technique, in which parametric
uncertainties are approximated using an expansion of orthogonal polynomials.
Regression-based PCE can be enhanced by parametric sensitivities from the sim-
ulator, which offers the possibility of similar accuracy with fewer samples. In this
paper, transient sensitivities are described, and the successful application of these
sensitivities to gradient-enhanced PCE has been demonstrated.
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Chapter 7
Coupled Circuit Device Simulation

Kai Bittner, Hans Georg Brachtendorf, Wim Schoenmaker,
Christian Strohm, and Caren Tischendorf

Abstract The goal of coupled circuit-field simulation is to test a complex device
described by a full 3D field model in the environment of a larger circuit. We present
here an approach, which treats the field model as device with a large number of
internal unknowns and equations.

7.1 Introduction

Today’s most common lumped device models increasingly tend to loose their
validity in circuit simulation due to the rapid technological developments, minia-
turization and higher complexity of integrated circuits. This has motivated the idea
of combining circuit simulation directly with distributed device models based on
electromagnetic field equations to refine critical circuit parts (see e.g. [1–3]).

Our approach is a holistic simulation, where critical devices are described by a
full 3D electro-magnetic field model given by Maxwell’s equations. This field model
is provided by the EM simulation tool devEM of Magwel [4, 5], which permits
the Computer Aided Design of devices consisting of insulators, conductors, and
semiconductors. Furthermore, devEM provides the field equations discretized by
the finite integration method and offers DC, AC, and transient solvers as well as
post processing and graphical output of the results.

Our approach for a coupled circuit/device simulation is to integrate the field
equations into the circuit simulator LinzFrame of the University of Applied Sciences
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of Upper Austria. To achieve this goal new device classes have been implemented.
These device classes process data from the field equations, which are provided by
two newly developed interfaces to the Magwel tool.

An overview of our coupling approach is presented in Sect. 7.2. In Sect. 7.3 the
implementation of the coupling is described. Numerical examples are presented in
Sect. 7.4

7.2 Coupled Simulation

The circuit is described as a network of devices, connected at nodes. We con-
sider circuit equations in the charge/flux oriented modified nodal analysis (MNA)
formulation, which yields a mathematical model in the form of a system of
differential-algebraic equations (DAEs):

d
dt
q
(
x(t)

)+ g
(
x(t)

)+ s(t)︸ ︷︷ ︸
f (x(t),t)

= 0. (7.1)

The vector x ∈ R
n consists of all node potentials except ground as well as currents

through inductors and voltage sources. The equations are obtained from Kirchhoff’s
current law for each node and additional equations for voltage sources and inductors.
Kirchhoff’s current law requires the sum off all currents into/from a node to be
zero. These currents come from device terminals connected to the node. Except for
inductors and voltage sources, where the currents are in the unknown vector, the
terminal currents are functions of branch voltages, which in turn are the differences
of node potentials.

For the coupling of electromagnetic field simulation with circuit simulation we
replace lumped device models by a full 3D model based on (discretized) Maxwell
equations. The discretized field model is provided by an interface to the electro
magnetic simulation tool devEM of Magwel [4, 5]. The circuit equations (7.1) are
complemented by the discretized field equations (as internal device equations) of
the form

d
dt
a
(
x(t)

)+ f
(
x(t)

) = 0, (7.2)

where the vector x(t) of unknowns is extended by additional variables. The new
system has now the same form as the original circuit equations (7.1) such that
solvers for circuit simulation can be applied.

7.3 Implementation

The coupling was implemented in the circuit simulator LinzFrame from University
of Applied Sciences of Upper Austria (see Fig. 7.1). The simulator core comprises
the Modified Nodal Analysis (MNA) and an automatic differentiation suite [6],
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Fig. 7.1 The modular circuit-device simulator LinzFrame

model libraries to industry standard semiconductor models, and a source library
including modulated sources (FSK, OFDM etc.). The analysis tools comprise
standard simulation techniques such as AC, DC, TRAN, the latter with algebraic and
trigonometric BDF techniques and dedicated techniques for RF circuits including
HB, multi-rate spline-wavelet methods as well as shooting techniques. To deal with
DAEs of a higher index LinzFrame is coupled to the DASPK initial value solver
[7]. Numerical tools encompass several damped Newton techniques for solving
nonlinear algebraic equations and an interface to several linear solvers, both direct
and iterative Krylov subspace.

7.3.1 Lumped Device Models

As in many other circuit simulators an evaluation of the circuit equations is done
by the evaluation of all devices in the circuit. Each device model is derived from
the abstract C++ class Device. A device has K terminals, which connect to the
circuit nodes n1, . . . , nK (cf. the example in Fig. 7.2 (left side) with K = 4). The
device class has a method Device::eval(), which computes terminal currents
and charges based on the node potentials of the terminal nodes and possible other
internal unknowns. Such internal unknowns are currents through inductors and
voltage sources as well as potentials of internal nodes. The terminal currents and
charges are then added to Kirchhoff’s current law of the corresponding nodes,
yielding the corresponding entries of q(x) and f (x, t) in (7.1). Residuals for internal
equations (inductors, voltage sources, internal nodes) are calculated and written as
well. Furthermore, all partial derivatives are computed and written to the Jacobian
matrix for Newtons methods.
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Fig. 7.2 Lumped model and 3D field model of a MOSFET

7.3.2 Replacement of a Lumped Device Model by a Field Model

To replace a lumped model by a 3D field model we have to include the (discretized)
field equations. Furthermore, terminals need to be defined and terminal currents
and charges have to be provided. To get access to the field equations an interface
to the field solver devEM of Magwel was implemented to provide the necessary
information. For the coupling several contact surfaces are defined in the field model,
which act as device terminals in the circuit simulator as follows. The node potentials
of the device terminals are used as boundary conditions for the electrical potential at
the contact surface, while the terminal currents and charges for Kirchhoff’s current
law are obtained by (numerically) integrating current density and displacement
over the contact surfaces (see e.g. Fig. 7.2 right side, where the contact surface are
depicted in red). We have implemented a new abstract device class in LinzFrame:

class MagwelDevice : public Device

{

.

.

.

This new device class provides an interface for the circuit simulator to handle
the data from the Magwel interface. It defines the terminals as well as the additional
unknowns and equation from the field model (see [8] for details).

There are two kinds of interfaces to the field solver. First there is a linear
interface, which can be used if the device consists only of conductors and insulators
so that all field equations are linear. Then, the discretized equations can be fully
described by constant matrices. These matrices are provided by the field simulator
in a pre-processing step. For implementation we have introduced the device class

class MagwelLinDev : public MagwelDevice

{

.

.

.

Here, the matrices are computed in advance, written to a file, and then read by the
constructor in the initialization. During the device evaluation these data are used to
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provide terminal currents and charges as well as the residuals for internal equations
together with their partial derivatives.

If semiconductors are present in the device this approach does not work anymore
since the equations become nonlinear. For this case a nonlinear interface is used
(suitable for any device). Here the field solver provides for any vector of unknowns
x the vectors a(x) and f (x) together with their Jacobians. Here we use the device
class

class MagwelNLDev : public MagwelDevice

{

.

.

.

The constructor handles during the initialization only structural data (e.g. number
of terminals, sparsity structure of the Jacobians). Residuals and matrices are then
loaded during the device evaluation in each Newton step. Here the circuit simulator
acts as master and the field simulator as slave.

Although the nonlinear interface can be used for any device it is recommended
to use the linear interface if no semiconductors are present in the device. Using the
precomputed data speeds the evaluation up essentially, compared to the repeated
evaluation by the nonlinear interface.

7.4 Numerical Results

Figure 7.3 depicts a Colpitts oscillator where the lumped inductor is replaced by an
on-chip element as well as the result of a transient simulation. The on-chip inductor
is simulated by a full 3D electro magnetic field model using the linear interface.
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Fig. 7.3 Colpitts oscillator circuit with full 3D field models for inductors
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The nonlinear interface was tested on the CMOS inverter in Fig. 7.4, where the
MOSFET’s have been simulated by a 3D field model. Due to the semiconductor
materials the nonlinear interface was used here (Fig. 7.5).

Finally we show in Fig. 7.6 the results of a coupled multirate simulation (see [9–
12] for details). The simulation was performed on a differential oscillator (Fig. 7.7),
where again an electromagnetic field model was used for the inductors.

1M
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Fig. 7.4 CMOS inverter with full 3D field models for NMOS and PMOS
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Fig. 7.5 Simulation result for CMOS inverter from Fig. 7.4
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7.5 Conclusions

The field simulator devEM of Magwel and the circuit simulator LinzFrame of
University of Applied Sciences of Upper Austria have been coupled for a cir-
cuit/device simulation. A lumped device model is replaced by a full 3D field model
providing the data of the field model for the use in the circuit simulator. Numerical
examples show that the coupled simulator can be used to test complex devices in
the environment of a larger circuit.
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Part III
Coupled Problems and Multi-Scale

Approaches in Space and Time

This part of the proceedings consists of three contributions on different aspects of
coupled problems and their numerical treatment.

In the paper by K. Gausling and A. Bartel on “Density Estimation Techniques in
Cosimulation using Spectral- and Kernel Methods”, the cosimulation of coupled
systems of differential-algebraic equations is studied. In particular, the paper
explores the influence of uncertainties on the contraction factor of a cosimulation
scheme is explored. Two methods for estimating the probability density function
(PDF) of the contraction factor are described. It introduces a new splitting approach
for a benchmark problem of a coupled field/circuit model, and compares the two
methods for estimating the PDF.

The focus of the second paper, “Multirate DAE/ODE–Simulation and Model
Order Reduction for Coupled Field-Circuit Systems” by C. Hachtel et al., is
on coupled field-circuit problems consisting of a slowly changing subsystem of
magneto-quasistatic equations and a rapidly changing system of the surrounding
circuit. These coupled problems lead to high-dimensional systems of partial-
differential-algebraic equations and exhibit largely varying time scales. To exploit
the different dynamical behaviors of circuit and field equations, multirate time
integration schemes are presented. These schemes are then combined with a model
order reduction technique for the slowly changing subsystem of magneto-quasistatic
equations, which significantly decreases the computational effort required.

The third contribution, “Modeling and Simulation of Electrically Controlled
Droplet Dynamics” by Yun Ouédraogo et al., addresses the droplet motion in strong
electric fields described by a coupled system of a multiphase hydrodynamic problem
and an electro-quasistatic problem. The hydrodynamic subsystem is modeled
using the incompressible Navier-Stokes equations, where the phase boundaries are
represented by a surface tension force. The electro-quasistatic subsystem is modeled
by an irrotational electric field and the charge conversation equation. The model is
discretized with the aid of a Finite Volume Method (FVM) on a fixed grid. As an
application the simulation of controlled droplet generation in an electrically driven
droplet generator is presented and compared with experimental data.



Chapter 8
Density Estimation Techniques
in Cosimulation Using
Spectral- and Kernel Methods

Kai Gausling and Andreas Bartel

Abstract When Co-simulation is applied to coupled differential algebraic equa-
tions, convergence can only be guaranteed if certain properties are fulfilled.
However, introducing uncertainties in this mode may have great impact on these
contraction properties and may destroy convergence. Hence one is interested to
analyze the stochastic behavior of those properties. Within this paper we compare
the Kernel Density Estimation technique and the spectral approach based on
polynomial chaos expansion to measure the density of the contraction factor which
may occur for coupled systems. Using the new R-splitting approach in a field/circuit
coupled problem as benchmark, we clarify the benefits of both schemes.

8.1 Introduction

For networks which can be described by differential algebraic equations (DAEs) of
index-1, the system can be described as differential algebraic initial-value problem

0 = g(y, z), ẏ = f(y, z) with y(t0) = y0 (8.1)

with differential and algebraic unknown y ∈ [t0, te] → R
ny , z ∈ [t0, te] → R

nz .
Now co-simulation tries to compute the solution on Γ = [t0, te] iteratively

by solving the decoupled subsystems. To this end synchronization points Ti are
introduced, thus that t0 = T0 < T1 < · · · < Tm = te, with time window size
Hn := [Tn+1 − Tn]. Such a co-simulation scheme can be encoded by splitting
functions F,G:

0 = G
(
ỹ(k), z̃(k), ỹ(k−1), z̃(k−1)

)
, ˙̃y = F

(
ỹ(k), z̃(k), ỹ(k−1), z̃(k−1)

)
(8.2)
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The current iteration on Hn is denoted by (k), the old iterates are (k − 1). We drop
the tilde in the following. Due to the decoupling a contraction factor

αn := ‖G−1
z(k)

Gz(k−1)‖2,∞, with Gz(k) :=
∂G
∂z(k)

, Gz(k−1) := ∂G
∂z(k−1)

, (8.3)

occurs, where convergence is only guaranteed if αn < 1 holds for Hn < Hmax,
see [1, 2]. Consequently, co-simulation applied to coupled ordinary differential
equations (ODEs) always convergences, see [3], and convergence of co-simulation
applied to DAEs is only ensured for Gz(k) , Gz(k−1) well structured, see [1]. In
general the contraction factor αn may depend on components from the model.
Therefore, introducing uncertainties into the components may change the contrac-
tion properties, that is, (8.3) becomes stochastic with unknown probability density
function (PDF). Here we discuss two different approaches namely the Kernel
Density Estimation (KDE) technique and the spectral approach based on Polynomial
Chaos (PC) expansion to estimate the underlying PDF of the contraction factor given
in (8.3).

The paper is structured as follows: Chap. 2 introduces the lower bound estimation
technique to measure the contraction factor. Chapter 3 gives inside into the KDE
and spectral method where the sample of the contraction factor is used to estimate
the underlying PDF. Chapter 4 is split into two parts. The first part introduces the
new technique of R-splitting, where the contraction factor is defined by the ratio of
resistances. This gives us the opportunity to measure the accuracy of the estimation
introduced in Chap. 2. The second part compares the KDE and spectral method with
respect to the attainable accuracy and its computational costs.

8.2 Lower Bound Estimator for Purely Algebraic Coupling

In practice, one is interested to measure the contraction factor during co-simulation
procedure. Knowledge about this may be useful for an effective time window size
control. For non-linear models the computation of G−1

z(k)
,Gz(k−1) in (8.3) is costly.

Within this chapter, we propose a lower bound estimation for αn. The accuracy is
analyzed in Sect. 8.4.

In multiphysics, the data exchange is frequently managed by algebraic con-
straints. Therefore, we investigate coupled DAE systems with the splitting functions

F(·, ·, ·, ·) =
[
f1 (y1, z1, 0, 0)
f2 (0, 0, y2, z2)

]
, G(·, ·, ·, ·) =

[
g1 (y1, z1, 0, z2)

g2 (0, z1, y2, z2)

]
. (8.4)

Due to the fact that the information transport between the subsystems is organized
by algebraic constraints, i.e., Gz(k−1) �= 0, a contraction factor, see (8.3), occurs.
Now, let Xn(t), X̃n(t) be two waveforms on the n-th time window Hn. The

difference after k iterations is measured by δ
(k)
n := ‖X(k)

n (t) − X̃
(k)

n (t)‖2,∞. Due



8 Density Estimation Techniques in Cosimulation Using Spectral- and Kernel. . . 83

to purely algebraic-to-algebraic coupling, i.e., the ODE parts in (8.4) are decoupled,
the error propagation for the differential and algebraic part using a constant C > 0
reads:

(
δ
(k)
y,n

δ
(k)
z,n

)
≤ Kk

(
δ
(0)
y,n

δ
(0)
z,n

)
with K =

(
0 CHn

0 CHn + αn

)
(8.5)

Thus we found that the contraction factor defined in (8.3) is bounded from below by

αn ≥ k

√
δ
(k)
z,n/δ(0)z,n − CHn. (8.6)

Hence (8.6) enables us to estimate the contraction factor for Hn small enough. In
practice, the error δ(k)n can be estimated via Richardson Extrapolation. To this end,
the macro step is computed using the step size Hn and using two steps of size Hn/2.
The comparison of both solutions X(k)

n (tn) and X(k)
n/2 gives the desired estimate:

δ(k)·,n =
2p+1

2p+1 − 1
‖X(k)

n (t)− X(k)
n/2(t)‖2,∞ +O(H

p+2
n ) (8.7)

Here p denotes the degree of the polynomials, which are used to compute the
initial guess X

(0)
n . Constant extrapolation, i.e., p = 0, is a common choice in co-

simulation.

8.3 Density Estimation Techniques

When co-simulation is applied to systems with uncertain behavior, e.g., uncertain
components in electrical circuits or production-related tolerances in electrical
machines, it may influence the convergence, that is the contraction factor defined in
(8.3) becomes stochastic with its own PDF denoted by pαn . Thus, the splitting (8.2)
depends on Q uncertain parameters ξ = (ξ1, . . . , ξQ) and all of them may affect
the contraction behavior. Within this paper we only investigate (8.4) depending on
one single uncertain parameter, i.e. Q = 1. Therefore, the objective is to estimate
the PDF of the contraction factor as precise as possible. For that purpose several well
known approaches can be found for measuring the PDF of random variables, see [4].
One prominent technique is the so-called Kernel Density Estimation (KDE) based
on a brute-force sampling of the parameter space, see [5]. A different approach
tries to determine the PDF analytically by covering the stochastic process using
PC-expansion, see [6].

Both methods are fundamentally differently and provide specific benefits. To
our knowledge, both have not been applied to co-simulation with respect to PDF
measuring problems. Thus, a comparison of both methods in co-simulation is of
interest.



84 K. Gausling and A. Bartel

Kernel Density Estimation Method In contrast to determine stochastic distribu-
tions by histograms, KDE allows to get PDFs without discontinuities and with fewer
samples. Let X = (x1, . . . , xn) ∈ R

n be an independent sample drawn from a
distribution with unknown density pX . Via KDE, the PDF can be estimated by

p̂X(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, K(x) = 1√

2π
e−x2/2 (8.8)

where K(x) is the Gaussian-kernel and h > 0 is a smoothing parameter, see [5].
To avoid oversmoothing, KDE requires a judicious choice of the bandwidth h. The
parameter h can be chosen in an optimal way, see [4].

Spectral Method Let the approximation of the stochastic process of αn be given
by the PC-expansion

αgPC(ξ) =
∑
|β|≤p

αβΦβ(ξ), (8.9)

with multiindex β = (
β1, . . . , βQ

) ∈ N
Q
0 thus that |β| := β1 + · · · + βQ is the

polynomial degree, the maximum polynomial degree p, coefficient functions αβ ,
multivariate polynomials Φβ(·) with 〈Φn(·),Φm(·)〉 = δnm, n,m ∈ N0 and ξ is
random variable with probability density function pξ : RQ → R+, see [7]. For
simplicity, we abbreviate (8.9) as

X(ξ) = αgPC(ξ). (8.10)

To determine the coefficients αβ we employ stochastic collocation, see [7], which
requires numerical quadrature to multidimensional integrals. Now we want to
deduce a PDF for X, say p̂X(·). Suppose we want to evaluate this PDF at some
x: Then

p̂X(x) =
∑

ξ̂∈Rx

pξ (ξ̂ )∣∣∣DX(ξ̂ )

∣∣∣
with Rx = {ξ̂1, . . . , ξ̂N }, (8.11)

where ξ̂1, . . . , ξ̂N are the N roots of the polynomial X(ξ) − x = 0, see [6]. In
other words, many possible ξ̂ may gives use this particular x and all of them
contribute to the probability density at x. For one dimension, i.e., X : R → R,
the denominator becomes the absolute value of the first derivative: |DX(ξ̂ )| =
|dX/dξ evaluated at ξ̂ |.
Remark 1 If one generalizes (8.11) to multiple dimensions, i.e., more than one
random variable (Q > 1), the quantity |DX(ξ̂ )| becomes the absolute value of the
Jacobian determinant. Here, some further steps are needed for dim(X) �= dim(ξ),
see [6]. Furthermore, the root-finding becomes much more difficult.
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8.4 Numerical Test Example

Our test example serves a field/circuit coupled problem, [8], see Fig. 8.1. The data
exchange between the subsystems is organized via source coupling, i.e., controlled
current and voltage sources, see [2]. The coupling structure (8.4) is realized for
this test example by using the novel technique of R-splitting, where the controlled
sources are directly connected to resistances. In fact, the resistance R is split into
two resistances in series: R1 := ωR, R2 := (1− ω)R, ω ∈ [0, 1], see Fig. 8.1.

Assumption 1 (Avoiding Index-2) It is assumed that the coupling sources are
placed such that both (all) subsystems remain index-1 problem for all ω ∈ [0, 1],
see [8]. This assumption is essential for the limits, i.e., ω = 0 and ω = 1.

Employing the technique for the exact recursion deduction, see [2], the contraction
factor and the constant read

αn = G2

G1
, C = G2

(
G2

G1 [1− LF(1+ LΦ)Hn]
+

G2
1−LF(1+LΦ)H

H − 1

1− (LF(1+ LΦ)+G1)H

)
, (8.12)

with Lipschitz constants LΦ, LF for the algebraic and differential splitting func-
tions G, F and conductances G1 := 1/R1, G2 := 1/R2. Thus, the strength of
coupling is determined by the ratio of the coupling resistances. Furthermore, the
constantC can be controlled by resistance splitting. That is, for increasing resistance
R2, the contraction factor αn and the constant C decreases.

Remark 2 If ω = 0 or ω = 1, the split subsystems are coupled via the ordinary
differential equations. Hence the structure (8.4) of the splitting functions is not
given.

Speed of Convergence Now we choose the ratio parameter for R-splitting as ω =
0.05 and αn = 1/19 occurs. Thus, a major part of resistance R is displaced to the
field part. Our co-simulation is tested on Γ = [0, 0.01] s using a constant Hn =
10−3 s. The strong coupled system (8.1) is also computed on Γ and serves as our
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Fig. 8.1 (left) Field/circuit using R-splitting. Settings: Ri = 10Ω, R = 20Ω, no-load test, C1 =
C2 = 1 nF, Uin(t) = 170 V · cos(2π60 · t). (right) Window sizes Hn versus number of iterations
k for cutting at the EM-Device boundaries (standard approach) and for R-splitting
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reference solution. Both problems are solved using the MATLAB routine ode23s
(Rosenbrock method) with accuracy AbsTOL = RelTOL = 10−5.

Figure 8.2 compares the computational effort for both approaches, i.e., standard
approach (when the computation starts with the field first) and R-splitting. There-
fore, using R-splitting with small conductance G2, the coupling becomes stronger
and the number of iterations decreases for given accuracy, see Fig. 8.2 (left). This is
why R-splitting only needs two iteration to be close to the reference solution. Hence,
R-splitting converges faster and accepts larger time window sizes, see Fig. 8.1
(right).

In terms of solved linear systems the computational effort can be reduced
about 90% to achieve the same accuracy in the solution, see Fig. 8.2 (right). A
further reduction of the ratio parameter ω, i.e. ω = 0.005, only leads to a small
improvement.

Estimator Accuracy For our test example (Fig. 8.1), the contraction factor is given
analytically, see (8.12). Thus the accuracy of (8.6) can be easily assessed. The
simulation settings are the same as above.

Table 8.1 shows that the lower bound is fulfilled for each αn, i.e., for each
ratio between R1 and R2. However, the estimated values becomes less accurate for
increasing value of αn. This can be explained as follows: The contraction factor
αn and the constant C increases for increasing conductance G2, i.e., the coupling
becomes weaker. Thus the impact of the diagonal term CHn in (8.5) is getting
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Fig. 8.2 (left) Error in the primary current of the transformer for co-simulation in the interval
[0, 0.01] s using H = 10−3 s. (right) Computational effort for both approaches, i.e., R-splitting
and cutting at the EM-Device boundaries (field first), in terms of solved linear systems

Table 8.1 Accuracy of the lower bound estimation for increasing values of αn

Exact αn Estimated αn Abs. error Window size Hn Co-simulation

0.035 0.0502 0.017 H = 10−3 s Convergent

0.33 0.280 0.05 H = 10−3 s Convergent

0.96 0.472 0.488 H = 10−3 s Convergent

19 5.832 13.168 H = 10−3 s Divergent
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more important. Consequently, using smaller step sizes Hn gives the opportunity
to increase the accuracy of (8.6) even for larger contraction factors αn.

KDE Versus Spectral Method In this section, we use the KDE and spectral
method in order to estimate the PDF of the contraction factor. For one dimension,
i.e., one random parameter in (8.4), the exact PDF pαn of the contraction factor
αn = φ(ξ), where ξ is a random variable with PDF pξ : [a, b] → R+, is given by
the transformation formula for densities:

pαn (αn) = pξ

(
φ−1 (αn)

) ∣∣∣∣
d

dαn

φ−1 (αn)

∣∣∣∣ , with φ : R→ R, (8.13)

for details see [9]. A generalization to the multi-dimensional case is also given in [9].
For our test example, we focus on the one-dimensional case. We consider only R1

or R2 to be uniformly distributed Ri ∼ U (10 Ω− δRi, 10 Ω+ δRi), for i = 1, 2,
with δR1 = 1 Ω, δR2 = 7 Ω . Generally, the mapping function φ is not explicitly
known in co-simulation. However, using R-splitting, the functionφ in (8.13) is given
by (8.12). Now, the task is to estimate the PDF of αn as good as possible from
its underlying sample with as little effort as possible. Therefore, (8.13) enables to
calculate the exact PDF of αn and allows for a qualitative assessment of method
(8.8) and (8.11).

Our testing works as follows: For each sample-point Ω , the reference model is
solved in time domain up to t0 = 10−4s to obtain initial values which are close to the
solution. The k iterations of the co-simulation are computed for each sample ω on
[t0, t0+Hn]. Next, we restart the computation using two steps with the half macro-
step size, i.e., [t0, t0 +Hn/2] → [Hn/2,Hn/2 + Hn/2]. Therefore (8.7) can be used
for error estimation in (8.6). Then, using the sample of αn, we try to estimate the
PDF by the KDE technique (8.8), and the spectral approach (8.11), where stochastic
momenta (depending on step k) are computed. Furthermore, constant extrapolation

of the initial value is used for the initial guess X̃
(0)
n (t) on time window Hn, Hn/2.

Consequently (8.7) is of order O(H 2
n ). For the spectral approach, the maximum

degree of polynomial that we used for the approximation in (8.9) is two.
Figure 8.3 shows the estimated PDF using the spectral method and the KDE

approach for different number of samples. The exact PDF is calculated by using
(8.13). For R1 uncertain, the spectral method becomes more accurate. In fact, due
to the linear mapping, the spectral method enables to approximate the stochastic
process exactly when at least linear polynomials in (8.9) are used. Then, the KDE
approach needs a large number of samples to recover the uniform distribution
precisely. However, for R2 uncertain, the mapping function φ becomes non-linear,
since R2 in (8.12) is located in the denominator. Thus the spectral method is too
coarse as long as we use quadratic polynomials for its approximation in (8.9).
Using polynomials of higher order reduces the error. Figure 8.4 compares the
accuracy of uniformly shaped PDF measured in the expectation value for increasing
window sizes. Naturally, the error increases with increasing window size Hn. Hence,
for Hn large the reduction per iteration is dominated by the second diagonal
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Fig. 8.3 PDF for uncertain resistance R1, i.e., linear mapping function φ (right), and uncertain
resistance R2, i.e., non-linear mapping function φ (left), using spectral and KDE approach for
increasing number of samples. The error is measured using the Root Mean Squared Error (RMSE)

Fig. 8.4 Expectation value obtained by using KDE and spectral method with and without
Richardson Extrapolation for different window sizes H

term CHn. That is, (8.6) becomes less accurate. Furthermore, the inaccuracy of
Richardson Extrapolation grows squarely with its applied window size. Using (8.7)
as approximation for the exact solution, i.e., reference solution obtained by solving
the strong coupled problem (8.1), yields approximately the same error as long as
Hn is not too large. Therefore, using Richardson Extrapolation as error estimation
in (8.6) seems to work precisely as long as we use window sizes Hn ≤ 10−9 s.
There is the possibility to use larger window sizes if one is not interested in such
high accuracy of about 10−4.

8.5 Conclusions

We proposed a new approach for coupling (R-splitting), where the strength of
coupling between the subsystems can be affected. With respect to the standard
approach, i.e., cutting at the EM-Device boundary, we showed that R-splitting yields
better properties regarding the speed of contraction.
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Next, we showed the possibility to estimate the contraction factor online, i.e.,
during co-simulation, by using a lower bound. We used this to calculate a sample for
measuring the underlying probability density function. This may also be of interest
for an effective time window size control algorithm. However, further investigations
are needed to find an upper bound, which enables to detect guaranteed convergence.

Furthermore, we demonstrated that the spectral- and the KDE approach are
suitable techniques for estimating the distribution of the contraction factor in co-
simulation. Knowledge about the distribution may help to guarantee convergence
and contraction when co-simulation and uncertainties are combined. Particularly for
many uncertain parameters, both schemes becomes very costly. In the future, we aim
to reduce the computational effort. Therefore, calculation of sensitivity coefficients
may help for effective parameter space sampling. This seems to be useful especially
for the spectral approach, where the coefficient functions are already computed.
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Chapter 9
Multirate DAE/ODE-Simulation
and Model Order Reduction
for Coupled Field-Circuit Systems

Christoph Hachtel, Johanna Kerler-Back, Andreas Bartel, Michael Günther,
and Tatjana Stykel

Abstract Considering distributed and lumped electromagnetic effects in device si-
mulation yields coupled field-circuit systems, which are high dimensional systems
of partial-differential-algebraic equations. Moreover, such systems exhibit largely
varying time scales and are difficult in the numerical handling. To exploit the diffe-
rent dynamical behaviour of circuit and field equations, we propose multirate time
integration schemes which are extended to differential-algebraic equations. These
schemes are also combined with model reduction of a slow changing subsystem
of magneto-quasistatic equations which significantly decreases the computational
effort.

9.1 Introduction

For the development of modern electrical devices, the influence of electromagnetic
effects has to be considered in the simulation process very often. In general,
this leads to a coupled problem where the subsystems provide a quite different
behaviour. In magneto-quasistatic (MQS) problems, the electromagnetic field is
described by Maxwell’s equation in the magnetic potential formulation

σ ∂A
∂t
+∇ × (ν∇ × A) = J in Ω × (0, T ) (9.1)

with appropriate boundary and initial conditions, where Ω is a bounded two-
or three-dimensional domain composed of conducting and nonconducting
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subdomains, A is the magnetic vector potential, ν is the magnetic reluctivity
which may depend nonlinearly on A on the conducting subdomain, σ is the
electric conductivity vanishing on the non-conducting subdomain, and J is the
current density applied by external sources. Using modified nodal analysis, electric
networks with distributed MQS devices can be modelled by a system of differential-
algebraic equations (DAEs)

E(y) d
d t
y = f (t, y, iM), (9.2)

where y contains all node potentials and currents through flux and voltage controlled
elements [1]. These equations are coupled to the MQS equation (9.1) via the vector
of lumped currents iM through the distributed MQS devices. Taking J = χiM with
a divergence-free winding function χ , the coupling equation connecting Maxwell’s
equation (9.1) to the network equation (9.2) is given by

∫

Ω

χT ∂
∂t
A dξ + R iM = u, (9.3)

where R is the resistance matrix and u is the vector of applied voltages.
Often, the network equations provide a faster dynamic behaviour than Maxwell’s

equation for the MQS devices. Such coupled systems can be solved efficiently
by multirate time integration schemes, where the slow changing components
are integrated with large macro-step sizes, while the fast changing components
are integrated with small micro-step sizes. For systems of ordinary differential
equations (ODEs), there are different approaches how the coupling between the
subsystems can be realised, e.g. [2–4].

The novelty of the paper is twofold. First we extend the multirate concept of
Savcenco et al. [4] to systems consisting of a fast changing subsystem of ODEs and
a slow changing subsystem of DAEs. This method can be used for an ODE system
describing an electrical circuit (9.2) after an index reduction and a DAE system
obtained by a spatial discretisation of Maxwell’s equation (9.1). Such a coupled
system has high dimension and is time consuming in simulation. To decrease the
computational effort, model order reduction is combined with the multirate time
integration scheme. This is the second novelty of the paper. For model reduction of
the semidiscretised MQS equations, we use a method which was developed in [5],
this method starts with a full-order DAE system and ends up with a reduced-order
ODE system.

The outline of the paper is as follows: First, we present a balanced truncation
based model order reduction technique for the DAE formulation of a MQS equation
which provides a reduced-order model in ODE form. Next, we introduce a multirate
time integration scheme for a coupled system that consists of a fast changing ODE
subsystem and a slow changing DAE subsystem. Finally, we apply the multirate
time integration scheme combined with model reduction to the MQS equation for
a single-phase 2D transformer embedded in an electrical circuit and present some
results of numerical experiments.
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9.2 Model Order Reduction for Magneto-Quasistatic
Equations

In this section, we briefly discuss model order reduction of the MQS equations. For
more details, we refer to [5]. Applying the finite element discretisation method to
(9.1) and (9.3), we obtain a nonlinear system of DAEs

M d
dt

[
a

iM

]
= F(a)

[
a

iM

]
+Bu, w = BT

[
a

iM

]
(9.4)

with a singular mass matrix M, a semidiscretized vector of magnetic potentials a,
an input u and an output w = iM . The properties of the involved system matrices
guarantee that (9.4) is of index one and it can be transformed into a system of ODEs

M d
dt
z = F(z)z+ Bu, w = −BTM−1F(z)z (9.5)

with a nonsingular matrix M and a corresponding vector of unknowns z = z(t).
Note that system (9.5) has the same input u and the same output w as the DAE
system (9.4) meaning that the input-output relation of (9.4) is preserved in (9.5).

If the magnetic reluctivity is constant on the conducting domain, then F(z) in
(9.5) is independent of z resulting in a linear time-invariant system

Mż = Fz + Bu, w = −BTM−1Fz (9.6)

with the symmetric, positive definite matrices M and −F [5]. These conditions
guarantee that (9.6) is asymptotically stable and passive. For model reduction of
(9.6), we use a balanced truncation approach based on the controllability Gramian
P which is defined as a unique symmetric and positive semidefinite solution to the
generalized Lyapunov equation

FPM +MPF = −BBT . (9.7)

Due to the symmetry conditions, the observability Gramian Q satisfies MQM=
FPF . Let P = SST be a Cholesky factorization of P . We compute the eigenvalue
decomposition

−ST FS = [U1, U0 ] diag(Λ1, Λ0) [U1, U0 ]T ,

where Λ1 and Λ0 are diagonal matrices and Λ1 contains all kept Hankel singular
values and Λ0 all truncated ones. Now, we can determine the reduced-order model
by projection

M̃ ˙̃z = F̃ z̃+ B̃u, w̃ = C̃z̃, (9.8)
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where M̃ = WTMV , F̃ = WTFV , B̃ = WTB and C̃ = −BTM−1FV with
the projection matrices V = SU1Λ

−1/2
1 and W = −M−1FV . One can show that

the reduced matrices M̃ and −F̃ are symmetric, positive definite and C̃ = B̃T

guarantees that system (9.8) is passive. Moreover, we have the L2-norm error bound
for the output

‖w − w̃‖2 ≤ 2 trace(Λ0) ‖u‖2.

For solving the generalized Lyapunov equation (9.7), we can use the low-rank
alternating direction implicit method or (rational) Krylov subspace method [6, 7].
In both methods, we need to solve linear systems of the form (τM + F)v = b for
a vector v with possibly dense M and F . Exploiting the block structure of these
matrices, we can overcome this computational difficulty by solving linear systems
(τM+ F)v̂ = b̂ with the sparse matrices M and F as in (9.4) instead [5].

For model reduction of the nonlinear system (9.5), we can use the proper orthog-
onal decomposition technique combined with the discrete empirical interpolation
method (DEIM) for efficient evaluation of the nonlinearity g(z) = F(z)z and matrix
DEIM for fast computation of the Jacobi matrix Jg(z), see [5] for details.

9.3 Multirate Time Integration for ODE/DAE-Systems

Now, we present an efficient time integration scheme to simulate electromagnetic
effects in electrical devices. For the MQS equations, we consider the semidiscretised
DAE formulation (9.4) and set x = [a�, i�M ]�. We claim that the surrounding
electrical circuit can be described by a system of ODEs and its solution is denoted
by y. Then the coupled system of equations reads:

ẏ = f (t, y, x) (9.9)

Mẋ = F(x)x +Bu. (9.10)

The coupling from the ODE to the DAE is realised by the input function u = u(y) in
(9.3). The network ODE provides a faster dynamic behaviour than the DAE model
of Maxwell’s equations. Since the DAE (9.10) is a result from a finite elements
semi-discretisation its dimension is much larger than the dimension of the circuit’s
ODE system. However, the coupled system can be written in the form of one DAE

G(t, ẏ, ẋ, y, x) = 0. (9.11)

For given input u, it was shown in [5] that the DAE (9.10) is of tractability index 1.
Thus the DAE (9.11) is also of index 1 and therefore it can be integrated by an
implicit Runge-Kutta method [8]. We apply the LobattoIIIC method to this DAE
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with given consistent initial values y(t0) = y0, x(t0) = x0. For the first time step
t0 → t0 +H this reads for the increments ky1 , k

y
2 , kx1 , kx2 as

G(t0, k
y
1 , kx1 , y0 + H

2 (k
y
1 − k

y
2 ), x0 + H

2 (kx1 − kx2 )) = 0,

G(t0 +H, k
y
2 , kx2 , y0 + H

2 (k
y
1 + k

y
2 ), x0 + H

2 (kx1 + kx2 )) = 0.
(9.12)

System (9.12) has to be solved with respect to k
y
1 , k

y
2 , kx1 and kx2 . Then, the

approximations for y and x at t0 +H are given by

yH = y0 + H
2 (k

y

1 + k
y

2 ), (9.13)

xH = x0 + H
2 (kx1 + kx2 ) (9.14)

Here, the fast changing ODE subsystem dictates the step size H for the whole
coupled DAE (9.11). This leads to a large computational effort since the whole high
dimensional system has to be integrated with relatively small step sizes to resolve
the network dynamics appropriately and it makes the time domain simulation of the
coupled system inefficient.

A multirate time integration scheme decreases the computational effort and
preserves the accuracy of the numerical approximation. The slow changing sub-
system (9.10) is integrated with a large macro-step size H while the fast changing
subsystem (9.9) is integrated with a small micro-step size h� H . The crucial part is
how the unknown function values of x at the intermediate time steps are achieved.
For coupled systems of ODEs there are several approaches based upon inter- and
extrapolation of the unknown values [2] or modified Runge-Kutta methods with
inherent time steps for the coupled system [3].

Here we follow the idea of [4] and extend this technique to coupled ODE/DAE
systems. First, the system (9.12) is solved for the overall coupled system (9.11) with
macro-step size H which is chosen according to the system properties of the slow
changing DAE subsystem (9.10). The approximation at t0 + H is only accepted
for the slow changing subsystem according to (9.14) since an approximation with
stepsize H for the fast changing ODE subsystem is inaccurate.

Now, the fast changing ODE subsystem (9.9) is integrated with a smaller micro-
step size h over the time interval [t0, t0+H ]. The system for the increments ky,h1 k

y,h
2

of the first micro step t0 → t0 + h reads

k
y,h

1 = f (t0, y0 + h
2 (k

y,h

1 − k
y,h

2 ), x̄1),

k
y,h
2 = f (t0 + h, y0 + h

2 (k
y,h
1 + k

y,h
2 ), x̄2),

where x̄1 and x̄2 denote linearly interpolated values of x0 and xH at time t0 and
t0 + h, respectively. The approximation of y at t0 + h is given by

yh = y0 + h
2 (k

y,h

1 + k
y,h

2 ). (9.15)
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The micro-step size h has to be chosen according to the dynamical properties of the
solution y (fast circuit subsystem). It is also possible to include a step size control by
embedding a lower order method. For LobattoIIIC the lower order approximation
ȳh can be computed by ȳh = y0 + hk

y,h
1 . After a certain number of micro-steps, an

approximation ŷH of y at t0 + H is achieved and the next macro-step t0 + H →
t0+ 2H can be computed with corresponding initial values ŷH and xH as described
above.

In case of a coupled field-circuit system, the fast changing circuit subsystem
(9.9) depends on the current im, which is an algebraic variable of the slow changing
MQS subsystem (9.10). To compute the micro-steps of the fast changing subsystem
(circuit), an interpolation of im is needed. However, on the macro-step scale, the
LobattoIIIC is stiffly accurate, thus the algebraic constraints will be satisfied.

9.4 Simulation of a Coupled Electric Field-Circuit System

We simulate the electromagnetic effects of a single-phase 2D transformer in a cou-
pled field-circuit system. Since the transformer does not react immediately on fast
changes in the input voltage, this system suits for integration by a multirate scheme.
The fast changing subsystem describes the circuit, while the slow subsystem is used
to model the electromagnetic effects of the transformer. Figure 9.1 shows a circuit
diagram of the coupled system, where the electromagnetic effects are represented
by the lumped devices of a transformer in the box.

MQS-Device Modeling We consider the linear MQS equations for a single-phase
2D transformer with an iron core and two coils in the form (9.4). The material
parameters are σ = 5 · 105�−1 m−1, ν1 = 14,872 Am/(Vs) = 14,872 m/H on the
conducting and ν2 = 1 Am/(Vs) = 1 m/H on the non-conducting subdomain. The
FEM discretisation is done by the free available software FEniCS.1 To apply a time
domain simulation, the system matrices of the semidiscretised MQS system (9.4) of
dimension nL = 7823 were exported to MATLAB. The input of the subsystem is
given by the voltage u at the primary coil, and the output is the current iM through

Fig. 9.1 Circuit diagram for
no load test of the coupled
systems with lumped
elements for the
electromagnetic effects (box) Uin

G

C

e1

1http://fenicsproject.org.

http://fenicsproject.org
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the primary coil. The reduced model was computed by the balanced truncation
method as described in Sect. 9.2. The dimension of the reduced model is r = 4.

Circuit Modeling and Coupling The electric circuit and the transformer are
coupled by the source coupling approach [9]. That is, add an additional controlled
current source to the circuit subsystem and an additional voltage source to the
transformer’s subsystem. In this case, the circuit is described by the following ODE

C d
dt
e1(t) = G(e1(t)− Uin(t))− iM(t)

for the node potential e1, while iM denotes the coupling current (as controlled
current source) through the primary coil of the transformer. The circuit parameters
are given by C = 1 nF and G = 10−3 S. The input voltage is given by two
superposed sine functions Uin(t) = 45.5 · 103 sin(900πt)+ 103 sin(45000πt), and
the output is e1.

Simulation Results We integrate the system by the multirate LobattoIIIC scheme
over the time interval [0 s, 0.0055 s] as described in Sect. 9.3. Since we are inter-
ested in the influence of the multirate approach, we consider a reference solution that
is computed by the LobattoIIIC method with constant global step size using 2500
time steps. We also integrated the coupled system with constant global step size
using the double amount of time steps. The maximum relative 2-norm error in the
outputs of the subsystems between both solutions was 3.9 · 10−3. So we accepted
the 2500 time step solution as reference solution with a moderate accuracy. The
simulation was run on a Intel Core2 Duo P7450 with 2.13 GHz with 4 GB RAM.
For the coupled DAE/ODE system of full-order, the computation time was 728.2 s.
Figure 9.2 shows the outputs of the two subsystems: (a) the node potentials e1,
which belongs to the fast changing subsystem (basically we see the superposition
of the sinusoidal oscillations) and (b) the current through the primary coil of the
transformer, which belongs to the slow subsystem.
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Fig. 9.2 Numerical solution of the subsystems. (a) Node potential of e1. (b) Current through the
primary coil
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To investigate the influence of the multirate approach on the full order DAE
system, the time interval is discretised into 250 macro-step and each macro-step
is refined into 10 micro-steps. 250 macro-steps are sufficient to integrate the slow
changing field subsystem and 2500 micro-steps are needed for the fast changing
circuit subsystem to reach an adequate approximation. Here the computation ended
after 77.4 s. We computed the error between the single-rate reference solution and
the multirate approximation separately for both subsystems. For the fast changing
subsystem, the error is computed by the absolute value of the difference between
the node potential of the reference solution and the node potential achieved by the
multirate approximation at each micro-step. For the slow changing subsystem, we
computed the absolute value of the difference in the output of the subsystem iM at
the macro-steps. Figure 9.3 illustrates these errors. In the fast changing subsystem
the error increases during one macro-step since there is an additional error that is
caused by interpolating the values of the slow changing subsystem. At the macro-
steps the subsystems are integrated together, so that the error at these time points is
usually a bit smaller. In the slow subsystem, every second approximation gives better
results while the intermediate approximation is worse. Until now, this phenomena
is not yet understood completely. Since the size of the error is in total small, the
improvement in computation time motivates and justifies the usage of multirate time
integration schemes for these DAEs.

The reduced-order coupled system is integrated by the same multirate method
with the same integration parameters as for the full-order system. The simulation
needed 0.20 s to compute. Figure 9.4 shows the absolute error between both
multirate approximations. The error here is very small and fits to the error bound
results of [5].

Finally, we integrated the coupled system with the reduced MQS subsystem (9.8)
without multirating, so we used the same integration parameters as for the DAE
reference solution. The computation time was 0.13 s, so it was a bit faster than with
multirating. This phenomena can be explained by the ratio between the number of
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Fig. 9.3 Absolute error between multirate and singlerate approximations. (a) Circuit subsystem.
(b) Electromagnetic subsystem
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Fig. 9.4 Absolute errors in the subsystems resulting from model reduction of the MQS subsystem.
(a) Circuit subsystem. (b) Electromagnetic subsystem

fast and slow changing variables. In our case, the full-order system has a ratio of
1 : 7821, while for the reduced-order system, it is 1 : 4.

This ratio is an indicator for the gain of efficiency between the singlerate and
multirate approximation. If there is a large number of slow changing variables
compared to a small number of fast changing variables, a multirate time integration
scheme saves many function evaluation of the large dimensional slow subsystem.
However, the implementation of a multirate scheme is more complex than for a
classical singlerate scheme. So if the dimension of the slow changing subsystem is
only a little bit larger than the dimension of the fast changing subsystem, a multirate
scheme can be even less efficient than the corresponding singlerate scheme.

9.5 Conclusions

We combined two approaches for an efficient simulation of coupled circuit-field sys-
tems. By extending multirate time integration to DAE systems, these schemes can
be applied to a larger class of problems to reduce the computation time significantly.
Model order reduction for MQS equations decreases further the computational effort
and the numerical handling is much easier since we only have to deal with a system
of ODEs. Both approaches and their combination provide reliable approximations
with small errors. We pointed out that the efficiency of multirate time integration
schemes strongly depends on the ratio between the number of fast and slow
changing variables. The combination of model order reduction and multirate time
integration is advisable for systems where the dimension of the reduced order
subsystem remains high compared to the dimension of the fast changing subsystem.
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Chapter 10
Modelling and Simulation
of Electrically Controlled Droplet
Dynamics

Yun Ouédraogo, Erion Gjonaj, Thomas Weiland, Herbert De Gersem,
Christoph Steinhausen, Grazia Lamanna, Bernhard Weigand,
Andreas Preusche, and Andreas Dreizler

Abstract The electrohydrodynamics of millimetric droplets under the influence of
slowly varying electric fields is considered. Strong electric fields applied on liquids
induce forces driving fluid motion. This effect can be used, among others, in on-
demand droplet generators. In this work, we discuss a convection-conduction model
for the simulation of droplet motion in strong electric fields. The model focuses on
robustness with respect to topology changes and on dynamic charging effects in
liquids. We illustrate the model with the simulation of electrically driven droplet
generation. The simulated dynamics for droplets with different conductivities are
compared with experiments.

10.1 Introduction

The application of strong electric fields on liquids is used in many engineering
applications to induce liquid atomization in a controlled manner. In electrosprays,
the droplet size and the opening angle of the spray cone can be affected by
charging the liquid prior to its atomization. Electric fields can also be used to
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achieve controlled motion of single droplets. In on-demand droplet generators,
detachment induced by electric fields allows reproducible generation of liquids
samples for experiments in various atmospheric conditions [1]. The modelling of
electrically driven droplet motion involves a mechanical and an electrical problem.
The externally applied electric fields induce forces on the droplets, driving fluid
flow. The motion the phase boundaries affects the fields in turn, resulting in a
strong coupling between the two problems. Furthermore, due to the presence of
intrinsic ionic species and dissolved impurities, liquids exhibit some electrical
conductivity associated with charge migration [2, 3]. Free charge accumulate at the
droplet interface and can result in the generation of charged droplets from initially
uncharged liquid. Such a leaky dielectric behaviour requires an electroquasistatic
field representation, taking into account both conduction and displacement electric
currents in the liquid.

In this work, we discuss a conduction-convection model for the simulation of
droplet dynamics under the influence of electric fields, using the Finite Volume
Method on a fixed mesh. The model accounts for electroquasistatic droplet charging,
contact angle dynamics, and phase boundary topology changes associated with the
droplet detachment process. The simulation of controlled droplet generation in an
electrically driven droplet generator is presented and compared with experimental
data.

10.2 Numerical Model

In the presence of electric fields, fluid motion induced by the electric forces distort
the phase boundaries. The electric field distribution is affected in turn by changes in
the free charge distribution and interface motion. The flow is therefore determined
by solving in a coupled manner the multiphase hydrodynamic problem and the
electroquasistatic problem.

10.2.1 Fluid Problem

In this work, the electrohydrodynamic problem is solved on a fixed grid using a
Finite Volume discretization based on the OpenFOAM simulation framework [4].
The incompressible Navier-Stokes equations are adopted to describe fluid motion:

∂ρ̂u
∂t

+∇ · (ρ̂uu)− μ̂∇ ·
(
∇u+∇uT

)
= −∇p + ρ̂g+ fs + fe , (10.1)

∇ · u = 0 , (10.2)
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where u, p, ρ̂ and μ̂ are, respectively, the fluid velocity, dynamic pressure, density
and the viscosity of the fluids. The external forces, fe, and fs, are respectively the
electric forces applied to the fluids, and the surface tension force. The material
properties ρ̂ and μ̂ are locally averaged material properties, calculated using
the Volume of Fluid approach representing the interface between fluids, further
described in Sect. 10.2.2.

Surface wettability is accounted for by a contact angle model, providing a
correction for the surface tension force fs on the first boundary layer. In this
work, the Kistler correlation is used, representing the dynamic contact angle θ as
a function of the capillary number Ca at the contact line [5]:

θ = fH

(
Ca+ f−1

H

(
θadv/rec

))
, (10.3)

with fH (x) = arccos

(
1− 2 tanh

[
5.16

(
x

1+ 1.31x0.99

)0.706
])

(10.4)

In (10.3), θadv and θrec represent, respectively, the limiting advancing and receding
angles of the liquid on the given surface. Pinning effects on the contact line are
furthermore modelled by keeping the volume fraction constant at boundaries where
the apparent angle value is between the critical contact angle values.

10.2.2 Interface Capturing

The Volume of Fluid (VoF) approach [6] is the method of choice for the simulation
of multiphase fluid problems. It allows for a numerically efficient representation of
the phase boundaries, in particular when topology changes such as droplet breakup
and collision are involved. Phase boundaries are captured on the fixed grid using the
volume fraction, α, occupied by one of the fluids in each cell of the computational
mesh. Local material properties at the interface are defined from the phase fraction
by weighted averaging between the properties of the involved fluids:

μ̂ = αμliq + (1− α)μgas, ρ̂ = αρliq + (1− α)ρgas, (10.5)

where μ and ρ denote the dynamic viscosity and the density of the fluids,
respectively. The multiphase problems are then solved considering the two phases as
a single phase with varying material properties. The surface force densities in (10.1)
therefore become volume force density, applied across the diffuse interface. The
evolution of the interface is characterized by the transport equation of the volume
fraction:

∂α

∂t
+∇ · ([u+ α(1 − α)uc] α) = 0, (10.6)
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where uc is an artificial compression velocity acting as a counter diffusive term.
Equation (10.6) ensures mass conservation. Moreover, topology changes in the
phase boundaries are implicitly handled.

10.2.3 Electric Problem

The electric fields involved in the dynamics of droplet charging are essentially
irrotational, and are determined by:

∇ · (εE) = ρe, E = −∇Φ. (10.7)

The electroquasistatic behaviour is represented via the charge conservation equa-
tion:

∂ρe

∂t
+ ∇ · J = 0, (10.8)

where J = ρeu + κE is the current density including the ohmic conduction
in the fluids and the convection of free charge in the liquids. The transient
electroquasistatic field is finally given by:

∇ · ε̂∇Φ = −ρe, (10.9)

∂ρe

∂t
+∇ · (ρeu) = ∇ · κ̂∇Φ. (10.10)

The VoF approach is used in this work also for representing electrical material
properties on the grid. This approach provides better numerical accuracy than a
simple staircase approximation of the phase boundary. The electric permittivity,
ε̂, and conductivity, κ̂, used in (10.9) and (10.10) are therefore defined, similarly
to (10.5), as:

1

ε̂
= α

εliq
+ 1− α

εgas
,

1

κ̂
= α

κliq
+ 1− α

κgas
, (10.11)

where a harmonic averaging of electrical material properties based on the phase
fraction, α, is applied [7, 8].

Given a numerical solution for (10.9), (10.10), volumetric forces applied on
the liquid can be calculated from a modified Maxwell stress tensor, holding for
incompressible fluid flow:

fe = ∇ ·
(
ε̂E⊗ E− 1

2
ε0E

2I
)
. (10.12)
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capillary

pendant droplet

electrodes

dielectric casing

Fig. 10.1 Schematics of the on-demand droplet generator, cf. [1]. Left: overview of the pressure
chamber. Right: capillary and electrodes triggering the detachment

10.3 Application and Results

The electrohydrodynamic model is applied in the simulation of the droplet generator
shown in Fig. 10.1. A metallic capillary tube at ground voltage is placed between
two electrodes in a climate chamber capable of sustaining a high-pressure, high-
temperature gaseous environment. Liquid is introduced from the top of the capillary,
forming a droplet that wets the sides of the capillary. As the droplet reaches a
specified size, a short voltage pulse is applied at the electrodes. The electric forces
induced on the droplet accelerate it for the duration of the pulse.

10.3.1 Electrically Driven Droplet Detachment

The mechanism involved in droplet detachment differ depending on the ratio
between the free charge relaxation time in the considered liquids and the duration of
the applied voltage pulse. The electric field and force distributions around liquid
droplet are shown in Fig. 10.2. For liquids with a short relaxation time, in the
absence of electric fields inside of the liquid, the electric field maximum is at the
bottom of the droplet. As a result, the electric forces provides a downward impulse
to the droplet. The electric pulse is interrupted before detachment, to prevent from
detaching charged droplets. In low conductivity liquids, however, the electric field
maximum is at the tip of the capillary, regardless of the position of the droplet. The
resulting force distribution provides an upward impulse to the droplet. After the end
of the electric pulse, the weight of the droplet, now uncompensated by the surface
tension provides the downward acceleration leading to detachment.
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Fig. 10.2 Electric fields and forces distributions acting on acetone and n-pentane droplets. Left:
acetone droplet; Right: n-pentane droplet. The left part of each graphs shows the electric force
distribution, represented as a surface force density
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Fig. 10.3 Comparison between the simulated and experimentally recorded droplet dynamics in
the generator during the detachment process, for acetone at 20 ◦C, 1 bar, using a 2 kV, 11.5 ms
voltage pulse. Left: experiment; Right: simulation

In order to reduce the computational cost, the droplet generator is modelled
assuming axial symmetry. The contact angle parameters on the capillary are
empirically chosen such as to reproduce the droplet shape shortly before the voltage
pulse is applied.

The simulated dynamics of detachment are compared in Figs. 10.3 and 10.4, for
acetone and n-pentane droplets, respectively. A good agreement between simulation
and experiment can be observed. Small deviations in the computed droplet shapes
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Fig. 10.4 Comparison between the simulated and experimentally recorded droplet dynamics in
the generator during the detachment process, for n-pentane at 27 ◦C, 1 bar, using a 4 kV, 26.5 ms
voltage pulse. Left: experiment; Right: simulation

are most probably due to uncertainties related to the determination of capillary
surface wettability parameters and uncertainties on material parameters.

10.3.2 Charged Droplet Detachment

As additional validation, we performed simulations of charged droplet detachment
for acetone, to ensure that the numerical model can be used to simulate generation
of charged droplets. The relaxation time in acetone is in the order of 10 µs, so
that interrupting the voltage pulse shortly before detachment is sufficient to ensure
uncharged droplet generation. We therefore consider numerically the case of a
voltage pulse interrupted at t = 26 ms, after the detachment of the droplet at
t = 21.8 ms. The total charge inside of the computational domain during the
detachment process is shown in Fig. 10.5. After the end of the electric pulse, the
charge in the pendant liquid returns back to the capillary, and is replaced by a charge
induced by the electric fields originating from the free falling droplet. The charge
acquired by the droplet, q = 149 pC, is conserved during the free fall.
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Fig. 10.5 Electric charge carried by the liquids during the detachment event. Left: total charge in
the computational domain and in the droplet. Right: charge and potential distribution before and
after droplet detachment

10.4 Conclusion

We have presented a model to solve electrohydrodynamic problems including
dynamic charging of droplets. The electrical and mechanical problems are solved
consistently on non moving grids using the Volume of Fluid interface capturing
scheme, which ensure implicit handling of topology changes of the phase boundary.
Simulated dynamics are compared with experimental dynamics and show a good
agreement. The model can be readily applied to complex configurations involving
multiple interacting droplets in electric fields.
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Part IV
Mathematical and Computational Methods

Including Uncertainty Quantification

In this part of the book, we present papers that primarily focus on the development
of new numerical methods for solving CEM problems including uncertainty quan-
tification.

In their keynote talk on “Multirate Shooting Method with Frequency Sweep
for Circuit Simulation”, K. Bittner and H.G. Brachtendorf introduce the multi-
rate shooting technique, which is based on the reformulation of the system of
differential-algebraic equations describing a circuit as partial differential equations
first semi-discretized by Rothe’s method in time and finally by the shooting method
in space.

In “A Trefftz Method for the Time-Harmonic Eddy Current Equation”, R. Casa-
grande et al. present a new enriched finite element method that can efficiently deal
with boundary layers and singularities typically arising along the conductor surface
in eddy current problems under time-harmonic excitations. Inductive hardening is
one important application.

The paper “Survey on Semi-Explicit Time Integration of Eddy Current Problems”
by J. Dutiné et al. discusses highly efficient realizations of the explicit Euler
method for eddy current problems. The finite element discretization of an eddy
current problem results in a large system of differential-algebraic equations that
can be reduced to an equivalent system of ordinary differential equations (ODE) by
eliminating the unknowns in the non-conducting regions. This ODE system is then
solved using the explicit Euler method.

In their paper “A Local Mesh Modification Strategy for Interface Problems with
Application to Shape and Topology Optimization”, P. Gangl and U. Langer develop
and analyze a local mesh modification technology that can follow a moving interface
on a background triangular mesh without losing accuracy. The corresponding finite
element discretization is used in the shape and topology optimization of electrical
machines.

Q. Liu and R. Pulch provide a sensitivity analysis of linear dynamical systems
in their contribution “Numerical Methods for Derivative-Based Global Sensitivity
Analysis in High Dimensions”. They introduce numerical techniques for computing
derivative-based sensitivity indices in the case of high-dimensional hypercubes.
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These techniques are subsequently tested for a linear dynamical system that models
a band-stop filter.

In “Fitting Generalized Gaussian Distributions for Process Capability Index”,
T.G.J. Beelen et al. propose a new, fast and reliable numerical method for computing
the defining parameters in generalized Gaussian density distributions.

In their paper “Robust Optimization of an RFIC Isolation Problem under Uncer-
tainties”, P. Putek et al. incorporate uncertainty quantification into the modeling
of electronic devices to provide reliable and robust simulation and optimization.
The simulation is based on stochastic differential-algebraic equations. The new
robust optimization methodology is then successfully applied to a Radio Frequency
Integrated Circuit (RFIC) isolation problem.



Chapter 11
Multirate Shooting Method
with Frequency Sweep for Circuit
Simulation

Kai Bittner and Hans Georg Brachtendorf

Abstract We introduce multirate shootings methods to compute the response
of radio frequency (RF) circuits with frequency modulated stimuli. The mul-
tirate technique is based on reformulating the system of ordinary differential
algebraic equations (DAE) by partial differential equations (PDE). The PDE is semi-
discretized by Rothe’s method, i.e. by first discretizing the initial value problem. The
resulting periodic boundary value problems are then solved by shooting techniques.
Second, the instantaneous frequency is an additional unknown and concurrently
estimated.

11.1 Introduction

The multirate simulation technique (see e.g. [1–4]) has been introduced to circuit
simulation to handle RF signals with widely separated time scales in an efficient
way, by reformulating the circuit equations as PDEs in different time scales.
A semi-discretization of the multirate PDEs leads to a series of Periodic Steady
State (PSS) problems, which are usually solved by waveform relaxation methods
(Harmonic Balance, Finite Difference, Galerkin discretization), which approximate
the periodic solution over a whole period. However, for some problems this can lead
to convergence problems of nonlinear solvers (e.g. Newton) and large problem sizes
with prohibitive memory and time requirements.

Here, we consider shooting (e.g. [5–11]) as an alternative approach for PSS.
The advantage of shooting methods is that they can handle most problems for
which a transient analysis is feasible. Furthermore, the size of linear and nonlinear
problems to be solved is determined by the size of the circuit and not by the
waveform, which can reduce memory requirements essentially and a speedup might
be possible at least for some problems. Our goal here is to give a complete
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description of the shooting method in circuit simulation as an alternative to other
PSS solvers.

We develop a shooting method based on multistep methods for circuit simulation
in Sects. 11.2 and 11.3. Then shooting is applied to the multirate method in
Sect. 11.4. Various approaches for an optimal frequency sweep are presented in
Sect. 11.5. A numerical test in Sect. 11.6 concludes the results.

11.2 Circuit Equations and Multistep Methods

Consider the circuit equations in the charge/flux oriented modified nodal analysis
(MNA) formulation, which yields a mathematical model in the form of a system of
differential-algebraic equations (DAEs):

d
dt
q
(
x(t)

)+ i
(
x(t)

)+ s(t)︸ ︷︷ ︸
g(x,t)

= 0, x(0) = x0 (11.1)

Here x(t) ∈ R
n is the vector of node potentials and specific branch currents and

q(x) ∈ R
n is the vector of charges and fluxes. The vector i(x) ∈ R

n comprises static
contributions, while s(t) ∈ R

n contains the contributions of independent sources.
The DAEs in (11.1) are usually solved by time integration formulas for stiff

systems. Here, we consider implicit linear multistep methods, which approximate
the solution at a discrete time step tk based on approximations at previous time
steps t < tk as follows. Let the approximations x ≈ x(t ), 0 ≤  < k, be already
computed. The approximation xk ≈ x(tk) is found as the solution of the nonlinear
system

F(xk) :=
sk∑
 =0

αk
 q(xk− )+ βk

 g(xk− , tk− ) = 0, sk ≤ k. (11.2)

Usually the trapezoidal rule or Gear’s backward difference formulas (BDF) are
used in circuit simulation. A further choice, in particular for high Q oscillators,
are the trigonometric BDF formulas from [12], which avoid artificial energy loss by
numerical damping.

The nonlinear system is solved by Newton’s method, where we need the Jacobian

DF(xk) = αk
0 C(xk)+ βk

0 G(xk).

The computation of the Jacobians C(x) := q ′(x) and G(x) := i ′(x) is usually
implemented in a circuit simulator, together with the evaluation of q(x) and g(x, t).
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11.3 Periodic Steady States and Shooting

To determine the periodic steady state (PSS) of a circuit means to solve the periodic
boundary value problem

d
dt
q
(
x(t)

)+ i
(
x(t)

)+ s(t) = 0, x(0) = x(P ) (11.3)

instead of the initial value problem (11.1), where the source term s(t) is required
to be P -periodic to assure existence of a periodic solution. One approach to solve a
boundary value problem are shooting methods [5–9]. The principal idea is to solve
initial value problems and to adapt the initial values so that the boundary conditions
are fulfilled. That is, a nonlinear equation for the boundary value problem has to be
solved. However, the computation of the corresponding Jacobian matrix is not trivial
in general. An approach for circuit simulation based on the backward Euler method
was given in [10]. A generalization to BDF and trapezoidal rule can be found in
[11]. Here we give a short description of the shooting method for periodic steady
states of circuits, using multistep methods as introduced in Sect. 11.2.

In the sequel, we assume that a periodic steady state exists, and that the solution
depends smoothly on the consistent initial value, which is true for many practical
problems. Let x(t; ξ) be the solution of the initial value problem with initial value
ξ , i.e.,

d
dt
q
(
x(t; ξ))+ i

(
x(t; ξ))+ s(t) = 0, x(0; ξ) = ξ. (11.4)

Further, Φ(ξ) := x(P ; ξ) is the value of the solution after one period. To find a
PSS one has to determine an initial value ξ ∈ R

n such that Φ(ξ) − ξ = 0, i.e., we
have to solve a nonlinear system. For the application of Newton’s method we need
the Jacobian d

dξ

(
Φ(ξ) − ξ

) = Φ ′(ξ) − I . Numerical differentiation is prohibitive
expensive for larger circuits. Therefore, we consider an alternative approach.

Since Φ(ξ) = x(P ; ξ) cannot be determined exactly, we replace Φ(ξ) by the
approximation

Φ̃(ξ) := xN := xN(ξ),

where xk := xk(ξ) is the solution from the multistep method (11.2) with x0 = ξ

and tN = P . While we need a consistent initial value ξ in (11.4), we can avoid this
requirement if we use one or more (depending on the index of the DAE) backward
Euler steps (BDF1) at the begin of the time integration [11, Lemma 4.2]. However,
projecting the initial guess for Newton’s method onto a consistent solution can
improve the convergence of the shooting method [13].

The Jacobian Φ̃ ′(ξ) is determined as follows. By differentiating (11.2) one
obtains

sk∑
 =0

(
αk
 C(xk− )+ βk

 G(xk− )
)
dxk− 

dξ
= 0. (11.5)
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This leads to the recursion

dxk

dξ
= −

(
αk

0 C(xk)+ βk
0 G(xk)

)−1
( sk∑

 =1

(
αk
 C(xk− )+ βk

 G(xk− )
)dxk− 

dξ

)
,

(11.6)
for k = 1, . . . , N with dx0

dξ
= I .

Computing Φ̃ ′(ξ) = dxN
dξ

using direct solvers will be rather expensive. The
good news are that C(xk) and G(xk) are sparse and that the LU-decomposition
of the sparse matrix αk

0 C(xk) + βk
0 G(xk) has to be computed anyway in order to

solve (11.2).1 The bad news are that the inverse matrices are dense and thus the
matrices dxk

dξ
are dense, too. That is, the computational complexity for computing

Φ̃ ′(ξ) amounts to O(n1+γ N), if we assume the computational cost for the sparse
forward-backward-substitutions (during Transient analysis) to be O(nγ ) for some
γ > 1. Additionally, we have to solve a linear system with the dense matrix
Φ̃ ′(ξ) − I , for the outer Newton iteration to determine ξ , which requires O(n3)

operations. However, this direct computation needs only limited memory of order
O(n2) (independent of N), if it is done immediately during the transient analysis.

However, we can attempt to solve the linear system by an iterative method, e.g.,
GMRES. This requires an efficient matrix vector multiplication Φ̃ ′(ξ) y for any
given y ∈ R

n. Using the recursion (11.6) we can do this, without knowing the
matrix Φ̃ ′(ξ) itself. We define yk := dxk

dξ
y, which yields yN = Φ̃ ′(ξ) y by the

recursion

(
αk

0 C(xk)+ βk
0 G(xk)

)
yk =

s∑
 =1

(
αk
 C(xk− )+ βk

 G(xk− )
)
yk− , y0 = y.

(11.7)
This approach requires to store all matrices C(xk) and G(xk), k = 0, . . . , N ,

since the vector y = Φ̃(ξ) − ξ is only available after the transient analysis is
complete. This results in a memory consumption O(N nγ ) for some small γ > 1.
The computational cost of one matrix vector multiplication would be essentially the
same as for the transient analysis (without device evaluation), i.e., O(N nγ ). This
has to be multiplied by the number of iterations K needed by the iterative solver.

The iteration count K can be expected to be small in many cases due to the
following statement (see e.g. [14, Prop. 4]). We assume that the matrix Φ̃ ′(ξ) is
diagonizable, which is the typical case. The error for the residual rm after m iteration
steps can be estimated as

‖rm‖ ≤ c ‖r0‖ min
p∈Πm−1, p(0)=1

max
λ∈σ |p(λ)|

1We assume that a direct sparse solver is used to solve (11.2) and (11.6), which is reasonable in
circuit simulation. For an iterative solver we have only to determine a preconditioner once for the
multiple solves, i.e., similar considerations apply.
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where c is a constant depending on the matrix, Πm−1 are the polynomials of degree
less than m and σ is the set of eigenvalues of the system matrix Φ̃ ′(ξ). If the
eigenvalues are clustered around few values one can choose polynomials with the
zeros in this clusters to prove a fast decay of the residuals.

In a circuit many components of an initial value are damped out over a period of
a periodic signal, which corresponds to small eigenvalues of Φ̃ ′(ξ), while only few
eigenvalues may be away from zero (e.g. due to an oscillator). Thus, the Jacobian
Φ̃ ′(ξ) − I may have mainly eigenvalues close to −1 with only a few exceptions,
resulting in a fast convergence of GMRES, even without preconditioning.

The direct solver is suitable if n is not too large and accuracy of the linear solver
is important, while for larger circuits the iterative solver might be favored.

11.4 Multirate Shooting Method

To separate different time scales, the circuit equation (11.1) can be replaced by
partial differential equations [1–4], namely

∂
∂τ

q
(
x̂(τ, t)

) + ω(τ) ∂
∂t
q
(
x̂(τ, t)

) + i
(
x̂(τ, t)

) + ŝ
(
τ, t
) = 0 (11.8)

where ω(τ) is an estimate of the (scaled) angular frequency. The bivariate function
x̂(τ, t) is related to the univariate solution x(t) of (11.1) as follows. For any solution
x̂(τ, t) of (11.8) we get by xθ (t) = x̂

(
t,Ωθ(t)

)
, Ωθ(t) = θ + ∫ t

0 ω(s) ds a solution
of

d
dt
q
(
x(t)

)+ i
(
x(t)

)+ ŝ
(
t,Ωθ(t)

) = 0.

Thus, if we choose ŝ such that s(t) = ŝ
(
t,Ω0(t)

)
, then the solution of (11.8)

provides also a solution of (11.1), i.e., x(t) = x0(t) = x̂
(
t,Ω0(t)

)
.

The multirate equation (11.8) are usually solved under periodicity conditions
x̂(τ, t) = x̂(τ, t + P) in t and initial conditions x̂(0, t) = X0(t) in τ . The source
term has then to be periodic, too, i.e., ŝ(τ, t) = ŝ(τ, t + P). The term ω(τ) can
be used to adapt to frequency modulated signals. In [3] it was shown that we can
improve the smoothness of x̂ in τ , if P and ω(τ) are chosen such that ω(τ)

P
equals

the instantaneous frequency.
Following [3, 4] we use Rothe’s method for semi-discretization. Using Gear’s

BDF2 method of order s with respect to τ one obtains

s∑
i=0

α̃k
i q
(
Xk−i (t)

)+ ωk
d

dt
q
(
Xk(t)

)+ i
(
Xk(t)

) + ŝ
(
τk, t

) = 0 (11.9)

2Other multistep method (e.g. trapezoidal rule) can be used, too.



118 K. Bittner and H. G. Brachtendorf

With the definition

gk(x, t) := α̃k
0q(x)+ i(x)+ ŝ

(
τk, t

)+
s∑

i=1

α̃k
i q
(
Xk−i (t)

)
,

Xk is the solution of the periodic boundary value problem

ωk
d

dt
q
(
x(t)

)+ gk(x(t), t) = 0, x(t) = x(t + P). (11.10)

The new problem (11.10) is closely related to the original periodic steady
state problem of the circuit, only modified by the additional ‘source term’∑s

i=1 α̃
k
i q
(
Xk−i (t)

)
. Analogous to (11.5) one obtains

sm∑
 =0

(
ωkα

m
 C(xm− )+ βm

 

(
G(xm− )+ α̃k

0 C(xm− )
)) dxm− 

dξ
= 0. (11.11)

Thus, Xk can be approximated by the shooting method from Sect. 11.3. The only
additional problem is to compute

∑s
i=1 α̃

k
i q
(
Xk−i (t)

)
at the transient time steps for

tk,i for Xk . This requires to store the values q = q
(
X ,i

) ≈ q
(
X (t ,i)

)
. These

values can be used to approximate q
(
X (tk,i)

)
, k >  , e.g. by interpolation.

11.5 Frequency Sweep and Smoothness Conditions

As pointed out in [3, 15, 16] the function ω(τ) can be chosen in order to obtain a
smoother solution, which accelerates the simulation due to larger time steps in τ .
The observation that a modification of ω(τ) for τ < τk results in a phase shift of
x̂(τk, ·) leads to the proposition of a smoothness condition of the form

∥∥ ∂
∂τ

x̂(τ, ·)∥∥
L2 → min, (11.12)

(cf. [3, 15, 16]) or

∥∥ ∂
∂τ

q
(
x̂(τ, ·))∥∥

L2 → min, (11.13)

(cf. [15–17]) which should reduce changes with respect to τ . Here, we use the
norm ‖x‖2

L2 :=
∫ P

0

∑n
k=1 |xk(t)

∣∣2 dt and the corresponding inner product 〈x, y〉 :=∫ P

0

∑n
k=1 xk(t) yk(t) dt . In many cases a (near) optimal choice of ω(τ) is known in

advance, e.g., from the (instantaneous) frequency of sources in a driven circuit.
Often, a good choice of ω(τ) is not known in advance, but central for the

success of the simulation, e.g., for the simulation of high Q oscillators without
numerical damping [12] or voltage controlled oscillators (VCO) (in a Phase-Locked
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Loop (PLL)) [3, 4]. For the existence and uniqueness of an optimal ω(τ) we
refer to [18]. There have been several approaches to include the above smoothness
conditions into simulation methods, e.g. if finite differences or collocation or
Galerkin methods (Harmonic Balance, spline wavelets) are applied to solve the
periodic problem (11.10). During our investigations it turned out that the application
of these approaches to the shooting method is not straightforward. In this section we
will develop frequency sweep following methods for the shooting methods, based
on established methods for other periodic solvers.

11.5.1 An Explicit Approach

We first refer to an approach of Houben [17] based on condition (11.13), which
leads to the equality

ω(τ) = −
〈
∂
∂t
q
(
x̂(τ, ·)), i(x̂(τ, ·)) + ŝ

(
τ, ·)〉

∥∥ ∂
∂t
q
(
x̂(τ, ·))∥∥2

L2

. (11.14)

Apparently, we can determine ω(τ) only after x̂(τ, ·) is known. However in the
Rothe discretization (11.9) we can use the guess

ωk ≈ ω(τk−1) = −
〈
d
dt
q(Xk−1), i(Xk−1)+ ŝ

(
τk−1, ·

)〉
∥∥ d
dt
q(Xk−1)

∥∥2
L2

, (11.15)

based on the solution of the previous time step. From the shooting method we know
not only approximations Xk−1, ≈ Xk−1(t ), but also gk−1, = i

(
Xk−1(t )

) +
ŝ
(
τk−1, t 

)
and qk−1, = q

(
Xk−1(t )

)
. Approximations Dqk−1, = d

dt
q
(
Xk−1(t )

)
for the derivatives can be computed using finite differences, as it is done in the BDF
method anyway. Numerical integration leads to the formulation

ωk = −
∑N

 =0 wk, 〈Dqk−1, , gk−1, 〉∑N
 =0 wk, ‖Dqk−1, ‖2

L2

, (11.16)

where the wk are quadrature weights for the grid {tk, }. The original approach in
[17] uses the method of lines, but it works with Rothe’s method as well.

Although the method is simple and easy to implement, also in a shooting method,
it has limits. Since the computation uses only data from the previous time step, the
accuracy of this approach is limited. In many circuits an accurate estimate for the
optimal ωk is essential for the efficiency of the multirate algorithm. In the sequel
we will consider methods, where ωk is determined in the Newton iteration of the
shooting method for Xk .
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11.5.2 An Additional Equation

Treating ωk in Eq. (11.10) as an unknown requires two things. We need derivatives
with respect to ωk for the Jacobian, and an additional equation and its derivatives.
Since our shooting equation depends now also on ω, we replace Φ̃(ξ) by Φ̃(ξ, ω).

We obtain the derivative with respect to ω as ∂
∂ω

(
Φ̃(ξ, ω) − ξ

)
= ∂

∂ω
Φ̃(ξ, ω) =

dxN
dω

. Obviously the initial value is independent of ω, i.e., dx0
dω
= 0. Differentiating

the discretized version of Eq. (11.10) with respect to ω yields

sm∑
 =0

αm
 

(
q
(
xm− 

)+ ωC(xm− ) dxm− 

dω

)
+ βm

 

(
Gk(xm− )+ α̃k

0 C(xm− )
)
dxm− 

dω
= 0.

(11.17)
Thus ∂

∂ω
Φ̃(ξ, ω) can be computed during the transient simulation of the shooting

using the recursion over dxk
dω

similar to (11.6). Pulch [15, 16] suggests the following
approach. Based on the Gâteaux derivative, he shows that the smoothness condition
(11.12) is equivalent to

0 = 〈 ∂
∂τ

x̂(τ, ·), ∂
∂t
x̂(τ, ·)〉. (11.18)

The challenge is to incorporate this equation into the shooting method, which is
done as follows. First we semi-discretize by replacing ∂

∂τ
x̂(τk, ·) and ∂

∂t
x̂(τk, ·) by

Xk−Xk−1
τk−τk−1

and X′k , respectively. Thus condition (11.18) is substituted by

0 = 〈Xk − Xk−1, X
′
k

〉

= 1
2

∫ P

0

d
dt
‖Xk(t)‖2 dt −

(
Xk−1(P︸ ︷︷ ︸
Xk−1(0)

)T Xk(P )−Xk−1(0)
T Xk(0)

)
+
∫ P

0
X′k−1(t)

T Xk(t) dt

= 1
2

(
‖Xk(P )‖2 − ‖Xk(0)‖2

)
+Xk−1(0)

T
(
Xk(0)− Xk(P )

)
+
∫ P

0
X′k−1(t)

T Xk(t) dt,

i.e., the solution (x, ωk) of the periodic problem (11.10) shall satisfy

1
2

(
‖x(P )‖2 − ‖x(0)‖2

)
+Xk−1(0)T

(
x(0)− x(P )

)
+
∫ P

0
X′k−1(t)

T x(t) dt = 0.

(11.19)
Although x is P -periodic, we cannot assume x(P ) = x(0) during the Newton
iteration of the shooting method, i.e., none of terms above can be neglected.

By numerical integration we approximate (11.19) by

Ψ (ξ, ω) := 1
2

(
xT
NxN − xT

0 x0

)
+ x̃T

k−1,0

(
x0 − xN

)
+

N∑
i=0

wi x̃
T
k−1,i xi = 0,

(11.20)
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where the wk are quadrature weights and x̃k−1,i are approximations of X′k−1(tk,i).
Now we have to solve the system Φ̃(ξ, ω) = 0, Ψ (ξ, ω) = 0 with n+ 1 unknowns
and n+ 1 equations.

For Newton’s method one needs the derivatives of Ψ (ξ, ω), which are

∂
∂ξ

Ψ (ξ, ω) = (xN − x̃k−1,0
)T dxN

dξ
− (x0 − x̃k−1,0

)T +
N∑
i=0

wi x̃
T
k−1,i

dxi

dξ
,

∂
∂ω

Ψ (ξ, ω) = (xN − x̃k−1,0
)T dxN

dω
+

N∑
i=0

wi x̃
T
k−1,i

dxi

dω
.

This does not increase the computational cost essentially, since dxi
dξ

is already

computed during the recursion (11.6) (with the modification from (11.11)) and dxi
dω

is determined in the recursion (11.17). The only extra effort is to add up the terms
dxi
dξ

X′k−1(tk,i) and dxi
dω

X′k−1(tk,i) during the computation.
If we replace (11.12) by (11.13) one obtains by an analogous argument

Ψq(ξ, ω) := 1
2

(
qT
NqN − qT

0 q0
)+ q̃T

k−1,0

(
q0 − qN

)+
N∑
i=0

wiq̃
T
i qi = 0, (11.21)

as well as the derivatives with respect to ξ and ω.

11.5.3 A Discrete Smoothness Criterion

We start from the smoothness criterion (11.12), which we discretize instead of
formulating an equivalent equation, namely as

‖Xk(t)−Xk−1(t)‖2
L2 → min . (11.22)

A similar criterion was introduced in [3] for waveform relaxation methods. Using
numerical integration, condition (11.22) becomes

N∑
 =0

w 

∣∣x (ξ, ω)− x̃k−1, 
∣∣2 → min, (11.23)

with suitable quadrature weights w and approximations x̃k−1, of Xk−1(tk, ). This
optimization condition has to be solved under the condition that Φ(ξ, ω) − ξ = 0
(remember x0(ξ, ω) = ξ and xN(ξ, ω) = Φ(ξ, ω) with tN = P ). Using a Lagrange
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multiplier approach we obtain

1
2

∑N
 =0 w 

∣∣x (ξ, ω)− x̃k−1, 
∣∣2 + λT

(
Φ(ξ, ω)− ξ

)→ min . (11.24)

To establish a Gauss-Newton type method, we linearize the problem as follows.
For a given initial guess (ξ, ω) we use the linear approximation

x (ξ − dξ , ω − dω) ≈ x (ξ, ω)− ∂x 
∂ξ

(ξ, ω) dξ − dω
∂x 
∂ω

(ξ, ω)

Φ(ξ − dξ , ω − dω)−(ξ − dξ )

≈ Φ(ξ, ω) − ξ −
(
∂Φ
∂ξ

(ξ, ω)− I
)
dξ − dω

∂Φ
∂ω

(ξ, ω).

Substituting this into (11.24) and setting the derivatives with respect to dξ , dω, and
λ to zero we obtain the equations

−
N∑
 =0

w 

(
∂x 
∂ξ

(ξ, ω)
)T (

x (ξ, ω)− ∂x 
∂ξ

(ξ, ω) dξ − dω
∂
∂ω

x (ξ, ω)− x̃k−1, 

)

−( ∂
∂ξ

Φ(ξ, ω)− I
)T

λ = 0

−
N∑
 =0

w 

(
∂x 
∂ω

(ξ, ω)
)T (

x (ξ, ω)− ∂x 
∂ξ

(ξ, ω) dξ − dω
∂
∂ω

x (ξ, ω)− x̃k−1, 

)

−( ∂
∂ω

Φ(ξ, ω)
)T

λ = 0

Φ(ξ, ω)− ξ − ( ∂Φ
∂ξ

(ξ, ω)− I
)
dξ − dω

∂Φ
∂ω

(ξ, ω) = 0.

For abbreviation we introduce U,A ∈ R
N×N , v, c, z, b ∈ R

N and ρ, η ∈ R

U :=
N∑
 =0

w 

(
∂x 
∂ξ

(ξ, ω)
)T ∂x 

∂ξ
(ξ, ω), A := ∂Φ

∂ξ
(ξ, ω)− I ; (11.25)

v :=
N∑
 =0

w 

(
∂x 
∂ξ

(ξ, ω)
)T ∂x 

∂ω
(ξ, ω), c :=

N∑
 =0

w 

(
∂x 
∂ξ

(ξ, ω)
)T(

x (ξ, ω)− x̃k−1, 

)
,

z := ∂Φ
∂ω

(ξ, ω), b := Φ(ξ, ω)− ξ ;

ρ :=
N∑
 =0

w 

(
∂x 
∂ω (ξ, ω)

)T ∂x 
∂ω (ξ, ω), η :=

N∑
 =0

w 

(
∂x 
∂ω (ξ, ω)

)T(
x (ξ, ω)− x̃k−1, 

)

such that the above linear system becomes (in block matrix notation)

⎛
⎝

U v AT

vT ρ zT

A z 0

⎞
⎠ ·

⎛
⎝

dξ

dω

λ

⎞
⎠ =

⎛
⎝

c

η

b

⎞
⎠ .
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By a Schur complement elimination we obtain the solutions

dω = η − vT b̃ − z̃T
(
c − Ub̃

)

ρ − 2vT z̃ + z̃T Uz̃
and dξ = b̃ − dω z̃.

for Newton updates of ξ and ω, where Ab̃ = b and Az̃ = z.
This requires to solve a linear system with two right hand sides, which can be

done nearly as efficient as in the original shooting. However, the computation of U
is rather expensive since it requires N + 1 matrix-matrix multiplications. A faster
way is to compute first the vectors ζ = ∂x 

∂ξ
(ξ, ω) z̃. Then z̃T Uz̃ is computed by

z̃T Uz̃ =∑N
 =0 w ζ

T
 ζ , (11.26)

which needs only N+1 inner products and N+1 matrix vector products. The value
of z̃T Ub̃ can be computed analogously. However, we need to store the Jacobians
∂x 
∂ξ

(ξ, ω). That is, if we follow the memory saving approach (with a direct shooting
solver) we will compute U directly using the formula in (11.25). For the time
saving approach (with GMRES in shooting) we will use the stored data to do a
fast computation based on (11.26) (cf. Sect. 11.3).

11.6 Numerical Test

The described methods have been implemented in C++ and incorporated in our
circuit simulator LinzFrame. We have tested the method on a PLL (containing 145
MOSFETs and 80 unknowns), leading to a DAE of index 1. Here we show the
multirate simulation of the locking phase using the frequency sweep method from
Sect. 11.5.2. In Fig. 11.1 one can see that the reference and feedback signal are in-
phase after ca. 200 μs. This is reflected by the charge pump output in Fig. 11.2 which
measures the phase difference of both signals and is low pass filtered to control the
VCO. The instantaneous frequency estimate in Fig. 11.2 provides information on
the frequency modulation of the signals.

Fig. 11.1 Reference and feedback signal of the PLL
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Fig. 11.2 Charge pump output and instantaneous frequency estimate based on ω(τ)

It turned out that the shooting method performs much better than e.g. the adaptive
spline-Galerkin method from [4] in this locking phase. This is due to the fact that
the transient simulation does not rely on a good initial guess for the PSS, which is
taken from the previous envelope time step for Galerkin or finite difference schemes.
In the locking phase, signals as the charge pump output depicted in Fig. 11.2
will require very small envelope time steps to achieve convergence of Newton’s
method. However, if all signals are sufficiently smooth (e.g. after locking of the
PLL), adaptive Galerkin or FD schemes often perform better since they can employ
information on grid and signal shape from the previous envelope time step.

11.7 Conclusion

A shooting method to determine PSS of circuits has been developed and imple-
mented. Possible modifications of this method have been introduced to solve
sub-problems in the PDE based multirate circuit simulation method for RF circuits.
The new method provides an alternative to waveform relaxation methods if the latter
fail due to prohibitive time or memory requirements, or convergence problems.

Acknowledgements This work has been partly supported by the fp7 project nanoCOPS under
grant 619166 and the EFRE project Connected Vehicles under grant IWB2020.
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Chapter 12
A Trefftz Method
for the Time-Harmonic Eddy Current
Equation

Raffael Casagrande, Christoph Winkelmann, Ralf Hiptmair,
and Jörg Ostrowski

Abstract We present a discontinuous finite element method to resolve the skin
effect in conductors on coarse meshes. The idea is to take into account the
exponential decay in the finite element trial space, which enables to resolve the skin
layer independent of the size of the mesh cells. The discontinuous, Trefftz-type
basis functions are coupled across the element boundaries by the interior penalty-
/Nitsche’s method and numerical experiments affirm the effectiveness of the method
for thin boundary layers.

12.1 Introduction

We consider the vector potential formulation of the eddy current problem in the
frequency domain with temporal gauge (ϕ = 0),

curl
(
μ−1curlA

)
+ iωσA = ji . (12.1)

Here

• A(x) is a vector potential,
• B = ∇ × A is the magnetic flux density,
• ji (x) is the impressed, solenoidal electric current,
• ω > 0 is the angular frequency, and
• σ(x) is the electric conductivity (which can be zero in parts of the domain and is

assumed to be piecewise constant).
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It is well known that the solution of (12.1) exhibits singularities in edges (and
corners) of conductors [4], as well as exponential boundary layers along the surface
of conductors (skin effect). I.e. the induced current iωσA is concentrated at the
surface of conductors and decays rapidly towards the interior. The thickness of
the boundary layer is characterized by the skin-depth δ.

Induction has many applications in industry. An example is inductive hardening
[8], where the workpiece is heated quickly at the surface, and is then rapidly cooled
down before the heat is distributed into the interior by heat conduction. In this case
the skin effect plays a fundamental technical role and resolving the skin layer is
essential.

For the classical low order Finite Element Method (FEM) this means that the
boundary layers must be resolved by the underlying mesh. This can be achieved by
adapting the mesh manually or by refining an existing mesh towards the boundary
layers, which can be automated (h-refinement). However, in industrial applications
the skin depth δ can be orders of magnitude smaller than the diameter of the
conductor so that the mesh must be refined multiple times towards the boundary
layer(s). This leads to a vast increase in the number of degrees of freedom (DOF)
which may render the solution of the linear system prohibitively expensive.

Alternatively one can refine the mesh just once to create a mesh layer of thickness
O(kδ) where k is the polynomial degree of the test functions [9, 10]. However
creating such a 3D mesh for industrial applications can be hard, especially if
tetrahedral elements are used.

A partial remedy for this problem are Impedance Boundary Conditions (IBC)
[8]: The conductor is replaced by Robin-type boundary conditions and the electro-
magnetic fields are only calculated at the surface of the conductor. Since the IBC
approximation assumes that the conductor surface is flat, the solution deteriorates
as the radius of curvature of the conductor surface becomes comparable to the skin-
depth δ. In particular the IBC solution deviates strongly from the physically correct
fields at edges and corners of the conductor.

In this work we propose to resolve the boundary layers directly on coarse meshes
(we assume the meshsize h � δ) by enriching the approximation space with
suitable functions. More precisely, our approximation space will contain two types
of (discontinuous) basis functions:

• Edge elements Rk [7], and
• Exponential boundary layer functions modulated/multiplied with polynomials.

We deal with the discontinuous nature of the basis functions in the framework of
Discontinuous Galerkin (DG) methods and discretize (12.1) by the Non-Symmetric
Weighted Interior Penalty (NWIP) method [3].

12.2 Non-symmetric Weighted Interior Penalty Framework

We consider the time-harmonic eddy current equation (12.1) on a bounded, open,
polyhedral domain Ω ⊂ R

3 with Lipschitz boundary. Furthermore we denote by
Ω0 ⊂ Ω the open subdomain where σ = 0 and define Ωσ = Ω \Ω0.
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Perturbed Problem It is well-known that the time-harmonic eddy current equa-
tion (12.1) does not uniquely determine the vector potentialA in Ω0, i.e. (12.1) is an
ungauged formulation. In this work we restore the uniqueness of A by considering
the perturbed time-harmonic eddy current problem [1],

curl
(
μ−1curlAα

)
+ καAα = ji , in L2(Ω)3 (12.2a)

n× Aα = 0 on ∂Ω. (12.2b)

Here the boundary condition (12.2b) implies n · curlA = n · B = 0 which reflects
the decay of the magnetic field far away from the source ji . Moreover,

κα(x) :=
{
iωσ(x) for x ∈ Ωσ,

α for x ∈ Ω0,

with α > 0 being the regularization parameter. One expects that for α → 0 also
Aα → A, or more precisely [1, Lemma 33],

Lemma 12.1 Under the above assumptions we have, ‖A− Aα‖H(curl;Ω) ≤
Cα ‖A‖L2(Ω)3 , where C is independent of α but depends on μ, σ , ω and the
domain Ω .

Broken Sobolev Spaces We assume that there exists a partition PΩ = {Ωi}i such
that each Ωi is a polyhedron and such that the permeability 0 < μ < ∞ and the
coefficient function 0 < κα <∞ are constant on each Ωi . We will assume that the
solution Aα lies in the broken Sobolev space

V ∗(PΩ) :=
{
A ∈ L2(Ω)3

∣∣∣A|K ∈ H 1(K)3, curlA|K ∈ H 1(K)3 ∀K ∈ PΩ

}
.

Here H 1(K) := {f ∈ L2(K)| gradf ∈ L2(K)3} denotes the usual Sobolev space.

Meshes, Jumps, Averages Let Th denote a hybrid (tetrahedras, pyramids, prisms,
hexahedras), affine, conforming mesh on Ω that is compatible with the partition PΩ ,
that is every mesh element T ∈ Th lies in exactly one Ωi ∈ PΩ . Thus κα , μ are
constant on every mesh cell T ∈ Th and we have V ∗(PΩ) ⊂ V ∗(Th). Furthermore
we let F i

h denote the set of inner intersections of Th and define the tangential jump
and weighted average of a vector valued function A ∈ V ∗(Th) on an inner face
F ∈ F i

h, F = ∂Ti ∩ ∂Tj , as follows:

�Ah�T = nF ×
(
Ah|Ti − Ah|Tj

)
,

{{Ah}}w = w1 Ah|Ti +w2 Ah|Tj ,

(jump)

(average)

Here nF always points from Ti to Tj and wi ∈ [0, 1] are such that w1 +w2 = 1.
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NWIP-Formulation We discretize the perturbed eddy current problem (12.2) using
a finite dimensional subspace Vh ⊂ V ∗h := {A ∈ V ∗(Th)| n×A = 0 on ∂Ω}.
Multiplying (12.2) with a discontinuous test function A′h ∈ Vh and integrating by
parts on each element, one arrives at [3]: Find Aα

h ∈ Vh such that for all A′h ∈ Vh:

aNWIP
h (Aα

h,A
′
h)+

∫

Ω

καAα
h · A′h =

∫

Ω

ji ·A′h, (12.3)

with sesquilinear form

aNWIP
h (Aα

h,A
′
h) :=

∫

Ω

μ−1curlAα
h · curlA′h −

∑

F∈F i
h

∫

F

{{
μ−1curlAα

h

}}
w
· �A′h

�
T

+
∑

F∈F i
h

∫

F

{{
μ−1curlA′h

}}
w
· �Aα

h�T +
∑

F∈F i
h

ηγμ,F

hF

∫

F

�Aα
h�T ·

�
A′h

�
T
.

Here hF is the diameter of face F and η > 0 is the penalty parameter. The weights
for an inner face F = ∂T1 ∩ ∂T2 are chosen as

γμ,F := 2

μ1 + μ2
, w1 := μ1

μ1 + μ2
, w2 := μ2

μ1 + μ2
.

We have the following best approximation result, cf. [3, Theorem 3.3.13]:

Theorem 12.1 Let Aα ∈ V ∗(PΩ) be the solution of the perturbed problem (12.2)
and let Aα

h ∈ Vh solve the NWIP formulation (12.3). Then there exist constants
C > 0, Cη > 0, both independent of h, μ, κ such that for η > Cη

∥∥Aα − Aα
h

∥∥
IP

< C inf
vh∈Vh

‖A− vh‖IP ,∗ , (12.4)

and the discrete problem (12.3) is well-posed. The constants Cη, C depend on the
choice of the subspace Vh ⊂ V ∗h and Cη depends on C.

The associated (semi-) norms are defined as:

‖A‖2
IP :=

∥∥∥μ−1/2curlA
∥∥∥

2

L2(Ω)3
+
∥∥∥
√|κα|A

∥∥∥
2

L2(Ω)3
+
∑

F∈F i
h

γμ,F

hF

∥∥�A�T
∥∥2
L2(F )3 ,

‖A‖2
IP,∗ := ‖A‖2

IP +
∑
T ∈Th

hT

∥∥∥μ−1/2curlA
∥∥∥

2

L2(T )3
.
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12.3 Enriched Approximation Space

Trefftz Functions Let n be a unit vector and consider problem (12.1) on the whole
space R

3 such that σ is zero in the half-space Ω0 = {x ∈ R
3| x · n > 0} and equal

to a positive constant σ in the other half-space Ωσ = R
3 \Ω0. Furthermore, assume

that there is an external excitation by a magnetic field H0 which is constant along
the surface F := {x ∈ R

3| x · n = 0} and that μ ≡ const , ji = 0 in Ωσ . Simple
manipulations (cf. [5]) show that inside the conductor Ωσ (x · n < 0) we can write
the solution A of (12.1) explicitly as

A(x) = AF,τ (x) := |H0| δ/(1+ i) τ exp ((1+ i)(x− x0) · n/δ) , (12.5)

where x0 ∈ F , τ ∈ R
3 is a vector tangential to F , and δ =

√
2

μσω
is the skin-depth.

Modulated Trefftz Functions Let Pk(T ) denote the space of polynomials of total
degree ≤ k on mesh element T ∈ Th. For each element T ∈ Th, T ⊂ Ωσ we
define the space

Ak(T ) :=
{
pAF,τ | p ∈ Pk(T ), F ∈ F i

h, F ⊂ ∂T ∩ ∂Ω0, τ tangential of F
}
.

Note that the dimension of the space Ak(T ) is 2n dim(Pk(T )), where n is the
number of faces of T that are at the conductor surface, since for every flat surface
there are only two linearly independent tangentials τ . We define T A

h
:= {T ∈

Th| dim(A1(T )) > 0, σ (T ) > 0} to be the set of elements with at least one adjacent
boundary layer and we let ΩA ⊂ Ω be the union of all elements in T A

h . We then
define the broken, modulated Trefftz approximation space by

Ak(Th) :=
{
A ∈ L2(ΩA )3| A|T ∈ Ak(T ) ∀T ∈ T A

h

}
.

Broken Edge Element Space Our idea is to use a conforming edge element space
wherever possible and to “break” this space only around elements containing the
modulated Trefftz functions:

Rk,A (Th) :=
{
A ∈ L2(Ω)3

∣∣∣ A|T ∈ Rk(T ) ∀T ∈ Th, n× A = 0 on ∂Ω,

and A|Ω\ΩA
∈ H(curl;Ω \ΩA )

}
.

Here Rk(T ) is the space of k-th order edge elements of the first kind on mesh
element T ∈ Th, cf. [2, 7] and H(curl;Ω) := {A ∈ L2(Ω)3| curlA ∈ L2(Ω)3}.
We define the enriched approximation space Vh on mesh Th as

Vh := Rk,A (Th)⊕Ak(Th).
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Note that this space is tangentially continuous across a face F ∈ F i
h if and only if

both the adjacent elements do not belong to T A
h . I.e. the DG-terms on these faces

drop out of the NWIP formulation (12.3) and the method resembles “locally” the
standard finite element method. Moreover we note that Vh is a superset of the space
of conforming edge elements, Rk,h := {A ∈ H(curl;Ω)| A|T ∈ Rk(T ) ∀T ∈ Th}.
In light of the best approximation result (12.4) we can thus expect that the space Vh

has equal or better approximation properties than the space Rk,h.

12.4 Numerical Example

We pose problem (12.2) on a cylindrical shaped domain Ω with two conductorsΩσ :
The “plate” Ωplate (green) is the cuboid (−0.7,−0.5)× (−1, 1)2 whereas the “bar”
(gray) has dimensions (0.5, 1.5)× (−2.5, 2.5)× (−0.5, 0.5). We mesh Ω with the
coarse, hybrid meshTh shown in Fig. 12.1 that has only one layer of elements across
the plate. This reflects the constraints encountered with more complex geometries
where it is prohibitively expensive to resolve the boundary layers with a fine mesh.

The system is excited by a homogeneous generator current, ji = (0, 2000, 0) in
Ωbar, which induces an electric current in the plate. We will vary σplate to simulate
boundary layers of arbitrary thickness in the plate and keep all other (material)
parameters constant: μ ≡ 4π · 10−7 globally, σbar = 104, ω = 50, and α = 10−6.

Figure 12.2 shows a first, qualitative comparison of the current distribution in a
cross section of the plate. Comparing the reference solution1 with the solution of

Fig. 12.1 Coarse, hybrid mesh of domain Ω with airbox (left) and without airbox (right), h = 0.2

1The reference solution was obtained on an refined mesh, which is adapted to the local features of
the solution, using second order edge elements.
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Fig. 12.2 Current distribution |j| = |ωσAα | in plate plotted over cross-section y = 0 for σplate =
5 · 107, δplate/h = 0.063

Fig. 12.3 Local surface error vs. skin-depth δ for the mesh shown in Fig. 12.1

the standard, first order FEM, we see that the top and bottom boundary layers are
not resolved at all and the behavior in the edges is completely wrong. The proposed
(modulated) Trefftz method with k = 1 can resolve the bottom and top boundary
layer much better but the error is still considerable in the edges.

Figure 12.3 shows the relative local surface error
‖n×(A−Aα

h)‖L2(∂Ωplate)
3

‖n×A‖
L2(∂Ωplate)

3
for

different values of σplate (and hence δplate). We observe that the error of the enriched
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method is always equal or better than simple first-order edge functions R1,h. In
particular for δ � h the modulated Trefftz functions clearly outperform the classical
edge elements, cf. Fig. 12.2. For reference we also show the error for a standard,
first-order FEM formulation where the plate has been replaced by IBC [8]. We see
that the IBC approximation becomes valid as δplate → 0 and does in fact reach the
precision of the enriched method for small δ. The former is expected since for flat
surfaces the IBC solution tends to A with rate O(δ2) [6].

12.5 Concluding Remarks

The enriched approximation space Vh can resolve the boundary layers of problem
(12.1) locally much better than pure, standard first order Nédélec/edge elements. In
contrast to IBC, the presented method also resolves the electromagnetic fields inside
of the conductor. In particular, it is applicable to cases where the excitation current
ji generates boundary layers.2 We remark that the construction of the functions
AF,τ is based on the same principle that is used to derive the IBC [8]. In particular,
both methods perform very well along flat surfaces but lead to considerable error in
edges/corners of the geometry where the assumptions of Sect. 12.3 become invalid
and the solution shows singular behavior. A more extensive numerical study unveils
that the smaller δ, the more the approximation error Aα −Aα

h is concentrated in the
edges/corners of the plate. I.e. the approximation error is dominated by the error
at corners/edges and choosing a higher order of approximation, k > 1 in Vh, will
generally not improve the approximation. Instead one has to resolve the singularities
either by refining the mesh towards edges/corners or by including the singularities
in the approximation space Vh. The latter is particularly attractive since this is just
another “enrichment” of the approximation space Vh.

However, finding explicit expressions for the singularities of the 3D eddy current
problem at corner points is extremely difficult. For the 2D eddy current equation
explicit expressions for these singularities exist [4] and can be used to construct
a highly efficient method that shows exponential convergence in the polynomial
degree k independent of δ, that is the method is robust in δ in the sense of [9,
Definition 3.54]. We will present the details of our investigation of this method in a
future work.

Acknowledgements This work has be co-funded by the Swiss Commission for Technology and
Innovation (CTI).

2This is confirmed by numerical experiments not shown in this work.
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Chapter 13
Survey on Semi-explicit Time
Integration of Eddy Current Problems

Jennifer Dutiné, Markus Clemens, and Sebastian Schöps

Abstract The spatial discretization of the magnetic vector potential formulation of
magnetoquasistatic field problems results in an infinitely stiff differential-algebraic
equation system. It is transformed into a finitely stiff ordinary differential equation
system by applying a generalized Schur complement. Applying the explicit Euler
time integration scheme to this system results in a small maximum stable time step
size. Fast computations are required in every time step to yield an acceptable overall
simulation time. Several acceleration methods are presented.

13.1 Introduction

Spatially discretizing the magnetic vector potential formulation of eddy current
problems, e.g by the Finite Element Method (FEM), yields a differential-algebraic
equation system (DAE) [1]. Commonly, only unconditionally stable implicit time
integration methods as e.g. the implicit Euler method or the singly diagonal implicit
Runge-Kutta schemes can be used for time integration of the infinitely stiff DAE
system [2]. In every time step at least one large nonlinear algebraic equation system
needs to be solved due to the nonlinear BH-characteristic in ferromagnetic materials.
The Newton-Raphson method is frequently used for linearization and requires at
least one iteration per time step. Here, the Jacobian and the resulting stiffness matrix
are updated in each iteration and the resulting linear algebraic equation system needs
to be solved efficiently.

Applying explicit time integration schemes avoids the necessity of linearization,
because nonlinearities only appear in right-hand side expressions. A first approach
to use an explicit time integration method for eddy current problems has been
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proposed in [3], where in the conducting regions of the problems the Finite
Difference Time Domain (FDTD) method is used. In the nonconducting regions,
i.e., in the air, the corresponding parts of the solution are computed using the
boundary element method (BEM) [3]. In a second approach presented in [4], the
Discontinuous Galerkin FEM and an explicit time integration method are used for
computations in the conducting regions. Continuous FEM ansatz functions and an
implicit time integration scheme are applied to the nonconducting regions of the
problem [4]. Both approaches in [3] and [4] are based on a separate treatment of
conducting and nonconducting regions. A different approach presented in [1] and
[5] proposes a Schur complement reformulation of the eddy current problem. In [6]
the use of a generalized Schur complement is proposed. Here, a pseudo-inverse
of the singular curl-curl matrix in nonconducting regions is evaluated using the
preconditioned conjugate gradient (PCG) method. This evaluation forms a multiple-
right hand side problem and suitable start vectors for the PCG method are computed
using the cascaded Subspace Projection Extrapolation (CSPE) method, which is
a modification of the Subspace Projection Extrapolation (SPE) method [6, 7].
Alternatively, the Proper Orthogonal Decomposition (POD) method can be used
for computing improved start vectors [8]. Computations can be accelerated further
by using a selective update strategy for updating the reluctivity matrix in conducting
regions [9]. This paper presents a survey on the methods presented in [6, 8, 9].

13.2 Mathematical Formulation

The partial differential equation

κ
∂A(t)

∂t
+∇ × (ν (A(t))∇ × A(t)) = Js(t), (13.1)

describes magnetoquasistatic field problems using the time-dependent magnetic
vector potential A(t), where κ is the electrical conductivity, ν is the eventually
ferromagnetic, i.e., nonlinearly field dependent, reluctivity and Js(t) is the transient
source current density.

Discretizing (13.1) in space, e.g. by FEM using edge elements [10, 11], yields a
differential-algebraic equation system (DAE) described by

M
d

dt
a+K(a)a = js, (13.2)

where M is the mass-matrix, a is the time dependent vector of the magnetic vector
potential, K is the stiffness-matrix and js is the vector of the transient source
currents. The degrees of freedom (DoFs) are separated into two vectors ac and an for



13 Survey on Semi-explicit Time Integration of Eddy Current Problems 139

conducting and nonconducting material, respectively and (13.2) is re-ordered into

(
Mcc 0

0 0

)
d

dt

(
ac

an

)
+
(
Kcc (ac) Kcn

KT
cn Knn

)(
ac

an

)
=
(

0
js,n

)
, (13.3)

whereMcc is the conductivity matrix in conducting regions,Kcc (ac) is the nonlinear
part of the reluctivity related stiffness matrix in conducting regions, Knn is the part
of the curl-curl operator in air, which is singular, and js,n is the source current vector
corresponding to excitations in nonconducting regions. Mcc is positive definite if
using a conventional Galerkin scheme with (possibly high-order) edge elements as
test and ansatz functions [10, 11].

The generalized Schur complement expression

KS := KcnK+nnK
�
cn, (13.4)

where K+nn is the matrix representation of a pseudo-inverse of Knn, is applied to
(13.3) and transforms the DAE into an ordinary differential equation (ODE) system

Mcc
d

dt
ac + (Kcc (ac)−KS) ac = −KcnK+nnjs,n, (13.5)

an = K+nnjs,n −K+nnK
�
cnac, (13.6)

for the vector ac, i.e., the degrees of freedom only situated in conductive material
[1, 5, 6]. The preconditioned conjugate gradient (PCG) method is used for eval-
uating a pseudo-inverse of Knn [6]. Alternatively, the singular matrix Knn can be
regularized using a grad-div regularization by which Knn is transformed into the
discrete Laplacian operator in free space [5]. Due to finite stiffness, (13.5) can be
integrated in time using explicit time integration schemes as e.g. the explicit Euler
method. Here, in the m-th time step the expressions

amc : = am−1
c +ΔtM−1

cc

[
−KcnK+nnj

m
s,n −

(
Kcc(am−1

c )−KS

)
am−1

c

]
, (13.7)

amn : = K+nnj
m
s,n −K+nnK

�
cna

m
c , (13.8)

are evaluated for the degrees of freedom in the conductor domain and in the
nonconductive domains consecutively, where Δt is the time step size.

Evaluating a pseudo-inverse of Knn and the inverse of Mcc in (13.7) and (13.8)
repeatedly using the PCG method forms multiple right-hand side (mrhs) problems
since the matrices involved remain constant. The subspace extrapolation (SPE)
method can be used for computing improved start vectors for the PCG method
[6, 7]. Solution vectors from n previous time steps are orthonormalized using the
modified Gram-Schmidt method and form the linearly independent column vectors
of the operator V. The projected system

V�KnnVz = V�r, (13.9)
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where r represents the new right-hand side for the full system, is solved for z ∈ R
n

using a direct method. The linear combination of the column vectors in V weighted
with the coefficients in z yields the improved start vector x0,CSPE:

x0,CSPE := Vz. (13.10)

Only the last column vector in the operator V changes in every time step. Therefore,
when computing KnnV in (13.9), all other matrix-column-vector products evaluated
can be reused from previous time steps. This modification of the SPE start vector
generation method is referred to as “cascaded SPE” (CSPE).

Alternatively, the proper orthogonal decomposition (POD) method can be used
for computing improved start vectors for the PCG method [8, 12]. A snapshot matrix
X is assembled using solutions from previous time steps as column vectors. This
matrix is decomposed by the singular value decomposition (SVD) [13] into:

X = UΣV�, (13.11)

where Σ is a diagonal matrix of the singular values and U and V are orthogonal
matrices. The first k column vectors of U corresponding to the k largest singular
values σ1, . . . , σk, for which holds

σi ≥ σj, for i < j, (13.12)

σ1

σk
≥ tolPOD, (13.13)

become the column vectors of the reduced matrix Ur with a threshold value tolPOD.
A threshold value commonly used in practical computations is tolPOD := 104. The
improved start vector x0,POD for the PCG method is computed by

x0,POD := Ur

[
U�r KnnUr

]−1
U�r K�cnac. (13.14)

The explicit Euler method is only stable for time step sizes Δt smaller than a
Courant-Friedrich-Levy-type time step size ΔtCFL given by [1]:

ΔtCFL ≤ 2

λmax

(
M−1

cc (Kcc (ac)−KS)

) , (13.15)

where the maximum eigenvalue λmax is proportional to

λmax

(
M−1

cc (Kcc (ac)−KS)

)
∝ 1

h2κμ
, (13.16)

assuming non-singularity of Mcc. Here, h is the smallest edge length in the mesh, κ
is the electrical conductivity, and μ is the permeability. Numerical tests have shown
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that 1/(h2κμ) unfortunately does not give a sharp estimate of λmax, such that the
largest eigenvalue has to be computed numerically.

Fine spatial discretization can result in small stable time step sizes, due to
(13.15), that can be in the micro- to nano second range. Considering the dynamics
of the usual excitation currents in magnetoquasistatic problems, this corresponds to
a strong over-sampling. It is assumed that the excitation current does not change
significantly between succeeding time steps. Therefore it is expected that the vector
ac in (13.7), (13.8) also only changes marginally between succeeding time steps.
The matrix Kcc (ac) is thus only updated if the change between the vector amc at the
time step m and the vector alc from the time step l < m at which the matrix Kcc

(
alc
)

has last been updated is larger than a chosen tolerance tol, as described by [9]:

‖amc − alc‖
‖alc‖

> tol, (13.17)

where ‖·‖ denotes the l2-norm. However, depending on the gauging used, a different
norm might be more appropriate, e.g. using the magnetic energy norm.

13.3 Numerical Validation

The ferromagnetic TEAM 10 benchmark problem is spatially discretized using first
order edge element FEM ansatz functions [14, 15]. The model geometry is shown
in Fig. 13.1. The excitation current is described by a (1− exp (−t/τ )) function.
A time interval of 120 ms duration is calculated. The accuracy of the employed
simulation code is proven using an implicit time integration method and a fine mesh
discretization of about 700,000 DoFs. The resulting average magnetic flux density
is compared with the measurement results published in [14] in Fig. 13.2. As this
simulation takes a simulation time of 5.38 days on a workstation with an Intel Xeon

Fig. 13.1 TEAM 10 model
geometry and position S1.
Steel plates are colored in
blue and red, the coil in
green. There is a 0.5 mm wide
air gap between the blue and
red steel plates
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Fig. 13.2 Comparison of simulation results using a mesh of 700,000 DoFs and the measured
results published in [14] at position S1

Fig. 13.3 Averagely required number of PCG iterations for evaluating the pseudo-inverse of Knn
using either CSPE, POD, or the solution from the previous time step as start vector for the PCG
method

E5 processor, a coarser mesh is applied for the simulations using the explicit Euler
method for time integration. The applied coarse spatial discretization yields 29,532
DoFs and results in a maximum stable time step size ΔtCFL = 1.2 μs, such that
100,000 explicit Euler time steps are required for this problem.

Computing improved start vectors for the PCG method using either CSPE or
POD reduces the average number of required PCG iterations compared to using the
solution from the previous time step as start vector. An algebraic multigrid method
is used as preconditioner. The results for the evaluation of the pseudo-inverse of Knn
using a PCG tolerance of 10−6 are shown in Fig. 13.3. Using the selective update
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strategy for updating the matrix Kcc (ac) does not significantly decrease accuracy, as
is shown in Fig. 13.4. The number of required updates and the simulation time are
significantly reduced, as is depicted in Figs. 13.5 and 13.6. If Kcc (ac) is updated
in every time step 100,000 updates are performed during the entire simulation.
A workstation with an Intel Xeon E5 processor and an NVIDIA TESLA K80
GPU are used for these simulations. The matrix Mcc is inverted directly using
GPU acceleration. This is only possible, as the matrix Mcc is only of dimension
5955× 5955 in this test problem. For more refined discretizations the PCG method
should be used for inverting the matrix Mcc.

Fig. 13.4 Average magnetic flux density at position S1

Fig. 13.5 Number of updates of Kcc (ac) for different tolerances tol in (13.17)
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Fig. 13.6 Comparison of simulation times for a simulation using implicit Euler method, the
explicit Euler method with updates of Kcc (ac) in every time step and the explicit Euler method
using the selective update strategy and different tolerances tol

13.4 Conclusion

The application of a generalized Schur complement to the spatially discretized mag-
netic vector potential formulation of magnetoquasistatic field problems transformed
a DAE of infinite stiffness into a finitely stiff system of ODEs. This ODE system
is integrated with the explicit Euler method. For the evaluation of a pseudo-inverse
the PCG method was adopted. Improved start vectors were computed with the CSPE
and the POD method, reducing the number of required PCG iterations in simulations
of the ferromagnetic TEAM 10 benchmark problem. A selective update strategy for
the reluctivity matrix taking into account the specific problem dynamics reduced
the number of required updates and the simulation time. So far, the small stable
time step size of the explicit Euler method results in high computational effort
which can be overcome using massive GPU-parallelization to reduce the required
computational time per time step significantly.
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Chapter 14
A Local Mesh Modification Strategy
for Interface Problems
with Application to Shape
and Topology Optimization

Peter Gangl and Ulrich Langer

Abstract We present and analyze a new finite element method for solving interface
problems on a triangular grid. The method locally modifies a given triangulation
such that the interfaces are accurately resolved and a maximum angle condition
holds. Therefore, optimal order of convergence can be shown. Moreover, it can be
shown that an appropriate choice of the basis functions yields an optimal condition
number of the stiffness matrix. The method is applied to an optimal design problem
for an electric motor where the interface between different materials evolves in the
course of the optimization procedure.

14.1 Motivation

Our research is motivated by the design optimization of an electric motor by means
of topology and shape optimization. We are interested in finding the optimal
distribution of two materials (usually ferromagnetic material and air) within a fixed
design subdomain of an electric motor, see, e.g. [1]. We employ a two-dimensional
model for the electric motor, which is widely used for this kind of applications.
In the optimization procedure, one usually starts with an initial guess and then
uses shape sensitivities or topological sensitivities to gradually improve the initial
design. In the course of this optimization procedure, the interface between the
two subdomains evolves. For computing the sensitivities that steer the optimization
process, it is necessary to solve the state equation and the adjoint equation in each
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optimization iteration, which is usually done by the finite element method. Besides
remeshing in every iteration, which is very costly, and advecting the whole mesh in
every step of the optimization procedure, which may cause self-intersection of the
mesh, there exist several other methods in the literature which can deal with these
kinds of interface problems. We mention the XFEM, which uses local enrichment of
the finite element basis, and the unfitted Nitsche method. In [2], shape optimization
is performed by advecting the finite element mesh in combination with adaptive
mesh refinement, which optimizes the required computational effort.

In [3], the authors introduce a locally modified parametric finite element method
based on a quadrilateral mesh with a patch structure. We present an adaptation of
this method to the case of finite elements on triangular meshes. One advantage
of this kind of method over the ones mentioned before is that this method has a
fixed number of unknowns independently of the position of the interface relative
to the mesh. The given mesh is modified only locally near the material interface.
The method is relatively easy to implement and we can show optimal order of
convergence.

14.2 A Local Mesh Modification Strategy for Interface
Problems

We introduce the method for the potential equation in a bounded, polygonal
computational domain Ω ⊂ R

2 consisting of two non-overlapping subdomains,
Ω = Ω1∪Ω2, Ω1∩Ω2 = ∅, which represent two materials with different material
coefficients κ1, κ2 > 0. On the material interface Γ := Ω1 ∩ Ω2, we have to
require that the solution as well as the flux are continuous. For simplicity, we assume
Dirichlet boundary conditions on ∂Ω . The problem reads as follows:

−div (κi∇u) = f in Ωi, i = 1, 2,

[u] = 0 on Γ,
[
κ
∂u

∂n

]
= 0 on Γ,

u = gD on ∂Ω,

(14.1)

where we assume that the boundaries of the two subdomains as well as the right
hand side f and the Dirichlet data gD are sufficiently regular such that u ∈ H 1

0 (Ω)∩
H 2(Ω1 ∪Ω2), that means that the restrictions of u ∈ H 1

0 (Ω) to Ω1 and Ω2 belong
to H 2(Ω1) and H 2(Ω2), respectively, see, e.g., [4]. It is well-known that, when
using standard finite element methods, the interface must be resolved by the mesh
in order to obtain optimal convergence rates of the approximate solution uh to the
true solution u in the L2 and H 1 norms as the mesh parameter h tends to zero, see
also [3]. The discretization error estimate is usually shown using an interpolation
error estimate. A condition that is sufficient and necessary for such an interpolation
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error estimate is that all interior angles of triangles of the mesh are bounded away
from 180◦ (maximum angle condition), see [5].

14.2.1 Preliminaries

Let Th be a shape-regular and quasi-uniform subdivision of Ω into triangular
elements, and let us denote the space of globally continuous, piecewise linear
functions on Th by Vh. We assume that Th has been obtained by one uniform
refinement of a coarser mesh T2h. By this assumption, Th has a patch-hierarchy,
i.e., always four elements T1, T2, T3, T4 ∈ Th can be combined to one larger triangle
T ∈ T2h. We will refer to this larger element as the macro element or patch. We
assume further that the mesh of macro elements T2h is such that, for each macro
element T , the interface Γ either does not intersect the interior of T , or such that Γ
intersects T in exactly two distinct edges or that it intersects T in one vertex and in
the opposite edge. For a smooth enough interface Γ , this assumption can always be
enforced by choosing a fine enough macro mesh T2h. We consider a macro element
T ∈ T2h to be cut by the interface if the intersection of the interior of the macro
element with the interface is not the empty set.

14.2.2 Description of the Method

The method presented in this paper is a local mesh adaptation strategy, meaning that
only macro elements close to the interface Γ will be modified. Given the hierarchic
structure of the mesh, on every macro element we have four elements of the mesh
Th and six vertices, see Fig. 14.1a, b. The idea of the method is the following: For
each macro element that is cut by the interface, move the points P4, P5 and P6
along the corresponding edges in such a way that, on the one hand, the interface is
resolved accurately, and, on the other hand, all interior angles in the four triangles
are bounded away from 180◦. For a macro element T that is cut by the interface, we
distinguish four different configurations as follows:

In the case where the macro element is cut by the interface in two distinct edges,
we denote the vertex of the macro element where these two edges meet by P1, and
the other two vertices in counter-clockwise order by P2 and P3. The parameters s,
t , r ∈ [0, 1] represent the positions of the points P4, P5, P6 along the corresponding
edges by

P4(s) = P1 + s
P2 − P1

|P2 − P1| , P5(t) = P2 + t
P3 − P2

|P3 − P2| , P6(r) = P1 + r
P3 − P1

|P3 − P1| .

The parameters r and s will always be chosen in such a way that the intersection
points of the interface and the edges P1P3 and P1P2 are the points P6 and P4,
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(b) (c)(a)

(e) (f)(d)

Fig. 14.1 (a) Patch for configurations A–C. (b) Patch for configuration D. (c) Configuration A.
(d) Configuration B. (e) Configuration C. (f) Configuration D

respectively. Thus, we identify the position of the interface relative to the macro
element T by the two parameters r, s. We choose the parameter t such that a
maximum angle condition is satisfied as follows:

Configuration A: 0 < r, s ≤ 1/2. Set t = 1/2.
Configuration B: 1/2 < r, s < 1. Set t = 1− s.
Configuration C: 0 < s ≤ 1/2 < r < 1 or 0 < r ≤ 1/2 < s < 1. Set t = 1/2.

The case where the macro element is cut in one vertex and the opposite edge has
to be considered separately. We denote the vertex of the macro element where it is
cut by the interface by P2 and the other vertices, in counter-clockwise ordering, by
P3 and P1, see Fig. 14.1b. The location of the interface is given by the position of
the point P6 on the edge between P3 and P1. In this case, we also need to rearrange
the triangles T2 and T4.

Configuration D:
Configuration D1: 0 < r ≤ 1/2. Set s = r and t = 1/2.
Configuration D2: 1/2 < r < 1. Set s = 1/2 and t = r .

With this setting, it is possible to show the required maximum angle condition
on the reference patch T̂ defined by the outer macro vertices P̂1 = (0, 0)T , P̂2 =
(1, 0)T , P̂3 = (1/2,

√
3/2)T .

Lemma 14.1 All angles in triangles of the reference patch T̂ are bounded by 150◦
independent of the parameters r, s ∈ [0, 1].
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Proof We have to ensure for each of the four subtriangles T̂1, T̂2, T̂3, T̂4 that all
of their three interior angles are not larger than 150◦. In Configuration A–C, the
sub-triangles T̂1, T̂2 and T̂3 all have one angle of 60◦. Obviously, the remaining two
angles are bounded from above by 120◦. The same holds true for the sub-triangles
T̂1 and T̂3 in Configuration D.

For three points A, B, C in R
2, define

�(A,B,C) := cos−1
(
(A− B,C − B)

|A− B| |C − B|
)

the interior angle of the triangle with vertices A, B, C at point B.
Configuration A: For r, s ∈ (0, 1/2], we get for the angle in point P4 that

�(P6, P4, P5) < �(P1, P4, P5) = 180◦ − �(P5, P4, P2) ≤ 180◦ − �(P5, P1, P2).

Since the reference patch T̂ is equilateral, it holds �(P5, P1, P2) = α/2. Analo-
gously, we get for the angle in point P6 that �(P5, P6, P4) < 180◦ − α/2. It is
easy to see that the angle in point P5 increases with r, s and thus is maximized
for r = s = 1/2, which yields that �(P4, P5, P6) ≤ �(P4(1/2), P5, P6(1/2)) =
180− β − γ = α. Here we used that, for r = s = t = 1/2, the four sub-triangles
are congruent.

Configuration B: Note that, by the special choice of s, t , in this case we have that
the line going through P4 and P5 is parallel to the edge connecting P1 and P3 for all
values of s ∈ (1/2, 1). Thus, we have

�(P4, P5, P6) ≤ �(P4, P5, P3) = 180◦ − γ and

�(P4, P5, P6) = 180◦ − γ − �(P6, P5, P3)

≥ 180◦ − γ − �(P6(1/2), P5(1/2), P3) = 180◦ − γ − β = α.

The angles in P4 and in P6 must also be bounded from above by 180◦ − α = 120◦.
Configuration C: We consider the case where r ∈ (1/2, 1) and s ∈ (0, 1/2]. The

reverse case is treated analogously. For the angle in the fixed point P5 = P5(1/2) =
(P2 + P3)/2, we get the estimates

�(P4, P5, P6) ≤ �(P4, P5, P3) ≤ �((P4(1/2), P5, P3) = 180◦ − γ,

�(P4, P5, P6) ≥ �(P4, P5, P6(1/2)) ≥ �(P1, P5, P6(1/2)) = �(P5, P1, P2) = α/2.

Thus, the angles �(P6, P4, P5) and �(P5, P6, P4) are also bounded from above by
180◦ − α/2.

Configuration D: We consider only Configuration D1, the corresponding result
for Configuration D2 follows analogously. Due to the choice of the parameter s,
the line going through P4 and P6 is parallel to the edge connecting P2 and P3 for
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all values of r . We need to consider triangles T2 and T4. In T2, �(P6, P4, P2) =
180◦ − β and, therefore, the other two angles are bounded by β. In T4, we have for
r ∈ (0, 1/2] that

�(P6, P2, P5) ≤ β,

�(P2, P5, P6) ≤ �(P2, P5, (P3 + P1)/2) = 180− β,

�(P5, P6, P2) ≤ �(P3, P6, P4) = 180− γ.

Finally, noting that α = β = γ = 60◦ yields the statement of the lemma.

Remark 14.1 Due to the assumption that the macro mesh is shape-regular, we
obtain a maximum angle condition (with a different bound) for all triangles of the
mesh Th.

Now we are in the position to show an a priori error estimate for the finite element
solution uh. Since we have the maximum angle condition of Lemma 14.1, for
smooth functions v ∈ H 2(T ), we get the interpolation error estimates

‖∇k(v − Ihv)‖L2(T ) ≤ c h2−k
T ,max‖∇2v‖L2(T ), k = 0, 1, (14.2)

where Ih : H 2(T ) → Vh|T denotes the Lagrangian interpolation operator, c is a
positive generic constant, and hT,max is the maximum edge length of the triangle
T ∈ Th, see, e.g., [6]. In the case where the interface Γ is not polygonal but
smooth with C2 parametrization, and an element of the mesh Th is intersected by
Γ , the solution u is not smooth across the interface and, hence, estimate (14.2)
cannot be applied. However, the same estimate with k = 1 was shown in [7]. These
interpolation error estimates allow to show the following a priori error estimate [7].

Theorem 14.1 Let Ω ⊂ R
2 be a domain with convex polygonal boundary, split into

Ω = Ω1 ∪ Γ ∪ Ω2, where Γ is a smooth interface with C2-parametrization. We
assume that Γ divides Ω in such a way that the solution u belongs to H 1

0 (Ω) ∩
H 2(Ω1 ∪ Ω2) and satisfies the stability estimate ‖u‖H 2(Ω1∪Ω2)

≤ cs‖f ‖L2(Ω).
Then, for the corresponding modified finite element solution uh ∈ Vh, we have the
estimates

‖∇(u− uh)‖L2(Ω) ≤ C h ‖f ‖L2(Ω) and ‖u− uh‖L2(Ω) ≤ C h2 ‖f ‖L2(Ω).

14.3 Condition Number

The procedure of Sect. 14.2 guarantees that no angle of the modified mesh becomes
too large. However, it may happen that some angles in the triangulation get
arbitrarily close to zero, which usually yields a bad condition of the finite element
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system matrix. This problem was also addressed in [3] for the case of quadrilateral
elements, and we can adapt the procedure to the triangular case.

The idea consists in a hierarchical splitting of the finite element space Vh = V2h+
Vb into the standard piecewise linear finite element space on the macro mesh T2h
and the space of “bubble” functions in Vb which vanish on the nodes of the macro
elements. Let {φ1

h, . . . , φ
Nh

h } be the nodal basis of the space Vh. Any function vh ∈
Vh can be decomposed into the sum of a function v2h ∈ V2h = span{φ1

2h, . . . , φ
N2h
2h }

and a function vb ∈ Vb = span{φ1
b, . . . , φ

Nb

b },

vh =
Nh∑
i=1

vihφ
i
h =

N2h∑
i=1

vi2hφ
i
2h +

Nb∑
i=1

vibφ
i
b = v2h + vb ∈ V2h + Vb.

In this setting, it remains to show that the basis functions φi
b of the space Vb can be

scaled in such a way that the following two conditions hold:

• There exists a constant C > 0 independent of h, r , s such that

C−1 ≤ ‖∇φi
h‖ ≤ C, i = 1, . . . , Nh, (14.3)

• There exists a constant C > 0 independent of h, r , s, such that for all vb ∈ Vb

|vib| ≤ C‖∇vb‖Ni
, i = 1, . . . , Nb, with Ni = {K ∈ Th : xi ∈ K}.

(14.4)

If these two assumptions are satisfied, the usual bound on the condition number of
the system matrix can be shown [3].

Theorem 14.2 Let A be the finite element system matrix of problem (14.1) using
the hierarchical basis {φ1

2h, . . . , φ
N2h
2h , φ1

b, . . . , φ
Nb

b } after the mesh modification
described in Sect. 14.2.2. Assume that (14.3) and (14.4) hold. Then there exists
a constant C > 0, independent of the interface location r and s, such that
cond2(A) ≤ C h−2.

14.4 Numerical Results

We tested the method described in Sect. 14.2 for problem (14.1) where Ω =
(−1, 1)2, the subdomain Ω1 is a disk of radius 0.4 centered at the point (0.1, 0.2)T

with material coefficient κ1 = 1, and Ω2 = Ω \ Ω1 its complement with
coefficient κ2 = 10. The right hand side as well as the Dirichlet data were chosen
in such a way that the exact solution is known explicitly. The optimal order of
convergence stated in Theorem 14.1 can be observed in Table 14.1. Moreover, using
the hierarchical basis, the behavior stated in Theorem 14.2 can be observed for the
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Table 14.1 Convergence history for the interface problem (14.1) using mesh adaptation strategy

nVerts h ‖u− uh‖L2 Rate L2 ‖∇(u− uh)‖L2 Rate H1 angMax cond2(D
−1A)

1089 h0 0.214909 – 9.48898 – 138.116 269.3

4225 h0/2 0.0512394 2.0684 4.61321 1.04048 143.084 1630.4

16,641 h0/4 0.0126861 2.01401 2.29116 1.00969 152.223 2531.0

66,049 h0/8 0.00314155 2.0137 1.13973 1.00739 149.110 11,140.9

263,169 h0/16 0.000784464 2.0017 0.568504 1.00345 155.643 41,497.0

The bold values numerically confirm the statement of Theorem 14.1, which is the main message
of the paper

(b)(a)

(d)(c)

Fig. 14.2 (a) Final design of shape optimization without interface method, objective value
J (u) ≈ 0.0379. (b) Zoom of (a). (c) Final design of shape optimization with interface method,
objective value J (u) ≈ 0.0373. (d) Zoom of (c)

Jacobi preconditioned system matrices D−1A with D = diag(A). Nevertheless,
conditions (14.3) and (14.4) remain to be shown.

We also included the interface method in the shape optimization of an electric
motor as described in [1]. Here, the goal is to identify the shape of the ferromagnetic
subdomain (brown area in Fig. 14.2) of an electric motor such that a design-
dependent objective function J , which is linked to the smoothness of the rotation
of the motor, is minimized. Figure 14.2 shows the final designs obtained by the shape
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optimization algorithm starting out from an initial design, without (Fig. 14.2a, b) and
with the proposed interface method (Fig. 14.2c, d). It can be seen that smoother and
slightly better designs can be achieved by locally modifying the mesh.
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Chapter 15
Numerical Methods for
Derivative-Based Global Sensitivity
Analysis in High Dimensions

Qingzhe Liu and Roland Pulch

Abstract Within analysis of dynamical systems embracing uncertain impacts the
output can be generally viewed as a function defined in a random domain with
dependence on time or frequency. Without loss of generality, a function defined
on the normalized random domain, i.e., a unit hypercube, is considered where the
sensitivity analysis plays a key role in many issues, e.g. uncertainty reduction, model
simplification, exploration of significant random parameters, etc. Variance-based
global sensitivity indices provide adequate estimates for the influence of random
variables and become one of the most powerful instruments in sensitivity analysis.
Alternatively, if the function is differentiable, the derivative-based sensitivity mea-
sures have received much attention due to lower computational costs. We introduce
numerical strategies for computing derivative-based sensitivity indices in the case of
high-dimensional hypercubes and present numerical simulations of a test example
which models the linear electric circuit of a band-stop filter.

15.1 Introduction

Sensitivity analysis of dynamical systems focuses on the study how random sources
in its input impact on the output, and consequently contributes to many issues,
e.g. uncertainty reduction, model order reduction, exploration of significant random
parameters, calibrating model parameters, etc. in many applications of industry and
finance. Especially, with the help of sensitivity analysis one can straightforward
identify model parameters that cause significant uncertainty and the ones leading to
tiny impacts in the response. The less important parameters can be then replaced by
constants to reduce the dimensionality of the problem without a significant loss of
accuracy.
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Regarding sensitivity measures two concepts are most worth being considered:
variance- and derivative-based global sensitivity indices, see e.g. [8, 10]. The
variance-based global sensitivity indices have been subject to intensive research
by the authors in [4, 6]. Besides, there has been a growing interest to utilize
the derivative-based sensitivity measures because their relatively simple model
structure causes lower computational expenses in comparison to the variance-based
indices. Note that although the computation time can be counted as an advantage,
investigations on differentiability of the functions in consideration are imperative
prior to numerical simulations. Otherwise the simulation results should be verified
by certain appropriate strategic instruments, e.g., examination of a priori estimates,
comparisons with other concepts, investigations on conformance of the time and the
frequency domain, etc.

With regard to numerical issues we propose two types of sampling techniques:
quasi Monte Carlo (QMC) methods [7] and cubature methods [9, 12]. There
is a clear distinction between these two approaches. Although QMC methods are
straightforward to implement, they exhibit a relatively slow convergence rate and
thus loose efficiency. In contrast, the number of samples based on cubature methods
is predetermined depending on the dimensionality of the random parameter domain.
Yet the cubature methods may be more efficient in comparison to QMC techniques.

The paper starts with a review of the stochastic model and derivative-based
sensitivity measures. The numerical methods are specified in Sect. 15.3 where QMC
methods and a cubature formula from Stroud [9] are presented. Section 15.4
illustrates the numerical performances on a linear band-stop filter as our test
example while different techniques are compared.

15.2 The Stochastic Model

This section introduces linear dynamical systems, modeling of uncertainties and
derivative-based sensitivity measures.

15.2.1 Linear Dynamical Systems

We consider linear single-input-single-output (SISO) dynamical systems of the form

E(x)ẏ(t, x) = A(x)y(t, x)+ B(x)u(t)

z(t, x) = C(x)y(t, x)
(15.1)

including physical parameters x = (x1, . . . , xn)
� being uniformly independently

distributed in the domain X := ∏n
i=1[ai, bi]. The output z is defined by the
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vector C, which is often independent of physical parameters. The dynamical system
(15.1) consists of ordinary differential equations (ODEs) for a regular matrix E and
of differential algebraic equations (DAEs) for a singular matrix E, respectively.
Furthermore, we assume that the system (15.1) is asymptotically stable for all
x ∈ X.

The input-output behavior of the dynamical system (15.1) in the frequency
domain is described by a transfer function, see [1, Ch. 4]. More precisely, let U,Z

be the Laplace transforms of the input u and the output z, respectively. It follow that

Z(s, x) = H(s, x)U(s)

for s ∈ S(x) ⊆ C and each x ∈ X with the transfer function

H(s, x) = C(x)(sE(x)− A(x))−1B(x) ∈ C. (15.2)

Due to the stability property of (15.1) the transfer function (15.2) is defined on the
imaginary axis.

15.2.2 Derivative-Based Measures

The output of (15.1) can be standardized to a function f (x) defined in the unit
hypercube H n := [0, 1]n in the time domain as well as the frequency domain.
Specifically, the entities underlying the function f (x) are the temporal evolution
of z in (15.1) and the real-valued system responses in the frequency domain, i.e.,
magnitude and phase.

Assuming that f is differentiable, functionals depending on ∂f
∂xi

are proposed as
estimators for the sensitivity with respect to xi . The modified Morris measure [5]
based on absolute values reads as

μi =
∫

H n

∣∣∣∣
∂f

∂xi

∣∣∣∣ dx for i = 1, . . . , n. (15.3)

The integral of the squared derivatives yields

νi =
∫

H n

(
∂f

∂xi

)2

dx for i = 1, . . . , n. (15.4)

In contrast to the variance-based sensitivity measures, μi, νi may become arbitrarily
large. However, it is evident that the Cauchy-Schwarz inequality implies μi ≤√
νi . A constraint between derivative-based and variance-based sensitivities holds

true, i.e.,

ST
i ≤

νi

π2D
, for i = 1, . . . , n (15.5)
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where D denotes the total variance of f (x) and ST
i is the total effect sensitivity

index of the ith random parameter, whose definition can be found, for example, in
[4, 8, 10].

15.3 Numerical Approaches

The partial derivative w.r.t. the ith parameter is approximated using a finite
difference

∂f

∂xi
≈ Dif := 1

Δxi
(f (x+Δix)− f (x))

with Δix = (0, . . . , 0,Δxi, 0, . . . , 0)�. Typically, a small stepsize Δxi > 0
is chosen in dependence on the machine precision ε0. We apply Δxi =√
ε0 max{10−2, |xi |}. Let a quadrature formula or a sampling technique be given

with the nodes xj ∈ H n and the weights wj ∈ R for j = 1, . . . , N . The
discretization of the measure (15.3) has the form

μ̃i :=
N∑

j=1

wj

Δxi

∣∣∣f
(
xj +Δixj

)
− f

(
xj
)∣∣∣ (15.6)

and of the measure (15.4)

ν̃i :=
N∑

j=1

wj

(Δxi)2

(
f
(
xj +Δixj

)
− f

(
xj
))2

. (15.7)

The computational cost of (15.6) as well as (15.7) is characterized by (n + 1)N
function evaluations of f .

Sampling utilizing QMC yields wj = 1
N

for all j = 1, . . . , N . This approach
generates a sequence of low discrepancy in the unit hypercube (see [7]). Note that a
disadvantage of QMC is a relatively slow convergence rate of about O(N−1).

Alternatively we consider cubature rules with polynomial exactness of degree
three. Cubature rules with higher degree of polynomial exactness exhibit a number
of nodes, which grows quadratically with the dimension. Thus the number of nodes
becomes too large. In this case the Stroud-3 approach (see [9, 12]) is proposed
since it is the unique rule with polynomial exactness of degree three and a minimum
number of nodes, i.e., N = 2n (see [2]). The Stroud-3 method is applicable to
our problem, because the integrands are sufficiently smooth. More precisely, the
Stroud-3 approach generates nodes

x
j
2k−1 =

√
2

3
cos

(
(2k − 1)jπ

n

)
, x

j
2k =

√
2

3
sin

(
(2k − 1)jπ

n

)
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in [−1, 1]n for the components k = 1, 2, . . . , 'n2 ( and if n is odd x
j
n = (−1)j√

3
. After

a linear transformation mapping the nodes from [−1, 1]n onto H n the weights
of the cubature all become wj = 1

2n . Unfortunately the accuracy of the Stroud-3
method cannot be improved any further because the number of nodes is fixed. For
this reason the only way for increasing the accuracy seems to carry out a Stroud
formula of a higher order where the nodes cannot be propagated for increasing
the accuracy. Therefore we are not able to reuse the function evaluations because
the grids for different orders are not nested. Inversely, in QMC the sequences of
the function evaluations can be continued as long as desired. A further disadvantage
of the cubature approach is that an adaptive method for an error control based on
estimates is not available directly.

15.4 Application Example

We consider a linear dynamical system of the form (15.1), which represents the
mathematical model of a band-stop filter, see [11, p. 350]. Figure 15.1 depicts this
band-stop circuit consisting of a chain of K cells.

As random physical parameters, we obtain K capacitances (group I) parallel to
K inductances (group I) and K − 1 capacitances (group II) in line with K − 1
inductances (group II). The resistance at the input and the load resistance at the
output are kept constant. A single input voltage and a single output voltage appear.
Then the dynamical system results in a linear SISO type. Using modified nodal
analysis [3] a system of DAEs with nilpotency index one models the transient
behavior of all node voltages and some branch currents.

For the numerical experiments a problem size of K = 26 cells is selected.
The total number of capacitances and inductances results to n = 4K − 2 =
102. We replace these parameters by random variables with independent uniform
distributions having ranges of 10% around their mean values. The numbers of
used function evaluations (NOFE) for computing the derivative-based sensitivity
measures are listed in Table 15.1.

We compute the transfer function on the imaginary axis in the frequency window
ω ∈ [10−1, 101]. Figure 15.2 depicts the expected value and the total variance
for magnitude and phase obtained by Stroud-3 which implicates 204 nodes and

inu uout

Fig. 15.1 Band-stop filter
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Table 15.1 Different
numerical approaches

Methods No. points NOFE

Stroud-3 n = 102, N = 2n = 204 21,012

QMC N = 1000 103,000
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Fig. 15.2 Expected value and total variance of magnitude and phase

QMC based on a Sobol sequence [7] of 100, 1000 and 5000 points, respectively.
We observe a good agreement while Stroud-3 requires a lower NOFE.

Figures 15.3 and 15.4 depict the computed derivative-based sensitivity
coefficients (15.3) using Stroud-3 and QMC, respectively. Both amplitude and
phase exhibit a good agreement. Comparing with variance-based sensitivities, see
Fig. 15.5, which are computed by a double-sum approach of Stroud-3, cf. [4], we
observe that these two types of sensitivity measurements have a strong consistency
in the detection of significant parameters as well as sensitive domains in the
frequency window.

For analyzing the accuracy we examine the constraint (15.5). The differences
π2ST

i D − νi for all i = 1, . . . , n are implemented using Stroud-3 and QMC,
respectively. Here we compute ST

i using the single-sum approach subject to QMC,
cf. [4]. Figure 15.6 depicts max

i
(π2ST

i D − νi) for the individual parameter groups.
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Fig. 15.3 Numerical results for derivative-based sensitivity coefficients μi of amplitude computed
by (a) Stroud-3; (b) QMC
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Fig. 15.4 Numerical results for derivative-based sensitivity coefficients μi of phase computed by
(a) Stroud-3; (b) QMC
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Fig. 15.5 Numerical results for variance-based sensitivity coefficients ST
i computed by Stroud-3:

(a) amplitude; (b) phase
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Fig. 15.7 Expected value (left) and total variance (right) of the output signal in transient
simulation

The numerical solutions satisfy the inequality (15.5) strictly in the frequency
domain.

We also simulate the system response in the time domain with the input signal
u(t) = sin(t) as an instance, i.e., the input has the frequency ω = 1 (rad/s). Initial
values at t = 0 are all zeros. The expected value and the variance of the output are
computed by Stroud-3 and presented in Fig. 15.7.

With the attempt to retrieve the sensitive characteristic from the frequency
domain within the time window the derivative-based sensitivity characteristics in
temporal evolution are computed by Stroud-3. Figure 15.8 shows a comparison
between the time window and the associated frequency domain (zoom from
Fig. 15.3). Obviously, a parameter dominates in the time domain if and only if it
owns also a substantial influence in the associated frequency interval.

15.5 Conclusions

We conclude that both QMC and Stroud-3 are feasible to extract the significant
parameters in a high-dimensional system. Furthermore, they have also successfully
detected frequency intervals in which the output is especially influenced by random
parameters. The Stroud-3 approach is more efficient due to a less NOFE. Investiga-
tions on accuracy issues for certain specified tolerances remain a challenge.
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Chapter 16
Fitting Generalized Gaussian
Distributions for Process Capability
Index

Theo G. J. Beelen, Jos J. Dohmen, E. Jan W. ter Maten, and Bratislav Tasić

Abstract The design process of integrated circuits (IC) aims at a high yield as well
as a good IC-performance. The distribution of measured output variables will not be
standard Gaussian anymore. In fact, the corresponding probability density function
has a more flat shape than in case of standard Gaussian. In order to optimize the yield
one needs a statistical model for the observed distribution. One of the promising
approaches is to use the so-called Generalized Gaussian distribution function and to
estimate its defining parameters. We propose a numerical fast and reliable method
for computing these parameters.

16.1 Introduction

In circuit design one aims to reduce faults and to increase yield [8]. Specially
added electronic control is applied to obtain narrow tails in empirical probability
density functions. This process is called (electronic) ‘trimming’. It has no relation
to statistical techniques like Winsoring (in which one clips outliers to a boundary
percentile), or Trimming (in which one simply neglects outliers). Here it is an
electronic tuning, f.i., by a variable resistor. Assume that at some measurement point
a circuit has a DC solution V (R, p), that depends on a resistor R and an uncertain
parameter p. The circuit design aims to satisfy a performance criterion VLow ≤
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Fig. 16.1 Left: Generalized Gaussian probability density function f (x) as in (16.1) with μ = 0
and α = 1. Right: Generalized Gaussian cumulative density function F(x) as in (16.2)

V ≤ VUp. Now for each p we may determine how V depends on R. An optimal
R(p) assures that V (R(p), p) = VRef ∈ [VLow, VUp], but there is no guarantee
that this can be achieved for all p. If R(p) exists, R(p) can be determined by some
nonlinear solution technique, involving solving the circuit equations several times.
More general, we determine R(p) such that |V (R(p), p) − v| for v ∈ [VLow, VUp]
is minimum. The effect is that a probability density function (pdf) becomes more
concentrated around a mean value and tails become more narrow.
We assume N independent samples xi are obtained from an electronic trimming
process in some given interval [A,B], and based on some empirical density
function. To define a quality measure index (in Sect. 16.3) we are first interested in
the ‘best’ fitting function within the family of Generalized Gaussian Density (GGD)
distributions as shown in Fig. 16.1 and given by the expression

f (x) = β

2α Γ (1/β)
exp

(
−
( |x − μ|

α

)β
)
, (16.1)

where α, β > 0, μ ∈ R and Γ (z) = ∫∞
0 tz−1e−t dt , for z > 0, is the Gamma

function [7, 10]. The mean and the variance of the GGD (16.1) are given by μ and
α2Γ (3/β)/Γ (1/β), respectively. Hence after expressing α = σ

√
Γ (1/β)/Γ (3/β)

we get that, for all β, the variance is σ 2.
Notice that if x ≤ μ then the cumulative distribution function (cdf) F(x)

corresponding to the GGD (16.1) is given by

F(x) = β

2αΓ (1/β)

∫ x

−∞
exp

(
−
( |y − μ|

α

)β
)

dy

= 1

2Γ (1/β)

∫ ∞

((μ−x)/α)β
z(1/β)−1 exp(−z)dz.

(16.2)

A graphical impression of f (x) and F(x) are given in Fig. 16.1.
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By using the Complementary Incomplete Gamma function defined by

Γ (a, x) =
∫ ∞

x

ta−1exp(−t)dt (16.3)

we can rewrite (16.2) as

F(x) =
Γ
(

1/β,
(μ−x

α

)β)

2Γ (1/β)
(16.4)

This can be further simplified using the Upper Incomplete Gamma function [9, 10]
for which standard software is available. We note that for β = 2 one has
Γ (1/2) = √

π , Γ (3/2) = 0.5
√
π and then α = σ

√
2; i.e., the GGD becomes

the Gaussian distribution. The parameter β determines the shape. For β = 1 the
GGD corresponds to a Laplacian distribution; for β →+∞ the probability density
function (pdf) in (16.1) converges to a uniform distribution in (μ−√3σ,μ+√3σ),
and when β ↓ 0 we get a degenerate distribution in x = μ (but with a finite
variance). For some graphical impression, see Fig. 16.1.
In our applications we are facing broad pdfs with relatively long, but steep tails and
we want to estimate them accurately, so we are interested in the cases when β ≥ 2.

Despite the fact that several distributions of output results will not be symmetri-
cal, we restrict ourselves here to the family of GGD (16.1).

The parameters of the ‘best’ fitting distribution function can be found by
maximizing the logarithm of the likelihood function L = ln(L ) = ∑N

i=1 f (xi).
The necessary conditions are

∂L

∂α
= 0 : α =

(
β

N

N∑
i=1

|xi − μ|β
)1/β

, (16.5)

∂L

∂β
= 0 : 1

β
+ Ψ (1/β)

β2
− 1

N

N∑
i=1

∣∣∣xi − μ

α

∣∣∣
β

ln
∣∣∣xi − μ

α

∣∣∣ = 0, (16.6)

∂L

∂μ
= 0 :

∑
xi≥μ

|xi − μ|β−1 −
∑
xi<μ

|xi − μ|β−1 = 0. (16.7)

Here Ψ is the Digamma function Ψ (x) = d
dx ln(Γ (x)) = Γ ′(x)/Γ (x), see [10].

Let us first assume that μ = μ̂ is known or well estimated. Then we can ignore
(16.7). Several papers [2–4] consider estimates for α and β to solve the Eqs. (16.5)–
(16.6), but they assume that the sample size is large enough and/or that β ≤ 3,
motivated by the various application areas. We note that [5, 6] also consider the case
for a small sample size.
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We exploit the explicit elimination of α in (16.6) after which only one additional
equation remains

g(β) = g(β; μ̂) = 0 (16.8)

in which μ = μ̂ is now a given parameter. The analytical formulae for g(β) and
g′(β) are given by (see also [1, 4, 6, 10])

g(β) =1+ Ψ (1/β)

β
−
∑N

i=1 |xi − μ̂|β ln |xi − μ̂|∑N
i=1 |xi − μ̂|β +

ln
(

β
N

∑N
i=1 |xi − μ̂|β

)

β
,

g′(β) =− Ψ (1/β)

β2 − Ψ ′(1/β)
β3 + 1

β2

−
∑N

i=1 |xi − μ̂|β (ln |xi − μ̂|)2∑N
i=1 |xi − μ̂|β +

(∑N
i=1 |xi − μ̂|β ln |xi − μ̂|∑N

i=1 |xi − μ̂|β
)2

+
∑N

i=1 |xi − μ̂|β ln |xi − μ̂|
β
∑N

i=1 |xi − μ̂|β −
ln
(

β
N

∑N
i=1 |xi − μ̂|β

)

β2
.

(16.9)
Clearly, (16.8) can be solved by any (nonlinear) iterative method, for example by
Newton’s method using the expressions in (16.9). We outline our algorithm in
Algorithm 1.

If μ is not a priori known then we can apply an iterative process with an estimator
μ̂ for μ and solving (16.8) for β, giving an estimator β̂ that can be used for finding
α̂ with (16.5). If (16.8) with μ̂ can not be solved with sufficient accuracy, then the
process is repeated with a new estimator for μ.

Algorithm 1: Averaged generalized Gaussian distribution fit

1: procedure AGGDF(X, N , M , μ̂)
2: Determine the empirical pdf f̂ (x) from the data X. *See Fig.16.2

3: Compute the cumulative distribution function F̂ (x) = ∫ x

−∞ f̂ (t)dt .
4: for k = 1, . . . ,M do
5: Generate random values {xki | i = 1, ..., N } using F̂−1.

6: Compute the zero β̂k of g(β) = 0, using these xki -values and μ̂. *See (16.8)
7: Compute âk . *See (16.5)
8: end for
9: Average β̂ = 1

M

∑M
i=1 β̂k , α̂ = 1

M

∑M
i=1 α̂k .

10: return α̂, β̂. *In this Algorithm μ̂ is unchanged
11: end procedure
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After having computed the parameters μ̂, α̂, β̂ we consider the resulting density
function f (x; μ̂, α̂, β̂) as best fit to the measured data (see [1]). We make the
following observation [1]. We introduced M-times the steps 5–7 within a loop and
taking averages, see Algorithm 1. One can choose M = 1 and N sufficiently large
(usually N � 1000). In our case, M = 50, N = 200. So, N can be taken smaller.

In our numerical experiments we observed that due to the large value of ∂α/∂β
averaging the α̂k gives better results for α than by using (16.5) on β̂.

16.2 Numerical Results

We applied Algorithm 1 (with M = 50 and N = 200) to ‘trimmed’ data from first
NXP IC-measurements (Fig. 16.2). The computed values βk and their mean β̂ are
shown in Fig. 16.3-(left). The computed density function f as well as the initially
fitted (non-symmetrical) density function f̂ are given in Fig. 16.4. Note that the
tails are very well approximated in Fig. 16.3-(right). To get an impression of the
sensitivity of the computed density w.r.t. α̂ we varied the computed value of α̂ with
±10%, plotted the corresponding densities and computed the Mean Square Error
(MSE). See Fig. 16.4 and [1]. Notice that in Fig. 16.4 a 10% variation in α has a
large effect on the pdf f . Clearly, the approximation of f around its top using α̂

is better than the pdfs with α̂ ± 10%. A similar observation holds for the slopes of
pdf f . The best fit α̂ was obtained by the mean as in step 9 in Algorithm 1. So, we
consider α̂ as best fit.
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Fig. 16.2 Measured data (left) and the associated empirical probability density function f̂ (right)
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16.3 A Quality Measure Index for a Generalized Gaussian
Distribution

Assuming an underlaying distribution being standard Gaussian, the capability of a
manufacturing process can be measured using some process capability indices like

Cp = U − L

6σ
and Cpk = min (U − μ,μ− L)

3σ
, (16.10)

where [L,U ] is the specification interval, μ is the process mean and σ is the process
standard deviation and a process is said to be capable if the process capability index
exceeds a value k ≥ 1, where usually k = 4/3. In case of a GGD (16.1) we
can introduce a capability index Cpkg as quality indicator, similar to the standard
Gaussian case as

Cpkg = min (U − μ,μ− L)

3σ
, (16.11)

where σ 2 = α2Γ (3/β)/Γ (1/β).
L and U are the lower and upper tolerance levels, respectively.
Hence, the Cpkg simply results as a post processing facility of Algorithm 1, after
having determined α, β and μ. In practice, formula (16.11) can be applied in two
ways. First, a specific value Cpkg = c can be given in order to meet certain yield
requirements. Assuming |μ− L| < |U − μ|, then L can be computed via c =
Cpkg = (μ − L)/σ . On the other hand, if L and U are known from product specs,
then Cpkg can be determined as a measure for the yield.

16.4 Conclusions

We have shown that measured IC chip production data can adequately be modelled
by a Generalized Gaussian distribution (GGD). We developed a new robust numer-
ical procedure for computing the parameters of such GGD. The GGD did fit very
accurately. Using the GGD a quality measure can be defined analogously to the CPK
index for standard Gaussian distributions.
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Chapter 17
Robust Optimization of an RFIC
Isolation Problem Under Uncertainties

Piotr Putek, Rick Janssen, Jan Niehof, E. Jan W. ter Maten, Roland Pulch,
Michael Günther, and Bratislav Tasić

Abstract Modern electronics systems involved in communication and identifica-
tion impose demanding constraints on both reliability and robustness of compo-
nents. On the one hand, it results from the influence of manufacturing tolerances
within the continuous down-scaling process into the output characteristics of
electronic devices. On the other hand, the increasing integration process of various
systems on a single die force a circuit designer to make some trade-offs in preventing
interference issues and in compensating coupling effects. Thus, constraints in terms
of statistical moments have come in a natural way into optimization formulations
of electronics products under uncertainties. Therefore, in this paper, for the careful
assessment of the propagation of uncertainties through a model of a device a type
of Stochastic Collocation Method (SCM) with Polynomial Chaos (PC) was used.
In this way a response surface model can be included in a stochastic, constrained
optimization problem. We have illustrated our methodology on a Radio Frequency
Integrated Circuit (RFIC) isolation problem. Achieved results for the optimization
confirmed efficiency and robustness of the proposed methodology.
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17.1 Introduction

Due to the continuous advances in semiconductor technology, modern mixed-signal
and radio frequency (RF) integrated circuits (ICs) show a tendency to increase
the integration of various systems on a singe die [10]. This trend in electronics
results not only in decreasing material cost but also allows for easier implementation
of multiple functions in a compact unit [8]. On the one hand, this complexity
gives challenges in the integration of noisy parts, the so-called aggressors, as well
as sensitive parts, the so-called victims, and other intellectual property blocks
(IPs) to provide its proper and interference-free functioning. On the other hand,
the integration process has also impact on the failure probability of nanoscale or
molecular scale devices associated with yield loss, which can be caused by defects,
faults, process variations and design issues [15]. In this respect, the impact of
statistical variations in input parameters onto the output characteristics of electronic
devices has played an increasingly important role in the predictability and reliability
of simulations. Actually, these statistical variations, resulting from manufacturing
tolerances of industrial processes, could lead to the acceleration of migration
phenomena in semiconductor devices and finally can cause a thermal destruction of
devices due to thermal runaway [12, 14]. Moreover, unintended RF coupling, which
can occur both as a result of industrial imperfections and as a consequence of the
integration process, might additionally downgrade the quality of products and their
performance or even be dangerous for safety of both environment and the end users
[5]. It should be pointed out, though, that meeting the specification requirements
for electromagnetic compatibility standards [1] and issues related to interference
between IPs at early design stages allows for avoiding expensive re-spins and for
the consecutive decrease of the time-to-market cycle. The ICs designer needs to
take special attention to interference issues during all the stages of the product
development cycle. Therefore, a structured approach to find an optimal isolation
configuration of the IC design needs to be applied.

Our new contribution relies first on incorporating the uncertainty quantification
(UQ) analysis into the modeling of electronic devices to provide reliable and robust
simulations. In work [5] some theoretical foundations can be found. Thus, in our
work we address the stochastic optimization problem, described by the system of
the stochastic differential algebraic equations (SDAEs). Next, the optimization pro-
cedure for the compensation of the aggressor impact on the proper operation of the
IC system is proposed and is successfully applied. In this context, the insist is given
more on a new application. However, in the contrast to our previous work [12, 14],
where we considered the stochastic partial differential equations (SPDEs) coupled
optimization problem using the topological derivative method, here we deal with the
SDAEs model, where the regularized Gauss-Newton algorithm has been used [11].
Specifically, our approach has been tailored to the investigation of the coupling path
via an exposed diepad, downbonds and bondwires in order to find their optimal
configuration, which ensures the minimal influence of the digital noise on the device
functioning under uncertainties. As to the best knowledge of authors, this important
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engineering problem is investigated for the first time not only in the robust but
also in the deterministic optimization framework. To this end, we incorporated our
automated optimization procedure in the flow of the floorplanning and grounding
strategy [10].

17.2 Modeling Approach

In our research, we consider an integrated RFCMOS automotive transceiver design
as a case test, which is shown in Fig. 17.1. This is a fully functional chip that
consists of four main domains including (a) the analog-to-digital converter (ADC),
(b) the receiver and power amplifier (RxPA), (c) the crystal oscillator and local
oscillator (XOLO) and (d) the digital part. The latter is responsible for a noise
generation, which disturbs the other mentioned subsystems. For the simulation of
a chip architecture, the software ADS/Momentum from Keysight Technologies has
been used [9], which employs the Methods of Moments (MoM) [3]. Therein, the
concept of Green functions is used to model the proper behavior of the substrate [7].

17.2.1 Field Model of the Integrated Circuit

In order to take the interaction of the ICs with their physical environment
into account, an integral formulation of the time-harmonic PDEs, derived from

RxPA
Digital

ADC

aggressor parts :
- digital logic,
- digital IOs,
- clock generation circuits,
- DACs,etc.

victim parts :
- sensitive RF tuners,
- analog IOs,
- ADC,
- VCO, etc.

victim/aggresor role

XoLO

ISM-band transceiver IC

Fig. 17.1 Chip architecture with indicated domain setup [10]



180 P. Putek et al.

Maxwell’s equations

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · ε (θ) [∇V (θ)+ iωA (θ) ] = ρ (θ)

ν (θ)∇ × ∇ × A (θ) = J (θ)+ ω2 ε (θ)

[
A (θ)− i ∇V (θ)

ω

]

∇ ·A (θ)+ iωkV (θ) = 0
∇ · J (θ)+ iωρ (θ) = 0,

(17.1)

endowed with suitable initial and boundary conditions, was solved in the Momen-
tum. Here, V is the electric scalar potential, A denotes the magnetic vector potential
and θ := (r, f ), where r is the location in space and ω = 2πf is the angular
velocity with f the frequency. Furthermore, σ , ε and ν are real functions of space,
which describe the electric conductivity, the permittivity and the reluctivity. The
domain R

3 ⊃ D = D1 ∪ D2 ∪ D3 includes metal, insulator and semiconductor
regions. The charge density ρ is defined as ρ = q (n− p − ND) on D3 and 0 on
(D1,2); the current density J is described by JD1 = −σ(∇V + i ε ωA), JD2 = 0 and
JD3 = Jn+ Jp. Here, Jn and Jp are electron and hole current densities, while n and
p represent electron and hole concentrations. ND refers to the doping concentration,
k is a constant that depends on the scaling scenario.

In our simulations, the time-harmonic analysis is applied, which provides
accurate electromagnetic simulation performance at radio frequencies for the geo-
metrically complex and electrically small designs. As output of these simulations,
S-parameters can be generated for general planar circuits, which contains sufficient
information to characterize each individual component. Additionally, the applica-
tion of the ADS tool, allows for modeling the behavior of RF passive component
by a frequency independent lumped model [9]. Hence, the lumped model can be
further employed to speed up the electrical performance for an RFIC optimization
problem. However, since the extraction of the equivalent circuit model from the
PDEs equation is not a major topic of this paper, we briefly recall only some basics
concept, which is needed for incorporating the lumped model into an robust RFIC
problem. More detailed analysis subjected the former topic can be found in [8, 10].

17.2.2 Equivalent Circuit Model and
Floorplanning/Grounding Strategy

Based on the conducted simulations of (17.1) and the proper floorplanning with
grounding strategies, an equivalent circuit model (EMC) of the IC and package
was designed [10], depicted in Fig. 17.2. The analyzed equivalent circuit consists
of the main package included the IC connections located on the left side, which is
supposed to be the lumped model of the 3D model, shown in Fig. 17.1.
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Fig. 17.2 EMC of the packaged integrated circuit. (a) Floorplan model for testing isolation and
grounding strategies [10, 18]. (b) Implementation of the lumped model in ADS/Momentum

When the charge-oriented modified nodal analysis (MNA) [6] is used, the time-
harmonic structured DAEs takes the form

iωMq (x(f,p),p) = g(x(f,p),p), (17.2)

Here, x is a vector of unknowns, including the nodal potentials and the branch
currents of inductances and voltage sources. The vector functionq(x,p) includes the
charges of capacitances and the fluxes of inductances. The vector function g(x,p)
describes contributions from conductances/resistors and voltage differences. Capac-
itances, inductances and conductances/resistors may all depend on the parameters
p = p(ξ ), with ξ being the random variable. M denotes a (singular) incidence
matrix, that is specified by a network topology.

More specifically, for our purpose, the exposed diepad and downbonds has been
chosen to allow for thorough analysis with respect to a number of model parameter
variations including the number of downbonds, the number of ground pins, and the
number of exposed diepad vias. In this way, the cross-domain transfer function y
from the digital to the RF domain can be considered here as victims and be included
in the optimization procedure as goal functions. Here, we are particularly interested
in how digital influences the other subsystems. To this end, we define, for a (scalar)
cross-domain coupling the transfer function, as in [2]

G(ω) = |Y |
|X| =: |H(iω)|, φ(ω) := φY − φX = arg(H(iω)), (17.3)

when considering a complex harmonic system with a sinusoidal component of |X|,
an angular frequency ω and a phase φ := arg(X) as input to a linear time-invariant
system and then its corresponding output as |Y | and φY := arg(Y ).

Within this context, the proper floorplanning and grounding methodology allows
for the identification, quantification and prediction of the cross-domain coupling
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in the EMC model. Therein, the overall EMC model includes key elements such
as the on-chip (domain regions, padring, sealring, substrate effects), the package
(ground and power pins, bondwires/downbonds, exposed diepad) and the printed
circuit board (ground plane, exposed diepad connections) [10].

17.3 Uncertainty Quantification Analysis

For the UQ analysis, a type of the SCM in conjunction with the PC expansion
has been used. Following the methodology proposed in [17], some parameters
p (ξ ) ∈ Ξ in the model (17.2) were replaced by random variables p (ξ) =[
p1(ξdb_rxpa), p2(ξvia_exp), p3(ξlb_xolo), p4(ξlb_rxpa

] : A → R defined on the
probability triple (A ,F ,P). Specifically, they have been shown in Fig. 17.2.
Moreover, we assume that a joint probability density function h : Ξ → R exists.
Let y be a quadratically integrable function. Then, a response surface model of y
can be obtained by a truncated series of the PC expansion, see [17],

y (f,p(ξ ))
.=

N∑
i=0

vi (f )Φi (p(ξ )) , (17.4)

with a priori unknown coefficient functions vi and predetermined basis polynomials
Φi with the orthogonality property E

[
ΦiΦj

] = δij
1 (Kronecker delta). Therein, E

is the expected value, associated with P. More precisely, vi = E [yΦi] (component
of y along Φi ), for which we have applied a pseudo-spectral quadrature approach
with the Stroud formula of order 3 [12, 14] to approximate the unknown coefficients
vi . The basic concept of this method is first to provide the solution y at each
deterministic quadrature node p(k), k = 1, . . . ,K , of the system (17.2). Next, the
multi-dimensional quadrature rule with associated weights wk allows for computing

vi (f )
.=

K∑
k=1

y
(
f, p(k)

)
Φi

(
p(k)

)
wk, (17.5)

which represents an approximation of the exact projection of y along Φi . Finally,
the moments are approximated by, cf. [17],

E
[
y (f, p)

] .= v0(f ), Var
[
y (f, p)

] .=
N∑
i=1

|vi (f )|2 (17.6)

1For an orthogonal system of basis polynomials a normalization can be done straightforward,
e.g.,[17].
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assumingΦ0 = 1. Based on the truncated PC expansion it is also possible to perform
the variance-based decomposition [16], which allows for determining and ranging
the most influential input parameters according to output variations, see, e.g., [13].

17.4 Robust Optimization Problem

Finally, when considering statistical moments, an optimization problem constrained
by stochastic DAEs can be reformulated into the robust single objective optimization
problem [14] as follows

min
p

E [F(p)]+ η
√

Var [F(p)]

s.t. iωMq
(
x(f,p(k)),p(k)

) = g(x(f,p(k)),p(k)), k = 1, . . . ,K,

pmax ≤ p ≤ pmin ,  = 1, . . . , P,

(17.7)

where p is a vector of optimized parameters, while pmax and pmin denote their
box constraints, respectively. In our case, the random-dependent functional for the
prescribed weight wi = 0.5 reads as

F(p) =
∑
i=2

wi |yi(p)|2, (17.8)

where fi are complex-valued functions, which yield the definition of the cross-
domain coupling transfer functions, see, Fig. 17.2 as follows

y2 = |CplXolo(f )| := |XOLOgnd−PCBgnd|
|DigitalVdd−Digitalgnd| ,

y3 = |CplRx(f )| := |RxPAgnd−PCBgnd|
|DigitalVdd−Digitalgnd| .

(17.9)

Due to the insensitivity of y1 = |CplADC| w.r.t. the input variations [13], cross-
domain coupling functions such as y2 and y3 have been chosen for the optimization
purposes.

17.5 Numerical Example and Conclusions

The model, shown schematically in Fig. 17.1, has been implemented and simulated
in Momentum within the frequency range from 1 MHz to 10 GHz.

An algorithm for the UQ analysis was implemented in python using the
DAKOTA v.6.2 library [4]. The least squares nonlinear optimization problem has
been solved in every iteration using the normal equation method and the Tikhonov
regularization [11]. The deterministic values of the individual elements for the
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ECM are summarized in Table 17.1, while Table 17.2 includes the mean values
of variable parameters, which were considered as impedance in the form pj =
Rj (1 + δj ) + iωLj (1 + δj ), j = 1, . . . , 4 with the magnitude of perturbation
δj = 0.2. Other deterministic resistances are defined as follows R1 = 13.2 [�],
R2 = 13.2 [�], R3 = 22.7 [�], R4 = 5.6 [�], R12 = 77 [�], R13 = 332 [�],
R23 = 217 [�], R24 = 96 [�] and R34 = 130 [�].

The final result of the robust optimization has been presented in Figs. 17.3
and 17.4 and Table 17.3 shows the optimized values, found in the fourth iteration.

Table 17.1 Chosen values for the deterministic elements of the EMC model

Elements Rdb Ldb Rbw Lbw Cd C1 C2

Values 100.0 [m�] 0.1 [nH] 100.0 [m�] 2.0 [nH] 2.3 [nF] 0.4547 [nF] 0.2412 [nF]

Table 17.2 The mean values for the initial configuration

Elements R
0

db_rxpa L
0

db_rxpa R
0

via_exp L
0

via_exp R
0

lb_xolo L
0

lb_xolo R
0

lb_rxpa L
0

lb_rxpa

Mean 10.0 [m�] 0.02 [nH] 0.1 [m�] 0.01 [nH] 20.0 [m�] 0.4 [nH] 16.7 [m�] 0.33 [nH]
values
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Fig. 17.3 Result for the stochastic optimization of the RFIC problem

0 2000 4000 6000 8000 10000m
ea

n 
an

d 
st

an
d.

 d
ev

ia
tio

n 
[d

B
]

standard deviation of y2 initial conf.
standard deviation of y2optimized conf.

−80

0

−40

frequency Hz][M

(a)

0 2000 4000 6000 8000 10000m
ea

n 
an

d 
st

an
d.

 d
ev

ia
tio

n 
[d

B
]

standard deviation of y3 initial conf.
standard deviation of y3optimized conf.

0

−80

−40

frequency Hz][M

(b)

Fig. 17.4 Mean and standard deviation before and after optimization. (a) y2 = |CplXolo|. (b)
y3 = |CplRx|
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Table 17.3 The mean values for the optimized configuration

Elements Rdb_rxpa Ldb_rxpa Rvia_exp Lvia_exp Rlb_xolo Llb_xolo Rlb_rxpa Llb_rxpa

Mean 9.37 [m�] 0.0187 [nH] 0.13 [m�] 0.0138 [nH] 25.0 [m�] 0.5 [nH] 0.36 [m�] 7.22 [nH]
value

Table 17.4 Relative error in [%] calculated for the particular functions before and after
optimization

Quantities For y1 in [%] For y2 in [%] For y3 in [%] For all functions in [%]
Mean value 12.41 7.64 −94.99 −24.67

Standard deviation −90.49 −78.22 −98.77 −91.20

Both the mean values and standard deviations have been reduced significantly.
However, the application of the Pareto front method instead of the average weighted
method might yield the optimal solution in the sense of Pareto due to competing
objective functions y2 and y3. This is considered as a further direction of our
research. Additionally, Table 17.4 includes the information about the relative error,
calculated for cross-domain functions before and after optimization.
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Part V
Model Order Reduction

Model order reduction methods seek to reduce the complexity of a mathematical
model in the process of its numerical solution. In this regard, finding and under-
standing the balance between complexity and accuracy certainly pose a challenging
problem. Today, various methods for model order reduction have been developed.
The keynote speakers Peter Benner and Lihong Feng, together with their co-authors,
and the keynote speaker Roland Pulch made contributions to this topic in the form
of two invited papers.

In the first invited paper on “Sparse Model Order Reduction for Electro-Thermal
Problems with Many Inputs”, N. Banagaaya et al. propose a modified block-
diagonal structured model order reduction method for electro-thermal coupled
problems with multiple inputs. This modification yields sparse reduced-order
models for both the electrical and thermal subsystems. Sparsity has a significant
impact on the efficiency of the method.

The second invited paper, “Quadrature Methods and Model Order Reduction for
Sparse Approximations in Random Linear Dynamical Systems” by R. Pulch, focuses
on the construction of a sparse approximation to a quantity of interest derived from
a linear dynamical system with random variables.

In turn, MD R. Hasan et al. investigate a “POD-Based Reduced-Order Model of
an Eddy-Current Levitation Problem”. One approach is based on automatic remesh-
ing. Further, the deformation of the finite element mesh of the subdomain around
the moving body is considered. Both reduced-order approaches are compared with
the full finite element simulation. Time-integration is always based on the implicit
Euler method.

Lastly, R.V. Sabariego and J. Gyselinck discuss “Time-Domain Reduced-Order
Modeling of Linear Finite-Element Eddy-Current Problems via RL-Ladder Cir-
cuits”, a reduced-order approach that they successfully apply to the TEAM 28
benchmark problem.



Chapter 18
Sparse Model Order Reduction
for Electro-Thermal Problems
with Many Inputs

Nicodemus Banagaaya, Lihong Feng, Wim Schoenmaker, Peter Meuris,
Renaud Gillon, and Peter Benner

Abstract Recently, the block-diagonal structured model order reduction method
for electro-thermal coupled problems with many inputs (BDSM-ET) was proposed
in Banagaaya et al. (Model order reduction for nanoelectronics coupled problems
with many inputs. In: Proceedings 2016 design, automation & test in Europe
conference & exhibition, DATE 2016, Dresden, March 14–16, pp 313–318, 2016).
After splitting the electro-thermal (ET) coupled problems into electrical and thermal
subsystems, the BDSM-ET method reduces both subsystems separately, using
Gaussian elimination and the block-diagonal structured MOR (BDSM) method,
respectively. However, the reduced electrical subsystem has dense matrices and the
nonlinear part of the reduced-order thermal subsystem is computationally expensive.
We propose a modified BDSM-ET method which leads to sparser reduced-order
models (ROMs) for both the electrical and thermal subsystems. Simulation of a very
large-scale model with up to one million state variables shows that the proposed
method achieves significant speed-up as compared with the BDSM-ET method.
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18.1 Introduction

In several computational nanoelectronic problems, the spatial discretization of ET
coupled problems leads to a nonlinear quadratic dynamical system of the following
form:

Ex′(t) = Ax(t)+ x(t)T Fx(t)+ Bu(t), x(0) = x0, (18.1a)

y(t) = Cx(t)+ Du(t), (18.1b)

where E ∈ R
n×n is singular, indicating that (18.1) is a system of differential-

algebraic equations (DAEs), and A ∈ R
n×n, B ∈ R

n×m, C ∈ R
 ×n, D ∈ R

 ×m,
while F is a 3-way tensor. n is called the order of the system, which is usually
large. A tensor is a multi-way array and its order is the number of dimensions, also
known as ways or modes, see [7]. Here, F = (

FT
1 , . . . ,F

T
n

)T ∈ R
n×n×n is a 3-

way tensor of n matrices Fi ∈ R
n×n. Each element in x(t)T Fx(t) ∈ R

n is a scalar
x(t)T Fix(t) ∈ R, i = 1, . . . , n. The state vector x(t) = (xv(t)T , xT (t)T )T ∈ R

n

includes the nodal voltages xv(t) ∈ R
nv , and the nodal temperatures xT (t) ∈ R

nT .

u(t) ∈ R
m and y(t) ∈ R

 are the inputs (excitations) and the desired outputs
(observations), respectively. We assume system (18.1) to be solvable, i.e., the matrix
pencil λE− A is regular for all λ ∈ C. In practice, more realistic models have very
large dimension n compared to the number of inputs m and outputs  . Despite the
ever increasing computational power, simulation of these systems in acceptable time
is still challenging. MOR aims to reduce the computational burden by generating
ROMs that are faster and cheaper to simulate, yet accurately represent the original
large-scale system behavior. MOR replaces (18.1) by a ROM

Erx′r (t) = Arxr (t)+ xr (t)T Frxr (t)+ Bru(t), xr (0) = xr0, (18.2a)

yr(t) = Crxr (t)+ Dru(t), (18.2b)

where Er ,Ar ∈ R
r×r , Br ∈ R

r×m, Cr ∈ R
 ×r ,Dr = D and Fr ∈ R

r×r×r .
xr (t) ∈ R

r , r � n, is the reduced state vector and r is the order of the ROM.
A good ROM should have small approximation error ‖y − yr‖ in a suitable norm
‖ · ‖ for every arbitrary input u(t). There exist many MOR methods for nonlinear
(quadratic) systems such as the snapshot and implicit moment-matching methods,
see [4] for a general discussion of MOR methods. The snapshot methods are not
flexible for input-dependent systems as considered in this work, hence, we consider
input-independent MOR methods, such as implicit moment-matching methods [4].
However, it is well known that as the number of inputs increases, the efficiency
of moment-matching MOR methods decreases, since the size of the ROM is
proportional to the number of inputs. Moreover, they cannot be applied directly
to quadratic DAEs [3]. In general, models with numerous inputs and outputs are
challenging for MOR, and most MOR methods produce large and dense ROMs for
such systems. In [2], the BDSM-ET and SIP-ET methods for ET coupled problems



18 Sparse Model Order Reduction for Electro-Thermal Problems with Many Inputs 191

with many inputs are proposed to overcome this problem. The BDSM-ET method is
more accurate and leads to much smaller ROMs than the SIP-ET method. However,
the BDSM-ET ROMs have dense matrices in the electrical subsystem and a dense
3-way tensor in the thermal subsystem, which restricts their applicability to small
and medium sized ET systems. In this paper, we modify the BDSM-ET method
proposed in [2]. In Sect. 18.2, we review the BDSM-ET method. Section 18.3
introduces the proposed modification of the BDSM-ET methods. Finally, we present
numerical experiments and conclusions. For simplicity, we remove (t) for time
dependent variables in the next sections.

18.2 BDSM-ET Method for ET Coupled Problems with
Many Inputs

In this section, we discuss the BDSM-ET method proposed in [2]. We consider a
structure arising naturally in nanoelectronic coupled problems with many inputs,
taking the form of (18.1) with system matrices and tensor structures as below,

E =
(

0 0

0 ET

)
, A =

(
Av 0

0 AT

)
, B =

(
Bv 0

0 BT

)
, C =

(
Cv CT

)
, D =

(
Dv DT

)
,

F = (0, . . . , 0,FTnv+1, . . . ,F
T
n

)T
, Fi =

(
Fvi 0

0 0

)
∈ R

n×n, i = nv + 1, . . . , n, u =
(
uv
uT

)
,

with Av ∈ R
nv×nv , Bv ∈ R

nv×m̃, ET ∈ R
nT×nT , AT ∈ R

nT×nT , BT ∈ R
nT×m̃,

Cv ∈ R
 ×nv , Fvi ∈ R

nv×nv CT ∈ R
 ×nT , Dv ∈ R

 ×m̃, DT ∈ R
 ×m̃, and uv,uT ∈

R
m̃, m̃ = m/2. Thus, substituting the above matrices and the tensor F into (18.1)

leads to an equivalent decoupled system given by

Avxv = −Bvuv, (18.3a)

ET x′T = AT xT + xTv FT xv + BT uT , xT (0) = xT0, (18.3b)

y = Cvxv + CT xT + Dvuv + DT uT , (18.3c)

with FT = (
FT
T1
, . . . ,FT

TnT

)T ∈ R
nv×nv×nT ,FTj = Fvnv+j , j = 1, . . . , nT

and Fvi is as defined earlier. Equations (18.3a) and (18.3b) are the electrical and
thermal subsystems, respectively. After decoupling, the system (18.3) is now a one-
way coupled system. Since the solution of the electrical and thermal subsystems
can be computed consecutively, we call it decoupled, in contrast to the fully
coupled original system, for which the electrical and the thermal subsystem must
be solved simultaneously. We can observe that the nonlinear term xTv FT xv can
be treated as part of the thermal input, since it is obtained by first simulating the
electrical subsystem. The output can be obtained through (18.3c). Even after the
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above simplification, system (18.3) is still computationally expensive to simulate.
Moreover, the decoupled system still has numerous inputs for both the electrical and
the thermal subsystems. MOR replaces the decoupled system (18.3) with a reduced-
order decoupled system

Avr xvr = −Bvruv, (18.4a)

ETr x
′
Tr
= ATr xTr + xTvrFTrxvr + BTruT , xTr (0) = xTr0 , (18.4b)

yr = Cvr xvr + CTr xTr + Dvuv + DT uT , (18.4c)

where Avr ∈ R
rv×rv , Bvr ∈ R

rv×m̃, ETr ∈ R
rT×rT , ATr ∈ R

rT×rT , BTr ∈ R
rT×m̃,

Cvr ∈ R
 ×rv , CTr ∈ R

 ×rT , FTr ∈ R
rv×rv×rT , with the reduced order r =

rv + rT � n. In order to obtain the ROM (18.4), we combine the MOR techniques
for algebraic and differential subsystems to obtain (18.4a) and (18.4b), respectively.
MOR for general algebraic systems is still underdeveloped and the existing methods
are often application specific, such as the method based on Gaussian elimination for
algebraic systems arising from circuit simulations, see [5, 6, 9, 10] for details. MOR
methods based on Gaussian elimination could be applied to algebraic systems, if
the input matrix Bv has many zero rows, see [2]. The most challenging step is
to reduce the nonlinear term in the thermal subsystem. The BDSM-ET method
[2] was proposed to overcome this problem for the case of ET coupled problems
which can be written in the form of (18.3). This method combines the Gaussian
elimination based methods, such as SIP [10], with the BDSM method [11] to reduce
the electrical and thermal subsystems, respectively. This can be briefly described as
follows. Assume that Bv has many zero rows, then the electrical subsystem (18.3a)
can be reformulated and partitioned as

(
Av11 Av12

A
T

v12
Av22

)(
xve

xvI

)
= −

(
Bve

0

)
uv, yv =

(
Cve 0

) (xve
xvI

)
+ Dvuv, (18.5)

where xve ∈ R
nve and xvI ∈ R

nvI represent the port and the internal nodal voltages,
respectively, and nv = nve + nvI . Eliminating all internal nodes from (18.5) leads
to the reduced-order electrical subsystem (18.4a) with matrix coefficients

Avr =
[
Av11 − Av12Wv

] ∈ R
rv×rv , Bvr = Bve ∈ R

rv×m̃, Cvr = Cve ∈ R
 ×rv ,

(18.6)

where Wv = A−1
v22

AT
v12

∈ R
nvI ×nve , xvr = xve ∈ R

rv , and the order of the
reduced electrical subsystem rv = nve � nv. The reduction is based on the
assumption that the input matrix Bv is very sparse in the sense that it has much
fewer nonzero rows than the total row number, i.e. nve � nv. According to [11],
the reduced matrix Avr is the Schur complement of the block Av22 of the matrix
Av. However, the Schur complement is dense due to the large number of fill-in. In
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many cases, eliminating all internal nodes at once is not advisable because it makes
the construction of Wv = A−1

v22
AT

v12
responsible for the reduction, either costly or

infeasible, since the matrix Av22 can be very large due to a large number of internal
nodes. It then produces a ROM (18.6) with very dense matrix Avr which may even
be more computationally expensive than the original model. A sparse Avr can be
obtained using sparsity control algorithms such as reduceR [9], which minimizes
fill-in in the reduced matrix Avr by using fill-in reducing reordering algorithms,
e.g., approximation minimum degree (AMD) [1], so that internal nodes responsible
for fill-in are placed toward the end of the elimination sequence, along with the other
nodes.

The reduction in the electrical subsystem induces a reduction in the thermal
subsystem through the nonlinear part, leading to

ET x′T = AT xT + xTvr F̃T xvr + BT uT , xT (0) = xT0 ,

yT = CT xT + DT uT ,
(18.7)

where F̃T = FT11 − WT
v FT21 − FT12Wv + WT

v FT22Wv ∈ R
rv×rv×nT is a 3-

way tensor. The 3-way tensors FT11 ∈ R
nve×nve×nT , F12 ∈ R

nve×nvI ×nT , F21 ∈
R

nvI×nve×nT , F22 ∈ R
nvI ×nvI ×nT are the partitions of the tensor FT corresponding

to the partitions in (18.5). The next step is to apply the superposition principle to
(18.7). Assume that the thermal input matrix BT has no zero columns, so that it
can be split into BT =∑m̃

i=1 BTi , where BTi ∈ R
nT×m̃ are column rank-1 matrices

defined as

BTi (:, j) =
{
bTi ∈ R

nT , if j = i,

0, otherwise,
i = 1, . . . , m̃.

Here and below, blkdiag denotes the block-diagonal matrix defined by the input
arguments. Applying the two-stage superposition principle from [2] to (18.7) leads
to a block-diagonal structured system of dimension m̃nT given by

E T x̃
′
T = A T x̃T + xTvrF T xvr +BT uT , x̃T (0) =

[
xT (0), 0

]T
,

yT = C T x̃T + DT uT ,
(18.8)

where ET = blkdiag(ET , . . . ,ET ) ∈ R
m̃nT×m̃nT , CT = (CT , . . . ,CT ) ∈

R
 ×m̃nT , AT = blkdiag(AT , . . . ,AT ) ∈ R

m̃nT×m̃nT , BT = (BT1
T , . . . ,BTm̃

T )T ∈
R

m̃nT×m̃, and F T =
(
F̃T

0

)
∈ R

rv×rv×m̃nT . The corresponding reduced-order

thermal subsystem in the form of (18.4b) has block-diagonal structured matrices
given by

ETr = VTETV, ATr = VTATV, BTr = VTBT , CTr = CTV, (18.9)
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where V = blkdiag(V(1), . . . ,V(m̃)). The projection matrices V(i) can be con-
structed from each subsystem of (18.8) as (see [2] for details)

range(V(i)) = span{Ri ,MRi , . . . ,MrTi−1Ri}, rTi � nT , (18.10)

whereM = (s0ET−AT )
−1ET ∈ R

nT×nT , andRi = (s0ET−AT )
−1bTi ∈ R

nT , i =
1, . . . , m̃. The nonlinear term VT

(
xTvrF T xvr

)
can be reformulated as a reduced-

order nonlinear term xTvrFTr xvr using the following proposition from [3].

Proposition 18.1 Let W = (
wij

) ∈ R
n×r be a matrix, xr ∈ R

r , and F̃ =[
F̃
T

1 , . . . , F̃
T

n

]T ∈ R
r×r×n be a 3D tensor, then there exist a 3D tensor Fr ∈ R

r×r×r ,
such that:

WT
(
xTr F̃xr

)
= xTr Frxr ,

where Fr =
[
FT
r1
, . . . ,FT

rr

]T
with Frj =

n∑
i=1

wij F̃i ∈ R
r×r , j = 1, . . . , r.

From Proposition 18.1, we see that Fr in the reduced-order nonlinear term is
independent of the time t and can be precomputed before simulating the ROM.
Therefore reformulating the nonlinear term further improves the efficiency of
simulating the ROM. It can be seen that V(i) depends only on the single column
bTi , rather than BT with many columns, leading to a block-wise sparse ROM as
compared with the standard moment-matching methods, such as PRIMA [8]. Here,
s0 ∈ C is chosen arbitrarily. Finally, the order of the reduced thermal subsystem
(18.4b) is rT = ∑m̃

i=1 rTi . From the analysis in [2, 11], the block-diagonal system
(18.8) yields a system equivalent to (18.7) , so that the block-diagonal ROM of
(18.8) can be considered as the ROM of (18.7). However, the matrix Avr and the
tensor FTr in the ROM are dense which is still a computational and storage burden.
In the next section, we propose a modified BDSM-ET method which leads to sparser
ROMs.

18.3 Proposed Modified BDSM-ET Method

In this section, we propose the modified BDSM-ET method. The goal of the
modified BDSM-ET method is to reduce the computational and storage demand
of simulating the reduced electrical subsystem and the reduced nonlinear term in
the thermal subsystem, obtained using the BDSM-ET method. Actually, the BDSM
method in [11] can be extended to the electrical subsystem in algebraic form.
Assume that the electrical input matrix Bv has no zero columns, so that it can be
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split into Bv =∑m̃
i=1 Bvi , where Bvi ∈ R

nv×m̃ is a column rank-1 matrix defined as

Bvi (:, j) =
{
bvi ∈ R

nv , if j = i,

0, otherwise,
i = 1, . . . , m̃.

Applying the superposition principle to the electrical subsystem in (18.3) results in
an equivalent block-diagonal algebraic system

Avξv = −Bvuv, yv = Cvξv, (18.11)

where Av = blkdiag(Av, . . . ,Av), Bv = (BT
v1
, . . . ,BT

vm̃
)T , Cv = (Cv, . . . ,Cv),

ξv = (xTv1
, . . . , xTvm̃)

T . The next step is to reduce the dimension of (18.11). This
is done by applying reordering and elimination techniques to each subsystem of
(18.11):

Avxvi = −Bviuv, yvi = Cvxvi , i = 1, . . . , m̃. (18.12)

Assuming each Bvi has many zero rows, then each subsystem in (18.12) can be
reformulated as

⎛
⎝A(i)

v11 A(i)
v12

A(i)T

v12 A(i)
v22

⎞
⎠
(
x(i)ve

x(i)vI

)
= −

(
B(i)
ve

0

)
uv, yvi =

(
C(i)

ve 0
)(x(i)ve

x(i)vI

)
, (18.13)

where x(i)ve ∈ R
n
(i)
ve and x(i)vI ∈ R

n
(i)
vI represent the port and the internal nodal voltages,

respectively, and nv = n
(i)
ve + n

(i)
vI , i = 1, . . . , m̃. Eliminating all internal nodes

from (18.13) leads to the ROM of each subsystem as below

Avri
xvri = Bvri

uv, yvri = Cvri
xvri , (18.14)

where Avri
= [A(i)

v11−A(i)
v12Wvi

] ∈ R
rvi×rvi , Bvri

= −B(i)
ve ∈ R

rvi×m̃, Cvri
= C(i)

ve ∈
R

 ×rvi , Wvi = A(i)−1

v22 A(i)T

v12 ∈ R
n
(i)
vI
×n(i)ve , xvri = x(i)ve ∈ R

rvi , and rvi = n
(i)
ve � nv.

Replacing each Av,Bvi ,Cv, xvi in (18.11) with Avri
,Bvri

,Cvri
, xvri leads to the

ROM of (18.11), which is also the ROM of (18.3a) of dimension rv =∑m̃
i=1 rvi and

with matrices

Avr = blkdiag(Avr1
, . . . ,Avrm̃

), Bvr = (BT
vr1

, . . . ,BT
vrm̃

)T , Cvr = (Cvr1
, . . . ,Cvrm̃

).

Finally, we reduce the thermal subsystem (18.3b). Here, we propose the approach
which leads to a much sparser reduced 3-way tensor than that obtained using the
BDSM-ET method. Applying the superposition principle to the algebraic subsystem
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(18.3a) introduces
(∑m̃

i=1 x
T
vi

)
FT

(∑m̃
i=1 xvi

)
into the thermal subsystem, i.e. xv is

replaced by
∑m̃

i=1 xvi in the nonlinear part. In order to obtain a sparse tensor, the

approximation
(∑m̃

i=1 x
T
vi

)
FT

(∑m̃
i=1 xvi

)
≈ ∑m̃

i=1 x
T
vi
FT xvi is introduced for the

thermal subsystem. From numerical simulations results, we have observed that the
error introduced by the approximation is very small and can be neglected for the
nanoelectronic problems considered.

Thus (18.3b) can be approximated as

ET x′T = AT xT + ξTv FT ξv,+BT uT , xT (0) = xT0, (18.15a)

yT = CT xT + DT uT . (18.15b)

Here we have used the equality

m̃∑
i=1

xTviFT xvi = ξTv FT ξv,

where FT = [
F T

T1
, . . . ,F T

TnT

]T ∈ R
ñv×ñv×nT , ñv = m̃nv, FTi =

blkdiag(FTi , . . . ,FTi ) ∈ R
ñv×ñv , FTi ∈ R

nv×nv and ξv is defined as in (18.11).
We can see that each reduced state in (18.14) induces a reduction in (18.15) leading
to

ET x′T = AT xT + ξTvrFTr ξvr + BT uT , xT (0) = xT0, (18.16a)

yT = CT xT + DT uT , (18.16b)

where ξvr = (xTvr1 , . . . , x
T
vrm̃

)T , FTr =
[
F T

Tr1
, . . . ,F T

TrnT

]T ∈ R
rv×rv×nT ,

with FTri
= blkdiag(FTri

, . . . ,FTri
) ∈ R

rv×rv , where FTri
= F(i)

T11
−WT

vi
F(i)
T21
−

F(i)
T12

Wvi +WT
vi
F(i)
T22

Wvi ∈ R
rvi×rvi . Here F(i)

T11
,F(i)

T12
,F(i)

T21
,F(i)

T22
are the sub-blocks

of FTi partitioned according to the partition of Av in (18.13). Since
∑m̃

i=1 x
T
vi
FT xvi

can be considered as an extra input for the thermal subsystem, the superposition
principle still applies to the thermal subsystem. Therefore, (18.16) can also be split
into m̃ subsystems, the thermal state xT of (18.16) can be reduced following the
steps from (18.8) till the end of Sect. 18.2. The reduced thermal system is in the form
of (18.4b) with the reduced matrices being defined in (18.9). Using Proposition 18.1,

the nonlinear term VT
(
ξTvr F̃ T ξvr

)
, where F̃ T =

(
FTr

0

)
∈ R

rv×rv×m̃nT , F̃ T =
[
F̃ T

T1
, . . . , F̃ T

Tm̃nT

]T
with F̃ Ti ∈ R

rv×rv can also be reformulated as ξTvr F̃ Tr ξvr ,

where F̃ Tr =
[
F̃ T

Tr1
, . . . , F̃ T

TrrT

]T ∈ R
rv×rv×rT with F̃Trj

=
m̃nT∑
i=1

vjiF̃ Ti ∈
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R
rv×rv , j = 1, . . . , rT , V = (

vij
) ∈ R

m̃nT×rT . Here, the reduction matrix V is
defined and computed as in (18.10). Instead of a dense tensor as in the previous
section, here F̃ Tr is in block-diagonal form which is sparse. Combining the above
block structured reduced electrical and thermal subsystems, we obtain the modified
BDSM-ET ROMs of (18.1) in the form of (18.2) with system matrices

Er =
(

0 0

0 ETr

)
, Ar =

(
Avr 0

0 ATr

)
, Br =

(
Bvr 0

0 BTr

)
, Cr =

(
Cvr CTr

)
, D =

(
Dv DT

)
,

Fr =
(
0, . . . , 0,FT

rv+1, . . . ,F
T
rv+rT

)T
, Frv+j =

(
F̃Trj

0

0 0

)
∈ R

r×r , j = 1, . . . , rT .

Hence, by construction, the modified BDSM-ET method constructs sparser ROMs
than the BDSM-ET method proposed in [2], since all its reduced matrices and the
tensor are block-wise sparse as also illustrated in the next section.

18.4 Numerical Experiments

In this section, we illustrate the efficiency of the modified BDSM-ET method by
examining three ET coupled models from industrial applications, namely, a package
model (n = 9193,m = 34,  = 68), a power-MOS model (n = 13,216,m =
6,  = 12), and a power cell model (n = 925,286,m = 408,  = 816) as shown
in Table 18.1. The first two ET models are nonlinear quadratic DAEs of the form
(18.1), while the last model is a linear DAE, i.e., F = 0. Simulations on the first two
ET models are done in MATLAB R©Version 2012b on a Laptop with 6 GB RAM,
CPU@ 2.00 GHz. Simulation on the power cell model is done on a Unix compute
server with 1 TB main memory.

All these models can be reformulated into an equivalent decoupled system
of the form (18.3). Then, the numerical solutions are obtained by applying the
built-in MATLAB function mldivide(/) to the electrical subsystem and the implicit-
Euler integration scheme to the thermal subsystem in the desired time interval.
We reduce each ET decoupled model using the PRIMA-ET, BDSM-ET and the
proposed modified BDSM-ET methods. The PRIMA-ET method uses the Gaussian
elimination and PRIMA methods, to reduce the order of the electrical and thermal
subsystems, without applying the superposition principle. The other two MOR
methods are as discussed in Sects. 18.2 and 18.3, respectively.

In Table 18.1, nT is the order of the thermal subsystem, nv is the order of
the electrical subsystem, rv is the order of the reduced electrical subsystem, rT
is the order of the reduced thermal subsystem, r = rv + rT is the order of the
reduced ET coupled model, “%Red” means the reduction rate in % w.r.t. the original
order n. In Table 18.2, “Stor. (Mb)” is the storage requirement, “Error” is the
maximum output relative error in time domain, “Speed-up” represents the speed-
up factor w.r.t. the time for simulating the original large model. From Table 18.1,
we can see that PRIMA-ET was unable to reduce the large model with dimension
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Table 18.1 Dimension comparison of ROMs, r = rv + rT

Models Decoupled models PRIMA-ET BDSM-ET Modified BDSM-ET

n m  nv nT rv rT r % Red rv rT r % Red rv rT r % Red

9193 34 68 8071 1122 188 198 386 95.8 188 198 386 95.8 238 198 436 95.3

13,216 6 12 11,556 1660 160 63 223 98.3 160 84 244 98.15 160 84 244 98.15

925,286 408 816 392,773 532,513 – – – – 9264 4305 13,569 98.53 9396 4305 13,701 98.52

Table 18.2 Efficiency comparison of ROMs

Models PRIMA-ET BDSM-ET Modified BDSM-ET

n r Stor. (Mb) Error Speedup r Stor. (Mb) Error Speed-up r Stor. (Mb) Error Speed-up

9193 386 140.3 7.2× 10−9 12.3 386 16 2.1× 10−2 65.7 436 2.6 2.1× 10−2 70.6

13,216 223 27.01 3.5× 10−5 74.3 244 27.03 1.4× 10−2 120 244 14.2 1.4× 10−2 157.1

925,286 – – – – 13,569 385.3 6.3× 10−8 5.7 13,701 56.4 7.0× 10−7 972.7

925,286, because of memory limitations. Comparing the BDSM-ET type methods
with the PRIMA-ET method, we see that both methods produce accurate ROMs
with large speed-ups as shown in Table 18.2. The modified BDSM-ET ROMs
are computationally cheaper than the BDSM-ET ROMs yet with almost the same
accuracy, especially for large models. For the case of the power cell model, the
modified BDSM-ET ROM is 170.6 faster than the BDSM-ET method. This is due
to the fact that the resulting reduced model is completely block-wise sparse (see
Fig. 18.4), and each block is very small w.r.t. the original order n, which results
in a very sparse ROM. Furthermore, it requires much less storage requirements,
since it constructs sparse ROMs as illustrated in Figs. 18.1, 18.2, 18.3 and 18.4.
In Table 18.3, we compare the off-line costs which are the times to construct the
ROMs. We can observe that modified BDSM-ET ROMs are computationally more
expensive to construct compared to the other ROMs and their computational cost
depends on the number of inputs.
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Fig. 18.1 Comparison of the sparsity of the reduced matrix Er , n = 9193
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Fig. 18.2 Comparison of the sparsity of the reduced matrix Ar , n = 9193
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Fig. 18.3 Comparison of the sparsity of the first nonzero slice of the reduced tensor Fr , n = 9193

Fig. 18.4 Comparison of the sparsity of the reduced power cell matrix Ar , n = 925,286
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Table 18.3 Off-line cost comparison of ROMs

Models PRIMA-ET BDSM-ET Modified BDSM-ET

n r Off-line cost (s) r Offline-cost r Offline-cost (s)

9193 386 22 386 18.5 436 256.2

13,216 223 12.1 244 13 244 1172.7
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Fig. 18.5 Comparison of the outputs at port 611, (y611, n = 925,286). (a) The thermal flux. (b)
The relative error

In Fig. 18.5, we compare the outputs at port 611, y611, given by the BDSM-ET
type ROMs and the original power-cell model. The power-cell model corresponds
to a power-transistor design of ONN that is intended for use in smart-power ICs.
The system is excited by 408 inputs defined as below.

ui =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5, 1 ≤ i ≤ 200,
0, i = 201,
0, i = 202, t ∈ [0, 10−7),

1.5(107t − 1), i = 202, t ∈ [10−7, 2× 10−7],
1.5, i = 202, t ∈ (2× 10−7, 5× 10−7],
10, i = 203,
0, i = 204,
26.85 205 ≤ i ≤ 408.

The initial condition for all electrical state variables is 0 V, and the initial condition
for all thermal state variables is 26.85 ◦C. We used the implicit-Euler integration
scheme on a nonuniform grid in the time interval [0, 0.002 s] to simulate the thermal
subsystem.
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Both methods introduce very small relative errors as shown in Fig. 18.5b. The
ROM error is defined as

max
i∈{t1,...,t29}

‖yi − yri‖2/‖yi‖,

where yi ∈ R
n× is the output, obtained from the original power-cell model, it is

a vector containing all the output values at the ith nonuniform time step ti , i =
1, . . . , 29 in the time interval [0, 2.0× 10−3 s].

18.5 Conclusion

We have proposed a modified BDSM-ET method for ET coupled problems with
many inputs arising from industrial applications. The modified BDSM-ET method
produces sparse yet accurate ROMs compared with the BDSM-ET method. Finally,
the proposed method allows independent calculations which attracts parallelization.
This could be a topic in the future.
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Chapter 19
Quadrature Methods and Model
Order Reduction for Sparse
Approximations in Random Linear
Dynamical Systems

Roland Pulch

Abstract We consider linear dynamical systems including random variables to
model uncertainties of physical parameters. The output of the system is expanded
into a series with orthogonal basis functions. Our aim is to identify a sparse
approximation, where just a low number of basis functions is required for a
sufficiently accurate representation. The coefficient functions of the expansion are
approximated by a quadrature method or a sampling technique. The performance of
a quadrature scheme can be described by a larger linear dynamical system, which
is weakly coupled. We apply methods of model order reduction to the coupled
system, which results in a sparse approximation of the original expansion. The
approximation error is estimated by Hardy norms of transfer functions. Furthermore,
we present numerical results for a test example modelling the electric circuit of a
band pass filter.

19.1 Introduction

The mathematical modelling of electronic circuits and devices yields dynamical
systems, which contain physical or geometrical parameters. The parameters often
exhibit uncertainties or fuzziness. In nanoelectronics, for example, miniaturisation
causes imperfections in an industrial production. An uncertainty quantification is
often performed by a stochastic modelling, where uncertain parameters are replaced
by random variables or random processes, see [24].

We discuss linear time-invariant dynamical systems with random variables.
An output of the system is defined as a quantity of interest. The quantity of
interest is expanded into a series with orthogonal basis functions. The emphasis
is on polynomial bases due to the concept of the polynomial chaos, see [2, 24].
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We want to identify a sparse approximation, where a sum with just a few basis
functions is sufficiently accurate. For such low-dimensional approximations, least
angle regression [5], sparse grid quadrature [8], compressed sensing [10] and  1-
minimisation [14] were applied as a tool in previous works.

The unknown coefficient functions of the expansion can be approximated by
either stochastic Galerkin methods or stochastic collocation schemes, see [18].
In the stochastic Galerkin method, a larger coupled linear dynamical system
appears, which has to be solved once. Model order reduction (MOR) was applied
successfully to this coupled system in [21, 22]. Details on MOR methods for linear
dynamical systems can be found in [1, 4, 11], for example. Moreover, methods of
MOR allow for the identification of a sparse representation by a reduction of the
Galerkin system as shown in [19].

In this work, we apply stochastic collocation methods, which are defined by
quadrature techniques or sampling schemes, to determine such a low-dimensional
approximation. We consider the case of a relatively large number of random
variables. Sparse grid constructions [12], cubature techniques [23] and quasi Monte-
Carlo methods [17] are feasible. The original dynamical system has to be solved
many times separately for each node of the quadrature method. However, the
quadrature approach can also be formulated as a larger weakly coupled linear
dynamical system, see [20]. Now we use MOR to this large auxiliary system to
obtain a sparse approximation for the quantity of interest. The same error estimates
are valid as in [19], which are derived by the Hardy norms of transfer functions. We
analyse a new aspect of quadrature methods in the case of symmetric probability
distributions.

The paper is organised as follows. The stochastic modelling, the orthogonal
expansions and the problem of sparse approximations are outlined in Sect. 19.2.
Numerical methods based on quadrature techniques are discussed in Sect. 19.3.
MOR determines sparse approximations in Sect. 19.4. Finally, Sect. 19.5 shows
numerical results for a test example, where a sparse grid quadrature and a quasi
Monte-Carlo method are compared.

19.2 Stochastic Modelling and Sparse Representations

The problem under investigation is defined in this section.

19.2.1 Linear Dynamical Systems

We consider linear time-invariant dynamical systems

E(p)ẋ(t,p) = A(p)x(t,p)+ B(p)u(t)

y(t,p) = C(p)x(t,p)
(19.1)
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for t ≥ 0 with the state variables or inner variables x ∈ R
n, the input signal

u ∈ R, the output variable y ∈ R, the matrices A,E ∈ R
n×n, the column

vector B ∈ R
n and the row vector C ∈ R

n. Matrices and vectors include
physical parameters p ∈ Π ⊆ R

q . Hence the state variables or inner variables
as well as the output depend on both the time and the parameters. We discuss a
single-input-single-output (SISO) system (19.1), while generalisations to multiple-
input-multiple-output (MIMO) systems are straightforward. Initial values x(0,p) =
x0(p) are predetermined at t = 0.

On the one hand, the system (19.1) consists of ordinary differential equations
(ODEs) in the case of a regular matrix E(p). On the other hand, a descriptor system
of differential algebraic equations (DAEs) occurs for a singular matrix E(p). The
mathematical modelling of linear electric circuits by modified nodal analysis [13],
for example, typically generates singular matrices E(p) for all p. We assume that the
systems (19.1) are asymptotically stable, i.e., the eigenvalues of the matrix pencil
λE(p)− A(p) have negative real parts for each p ∈ Π .

19.2.2 Stochastic Modelling and Orthogonal Expansions

The physical parameters often include uncertainties. A common approach consists
in the substitution of the parameters by random variables, see [24]. Let the
probability space (Ω,A , μ) be given with event space Ω , sigma-algebra A and
probability measure μ. We assume that the random variables p : Ω → Π are
independent. Furthermore, let a probability density function ρ : Π → R be
available. For a measurable function f : Π → R, the expected value reads as

E [f ] =
∫

Ω

f (p(ω)) dμ(ω) =
∫

Π

f (p)ρ(p) dp (19.2)

provided that the integral exists. The Hilbert space

L 2(Π, ρ) :=
{
f : Π → R : f measurable and E[f 2] <∞

}

is equipped with the inner product < f, g >:= E[fg] using the expected
value (19.2).

We assume that a complete orthonormal basis (Φi)i∈N is given in L 2(Π, ρ). It
holds that < Φi,Φj >= δij with the Kronecker delta. If y(t, ·) ∈ L 2(Π, ρ) for
each t ≥ 0, then the output can be expanded into the series

y(t,p) =
∞∑
i=1

wi(t)Φi(p). (19.3)
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The involved coefficient functions are defined by

wi(t) := < y(t, ·),Φi(·) > =
∫

Π

y(t,p)Φi(p)ρ(p) dp. (19.4)

Often orthonormal polynomials are chosen associated to the theory of the polyno-
mial chaos, see [2, 24]. A truncation of the series (19.3) results in

y(I)(t,p) :=
∑
i∈I

wi(t)Φi(p) (19.5)

with a finite subset I ⊂ N. Numerical methods yield approximations

ŷ(I)(t,p) :=
∑
i∈I

ŵi(t)Φi(p). (19.6)

The involved coefficients functions ŵi for i ∈ I can be computed by either stochastic
Galerkin methods or stochastic collocation techniques, see [18, 24].

19.2.3 Sparse Approximations

In the case of a polynomial basis, the approximations (19.5), (19.6) often include
all multivariate polynomials up to a total degree d , cf. [5, Sect. 2], which yields the
index set

Id :=
{
i : Φi(p) = φ

(1)
j1

(p1) · · ·φ(q)
jq

(pq) with j1 + · · · + jq ≤ d
}
. (19.7)

The sequence (φ
( )
j )j∈N0 includes the univariate orthonormal polynomials with

respect to the distribution of the  th random variable and the degree of φ
( )
j is

exactly j . The number of basis polynomials becomes, see [24, Eq. (5.24)],

|Id | = (q + d)!
q!d! . (19.8)

This number is huge for large numbers q of parameters even if the total degree is
moderate like 3 ≤ d ≤ 5.

Given a large orthonormal basis {Φ1, . . . , Φm}with m := |I| for some index set I
as a starting point, our aim is to identify a small orthonormal basis {Ψ1, . . . , Ψr } for
some r � m with an approximation

y(r)(t,p) :=
r∑

i=1

vi(t)Ψi(p). (19.9)
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The total approximation error can be estimated by

∥∥∥y − y(r)
∥∥∥
L2(Π,ρ)

≤
∥∥∥y − y(I)

∥∥∥
L2(Π,ρ)

+
∥∥∥y(I) − ŷ(I)

∥∥∥
L2(Π,ρ)

+
∥∥∥ŷ(I) − y(r)

∥∥∥
L2(Π,ρ)

(19.10)

for each time point separately using Eqs. (19.3), (19.5), (19.6) and (19.9). The right-
hand side of (19.10) consists of the truncation error, the error of the numerical
method and an additional sparsification error. Our focus is on the sparsification error.
We assume that the first and second error term are sufficiently small by including
enough basis functions and choosing a sufficiently accurate numerical method. In
an optimal case, all three error terms should have the same order of magnitude.

For given ε > 0, let d(ε) be the smallest integer such that Id(ε) from (19.7)
yields a truncation error below ε. We define the sparsity of the representation (19.9)
similar to [5, Sect. 4.1] by the ratio σ := r/|Id(ε)|. If σ � 1 can be achieved with
a sufficiently small approximation error, then the representation is efficient. In our
context, the sparsity σ is time-dependent given some initial value problem of the
system (19.1).

19.3 Quadrature Methods

We examine quadrature methods and sampling techniques for the approximation of
unknown coefficient functions now.

19.3.1 Weakly Coupled Linear Dynamical System

The task consists in the computation of the unknown coefficient functions (19.4)
for without loss of generality i = 1, . . . ,m. We can apply quadrature methods
like sparse grids or sampling techniques like (quasi) Monte-Carlo schemes, for
example. Each method is defined by its nodes {p1, . . . ,ps} ⊂ Π and weights
{γ1, . . . , γs}⊂R. We solve the linear dynamical systems

E(pj )ẋ(t,pj ) = A(pj )x(t,pj )+ B(pj )u(t)

y(t,pj ) = C(pj )x(t,pj )
(19.11)

separately for j = 1, . . . , s. The integrals in (19.4) change into the finite sums

ŵi(t) :=
s∑

j=1

γjΦi(pj )y(t,pj ) =
s∑

j=1

γjΦi(pj )C(pj )x(t,pj ) (19.12)

for i = 1, . . . ,m.
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The systems (19.11) are merged into a single system as done in [20]. Let x̂(t) :=
(x(t,p1), . . . , x(t,ps )) ∈ R

ns and ŵ(t) := (ŵ1(t), . . . , ŵm(t)) ∈ R
m. The systems

(19.11) for j = 1, . . . , s together with the outputs (19.12) for i = 1, . . . ,m yield
the larger system

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t)

ŵ(t) = Ĉx̂(t).
(19.13)

The system (19.13) consists of s separate subsystems (19.11), which are coupled just
by the supply of the same input and the definition of the outputs (19.12). Thus the
matrices Â, Ê ∈ R

ns×ns are block-diagonal. A column vector B̂ ∈ R
ns is included.

Obviously, the system (19.13) is asymptotically stable if the original systems (19.1)
are asymptotically stable for all p ∈ Π .

The approximations (19.12) yield the matrix Ĉ ∈ R
m×ns . We define the matrix

F = (fij ) ∈ R
m×s , fij := γjΦi(pj ). (19.14)

The row vector C in (19.1) is often independent of physical parameters. In this case,
the larger matrix from (19.13) reads as

Ĉ = F(Is ⊗ C) (19.15)

with the identity matrix Is ∈ R
s×s and the Kronecker product. The auxiliary

system (19.13) is single-input-multiple-output (SIMO) now. The outputs ŵ yield
the approximation (19.6) for the quantity of interest.

19.3.2 Symmetric Probability Distributions

An interesting property of sparse grid quadratures is that the matrix F from (19.14)
exhibits many rows identical to zero in the case of polynomial bases and symmetric
probability density functions (uniform distribution, Gaussian distribution, for exam-
ple). The reason is that the multivariate polynomials are just the products of the
univariate orthonormal polynomials. In the case of symmetric probability density
functions, the univariate polynomials of odd degree are odd functions, see [9,
p. 582]. Let p be the expected value of the  th random variable. It follows that

φ
( )
j (p ) = 0 for odd j.

A node of a sparse grid often features one or more components at a center point p .
Due to (19.7), the evaluation Φi(pj ) becomes zero if at least one univariate
polynomial results to zero. In the case of large numbers q of random parameters,
the products consist of q terms and often some term is zero. This discussion also
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applies (with lower extend) to the case, where only a subset of the random variables
have a symmetric probability distribution.

Consequently, the matrix Ĉ in (19.15) has the same zero-rows as the matrix F
from (19.14) both for constant vectors C and parameter-dependent vectors C(p)
in (19.1). The approximation (19.6) becomes

ŷ(I)(t,p) =
∑
i∈I

ŵi(t)Φi(p) =
∑
i∈I\I0

ŵi(t)Φi (p),

where the subset I0 contains the indices of the zero-rows. Hence the quadrature
method cancels out many output components in the sum (19.6) now, which
already represents some sparsification. Since the sparse grid quadrature exhibits
some accuracy, only sufficiently small outputs are approximated by zero and thus
neglected. In the system (19.13), the number of outputs decreases from m = |I| to
|I\I0| by removing the zero-rows from the matrix Ĉ. This property represents an
advantage for MOR, because many reduction methods suffer from a large number
of outputs due to higher computational effort or convergence problems of iteration
schemes.

Quadrature methods often exhibit a polynomial exactness, i.e., the formula yields
the exact integrals for all multivariate polynomials up to a specific total degree d∗.
The property discussed above does not contradict the polynomial exactness. Let di
be the total degree of the ith basis polynomial. It holds that

δik = < Φi,Φk > =
s∑

j=1

γjΦi(pj )Φk(pj ) for di + dk ≤ d∗

with the Kronecker delta. If di ≤ ' d∗2 (, then the ith row of F cannot be identical
to zero, because it follows that < Φi,Φi >= 1 and di + di ≤ d∗. Consequently,
zero-rows may appear only for basis polynomials with total degree di > ' d∗2 (.
For an index set (19.7) with fixed d , the phenomenon of zero rows disappears for
sufficiently large d∗. However, such a high accuracy often cannot be afforded in the
case of high-dimensional parameter sets Π .

19.4 Model Order Reduction

We use MOR for the construction of a low-dimensional approximation now.

19.4.1 Sparse Approximation by Model Order Reduction

The original system (19.1) may be relatively small. Nevertheless, the auxiliary
system (19.13) becomes high-dimensional in the case of large numbers q of random
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parameters, because a quadrature method typically requires a high number s of
nodes. Thus the linear dynamical system (19.13) allows for an MOR. A reduced
order model (ROM) reads as

Eẋ(t) = Ax(t)+ Bu(t)

w(t) = Cx(t)
(19.16)

with dimensionality r � ns. Often projection-based MOR is used, where the
matrices of the system (19.16) are defined by

A = T�l ÂTr, B = T�l B̂, C = ĈTr, E = T�l ÊTr (19.17)

with projection matrices Tl,Tr ∈ R
ns×r of full rank. Established projection-based

MOR methods for linear dynamical systems are moment matching techniques,
balanced truncation and proper orthogonal decomposition, see [1, 11].

The output w(t) := (w1(t), . . . , wm(t))
� ∈ R

m of (19.16) yields an approx-
imation ŷ(I) of the type (19.6) with ŵi = wi for each i. We assume that the
system (19.16) is asymptotically stable. In our MOR, a critical property of the
system (19.13) is that the number of outputs is large for high-dimensional parameter
sets Π .

As in [19], the crucial observation is

y(r)(t,p) :=
m∑
i=1

wi(t)Φi(p) =
m∑
i=1

⎡
⎣

r∑
j=1

cij xj (t)

⎤
⎦Φi(p)

=
r∑

j=1

xj (t)

[
m∑
i=1

cijΦi(p)

]
.

(19.18)

If it holds that r � m = |I| with a sufficiently accurate ROM, then we
achieve a sparse approximation of the type (19.9) with vj = xj for each j . The
formula (19.18) yields the alternative functions {Ψ1, . . . , Ψr } given by

Ψj(p) :=
m∑
i=1

cijΦi(p) for j = 1, . . . , r. (19.19)

In most of the cases, the system {Ψ1, . . . , Ψr } is linearly independent. However, the
basis functions (19.19) are not orthogonal. An orthonormal basis can be constructed
by a singular value decomposition of the matrix C from (19.16) as shown in [19,
Sect. 4.2].
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19.4.2 Numerical Rank Deficiency of Output Matrix

The output matrix may exhibit a (numerical) rank deficiency. The projection-based
MOR (19.17) yields C = ĈTr. For a matrix-matrix-product, the rank fulfils the
well-known inequalities

rank(Ĉ)+ rank(Tr)− ns ≤ rank(C) ≤ min{rank(Ĉ), rank(Tr)}. (19.20)

The projection matrix Tr has full rank r . We assume that the output matrix Ĉ owns
full rank m, which is often satisfied. In view of m� ns as well as r � ns, the lower
bound in (19.20) becomes trivial. The upper bound of (19.20) implies rank(C) ≤ r

due to r < m. Since the maximum rank of the output matrix would be r , a rank
deficiency is not excluded.

Numerical simulations show a numerical rank deficiency of the matrix, which
sounds surprising. The matrix Ĉ ∈ R

m×ns shrinks to C ∈ R
m×r with r � ns. Thus

we expect that all columns of C include important information. Yet not all MOR
methods are optimal in this sense, i.e., also unessential parts may appear.

If a rank deficiency or numerical rank deficiency of the output matrix occurs, then
it can be removed using the singular value decomposition of C again as discussed
in [19, Sect. 4.2]. Keeping all singular values above the machine precision avoids a
(numerical) rank deficiency. A restriction to the dominant singular values allows for
a further reduction of the dimensionality in the sparse approximation (19.18) from
r to some r ′. However, still the ROM (19.16) of dimension r has to be solved to
obtain an approximation of dimension r ′ < r .

19.4.3 Error Estimates

The input-output behaviour of a linear time-invariant dynamical system is described
by a transfer function in the frequency domain, see [1, 11]. The coupled sys-
tem (19.13) owns a transfer function Ĥ : Ŝ → C

m with Ŝ ⊂ C. Likewise, the
reduced system (19.16) has a transfer function H : S → C

m with S ⊂ C. It
holds that Ŝ and S include the imaginary axis provided that the two systems are
asymptotically stable. For a transfer function G of an SISO system, the Hardy norms
H∞ and H2 are defined by

‖G‖H∞ = sup
ω∈R

|G(iω)| and ‖G‖H2
=
√

1

2π

∫ +∞

−∞
|G(iω)|2 dω

(19.21)

with i := √−1. We employ these Hardy norms component-wise to Ĥ and H .
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Let the initial values of the systems (19.1) be identical to zero. The difference
between the quantity of interest from the coupled system (19.13) and the quantity
of interest from the reduced system (19.16) satisfies the estimates

sup
t≥0

∥∥∥ŷ(I)(t, ·)− y(r)(t, ·)
∥∥∥
L 2(Π,ρ)

≤
√√√√

m∑
i=1

∥∥∥Ĥi −Hi

∥∥∥
2

H2
‖u‖L 2[0,∞) (19.22)

∥∥∥ŷ(I) − y(r)
∥∥∥
L 2(Π,ρ)×L 2[0,∞)

≤
√√√√

m∑
i=1

∥∥∥Ĥi −Hi

∥∥∥
2

H∞
‖u‖L 2[0,∞) (19.23)

provided that the norms are finite. Therein, the L 2-norm of the time domain appears
for the input. The proof can be obtained as in [19, Thm. 1]. The error bounds (19.22)
and (19.23) are not sharp and thus the true approximation error may be much
smaller. The sparsification error in (19.10) coincides with the error of this MOR.

19.5 Illustrative Example

We apply the approach from the previous sections now. The following computations
were done using the software package MATLAB [16].

In [20], an ODE model of an L-C-Π band pass filter from [15] was investigated
including q = 11 physical parameters. Now we extend this band pass filter to a
sequence of components shown in Fig. 19.1. An input voltage is added, whereas
the output voltage drops at a load resistance. We choose six components resulting in
q = 41 physical parameters: 13 capacitances, 13 inductances and 15 resistances. We
derive a linear system (19.1) of DAEs with n = 41 equations for 27 node voltages
and 14 branch currents by modified nodal analysis, see [13]. This DAE system
owns the nilpotency index one for all physically relevant parameters. Moreover,
the system is asymptotically stable as well as strictly proper. Figure 19.2 depicts
the Bode diagram of the linear dynamical system for a constant choice of the
parameters: C = 10−6 for all capacitances, L = 10−6 for all inductances and
R = 0.1 for all resistances except for Rin = 1 at the input and Rout = 103 at
the output. The magnitude of the transfer function shows that frequencies outside a
relatively small interval are damped strongly.

inu uout

Fig. 19.1 Electric circuit of an L-C-Π band pass filter
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Fig. 19.2 Bode plot for transfer function of band pass filter in the case of deterministic parameters

Concerning the stochastic modelling, we introduce independent uniform distri-
butions for each parameter, which describe a perturbation of up to 20% around
the constant parameter choice from above. In the truncated expansion (19.5), we
include all multivariate polynomials up to total degree d = 3. The number of basis
polynomials becomes m = 13,244 due to (19.8).

We use two methods for the approximation of the coefficient functions (19.12):

1. a sparse grid by Smolyak construction of level two based on the one-dimensional
Clenshaw-Curtis rule from [7]. The number of nodes is s = 3445. Therein,
negative weights appear. The degree of polynomial exactness is five.

2. a quasi Monte-Carlo method using a Sobol sequence from the built-in routine
sobolset of MATLAB [16]. We apply s = 5000 samples. The weights are all
positive and identical. The scheme does not exhibit a polynomial exactness.

We arrange the coupled system (19.13) for each method. The dimensions result in
ns = 141,245 and ns = 205,000, respectively. The number of outputs is identical
to m in both systems.

An approximation of the Hardy norms (19.21) is computed using a logarithmi-
cally spaced grid in the frequency interval ω ∈ [1, 1010] on the imaginary axis. The
H∞-norms of the systems (19.13) are depicted in Fig. 19.3. Both norms H∞ and
H2 are shown by Fig. 19.4 in descending order. We recognise a faster decay of the
norms for the sparse grid quadrature. Observing the sparse grid technique, about
80.5% of the components exhibit norms identical to zero, because the associated
rows of the matrix Ĉ in (19.13) are zero due to the phenomenon described in
Sect. 19.3.2. In contrast, the norms are all non-zero for the quasi Monte-Carlo
scheme. The faster decay indicates a higher accuracy of the quadrature method,
since the exact norms often decrease rapidly.

In the MOR, we use the Arnoldi procedure, which represents a simple moment
matching technique using Krylov subspaces, see [11]. The single expansion
point μ = 107 is applied for the moment matching. Thus the matrices in the
ROM (19.16),(19.17) become real-valued. An arbitrary dimension r < ns of
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Fig. 19.3 H∞-norms of the system (19.13) for the sparse grid quadrature (left) and the quasi
Monte-Carlo method (right). The dashed line separates components for polynomials of degree
lower than three and degree three (semi-logarithmic scale. Values identical to zero are ignored)
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Fig. 19.4 Hardy norms of the system (19.13) for the sparse grid quadrature (left) and the quasi
Monte-Carlo method (right) in descending order: H∞-norms (solid lines) and H2-norms (dashed
lines) (semi-logarithmic scale. Values identical to zero are ignored)

the ROM can be chosen. In our context, a crucial advantage of the Arnoldi
procedure is that the computational effort is nearly independent of the number
of outputs. However, a disadvantage is that the reduced systems (19.16) are not
necessarily stable.

We perform the MOR for dimensions r = 10, 20, 30, . . . , 400. Figure 19.5
illustrates the error bounds (19.22) and (19.23) given a unit norm of the input with
the selected dimensions of the reduced system (19.16). We observe that the error
estimates decrease significantly for larger dimensions. Both the magnitude and the
speed of decay are similar for both methods. From the 40 reduced systems, just 12
and 25 systems are stable for the sparse grid quadrature and the quasi Monte-Carlo
method, respectively. The instabilities occur for both smaller and larger reduced
dimensions. Furthermore, Table 19.1 shows the minimum dimensions r to obtain an
ROM, where the error bound is below a threshold δ > 0 and the reduced system
is stable. The sparsity for r = 400 becomes σ = 0.03, for example, assuming that
polynomials of total degree d = 3 are required for a sufficiently small truncation
error.



19 Sparse Approximations in Random Linear Dynamical Systems 215

0 100 200 300 400
10-6

10-4

10-2

100

102

104

0 100 200 300 400
10-6

10-4

10-2

100

102

104

Fig. 19.5 Error bounds (19.22) (+) and (19.23) (·) for sparse grid quadrature (left) and quasi
Monte-Carlo method (right) depending on the dimension of the reduced system (semi-logarithmic
scale)

Table 19.1 Minimum dimension r ∈ {10, 20, 30, . . . , 400} required for an error bound below a
threshold δ together with a stable reduced system

Threshold δ 10−1 10−2 10−3 10−4 10−5

Sparse grid Error bound (19.22) 250 320 400 – –

Error bound (19.23) 120 180 250 300 400

Quasi M.-C. Error bound (19.22) 230 300 – – –

Error bound (19.23) 160 160 190 280 –
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Fig. 19.6 Ratios r ′/r between reduced dimension r and additional reduction to r ′ by neglecting
singular values of the output matrix below the thresholds 10−4, 10−8, 10−12 for sparse grid
quadrature (left) and quasi Monte-Carlo method (right)

Finally, we investigate the singular value decomposition of the output matrix
for the ROM (19.16) as discussed in Sect. 19.4.2. The dimension r of the sparse
approximation (19.18) can be reduced further to some r ′ by omitting all singular
values below a threshold, which has to be larger or equal than the machine precision.
The resulting ratios are depicted for different reduced dimensions and miscellaneous
thresholds in Fig. 19.6. We recognise that the behaviour is similar in both stochastic
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collocation methods. For higher dimensions r , the additional reduction can decrease
the dimension by about 20% without a significant loss of accuracy.

19.6 Conclusions

We constructed a sparse approximation for a quantity of interest given a linear
dynamical system including random variables. The approximation requires just
a few basis functions depending on the random variables. The construction is
feasible using an arbitrary quadrature method or sampling technique and an arbitrary
MOR method for large linear dynamical systems. Both the general analysis and
the numerical simulation of a test example demonstrate a promising potential for
the efficient determination of a low-dimensional approximation. Furthermore, the
performance of a sparse grid quadrature was better than a quasi Monte-Carlo
method in the test example. In the sparse grid variant, the Hardy norms of the
outputs decrease faster, which reproduces the behaviour of the exact outputs. The
efficiency can be improved by the application of MOR methods, which are stability-
preserving, see [6], as well as powerful in the case of large numbers of outputs,
see [3].
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Chapter 20
POD-Based Reduced-Order Model
of an Eddy-Current Levitation
Problem

Md. Rokibul Hasan, Laurent Montier, Thomas Henneron,
and Ruth V. Sabariego

Abstract The accurate and efficient treatment of eddy-current problems with
movement is still a challenge. Very few works applying reduced-order models
are available in the literature. In this paper, we propose a proper-orthogonal-
decomposition reduced-order model to handle these kind of motional problems.
A classical magnetodynamic finite element formulation based on the magnetic
vector potential is used as reference and to build up the reduced models. Two
approaches are proposed. The TEAM workshop problem 28 is chosen as a test case
for validation. Results are compared in terms of accuracy and computational cost.

20.1 Introduction

The finite element (FE) method is widely used and versatile for accurately modelling
electromagnetic devices accounting for eddy current effects, non-linearities, move-
ment, . . . However, the FE discretization may result in a large number of unknowns,
which maybe extremely expensive in terms of computational time and memory.
Furthermore, the modelling of a movement requires either remeshing or ad-hoc
techniques. Without being exhaustive, it is worth mentioning: the hybrid finite-
element boundary-element (FE-BE) approaches [1], the sliding mesh techniques
(rotating machines) [2] or the mortar FE approaches [3].
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Physically-based reduced models are the most popular approaches for efficiently
handling these issues. They extract physical parameters (inductances, flux link-
ages, . . . ) either from simulations or measurements and construct look-up tables
covering the operating range of the device at hand [4, 5]. Future simulations are
performed by simple interpolation, drastically reducing thus the computational cost.
However, these methods depend highly on the expert’s knowledge to choose and
extract the most suitable parameters.

Mathematically-based reduced-order (RO) techniques are a feasible alternative,
which are gaining interest in electromagnetism [6]. RO modelling of static coupled
system has already been implemented in [7, 8]. Few RO works have addressed
problems with movement (actuators, electrical machines, etc.) [9–11].

In [9], authors consider a POD-based FE-BE model electromagnetic device
comprising nonlinear materials and movement. Meshing issues are avoided but the
system matrix is not sparse any more, increasing considerably the cost of generating
the RO model. In [10], a magnetostatic POD-RO model of a permanent magnet
synchronous machine is studied. A locked step approach is used, so the mesh and
associated number of unknowns remains constant. A POD-based block-RO model
is proposed in [11, 12], where the domain is split in linear and nonlinear regions and
the ROM is applied only to the linear part.

In this paper, we consider a POD-based FE model of a levitation problem, namely
the Team Workshop problem 28 (TWP28) [5, 13] (a conducting plate above two
concentric coils, see Fig. 20.1). The movement is modelled with two RO models
based on: (1) FE with automatic remeshing of the complete domain; (2) FE with
constraint remeshing, i.e., localized deformation of the mesh around the moving
plate, hereafter referred to as mesh deformation. Both models are validated in the
time domain and compared in terms of computational efficiency.

Fig. 20.1 2D axisymmetric mesh of TWP28: aluminium plate above two concentric coils
(12.8 mm clearance). Real part of the magnetic flux density. Left: automatic remeshing of the full
domain, Right: mesh deformation of sub-domain around plate with nodes fixed at it’s boundaries
(except axes)
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20.2 Magnetodynamic Levitation Model

Let us consider a bounded domain Ω = Ωc ∪ ΩC
c ∈ R

3 with boundary Γ . The
conducting and non-conducting parts of Ω are denoted by Ωc and ΩC

c , respectively.
The (modified) magnetic-vector-potential (a-) magnetodynamic formulation (weak
form of Ampère’s law) reads: find a, such that

(ν curl a, curl a′)Ω + (σ∂t a, a
′)Ωc + 〈n̂× h, a′〉Γ = (js, a

′)Ωs , ∀a′ (20.1)

with a′ test functions in a suitable function space; b(t) = curl a(t), the magnetic
flux density; js(t) a prescribed current density and n̂ the outward unit normal vector
on Γ . Volume integrals in Ω and surface integrals on Γ of the scalar product of
their arguments are denoted by (·, ·)Ω and 〈·, ·〉Ω . The derivative with respect to
time is denoted by ∂t . We further assume linear isotropic and time independent
materials with magnetic constitutive law, so that the magnetic field is h(t) = νb(t)

(reluctivity ν) and electric constitutive law, given by induced eddy current density
j (t) = σe(t), (conductivity σ ) where, electric field e(t) = −∂ta(t). Assuming
a rigid Ωc (no deformation) and a purely translational movement (no rotation, no
tilting), the electromagnetic force appearing due to the eddy currents in Ωc can be
modelled as a global quantity with only one component (vertical to the plate). If Ωc

is non-magnetic, Lorentz force can be used:

Fem(t) =
∫

Ωc

j (t)× b(t) dΩc =
∫

Ωc

−σ∂ta(t)× curl a(t) dΩc . (20.2)

The 1D mechanical equation governing the above described levitation problem
reads:

m∂tv(t) + ξv(t) + ky(t)+mg = Fem(t) (20.3)

where unknown y(t) is the center position of the moving body in the vertical
direction, v(t) = ∂ty(t) is the velocity of the moving body, m is the mass of
the moving body, g is the acceleration of gravity, ξ is the scalar viscous friction
coefficient, k is the elastic constant. We apply the backward Euler method to
solve (20.3). The moving body displacement of system (20.3) results from the
ensuing electromagnetic force generated by system (20.1) and thus affects the
geometry. Given that, the dynamics of the mechanical equation is much slower
than the electromagnetic equation, if the time-step is taken sufficiently small,
one can decouple the equations. Under this condition, the electromagnetic and
mechanical equations can be solved alternatively rather than simultaneously by the
weak electromechanical coupling algorithm of [14]. We adopt this approach.
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20.3 POD-Based Model Order Reduction

The proper orthogonal decomposition (POD) is applied to reduce the matrix system
resulting from the FE discretisation of (20.1):

A∂tx(t)+ Bx(t) = C(t) . (20.4)

where x(t) ∈ R
N×1 is the time-dependent column vector of N unknowns, A, B ∈

R
N×N are the matrices of coefficients andC(t) ∈ R

N×1 is the source column vector.
Furthermore, the system (20.4) is discretized in time by means of the backward
Euler scheme. A system of algebraic equation is obtained for each time step from
tk−1 to tk = tk−1 +Δt , Δt the step size. The discretized system reads:

[AΔt + B] xk = AΔtxk−1 + Ck (20.5)

with AΔt = A
Δt

, xk = x(tk) the solution at instant tk , xk−1 = x(tk−1) the solution at
instant tk−1, Ck the right-hand side at instant tk .

In RO techniques, the solution vector x(t) is approximated by a vector xr(t)

∈ R
M×1 within a reduced subspace spanned by Ψ ∈ R

N×M , M � N ,

x(t) ≈ Ψxr(t) , (20.6)

with Ψ an orthonormal projection operator generated from the time-domain full
solution x(t) via snapshot techniques [15].

Let us consider the snapshot matrix, S = [x1, x2, . . . , xM ] ∈ R
N×M from the

set of solution xk for the selected number of time steps. Applying the singular value
decomposition (SVD) to S as,

S = U ΣV T . (20.7)

where Σ contains the singular values, ordered as σ1 > σ2 > . . . > 0. We consider
Ψ = U r ∈ R

N×r , that corresponds to the truncation (r first columns, which has
larger singular values than a pre-defined error tolerance ε) with orthogonal matrices
U ∈ R

N×r and V ∈ R
M×r . Therefore, the RO system of (20.5) reads

[
Ar

Δt + Br
]
xr
k = Ar

Δtx
r
k−1 + Cr

k , (20.8)

with Ar
Δt = Ψ T AΔtΨ , Br = Ψ T BΨ and Cr = Ψ T C [16].
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20.3.1 Application to an Electro-Mechanical Problem
with Movement

20.3.1.1 ROModelling with Automatic Remeshing Technique

In case of automatic remeshing, we transfer results from the source meshk−1 to the
new target meshk by means of a Galerkin projection, which is optimal in the L2-
norm sense [17]. Note that, this projection is limited to the conducting domain, i.e.
the plate, as it is only there that we need to compute the time derivative. The number
of unknowns per time step tk varies and the construction of the snapshot matrix S is
not straightforward. As the solution at tk is supported on its own mesh, the snapshot
vectors xk have a different size. They have to be projected to a common basis using
a simple linear interpolation technique before being assembled in S and getting the
projection operator Ψ . The procedure becomes thus extremely inefficient.

20.3.1.2 ROModelling with Mesh Deformation Technique

The automatic remeshing task is replaced by a mesh deformation technique, limited
to a region around the moving body (see, e.g., the box in Fig. 20.2). Therefore, in this
case, the remeshing is done by deforming the initial mesh, which is generated with
the conducting plate placed at, e.g., y0 (avoiding bad quality elements), see Fig. 20.2.
The mesh elements only inside the sub-domain can be deformed (shrink/expand),
see Fig. 20.3 and the nodes at the boundary of the sub-domain are fixed. The

Fig. 20.2 Sub-domain for deformation: plate position at y0 = 12.8 mm (initial mesh)

Fig. 20.3 Sub-domain for deformation: plate position at y = 20 mm. Mesh elements under the
plate are expanded and above the plate are shrinked
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surrounding mesh does not vary. In our test case, we assume a vertical force (neglect
the other two components) in (20.2), therefore, the mesh elements only deform in
the vertical direction and the nodes are fixed at the boundary of the sub-domain
(not at the axes due to the axisymmetry). The size of the sub-domain (a×b) is
determined by the extreme positions of the moving body. In our validation example,
the minimum position (3.8 mm) is given by the upper borders of the coils and the
maximum position (22.3 mm) could be estimated by means of a circuital model,
e.g. [5]. The number of unknowns per time step remains now constant so the
construction of matrix S is direct.

Algorithm 1: Automatic remeshing

Input : snapshot vectors {Sc} ← {xk} ∈ R
n(k)×1

time steps
{tk}, k ∈ [1, . . . , K]
AΔt , B, C, tolerance ε

m ≤ n(k) snapshot vectors
Output: displacement yk

1 y0 = initial position, Δy0 = 0

//Time resolution
2 for k ← 1 to K do

//Magnetics
3 generate matrices AΔtk , Bk, Ck

4 find length of Ck ∈ R
n(k)×1

5 Sp = 0 ∈ R
n(k)×m

6 Sp ← projection of {Sc} to n(k) rank subspace
7 SVD of Sp = U ΣV T

8 Ψk = U (:, 1 . . . r) with r such that σ(i)/σ (1) > ε,∀i ∈ [1 . . . r]

9

Ar
Δtk
=Ψ T

k AΔtkΨk,

Br
k =Ψ T

k BkΨk,

Cr
k =Ψ T

k Ck

10 solve
(
Ar

Δtk
+ Br

k

)
xrk = Cr

k +Ar
Δtk

xr
k−1

11 xk ≈ Ψkx
r
k

12 compute force Fk

//Mechanics
13 compute displacement yk
14 update Δyk = yk − yk−1
15 remesh with yk

16 end
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Algorithm 2: Mesh deformation

Input : snapshot matrix S = [x1, . . . , xm] ∈ R
n×m, xk ∈ R

n×1

time steps
{tk}, k ∈ [1, . . . ,K]
AΔt, B, C, tolerance ε

m ≤ n snapshot vectors
Output: displacement yk

1 y0 = initial position, Δy0 = 0
2 get initial mesh
3 SVD of S = U ΣV T

4 Ψk = U (:, 1 . . . r) with r such that σ(i)/σ (1) > ε,∀i ∈ [1 . . . r]
//Time resolution

5 for k ← 1 to K do
//Magnetics

6 generate matrices AΔtk , Bk, Ck

7

Ar
Δtk
=Ψ T AΔtkΨ,

Br
k =Ψ T BkΨ,

Cr
k =Ψ T Ck

8 solve
(
Ar

Δtk
+ Br

k

)
xr
k = Cr

k + Ar
Δtk

xr
k−1

9 xk ≈ Ψxr
k

10 compute force Fk

//Mechanics
11 compute displacement yk
12 update Δyk = yk − yk−1
13 deform mesh with yk

14 end

20.4 Application Example

We consider TWP28: an electrodynamic levitation device consisting of a conducting
cylindrical aluminium plate (σ = 3.47× 107 S/m, m = 0.107 kg, ξ = 1) above two
coaxial exciting coils. The inner and outer coils have 960 and 576 turns respectively.
Note that, if we neglect the elastic force, the equilibrium is reached when the
Fem is 1N. At t = 0, the plate rests above the coils at a distance of 3.8 mm.
For t ≥ 0, a time-varying sinusoidal current (20 A, f = 50 Hz) is imposed,
same amplitude, opposite directions [13]. Assuming a translational movement (no
rotation and tilting) we can use an axisymmetric model. A FE model is generated
as reference and origin of the RO models. We have time-stepped 50 periods



226 Md. R. Hasan et al.

(100 time steps per period and step size 0.2 ms), discretization that ensures accuracy
and avoids degenerated mesh elements during deformation.

20.4.1 RO Modelling with Automatic Remeshing Full Domain

In case of full domain remeshing, the first 1500 time steps (300 ms) of the
simulation, that correspond to the first two peaks (2P) in Fig. 20.4, are included
in the snapshot matrix.

Three POD-based RO models are constructed based on the r number of first
singular value modes greater than a prescribed error tolerance ε, that is set manually
observing the singular values decay curve of the snapshot matrix (see in Table 20.1).
The smaller the prescribed ε, the bigger the size of the RO model will be (size of
RO3>RO2>RO1).

The displacement and relative error of the full and RO models are shown in
Fig. 20.4. Accurate results have been achieved with the truncated basis models:
RO2 and RO3, with fix size per time step M = 1403 and 1411. This approach
is completely inefficient, as the maximum number of unknowns we have in the full
model is 1552.
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Fig. 20.4 Displacement (up) and relative error (down) between full and RO models

Table 20.1 L2-relative
errors of RO models on
levitation height for 2P
(automatic remeshing)

RO models M ε Rel. error

RO1 1085 10−6 1.25 × 10−1

RO2 1403 10−11 1.03 × 10−2

RO3 1411 10−15 2.45 × 10−6
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20.4.2 RO Modelling with Mesh Deformation of a Sub-domain

The choice of the sub-domain to deform the mesh is a non-trivial task: it should
be as small as possible while ensuring a high accuracy. From our reference FE
solution [13], by observing the minimum and maximum levitation height of the
plate, we fixed the sub-domain size along the y-axis between ymin = 1.3 mm and
ymax = 29.3 mm, distances measured from the upper border of the coils. The size
along the x-axis has a minimum equal to the radius of the plate, i.e. r = 65 mm.
This value is however not enough due to fringing effects. We have taken different
size along the x-axis: 1.5r, 2r, 3r (97.5, 130 and 195 mm), measured from the axis
(Fig. 20.2). The meshed boxes yield 1921, 1836 and 1780 number of unknowns.

The relative errors in time shown in Table 20.2 decrease with the increasing sub-
domain lengths/box sizes considered. We have therefore chosen to further analyse
the RO results obtained with a box length along x of 195 mm (3r). The discretization
is kept constant for all RO models computation.

The first 800 time steps (160 ms) of the simulation, that correspond to the first
peak (1P), are taken in the snapshot matrix in order to generate the projection basis
Ψ . In the snapshot matrix, the most important time step solutions are included,
which found as optimum selection for approximating the full solution. Then the
basis is truncated as Ψ = U r (r first columns) by means of prescribed error
tolerance (ε = 10−5, 10−8). The basis are truncated for 1P to get RO models of
size M = 7 and 35.

From Fig. 20.5, it can be observed that, RO model already shows very good
argument with only M = 7 truncated basis, which is generated from the snapshot
matrix that incorporates first peak (1P). The accuracy of RO models does not
improve significantly with the addition of following transient peaks (2P) into the
snapshot matrix, but the accuracy certainly improves with M . Hence, with M = 35
the full and RO curves are indistinguishable. The accuracy of the RO models can
also be observed from the L2-relative errors figure.

With regard to the computation time (5000 time steps), the RO with M = 7, can
be solved less than an hour, which is 3.5 times faster than the full-domain automatic
remeshing approach, where the major time consuming part is to project the Ψ on
a same dimensional basis as the system coefficient matrices, to reduce the system
in each time step. Be aware that the computation is not optimized, performed on a
laptop, (Intel Core i7-4600U CPU at 2.10 GHz) without any parallelization.

Table 20.2 L2-relative
errors of RO models on
levitation height for 1P
(mesh deform)

Sub-domain lengths (mm) M = 7 M = 35

97.5 8.24 × 10−2 6.14 × 10−4

130 5.71 × 10−2 1.90 × 10−4

195 4.53 × 10−3 3.73 × 10−5
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Fig. 20.5 Displacement (up) and relative error (down) between full and RO models for 195 mm
sub-domain length

20.5 Conclusion

In this paper, we have proposed two approaches for POD-based RO models to treat
a magnetodynamic levitation problem: automatic remeshing and mesh deformation
of a sub-domain around a moving body. The RO model is completely inefficient
with automatic remeshing technique, as the computational cost is nearly expensive
as the classical approach. The approach with sub-domain deformation to limit the
influence of the movement on the RO model construction has proved accurate
and efficient (low computational cost). We have shown results for three different
sub-domain sizes, the bigger the sub-domain the higher the accuracy. Further,
computationally efficient RO modelling of such parametric model is ongoing
research.
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Chapter 21
Time-Domain Reduced-Order
Modelling of Linear Finite-Element
Eddy-Current Problems
via RL-Ladder Circuits

Ruth V. Sabariego and Johan Gyselinck

Abstract This paper deals with the reduced-order modelling of magnetically-
linear eddy-current devices which have a single electrical port, i.e. one terminal
voltage and current. The device is first characterised by means of frequency-
domain finite-element computations considering the relevant frequency interval,
for subsequently fitting constant-coefficient RL ladder circuits of adjustable size
(i.e. number of branches and loops). The accuracy of the ladder-circuit model is
assessed in both frequency and time domain. This approach is successfully applied
to the axisymmetric magnetic-levitation device of TEAM Workshop problem 28,
which includes a position degree of freedom as well.

21.1 Introduction

Finite-element (FE) modelling of electromagnetic devices allows to consider with
variable precision the (2D or 3D) geometry and dimensions, magnetic material prop-
erties (including saturation and possibly hysteresis), time variation (static, sinusoidal
regime and time stepping), induced currents in massive conducting parts, electrical
connectivity and supply conditions, along with mechanical conditions and equations
in case of an electrical machine or actuator [1, 2]. In high-frequency devices and
high-speed machines, eddy currents and eddy-current effects in lamination stacks
and windings can be of prime concern, in which case homogenization techniques,
rather than brute-force modelling, may be indispensable for computational-cost
reasons [3, 4].
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Time-stepping FE simulation may be the suitable approach for studying the
performance of the device in simple steady-state electrical and mechanical operating
conditions, and possibly for optimising the device in such conditions. If the next
stage in the analysis/design is about more realistic transient operation, possibly
along with (closed-loop) control and integration in the wider system, the FE
model may become prohibitively expensive, and a computationally cheaper model,
generically referred to as reduced-order model (ROM), should be derived, even
when this implies a certain loss of accuracy.

Purely mathematical ROMs [5] in various engineering disciplines are flexible and
automated models that capture the essential features of a problem with a prescribed
accuracy. The most widely used ROMs are those based on the proper orthogonal
decomposition (POD) [6]. The POD approach relies on a snapshot selection, i.e.
solutions of the full model for typical working conditions, at different frequencies
or time steps, so as to construct a reduced basis [7]. Expensive Greedy algorithms
that scan the discrete space are used for selecting suitable sets of snapshots [8]. In
[9], POD is combined with discrete empirical interpolation for handling a nonlinear
magnetostatic problem. The treatment of movement has been considered as well,
though there are to date very few works in electromagnetics. An electrical machine
is studied in [10] with a locked-step approach, i.e. the mesh does not change with
rotation. As common feature, all these ROMs involve little or no physical insight of
the device or problem at hand.

Alternatively, ROMs can also be based on the systematic, more physics-based
identification of the device via a series of simple static or dynamic FE compu-
tations [11, 12], rather than on a manipulation of the FE equations and matrices.
Such an approach is more or less straightforward and feasible depending on the
characteristics of the electromagnetic device: the number of independent currents
(or voltages) ni, the absence/presence of saturable magnetic materials and induced
currents, and the number of position degrees of freedom np (none, one or more).
Different particular cases can be distinguished. If the system is magnetically
linear and comprises no eddy currents, the current-independent ni × ni inductance
matrix can be straightforwardly obtained by ni magnetostatic computations; position
dependence, if any, can be quantified by a suitable sampling in the np-dimensional
motion space. Through tabulation and interpolation (extrapolation) of the induc-
tance values, a minimum-cost model of the device is easily arrived at, with a priori
little or no loss of accuracy.

The situation changes drastically in presence of saturable material, as all ni × ni
inductance values depend on all ni currents, leading quickly (for all but very
small ni) to an unworkable number of magnetostatic computations to carry out for
sampling the current space, possibly combined with the motion space [13]. The
presence of eddy currents (or eddy-current effects) is another major complication.
For linear (i.e. magnetically-unsaturable) systems, frequency-domain characterisa-
tion is relatively straightforward, as well as its time-domain extension. The latter
can be easily done via a ladder-circuit-like approach for single-port systems. For a
generalisation to multi-port systems, see e.g. [14]. For the case with eddy currents
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and saturation, a general approach is much less evident and ad-hoc approaches and
approximations seem unavoidable, e.g. [15].

In this paper we focus on a relatively simple, though far from trivial case,
which is the one of a magnetically-linear device having one terminal current (and
voltage) and which includes eddy currents and 1D movement. The developments are
directly done for and applied to the levitation device of TEAM Workshop problem
28 (TWP28) [16], knowing that the application to 2D translation-symmetrical
and 3D problems is very similar. In the following section the TWP28 device is
first presented and identified in the frequency domain, at a number of relevant
frequencies and positions. In Sect. 21.3 an approximate ladder-circuit model is fitted
and validated considering both sinusoidal and transient regime, whereby the position
is held constant (within the relevant range). Note that time-varying position is a non-
trivial complication, which will be dealt with in a further paper.

21.2 TWP28: Frequency-Domain FE Identification

The axisymmetric device of TWP28 comprises two concentric anti-series-connected
coils (both of rectangular cross-section in the rz-plane) and a 3 mm-thick aluminum
circular disk located concentrically at a certain height above the coils [16]. Part of
the 2D model can be seen in Figs. 21.1 and 21.2; the clearance between the coils
and the plate is 3 mm, i.e. position degree of freedom zpl.

The well-known magnetodynamic vector potential formulation (MVP), in terms
of its tangential component is adopted, either in the time or frequency domain
(aφ(t) or aφ); its allows for tangential current density, which is either imposed

Re(jz)

-1.37e+07 -3.71e+06 6.31e+06

Im(jz)

-1.37e+07 -3.71e+06 6.31e+06

Fig. 21.1 Flux lines and induced current density in the plate, real (left) and imaginary (right) parts,
with f = 50 Hz, zpl = 3 mm and i = 20 A

Re(jz)

-5.01e+07 1.93e+07 8.88e+07 -5.01e+07 1.93e+07 8.88e+07

Im(jz)

Fig. 21.2 Flux lines and induced current density in the plate, real (left) and imaginary (right) parts,
with f = 1 kHz, zpl = 3 mm and i = 20 A
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or induced (stranded versus massive conductors, terminology used in [17]). All
complex numbers are denoted by underlined symbols. E.g., a sinusoidal current
i(t) = î cos(ωt + γ ) is represented by phasor i = î exp(jγ ) = î (cos γ + j sin γ ),

where f and ω = 2πf are the frequency and the pulsation, î the amplitude, γ the
phase angle, and j the imaginary unit.

The inner and outer coil have n1 = 960 and n2 = 576 turns of copper wire
respectively, for a total DC resistance of R0 = 6.73�; no skin and proximity effect
in the winding is considered. The classical, trivial stranded-coil modelling implies
a uniform current density in the two respective cross-sections [4], and allows for
either imposed terminal current, i(t) or i, imposed terminal voltage, v(t) or v, or
insertion in an electrical current [17]. The associated flux-linkage of the anti-series
connected coils, Ψ (t) or Ψ , simply depends on the MVP, aφ(r, z, t) or aφ(r, z),
via the integral of the latter over the cross-section of the coils, Ωcoil,1 and Ωcoil,2,
considering the respective number of turns [17]:

ψ(t) = n1 2π

Ωcoil,1

∫

Ωcoil,1

aφ rdrdz− n2 2π

Ωcoil,2

∫

Ωcoil,2

aφ rdrdz . (21.1)

The three global variables, i.e. voltage, current and flux-linkage, are linked, either
instantaneously or phasor-wise, as follows:

v(t) = R0 i(t)+ dψ

dt
and v = R0 i + jωΨ . (21.2)

In the low-frequency limit f → 0, there are no eddy currents in the (non-
magnetic) plate, such that ψ = L0i with L0 = 73.23 mH the DC inductance.
This inductance is in theory zpl-independent as the plate is non-magnetic. In
practice, using a position-dependent FE mesh, with around 4600 triangular first-
order elements and around 2000 nodes, the resulting L0 varies very slightly with
position, namely less than ±0.5 μH or ±L0/105. The plate is invariably meshed
with four layers of elements in the thickness direction, which is sufficient for
frequency-domain computations till 1 kHz; indeed, at the latter frequency the skin
depth

√
2/(ωσμ0) in the plate is 2.7 mm, such that the 3-layer-per-skin-depth rule

of thumb is satisfied.
The complex terminal impedance Z = v/i = R + jωL depends on both

frequency f and position zpl. The series AC resistance R(f, zpl) and inductance
L(f, zpl) can be obtained from the FE model, with suitable {f, zpl} sampling, via
the aforementioned global variables, where, given the linearity, any voltage v or any
current i can be imposed.

Identical frequency-domain results can be obtained via the active power P =
1
2R î2 (W) and reactive power Q = 1

2L î2 (W, or rather VAr, volt-amperes-reactive,
as is conventional in the electrotechnical community), with e.g. imposed i = 1 A
current. The active power is equal to the sum of the Joule losses in the stranded coils,
1
2R0 î

2, and those in the conducting domain; the latter follow from the integration
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of the loss density 1
2ρĵ

2
φ over the disk cross-section Ωdisk, with ρ the resistivity and

ĵφ(r, z) the amplitude of the current density:

P = 1

2
R î2 = 1

2
R0 î

2 + 1

2

∫

Ωdisk

ρĵ2
φ 2πrdrdz . (21.3)

The reactive power Q follows from the integration of the magnetic energy density
1
2νb̂

2, with ν the reluctivity and b̂2(r, z) = b̂2
r + b̂2

z the square norm of the flux
density vector, over the complete cross-section Ω of the model:

Q = 1

2
L î2 = 1

2ω

∫

Ω

νb̂2 2πrdrdz . (21.4)

Some results obtained this way are shown in Fig. 21.3, namely the relative change
in resistance and inductance due to the induced current in the conducting disk, i.e.
ΔR(f, zpl)/R0 and−ΔL(f, zpl)/L0, with ΔR = R−R0 and ΔL = L−L0, versus
frequency, in the 10–1000 Hz interval, with a suitable double logarithmic scale, and
for three separate positions, viz zpl = 3, 10 and 17 mm.
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Fig. 21.3 Relative increase/decrease of terminal AC resistance and inductance versus frequency,
for three different positions, obtained with the FE model (full lines) and the ladder circuit (markers,
nb = 1 and nb = 3)
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21.3 Ladder-Circuit Approximation

The frequency-dependent series resistance and inductance, R(f, zpl) and L(f, zpl),
obtained with the FE model and depicted in Fig. 21.3 (full lines), can be approxi-
mately effected with a finite constant-coefficient ladder circuit as shown in Fig. 21.4.
Fed by the terminal voltage v(t) (terminal current i(t)), this circuit comprises a loop
with the DC resistance R0 and DC inductance L0 and further nb auxiliary loops
{Rk,Lk} and currents ik (k = 1 . . . nb). The nb + 1 circuit equations can be written
in matrix notation in terms of the column vector I(t) = [i(t) i1(t) i2(t) . . . inb (t)]T
or I and corresponding voltage column vector V(t) = [v(t) 0 0 . . . 0]T or V:

V(t) = R I(t)+ L
d

dt
I(t) or V = (

R+ jωL
)
I , (21.5)

where R is diagonal and L tridiagonal and symmetric. Note that the source term
in (21.5) is either the terminal current i or the terminal voltage v, i.e. the first element
in column vectors V(t) or I(t) (I or V), respectively.

With nb = 2, i.e. the ladder circuit shown in Fig. 21.4, R and L read:

R = diag (R0, R1, R2) , L =
⎡
⎣

L0 −L0 0
−L0 L0 + L1 −L1

0 −L1 L1 + L2

⎤
⎦ . (21.6)

In near-DC conditions, low-frequency limit f → 0, this circuit amounts to
the terminal DC series impedance R0 + jωL0. As a reminder, for the application
considered, TWP28, this impedance is position-independent.

For a given nb and zpl, the 2nb parameters Rk and Lk are determined by fitting
the ensuing impedance Znb

(f, zpl) to the reference FE impedance ZFE(f, zpl) in
the relevant frequency interval, e.g. by means of the Nelder-Mead simplex method
(nonlinear minimization). Some results are depicted in Fig. 21.3 for nb = 1 and
nb = 3; one observes an excellent agreement with the FE results for nb = 3.

Next time-domain computations with f = 1 kHz, v(t) = 500 V · sin(ωt)
(v = −j 500 V) and zpl equal to either 3, 10 or 17 mm are carried out. With the
ladder-circuit approximation, the instantaneous Joule losses in the plate are given
by
∑nb

k=1 Rk i
2
k (t). See Fig. 21.5. Excellent convergence towards the FE results is

observed with increasing nb.

Fig. 21.4 Ladder circuit with
two auxiliary loops and
currents (nb = 2)

i1 R2R1

v

i R0

L0 L1 L2

i2
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Fig. 21.5 Losses in the plate versus time (zpl = 10 mm; 1 kHz voltage supply), computed with FE
model and RL ladder circuit (nb equal to 1, 2 and 3)

Figure 21.6 shows how the resistance and inductance values of the ladder circuit
with nb = 3 vary with the position zpl of the plate, as a result of the separate fitting
for each discrete position. The six curves shown are each smooth, but some curves
comprise a deflection point.

Further development, in a next paper, will include time-varying position. For
this, one single global fitting may be required, using for the resistances and the
inductances preset expressions in terms of zpl.

Acknowledgements Work supported in part by the Walloon Region of Belgium (WBGreen
FEDO, grant RW-1217703) and the Belgian Science Policy (IAP P7/02).



238 R. V. Sabariego and J. Gyselinck

4 6 8 10 12 14 16 18 20
10

2

10
3

10
4

10
5

 R
k
/  R

0

 R
1

 R
2

 R
3

4 6 8 10 12 14 16 18 20

position (mm)

10
2

10
3

 L
k
/ L

0

 L
1

 L
2

 L
3

Fig. 21.6 Fitted Rk resistances and Lk inductances of the nb = 3 ladder circuit versus position
(fitting between 10 Hz and 1 kHz, per position, with Δzpl = 0.25 mm)

References

1. Schmidt, E.: Finite element analysis of electrical machines and transformers. COMPEL - Int.
J. Comput. Math. Electr. Electron. Eng. 30(6), 1899–1913, (2011)

2. Meunier, G.: The Finite Element Method for Electromagnetic Modeling. Wiley, New York
(2008)

3. Gyselinck, J., Sabariego, R.V., Dular P.: A nonlinear time-domain homogenization technique
for laminated iron cores in three-dimensional finite-element models. IEEE Trans. Magn. 42(4),
763–766 (2006)

4. Gyselinck, J., Sabariego, R.V., Dular P.: Time-domain homogenization of windings in 2-D
finite element models. IEEE Trans. Magn. 43(4), 1297–1300 (2007)

5. Schilders, W., der Vorst, H. V., Rommes, J.: Model Order Reduction: Theory, Research Aspects
and Applications. Springer, New York (2008)

6. Sato, Y., Igarashi, H.: Model reduction of three-dimensional eddy current problems based on
the method of snapshots. IEEE Trans. Magn. 49(5), 1697–1700 (2013)

7. Paquay, Y., Geuzaine, C., Hasan, Md.R., Sabariego, R.V.: Reduced order model for accounting
for high frequency effects in power electronic components. IEEE Trans. Magn. 52(3), article
#: 7202904 (2016)

8. Buffa, A., Maday, Y., Patera, A.T., Prudhomme, C., Turinici, G.: A priori convergence of the
Greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Modell. Numer.
Anal. 46(3), 595–603 (2012)

9. Henneron, T., Clénet, S.: Model order reduction applied to the numerical study of electrical
motor based on POD method taking into account rotation movement. Int. J. Numer. Model.
27(3), 485–494, (2014)

10. Henneron, T., Clénet, S.: Model order reduction of non-linear magnetostatic problems based
on POD and DEI methods. IEEE Trans. Magn. 50(2), 33–36 (2014)



21 TD RO Modelling of Linear FE Eddy-Current Problems via RL Ladder Circuits 239

11. Lee, S.-M., Lee, S.-H., Choi, H.-S., Park, I.-H.: Reduced modeling of eddy current-driven
electromechanical system using conductor segmentation and circuit parameters extracted by
FEA. IEEE Trans. Magn. 41(5), 1448–1451 (2005)

12. Liu, Z., Liu, S., Mohammed, O.A.: A practical method for building the FE-based phase variable
model of single phase transformers for dynamic simulations. IEEE Trans. Magn. 43(4), 1761–
1764 (2007)

13. Rasilo, P., Lemesle, M., Belahcen, A., Arkkio, A., Hinkkanen, M.: Comparison of finite-
element-based state-space models for PM synchronous machines. IEEE Trans. Energy
Convers. 20(2), 535–543 (2014)

14. De Greve, Z., Deblecker, O., Lobry, J., Kéradec, J. P.: High-frequency multi-winding magnetic
components: from numerical simulation to equivalent circuits with frequency-independent RL
parameters. IEEE Trans. Magn. 50(2), 141–144 (2014)

15. Shindo, Y., Miyazaki, T., Matsuo, T.: Cauer circuit representation of the homogenized eddy-
current field based on the Legendre expansion for a magnetic sheet. IEEE Trans. Magn. 52(3),
1–4 (2016)

16. Hollaus, K., Fetzer, J., Kurz, S., Lehner, G., Rucker, W. M.: Description of TEAM workshop
problem 28: an electrodynamic levitation device. In: Proceedings of the TEAM Workshop,
Graz, pp. 41–42 (1997)

17. Lombard, P., Meunier. G.: A general purpose method for electric and magnetic combined
problems for 2D, axisymmetric and transient systems. IEEE Trans. Magn. 29(2), 1737–1740
(1993)



Part VI
Industrial Applications

The last part of this book comprises two contributions concerning Industrial
Applications. There were several presentations on different aspects of industrial
applications at the Industrial Day, and at the first poster session, which was also
devoted to applications.

The paper by M. Cremonesi et al. on “A Lagrangian Approach to the Simulation
of a Constricted Vacuum Arc in a Magnetic Field” was presented by Massimiliano
Cremonesi at the invited session of Industrial Day. The paper proposes to use
the Lagrangian description of a minimal arc model in 2d as starting point for the
discretization. The authors present selected numerical results obtained by means of
their approach, and compare these results with the simulation results computed by
the commercial package ANSYS Fluent.

ABB has developed a simulation framework for the dielectric design of high-
voltage devices called the Virtual High Voltage Lab (VHVLab). This simulation
framework was presented by Andreas Blaszczyk in the first poster session on
industrial applications. The corresponding paper by A. Blaszczyk et al. provides
a description of the basic concept and the components of a VHVLab. Furthermore,
the authors demonstrate the use of the VHVLab in real applications from ABB.



Chapter 22
A Lagrangian Approach
to the Simulation of a Constricted
Vacuum Arc in a Magnetic Field

Massimiliano Cremonesi, Attilio Frangi, Kai Hencken, Marcelo Buffoni,
Markus Abplanalp, and Jörg Ostrowski

Abstract The use of numerical simulations of vacuum arcs can be very useful in
order to improve the performance of vacuum interrupters. Standard computational
fluid dynamics methods based on the Eulerian approach have difficulties to deal
with this kind of problem, so a new technique is proposed, based on a Lagrangian
approach. In order to focus on the performance of the new approach and not on
specific details of a full model, a simplified arc model is used to investigate the
capabilities of a Lagrangian approach in the context of vacuum arc simulations.
The focus of this initial study is on implementing the necessary ingredients, that
is, the development of a compressible flow solver, the introduction of the relevant
boundary conditions and the coupling with the current conservation equation for the
electric current. In addition, the stability of such a numerical scheme is evaluated.
Furthermore, comparisons with results obtained using commercial software are
also provided to demonstrate the validity of the results obtained with the new
methodology.

22.1 Introduction

Vacuum interrupters are electrical protection devices that are used extensively in the
medium voltage range up to 40 kV in order to both switch nominal currents of a few
kA and interrupt fault currents up to 63 kA. They rely on the insulation properties of
the vacuum in the gap between two electrodes for their voltage withstand capability.
When interrupting current, a vacuum arc is formed for a time of up to a half-wave.
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A vacuum arc is a metal-vapor thermal arc formed by the metallic material
evaporated from the two electrodes and heated to a high temperature by the ohmic
heating. This type of plasma arc shows some different modes depending on current
and gap distance, see e.g., Chapter 2 of [1]. Under certain conditions, the arc is in
a constricted, columnar mode which means that it does not cover the full contacts
(anode and/or cathode) areas and is in a high density and pressure state [2, 3]. The
energy given to the cathode and anode through the exchange of electrons and ions
heats them up to such high temperatures that the arc roots are able to provide new
metal vapor for the plasma arc to sustain itself. Interruption of large currents can
only occur at a natural zero crossing of the current. At that moment, the current is
low, the energy input is small, and the gap can be cleared of the plasma and metal
vapor. However, successful current interruption can occur only if the metal vapor
density in the gap between the two contacts and the surface temperature of both
electrodes, are below a critical value.

To achieve the required conditions for successful interruption, some arc control is
needed. Two main arc control principles have evolved that try to spread the heating
of the contacts through the arc over a larger area to reduce the temperature, and
therefore the evaporation at current zero. The so-called AMF approach tries to keep
the arc in the non-constricted, diffuse state with the help of an axial magnetic field
called the AMF approach. The other commonly used approach is to use the so-called
“transverse magnetic field” (TMF) principle. In this approach, the focus of this
work, electrode shapes are used to generate a magnetic field which is predominantly
transverse to the gap direction and the arc. The magnetic field generates a Lorentz
force that moves the arc with a high velocity over the surface of the electrodes,
spreading the heat flux over a larger area, thereby reducing the maximal surface
temperature.

In order to improve the performance of such vacuum interrupters, it is funda-
mental to understand the motion of the arc. Since experimental investigations are
difficult due to the extreme conditions and the fast motion of the arc, numerical
simulations are preferable. A detailed arc model was developed in [4–7] and its
capability was demonstrated, in principle, to simulate the movement of an arc. In
order to be useful for the development of new interrupters, the simulations need to
be fast and reliable. This is difficult for two reasons. First, there are strong gradients
at the edge of the vacuum arc where the pressure decreases from several bars in
the core of the arc to values well below 1 millibar over a very short distance.
As the temperature does not change greatly, the density follows a similar steep
decrease. Standard computational fluid dynamics numerical formulations, based on
the Eulerian approach, have severe difficulties in dealing with such strong gradients.
Second, the TMF arc typically fills only a small part of the simulation domain. This
means that a large portion of the mesh consists of cells having vacuum conditions,
that is, where the solution is neither useful nor relevant. Although using an adaptive
mesh is one possible option to cope with this issue, we are interested in exploring a
different and innovative approach which automatically generates a fine mesh in the
arc region. In the extreme case, the Lagrangian approach described in the following
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sections enables the definition of a mesh only in those regions where the arc plasma
is present. It is therefore potentially very attractive for such simulations.

In the last decade, Lagrangian approaches have received considerable attention,
in particular for incompressible flow simulations with strong free surface evolu-
tion [10]. Indeed, while in the Eulerian framework the problem is solved on a fixed
mesh through which the fluid moves, in Lagrangian methods the mesh follows
the fluid which makes tracking the free surface easier. Applications to casting of
complex fluids [8] or landslide simulation [9] are only examples of the possible
domains of interest and testify to the robustness of the technique. Over the past
few years, the analysis of compressible flows has emerged as a promising field for
application of Lagrangian methods [11, 12], in particular in those contexts where
standard techniques lose robustness and are therefore less attractive to be used. Due
to the presence of shocks, viscous boundary layers, mixing of different constituents
and strong density gradients, the numerical solution of the arc equations can pose
severe challenges.

The main aim of this first investigation is therefore in primis to provide a
preliminary demonstration of the applicability of the Lagrangian approach to arc
simulation. Therefore we focus on specific issues, like the use of a compressible
flow solver, the introduction of evaporating and absorbing boundary conditions and
the stability of the approach under the difficult physical conditions. In order to assess
the validity of the new numerical approach a comparison is made with a state-of-
the-art CFD calculation.

Clearly this only represents a preliminary step towards the full arc simulation,
which requires the movement of the plasma arc in a strongly coupled multi-physics
problem to be tracked.

22.2 Minimal Arc Model

In order to perform a preliminary investigation of the capability of the Lagrangian
approach to address vacuum arc simulations, we define here a “minimal arc model”
in a 2D context. Implementing the full model is described in [4–7] and should be
the ultimate aim of the simulation. The minimal model should be at the same time
as close as possible to the real vacuum arc, capturing possible dependencies of fluid
parameters, and be based on equations that can be easily implemented. Defining ρ

the density, u = uxex + uyey the velocity field, e the internal energy, the balance
equations for a compressible fluid subjected to a prescribed magnetic field B =
Bxex can be written as:

mass conservation:
1

ρ

dρ

dt
= −∇ · u (22.1)

momentum conservation: ρ
du
dt
= −∇p +∇ · τ + J× B (22.2)
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energy conservation: ρ
de

dt
= −p∇ · u+ τ : ∇u+∇ · (ke∇T )+ J2

σ
+Qrad

(22.3)

current conservation: ∇ · (σ∇φ) = 0 (22.4)

where p is the pressure field and τ the deviatoric stress tensor defined as:

τ = μ

[
∇u+∇uT − 2

3
(∇ · u)I

]
(22.5)

where J the current flux and φ the potential are related by:

J = −σ∇φ (22.6)

It should be stressed that in the first three equations the total (material) derivative
on the left hand side includes the transport terms which are by contrast explicitly
expressed in standard Eulerian approaches. Qrad is a loss term due to radiation.
In principle, the radiation losses have to be calculated by a separate transport
equation. Instead a “net-emission" approach, that only describes the loss of power
as a function of density and temperature, is often used. Here, we simplify this even
further and define Qrad = −σsbT

4/R, where σsb is the Stefan-Boltzmann constant
and R a parameter (in the following R = 0.01 m). By appropriately choosing R,
the arc temperature can be tuned to a realistic value. For the plasma properties
we use an ideal gas equation of state with adiabatic coefficient, heat capacity and
internal energy extracted in tabular form from more detailed calculations. Transport
properties have been calculated by using the Spitzer equations for partially ionized
plasmas [13]. Only Cu and Cu+ were considered with their densities calculated from
the Saha equation. This has the advantage that all equations can be solved explicitly
as a function of pressure and temperature and still be rather realistic.

As mentioned in the introduction, the magnetic field plays an important role in
defining the arc. In principle, it needs to be calculated self-consistently from the
current flow. As we want to focus on the plasma flow, we have chosen to use an
assigned magnetic field. In order to mimic the pinching force of a real field, we
define Bx as

Bx =
{
μ0J̄ min(x, d) if x > 0

μ0J̄ max(x,−d) if x < 0
(22.7)

where μ0 is the permeability, x the distance from the center of the arc root and d the
diameter; in our case J̄ = 3× 108 A/m2 and d = 0.5 cm.
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22.3 Numerical Method

The conservation equations have been solved using a Lagrangian finite element
approach. A complete discussion and validation of the formulation for compressible
flow problems can be found in the recently published research paper [14]; only some
key elements are presented here for brevity. Starting from the weak form of the
equations, a standard finite element space discretization has been applied, leading
to the following semi-discretized equations:

Mρ(t)R(t) = R0 (22.8)

Mu
dU
dt
= Fu(U(t),E(t),R(t)) (22.9)

Me
dE
dt
= Fe(U(t),E(t),R(t)) (22.10)

Lφ = 0 (22.11)

where Mu is the “velocity” mass matrix, Me the “energy” mass matrix, and Mρ

“density’ mass matrix. Fu and Fe represent the internal forces for momentum
and energy conservation equations, respectively. For the time integration of mass,
momentum and energy equations, a forward Euler scheme has been used, leading
to an explicit solution scheme. Current conservation is, in contrast, intrinsically
implicit. The fully discretized system reads:

Mn
ρR

n = R0 (22.12)

MuUn+1 =MuUn +ΔtFu(Un,En,Rn,Pn) (22.13)

MeEn+1 =MeEn +ΔtFe(Un+1/2,En,Rn,Pn) (22.14)

Lφn+1 = 0 (22.15)

where Un+1/2 = 1
2 (U

n+1 + Un) is used to preserve total energy from time tn

to time tn+1 [12, 15]. Matrices Mu and Me are constant as long as the reference
configuration is fixed. Moreover, mass lumping is introduced and the velocity and
energy vectors can thus be evaluated node by node without requiring the solution of
linear systems. Finally, following the Lagrangian nature of the proposed approach,
the nodal coordinates should be updated:

xn+1 = xn +ΔtUn+1 (22.16)

Equation (22.16) imposes that at every time step the position of the mesh nodes
moves following the fluid velocity, leading to possible mesh distortion. In the
solution scheme proposed, a check of the mesh is performed at every time step.
When the mesh is too distorted, a Delaunay tessellation is used to generate a
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new regular mesh. Starting from the current position of the points, the Delaunay
tessellation creates a new connectivity using only nodal values for the unknowns, so
that no mapping is necessary from the old mesh to the new one.

22.3.1 Boundary Conditions

In the specific application at hand, both inflow and outflow boundary conditions are
present. In the former case, mass, momentum and energy flux are imposed (see next
section). In a Lagrangian framework this can be easily achieved by enforcing the
desired values of density, velocity and energy to nodes on the in-flow boundary
portion; these nodes eventually move away but are continuously replaced with
new particles. In the latter case, outflow is simulated by enforcing zero material
derivative of density, velocity and energy on particles which exit the simulation
domain; these enter an artificial “buffer” and are eventually eliminated.

22.4 Simplified Arc Test and Numerical Results

We have also defined a simplified 2D test geometry, which should mimic the real
one (see Fig. 22.1).

A plasma simulation requires thermodynamic and transport properties and in
addition suitable boundary conditions as input. All boundaries are defined to be
perfectly transparent (outflow) apart from the region that defines the arc roots. Here
the evaporation is written in the form of a Hertz-Knudsen evaporation model with

Fig. 22.1 Geometry of the test case. Measures are expressed in cm
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the mass flux given by

mCu√
2πmCukT s

(p∗ − p)

as well as the momentum flux

1

2
(p + p∗)

and the energy flux

2kTs√
2πmCukT s

(p∗ − p)

where mCu is the mass of an individual copper atom, Ts = 4000 K is the surface
temperature and p∗ = 8.5× 105 Pa the vapor pressure. These values for chosen in
such a way, that they correspond to the expected surface temperature pressure of the
arc. The current density was assumed to be homogeneous over the arc root and to
reproduce the current density of a realistic arc.

To validate the obtained Lagrangian finite element approach, the results are
compared with those obtain using ANSYS Fluent. The main characteristics of the
two solvers are highlighted in Table 22.1. The same initial mesh (with 21,898 nodes)
has been used for both solvers.

Figures 22.2, 22.3, 22.4, 22.5, and 22.6 show velocities, density, pressure and
temperature at time t = 2 ms.

The results of the present approach can be seen on the left, and those obtained
with ANSYS fluent are shown on the right. Although two different numerical
approaches have been used, the results are very close and confirm the potential of
the Lagrangian method proposed.

It is important to recall that the two solvers are based on very different techniques;
in particular the Fluent solver implements a Finite Volume formulation with an
implicit time integration on an Eulerian fixed mesh. The codes also have been run
on different machines which makes the comparison in terms of CPU time extremely

Table 22.1 Comparison of
the two solvers

Present approach Fluent

Equations Lagrangian Eulerian

Time integration Explicit Implicit

Space discretization FEM (P1P1) FV (2 order)

Mesh Evolve in time Fixed in time

Unknowns definition Nodal based Element based
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Fig. 22.2 Contour plot of the vertical velocity. On the left, the present approach; on the right,
ANSYS Fluent. The same color scale is used

Fig. 22.3 Contour plot of the horizontal velocity. On the left, the present approach; on the right,
ANSYS Fluent. The same color scale is used

difficult. The Lagrangian code (OpenMP parallelized runs on four Xeon cores)
completed the simulation in roughly 10 h.

The qualitative and quantitative agreement is very good, taking into account the
complexity of the overall model and of the formulation differences. The same color
scales have been adopted to plot the results of the two codes. Even if the problem
is defined on a symmetric domain and symmetric boundary conditions are used,
symmetry in the solution is never enforced and some deviations develop. These are
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Fig. 22.4 Contour plot of the density. On the left, the present approach; on the right, ANSYS
Fluent. The same color scale is used

Fig. 22.5 Contour plot of the pressure. On the left, the present approach; on the right, ANSYS
Fluent

possibly due to the unstructured and asymmetric mesh used, but also to intrinsic
internal instabilities leading, e.g., to the density curls. It should also be noted that
results are plotted at a given time, but actually the solution is time dependent due to
these continuous symmetry breaking oscillations.
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Fig. 22.6 Contour plot of the temperature. On the left, the present approach; on the right, ANSYS
Fluent
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Chapter 23
Virtual High Voltage Lab

Andreas Blaszczyk, Jonas Ekeberg, Sergey Pancheshnyi,
and Magne Saxegaard

Abstract A simulation framework for dielectric design of high voltage devices has
been presented. It is based on a simplified modeling of discharge characteristics
including propagation path, breakdown and inception voltages. A 3-stage procedure
of evaluating surface charging as well as the numerical formulation of saturation
charge boundary condition have been explained. The results of surface charging for
a case study with an insulating barrier and the discharge evaluation for a complex
gas insulated switchgear arrangement have been presented as application examples.

23.1 Introduction

During dielectric type tests, the voltage load specified in technical standards is
applied to the tested device. The test is successful if either no breakdown of the
insulation of the device occurs or, in the case of lightning impulse applied to gas
insulated switchgear, only a limited number of breakdowns are observed. The test
results are typically predicted by performing electrostatic field computations and
comparing the calculated electric field strengths with the critical values specified
for the relevant gases and surfaces of the geometry. This approach is very helpful,
but in many cases we observe significant deviation from results obtained in the real
high voltage lab.

In this paper we present a concept of a Virtual High Voltage Lab (VHVLab),
which is aimed at closing the gap between simulations and experimental results.
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The foreseen benefits are not only related to the accuracy of the predicted withstand
voltages, but also to the fact that more insight into the discharge phenomena
occurring during tests is expected from simulations. For example, the knowledge
of a critical discharge path or surface charging in a complex geometry is of high
interest to engineers.

VHVLab does not attempt to perform first principle simulations with their
whole physical and numerical complexity. Instead we propose a simplified approach
that evaluates different discharge stages including inception, streamer propagation,
surface charging, leader transition and breakdown [1], while showing, in each of
these stages, the corresponding discharge characteristics. The components of this
approach as well as the overview of VHVLab concept is presented in Sects. 23.2
and 23.3. In Sects. 23.4 and 23.5 we show the utilization of VHVLab to predict
dielectric tests of a real application with respect to inception as well as to explain
charging phenomena occurring in a simple barrier arrangement.

23.2 Basic Concept

The architecture of the software concept is shown in Fig. 23.1. The core, consisting
of discharge modeling procedures, is connected via predefined interfaces with
external components, including the background field solver and the visualizer. As
a first step of the analysis, engineers need to create the virtual CAD model of the
device and compute it with an electrostatic solver that implements the VHVLab
interface. Within the VHVLab session, the numerical computation of discharge
characteristics in different gases, such as the streamer path or surface charge layer,
is performed and presented to the user in a 3D visualizer.

Fig. 23.1 Architecture of
Virtual High Voltage Lab.
Comment: An important
feature of this architecture is
the plug-in concept. VHVLab
is not implemented as an
add-on to any existing
software system. It is a
self-standing application that
uses other commercial, open
source and in-house
components as plug-ins
connected via interfaces

3D graphical representation
(ParaView)

visualization interaction

Interface

Virtual High Voltage Lab: an
extendable collection of

discharge models for
engineering applications

Interface

Background field solver
(commercial, in-house ,

open source; 2D/3D)

Compute field in
arbitrary points

Recalculate with
accumulated charge
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23.3 VHVLab Components

23.3.1 Gas Database

The main focus of VHVLab is gas insulation. Therefore, the electric discharge
characteristics for different gases used as insulating medium in high voltage devices
are included in VHVLab and can be selected by designers for analysis. The most
important characteristics are the critical field Ecrit, specifying the lowest field
strength value for which the ionization process may start, as well as the effective
ionization coefficient αeff, which is a function of electric field strength and depends
on gas type, pressure and temperature. Naturally, αeff(Ecrit) = 0.

Experimentally measured αeff is typically only available for simple gases (the
online LXCat project [2] offers probably the most comprehensive collection of
electron swarm data) and theoretical extension of these data to more complex cases,
e.g. mixture of gases, often remains the only feasible approach. Among different
possible techniques, solving the Boltzmann equation for the electron distribution
in the so-called “two-term approximation” remains the most developed and used
approach nowadays [3]. The complete sets of cross sections needed as input to
a Boltzmann equation solver is also available in LXCat [2] for many atomic and
molecular species.

It is generally accepted that inception of a gas discharge starts with the
appearance of a first free electron in the gap. Depending on the conditions, such
electrons can be emitted from a surface or can appear by detachment from a
negative ion. A Townsend avalanche usually develops from the initiating electron.
It is characterized by low space charge and, consequently, an insignificant electric
field disturbance. The ionization coefficient αeff allows to estimate the number of
electrons created along the avalanche path, which consequently determines whether
the self-sustaining discharge can be initiated. This can be expressed as a streamer
criterion in the following form:

∫

x

αeff(E)dx = ln(Ne) > Kstr (23.1)

where the path x starts at critical spots on a surface and follows the direction of the
avalanche; Ne is the number of electrons created by the avalanche. If the logarithm
of this number is larger than the streamer constant Kstr, inception may occur. The
exact value of Kstr depends on the mechanism of discharge initiation [4–6]: the two
most relevant cases are streamer corona, Kstr 
 18 and glow corona, Kstr 
 10.

With the introduction of fluorinated ketones and its mixtures with air, the so-
called ABB AirPlus solution for eco-efficient medium voltage products [7], came
the need to perform swarm measurements of the effective ionization coefficient
αeff and to assess the value of the inception streamer constant Kstr using reference
experiments.
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23.3.2 Critical Spot Evaluation

A critical spot is defined as a region on the boundary between solids and gas domain
in which all points have a field magnitude larger than Ecrit. Evaluation of critical
spots is based on mesh topology and results obtained from electrostatic background
field computations loaded into VHVLab. The number of points (= mesh nodes)
per spot can vary from a few up to many hundreds or thousands. In VHVLab it is
possible to analyze all of them. However, in order to avoid excessive computation
times, the user has the freedom to select only the points having the highest field
magnitudes. These point are used for the analysis of discharge initiation as described
in the next subsection.

23.3.3 Evaluation of Discharge Path and Its Characteristics

1. Inception: For a selected critical surface spot, we need the avalanche path
in order to evaluate inception according to (23.1). Typically, this path can be
calculated as a field line for which only the first few millimeters decide whether
the inception occurs or not. The value of inception voltage Uinc is calculated
iteratively by changing the applied voltage and scaling the E-field values along
the path until the equality in relation (23.1) is achieved. In case of electrode-less
inception (on dielectric surfaces), the magnitude of the tangential component
can be used as a base to evaluate (23.1). Inception is a very important step in
the prediction of high voltage tests. For weakly inhomogeneous fields, inception
is the deciding mechanism of whether breakdown occurs or not so that the
evaluation of further discharge phenomena can be neglected (except if surface
charging is possible, since it can mitigate or enhance the inception).

2. Propagation: Once the streamer head has been created, we evaluate if the
opposite electrode can be reached or if the discharge will be extinguished
due to insufficient voltage. In particular for air, the stability criterion must be
checked [5]. For example a positive streamer in air requires 0.5 kV/mm for stable
propagation. Therefore, the proper estimation of the streamer length is crucial. A
reliable engineering approach for evaluation of discharge path length is currently
based on clearances between electrodes. A discharge-dependent path evaluation
[1] still needs investigation before being applied in design.

3. Leader transition and breakdown: If the propagating streamer hits the dielec-
tric surface, which is close to the electrode (like a coating), a leader transition
may occur due to strong capacitive currents supporting the thermo-ionization of
the creeping discharge. After leader transition, the discharge becomes unstable,
which is equivalent to breakdown. The numerical prediction of leader character-
istics is still a subject of research projects. Currently, engineering predictions are
based on the leader inception voltage [5] specifying the highest voltage that can
be applied across a dielectric layer without the risk of leader transition.
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23.3.4 A 3-Stage Surface Charge Evaluation Procedure

The development of a discharge may influence the background field by generating
space and surface charges. In particular, accumulation of charge on dielectric
surfaces leads to significant changes of the discharge inception and propagation
conditions. Therefore, a re-calculation of the background field, under presence of
surface charge, may be required. In VHVLab, we proposed a computation of the
maximum possible surface charge, called “saturation charge”, as the next evaluation
stage. Since it is a relatively new component, we describe the corresponding formu-
lation together with an application example in Sect. 23.5. The computed saturation
charge may remain on dielectric surfaces while the new load conditions appear (e.g.
changed polarity). Therefore, the whole procedure may require more iterations. The
VHVLab specifies three basic stages of background field computations, each of
them followed by an evaluation of critical spots and discharge characteristics:

• Stage 1: Initial background field computation,
• Stage 2: Field computation with the same electric potential load as in Stage 1 but

with the saturation charge boundary condition on dielectric surfaces that have
been affected by the streamer propagation process evaluated within Stage 1,

• Stage 3: Field computation with the surface charge obtained during Stage 2
but with changed potential loads e.g. HV-electrode grounded (LI) or opposite
polarity of HV-electrode (AC).

23.4 Application Example: Ring Main Unit

Ring Main Unit (RMU) is a switchgear component used for distribution of electric
energy in the medium voltage power grid [8]. In order to achieve a compact size
of the switching panels, the RMU has been traditionally designed using SF6 gas
for insulation. The latest trends to replace SF6 by environmentally friendly but
dielectrically less efficient gases have forced engineers to re-design the internal
configuration of electrodes. An example is the newest design of the air-insulated
12 kV RMU panel where SF6 has been substituted by air while keeping the same
outer dimensions. For the optimization of electrode shapes and the final prediction
of dielectric tests the engineers used the VHVlab approach as demonstrated in
Fig. 23.2.

The test and simulation results are presented in Table 23.1. We consider here
the original 12 kV air-insulated design as well as the same device but filled with
AirPlus, which is supposed to enable operation at the voltage level of 24 kV. The test
results represented by the withstand voltage U2% is approximately 10% higher than
Uinc predicted by simulation. Besides the statistical reasons, this deviation can be
explained by the expected difference between the inception and the final breakdown
voltage levels. However, designers accept this difference as a safety margin, which
ensures that the increased test duty (1.05 ∗ ULI) can be passed. Consequently, we
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Fig. 23.2 Simulation and test results for a disconnector of the Ring Main Unit (RMU): (left)
Simulation model: snapshot of field distribution with critical spots and selected field lines in
VHVlab visualizer (right) Tested object: traces of breakdowns on the surface of shielding
electrodes after impulse test (denoted by circular lines). Comments: The critical spots are denoted
here by black numbers. Each of these spots includes mesh nodes with E > Ecrit shown as white
dots. For relevant spots the user selects in VHVLab the nodes with the highest field strength and
calculates field lines (shown here as white trajectories). The initial part of a field line (up to a few
millimeters) is used as a trajectory of avalanches when evaluating Uinc according to (23.1). The
inception locations match well with the breakdown traces observed after experiments

Table 23.1 Simulation and test results for the Ring Main Unit (RMU)

Urated ULI
a Gas Ecrit Raw data of LI-testb U50%

c U2%
c Uinc

kV kV @1.3 bar kV/mm Passed test Failed test kV kV kV

12 75 Air 3.3 84 kV/15/0 88 kV/11/4 88.6 86.7 77.8

24 125 AirPlusd 7.1 136 kV/14/1 141 kV/10/5 143.0 133.7 120
aULI is the lightning impulse voltage level required for type tests. Typically the device is tested for
increased duty, which requires 5% higher ULI
bIn order to pass the LI test it is required that in a sequence of 15 impulses (shots) no more than 2
breakdowns occur. The test sequences have been repeated by increasing ULI by 5% until the test
failed. The raw data of the passed and the failed tests include the following information: applied
impulse voltage/number of successful shots/number of breakdowns
cThe breakdown U50% and the withstand U2% voltages have been evaluated based on the raw
data of the both LI-tests (30 shots) using the maximum likelihood method and assuming normal
distribution [9]
dA mix of air with 10.4% mole fraction of fluorinated ketones

conclude that for this type of weakly inhomogeneous fields, without the influence
of surface charging, the Uinc can be reliably predicted with VHVLab. Applying the
design criterion Uinc >= ULI enables successful tests.
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23.5 Surface Charging

23.5.1 Saturation Charge Formulation

Saturation is an extremal stage of charge accumulation on a dielectric surface
(Stage 2). We assume that the amount of accumulated charge does not allow
streamers, propagating onto or along dielectrics, to deposit more charge on the
saturated surface. For the interface between a solid dielectric and gas, we formulate
two equations describing saturation and continuity boundary conditions as follows:

EnGas = 0 (23.2)

EnDielεDiel = σsat (23.3)

where EnGas and EnDiel are normal components of the field strength at the charged
surface in the gas and inside the barrier respectively, εDiel is the permittivity of the
solid dielectric, whereas σsat is the unknown saturation charge density accumulated
on the surface. The initial background field computation (Stage 1) as well as the
computation with known surface charge (Stage 3) uses only the continuity boundary
condition in the following form:

EnDielεDiel = EnGasεGas + σs (23.4)

where σs is the known charge accumulated on the dielectric surface: for Stage 3
σs = σsat (σsat calculated in Stage 2), whereas for the initial Stage 1 σs =0.

The formulation defined by (23.2) and (23.3) is a non-standard feature that
needs to be implemented for electrostatic solvers integrated within VHVLab.
This implementation is straightforward for the indirect integral formulations of
electrostatic problems [10, 11]. In spite of increased dimension of the equation
system due to additional unknowns (σsat ), the computational effort is still moderate
and fully applicable in the engineering environment.

23.5.2 Case Study: Rod-Barrier Arrangement

We consider a simple arrangement including a 1.6-mm thick dielectric barrier (εr =
3.0) placed between a high voltage rod (7-mm diameter) and a grounded plane [12],
see axisymmetric representation for Stage 1 in Fig. 23.3a. Discharges are created at
the rod tip during the positive lightning impulse of ULI = 91 kV since inception
voltage is only Uinc = 33 kV. These discharges propagate towards the barrier and
deposit positive charge on the upper surface of the barrier. Assuming that enough
charge has been delivered from the rod, a state of saturation may arise. The surface
charge mitigates the high field strength at the tip of the rod but discharges will
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Fig. 23.3 Potential distribution for the rod-barrier arrangement during three stages of surface
charging: (a) without surface charge on the barrier and ULI = 91 kV at the rod; (b) with saturation
charge on the barrier and the unchanged LI-voltage at the rod; (c) with saturation charge and zero-
potential at the rod; (d) comparison of the voltage distribution along the barrier surface with the
measured values

occur since the inception voltage of 53 kV is still lower than the applied 91 kV,
see Fig. 23.3b (in this case the saturation charge does not prevent the inception).
The withstand voltage for stages 1 and 2 can be reliably predicted by applying
the streamer stability criterion for the discharge path determined by the clearance
between the rod tip and the grounded plane [12, 13].

Once the saturation charge has been obtained, it can be applied as a load during
the next stage when the potential of the rod is back to zero. The corresponding
voltage distribution for this stage is shown in Fig. 23.3c. The measured and the
calculated barrier potential differs significantly within the area just below the zero-
potential rod, Fig. 23.3d. Besides the influence of space charge and ion drifting, this
difference can be explained by the fact that the computation does not include the re-
strike phenomenon that may occur due to the high stress (5.9 kV/mm) at the rod tip.
Analysis of inception at the rod showed that the saturation charge would be sufficient
to trigger a re-strike in air for impulse voltages above 87 kV. This value is lower than
the applied 91 kV and negative streamers may therefore start at the grounded tip and
recombine with the positive charge accumulated on the barrier.
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23.6 Conclusion

Virtual High Voltage Lab provides a comprehensive simulation framework that
is focused on simulation-based prediction of high voltage tests required in the
development of power devices. It integrates physical principles, advanced numerical
methods and empirical engineering knowledge in a tool that can be effectively
used in the industrial engineering environment. The goal of VHVLab is to replace
prototype testing by virtual tests and consequently to reduce development costs, as
well as to significantly improve product quality thanks to a better understanding of
discharge phenomena.
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