
Chapter 36
IEEE Arithmetic

Any effectively generated theory capable of expressing
elementary arithmetic cannot be both consistent and complete.
In particular, for any consistent, effectively generated formal
theory that proves certain basic arithmetic truths, there is an
arithmetical statement that is true, but not provable in the theory.

Godel, First incompleteness theorem

Aims
The aims of this chapter are to look in more depth at arithmetic and in particular at
the support that Fortran provides for the IEEE 754 and later standards. There is a
coverage of:

• hardware support for arithmetic.
• integer formats.
• floating point formats: single and double.
• special values: denormal, infinity and not a number — nan.
• exceptions and flags: divide by zero, inexact, invalid, overflow, underflow.

36.1 Introduction

The literature contains details of the IEEE arithmetic standards. The bibliography
contains details of a number of printed and on-line sources.

36.2 History

When we use programming languages to do arithmetic two major concerns are the
ability to develop reliable and portable numerical software. Arithmetic is done in
hardware and there are a number of things to consider:

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_36

665

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_36&domain=pdf

666 36 IEEE Arithmetic

• the range of hardware available both now and in the past.
• the evolution of hardware.

There has been a very considerable change in arithmetic units since the first
computers. Table 36.1 is a list of hardware and computing systems that the authors
have used or have heard of. It is not exhaustive or definitive, but rather reflects the
authors’ age and experience.

Table 36.1 Computer hardware and manufacturers

CDC Cray IBM ICL

Fujitsu DEC Compaq Gateway

Sun Silicon graphics Hewlett Packard Data general

Harris Honeywell Elliot Mostek

National semiconductors Intel Zilog Motorola

Signetics Amdahl Texas instruments Cyrix

AMD NEC

Table 36.2 lists some of the operating systems.

Table 36.2 Operating systems

NOS NOS/BE Kronos UNIX

VMS Dos Windows 3.x Windows 95

Windows 98 Windows NT Windows 2000 Windows XP

Windows vista Windows 7.x Windows 8.x MVS

VM VM/CMS CP/M Macintosh

OS/2 Linux (too many)

Again the list is not exhaustive or definitive. The intention is simply to provide
some idea of the wide range of hardware, computer manufacturers and operating
systems that have been around in the past 50 years.

To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of
the IEEE) convened a meeting which led to the birth of IEEE 754.

The first draft, whichwas prepared byWilliamKahan, JeromeCoonen andHarold
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating
account of the development of this standard can be found inAn Interviewwith theOld
Man of Floating Point, and the bibliography provides aweb address for this interview.
Kahan went on to get the ACM Turing Award in 1989 for his work in this area.

This has become ade facto standard amongst arithmetic units inmodern hardware.
Note that it is not possible to describe precisely the answers a program will give, and
the authors of the standard knew this. This goal is virtually impossible to achieve
when one considers floating point arithmetic. Reasons for this include:

36.2 History 667

• the conversions of numbers between decimal and binary formats.
• the use of elementary library functions.
• results of calculations may be in hardware inaccessible to the programmer.
• intermediate results in subexpressions or arguments to procedures.

The bibliography contains details of a paper that addresses this issue in much
greater depth — Differences Among IEEE 754 Implementations.

Fortran is one of a small number of languages that provides access to IEEE
arithmetic, and it achieves this via TR1880 which is an integral part of Fortran 2003.
The C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic
support. More information can be found in the references at the end of the chapter.

36.3 IEEE Specifications

There have been several IEEE arithmetic standards. The following information is
taken from the ISO site.

The url is

https://www.iso.org/standard/57469.html

ISO/IEC/IEEE 60559:2011(E) specifies formats and methods for floating-point
arithmetic in computer systems - standard and extended functionswith single, double,
extended, and extendable precision and recommends formats for data interchange.
Exception conditions are defined and standard handling of these conditions is spec-
ified. It provides a method for computation with floating-point numbers that will
yield the same result whether the processing is done in hardware, software, or a
combination of the two. The results of the computation will be identical, indepen-
dent of implementation, given the same input data. Errors, and error conditions, in
the mathematical processing will be reported in a consistent manner regardless of
implementation. This first edition, published as ISO/IEC/IEEE 60559, replaces the
second edition of IEC 60559.

Here is the standard history.

• ISO/IEC/IEEE 60559:2011(E)
• IEC 559:1989
• IEC 559:1982

The standard provides coverage of the following areas, which is taken from the table
of contents.

• Floating-point formats

– Overview
– Specification levels

668 36 IEEE Arithmetic

– Sets of floating-point data
– Binary interchange format encodings
– Decimal interchange format encodings
– Interchange format parameters
– Extended and extendable precisions

• Attributes and rounding

– Attribute specification
– Dynamic modes for attributes
– Rounding-direction attributes

• Operations

– Overview
– Decimal exponent calculation
– Homogeneous general-computational operations
– Format of general-computational operations
– Quiet-computational operations
– Signaling-computational operations
– Non-computational operations
– Details of conversions from floating-point to integer formats
– Details of operations to round a floating-point datum to integral value
– Details of totalorder predicate
– Details of comparison predicates
– Details of conversion between floating-point data and external character
sequences

• Infinity, NaNs, and sign bit

– Infinity arithmetic
– Operations with NaNs
– The sign bit

• Default exception handling

– Overview: exceptions and flags
– Invalid operation
– Division by zero
– Overflow
– Underflow
– Inexact

• Alternate exception handling attributes

– Overview
– Resuming alternate exception handling attributes
– Immediate and delayed alternate exception handling attributes

36.3 IEEE Specifications 669

• Recommended operations

– Conforming language- and implementation-defined functions
– Recommended correctly rounded functions
– Operations on dynamic modes for attributes
– Reduction operations

• Expression evaluation

– Expression evaluation rules
– Assignments, parameters, and function values
– preferred width attributes for expression evaluation
– Literal meaning and value-changing optimizations

• Reproducible floating-point results

36.4 Floating Point Formats

Table36.3 summarises the formats specified in the IEEE 754-2008 standard.

Table 36.3 IEEE formats

Name Common Base Digits Decimal Exponent Decimal Exponent E min

name digits bits E max bias[1] E min

Binary16 Half 2 11 3.31 5 4.51 2**4−1 −14 [2]

precision = 15 +15

Binary32 Single 2 24 7.22 8 38.23 2**7−1 −126

precision = 127 +127

Binary64 Double 2 53 15.95 11 307.95 2**10−1 −1022

precision = 1023 +1023

Binary128 Quadruple 2 113 34.02 15 4931.77 2**14−1 −16382

precision = 16383 +16383

Binary256 Octuple 2 237 71.34 19 78913.2 2**18−1 −262142 [2]

precision = 262143 +262143

Decimal32 10 7 7 7.58 96 101 −95 [2]

+96

Decimal64 10 16 16 9.58 384 398 −383

+384

Decimal128 10 34 34 13.58 6144 6176 −6143

+6144

36.5 Procedure Summary

Tables36.4 and 36.5 summarise the procedures.

670 36 IEEE Arithmetic

Table 36.4 IEEE Arithmetic module procedure summary

Procedure arguments Class Description

IEEE_CLASS(X)
IEEE_COPY_SIGN(X,Y)
IEEE_FMA(A,B,C)
IEEE_GET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_GET_UNDERFLOW_MODE
(GRADUAL)
IEEE_INT(A,ROUND[, KIND])
IEEE_IS_FINITE(X)
IEEE_IS_NAN(X)
IEEE_IS_NEGATIVE(X)
IEEE_IS_NORMAL(X)
IEEE_LOGB(X)
IEEE_MAX_NUM(X,Y)
IEEE_MAX_NUM_MAG(X,Y)
IEEE_MIN_NUM(X,Y)
IEEE_MIN_NUM_MAG(X,Y)
IEEE_NEXT_AFTER(X,Y)
IEEE_NEXT_DOWN(X)
IEEE_NEXT_UP(X)
IEEE_QUIET_EQ(A,B)
IEEE_QUIET_GE(A,B)
IEEE_QUIET_GT(A,B)
IEEE_QUIET_LE(A,B)
IEEE_QUIET_LT(A,B)
IEEE_QUIET_NE(A,B)
IEEE_REAL(A[,KIND])
IEEE_REM(X,Y)
IEEE_RINT(X)
IEEE_SCALB(X,I)
IEEE_SELECTED_REAL_KIND
([P,R,RADIX])
IEEE_SET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_SET_UNDERFLOW_MODE
(GRADUAL)
IEEE_SIGNALING_EQ(A,B)
IEEE_SIGNALING_GE(A,B)
IEEE_SIGNALING_GT(A,B)
IEEE_SIGNALING_LE(A,B)
IEEE_SIGNALING_LT(A,B)
IEEE_SIGNALING_NE(A,B)
IEEE_SIGNBIT(X)
IEEE_SUPPORT_DATATYPE([X])
IEEE_SUPPORT_DENORMAL([X])
IEEE_SUPPORT_DIVIDE([X])
IEEE_SUPPORT_INF([X])
IEEE_SUPPORT_IO([X])
IEEE_SUPPORT_NAN([X])
IEEE_SUPPORT_ROUNDING
(ROUND_VALUE[,X])

E
E
E
S
S
S
S
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
T
S
S
S
S
S
E
E
E
E
E
E
E
I
I
I
I
I
I
T
T

Classify number
Copy sign
Fused multiply-add operation
Get rounding mode
Get rounding mode
Get underflow mode
Get underflow mode
Conversion to integer type
Whether a value is finite
Whether a value is an IEEE NaN
Whether a value is negative
Whether a value is a normal number
Exponent
Maximum numeric value
Maximum magnitude numeric value
Minimum numeric value
Minimum magnitude numeric value
Adjacent machine number
Adjacent lower machine number
Adjacent higher machine number
Quiet compares equal
Quiet compares greater than or equal
Quiet compares greater than
Quiet compares less than or equal
Quiet compares less than
Quiet compares not equal
Conversion to real type
Exact remainder
Round to integer
X 2I
IEEE kind type parameter value
IEEE kind type parameter value
Set
Set
Set underflow mode
Set underflow mode
Signaling compares equal
Signaling compares greater than or equal
Signaling compares greater than
Signaling compares less than or equal
Signaling compares less than
Signaling compares not equal
Test sign bit
Query IEEE arithmetic support
Query subnormal number support
Query IEEE division support
Query IEEE infinity support
Query IEEE formatting support
Query IEEE NaN support
Query IEEE rounding support
Query IEEE rounding support

36.6 General Comments About the Standard 671

Table 36.4 (continued)

Procedure Arguments Class Description

IEEE_SUPPORT_SQRT([X])
IEEE_SUPPORT_SUBNORMAL([X])
IEEE_SUPPORT_STANDARD([X])
IEEE_SUPPORT_UNDERFLOW
_CONTROL([X])
IEEE_UNORDERED(X,Y)
IEEE_VALUE(X,CLASS)

I
I
I
I
I
E
E

Query IEEE square root support
Query subnormal number support
Query IEEE standard support
Query underflow control support
Query underflow control support
Whether two values are unordered
Return number in a class

Table 36.5 IEEE Exceptions module procedure summary

Procedure Arguments Class Description

IEEE_GET_FLAG
IEEE_GET_HALTING_MODE
IEEE_GET_MODES
IEEE_GET_STATUS
IEEE_SET_FLAG
IEEE_SET_HALTING_MODE
IEEE_SET_MODES
IEEE_SET_STATUS
IEEE_SUPPORT_FLAG
IEEE_SUPPORT_HALTING

(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG [,X])
(FLAG)

ES
ES
S
S
PS
PS
S
S
T
T

Get an exception flag
Get a halting mode
Get floating-point modes
Get floating-point status
Set an exception flag
Set a halting mode
Set floating-point modes
Restore floating-point status
Query exception support
Query halting mode support

36.6 General Comments About the Standard

The special bit patterns provide the following:

• +0
• −0
• subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45
• +∞
• −∞
• quiet NaN (Not a Number)
• signalling NaN

One of the first systems that the authors worked with that had special bit patterns
set aside was the CDC 6000 range of computers that had negative indefinite and
infinity. Thus the ideas are not new, as this was in the late 1970s.

The support of positive and negative zero means that certain problems can be
handled correctly including:

• The evaluation of the log function which has a discontinuity at zero.
• The equation

√
1/z = 1/z can be solved when z = −1

672 36 IEEE Arithmetic

See also theKahan paperBranch Cuts for complex Elementary functions, orMuch
Ado About Nothing’s Sign Bit for more details.

Subnormals, which permit gradual underflow, fill the gap between 0 and the small-
est normal number.

Simply stated underflow occurs when the result of an arithmetic operation is so
small that it is subject to a larger than normal rounding error when stored. The
existence of subnormals means that greater precision is available with these small
numbers than with normal numbers. The key features of gradual underflow are:

• When underflow does occur there should never be a loss of accuracy any greater
than that from ordinary roundoff.

• The operations of addition, subtraction, comparison and remainder are always
exact.

• Algorithms written to take advantage of subnormal numbers have smaller error
bounds than other systems.

• if x and y are within a factor of 2 then x-y is error free, which is used in a number
of algorithms that increase the precision at critical regions.

The combination of positive and negative zero and subnormal numbersmeans that
when x and y are small and x-y has been flushed to zero the evaluation of 1/(x − y)
can be flagged and located.

Certain arithmetic operations cause problems including:

• 0 ∗ ∞
• 0/0
• √

x when x < 0

and the support for NaN handles these cases.
The support for positive and negative infinity allows the handling of x/0 when x is

nonzero and of either sign, and the outcome of this means that we write our programs
to take the appropriate action. In some cases this would mean recalculating using
another approach.

For more information see the references in the bibliography.

36.7 Resume

The above has provided a quick tour of the IEEE standard. We’ll now look at what
Fortran has to offer to support it.

36.8 Fortran Support for IEEE Arithmetic 673

36.8 Fortran Support for IEEE Arithmetic

Fortran first introduced support for IEEE arithmetic in ISO TR 15580. The Fortran
2003 standard integrated support into the main standard. Fortran 2018 offers more
support, and for more details one should consult Chap. 17 of that document.

The intrinsic modules

• ieee_features
• ieee_exceptions
• ieee_arithmetic

provide support for exceptions and IEEE arithmetic. Whether the modules are pro-
vided is processor dependent. If the module ieee_features is provided, which
of the named constants defined in this standard are included is processor dependent.
The module ieee_arithmetic behaves as if it contained a use statement for
ieee_exceptions; everything that is public in ieee_exceptions is public
inieee_arithmetic.

The first thing to consider is the degree of conformance to the IEEE standard. It is
possible that not all of the features are supported. Thus the first thing to do is to run
one or more test programs to determine the degree of support for a particular system.

36.9 Derived Types and Constants Defined in the Modules

The modules

• ieee_exceptions
• ieee_arithmetic
• ieee_features

define five derived types, whose components are all private.

36.9.1 ieee_exceptions

Thismodule definesieee_flag_type, for identifying a particular exception flag.
Possible values are

ieee_invalid

ieee_overflow

ieee_divide_by_zero

ieee_underflow

ieee_inexact

674 36 IEEE Arithmetic

The module also defines the array named constants

ieee_usual = (/ ieee_overflow,

ieee_divide_by_zero, ieee_invalid /)

ieee_all = (/ ieee_usual, ieee_underflow,

ieee_inexact /)

ieee_status_type

The last is for saving the current floating point status.

36.9.2 ieee_arithmetic

This module defines ieee_class_type, for identifying a class of floating-point
values.

Possible values are:

ieee_signalling_nan

ieee_quiet_nan

ieee_negative_inf

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_positive_inf

ieee_other_value

The module defines ieee_round_type, for identifying a particular round-
ing mode. Its only possible values are those of named constants defined in the
module: ieee_nearest, ieee_to_zero, ieee_up, and ieee_down for the
ieee_modes; and ieee_other for any other mode.

The elemental operator == for two values of one of these types to return true if
the values are the same and false otherwise.

The elemental operator /= for two values of one of these types to return true if
the values differ and false otherwise.

36.9 Derived Types and Constants Defined in the Modules 675

36.9.3 ieee_features

This module defines ieee_features_type, for expressing the need for particu-
lar ieee_features. Its only possible values are those of named constants defined
in the module:

• ieee_datatype
• ieee_denormal
• ieee_divide
• ieee_halting
• ieee_inexact_flag
• ieee_inf
• ieee_invalid_flag
• ieee_nan
• ieee_rounding
• ieee_sqrt
• ieee_underflow_flag

36.9.4 Further Information

There are a number of additional sources of information.

• the Fortran standard.
• documentation that comes with your compiler.

The latter has the benefit of describing what is supported in that compiler.

36.10 Example 1: Testing IEEE Support

The first examples test basic IEEE arithmetic support.
Here is a program to illustrate the above.

include ’precision_module.f90’

program ch3601

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x = 1.0

676 36 IEEE Arithmetic

real (dp) :: y = 1.0_dp

real (qp) :: z = 1.0_qp

if (ieee_support_datatype(x)) then

print *, ’ 32 bit IEEE support’

end if

if (ieee_support_datatype(y)) then

print *, ’ 64 bit IEEE support’

end if

if (ieee_support_datatype(z)) then

print *, ’ 128 bit IEEE support’

end if

end program ch3601

Table 36.6 summarises the support for a number of compilers.

Table 36.6 Compiler IEEE support for various precisions

Precision gfortran intel nag sun

32 bit IEEE
support

Yes Yes Yes Yes

64 bit IEEE
support

Yes Yes Yes Yes

128 bit IEEE
support

No Yes No Yes

36.11 Example 2: Testing What Flags Are Supported

Here is a program to illustrate the above.

include ’precision_module.f90’

program ch3602

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x = 1.0

36.11 Example 2: Testing What Flags Are Supported 677

real (dp) :: y = 1.0_dp

real (qp) :: z = 1.0_qp

integer :: i

character *20, dimension (5) :: flags = (/ &

’IEEE_DIVIDE_BY_ZERO ’, &

’IEEE_INEXACT ’, &

’IEEE_INVALID ’, &

’IEEE_OVERFLOW ’, &

’IEEE_UNDERFLOW ’ /)

do i = 1, 5

if (ieee_support_flag(ieee_all(i),x)) then

write (unit=*, fmt=100) flags(i)

100 format (a20, ’ 32 bit support’)

end if

if (ieee_support_flag(ieee_all(i),y)) then

write (unit=*, fmt=110) flags(i)

110 format (a20, ’ 64 bit support’)

end if

if (ieee_support_flag(ieee_all(i),z)) then

write (unit=*, fmt=120) flags(i)

120 format (a20, ’128 bit support’)

end if

end do

end program ch3602

Here is the output from the Intel compiler.

IEEE_DIVIDE_BY_ZERO 32 bit support

IEEE_DIVIDE_BY_ZERO 64 bit support

IEEE_DIVIDE_BY_ZERO 128 bit support

IEEE_INEXACT 32 bit support

IEEE_INEXACT 64 bit support

IEEE_INEXACT 128 bit support

IEEE_INVALID 32 bit support

IEEE_INVALID 64 bit support

IEEE_INVALID 128 bit support

IEEE_OVERFLOW 32 bit support

IEEE_OVERFLOW 64 bit support

IEEE_OVERFLOW 128 bit support

IEEE_UNDERFLOW 32 bit support

678 36 IEEE Arithmetic

IEEE_UNDERFLOW 64 bit support

IEEE_UNDERFLOW 128 bit support

36.12 Example 3: Overflow

Here is a program to illustrate the above.

program ch3603

use ieee_arithmetic

implicit none

integer :: i

real :: x = 1.0

logical :: overflow_happened = .false.

if (ieee_support_datatype(x)) then

print *, &

’ IEEE support for default precision’

end if

do i = 1, 50

if (overflow_happened) then

print *, ’ overflow occurred ’

print *, ’ program terminates’

stop 20

else

print 100, i, x

100 format (’ ’, i3, ’ ’, e12.4)

end if

x = x*10.0

call ieee_get_flag(ieee_overflow, &

overflow_happened)

end do

end program ch3603

36.13 Example 4: Underflow

Here is a program to illustrate the above.

36.13 Example 4: Underflow 679

program ch3604

use ieee_arithmetic

implicit none

integer :: i

real :: x = 1.0

logical :: underflow_happened = .false.

if (ieee_support_datatype(x)) then

print *, ’ IEEE arithmetic ’

print *, &

’ is supported for default precision’

end if

do i = 1, 50

if (underflow_happened) then

print *, ’ underflow occurred ’

print *, ’ program terminates’

stop 20

else

print 100, i, x

100 format (’ ’, i3, ’ ’, e12.4)

end if

x = x/10.0

call ieee_get_flag(ieee_underflow, &

underflow_happened)

end do

end program ch3604

36.14 Example 5: Inexact Summation

Here is a program to illustrate the above.

program ch3605

use ieee_arithmetic

implicit none

integer :: i

real :: computed_sum

real :: real_sum

680 36 IEEE Arithmetic

integer :: array_size

logical :: inexact_happened = .false.

integer :: allocate_status

character *13, dimension (3) :: heading = (/ &

’ 10,000,000’, ’ 100,000,000’, &

’1,000,000,000’ /)

real, allocatable, dimension (:) :: x

if (ieee_support_datatype(x)) then

print *, &

’ IEEE support for default precision’

end if

! 10,000,000

array_size = 10000000

do i = 1, 3

write (unit=*, fmt=100) array_size, &

heading(i)

100 format (’ Array size = ’, i15, 2x, a13)

allocate (x(1:array_size), stat= &

allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate fails, program ends’

stop

end if

x = 1.0

computed_sum = sum(x)

call ieee_get_flag(ieee_inexact, &

inexact_happened)

real_sum = array_size*1.0

write (unit=*, fmt=110) computed_sum

110 format (’ Computed sum = ’, e12.4)

write (unit=*, fmt=120) real_sum

120 format (’ Real sum = ’, e12.4)

if (inexact_happened) then

print *, ’ inexact arithmetic’

print *, ’ in the summation’

print *, ’ program terminates’

stop 20

end if

36.14 Example 5: Inexact Summation 681

deallocate (x)

array_size = array_size*10

end do

end program ch3605

Here is the output from several compilers.

gfortran

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1000E+09

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

Intel

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1000E+09

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

nag

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1678E+08

Real sum = 0.1000E+09

inexact arithmetic

682 36 IEEE Arithmetic

in the summation

program terminates

sun/oracle

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1678E+08

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

What do you notice about the value of the computed sum?

36.15 Example 6: NAN and Other Specials

Here is a program to illustrate some additional IEEE functionality.

program ch3606

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x0 = 0.0

real (dp) :: y0 = 0.0_dp

real (qp) :: z0 = 0.0_qp

real (sp) :: x1 = 1.0

real (dp) :: y1 = 1.0_dp

real (qp) :: z1 = 1.0_qp

real (sp) :: xnan = 1.0

real (dp) :: ynan = 1.0_dp

real (qp) :: znan = 1.0_qp

real (sp) :: xinfinite = 1.0

real (dp) :: yinfinite = 1.0_dp

36.15 Example 6: NAN and Other Specials 683

real (qp) :: zinfinite = 1.0_qp

xinfinite = x1/x0

yinfinite = y1/y0

zinfinite = z1/z0

xnan = x0/x0

ynan = y0/y0

znan = z0/z0

if (ieee_support_datatype(x1)) then

print *, ’ 32 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(x1)

print *, ’ nan ’, ieee_support_nan(x1)

print *, ’ 1/0 finite’, ieee_is_finite(&

xinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(xnan)

end if

if (ieee_support_datatype(y1)) then

print *, ’ 64 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(y1)

print *, ’ nan ’, ieee_support_nan(y1)

print *, ’ 1/0 finite’, ieee_is_finite(&

yinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(ynan)

end if

if (ieee_support_datatype(z1)) then

print *, ’ 128 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(z1)

print *, ’ nan ’, ieee_support_nan(z1)

print *, ’ 1/0 finite’, ieee_is_finite(&

zinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(znan)

end if

end program ch3606

36.16 Summary

Compiler support in this area is now quite widespread as the above examples have
shown.

684 36 IEEE Arithmetic

36.17 Bibliography

Hauser J.R., Handling Floating Point Exceptions in Numeric programs, ACMTrans-
action on programming Languages and Systems, Vol. 18, No. 2, March 1996, pp.
139–174.

• The paper looks at a number of techniques for handling floating point
exceptions in numeric code. One of the conclusions is for better structured support
for floating point exception handling in new programming languages, or of course
better standards for existing languages.

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-
2008, Institute of Electrical and Electronic Engineers Inc.

• The formal definition of IEEE 754. This is available for purchase as both a pdf
and printed version - see the address below.

http://www.techstreet.com/standards/

IEEE/754_2008?product_id=1745167

This standard specifies formats and methods for floating-point arithmetic in
computer systems: standard and extended functions with single, double, extended,
and extendable precision, and recommends formats for data interchange. Excep-
tion conditions are defined and standard handling of these conditions is specified.
Keywords: 754-2008, arithmetic, binary, computer, decimal, exponent, floating-
point, format, interchange, NaN,number, rounding, significand, subnormal. Product
Code(s): STDPD95802,STD95802

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

• There is a coverage of floating point arithmetic, multiple precision arithmetic,
radix conversion and rational arithmetic.

Sun, Numerical Computation Guide, SunPro.

• Very good coverage of the numeric formats for IEEE Standard 754 for Binary
Floating-Point Arithmetic. All SunPro compiler products support the features of
the IEEE 754 standard.

36.17.1 Web-Based Sources

• Differences Among IEEE 754 Implementations. The material in this paper will
eventually be included in the Sun Numerical Computation Guide as an addendum
to Appendix C, David Goldberg’s What Every Computer Scientist Should Know
about Floating Point Arithmetic.

36.17 Bibliography 685

http://docs.oracle.com/cd/

E19422-01/819-3693/819-3693.pdf

https://docs.oracle.com/en/

• The Numerical Computation Guide can be browsed on-line or downloaded as a
pdf file. The last time we checked it was 294 pages. Good source of information
if you have Sun equipment.

http://www-users.math.umn.edu/

˜arnold/disasters/ariane.html

• The Explosion of the Ariane 5: A 64-bit floating point number relating to the
horizontal velocity of the rocket with respect to the platform was converted to
a 16-bit signed integer. The number was larger than 32,768, the largest integer
storeable in a 16-bit signed integer, and thus the conversion failed.

36.17.2 Hardware Sources

Amd - Visit

https://developer.amd.com/resources/

for details of the AMDmanuals. The following five manuals are available for down-
load as pdf’s from the above site.

• AMD64Architecture Programmer’sManual Volume 1: Application Programming
• AMD64 Architecture Programmer’s Manual Volume 2: System Programming
• AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and Sys-
tem Instructions

• AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit media
instructions

• AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87
Floating-Point Instructions

Intel - Visit

https://software.intel.com/en-us/articles/intel-sdm

for a list of manuals. The following threemanuals are available for download as pdf’s
from the above site.

686 36 IEEE Arithmetic

• Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: Basic
Architecture

• Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Vol-
umes 2A and 2B: Instruction Set Reference, A-Z.

• Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Vol-
umes 3A and 3B: System Programming Guide, Parts 1 and 2

Osbourne A., Kane G., 4-bit and 8-bit Microprocessor Handbook, Osbourne and
McGraw Hill, 1981.

• Good source of information on 4-bit and 8-bit microprocessors.

OsbourneA., KaneG., 16-BitMicroprocessor Handbook, Osbourne andMcGraw
Hill, 1981.

• Ditto 16-bit microprocessors.

Bhandarkar D.P., Alpha Implementations and Architecture: Complete Reference
and Guide, Digital Press, 1996.

• Looks at some of the trade-offs and design philosophy behind the alpha chip. The
author worked with VAX, MicroVAX and VAX vectors as well as the Prism. Also
looks at the GEM compiler technology that DEC/Compaq use.

Various companies home pages.

http://www.ibm.com/

IBM home page.

http://www.sgi.com/

Silicon Graphics home page.

36.17.3 Operating Systems

Deitel H.M., An Introduction to Operating Systems, Addison-Wesley, 1990.

• The revised first edition includes case studies of UNIX, VMS, CP/M, MVS and
VM. The second edition adds OS/2 and the Macintosh operating systems. There
is a coverage of hardware, software, firmware, process management, process con-
cepts, asynchronous concurrent processes, concurrent programming, deadlock and
indefinite postponement, storage management, real storage, virtual storage, pro-
cessor management, distributed computing, disk performance optimisation, file
and database systems, performance, coprocessors, risc, data flow, analytic mod-
elling, networks, security and it concludes with case studies of the these operating
systems. The book is well written and an easy read.

36.18 Problem 687

36.18 Problem

36.1 Compile and run each of the examples in this chapter with your compiler(s).
If you have access to more than one compiler do the compilers behave in the same
way?

	36 IEEE Arithmetic
	36.1 Introduction
	36.2 History
	36.3 IEEE Specifications
	36.4 Floating Point Formats
	36.5 Procedure Summary
	36.6 General Comments About the Standard
	36.7 Resume
	36.8 Fortran Support for IEEE Arithmetic
	36.9 Derived Types and Constants Defined in the Modules
	36.9.1 ieee_exceptions
	36.9.2 ieee_arithmetic
	36.9.3 ieee_features
	36.9.4 Further Information

	36.10 Example 1: Testing IEEE Support
	36.11 Example 2: Testing What Flags Are Supported
	36.12 Example 3: Overflow
	36.13 Example 4: Underflow
	36.14 Example 5: Inexact Summation
	36.15 Example 6: NAN and Other Specials
	36.16 Summary
	36.17 Bibliography
	36.17.1 Web-Based Sources
	36.17.2 Hardware Sources
	36.17.3 Operating Systems

	36.18 Problem

