
Chapter 15
Complex

Make it as simple as possible, but no simpler.
Albert Einstein

Aims
The aims of this chapter are:

• To introduce the last predefined numeric data type in Fortran.
• To illustrate with examples how to use this type.

15.1 Introduction

This variable type reflects an extension of the real data type available in Fortran— the
complex data type, where we can store and manipulate complex variables. Problems
that require this data type are restricted to certain branches of mathematics, physics
and engineering. Complex numbers are defined as having a real and imaginary part,
i.e., a = x + iy where i is the square root of –1.

They are not supported in many programming languages as a base type which
makes Fortran the language of first choice for many people.

To use this variable type we have to write the number as two parts, the real and
imaginary elements of the number, for example,

complex :: u

u=cmplx(1.0,2.0)

represents the complex number 1 + i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrinsic
functions such as log, sin, cos, etc., accept a complex data type as argument.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_15

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_15&domain=pdf


282 15 Complex

All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value, two
format descriptors must be given. You may use either E or F formats (or indeed,
mix them), as long as there are enough of them. Although you use brackets around
the pairs of numbers in a program, these must not appear in any input, nor will they
appear on the output.

15.2 Example 1: Use of cmplx, aimag and conjg

There are a number of intrinsic functions to enable complex calculations to be per-
formed. The program below uses some of them:

program ch1501

implicit none

complex :: z, z1, z2, z3, zbar

real :: x, y, zmod

real :: x2 = 3.0, y2 = 4.0

real :: x3 = -2.0, y3 = -3.0

z1 = cmplx(1.0, 2.0) ! 1 + i 2

z2 = cmplx(x2, y2) ! x2 + i y2

z3 = cmplx(x3, y3) ! x3 + i y3

z = z1*z2/z3

x = real(z) ! real part of

! z

y = aimag(z) ! imaginary

! part of z

zmod = abs(z) ! modulus of z

zbar = conjg(z) ! complex

! conjugate of

! z

print 100, z1, z2, z3

100 format (3(1x,f4.1,’ + i ’,f4.1,/))

print 110, z, zmod, zbar

110 format (1x, f4.1, ’ + i ’, f4.1, /, 1x, &

f4.1, /, 1x, f4.1, ’ + i ’, f4.1)

print 120, x, y

120 format (2(1x,f4.1,/)) end program ch1501



15.3 Example 2: Polar Coordinate Example 283

15.3 Example 2: Polar Coordinate Example

The second order differential equation:

d2y

dt2
+ 2

dy

dt
+ y = x(t)

could describe the behaviour of an electrical system, where x(t) is the input voltage
and y(t) is the output voltage and dy/dt is the current. The complex ratio

y(w)

x(w)
= 1/(−w2 + 2 jw + 1)

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j
is

√
( − 1) The following program reads in a value of w and evaluates the frequency

response for this value of w together with its polar form (magnitude and phase):

program ch1502

implicit none

! program to calculate frequency

! response of a system

! for a given omega

! and its polar form (magnitude and phase).

real :: omega, real_part, imag_part, &

magnitude, phase

complex :: frequency_response

! Input frequency omega

print *, ’Input frequency’

read *, omega

frequency_response = 1.0/cmplx(-omega*omega+ &

1.0, 2.0*omega)

real_part = real(frequency_response)

imag_part = aimag(frequency_response)

! Calculate polar coordinates

! (magnitude and phase)

magnitude = abs(frequency_response)

phase = atan2(imag_part, real_part)



284 15 Complex

print *, ’ at frequency ’, omega

print *, ’response = ’, real_part, ’ + i ’, &

imag_part

print *, ’in polar form’

print *, ’ magnitude = ’, magnitude

print *, ’ phase = ’, phase

end program ch1502

15.4 Complex and Kind Type

The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chapter 5 must be consulted for a full
coverage of real kind types. We would therefore use something like the following to
select a complex kind type other than the default:

integer , parameter :: &

dp = selected_real_kind(15,307)

complex (dp) :: z

Chapter 21 includes a good example of how to use modules to define and use
precision throughout a program and subprogram units.

15.5 Summary

Complex is used to store and manipulate complex numbers: those with a real and
an imaginary part. There are standard functions which allow conversion between the
numerical data types — cmplx, real and int.

15.6 Problem

15.1 The program used in Chap.13 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to remedy
this, remembering that it is necessary to declare any complex variables. Instead of
raising the expression to the power 0.5 in order to take its square root, use the function
sqrt. The formulae for the complex roots are

https://doi.org/10.1007/978-3-319-75502-1_5
https://doi.org/10.1007/978-3-319-75502-1_21
https://doi.org/10.1007/978-3-319-75502-1_13


15.6 Problem 285

−b

2a
± i

√−(b2 − 4ac)

2a

If you manage this to your satisfaction, try your skills on the roots of a cubic (see
the problems in Chap.13).

https://doi.org/10.1007/978-3-319-75502-1_13

	15 Complex
	15.1 Introduction
	15.2 Example 1: Use of cmplx, aimag and conjg
	15.3 Example 2: Polar Coordinate Example
	15.4 Complex and Kind Type
	15.5 Summary
	15.6 Problem




