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Chapter 1
Overview

I don’t know what the language of the year 2000 will look like,
but it will be called Fortran

C.A.R. Hoare

Aims
The aims of the chapter are to provide a background to the organisation of the book.

1.1 Introduction

The book aims to provide coverage of a reasonable working subset of the Fortran
programming language. The subset chosen should enable you to solve quite a wide
range of frequently occurring problems.

This book has been written for three audiences:

• the complete beginner with little or no programming background
• an experienced Fortran programmer who wants to update their skills and move to
a modern version of the language

• a programmer familiar with another language wanting to see what modern Fortran
has to offer

Chapters 2 and 3 provide a coverage of problem solving and the history and
development of programming languages. Chapter 2 is essential for the beginner as the
concepts introduced there are used and expanded on throughout the rest of the book.
Chapter 3 should be read at some point but can be omitted initially. Programming
languages evolve and some understanding ofwhere Fortran has come from andwhere
it is going will prove valuable in the longer term.

• Chapter 2 looks at problem solving in some depth, and there is a coverage of the
way we define problems, the role of algorithms, the use of both top-down and
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2 1 Overview

bottom-up methods, and the requirement for formal systems analysis and design
for more complex problems.

• Chapter 3 looks at the history and development of programming languages. This
is essential as Fortran has evolved considerably from its origins in the mid-1950s,
through the first standard in 1966, the Fortran 77 standard, the Fortran 90 standard,
the Fortran 95 standard, TR 15580 and TR 15581, Fortran 2003, Fortran 2008 to
Fortran 2018. It helps to put many of the current and proposed features of Fortran
into context. Languages covered include Cobol, Algol, Lisp, Snobol, PL/1, Algol
68, Simula, Pascal, APL, Basic, C, Ada, Modula, Modula 2, Logo, Prolog, SQL,
ICON, Oberon, Oberon 2, Smalltalk, C++, C#, Java and Python.

Chapters 4–8 cover the major features provided in Fortran for numeric program-
ming in the first instance and for general purpose programming in the second. Each
chapter has a set of problems. It is essential that a reasonable range of problems are
attempted and completed, as it is impossible to learn any language without practice.

• Chapter 4 provides an introduction to programming with some simple Fortran
examples. For people with a knowledge of programming this chapter can be cov-
ered fairly quickly.

• Chapter 5 looks at arithmetic in some depth, with a coverage of the various numeric
data types, expressions and assignment of scalar variables. There is also a thorough
coverage of the facilities provided in Fortran to help write programs that work on
different hardware platforms.

• Chapter 6 is an introduction to arrays and do loops. The chapter starts with some
examples of tabular structures that one should be familiar with. There is then an
examination of what concepts we need in a programming language to support
manipulation of tabular data.

• Chapter 7 takes the ideas introduced in Chap.6 and extends them to higher-
dimensioned arrays, additional forms of the dimension attribute and corresponding
form of the do loop, and the use of looping for the control of repetition and manip-
ulation of tabular information without the use of arrays.

• Chapter 8 looks at more of the facilities offered for the manipulation of whole
arrays and array sections, ways inwhichwe can initialise arrays using constructors,
look more formally at the concepts we need to be able to accurately describe and
understand arrays, and finally look at the differences between the way Fortran
allows us to use arrays and the mathematical rules governing matrices.

Chapters 9, 10 and 11 look at input and output (I/O) and file handling in Fortran.
An understanding of I/O is necessary for the development of so-called production,
non interactive programs. These are essentially fully developed programs that are
used repeatedly with a variety of data inputs and results.

• Chapter 9 looks at output of results and how to generate something that is more
comprehensible and easy to read than what is available with free format output
and also how to write the results to a file rather than the screen.

• Chapter 10 extends the ideas introduced inChap.9 to cover input of data, or reading
data into a program and also considers file I/O.
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• Chapter 11 provides a summaryof input andoutput concepts introduced inChaps. 9
and 10, and expands on them by introducing additional features of the read, write,
open and close statements.

Chapter 12 introduces the first building block available in Fortran for the con-
struction of programs for the solution of larger, more complex problems. It looks at
the functions available in Fortran, the so-called intrinsic functions and procedures
(over 100 of them) and covers how you can define and use your own functions.

It is essential to develop an understanding of the functions provided by the lan-
guage and when it is necessary to write your own.

Chapter 13 introduces more formally the concept of control structures and their
role in structured programming. Some of the control structures available in Fortran
are introduced in earlier chapters, but there is a summary here of those already
covered plus several new ones that complete our coverage of a minimal working set.

Chapters 14–16 complete our coverage of the intrinsic facilities in Fortran for
data typing.

• Chapter 14 looks at the character data type in Fortran. There is a coverage of I/O
again, with the operators available—only one in fact.

• Chapter 15 looks at the last numeric data type in Fortran, the complex data type.
This data type is essential to the solution of a small class of problems in mathe-
matics and engineering.

• Chapter 16 looks at the logical data type. The material covered here helps consid-
erably in increasing the power and sophistication of the way we use and construct
logical expressions in Fortran. This proves invaluable in the construction and use
of logical expressions in control structures.

Chapter 17 introduces derived or user defined types with a small number of exam-
ples.

Chapter 18 looks at the dynamic data-structuring facilities nowavailable in Fortran
with the addition of pointers. This chapter looks at the basic syntax of pointers. They
are used in range of examples in later chapters in the book.

The next two chapters look at the second major building block in Fortran — the
subroutine. Chapter 19 provides a gentle introduction to some of the fundamental
concepts of subroutine definition and use and Chapter 20 extends these ideas.

Chapter 21 introduces one of modern Fortran’s major key features - the module.
A Fortran module can be thought of as equivalent to a class in C++, Java and C#.
This chapter looks at the basic syntax, with a couple of simple examples.

Chapter 22 looks at simple data structuring in Fortran, as we have now covered
modules in a bit more depth.

Chapter 23 introduces algorithms and the big O notation.
Chapter 24 looks briefly at operator overloading, first introduced in Fortran 90.
Chapter 25 looks at generic programming.
Chapter 26 has a small set of mathematical examples.
Chapter 27 introduces parameterised derived types.
Chapter 28 introduces object oriented programming in Fortran.
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Chapter 29 is the second chapter on object oriented programming
Chapters 30–34 look at parallel programming in Fortran with coverage of MPI,

OpenMP and Coarray Fortran.
Chapter 35 looks at C interoperability.
Chapter 36 looks at IEEE Arithmetic support in Fortran.
Chapter 37 looks at derived type I/O in Fortran
Chapter 38 looks at a number examples of sorting and searching
Chapter 39 looks at handling missing data in calculations
Chapter 40 looks at converting from Fortran 77 to more modern Fortran.
Chapter 41 looks at using a graphics library for plotting
Chapter 42 has an example of abstract interfaces and procedure pointers in Fortran
Some of the chapters have annotated bibliographies. These often have pointers

and directions for further reading. The coverage provided cannot be seen in isolation.
The concepts introduced are by intention brief, and fuller coverage must be sought
where necessary. References to the standard in the book are to the current Fortran
2018 revision unless otherwise stated. There are several appendices:

• AppendixA—This is a glossarywhich provides coverage of both the new concepts
provided by Fortran and a range of computing terms and ideas.

• Appendix B—is a reference appendix on attribute declarations and specifications
• Appendix C—provides details of compatibility between standards
• Appendix D—Contains a list of some of the more commonly used intrinsic proce-
dures in Fortran and includes an explanation of each procedure with a coverage of
the rules and restrictions that apply and examples of use where appropriate. There
also some tables summarising information about the procedures

• Appendix E—Contains the English and Latin text extracts used in one of the
problems in the chapter on characters, and the coded text extract used in one of
the problems in Chap.14.

• Appendix F—Formal syntax.
• Appendix G—Sample compiler options

This book is not and cannot possibly be completely self-contained and exhaustive
in its coverage of the Fortran language. Our first intention has been to produce a
coverage of the features that will get you started with Fortran and enable you to
solve a range of problems successfully. All in all Fortran is an exciting language, and
it has caught up with language developments of the last 50 years.

1.2 Program Examples

All of the program examples are available on line at

https://www.fortranplus.co.uk/
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All examples have been reformatted using the Nag compiler polish option. This
makes the programs have a consistent style. The examples in the book have been
formatted to have a line length of 48 characters to fit the printed page. They were
then manually edited to improve where the lines broke. The examples on the web
site have been formatted to have a line length of 132 characters.

1.3 Web Addresses

Web addresses are used throughout the book. As some of these are likely to change
over the lifetime of the book our web site will have up to date addresses. We have
organised them by chapter.



Chapter 2
Introduction to Problem Solving

They constructed ladders to reach to the top of the enemy’s wall,
and they did this by calculating the height of the wall from the
number of layers of bricks at a point which was facing in their
direction and had not been plastered. The layers were counted
by a lot of people at the same time, and though some were likely
to get the figure wrong the majority would get it right…Thus,
guessing what the thickness of a single brick was, they
calculated how long their ladder would have to be

Thucydides, The Peloponnesian War

‘When I use a word,’ Humpty Dumpty said, in a rather scornful
tone, ‘it means just what I choose it to mean — neither more nor
less’
‘The question is,’ said Alice, ‘whether you can make words mean
so many different things’

Lewis Carroll, Through the Looking Glass and What Alice
Found There

It is possible to invent a single machine which can be used to
compute any computable sequence

Alan Turing

Aims
The aims of this chapter are:

• To examine some of the ideas and concepts involved in problem solving.
• To introduce the concept of an algorithm.
• To introduce two ways of approaching algorithmic problem solving.
• To introduce the ideas involved with systems analysis and design, i.e., to show the
need for pencil and paper study before using a computer system.

• To introduce theUnifiedmodelling Language - UML, a general purposemodelling
language used in the field of software engineering.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_2&domain=pdf


8 2 Introduction to Problem Solving

2.1 Introduction

It is informative to consider some of the dictionary definitions of problem:

• A matter difficult of settlement or solution, Chambers.
• A question or puzzle propounded for solution, Chambers.
• A source of perplexity, Chambers.
• Doubtful or difficult question, Oxford.
• Proposition in which something has to be done, Oxford.
• A question raised for inquiry, consideration, or solution, Webster’s.
• An intricate unsettled question, Webster’s.

A common thread seems to be a question that we would like answered or solved.
So one of the first things to consider in problem solving is how to pose the problem.
This is often not as easy as is seems. Two of the most common methods to use here
are:

• In natural language.
• In artificial or stylised language.

Both methods have their advantages and disadvantages.

2.2 Natural Language

Most people use natural language and are familiar with it, and the two most common
forms are the written and spoken word. Consider the following language usage:

• The difference between a 3-year-old child and an adult describing the world.
• The difference between the way an engineer and a physicist would approach the
design of a car engine.

• The difference between a manager and a worker considering the implications of
the introduction of new technology.

Great care must be taken when using natural language to define a problem and a
solution. It is possible that people use the same language tomean completely different
things, and one must be aware of this when using natural language whilst problem
solving.

Natural language can also be ambiguous: Old men and women eat cheese. Are
both the men and women old?

2.3 Artificial Language

The two most common forms of artificial language are technical terminology and
notations. Technical terminology generally includes both the use of new words and
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alternate use of existing words. Consider some of the concepts that are useful when
examining the expansion of gases in both a theoretical and practical fashion:

• Temperature.
• Pressure.
• Mass.
• Isothermal expansion.
• Adiabatic expansion.

Now look at the following:

• A chef using a pressure cooker.
• A garage mechanic working on a car engine.
• A doctor monitoring blood pressure.
• An engineer designing a gas turbine.

Each has a particular problem to solve, and all will approach their problem in their
own way; thus they will each use the same terminology in slightly different ways.

2.3.1 Notations

Some examples of notations are:

• Algebra.
• Calculus.
• Logic.

All of the above have been used as notations for describing both problems and
their solutions.

2.4 Resume

We therefore have two ways of describing problems and they both have a learn-
ing phase until we achieve sufficient understanding to use them effectively. Having
arrived at a satisfactory problem statement we next have to consider how we get the
solution. It is here that the power of the algorithmic approach becomes useful.

2.5 Algorithms

An algorithm is a sequence of steps that will solve part or all of a problem. One of
the most easily understood examples of an algorithm is a recipe. Most people have
done some cooking, if only making toast and boiling an egg.
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A recipe is made up of two parts:

• A check list of things you need.
• The sequence or order of steps.

Problems can occur at both stages, e.g., finding out halfway through the recipe
that you do not have an ingredient or utensil; finding out that one stage will take an
hour when the rest will be ready in ten minutes. Note that certain things can be done
in any order — it may not make any difference if you prepare the potatoes before
the carrots.

There are two ways of approaching problem solving when using a computer.
They both involve algorithms, but are very different from one another. They are
called top-down and bottom up.

The name algorithm is derived from the name of a ninth century Persian
mathematician Abu Ja’far Mohammed ibn Musa al-Kuwarizmi (father of Ja’far
Mohammed, son of Moses, native of Kuwarizmi), and has been corrupted in western
culture as Al-Kuwarizmi.

2.5.1 Top-Down

In a top-down approach the problem is first specified at a high or general level: prepare
a meal. It is then refined until each step in the solution is explicit and in the correct
sequence, e.g., peel and slice the onions, then brown in a frying pan before adding the
beef. One drawback to this approach is that it is very difficult to teach to beginners
because they rarely have any idea of what primitive tools they have at their disposal.
Another drawback is that they often get the sequencing wrong, e.g., now place in a
moderately hot oven is frustrating because youmay not have lit the oven (sequencing
problem) and secondly because you may have no idea how hot moderately hot really
is. However, as more and more problems are tackled, top-down becomes one of the
most effective methods for programming.

2.5.2 Bottom-Up

Bottom-up is the reverse to top-down! As before you start by defining the problem at
a high level, e.g., prepare ameal. However, now there is an examination of what tools,
etc. you have available to solve the problem. This method lends itself to teaching
since a repertoire of tools can be built up and more complicated problems can be
tackled. Thinking back to the recipe there is not much point in trying to cook a six
course meal if the only thing that you can do is boil an egg and open a tin of beans.
The bottom-up approach thus has advantages for the beginner. However, there may
be a problemwhen no suitable tool is available. A colleague and friend of the authors
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learned how to make Bechamel sauce, and was so pleased by his success that every
other meal had a course with a Bechamel sauce. Try it on your eggs one morning.
Here is a case of specifying a problem, prepare a meal, and using an inappropriate
but plausible tool, Bechamel sauce.

The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not lead
to a reasonably comprehensive coverage of the language, or be particularly useful
from a teaching point of view. case studies do have great value, but it helps if you
know the elementary rules before you start on them. Imagine learning French by
studying Balzac, before you even look at a French grammar book. You can learn this
way but even when you have finished, you may not be able to speak to a Frenchman
and be understood. A good example of the case study approach is given in the book
Software Tools, by Kernighan and Plauger.

In this book our aim is to gradually introduce more and more tools until you know
enough to approach the problem using the top-down method, and also realise from
time to time that it will be necessary to develop some new tools.

2.5.3 Stepwise Refinement

Both of the above techniques can be combined with what is called stepwise refine-
ment. The original ideas behind this approach are well expressed in a paper byWirth,
entitled “Program Development by Stepwise Refinement”, published in 1971. It
means that you start with a global problem statement and break the problem down in
stages, into smaller and smaller sub problems that become more and more amenable
to solution. When you first start programming the problems you can solve are quite
simple, but as your experience grows you will find that you can handle more complex
problems.

When you think of the way that you solve problems you will probably realise that
unless the problem is so simple that you can answer it straight-away some thinking
and pencil and paper work are required. An example that some may be familiar
with is in practical work in a scientific discipline, where coming unprepared to the
situation can be very frustrating and unrewarding. It is therefore appropriate to look
at ways of doing analysis and design before using a computer.

2.6 Modular Programming

As the problems we try solving become more complex we need to look at ways of
managing the construction of programs that comprise many parts. Modula 2 was
one of the first languages to support this methodology and we will look at modular
programming in more depth in a subsequent chapter.
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2.7 Object Oriented Programming

There is a class of problems that are best solved by the treatment of the components
of these problems as objects. We will look at the concepts involved in object oriented
programming and object oriented languages in the next chapter.

2.8 Systems Analysis and Design

When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the
problems are reasonably simple, and it is not necessary to be explicit about all of the
stages one has gone through in arriving at a solution. As the problems become more
complex it is necessary to become more rigorous and thorough in one’s approach, to
keep control in the face of the increasing complexity and to avoid making mistakes.
It is then that the benefit of systems analysis and design becomes obvious. Broadly
we have the following stages in systems analysis and design:

• Problem definition.
• Feasibility study and fact finding.
• Analysis.
• Initial system design.
• Detailed design.
• Implementation.
• Evaluation.
• Maintenance.

and each problem we address will entail slightly different time spent in each of these
stages. Let us look at each stage in more detail.

2.8.1 Problem Definition

Here we are interested in defining what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives we
set ourselves. We can use the methods mentioned earlier to help us out. It is essential
that the objectives are:

• Clearly defined.
• Understood and agreed to by all people concerned, when more than one person is
involved.

• Realistic.
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2.8.2 Feasibility Study and Fact Finding

Here we look to see if there is a feasible solution. We would try and estimate the cost
of solving the problem and see if the investment was warranted by the benefits, i.e.,
cost-benefit analysis.

2.8.3 Analysis

Here we look at what must be done to solve the problem. Note that we are interested
in finding out what we need to do, but that we do not actually do it at this stage.

2.8.4 Design

Once the analysis is complete we know what must be done, and we can proceed to
the design. We may find there are several alternatives, and we thus examine alternate
ways in which the problem can be solved. It is here that we use the techniques of
top-down and bottom-up problem solving, combined with stepwise refinement to
generate an algorithm to solve the problem. We are now moving from the logical
to the physical side of the solution. This stage ends with a choice among several
alternatives. Note that there is generally not one ideal solution, but several, each with
its own advantages and disadvantages.

2.8.5 Detailed Design

Here we move from the general to the specific, The end result of this stage should be
a specification that is sufficiently tightly defined to generate actual program code.

It is at this stage that it is useful to generate pseudocode. This means writing out
in detail the actions we want carried out at each stage of our overall algorithm. We
gradually expand each stage (stepwise refinement) until it becomes Fortran — or
whatever language we want.

2.8.6 Implementation

It is at this stage that we actually use a computer system to create the program(s)
that will solve the problem. It is here that we actually need to know enough about a
programming language to use it effectively to solve our problem. This is only one
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stage in the overall process, and mistakes at any of the stages can create serious
difficulties.

2.8.7 Evaluation and Testing

Here we try to see if the program(s) we have produced will actually do what they are
supposed to. We need to have data sets that enable us to say with confidence that the
program really does work. This may not be an easy task, as quite often we only have
numeric methods to solve the problem, which is why we are using the computer in
the first place — hence we are relying on the computer to provide the proof; i.e., we
have to use a computer to determine the veracity of the programs — and as Heller
says, Catch 22.

2.8.8 Maintenance

It is rare that a program is run once and never used again. Thismeans that therewill be
an ongoing task of maintaining the program, generally to make it work with different
versions of the operating system or compiler, and to incorporate new features not
included in the original design. It often seems odd when one starts programming
that a program will need maintenance, as we are reluctant to regard a program in the
same way as a mechanical object like a car that will eventually fall apart through
use. Thus maintenance means keeping the program working at some tolerable level,
often with a high level of investment in manpower and resources. Research in this
area has shown that anything up to 80% of the manpower investment in a program
can be in maintenance.

2.9 Unified Modelling Language - UML

UML is a general purpose modelling language used in the field of software engi-
neering. It was developed by Grady Booch, Ivar Jacobson and James Rumbaugh
whilst working at Rational Software in the 1990’s. They were three of the leading
exponents of object oriented software methodologies at the time and decided to unify
the various approaches that each had developed.

UML combines techniques from data modelling (entity relationship diagrams),
business modelling (work flows), object modelling, and component modelling. It
can be used with all processes, throughout the software development life cycle, and
across different implementation technologies.

It tends to be used more in business computing than scientific computing.
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2.10 Conclusions

A drawback, inherent in all approaches to programming and to problem solving in
general, is the assumption that a solution is indeed possible. There are problems
which are simply insoluble — not only problems like balancing a national budget,
weather forecasting for a year, or predicting which radioactive atom will decay, but
also problems which are apparently computationally solvable.

Knuth gives the example of a chess problem— determining whether the game is
a forced victory for white. Although there is an algorithm to achieve this, it requires
an inordinately long time to complete. For practical purposes it is unsolvable.

Other problems can be shown mathematically to be undecidable. The work of
Gödel in this area has been of enormous importance, and the bibliography contains a
number of references for the more inquisitive and mathematically orientated reader.
The Hofstader coverage is the easiest, and least mathematical.

As far as possible we will restrict ourselves to solvable problems, like learning a
programming language.

Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is sufficient, but a
more rigorous approach is given byHopcroft andUllman in Introduction toAutomata
Theory, Languages andComputation, and byBeckman inMathematical Foundations
of programming.

2.11 Problems

2.1 What is an algorithm?

2.2 What distinguishes top-down from bottom-up approaches to problem solving?
Illustrate your answer with reference to the problem of a car, motor-cycle or bicycle
having a flat tire.

2.12 Bibliography

A.V. Aho A.V., Hopcroft J.E.,and J.D. Ullman J.D., The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1982.
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• Theoretical coverage of the design and analysis of computer algorithms.

Beckman F.S., Mathematical Foundations of Programming, Addison-Wesley,
1981.

• Good clear coverage of the theoretical basis of computing.

Bulloff J.J., Holyoke T.C., Hahn S.W., Foundations of Mathematics — Sympo-
sium Papers Commemorating the 60th Birthday of Kurt Gödel, Springer-Verlag,
1969.

• The comment by John von Neumann highlights the importance of Gödel’s work,..
Kurt Gödel’s achievement in modern logic is singular and monumental — indeed
it is more than a monument, it is a landmark which will remain visible far in space
and time. Whether anything comparable to it has occurred in the logic of modern
times may be debated. In any case, the conceivable proxima are very, very few.
The subject of logic has certainly changed its nature and possibilities with Gödel’s
achievement.

Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured programming, Academic
Press, 1972.

• This is the seminal book on structured programming.

Davis M., Computability and Unsolvability, Dover, 1982.

• The book is an introduction to the theory of computability and noncomputability
— the theory of recursive functions in mathematics. Not for the mathematically
faint hearted!

Davis W.S., Systems Analysis and Design, Addison-Wesley, 1983.

• Good introduction to systems analysis and design, with a variety of case studies.
Also looks at some of the tools available to the systems analyst.

Edmonds D., Eidinow J., Wittgensteins Poker, Faber and Faber, 2001.

• The subtitle of the book provides a better understanding of the content - ‘The story
of a 10 minute argument between two great philosophers’, which took place on
Friday 25October 1946 at the CambridgeMoral Science Club. The title of Poppers
paperwas ’Are there Philosophical problems?’. LudwigWittgenstein andBertrand
Russell were in the audience. Well worth a read.

• Here is an extract of a quote from the Times Literary Supplement. A succinctly
composed, informative, wonderfully readable and often funny account of a sin-
gle impassioned encounter between the great overbearing philosopher Ludwig
Wittgenstein and the younger, less great but equally overbearing philosopher Karl
Popper... reads like an inspired collaboration between Iris Murdoch and Monty
Python.

Fogelin R.J., Wittgenstein, Routledge and Kegan Paul, 1980.
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• The book provides a gentle introduction to the work of the philosopher Wittgen-
stein, who examined some of the philosophical problems associated with logic
and reason.

Gödel K., On Formally Undecidable Propositions of Principia Mathematica and
Related Systems, Oliver and Boyd, 1962.

• An English translation of Gödel’s original paper by Meltzer, with quite a lengthy
introduction by R.B. Braithwaite, then Knightbridge Professor of Moral Philos-
ophy at Cambridge University, England, and classified under philosophy at the
library at King’s, rather than mathematics.

Hofstadter D.,The Eternal Golden Braid, Harvester Press, 1979.

• A very readable coverage of paradox and contradiction in art, music and logic,
looking at the work of Escher, Bach and Gödel, respectively.

Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

• Coverage of the theoretical basis of computing.

Jacobson, Ivar, Grady Booch, James Rumbaugh, (1998). The Unified Software
Development Process. Addison Wesley Longman. ISBN 0-201-57169-2.

• The original book on UML.

Kernighan B.W., Plauger P.J., Software Tools, Addison-Wesley, 1976.

• Interesting essays on the program development process, originally using a non-
standard variant of Fortran. Also available using Pascal.

Knuth D.E., The Art of Computer Programming, Addison-Wesley,

• Vol 1. Fundamental Algorithms, 1974
• Vol 2. Semi-numerical Algorithms, 1978
• Vol 3. Sorting and Searching, 1972

– Contains interesting insights intomany aspects of algorithmdesign.Good source
of specialist algorithms, and Knuth writes with obvious and infectious enthusi-
asm (and erudition).

Millington D., Systems Analysis and Design for Computer Applications, Ellis
Horwood, 1981.

• Short and readable introduction to systems analysis and design.

Popper K., The Logic of Scientific Discovery, 1934 (as Logik der Forschung,
English translation 1959), Routledge, ISBN 0-415-27844-9.
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• Popper argues that science should adopt a methodology based on falsifiability,
because no number of experiments can ever prove a theory, but a single experiment
can contradict one. A classic.

Salmon M.H., Logic and Critical Thinking, Harcourt Brace Jovanovich, 1984.

• Quite a good introduction to logic and critical thinking. Coverage of arguments,
deductive and inductive arguments, causal arguments, probability and inductive
logic, confirmation of hypotheses.

Wirth N., Algorithms + Data Structures = Programs, Prentice Hall, 1976.

• One of the seminal texts in computer science. Essential reading.

Wirth N., Program Development by Stepwise Refinement, Communications of
the ACM, April 1971, Volume 14, Number 4, pp. 221–227.

• Clear and simple exposition of the ideas of stepwise refinement.



Chapter 3
Introduction to Programming Languages

We have to go to another language in order to think clearly
about the problem

Samuel R. Delany, Babel-17

Aims
The primary aim of this chapter is to provide a short history of program language
development and give some idea as to the concepts that have had an impact on
Fortran. It concentrates on some but not all of the major milestones of the last 40
years, in roughly chronological order. The secondary aim is to show the breadth of
languages available. The chapter concludes with coverage of a small number of more
specialised languages.

3.1 Introduction

It is important to realise that programming languages are a recent invention. They
have been developed over a relatively short period — 60 years — and are still
undergoing improvement. Time spent gaining some historical perspective will help
you understand and evaluate future changes. This chapter starts right at the beginning
and takes you through some, but not all, of the developments during this 55 year span.
The bulk of the chapter describes languages that are reasonably widely available
commercially, and therefore ones that you are likely to meet. The chapter concludes
with a coverage of some more specialised and/or recent developments.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_3
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3.2 Some Early Theoretical Work

Some of the most important early theoretical work in computing was that of Turing
and von Neumann. Turing’s work provided the base from which it could be shown
that it was possible to get a machine to solve problems. The work of von Neumann
added the concept of storage and combined with Turing’s work to provide the basis
for most computers designed to this day.

3.3 What Is a Programming Language?

For a large number of people a programming language provides the means of get-
ting a digital computer to solve a problem. There is a wide range of problems and
an equally wide range of programming languages, with particular languages being
suited to a particular class of problems, all of which often appears bewildering to the
beginner.

3.4 Program Language Development and Engineering

There is much in common between the development of programming languages and
the development of anything from the engineering world. Consider the car: old cars
offer much of the same functionality as more modern ones, but most people prefer
driving newer models. The same is true of programming languages, where you can
achieve much with the older languages, but the newer ones are easier to use.

3.5 The Early Days

A concept that proves very useful when discussing programming languages is that
of the level of a machine. By this is meant how close a language is to the under-
lying machine that the program runs on. In the early days of programming (up to
1954) there were only two broad categories: machine languages and assemblers. The
language that digital machines use is that of 0 and 1, i.e., they are binary devices.
Writing a program in terms of patterns of 0 and 1 was not particularly satisfactory
and the capability of using more meaningful mnemonics was soon introduced. Thus
it was realised quite quickly that one of the most important aspects of program-
ming languages is that they have to be read and understood by both machines and
humans.
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3.5.1 Fortran’s Origins

The next stage was the development of higher-level languages. The first of these was
Fortran and it was developed over a 3 year period from 1954 to 1957 by an IBM team
led by John Backus. This group achieved considerable success, and helped to prove
that the way forward lay with high-level languages for computer-based problem
solving. Fortran stands for formula translation and was used mainly by people with a
scientific background for solving problems that had a significant arithmetic content.
It was thus relatively easy, for the time, to express this kind of problem in Fortran.

By 1966 and the first standard Fortran:

• Was widely available.
• Was easy to teach.
• Had demonstrated the benefits of subroutines and independent compilation.
• Was relatively machine independent.
• Often had very efficient implementations.

Possibly the single most important fact about Fortran was, and still is, its
widespread usage in the scientific community.

3.5.2 Fortran 77

The next standard in 1977 (actually 1978, and thus out by one — a very common
programming error, more of this later!) added a number of major improvements
including

• Block IF and END IF statements, with optional ELSE and ELSE IF clauses, to
provide improved language support for structured programming

• DO loop extensions, including parameter expressions, negative increments, and
zero trip counts

• OPEN, CLOSE, and INQUIRE statements for improved I/O capability
• IMPLICIT statement, to override implicit conventions that undeclared variables
are INTEGER if their name begins with I, J, K, L, M, or N (and REAL otherwise)

• CHARACTERdata type, replacingHollerith stringswith vastly expanded facilities
for character input and output and processing of character-based data

• PARAMETER statement for specifying constants
• SAVE statement for persistent local variables
• Generic names for intrinsic functions
• A set of intrinsics (LGE, LGT, LLE, LLT) for lexical comparison of strings

One important feature sometimes overlooked was backwards compatibility. This
meant that the standard did not invalidate any standard conformant Fortran 66 pro-
gram. This protected investment in old code.
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3.5.3 Cobol

The business world also realised that computers were useful and several languages
were developed, including FLOWMATIC, AIMACO, Commercial Translator and
FACT, leading eventually to Cobol — COmmon Business Orientated Language.
There is a need in commercial programming to describe data in amuchmore complex
fashion than for scientific programming, and Cobol had far greater capability in this
area than Fortran. The language was unique at the time in that a group of competitors
worked together with the objective of developing a language that would be useful on
machines used by other manufacturers.

The contributions made by Cobol include:

• Firstly the separation among:
• The task to be undertaken.
• The description of the data involved.
• The working environment in which the task is carried out.
• Secondly a data description mechanism that was largely machine independent.
• Thirdly its effectiveness for handling large files.
• Fourthly the benefit to be gained from a programming language that was easy to
read.

Modern developments in computing — of report generators, file-handling soft-
ware, fourth-generation development tools, and especially the increasing availability
of commercial relational database management systems — are gradually replacing
the use of Cobol, except where high efficiency and/or tight control are required.

3.5.4 Algol

Another important development of the 1950s was Algol. It had a history of develop-
ment from Algol 58, the original Algol language, through Algol 60 eventually to the
Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

• The language should be as close as possible to standard mathematical notation and
should be readable with little further explanation.

• It should be possible to use it for the description of computing processes in pub-
lications.

• The new language should be mechanically translatable into machine programs.

A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this area.

The next important step for Algol occurred at a UNESCO-sponsored conference
in June 1959. There was an open discussion on Algol and the outcome was Algol
60, and eventually the Revised Algol 60 Report.

It was at this conference that John Backus gave his now famous paper on amethod
for defining the syntax of a language, called Backus Normal Form, or BNF. The full
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significance of the paper was not immediately recognised. However, BNF was to
prove of enormous value in language definition, and helped provide an interface
point with computational linguistics.

The contributions of Algol to program language development include:

• Block structure.
• Scope rules for variables because of block structure.
• The BNF definition by Backus — most languages now have a formal definition.
• The support of recursion.
• Its offspring.

Thus Algol was to prove to make a contribution to programming languages that
was never reflected in the use of Algol 60 itself, in that it has been the parent of one
of the main strands of program language development.

3.6 Chomsky and Program Language Development

Programming languages are of considerable linguistic interest, and the work of
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky’s system
of transformational grammar was developed in order to give a precise mathematical
description to certain aspects of language. Simplistically, Chomsky describes gram-
mars, and these grammars in turn can be used to define or generate corresponding
kinds of languages. It can be shown that for each type of grammar and language there
is a corresponding type of machine. It was quickly realised that there was a link with
the earlier work of Turing.

This link helped provide a firm scientific base for programming language devel-
opment, and modern compiler writing has come a long way from the early work of
Backus and his team at IBM. It may seem unimportant when playing a video game at
home or in an arcade, but for some it is very comforting that there is a firm theoretical
basis behind all that fun.

3.7 Lisp

There were also developments in very specialized areas. List processing was proving
to be of great interest in the 1950s and saw the development of IPLV between 1954
and 1958. This in turn led to the development of Lisp at the end of the 1950s. Lisp
has proved to be of considerable use for programming in the areas of artificial intel-
ligence, playing chess, automatic theorem proving and general problem solving. It
was one of the first languages to be interpreted rather than compiled. Whilst inter-
preted languages are invariably slower and less efficient in their use of the underlying
computer systems than compiled languages, they do provide great opportunities for
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the user to explore and try out ideas whilst sitting at a terminal. The power that this
gives to the computational problem solver is considerable.

Possibly the greatest contribution to program language developmentmade byLisp
was its functional notation. One of the major problems for the Lisp user has been the
large number of Lisp flavours, and this has reduced the impact that the language has
had and deserved.

3.8 Snobol

Snobolwas developed to aid in string processing, whichwas seen as an important part
of many computing tasks, e.g., parsing of a program. Probably the most important
thing that Snobol demonstrated was the power of pattern matching in a programming
language, e.g., it is possible to define a pattern for a title that would include Mr, Mrs,
Ms, Miss, Rev, etc., and search for this pattern in a text using Snobol. Like Lisp it
is generally available as an interpreter rather than a compiler, but compiled versions
do exist, and are often called Spitbol. Pattern-matching capabilities are now to be
found in many editors and this makes them very powerful and useful tools. It is in
the area of text manipulation that Snobol’s greatest contribution to program language
development lies.

3.9 Second-Generation Languages

3.9.1 PL/1 and Algol 68

It is probably true that Fortran, Algol 60 and Cobol are the threemain first-generation
high-level languages. The 1960s saw the emergence of PL/1 and Algol 68. PL/1 was
a synthesis of features of Fortran, Algol 60 and Cobol. It was soon realised that whilst
PL/1 had great richness and power of expression this was in some ways offset by the
greater difficulties involved in language definition and use.

These latter problems were also true of Algol 68. The report introduced its own
syntactic and semantic conventions and thus forced another stage in the learning
process on the prospective user. However, it has a small but very committed user
population who like the very rich facilities provided by the language.

3.9.2 Simula

Another strand that makes up program language development is provided by Sim-
ula, a general purpose programming language developed by Dahl, Myhrhaug and
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Nygaard of the Norwegian Computing Centre. The most important contribution that
Simula makes is the provision of language constructs that aid the programming of
complex, highly interactive problems. It is thus heavily used in the areas of simulation
and modelling. It was effectively the first language to offer the opportunity of object
orientated programming, and we will come back to this very important development
in programming languages later in this chapter.

3.9.3 Pascal

The designer of Pascal, Niklaus Wirth, had participated in the early stages of the
design of Algol 68 but considered that the generality and complexity of Algol 68
was amove in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60 but
aimed at providing expressive power through a small set of straightforward concepts.
This set is relatively easy to learn and helps in producing readable and hence more
comprehensible programs.

It became the language of first choice within the field of computer science during
the 1970s and 1980s, and the comment by Wirth sums up the language very well:
“although Pascal had no support from industry, professional societies, or government
agencies, it becamewidely used. The important reason for this success was that many
people capable of recognising its potential actively engaged themselves in its promo-
tion. As crucial as the existence of good implementations is the availability of docu-
mentation. The conciseness of the original report made it attractive for many teachers
to expand it into valuable textbooks. Innumerable books appeared between 1977 and
1985, effectively promoting Pascal to become the most widespread language used in
introductory programming courses. Good course material and implementations are
the indispensable prerequisites for such an evolution.”

3.9.4 APL

APL is another interesting language of the early 1960s. It was developed by Iverson
early in the decade and was available by the mid to late 1960s. It is an interpretive
vector and matrix based language with an extensive set of operators for the manipu-
lation of vectors, arrays, etc., of whatever data type. As with Algol 68 it has a small
but dedicated user population. A possibly unfair comment about APL programs is
that you do not debug them, but rewrite them!

3.9.5 Basic

Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue to
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its audience and it is very easy to learn. It is generally interpreted, though compiled
versions do exist. It has proved to be well suited to the rapid development of small
programs. It is much criticised because it lacks features that encourage or force the
adoption of sound programming techniques.

3.9.6 C

There is a requirement in computing to be able to access the underlying machine
directly or at least efficiently. It is therefore not surprising that computer professionals
have developed high-level languages to do this. This may well seem a contradiction,
but it can be done to quite a surprising degree. Some of the earliest published work
was that of Martin Richards on the development of BCPL.

This language directly influenced the work of Ken Thompson and can be clearly
seen in the programming languages B and C. The UNIX operating system is almost
totally written in C and demonstrates very clearly the benefits of the use of high-level
languages wherever possible.

With the widespread use of UNIX within the academic world C gained consid-
erable ground during the 1970s and 1980s. UNIX systems also offered much to the
professional software developer, and became widely used for large-scale software
development and as Ritchie says: “C is quirky, flawed, and an enormous success.
while accidents of history surely helped, it evidently satisfied a need for a system
implementation language efficient enough to displace assembly language, yet suffi-
ciently abstract and fluent to describe algorithms and interactions in a wide variety
of environments.”

There have been several versions of C. Before the language was standardisedmost
people relied on an informal specification contained in the book by Dennis Ritchie
and Brian Kernighan, and this version is called K&R C. In 1989 the American
National Standards Institute published the ANSI C or C89 standard. It became an
ISO standard a year later. The second edition of the K&R book covers the ANSI C
standard. ISO later released an extension to the internationalization support of the
standard in 1995, and a revised standard (C99) in 1999.

C99 introduced several new features, including inline functions, several new data
types (including long long int and a complex type to represent complex numbers),
variable-length arrays, improved support for IEEE 754 floating point, support for
variadic macros (macros of variable arity), and support for one-line comments begin-
ning with // which are part of C++. This increased the compatibility of C and C++.
Many of these had already been implemented as extensions in several C compilers.

The current version of the standard - C11 was approved in December 2011.
The C11 standard adds several new features to C and the library, including type

generic macros, anonymous structures, improved Unicode support, atomic opera-
tions, multithreading, and bounds-checked functions. It improved compatibility with
C++.
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3.10 Some Other Strands in Language Development

There are many strands that make up program language development and some of
them are introduced here.

3.10.1 Abstraction, Stepwise Refinement and Modules

Abstraction has proved to be very important in programming. It enables a complex
task to be broken down into smaller parts concentrating on what we want to happen
rather than how we want it to happen. This leads almost automatically to the ideas
of stepwise refinement and modules, with collections of modules to perform specific
tasks or steps.

3.10.2 Structured Programming

Structured programming in its narrowest sense concerns itself with the development
of programs using a small but sufficient set of statements and, in particular, control
statements. It has had a great effect on program language design, and most languages
now support the minimal set of control structures.

In a broader sense structured programming subsumes other objectives, includ-
ing simplicity, comprehensibility, verifiability, modifiability and maintenance of
programs.

3.10.3 Data Structuring and Procedural Programming

By the 1970’s languages started to emerge that offered the ability to organise data
logically - so called data structuring, and we will look at two of these in the coverage
below - C and Pascal.

C provided this facility via structs and Pascal did it via records. These languages
also offered two ways of processing the data - directly or via procedures. The terms
concrete and abstract data type are sometimes also used in the literature.

An example may help here. Consider a date. This is typically made up of three
components, a day, a month and a year. In C we can create a user defined type called
a date using structs. We can then create variables of this type. This is done in Pascal
in a similar way using records.

Access to the components of a date (day, month and year) can then either be direct
- an example of a concrete data types, or indirect (via procedures) - an abstract data
types.
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Simplistically direct access (or concrete data types) offer the benefit of efficiency,
and the possibility of lack of data integrity. In our date example we may set a day to
the value 31 when the month is February.

Indirect access (or abstract data types) are slightly less efficient as we now have
the overhead of a procedure call to access the data, but better opportunity for data
integrity as we can provide hidden code within the procedures to ensure that the day,
month and year combinations are valid.

Fortran did not provide this facility until the Fortran 90 standard.

3.10.4 Standardisation

The purposes of a standard are quite varied and include:

• Investment in people: by this we mean that the time spent in learning a stan-
dard language pays off in the long term, as what one learns is applicable on any
hardware/software platform that has a standard conformant compiler.

• Portability: one can take the code one has written for one hardware/software plat-
form andmove it to any hardware/software platform that has a standard conformant
compiler.

• Known reference point: when making comparisons one starts with reference to
the standard first, and then between the additional functionality of the various
implementations

These are some but not all of the reasons for the use of standards. Their importance
is summed up beautifully by Ronald G. Ross in his introduction to the Cannan and
Otten book on the SQL standard: “Anybody who has ever plugged in an electric
cord into a wall outlet can readily appreciate the inestimable benefits of workable
standards. Indeed, with respect to electrical power, the very fact that we seldom even
think about such access (until something goes wrong) is a sure sign of just how
fundamentally important a successful standard can be.”

3.11 Ada

Ada represents the culmination of many years of work in program language develop-
ment. It was a collective effort and the main aim was to produce a language suitable
for programming large-scale and real-time systems. Work started in 1974 with the
formulation of a series of documents by theAmericanDepartment ofDefence (DoD),
which led to the Steelman documents. It is a modern algorithmic language with the
usual control structures and facilities for the use of modules, and allows separate
compilation with type checking across modules.
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Ada is a powerful and well-engineered language. Its widespread use is certain
as it has the backing of the DoD. However, it is a large and complex language and
consequently requires some effort to learn.

The latest version of the language is Ada 2012. The following url

http://www.ada-europe.org/resources/online

provides a good starting point. Visit this site if you want up to date details about Ada.
Another good source is

http://www.adaic.org/ada-resources/standards/ada12

Both sites have free electronic versions of the various Ada standards.

3.12 Modula

Modula was designed by Wirth during the 1970s at ETH, for the programming of
embedded real-time systems. It has many of the features of Pascal, and can be taken
for Pascal at a glance. The key new features that Modula introduced were those of
processes and monitors.

As with Pascal it is relatively easy to learn and this makes it much more attractive
than Ada for most people, achieving much of the capability without the complexity.

3.13 Modula 2

Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project
with the goal to design a computer system (hardware and software) in an integrated
approach, was launched at the Institut fur Informatik of ETH Zurich. This system
(later to be called Lilith) was to be programmed in a single high level language,
which therefore had to satisfy requirements of high level system design as well as
those of low level programming of parts that closely interact with the given hardware.
Modula 2 emerged from careful design deliberations as a language that includes all
aspects of Pascal and extends them with the important module concept and those of
multi-programming. Since its syntax was more in line with Modula than Pascal’s the
chosen name was Modula 2.”

The language’s main additions with regard to Pascal are:

• Themodule concept, and in particular the facility to split a module into a definition
part and an implementation part.
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• A more systematic syntax which facilitates the learning process. In particular,
every structure starting with a keyword also ends with a keyword, i.e., is properly
bracketed.

• The concept of process as the key to multiprogramming facilities.
• So-called low-level facilities, which make it possible to breach the rigid type
consistency rules and allow one to map data with Modula 2 structure onto a store
without inherent structure.

• The procedure type, which allows procedures to be dynamically assigned to
variables.

A sad feature of Modula 2 was the long time taken to arrive at a standard for the
language.

3.14 Other Language Developments

The following is a small selection of language developments that the authors find
interesting — they may well not be included in other people’s coverage.

3.14.1 Logo

Logo is a language that was developed by Papert and colleagues at the Artificial Intel-
ligence Laboratory at MIT. Papert is a professor of both mathematics and education,
and has been much influenced by the psychologist Piaget. The language is used to
create learning environments in which children can communicate with a computer.
The language is primarily used to demonstrate and help children develop fundamen-
tal concepts of mathematics. Probably the turtle and turtle geometry are known by
educationalists outside of the context of Logo. Turtles have been incorporated into
the Smalltalk computer system developed at Xerox Palo Alto Research Centre —
Xerox PARC.

3.14.2 Postscript, TEX and LATEX

The 1980s saw a rapid spread in the use of computers for the production of printed
material. The 3 languages are each used quite extensively in this area.

Postscript is a low-level interpretive programming language with good graphics
capabilities. Its primary purpose is to enable the easy production of pages containing
text, graphical shapes and images. It is rarely seen by most end users of modern
desktop publishing systems, but underlies many of these systems. It is supported by
an increasing number of laser printers and typesetters.
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TEX is a language designed for the production of mathematical texts, and was
developed by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientific community for the
production of documents involving mathematical equations.

LATEX is Leslie Lamport’s version of TEX, and is regarded by many as more
friendly. It is basically a set of macros that hide raw TEX from the end user. The TEX
ratio is probably 1–9 (or so I’m reliably informed by a TEXie).

3.14.3 Prolog

Prolog was originally developed at Marseille by a group led by Colmerauer in
1972/73. It has since been extended and developed by several people, including
Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a
vehicle for logic programming. Most of the languages described here are basically
algorithmic languages and require a specification of how you want something done.
Logic programming concentrates on the what rather than the how. The language
appears strange at first, but has been taught by Kowalski and others to 10-year-old
children at schools in London.

3.14.4 SQL

SQL stands for Structured Query Language, and was originally developed by people
mainly working for IBM in the San Jose Research Laboratory. It is a relational
database language, and enables programmers to define, manipulate and control data
in a relational database. Simplistically, a relational database is seen by a user as a
collection of tables, comprising rows and columns. It has become the most important
language in the whole database field.

3.14.5 ICON

ICON is in the same family as Snobol, and is a high-level general purpose program-
ming language that has most of the features necessary for efficient processing of
nonnumeric data. Griswold (one of the original design team for Snobol) has learnt
much since the design and implementation of Snobol, and the language is a joy to
use in most areas of text manipulation.

It is available for most systems via anonymous FTP from a number of sites on the
Internet.



32 3 Introduction to Programming Languages

3.15 Object Oriented Programming

Object oriented represents a major advance in program language development. The
concepts that this introduces include:

• Classes.
• Objects.
• Messages.
• Methods.

These in turn draw on the ideas found in more conventional programming languages
and correspond to

• Extensible data types.
• Instances of a class.
• Dynamically bound procedure calls.
• Procedures of a class.

Inheritance is a very powerful high-level concept introduced with object oriented
programming. It enables an existing data type with its range of valid operations
to form the basis for a new class, with more data types added with corresponding
operations, and the new type is compatible with the original.

Fortran 2003 offered support for object oriented programming. This is achieved
via the module facility rather than the class facility found in other languages like
C++, Java and C#.

3.15.1 Simula

Aswasmentioned earlier, the first language to offer functionality in this areawasSim-
ula, and thus the ideas originated in the 1960s. The book Simula Begin by Birtwistle,
Dahl, Myhrhaug and Nygaard is well worth a read as it represents one of the first
books to introduce the concepts of object oriented programming.

3.15.2 Smalltalk

Language plus use of a computer system.
Smalltalk has been under development by the Xerox PARC Learning Research

Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk
is designed so that every component in the system is accessible to the user and can
be presented in a meaningful way for observation and manipulation. The user inter-
face issues in Smalltalk revolve around the attempt to create a visual language for
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each object. The preferred hardware system for Smalltalk includes a high resolution
graphical display screen and a pointing device such as a graphics pen or mouse.
With these devices the user can select information viewed on the screen and invoke
messages in order to interact with the information.” Thus Smalltalk represents a
very different strand in program language development. The ease of use of a system
like this has long been appreciated and was first demonstrated commercially in the
Macintosh microcomputers.

Wirth has spent some time at Xerox PARC and has been influenced by their work.
In his own words “the most elating sensation was that after sixteen years of working
for computers the computer now seemed to work for me.” This influence can be
seen in the design of the Lilith machine, the original Modula 2 engine, and in the
development of Oberon as both a language and an operating system.

3.15.3 Oberon and Oberon 2

As Wirth says: “The programming language Oberon is the result of a concentrated
effort to increase the power ofModula-2 and simultaneously to reduce its complexity.
Several features were eliminated, and a few were added in order to increase the
expressive power and flexibility of the language.”

Oberon and Oberon 2 are thus developments beyond Modula 2. The main new
concept added to Oberon was that of type extension. This enables the construction
of new data types based on existing types and allows one to take advantage of what
has already been done for that existing type.

Language constructs removed included:

• Variant records.
• Opaque types.
• Enumeration types.
• Subrange types.
• Local modules.
• With statement.
• Type transfer functions.
• Concurrency.

The short paper by Wirth provides a fuller coverage. It is available at ETH via
anonymous FTP.

3.15.4 Eiffel

Eiffel was originally developed by Interactive Software Engineering Inc. (ISE)
founded by Bertrand Meyer. Meyer’s book Object-Oriented Software Construction
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contains a detailed treatment of the concepts and theory of the object technology that
led to Eiffel’s design.

The language first became available in 1986, and the first edition of Meyer’s book
was published in 1988. The following is a quote from the Wikipedia entry.

• The design goal behind the Eiffel language, libraries, and programming meth-
ods is to enable programmers to create reliable, reusable software modules. Eiffel
supports multiple inheritance, genericity, polymorphism, encapsulation, type-safe
conversions, and parameter covariance. Eiffel’s most important contribution to
software engineering is design by contract (DbC), in which assertions, precondi-
tions, postconditions, and class invariants are employed to help ensure program
correctness without sacrificing efficiency.

3.15.5 C++

Stroustrup did his PhD thesis at the Computing Laboratory, Cambridge University,
England, andworkedwith Simula. He had previously workedwith Simula at the Uni-
versity of Aarhus in Denmark. His comments are illuminating: “but was pleasantly
surprised by the way the mechanisms of the Simula language became increasingly
helpful as the size of the program increased. The class and co-routine mechanisms
of Simula and the comprehensive type checking mechanisms ensured that problems
and errors did not (as I - and I guess most people - would have expected) grow lin-
early with the size of the program. Instead, the total program acted like a collection
of very small (and therefore easy to write, comprehend and debug) programs rather
than a single large program.”

He designed C++ to provide Simula’s functionality within the framework of C’s
efficiency, and he succeeded in this goal as C++ is one of the most widely used object
oriented programming language.

The language began as enhancements to C, adding classes, virtual functions,
operator overloading, multiple inheritance, templates and exception handling by the
time of the first standard.

Its influence in the area of programming language design can be seen in Java and
C#.

Table3.1 summarises the C++ standardisation history.
The following are some of the guidelines used by the standards committee in the

development of C++11.

Table 3.1 C++ standardisation history

Year C++ standard Informal name

1998 ISO/IEC 14882:1998 C++98

2003 ISO/IEC 14882:2003 C++03

2007 ISO/IEC TR 19768:2007 C++TR1

2011 ISO/IEC 14882:2011 C++11
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• Maintain stability and compatibility with C++98 and possibly with C;
• Prefer introduction of new features through the standard library, rather than extend-
ing the core language;

• Prefer changes that can evolve programming technique;
• Improve C++ to facilitate systems and library design, rather than to introduce new
features useful only to specific applications;

• Increase type safety by providing safer alternatives to earlier unsafe techniques;
• Increase performance and the ability to work directly with hardware;
• Provide proper solutions for real-world problems;
• Implement zero-overhead principle (additional support required by some utilities
must be used only if the utility is used);

• MakeC++ easy to teach and to learnwithout removing any utility needed by expert
programmers.

C++14 was a small extension over C++11 and was published in December 2014.
C++17 was a major update and was published in December 2017.

3.15.6 Java

Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too complicated
and that an object oriented environment based upon C++ would be of use. At around
about the same time James Gosling (mister emacs) was starting to get frustrated with
the implementation of an SGML editor in C++. Oak was the outcome of Gosling’s
frustration.

Sun over the next few years ended up developing Oak for a variety of projects. It
wasn’t until Sun developed their own web browser, Hotjava, that Java as a language
hit the streets. And as the saying goes the rest is history.

Java is a relatively simple object oriented language.Whilst it has its origins in C++
it has dispensed with most of the dangerous features. It is OO throughout. Everything
is a class.

It is interpreted and the intermediate byte code will run on any machine that
has a Java virtual machine for it. This is portability at the object code level, unlike
portability at the source code level—which iswhatwe expectwithmost conventional
languages. Some of the safe features of the language include:

• Built in garbage collection.
• Array subscript checking.
• No pointers — everything is passed by reference.

It is multithreaded, which makes it a delight for many applications. It has an
extensive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later.

It is under continual development and at the time of writing was in its eighthmajor
release.

Sun was acquired by Oracle in 2010.
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3.15.7 C#

C# is a recent language fromMicrosoft and is a key part of their .NET framework. It is
a modern, well-engineered language in the same family of programming languages
in terms of syntax as C, C++ and Java. If you have a knowledge of one of these
languages it will look very familiar.

One of the design goals was to produce a component oriented language, and to
build on the work that Microsoft had done with OLE, ActiveX and COM:

• ActiveX is a set of technologies that enables software components to interact with
one another in a networked environment, regardless of the language in which they
were created. ActiveX was built on the Component Object Model (COM).

• COM is the object model on which ActiveX Controls and OLE are built. COM
allows an object to expose its functionality to other components and to host appli-
cations. It defines both how the object exposes itself and how this exposure works
across processes and networks. COM also defines the object’s life cycle.

• OLE is a mechanism that allows users to create and edit documents containing
items or objects created by multiple applications. OLE was originally an acronym
for Object Linking and Embedding. However, it is now referred to simply as
OLE. Parts of OLE not related to linking and embedding are now part of Active
technology.

Other design goals included creating a language:

• Where everything is an object — C# also has a mechanism for going between
objects and fundamental types (integers, reals, etc.).

• Which would enable the construction of robust and reliable software — it has
garbage collection, exception handling and type safety.

• Which would use a C/C++/Java syntax which is already widely known and thus
help programmers converting from one of these languages to C#.

It has been updated three times since its original release. Some of the more impor-
tant features added in C# 2 were Generics, Iterators, Partial Classes, Nullable Types
and Static Classes. The major feature that C# 3 added for most people was LINQ,
a mechanism for data querying. C# 4 was released in 2010 and added a number of
additional features.

3.15.8 Python

Python is an object-oriented, interpreted, and interactive programming language.
Python was conceived in the late 1980s, and its implementation was started in
December 1989 by Guido van Rossum at CWI in the Netherlands as a successor
to the ABC language (itself inspired by SETL) capable of exception handling and
interfacing with the Amoeba operating system. Van Rossum is Python’s principal
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author, and his continuing central role in deciding the direction of Python is reflected
in the title given to him by the Python community, (benevolent dictator for life -
BDFL).

Heres a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at
CWI, and fromworking with this group I had learned a lot about language design. This is the
origin of many Python features, including the use of indentation for statement grouping and
the inclusion of very-high-level data types (although the details are all different in Python).
I had a number of gripes about the ABC language, but also liked many of its features. It was
impossible to extend the ABC language (or its implementation) to remedy my complaints
in fact its lack of extensibility was one of its biggest problems. I had some experience with
usingModula−2+ and talkedwith the designers ofModula-3 and read theModula−3 report.
Modula−3 is the origin of the syntax and semantics used for exceptions, and some other
Python features. Iwasworking in theAmoeba distributed operating systemgroup atCWI.We
needed a better way to do system administration than bywriting either C programs or Bourne
shell scripts, since Amoeba had its own system call interface which wasnt easily accessible
from the Bourne shell. My experience with error handling in Amoeba made me acutely
aware of the importance of exceptions as a programming language feature. It occurred to
me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific
language, so I decided that I needed a language that was generally extensible. During the
1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the
Amoeba project with increasing success, and the feedback from colleagues made me add
many early improvements. In February 1991, after just over a year of development, I decided
to post to USENET. The rest is in the Misc/HISTORY file.

Python 2.0 was released on 16 October 2000 and had many major new features,
including a cycle-detecting garbage collector and support for Unicode. With this
release the development process was changed and became more transparent and
community-backed.

Python 3.0 (also called Python 3000 or py3k), a major, backwards-incompatible
release, was released on 3 December 2008 after a long period of testing. Many of its
major features have been backported to the backwards-compatible Python 2.6 and
2.7.

Here is the main Python web site.

https://www.python.org/

It is quite widely used. Large organizations that make use of Python include
Google, Yahoo!, CERN, and NASA.

Our involvement with Python started when we were asked about Python training
by people working at the Atomic Weapons Establishment in Aldermaston. We put
together a short 3 day intensive course for them.

Quite a fun language!



38 3 Introduction to Programming Languages

3.16 Back to Fortran!

We finish off with a coverage of the developments since the Fortran 77 standard.
Practically all of the Fortran compilers available today fully support the Fortran 90
and 95 standards. Support for features from the Fortran 2003 and 2008 standards is
improving on a regular basis. See the following document

https://www.fortranplus.co.uk/

fortran-information/

for up to date information on what each compiler offers in terms of standard support.

3.16.1 Fortran 90

Almost as soon as the Fortran 77 standard was complete and published, work began
on the next version. The language drew on many of the ideas covered in this chapter
and these help to make Fortran 90 a very promising language. Some of the new
features included:

• New source form, with blanks being significant and names being up to 31 charac-
ters.

• Implicit none.
• Better control structures.
• Control of the precision of numerical computation.
• Array processing.
• Pointers.
• User defined data types and operators.
• Procedures.
• Modules.
• Recursion.
• Dynamic storage allocation.

Thiswas themajor update that theFortran community hadbeenwaiting a long time
for. Backwards compatibility was again a key aim. This standard did not invalidate
any standard conformant Fortran 77 program.

3.16.2 Fortran 95

Fortran was next standardised in 1996—yet again out by one! Firstly we have a clear
up of some of the areas in the standard that had emerged as requiring clarification.
Secondly Fortran 95 added the following major concepts:
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• The forall construct.
• Pure and elemental procedures.
• Implicit initialisation of derived-type objects.
• Initial association status for pointers.

The first two help considerably in parallelization of code.
Minor features include amongst others:

• Automatic deallocation of allocatable arrays.
• Intrinsic sign function distinguishes between –0 and +0.
• Intrinsic function null returns disconnected pointer.
• Intrinsic function cpu_time returns the processor time.
• References to some pure functions are allowed in specification statements.
• Nested where constructs.
• Masked elsewhere construct.
• Small changes to theceiling,floor,maxloc andminloc intrinsic functions

Some of these were added to keep Fortran in line with High Performance Fortran
(HPF). More details are given later.

Part 2 of the standard (ISO/IEC 1539-2:1994) adds the functional specification
for varying length character data type, and this extends the usefulness of Fortran for
character applications very considerably.

3.16.3 ISO Technical Reports TR15580 and TR15581

There are two additional reports that have been published on Fortran. TR 15580
specifies three modules that provide access to IEEE floating point arithmetic and
TR15581 allows the use of the allocatable attribute on dummy arguments, function
results and structure components.

3.16.4 Fortran 2003

The language is known as Fortran 2003 even though the language did not make it
through the standardisation process until 2004. It was a major revision.

• Derived type enhancements

– parameterised derived types (allows the kind, length, or shape of a derived type’s
components to be chosen when the derived type is used)

– mixed component accessibility (allows different components to have different
accessibility)

– public entities of private type
– improved structure constructors
– finalisers
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• Object oriented programming support

– enhanced data abstraction (allows one type to extend the definition of another
type)

– polymorphism (allows the type of a variable to vary at run time)
– dynamic type allocation
– select type construct (allows a choice of execution flow depending upon the type
a polymorphic object currently has)

– type-bound procedures

• The associate construct (allows a complex expression or object to be denoted by
a simple symbol)

• Data manipulation enhancements

– allocatable components
– deferred-type parameters
– volatile attribute
– explicit type specification in array constructors
– intent specification of pointer arguments
– specified lower bounds of pointer assignment, and pointer rank remapping
– extended initialisation expressions
– max and min intrinsics for character type
– enhanced complex constants

• Input/output enhancements

– asynchronous transfer operations (allow a program to continue to process data
while an input/output transfer occurs)

– stream access (allows access to a file without reference to any record structure)
– user specified transfer operations for derived types
– user specified control of rounding during format conversions
– the flush statement
– named constants for preconnected units
– regularisation of input/output keywords
– access to input/output error messages

• Procedure pointers
• Scoping enhancements

– the ability to rename defined operators (supports greater data abstraction)
– control of host association into interface bodies

• Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the extent a
processor’s arithmetic supports the IEC standard)

• Interoperabilitywith the C programming language (allows portable access tomany
libraries and the low-level facilities provided by C and allows the portable use of
Fortran libraries by programs written in C)

• Support for international usage
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– ISO 10646
– choice of decimal or comma in numeric formatted input/output

• Enhanced integration with the host operating system

– access to command line arguments and environment variables
– access to the processor’s error messages (improves the ability to handle excep-
tional conditions)

The earlier web address has details of Fortran compiler conformance to this
standard.

3.16.5 DTR 19767 Enhanced Module Facilities

Themodule system in Fortran has a number of shortcomings and this DTR addresses
some of the issues.

One of the major issues was the so-called recompilation cascade. Changes to
one part of a module forced recompilation of all code that used the module. Mod-
ula 2 addressed this issue by distinguishing between the definition or interface and
implementation. This can now be achieved in Fortran via submodules.

3.16.6 Fortran 2008

The next standard, ISO/IEC 1539-1:2010, commonly known as Fortran 2008, was
approved in September 2010. The new features include:

• Submodules
• Coarrays
• Performance enhancements

– do concurrent
– Contiguous attribute
– Simply contiguous arrays

• Data declaration

– Maximum rank
– Long integers
– Allocatable components of recursive type
– Implied-shape array
– Pointer initialization
– Data statement restrictions lifted
– Kind of a forall index
– Type statement for intrinsic types
– Declaring type-bound procedures
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– Extensions to value attribute

• Data usage

– Omitting an allocatable component in a structure constructor
– Multiple allocations with source=
– Copying the properties of an object in an allocate statement
– Polymorphic assignment
– Accessing real and imaginary parts
– Pointer functions
– Elemental dummy argument restrictions lifted

• Input/Output

– Finding a unit when opening a file
– g0 edit descriptor
– Unlimited format item
– Recursive input/output

• Execution control

– The block construct
– Exit statement
– Stop code

• Intrinsic procedures and modules

– Bit processsing
– Storage size
– Optional argument radix added to selected real kind
– Extensions to trigonometric and hyperbolic intrinsic functions
– Bessel functions
– Error and gamma functions
– Euclidean vector norms
– Parity
– Execute command line
– Optional argument back added to maxloc and minloc
– Find location in an array
– String comparison
– Constants
– Compiler information
– Function for C sizeof
– Additional optional argument for ieee_selected_real_kind

• Programs and procedures

– Save attribute for module and submodule data
– Empty contains part
– Form of the end statement for an internal or module procedure
– Internal procedure as an actual argument or pointer target
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– Null pointer or unallocated allocatable as an absent dummy argument
– Non-pointer actual for pointer dummy argument
– Generic resolution by pointer/allocatable or data/procedure
– Elemental procedures that are not pure
– Entry statement becomes obsolescent

• Source form

– Semicolon at line start

A more thorough coverage can be found in John Reid’s paper.

https://wg5-fortran.org/N1851-N1900/N1891.pdf

3.16.7 TS 29113 Further Interoperability of Fortran with C

This TS was published in 2012.

3.16.8 Fortran 2018

According to the current WG5 work schedule it is expected that the Fortran 2018
standard will be published in August 2018.

Here is a short list of some of the changes introduced by this standard. It has been
taken from John Reid’s paper on the new features of Fortran 2018. The first edition
of this paper is N2127 and was published in 2017. The second edition is N2145 and
was published in January 2018.

• Additional parallel features in Fortran

– Teams
– Image failure
– Form team statement
– Change team construct
– Coarrays allocated in teams
– Critical construct
– Lock and unlock statements
– Sync team statement
– Image selectors
– Intrinsic functions get team and team number
– Intrinsic function image index
– Intrinsic function num images
– Intrinsic function this image
– Intrinsic function move alloc
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– Fail image statement
– Detecting failed and stopped images
– Collective subroutines
– New and enhanced atomic subroutines
– Failed images and stat=specifiers
– Events

• Conformance with ISO/IEC/IEEE 60559:2011

– Subnormal values
– Type for floating-point modes
– Round away from zero
– Decimal rounding mode
– Rounded conversions
– Fused multiply-add
– Test sign
– Conversion to integer type
– Remainder function
– Maximum and minimum values
– Adjacent machine numbers
– Comparisons

• Removal of deficiencies and discrepancies

– Default accessibility for entities accessed from a module
– Implicit none enhancement
– Enhancements to inquire
– d0.d, e0.d, es0.d, en0.d, g0.d and ew.d e0 edit descriptors
– Formatted input error conditions
– Rules for generic procedures
– Enhancements to stop and error stop
– Intrinsics that access the computing environment
– New elemental intrinsic function out of range
– New reduction intrinsic reduce
– Intrinsic function coshape
– Intrinsic subroutine random init
– Intrinsic function sign
– Intrinsic functions extends type of and same type as
– Nonstandard procedure from a standard intrinsic module
– Kind of the do variable in implied do
– Locality clauses in do concurrent
– Control of host association
– Connect a file to more than one unit
– Advancing input with size=
– Extension to the generic statement
– Removal of anomalies regarding pure procedures
– Recursive and non-recursive procedures
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– Simplification of calls of the intrinsic cmplx
– Removal of the restriction on argument dim of many intrinsic functions
– Kinds of arguments of intrinsic and IEEE procedures
– Hexadecimal input/output
– Deletions

Arithmetic if
Nonblock do construct

– New obsolescences
common and equivalence
Labelled do statements
Specific names for intrinsic functions
The forall construct and statement

Both N2127 and N2145 can be found on the WG5 site.

https://wg5-fortran.org/documents.html

Both versions can also be found at the ACM Fortran Forum site.

http://dl.acm.org/citation.cfm?id=J286

N2127 was published in the August 2017 edition, and N2145 can be found in the
April 2018 edition.

Table3.2 summarises the Fortran standardisation history.
Fortran 2018 is currently on schedule for a 2018 publication date.

Table 3.2 Fortran standardisation history

Year Fortran standard Informal name

1966 Ansi x3.9-1966 Fortran 66

1978 Ansi x3.9-1977 Fortran 77

1978 ISO 1539-1980 Fortran 77

1991 ISO/IEC 1539:1991 Fortran 90

1997 ISO/IEC 1539-1:1997 Fortran 95

1998 ISO/IEC TR 15580:1998 Floating-point exception handling

1998 ISO/IEC TR 15581:1998 Enhanced data type facilities

1999 ISO/IEC 1539-3:1999 Conditional compilation

2000 ISO/TEC 1539-2:2000 Part 2: varying length character strings

2001 ISO/TEC TR 15580:2001 Floating-point exception handling

2004 ISO/IEC 1539-1:2004 Fortran 2003

2009 ISO/IEC 1539-1 Module TSR

2010 1539-1:2010 Fortran 2008

2012 ISO/TEC TS 29113:2012
ISO/TEC NP TS 18508

Further interoperability of fortran with C
Additional parallel features in fortran

201? 1539-1:2018 Fortran 2018
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3.17 Fortran Discussion Lists

The first to look at is the Fortran 90 list. Details can be found at

http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html

If you subscribe youwill have access to people involved in Fortran standardisation,
language implementers formost of the hardware and software platforms, people using
Fortran in many very specialised areas, people teaching Fortran, etc.

There is also a comp.lang.fortran list available via USENET news. This provides
access to people worldwide with enormous combined expertise in all aspects of
Fortran. Invariably someone will have encountered your problem or one very much
like it and have one or more solutions.

Here is an extract from Wikipedia.

Usenet is a worldwide distributed Internet discussion system. It was developed from the
general purpose UUCP dial-up network architecture. Tom Truscott and Jim Ellis conceived
the idea in 1979 and it was established in 1980. Users read and post messages (called articles
or posts, and collectively termed news) to one or more categories, known as newsgroups.
Usenet resembles a bulletin board system (BBS) in many respects, and is the precursor to
Internet forums that are widely used today. Usenet can be superficially regarded as a hybrid
between email and web forums. Discussions are threaded, as with web forums and BBSes,
though posts are stored on the server sequentially.

One notable difference between a BBS or web forum and Usenet is the absence of a central
server and dedicated administrator. Usenet is distributed among a large, constantly changing
conglomeration of servers that store and forward messages to one another in so-called news
feeds. Individual users may read messages from and post messages to a local server operated
by a commercial usenet provider, their Internet service provider, university, employer, or
their own server.

Another to consider is the Fortran group on ‘linkedin’ The address is

https://www.linkedin.com/

3.18 ACM Fortran Forum

Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest Publica-
tion on Fortran, ACM Press. Visit

http://portal.acm.org/citation.cfm?id=J286

for more information.
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3.19 Other Sources

The following URLs are very useful:
Our Fortran web site.

https://www.fortranplus.co.uk

The Fortran Company, maintained by Walt Brainerd.

http://www.fortran.com/

3.20 Summary

It is hoped that you now have some idea about the wide variety of uses that program-
ming languages are put to.
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Chapter 4
Introduction to Programming

Though this be madness, yet there is method in ’t
Shakespeare

Plenty of practice’ he went on repeating, all the time that Alice
was getting him on his feet again. ‘plenty of practice.
The White Knight, Through the Looking Glass and What Alice
Found There, Lewis Carroll

Aims
The aims of the chapter are:

• To introduce the idea that there is a wide class of problems that can be solved with
a computer and, further, that there is a relationship between the kind of problem
to be solved and the choice of programming language that is used.

• To give some of the reasons for the choice of Fortran.
• To introduce the fundamental components or kinds of statements to be found in a
general purpose programming language.

• To introduce the three concepts of name, type and value.
• To illustrate the above with sample programs based on three of the five intrinsic
data types:

• character, integer and real.
• To introduce some of the formal syntactical rules of Fortran.

4.1 Introduction

We have seen that an algorithm is a sequence of steps that will solve a part or the
whole of a problem. A program is the realisation of an algorithm in a programming
language, and there are at first sight a surprisingly large number of programming
languages. The reason for this is that there is a wide range of problems that are
solved using a computer, e.g., the telephone company generating itemised bills or
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the meteorological centre producing a weather forecast. These two problems make
different demands on a programming language, and it is unlikely that the same
language would be used to solve both.

The range of problems that you want to solve will therefore strongly influence
your choice of programming language. Fortran stands for FORmula TRANslation,
which gives a hint of the expected range of problems for which it is suitable.

4.2 Language Strengths and Weaknesses

Some of the reasons for choosing Fortran are:

• It is a modern and expressive language;
• The language is suitable for a wide class of both numeric and nonnumeric prob-
lems;

• The language is widely available on a range of hardware and operating system
platforms;

• A lot of software already exists that has been written in Fortran. Some 15% of
code worldwide is estimated to be in Fortran.

There are a fewwarts, however. Given that there has to be backwards compatibility
with earlier versions some of the syntax is clumsy to say the least. However, a
considerable range of problems can now be addressed quite cleanly, if one sticks to
a subset of the language and adopts a consistent style.

4.3 Elements of a Programming Language

As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, Ger-
man, etc., programming languages have rules of syntax, grammar and spelling. The
application of these rules in a programming language is more strict. A program has
to be unambiguous, since it is a precise statement of the actions to be taken. Many
everyday activities are rather vaguely defined—Buy some bread on your way home
—but we are generally sufficiently adaptable to cope with the variations which occur
as a result. if, in a program to calculate wages, we had an instruction deduct some
money for tax and insurance we could have an awkward problem when the program
calculated completely different wages for the same person for the same amount of
work every time it was run. One of the implications of the strict syntax of a pro-
gramming language for the novice is that apparently silly error messages will appear
when one first starts writing programs. As with many other new subjects you will
have to learn some of the jargon to understand these messages.

Programming languages are made up of statements. We will look at the various
kinds of statements briefly below.
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4.3.1 Data Description Statements

These are necessary to describe the kinds of data that are to be processed. In thewages
program, for example, there is obviously a difference between people’s names and
the amount of money they earn, i.e., these two things are not the same, and it would
not make any sense adding your name to your wages. The technical term for this is
data type — a wage would be of a different data type (a number) to a surname (a
sequence of characters).

4.3.2 Control Structures

A program can be regarded as a sequence of statements to solve a particular problem,
and it is common to find that this sequence needs to be varied in practice. Consider
again the wages program. It will need to select among a variety of circumstances (say
married or single, paid weekly or monthly, etc), and also to repeat the program for
everybody employed. So there is the need in a programming language for statements
to vary and/or repeat a sequence of statements.

4.3.3 Data-Processing Statements

It is necessary in a programming language to be able to process data. The kind of
processing required will depend on the kind or type of data. In the wages program,
for example, you will need to distinguish between names and wages. Therefore there
must be different kinds of statements to manipulate the different types of data, i.e.,
wages and names.

4.3.4 Input and Output (I/O) Statements

For flexibility, programs are generally written so that the data that they work on exist
outside the program. In the wages example the details for each person employed
would exist in a file somewhere, and there would be a record for each person in this
file. This means that the program would not have to be modified each time a person
left, was ill, etc., although the individual records might be updated. It is easier to
modify data than to modify a program, and it is less likely to produce unexpected
results. To be able to vary the action theremust be somemechanism in a programming
language for getting the data into and out of the program. This is done using input
and output statements, sometimes shortened to I/O statements.



58 4 Introduction to Programming

4.4 Example 1: Simple Text I/O

Let us now consider a simple program which will read in somebody’s first name and
print it out:

program ch0401

!

! This program reads in and prints out a name

!

implicit none

character *20 :: first_name

print *, ’ type in your first name.’

print *, ’ up to 20 characters’

read *, first_name

print *, first_name

end program ch0401

There are several very important points to be covered here, and they will be taken
in turn:

• Each line is a statement.
• There is a sequence to the statements. The statements will be processed in the
order that they are presented, so in this example the sequence is print, read, print.

• The first statement names the program. It makes sense to choose a name that
conveys something about the purpose of the program.

• The next three lines are comment statements. They are identified by a !. Comments
are inserted in a program to explain the purpose of the program. They should be
regarded as an integral part of all programs. It is essential to get into the habit of
inserting comments into your programs straight away.

• The implicit none statement means that there has to be explicit typing of
each and every data item used in the program. It is good programming practice to
include this statement in every program that you write, as it will trap many errors,
some often very subtle in their effect. Using an analogy with a play, where there
is always a list of the persona involved before the main text of the play we can say
that this statement serves the same purpose.

• The character*20 statement is a type declaration. It was mentioned earlier
that there are different kinds of data. There must be some way of telling the
programming language that these data are of a certain type, and that therefore
certain kinds of operations are allowed and others are banned or just plain stupid!
It would not make sense to add a name to a number, e.g., what does Fred + 10
mean? So this statement defines that the variable first_name is to be of type
character and only character operations are permitted. The concept of a variable
is covered in the next section. character variables of this type can hold up to 20
characters.
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• The print statements print out an informative message to the screen — in this
case a guide as to what to type in. The use of informative messages like this
throughout your programs is strongly recommended.

• The read statement is one of the I/O statements. It is an instruction to read from
the terminal or keyboard; whatever is typed in from the keyboard will end up
being associated with the variable first_name. Input/output statements will be
explained in greater detail in later sections.

• The print statement is another I/O statement. This statement will print out what
is associated with the variable first_name and, in this case, what you typed in.

• The end program statement terminates this program. It can be thought of as
being similar to a full stop in natural language, in that it finishes the program in
the same way that a period ( . ) ends a sentence. Note the use of the name given in
the program statement at the start of the program.

• Note also the use of the asterisk in three different contexts.
• Indentation has been used tomake the structure of the program easier to determine.
Programs have to be read by human beings and we will look at this in more depth
later.

• Lastly, when you do run this program, character input will terminate with the first
blank character.

The above program illustrates the use of some of the statements in the Fortran
language. Let us consider the action of the read * statement in more detail — in
particular, what is meant by a variable and a value.

4.5 Variables — Name, Type and Value

The idea of a variable is one that you are likely to have met before, probably in a
mathematical context. Consider the following:

circum f erence = 2πr (4.1)

This is an equation for the calculation of the circumference of a circle. The fol-
lowing represents a translation of this into Fortran:

circumference = 2 * pi * radius
There are a number of things to note about this equation:

• Each of the variables on the right-hand side of the equals sign (pi and radius)
will have a value, which will allow the evaluation of the expression.

• When the expression is fully evaluated the value is assigned to the variable on the
left-hand side of the equals sign.

• In mathematics the multiplication is implied. In Fortran we have to use the *
operator to indicate that we want to multiply 2 by pi by the radius.

• We do not have access to mathematical symbols like π in Fortran but have to use
variable names based on letters from the Roman alphabet.
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Table 4.1 Variable name,
type and value

Variable name Data type Value stored

Temperature Real 28.55

Number_of_people Integer 100

First_name Character Jane

The whole line is an example of an arithmetic assignment statement in Fortran.
The following arithmetic assignment statement illustrates clearly the concepts of

name and value, and the difference in the equals sign in mathematics and computing:

i = i + 1 (4.2)

In Fortran this reads as take the current value of the variable i and add one to it, store
the new value back into the variable i, i.e., i takes the value i+1. Algebraically,
i = i + 1 does not make any sense.

Variables can be of different types. Table 4.1 shows some of those available in
Fortran.

Note the use of underscores to make the variable names easier to read.
The concept of data type seems a little strange at first, especially as we commonly

think of integers and reals as numbers. However, the benefits to be gained from this
distinction are considerable. This will become apparent after you havewritten several
programs.

4.6 Example 2: Simple Numeric I/O and Arithmetic

Let us now consider another program, one that reads in three numbers, adds them up
and prints out both the total and the average:

program ch0402

!

! This program reads in three numbers and sums

! and averages them

!

implicit none

real :: n1, n2, n3, average = 0.0, total = 0.0

integer :: n = 3

print *, ’ type in three numbers.’

print *, ’ Separated by spaces or commas’

read *, n1, n2, n3

total = n1 + n2 + n3

average = total/n

print *, ’Total of numbers is ’, total

print *, ’Average of the numbers is ’, average

end program ch0402
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Here are some of the key points about this program.

• This program has declarations for numeric variables and Fortran (in common with
most programming languages) discriminates between real and integer data
types.

• The variables average, total and n are also given initial values within the
type declaration.
Variables are initially undefined in Fortran, so the variables n1, n2, n3 fall into
this category, as they have not been given values at the time that they are declared.

• The first print statement makes a text message (in this case what is between the
apostrophes) appear at the screen. As was noted earlier, it is good practice to put
out a message like this so that you have some idea of what you are supposed to
type in.

• The read statement looks at the input from the keyboard (i.e., what you type)
and in this instance associates these values with the three variables. These values
can be separated by commas (,), spaces ( ), or even by pressing the carriage return
key, i.e., they can appear on separate lines.

• The next statement actually does some data processing. It adds up the values of
the three variables (n1, n2, and n3) and assigns the result to the variable total.
This statement is called an arithmetic assignment statement.
and is covered more fully in the next chapter.

• The next statement is another data-processing statement. It calculates the average
of the numbers entered and assigns the result to average. We could have actually
used the value 3 here instead, i.e., written average = total/3 and have
exactly the same effect. This would also have avoided the type declaration for
n. However, the original example follows established programming practice of
declaring all variables and establishing their meaning unambiguously. We will see
further examples of this type throughout the book.

• Indentation has been used tomake the structure of the program easier to determine.
• The sum and average are printed out with suitable captions or headings. Do
not write programs without putting captions on the results. It is too easy to make
mistakes when you do this, or even to forget what each number means.

• Finally we have the end of the program and again we have the use of the name in
the program statement.

4.7 Some More Fortran Rules

There are certain things to learn about Fortran which have little immediate meaning
and some which have no logical justification at all, other than historical precedence.
Why is a cat called a cat? At the end of several chapters there will be a brief summary
of these rules or regulations when necessary. Here are a few:
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• Source is free format.
• Lower case letters are permitted, but not required to be recognised.
• Multiple statements may appear on one line and are separated by the semicolon
character.

• There is an order to the statements in Fortran. Within the context of what you have
covered so far, the order is:

– Program statement.
– Type declarations, e.g., implicit, integer, real or character.
– Processing and I/O statements.
– End program statement.

• Comments may appear anywhere in the program, after program and before end;
they are introduced with a ! character, and can be in line.

• Names may be up to 63 characters in length and include the underscore character.
• Lines may be up to 132 characters.
• Up to 39 continuation lines are allowed (using the ampersand (&) as the continu-
ation character).

• The syntax of the read and print statement introduced in these examples is

– read format, input-item-list.
– print format, output-item-list.

where format is * in the examples and called list directed formatting.
and input-item-list is a list of variable names separated by commas.
and output-item-list is a list of variable

names and/or a sequence of characters enclosed in either “or ” , again separated
by commas.

• If the implicit none statement is not used, variables that are not explicitly declared
will default to real if the first letter of the variable name is A–H or O–Z, and to
integer if the first letter of the variable name is I–N.

4.8 Fortran Character Set

Table 4.2 has details of the Fortran character set.
The default character type shall support a character set that includes the Fortran

character set. By supplying non-default character types, the processor may support
additional character sets. The characters available in the ASCII and ISO 10646 char-
acter sets are specified by ISO/IEC 646:1991 (International Reference Version) and
ISO/IEC 10646-1:2000 UCS-4, respectively; the characters available in other non
default character types are not specified by the standard, except that one character in
each non default character type shall be designated as a blank character to be used
as a padding character.
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Table 4.2 The Fortran character set

Graphic Name of character Graphic Name of character

Alphanumeric characters

A–Z Uppercase letters 0−9 Digits

a–z Lowercase letters _ Underscore

Special characters

Blank ; Semicolon

= Equals ! Exclamation mark

+ Plus " Quotation mark

− Minus % Percent

* Asterisk & Ampersand

/ Slash or oblique ~ Tilde

\ Backslash < Less than

( Left parenthesis > Greater than

) Right parenthesis ? Question mark

[ Left square bracket ’ Apostrophe

] Right square bracket ‘ Grave accent

{ Left curly bracket ˆ Circumflex accent

} Right curly bracket | Vertical bar or line

, Comma $ Currency symbol

. Period or decimal
point

# Number sign

: Colon @ Commercial at

Table 4.3 has details of the ASCII character set.
If you live and work outside of the USA and UK you may well have problems

with your keyboard when programming. There is a very good entry in Wikipedia on
keyboards, that is well worth a look at for the curious.

Table 4.3 ASCII character set

Decimal Character Decimal Character Decimal Character Decimal Character

0 nul 32 & 64 @ 96 ’

1 soh 33 ! 65 A 97 a

2 stx 34 " 66 B 98 b

3 etx 35 # 67 C 99 c

4 eot 36 $ 68 D 100 d

5 enq 37 % 69 E 101 e

6 ack 38 & 70 F 102 f

7 bel 39 ’ 71 G 103 g

8 bs 40 ( 72 H 104 h

(continued)
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Table 4.3 (continued)

9 ht 41 ) 73 I 105 i

10 lf 42 * 74 J 106 j

11 vt 43 + 75 K 107 k

12 ff 44 , 76 L 108 l

13 cr 45 - 77 M 109 m

14 so 46 . 78 N 110 n

15 si 47 / 79 O 111 o

16 dle 48 0 80 P 112 p

17 dc1 49 1 81 Q 113 q

18 dc2 50 2 82 R 114 r

19 dc3 51 3 83 S 115 s

20 dc4 52 4 84 T 116 t

21 nak 53 5 85 U 117 u

22 syn 54 6 86 V 118 v

23 etb 55 7 87 W 119 w

24 can 56 8 88 X 120 x

25 em 57 9 89 Y 121 y

26 sub 58 : 90 Z 122 z

27 esc 59 ; 91 [ 123 {

28 fs 60 < 92 \ 124 |
29 gs 61 = 93 ] 125 }

30 rs 62 > 94 ˆ 126 ~

31 us 63 ? 95 _ 127 del

4.9 Good Programming Guidelines

The following are guidelines, and do not form part of the Fortran language definition:

• Use comments to clarify the purpose of both sections of the program and the whole
program.

• Choose meaningful names in your programs.
• Use indentation to highlight the structure of the program. Remember that the
program has to be read and understood by both humans and a computer.

• Use implicit none in all programs you write to minimise errors.
• Do not rely on the rules for explicit typing, as this is a major source of errors in
programming.
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4.10 Compilers Used

A number of hardware platforms, operating systems and compilers have been used
when writing this book and earlier books. The following have been used in the
production of this edition of the book:

• NAG Fortran Builder 6.1 and 6.2 for Windows.
• NAG Fortran Compiler 6.1 and 6.2 for Windows.
• NAG Fortran Compiler 6.1 and 6.2 for Linux.
• Intel Fortran 16.x, 17.x, 18.x for Windows.
• Intel Fortran 16.x, 18.x for Linux.
• gnu gfortran 4.8.x, 4.9.x, 4.10.x, 5.4.x, 7.x, 8.0.x for Windows.
• gnu gfortran 4.8.x, 6.3.x for Linux.
• Cray Fortran: Version 8.x.x - Cray Archer service.
• Oracle Solaris Studio 12.6 for Linux.

Our recommendation is that you use at least two compilers in the development of
your code. Moving code between compilers and platforms teaches you a lot.

The following were used in the production of the third edition of the book:

• NAG Fortran Builder 6.0 for Windows.
• NAG Fortran compiler 6.0 for Windows.
• NAG Fortran Compiler 6.0 for Linux.
• NAG Fortran Builder 5.3.1 for Windows.
• Nag Fortran compiler 5.3.1 and 5.3.2 for Windows.
• Intel Fortran 14.x, 15.x for Windows.
• Intel Fortran 15.x for Linux.
• gnu gfortran 4.8.x, 4.9.x, 4.10.x for Windows.
• gnu gfortran 4.8.x for Linux.
• Cray Fortran: Version 8.2.1 - Cray Archer service.
• Oracle Solaris Studio 12.4 for Linux.

The following were used in the production of earlier editions.

• NAG Fortran Builder 5.1, 5.2, 5.3 for Windows.
• NAG Fortran Compiler 5.1, 5.2, 5.3 for Linux.
• Intel Fortran 11.x, 12.x, 13.x for Windows.
• Intel Fortran 12.x for Linux.
• gnu gfortran 4.x for Windows.
• gnu gfortran 4.x for Linux.
• Cray Fortran: Version 7.3.1 - Cray Hector service.
• g95 for Linux.
• pgi 10.x - Cray Hector service.
• IBM XL Fortran for AIX, V13.1 (5724-X15), Version: 13.01.0000.0002.
• Oracle Solaris Studio 12.0, 12.1, 12.2 for Linux.

The following have been used with earlier books:



66 4 Introduction to Programming

• DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90 compiler.
• DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.
• Sun Ultra Sparc under Solaris:

– NAGACE F90 compiler.
– NAGWare F95 compiler.
– Sun (Release 1.x) F90 compiler.
– Sun (Release 2.x) F90 compiler.

• PCs under DOS and Windows:

– DEC/Compaq Fortran 90 and Fortran 95 compilers.
– Intel Compiler (7.x, 8.x).
– Lahey Fujitsu Fortran 95 (5.7).
– NAG Fortran 95 Compiler.
– NAG Salford Fortran 90 Compiler.
– Salford Fortran 95 Compiler.

• PCs under Linux:

– Intel Compiler.
– Lahey Fujitsu Fortran 95 Pro (6.1).
– NAG Fortran 95 (4.x, 5.x).

It is very illuminating to use more than one compiler whilst developing programs.

4.11 Compiler Documentation

The compiler may come with documentation. Here are some details for a number of
compilers.

4.11.1 gfortran

Manuals are available at

http://gcc.gnu.org/wiki/GFortran\#manuals

The following

http://gcc.gnu.org/onlinedocs/

gcc-4.5.2/gfortran.pdf

is a 236 page pdf.
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4.11.2 IBM

Here is a starting point. The urls have been split as the lines are too long.

http://www-03.ibm.com/software/

products/en/fortcompfami/

Here is a starting point for the XLF for AIX system.

http://www-01.ibm.com/support/

docview.wss?uid=swg27036673

and the starting point for the pdf version of the documentation is.

http://www-01.ibm.com/support/

docview.wss?uid=swg27036673

They provide

• Getting Started with XL Fortran for AIX 15.1 This book introduces you to XL
Fortran for Linux and its features, including features new for 15.1.

• Installation Guide - XL Fortran for AIX 15.1 This book contains information for
installing XL Fortran and configuring your environment for basic compilation and
program execution.

• Compiler Reference - XL Fortran for AIX 15.1 This book contains information
about the many XL Fortran compiler options and environment variables that you
can use to tailor the XL Fortran compiler to your application development needs.

• Language Reference - XL Fortran for AIX 15.1 This book contains information
about the Fortran programming language as supported by IBM, including language
extensions for portability and conformance to non-proprietary standards, compiler
directives and intrinsic procedures.

• Optimization and Programming Guide - XL Fortran for AIX 15.1 This book con-
tains information on advanced programming topics, such as application porting,
inter language calls, floating-point operations, input/output, application optimiza-
tion and parallelization, and the XL Fortran high-performance libraries.

4.11.3 Intel

Windows. The following will end up available after a complete install.

• Intel MKL

– Release notes
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– Reference Manual
– User Guide

• Parallel Debugger Extension

– Release Notes

• Compiler

– Reference Manual, Visual Studio Help files or html.
– User Guide, Visual Studio Help files or html.

Intel also provide the following

https://software.intel.com/en-us/articles/

intel-software-technical-documentation/

4.11.4 Nag

Windows

• Fortran Builder Help

– Fortran Builder Tutorial - 44 pages
– Fortran Builder Operation Guide - 67 pages
– Fortran Language Guide - 115 pages
– Compiler Manual - 149 pages
– LAPACK Guide - 70 pages (440MB as PDF!)
– GTK+ Library - 201 pages
– OpenGL/GLUT Library - 38 pages
– SIMDEM Library - 78 pages

4.11.5 Oracle/Sun

Oracle make available a range of documentation. From within Oracle Solaris Studio

• Help

– Help Contents
– Online Docs and Support
– ..
– ..
– Quick Start Guide
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and you will get taken to the Oracle site by some of these entries.
You can also download a 300+ MB zip file which contains loads of Oracle docu-

mentation. You should be able to locate (after some rummaging around)

• Sun Studio 12: Fortran Programming Guide - 174 pages
• Sun Studio 12: Fortran User’s Guide - 216 pages
• Sun Studio 12: Fortran Library Reference - 144 pages
• Fortran 95 Interval Arithmetic Programming Reference - 166 pages

Happy reading :-)

4.12 Program Development

A number of ways of developing programs have been used, including:

• Using an integrated development environment, including

– NAG Fortran Builder under Windows.
– Microsoft Visual Studio with the Intel compiler under Windows.
– Oracle Sunstudio under SuSe Linux.

• Using a DOS box and simple command line prompt under Windows.
• Using ssh to log in to the Archer service.
• Using a VPN, and SSH to log in to the IBM Power 7 system at Slovak Hydrome-
teorological Institute Jeseniova 17.

• Using a console or terminal window under SuSe Linux.
• Using X-Windows software to log into the SUN Ultra Sparc systems.
• Using terminal emulation software to log into the SUN Ultra Sparc.
• Using DEC terminals to log into the DEC VAX and DEC Alpha systems.
• Using PCs running terminal emulation software to log into the DEC VAX and
DEC Alpha systems.

It is likely that you will end up doing at least one of the above and probably more.
The key stages involved are:

• Creating and making changes to the Fortran program source.
• Saving the file.
• Compiling the program:
• If there are errors you must go back to the Fortran source and make the changes
indicated by the compiler error messages.

• Linking if successful to generate an executable:
• Automatic link. This happens behind the scenes and the executable is generated
for you immediately.

• Manual link. You explicitly invoke the linker to generate the executable.
• Running the program.
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• Determining whether the program actually works and gives the results expected.

These steps must be taken regardless of the hardware platform, operating system
and compiler you use. Some people like working at the operating system prompt
(e.g., DOS, Linux and UNIX), and others prefer working within a development
environment. Both have their strengths and weaknesses.

4.13 Problems

4.1 Compile and run Example1 in this chapter. Experiment with the following types
of input.

Ian
Ian Chivers
“Jane Margaret Sleightholme”

4.2 Compile and run Example2 in this chapter.
Think about the following points:

• Is there a difference between separating the input by spaces or commas?
• Do you need the decimal point?
• What happens when you type in too many data?
• What happens when you type in too few data?

If you have access to more than one compiler repeat the above and compare the
results.

4.3 Write a program that will read in your name and address and print them out in
reverse order.

Think about the following points:

• How many lines are there in your name and address?
• What is the maximum number of characters in the longest line in your name and
address?

• What happens at the first blank character of each input line?
• Which characters can be used in Fortran to enclose each line of text typed in and
hence not stop at the first blank character?

• If you use one of the two special characters to enclose text what happens if you
start on one line and then press the return key before terminating the text?

The action here will vary between Fortran implementations.



Chapter 5
Arithmetic

Taking Three as the subject to reason about — A convenient
number to state — We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight. The result we proceed to
divide, as you see, By Nine Hundred and Ninety and Two: then
subtract Seventeen, and the answer must be Exactly and
perfectly true.

Lewis Carroll, The Hunting of the Snark

Round numbers are always false.
Samuel Johnson

Aims
The aims of this chapter are to introduce:

• The Fortran rules for the evaluation of arithmetic expressions to ensure that they
are evaluated as you intend;

• The idea of truncation and rounding;
• The use of the parameter attribute to define or set up constants;
• The use of Fortran’s kind types to determine and control the precision by which
arithmetic in Fortran is carried out;

• The concept of numeric models and positional number systems for integer and
real arithmetic and their implementation on binary devices.

• Testing the numerical representation of different integer kind types on a system –
8, 16, 32 and 64 bit integers

• Testing the numerical representation of different real kind types on a system
– 32, 64, 80 and 128 bit reals

• Round off
• Relative error
• Absolute error

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_5
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5.1 Introduction

Most problems in the academic and scientific communities require arithmetic evalua-
tion as part of the algorithm. The arithmetic performed by computers is not the same
as the arithmetic you are familiar with in conventional mathematics and algebra.

There are two areas that we need to address

• computation involving finite precision - so called computer arithmetic
• the rules that apply in a programming language - different programming languages
have different rules for the evaluation of expressions

The outcome of the above means that 2 + 2 is not necessarily 4 when using a
computer!

5.2 The Fortran Operators and the Arithmetic
Assignment Statement

In the previous chapter, we introduced the arithmetic assignment statement, empha-
sising the concepts of name, type and value. Here we will consider the way that
arithmetic expressions are evaluated in Fortran.

Table 5.1 lists the five arithmetic operators available in Fortran.

Table 5.1 Fortran operators Mathematical operation Fortran symbol or operator

Addition +
Subtraction −
Division /

Multiplication *

Exponentiation **

Exponentiation is raising a number to a power. Note that the exponentiation oper-
ator is the * character twice.

The following are some examples of valid arithmetic assignment statements in
Fortran:

taxable_income = gross_wage - personal_allowance

cost = bill + vat + service

delta = deltax/deltay

area = pi * radius * radius

cube = big ** 3
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These expressions are all simple, and there are no problems when it comes to
evaluating them. However, now consider the following:

tax = gross_wage - personal_allowance * tax_rate

This is a poorly written arithmetic expression. There is a choice of doing the
subtraction before or after the multiplication. Our everyday experience says that the
subtraction should take place before the multiplication. However, if this expression
were evaluated in Fortran the multiplication would be done before the subtraction.

5.3 Example 1: Simple Arithmetic Expressions in Fortran

A complete program to show the correct form in Fortran is as follow:

program ch0501

implicit none

!

! Example of a Fortran program

! to calculate net pay

! given an employee’s gross pay

!

! The UK personal allowance is

! correct as of 2014

!

real :: gross_wage, net_wage, tax

real :: tax_rate = 0.25

integer :: personal_allowance = 10000

character (len=60) :: their_name

print *, ’Input employees name’

read *, their_name

print *, ’Input Gross wage’

read *, gross_wage

tax = (gross_wage-personal_allowance)*tax_rate

net_wage = gross_wage - tax

print *, ’Employee: ’, their_name

print *, ’Gross Pay: ’, gross_wage

print *, ’Tax: ’, tax

print *, ’Net Pay:’, net_wage

end program ch0501
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Let us look at some of the key points of this program.

• We have the implicit none statement which aids in detecting typing errors.
• Wedeclare thevariables gross_wage, net_wage, tax and tax_rate
to be of type real as they will hold floating point values, i.e. numbers with a dec-
imal point.

• The variable their_name is of type character and can hold up to 60 char-
acters.

• The variable personal_allowance is of type integer as it holds integer
values.

• We then have some i/o statements to prompt the user for input and read in their
name and gross pay.

• We then calculate the tax payable and net income using two simple arithmetic
assignment statements.

• We then print out the results.

This example illustrates some basic arithmetic in Fortran.

5.4 The Fortran Rules for Arithmetic

We need to look at three areas here:

• The rules for forming expressions — the syntax.
• The rules for interpreting expressions — the semantics.
• The rules for evaluating expressions — optimisation.

The syntax rules determine which expressions are valid. The semantics determine
a valid interpretation, and once this has been done the compiler can replace the
expression with any other one that is mathematically equivalent, generally in the
interests of optimisation.

Here is the section of the Fortran 2018 standard on expression evaluation.

• 10.1.5.2.4 Evaluation of numeric intrinsic operations

– 1 The execution of any numeric operation whose result is not defined by the
arithmetic used by the processor is prohibited. Raising a negative real value to
a real power is prohibited.

– 2 Once the interpretation of a numeric intrinsic operation is established, the
processor may evaluate any mathematically equivalent expression, provided
that the integrity of parentheses is not violated.

– 3 Two expressions of a numeric type are mathematically equivalent if, for all
possible values of their primaries, their mathematical values are equal. However,
mathematically equivalent expressions of numeric type may produce different
computational results.
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The rules for the evaluation of expressions in Fortran are as follows:

• Brackets are used to define priority in the evaluation of an expression.
• Operators have a hierarchy of priority— a precedence. The hierarchy of operators
is:

• Exponentiation: when the expression has multiple exponentiation, the evaluation
is from right to left. For example,

l = i ** j ** k

is evaluated by first raising j to the power k, and then using this result as the
exponent for i; more explicitly,

l = i ** (j ** k)

Although this is similar to the way in which we might expect an algebraic expres-
sion to be evaluated, it is not consistent with the rules for multiplication and
division, and may lead to some confusion. When in doubt, use brackets.

• Multiplication and division: within successive multiplications and divisions, the
rules regarding any mathematically equivalent expression means that you must
use brackets to ensure the evaluation you want. For example, with

a = b * c / d * e

for real and complex numeric types the compiler does not necessarily evaluate in a
left to right manner, i.e., evaluate b times c, then divide the result by d and finally
take that result and multiply by e.

• Addition and subtraction: as for multiplication and division the rules regarding
any equivalent expression apply. However, it is seldom that the order of addition
and subtraction is important, unless other operators are involved.

Table 5.2 summarises the hierarchy of the operators.

Table 5.2 Hierarachy or
precedence of the Fortran
operators

Mathematical operation Fortran symbol or operator

Exponentiation **

Division /

Multiplication *

Addition +
Subtraction −
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The following are all examples of valid arithmetic expressions in Fortran:

slope = (y1-y2)/(x1-x2)

x1 = (-b+((b*b-4*a*c)**0.5))/(2*a)

q = mass_d/2*(mass_a*veloc_a/mass_d)**2 + &

((mass_a * veloc_a)**2)/2

Note that brackets have been used to make the order of evaluation more obvious.
It is often possible to write involved expressions without brackets, but, for the sake
of clarity, it is often best to leave the brackets in, even to the extent of inserting a few
extra ones to ensure that the expression is evaluated correctly. The expression will
be evaluated just as quickly with the brackets as without. Also note that none of the
expressions is particularly complex. The last one is about as complex as you should
try: with more complexity than this it is easy to make a mistake.

5.5 Expression Equivalence

The rule regarding any equivalent expression means if a, b and c are numeric then
the following are true:

a + b = b + a

- a + b = b - a

a + b + c = a + (b + c)

The last is nominally evaluated left to right, as the additions are of equal prece-
dence:

a * b = b * a

a * b * c = a * (b * c)

and again the last is nominally evaluated left to right, as the multiplications are of
equal precedence:

a * b - a * c = a * (b - c)

a / b / c = a / (b * c)

The last is true for real and complex numeric types only.
Problems arise when the value that a faulty expression yields lies within the

range of expected values and the error may well go undetected. This may appear
strange at first, but a computer does exactly what it is instructed to do. If, through a
misunderstanding on the part of a programmer, the program is syntactically correct
but logicallywrong from the point of view of the problem definition, then this will not
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be spotted by the compiler. If an expression is complex, break it down into successive
statements with elements of the expression on each line, e.g.,

temp = b * b - 4 * a * c

x1 = ( - b + ( temp ** 0.5 )) / ( 2 * a )

and

Moment = Mass_A * Veloc_A

Q = Mass_D / 2 * ( Moment / Mass_D ) **2 + &

( Moment **2) / 2

5.6 Rounding and Truncation

Computer arithmetic can be subject to truncation and rounding.

• Truncation. This operation involves throwing away part of the number, e.g., with
14.6 truncating the number to two figures leaves 14.

• Rounding. Consider 14.6 again. This is rounded to 15. Basically, the number is
changed to the nearest whole number. It is still a real number. What do you think
will happen with 14.5; will this be rounded up or down?

Youmust be aware of these twooperations. Theymayoccasionally cause problems
in division and in expressions with more than one data type.

5.7 Example 2: Type Conversion and Assignment

To see some of the problems that can occur consider the examples below:

program ch0502

implicit none

real :: a, b, c

integer :: i

a = 1.5

b = 2.0

c = a/b

i = a/b

print *, a, b

print *, c

print *, i

end program ch0502
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After executing these statements c has the value 0.75, and i has the value zero!
This is an example of type conversion across the = sign. The variables on the right
are all real, but the last variable on the left is an integer. The value is therefore made
into an integer by truncation. In this example, 0.75 is real, so i becomes zero when
truncation takes place.

5.8 Example 3: Integer Division and Real Assignment

Consider now an example where we assign into a real variable (so that no truncation
due to the assignment will take place), but where part of the expression on the right-
hand side involves integer division:

program ch0503

implicit none

integer :: i, j, k

real :: answer

i = 5

j = 2

k = 4

answer = i/j*k

print *, i

print *, j

print *, k

print *, answer

end program ch0503

The value of answer is 8, because the i/j term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is cases like
this that cause problems for the unwary, i.e., where the calculated result may be close
to the actual one. In complicated expressions it would be easy to miss something like
this.

To recap, truncation takes place in Fortran:

• Across an = sign, when a real is assigned to an integer.
• In integer division.

It is very important to be careful when attempting mixed mode arithmetic — that
is, whenmixing reals and integers. If a real and an integer are together in a division or
multiplication, the result of that operation will be real; when addition or subtraction
takes place in a similar situation, the result will also be real. The problem arises when
some parts of an expression are calculated using integer arithmetic and other parts
with real arithmetic:
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c = a + b - i / j

The integer division is carried out before the addition and subtraction; hence the
result of i/j is integer, although all the other parts of the expression will be carried
out with real arithmetic.

5.9 Example 4: Time Taken for Light to Travel
from the Sun to Earth

How long does it take for light to reach the Earth from the Sun? Light travels 9.46
1012 km in 1 year. We can take a year as being equivalent to 365.25 days. (As all
school children know, the astronomical year is 365 days, 5h, 48min and 45.9747s
— hardly worth the extra effort.) The distance between the Earth and Sun is about
150,000,000km. There is obviously a bit of imprecision involved in these figures,
not least since the Earth moves in an elliptical orbit, not a circular one. One last
point to note before presenting the program is that the elapsed time will be given in
minutes and seconds. Few people readily grasp fractional parts of a year:

program ch0504

implicit none

real :: light_minute, distance, elapse

integer :: minute, second

real, parameter :: light_year = 9.46*10**12

! Light_year : Distance travelled by light

! in one year in km

! Light_minute : Distance travelled by light

! in one minute in km

! Distance : Distance from sun to earth in

! km

! Elapse : Time taken to travel a

! distance (Distance) in minutes

! Minute : integer number part of elapse

! Second : integer number of seconds

! equivalent to fractional

! part of elapse

!

light_minute = light_year/(365.25*24.0*60.0)

distance = 150.0*10**6

elapse = distance/light_minute

minute = elapse

second = (elapse-minute)*60

print *, ’ Light takes ’, minute, ’ Minutes’
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print *, ’ ’, second, ’ Seconds’

print *, ’ To reach the earth from the sun’

end program ch0504

The calculation is straightforward; first we calculate the distance travelled by
light in 1min, and then use this value to find out how many minutes it takes for
light to travel a set distance. Separating the time taken in minutes into whole-number
minutes and seconds is accomplished by exploiting the way in which Fortran will
truncate a real number to an integer on type conversion. The difference between
these two values is the part of a minute which needs to be converted to seconds.
Given the inaccuracies already inherent in the exercise, there seems little point in
giving decimal parts of a second.

It is worth noting that some structure has been attempted by using comment lines
to separate parts of the program into fairly distinct chunks.Note also that the comment
lines describe the variables used in the program.

Can you see any problems with this example?

5.10 The Parameter Attribute

This attribute is used to provide a way of associating a meaningful name with a
constant in a program. Consider a program where π was going to be used a lot. It
would be silly to have to type in 3.14159265358 every time. There would be a lot
to type and it is likely that a mistake could be made typing in the correct value. It
therefore makes sense to set up pi once and then refer to it by name. However, if
pi was just a variable then it would be possible to do the following:

real :: li,pi

.

pi=4.0*atan(1.0)

.

pi=4*alpha/beta

.

The pi=4*alpha/beta statement should have been li=4*alpha/beta.
What has happened is that, through a typing mistake (p and l are close together on a
keyboard), an error has crept into the program. It will not be spotted by the compiler.
Fortran provides a way of helping here with the parameter attribute, which should
be added to or combined with a type declaration.

Table 5.3 has details of some commonly used physical constants.
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Table 5.3 Some commonly used physical constants

Atomic mass constant mu 1.660 538 921 x 10−27 kg

Avogadro constant NA,L 6.022 141 29 x 1023 mol−1

Boltzmann constant k 1.380 6488 x 10−23 J K−1

Electron mass me 9.109 382 91 x 10−31 kg

Elementary charge e 1.602 176 565 x 10−19 C

Proton mass mp 1.672 621 777 x 10−27 kg

Speed of light in vacuum c, c0 299 792 458 m s−1

Newtonian constant of gravitation G 6.673 84 x 10−11 m3 kgt−1 s−2

The data has been taken from

http://physics.nist.gov/cuu/index.html

A type statement with a parameter attribute may contain an arithmetic expres-
sion, so that some relatively simple arithmetic may be performed in setting up these
constants. The evaluation must be confined to addition, subtraction, multiplication,
division and integer exponentiation.

The following are some examples of the parameter attribute for some of the
physical constants.

real , parameter :: pi = &

4.0*atan(1.0)

real , parameter :: c = &

299792458 * 10.0 ** (-1)

real , parameter :: e = &

1.602176565 * 10.0 ** (-19)

We have introduced the Fortran intrinsic function atan in this example, and
for further details see Appendix D. We will also be covering intrinsic functions in
a later chapter. The advantage of the parameter attribute is that you could not then
assign another value to pi, c or charge. If you tried to do this, the compiler would
generate an error message.

5.11 Round Off Errors and Computer Arithmetic

Precision is not the same as accuracy. In this age of digital timekeeping, it is easy to
provide an extremely precise answer to the questionWhat time is it? This answer need
not be accurate, even though it is reported to tenths (or even hundredths!) of a second.
Do not be fooled into believing that an answer reported to ten places of decimals
must be accurate to ten places of decimals. The computer can only retain a limited
precision. When calculations are performed, this limitation will tend to generate
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inaccuracies in the result. The estimation of such inaccuracies is the domain of the
branch of mathematics known as Numerical Analysis.

To give some idea of the problems, consider an imaginary decimal computer
which retains two significant digits in its calculations. For example, 1.2, 12.0, 120.0
and 0.12 are all given to two-digit precision. Note therefore that 1234.5 would be
represented as 1200.0 in this device. When any arithmetic operation is carried out,
the result (including any intermediate calculations) will have two significant digits.
Thus:

130 + 12 = 140 (rounding down from 142)

and similarly:

17 / 3 = 5.7 (rounding up from 5.666666...)

and:

16 * 16 = 260

where there are more involved calculations, the results can become even less attrac-
tive. Assume we wish to evaluate

(16 * 16) / 0.14

We would like an answer in the region of 1828.5718, or, to two significant digits,
1800.0. if we evaluate the terms within the brackets first, the answer is 260/0.14, or
1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better, we
could rewrite the fraction as

(16 / 0.14) * 16

Which gives a result of 1800.0.
Algebra shows that all these evaluations are equivalent if unlimited precision is

available.
A round-off error, also called rounding error, is the difference between the calcu-

lated approximation of a number and its exact mathematical value. We will look at
this issue in more depth later in this chapter.

5.12 Relative and Absolute Errors

When we are calculating numerical approximations to a solution we often need to
measure how accurate our estimated solution is. If we are using an iterative method
we could look at the difference between successive calculations, or our algorithm
may have an expression for estimating errors.
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Either way there are two types of errors, absolute and relative.
Looking at relative errors is a better way of measuring accuracy than absolute

errors because an absolute error depends on the size of the number being approxi-
mated.

If p′ is an approximation to p then the relative error is |p − p′|/|p| and the
absolute error is |p − p′|.

Here is an example to illustrate the above.

5.13 Example 5: Relative and Absolute Error

program ch0505

implicit none

real :: p = 0.4e-4, papprox = 0.41e-4

real :: abs_error, rel_error

integer :: i

do i = 1, 3

abs_error = abs(p-papprox)

rel_error = abs(p-papprox)/abs(p)

print 100, p, papprox

100 format (’p = ’, e11.4, /, &

’papprox = ’, e11.4)

print 110, abs_error, rel_error

110 format (’abs error:’, 12x, e11.4, /, &

’rel error:’, 12x, e11.4, /)

p = p*1.0e5

papprox = papprox*1.0e5

end do

end program ch0505

This program introduces the intrinsic abs function and a new statement, the
format statement and the (e) edit descriptor. For the moment just concentrate on
the output. We will look at the format statement and (e) edit descriptor in more
depth in a later chapter. See Appendix D for more information on the abs intrinsic.

Here is the output from the Nag compiler.

p = 0.4000E-04

approx to p = 0.4100E-04

abs error: 0.1000E-05

rel error: 0.2500E-01



84 5 Arithmetic

p = 0.4000E+01

approx to p = 0.4100E+01

abs error: 0.1000E+00

rel error: 0.2500E-01

p = 0.4000E+06

approx to p = 0.4100E+06

abs error: 0.1000E+05

rel error: 0.2500E-01

This example shows that the same relative error of 0.25 ∗ 10−1 occurs for widely
varying absolute errors, therefore the absolute error can be misleading.

The relative error is more meaningful because it takes into consideration the size
of the number.

5.14 Range, Precision and Size of Numbers

The range of integer numbers and the precision and the size of floating point numbers
in computing are directly related to the number of bits allocated to their internal rep-
resentation. Tables5.4 and 5.5 summarise this information for the two most common
bit sizes in use for integers and reals — 32 bits and 64 bits, as defined in the IEEE
standard. Most hardware in use today supports these standards to a greater or lesser
extent.

We will look at IEEE 754 in later sections and in a separate chapter.
Table 5.4 looks at integer numbers and Table 5.5 looks at real numbers.
For practical purposes all compilers support the information contained in these

two tables.

Table 5.4 Word size and integer numbers

Number of bits Power of 2 Power of 10 Maximum integer

32 (2**31)-1 O(10**9) 2, 147, 483, 647

64 (2**63)-1 O(10**18) 9, 223, 372, 036, 854, 774, 807

Table 5.5 Word size and real numbers

Number of bits Precision Smallest real Largest real

32 6–9 ≈0.3E-38 ≈1.7E38

64 15–18 ≈0.5E-308 ≈0.8E+308
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5.15 Overflow and Underflow

Care should also be taken when is one is near the numerical limits of the machine.
Consider the following:

z = b * c / d

where b, c and d are all O(1030) and we are using 32-bit floating point numbers
where themaximum real is O(1038). Here the product b * c generates a number of
O(1060) — beyond the limits of the machine. This is called overflow as the number
is too large. Note that we could avoid this problem by retyping this as

z = b * (c / d)

where the bracketed expression c/d would now be O(1030)/O(1030), and is within
machine limits.

5.15.1 Example 6: Overflow

Here is a sample program that illustrates the above.

program ch0506

implicit none

real :: z = 0.0

real :: b = 1.0e30

real :: c = 1.0e30

real :: d = 1.0e30

z = b*c/d

print *, z

z = b*(c/d)

print *, z

end program ch0506

Here is the output from the Intel compiler.

Infinity

1.0000000E+30

Here is the output from the Nag compiler.

nagfor ch0506.f90

NAG Fortran Compiler
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Error: ch0506.f90, line 7:

Floating-point overflow in single-precision

multiplication

[NAG Fortran Compiler error termination, 1 error]

So the Nag compiler diagnoses the problem at compile time.

5.15.2 Example 7: Underflow

There is an inverse called underflow when the number is too small,which is illustrated
below:

z = b * c * d

where b and c are O(10−30)/O(1030). The intermediate result of b * c is
O(10−60) — again beyond the limits of the machine. This problem could have been
overcome by retyping as

z = b * (c * d)

Here is a simple program that illustrates underflow.

program ch0507

implicit none

real :: z = 0.0

real :: b = 1.0e-30

real :: c = 1.0e-30

real :: d = 1.0e30

z = b*c*d

print *, z

z = b*(c*d)

print *, z

end program ch0507

Here is the output from running the program with the Nag and Intel compilers.

0.0000000E+00

1.0000000E-30

We will look at underflow in more detail in the chapter on IEEE arithmetic.
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5.16 Health Warning: Optional Reading, Beginners
Are Advised to Leave Until Later

Most people take arithmetic completely for granted and rarely think much about the
subject. It is necessary to look at it in a bit more depth if we are to understand what
the computer is doing in this area.

5.16.1 Positional Number Systems

Our way of working with numbers is essentially a positional one. When we look
at the number 1024, for example, we rarely think of it in terms of 1 * 1000 + 0 *
100 + 2 * 10 + 4 * 1. Thus the normal decimal system we use in everyday life is a
positional one, with a base of 10.

We are probably aware that we can use other number bases, and 2, 8 and 16 are
fairly common alternate number bases. As the computer is a binary device it uses
base 2.

We are also reasonably familiar with a mantissa exponent or floating point com-
bination when the numbers get very large or very small, e.g., a parsec is commonly
expressed as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10
** 16.

The above information will help in understanding the way in which integers and
reals are represented on computer systems.

5.16.2 Fortran Representational Models

Fortran has three representational models for data

• the bit model
• the integer number system model
• the real number system model

and these models (and the corresponding intrinsic functions) return values related to
the models. We look at each in turn below.

5.16.2.1 Bit Data Type and Representation Model

The model is only defined for positive integers (or cardinal numbers), where they
are represented as a sequence of binary digits, and is based on the model:

i =
n−1∑

k=0

bk2
k



88 5 Arithmetic

where i is the integer value, n is the number of bits, and bk is a bit value of 0 or 1,
with bit numbering starting at 0, and reading right to left. Thus the integer 43 and bit
pattern 101011 is given by:

43 = (1 ∗ 32) + (0 ∗ 16) + (1 ∗ 8) + (0 ∗ 4) + (1 ∗ 2) + (1 ∗ 1)
or
43 = (1 ∗ 25) + (0 ∗ 24) + (1 ∗ 23) + (0 ∗ 22) + (1 ∗ 21) + (1 ∗ 20)

5.16.2.2 Integer Data Type and Representation Model

The integer data type is based on the model

i = s
q∑

k=1

lkr
k−1

where i is the integer value, s is the sign, q is the number of digits (always positive),
r is the radix or base (integer greater than 1), and lk is a positive integer (less than r ).

A base of 2 is typical so 1023 is

1023 = (1 ∗ 29) + (1 ∗ 28) + (1 ∗ 27) + (1 ∗ 26) + (1 ∗ 25) + (1 ∗ 24) +
(1 ∗ 23) + (1 ∗ 22) + (1 ∗ 21) + (1 ∗ 20)

5.16.2.3 Real Data Type and Representation model

The real data type is based on the model

x = sbe
m∑

k=1

fkb
−k

where x is the real number, s is the sign, b is the radix or base (greater than 1), m is
the number of bits in the mantissa, e is an integer in the range emin to emax, and fk is
a positive number less than b.

This means that with, for example, a 32-bit real there would be 8 bits allocated to
the exponent and 24 to the mantissa. One of the bits in each part would be used to
represent the sign and is called the sign bit. This reduces the number of bits that can
actually be used to represent the mantissa and exponent to 31 and 7, respectively.
There is also the concept of normalisation, where the exponent is adjusted so that
the most significant bit is in position 22 — bits are typically numbered 0–22, rather
than 1–23. This form of representation is not new, and is first documented around
1750 BC, when Babylonian mathematicians used a sexagesimal (radix 60) positional
notation. It is interesting that the form they used omitted the exponent!

This is the theoretical basis of the representation of these three data types in
Fortran.
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This information together with the following provide a good basis for writing
portable code across a range of hardware.

5.17 Kind Types

Fortran 90 introduced the concept of a kind parameter for the intrinsic types. Each
of the intrinsic types has a kind parameter that selects a processor dependent
representation of objects of that type and kind.

Each intrinsic type is classified as a numeric type or a nonnumeric type. The
numeric types are integer, real, and complex. The nonnumeric intrinsic types are
character and logical.

5.17.1 Example 8: Testing What Kind Types Are Available

The follow program shows what kind types are available for each intrinsic type.

program ch0508

use iso_fortran_env

print *, ’ Real kinds ’, real_kinds

print *, ’ Integer kinds ’, integer_kinds

print *, ’ Character kinds ’, character_kinds

print *, ’ Logical kinds ’, logical_kinds

end program ch0508

The intrinsic module ISO_FORTRAN_ENV provides public entities relating to
the Fortran environment. The processor shall provide the named constants, derived
types, and procedures described in sub-clause 16.10.2. of the Fortran 2018 standard.

Here is sample output from a number of compilers. In each case the numbers refer
to the number of bytes.

gfortran

Real kinds 4 8 10 16

Integer kinds 1 2 4 8 16

Character kinds 1 4

Intel

Real kinds 4 8 16

Integer kinds 1 2 4 8

Character kinds 1
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Nag

Real kinds 4 8 16

Integer kinds 1 2 4 8

Character kinds 1 2 3 4

Logical kinds 1 2 4 8

The Nag compiler has to be invoked with the -kind = byte flag to generate the
above output.

Oracle

Real kinds 4 8 16

Integer kinds 1 2 4 8

Character kinds 1

The gfortran compiler supports a 10 byte real kind. We will look at this in more
depth later.

All four compilers support 1, 2, 4 and 8 byte integer types. The gfortran compiler
also supports a 16 byte integer type.

All compilers support a 1 byte character type. gfortran also supports a 4 byte
character type. Nag supports 2 and 3 byte character types.

All four compilers support a 1 byte logical type. Nag also supports 2, 3 and 4 byte
logical types.

5.18 Testing the Numerical Representation of Different
Kind Types on a System

Table 5.6 provides details of the kind query functions and Table 5.7 provides details
of the numeric query functions.

The next set of programs test out the kinds of the intrinsic types supported by
compilers.

Table 5.6 Kind inquiry functions

Function name Simple explanation

kind Kind parameter

selected_char_kind Kind parameter of a specified character set

selected_int_kind Kind parameter of an integer data type

selected_real_kind Kind parameter of a real data type
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Table 5.7 Numeric inquiry functions

Function name Simple explanation

digits Number of digits in the model number

epsilon Smallest difference between two reals

huge Returns the largest number

maxexponent Maximum value for the model exponent

minexponent Minimum value for the model exponent

precision Returns the decimal precision

radix Base of a model number

range Decimal exponent range of a model number

tiny Returns the smallest number

5.19 Example 9: Using the Numeric Inquiry Functions
with Integer Types

This program looks at using the kind intrinsics with integer types.

program ch0509

implicit none

! example of the use of the kind function

! and the numeric inquiry functions

! for integer kind types

! 8 bit -128 to

! 127 10**2

! 16 bit -32768 to

! 32767 10**4

! 32 bit -2147483648 to

! 2147483647 10**9

! 64 bit

! -9223372036854775808 to

! 9223372036854775807 10**18

integer :: i

integer, parameter :: i8 = selected_int_kind(2 &

)
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integer, parameter :: i16 = selected_int_kind( &

4)

integer, parameter :: i32 = selected_int_kind( &

9)

integer, parameter :: i64 = selected_int_kind( &

18)

integer (i8) :: i1

integer (i16) :: i2

integer (i32) :: i3

integer (i64) :: i4

print *, ’ ’

print *, ’ integer kind support’

print *, ’ kind huge’

print *, ’ ’

print *, ’ ’, kind(i), ’ ’, huge(i)

print *, ’ ’

print *, ’ ’, kind(i1), ’ ’, huge(i1)

print *, ’ ’, kind(i2), ’ ’, huge(i2)

print *, ’ ’, kind(i3), ’ ’, huge(i3)

print *, ’ ’, kind(i4), ’ ’, huge(i4)

print *, ’ ’

end program ch0509

In this example we introduce parameters for each of the supported integer kind
types.

Table 5.8 has details of the names we have given to the integer kind types.

Table 5.8 Integer kind type
parameter name and integer
value

Parameter Integer type

i8 8 bit value

i16 16 bit value

i32 32 bit value

i64 64 bit value
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As the kind type parameter has some information about the underlying represen-
tation.

Section 16.10.2.14 of the Fortran 2018 standard has details about these named
constants:

• int8
• int16
• int32
• int64

where the values correspond to an integer type whose storage size expressed in bits
is 8, 16, 32, and 64 respectively.

They are available via the ISO_FORTRAN_ENV intrinsic module.
They were introduced in the Fortran 2008 standard, and as only one compiler

supports the whole of the Fortran 2008 standard at the time of writing the book we
will use i8, i16, i32 and i64 in the examples.

Table 5.9 has details of huge for each of the integer types.

Table 5.9 Integer kind and huge comparision

gfortran Intel Nag

Kind Huge Kind Huge Kind Huge

4 2147483647 4 2147483647 3 2147483647

1 127 1 127 1 127

2 32767 2 32767 2 32767

4 2147483647 4 2147483647 3 2147483647

8 9223372036854775807 8 9223372036854775807 4 9223372036854775807

As can be seen from the output for these three compilers they all support the same
4 integer kind types, namely 8 bit, 16 bit, 32 bit and 64 bit.

Run this program on whatever system you have access to and compare the output
with the above examples.

5.20 Example 10: Using the Numeric Inquiry Functions
with Real Types

program ch0510

implicit none

! real arithmetic

!

! 32 and 64 bit reals are normally available.

! The IEEE format is as described below.

!

! 32 bit reals 8 bit exponent, 24 bit mantissa
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! 64 bit reals 11 bit exponent, 53 bit mantissa

!

real :: r

integer, parameter :: sp = selected_real_kind( &

6, 37)

integer, parameter :: dp = selected_real_kind( &

15, 307)

integer, parameter :: qp = selected_real_kind( &

30, 291)

real (sp) :: rsp

real (dp) :: rdp

real (qp) :: rqp

print *, ’ =====================’

print *, ’ Real kind information’

print *, ’ =====================’

print *, ’ kind number’

print *, ’ ’, kind(r), ’ ’, kind(rsp), ’ ’, &

kind(rdp), ’ ’, kind(rqp)

print *, ’ digits details’

print *, ’ ’, digits(r), ’ ’, digits(rsp), &

’ ’, digits(rdp), ’ ’, digits(rqp)

print *, ’ epsilon details’

print *, ’ ’, epsilon(r)

print *, ’ ’, epsilon(rsp)

print *, ’ ’, epsilon(rdp)

print *, ’ ’, epsilon(rqp)

print *, ’ huge value’

print *, ’ ’, huge(r)

print *, ’ ’, huge(rsp)

print *, ’ ’, huge(rdp)

print *, ’ ’, huge(rqp)

print *, ’ maxexponent value’

print *, ’ ’, maxexponent(r)

print *, ’ ’, maxexponent(rsp)

print *, ’ ’, maxexponent(rdp)

print *, ’ ’, maxexponent(rqp)

print *, ’ minexponent value’

print *, ’ ’, minexponent(r)

print *, ’ ’, minexponent(rsp)

print *, ’ ’, minexponent(rdp)

print *, ’ ’, minexponent(rqp)

print *, ’ precision details’

print *, ’ ’, precision(r), ’ ’, &

precision(rsp), ’ ’, precision(rdp), ’ ’, &
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precision(rqp)

print *, ’ radix details’

print *, ’ ’, radix(r), ’ ’, radix(rsp), &

’ ’, radix(rdp), ’ ’, radix(rqp)

print *, ’ range details’

print *, ’ ’, range(r), ’ ’, range(rsp), &

’ ’, range(rdp), ’ ’, range(rqp)

print *, ’ tiny details’

print *, ’ ’, tiny(r)

print *, ’ ’, tiny(rsp)

print *, ’ ’, tiny(rdp)

print *, ’ ’, tiny(rqp)

end program ch0510

In the above example we use a naming convention used by LAPACK95, which
is a Fortran 95 interface to LAPACK.

For the real numeric kind types, where we have

• sp - single precision
• dp - double precision
• qp - quad precision

LAPACK is written in Fortran 90 and provides routines for solving systems of
simultaneous linear equations, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems. The associated matrix factoriza-
tions (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are
related computations such as reordering of the Schur factorizations and estimating
condition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex matrices,
in both single and double precision.

Their address is

http://www.netlib.org/lapack95/

Section 13.8.2.18 of the Fortran 2008 standard introduced real32, real64,
and real128, where the values of these default integer scalar named constants shall
be those of the kind type parameters that specify a real type whose storage size
expressed in bits is 32, 64, and 128 respectively.

They are available via the ISO_FORTRAN_ENV intrinsic module.
As only one compiler supports the whole of the Fortran 2008 standard at the time

of writing the book we will use sp, dp and qp in the examples.
Table 5.10 is a summary of the details of an extended type.
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Table 5.10 Extended real type comparison

Function name Cray gfortran Intel Nag Oracle

digits 113 113 113 106 113

maxexponent 16384 16384 16384 1023 16384

minexponent −16381 −16381 −16381 −968 −16381

precision 33 33 33 31 33

radix 2 2 2 2 2

range 4931 4931 4931 291 4931

As can be seen all five compilers support the same 32 and 64 bit real types. They
all support an extended 128 bit type, and Cray, gfortran, Intel and Oracle are the
same, but Nag is different.

Here are the details for epsilon, huge and tiny for these compilers.

Epsilon

Cray

1.92592994438723585305597794258492732E-34

gfortran

1.92592994438723585305597794258492732E-0034

Intel

1.925929944387235853055977942584927E-0034

Nag

2.46519032881566189191165177E-32

Oracle (Sun)

1.9259299443872358530559779425849273E-34

Huge

Cray

1.18973149535723176508575932662800702E+4932

gfortran

1.18973149535723176508575932662800702E+4932

Intel

1.189731495357231765085759326628007E+4932

Nag

8.98846567431157953864652595E+307

Oracle (Sun)

1.189731495357231765085759326628007E+4932

Tiny

Cray

3.3621031431120935062626778173217526E-4932

gfortran

3.36210314311209350626267781732175260E-4932

Intel
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3.362103143112093506262677817321753E-4932

Nag

2.00416836000897277799610805E-292

Oracle (Sun)

3.3621031431120935062626778173217526E-4932

Run this program on whatever system you have access to with your compiler(s)
and compare the output with the above examples. Most compilers will offer support
for 32, 64 and 128 bit reals.

5.21 gfortran Support for Intel Extended (80 bit) Precision

As was seen earlier the gfortran compiler also supports a 10 byte real. This is the
Intel x86 extended precision format.

The x86 extended precision format is an 80-bit format first implemented in the
Intel 8087 math coprocessor and is supported by all processors that are based on
the x86 design which incorporate a floating-point unit (FPU). This 80-bit format
uses one bit for the sign of the significand, 15 bits for the exponent field (i.e. the
same range as the 128-bit quadruple precision IEEE 754 format) and 64 bits for the
significand.

We will look at an example of using this kind type in a later chapter.

5.22 Example 11: Literal Real Constants in a Calculation

We have seen how to specify integer and real variables of different kind types but we
also need to be able to do the same for literal constants. Examples of literal constants
are 1.23, 5.643E-2 (default reals) and 400, -3 (default integers). To declare a
literal constant to be of a different kind you need to specify the constant followed by
an underscore and the kind type parameter. The following are two examples of 64
bit real literal constants: 1.23_dp, 5.643E-2_dp.

You should be careful when writing programs using variables that are not the
default kind making sure that any literal constants are also of the same kind. For
example if you are using 64 bit real variables then make sure all your real literal
constants are 64 bit. Here is a program where the variables and constants pi, area
and r are 32 bit reals and pid, aread and rd are 64 bit reals. Try compiling and
running the program. Do you get the same results as us?

program ch0511

implicit none

integer, parameter :: dp = selected_real_kind( &
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15, 307)

real, parameter :: pi = 3.1415926535897931

real (dp), parameter :: pid = &

3.1415926535897931_dp

real :: area, r = 2.0

real (dp) :: aread, rd = 2.0_dp

area = pi*r*r

aread = pid*rd*rd

print 100, r, rd

100 format (’r = ’, f22.18, /, ’rd = ’, &

f22.18)

print 110, area, aread

110 format (’area = ’, f22.18, /, ’aread = ’, &

f22.18, /, 16x, ’ ######’)

end program ch0511

Here is the Nag compiler output.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000

rd = 2.000000000000000000

area = 12.566370964050292969

aread = 12.566370614359172464

######

Now edit the program and remove the _dp from the literal constant assigned to
pid. You will see that the results for area (32 bit real) and aread (64 bit real) are
the same. This is because the literal constant for pid reverts to a default 32 bit real.

C:\fortran\fortran_book_edition3\chapter5>a

r = 2.000000000000000000

rd = 2.000000000000000000

area = 12.566370964050292969

aread = 12.566370964050292969

######

5.23 Summation and Finite Precision

The next example look at some of the problems that occur with the summation of
floating point numbers. We will look at more summation problems in later chapters.
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5.23.1 Example 12: Rounding Problem

Consider the following program.

program ch0512

implicit none

real :: x1 = 1.0

real :: x2 = 0.1

integer i

print *, ’ x1 = ’, x1

print *, ’ x2 = ’, x2

do i = 1, 990

x1 = x1 + x2

end do

print *, ’ x1 = ’, x1

end program ch0512

Here is the output from the Intel compiler.

x1 = 1.000000

x2 = 0.1000000

x1 = 99.99905

Here is the output from the Nag compiler.

x1 = 1.0000000

x2 = 0.1000000

x1 = 99.9990463

In both cases the summation is inexact, due to rounding errors.

5.24 Example 13: Binary Representation of Different
Integer Kind Type Numbers

For those who wish to look at the internal binary representation of integer numbers
with a variety of kinds, we have included the following program

selected_int_kind(2) means provide at least an integer representation
with numbers between –102 and +102.

selected_int_kind(4) means provide at least an integer representation
with numbers between –104 and +104.
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selected_int_kind(9) means provide at least an integer representation
with numbers between –109 and +109.

We use the int function to convert from one integer representation to another.
We use the logical function btest to determine whether the binary value at that

position within the number is a zero or a one, i.e., if the bit is set.
i_in_bits is a character string that holds a direct mapping from the internal

binary form of the integer and a text string that prints as a sequence of zeros or ones:

program ch0513

!

! use the bit functions in Fortran to write out

! a

! 32 bit integer number as a sequence of

! zeros and ones

!

implicit none

integer :: j

integer :: i

integer, parameter :: i8 = selected_int_kind(2 &

)

integer, parameter :: i16 = selected_int_kind( &

4)

integer, parameter :: i32 = selected_int_kind( &

9)

integer (i8) :: i1

integer (i16) :: i2

integer (i32) :: i3

character (len=32) :: i_in_bits

print *, ’ type in an integer ’

read *, i

i1 = int(i, kind(2))

i2 = int(i, kind(4))

i3 = int(i, kind(9))

i_in_bits = ’ ’

do j = 0, 7

if (btest(i1,j)) then

i_in_bits(8-j:8-j) = ’1’

else

i_in_bits(8-j:8-j) = ’0’

end if

end do

print *, ’ 1 2 3’
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print *, ’12345678901234567890123456789012’

print *, i1

print *, i_in_bits

do j = 0, 15

if (btest(i2,j)) then

i_in_bits(16-j:16-j) = ’1’

else

i_in_bits(16-j:16-j) = ’0’

end if

end do

print *, i2

print *, i_in_bits

do j = 0, 31

if (btest(i3,j)) then

i_in_bits(32-j:32-j) = ’1’

else

i_in_bits(32-j:32-j) = ’0’

end if

end do

print *, i3

print *, i_in_bits

end program ch0513

The do loop indices follow the convention of an 8-bit quantity starting at bit 0
and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.

The numbers written out follow the conventional mathematical notation of having
the least significant quantity at the right-hand end of the digit sequence, i.e., with
127 in decimal we have 1 * 100, 2 * 10 and 7 * 1, so 00100001 in binary means 1 *
32 +1 * 1 decimal.

Try running this program on the system you are using. Does it produce the results
you expect? Experiment with a variety of numbers. Try at least the following 0, +1,
−1, −128, 127, 128, −32768, 32767, 32768.

5.25 Example 14: Binary Representation of a Real Number

The following program is a simple variant of the previous one, but we now look at a
floating point number:

program ch0514

!

! use the bit functions in Fortran to write out

! a

! 32 bit integer number equivalenced to a real
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! using the transfer intrinsic as a sequence of

! zeros and ones

!

implicit none

integer :: i, j

character (len=32) :: i_in_bits = ’ ’

real :: x = 1.0

print *, ’ 1 2 3’

print *, ’12345678901234567890123456789012’

print *, i_in_bits

i = transfer(x, i)

do j = 0, 31

if (btest(i,j)) then

i_in_bits(32-j:32-j) = ’1’

else

i_in_bits(32-j:32-j) = ’0’

end if

end do

print *, x

print *, i_in_bits

end program ch0514

We use the intrinsic function transfer to help out here. The btest intrinsic
takes an integer argument, so we need to copy the bit pattern of the real number into
an integer variable.

5.26 Example 15: Initialisation of Physical Constants,
Version 1

This is the first of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0515

implicit none

real, parameter :: atomic_mass_constant = &

1.660538921*10**(-27)

real, parameter :: avogadro_constant = &

6.02214129*10**23

real, parameter :: boltzmann_constant = &

1.3806488*10**(-23)

real, parameter :: electron_mass = 9.10938291* &
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10**(-31)

real, parameter :: elementary_charge = &

1.602176565*10**(-19)

real, parameter :: proton_mass = 1.672621777* &

10**(-27)

real, parameter :: speed_of_light_in_vacuum = &

299792458

real, parameter :: &

newtonian_constant_of_gravitation = 6.67384* &

10**(-11)

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0515

Here is the output from the Intel compiler.

0.0000000E+00

1.2066952E+18

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

2.9979245E+08

0.0000000E+00

Here is the output from the Nag compiler.

nagfor ch0514.f90

NAG Fortran Compiler

Error: ch0514.f90, line 6:

Integer overflow for exponentiation 10**23

Errors in declarations,

no further processing for CH0514

[NAG Fortran Compiler error termination, 1 error]
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5.27 Example 16: Initialisation of Physical Constants,
Version 2

This is the second of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.

program ch0516

implicit none

real, parameter :: atomic_mass_constant = &

1.660538921e-27

real, parameter :: avogadro_constant = &

6.02214129e23

real, parameter :: boltzmann_constant = &

1.3806488e-23

real, parameter :: electron_mass = &

9.10938291e-31

real, parameter :: elementary_charge = &

1.602176565e-19

real, parameter :: proton_mass = &

1.672621777e-27

real, parameter :: speed_of_light_in_vacuum = &

299792458

real, parameter :: &

newtonian_constant_of_gravitation = &

6.67384e-11

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0516

5.28 Example 17: Initialisation of Physical Constants,
Version 3

This is the third of three examples that uses the physical constant data in an earlier
table to initialise parameters in a Fortran program.
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program ch0517

implicit none

real, parameter :: atomic_mass_constant = &

1.660538921*10.0**(-27)

real, parameter :: avogadro_constant = &

6.02214129*10.0**23

real, parameter :: boltzmann_constant = &

1.3806488*10.0**(-23)

real, parameter :: electron_mass = 9.10938291* &

10.0**(-31)

real, parameter :: elementary_charge = &

1.602176565*10.0**(-19)

real, parameter :: proton_mass = 1.672621777* &

10.0**(-27)

real, parameter :: speed_of_light_in_vacuum = &

299792458

real, parameter :: &

newtonian_constant_of_gravitation = 6.67384* &

10.0**(-11)

print *, atomic_mass_constant

print *, avogadro_constant

print *, boltzmann_constant

print *, electron_mass

print *, elementary_charge

print *, proton_mass

print *, speed_of_light_in_vacuum

print *, newtonian_constant_of_gravitation

end program ch0517

5.29 Summary of How to Select the Appropriate Kind Type

To write programs that will perform arithmetically in a similar fashion on a variety
of hardware requires an understanding of:

• The integer data representation model and in practice the word size of the various
integer kind types.

• The real data representation model and in practice the word size of the various real
kind types and the number of bits in both the mantissa and exponent.

Armed with this information we can then choose a kind type that will ensure
minimal problemswhenmoving fromoneplatform to another. Endof healthwarning!
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5.30 Variable Status

Fortran has two concepts regarding the status of a variable: defined and undefined. If
a program does not provide an initial value (in a type statement) for a variable then
its status is said to be undefined. Consider the following code segment taken from
the earlier example that calculated the sum and average of three numbers:

real :: n1, n2, n3, average=0.0, total=0.0

integer :: n = 3

In the above the variables average, total and n all have a defined status. However,
n1, n2 and n3 are said to be undefined. The use of undefined values is implementation
dependent and therefore not portable. Care must be taken when writing programs to
ensure that your variables have a defined status wherever possible. We will look at
this area again in subsequent chapters.

5.31 Fortran and the IEEE 754 Standard

The ISO TR 15580 introduced IEEE Arithmetic support to Fortran.
IEEE 754-2008 governs binary floating-point arithmetic. It specifies number for-

mats, basic operations, conversions, and exceptional conditions. The 2008 edition
superseded both the

• 754-1985

standard and the related

• IEEE 854-1987

which generalized 754-1985 to cover decimal arithmetic as well as binary. The first
standard IEEE 754: 1985 covered binary floating point arithmetic. The later IEEE
754: 1987 standard added decimal arithmetic.

The latest version of the standard is ISO/IEC/IEEE 60559:2011.
A considerable amount of hardware now offers support for the IEEE 754 standard.

The standard can be purchased from

http://www.iso.org/

The following is a useful site.

http://grouper.ieee.org/groups/754/

There are quite a lot of good links.
There is a separate chapter in the book on IEEE arithmetic and Fortran.
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5.32 Summary

The following are some practical rules and guidelines:

• Learn the rules for the evaluation of arithmetic expressions.
• Break expressions down where necessary to ensure that the expressions are eval-
uated in the way you want.

• Take care with truncation owing to integer division in an expression. Note that this
will only be a problem where both parts of the division are integer.

• Take care with truncation owing to the assignment statement when there is an
integer on the left-hand side of the statement, i.e., assigning a real into an integer
variable.

• When you want to set up constants which will remain unchanged throughout the
program, use the parameter attribute.

• Do not confuse precision and accuracy.
• Learn what the default kinds are for the numeric types you work with, what the
maximum and minimum values and precision are for real data, and what the
maximum and minimum are for integer data.

• You have been introduced to the use of several intrinsic functions.

5.33 Bibliography

Some understanding of floating point arithmetic and numerical analysis is essential
for successful use of Fortran when programming. As Froberg says “numerical anal-
ysis is a science — computation is an art.” The separate chapter on IEEE arithmetic
also has several references.

The following are some of the more accessible books available.
Burden R.L., Faires J.D., Numerical Analysis, Brooks Cole, 2010.

• The first section of the book covers some of themathematical preliminaries includ-
ing a review of calculus, round-off errors and computer arithmetic, algorithms and
convergence. They provide programs or software to solve the problems in C,
Fortran, Maple, Mathematica, Matlab and Pascal.

Froberg C.E., Introduction to Numerical Analysis, Addison-Wesley, 1969.

• The short chapter on numerical computation is well worth a read; it covers some
of the problems of conversion between number bases and some of the errors that
are introduced when we compute numerically. The Samuel Johnson quote owes
its inclusion to Froberg!

Goldberg D., What Every Computer Scientist Should Know About Floating-Point
Arithmetic, Computing Surveys, March 1991.

• The paper is a very good introduction to floating point arithmetic. It is available
on line.
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Higham Nicholas J., Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

• The first four chapters cover finite precision computation, floating point arithmetic,
error analysis and summation methods.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

• A more thorough and mathematical coverage than Wakerly. The chapter on posi-
tional number systems provides a very comprehensive historical coverage of the
subject. As Knuth points out the floating point representation for numbers is very
old, and is first documented around 1750 B.C. by Babylonian mathematicians.
Very interesting and worthwhile reading.

Wakerly J.F., Microcomputer Architecture and programming, Wiley, 1981.

• The chapter on number systems and arithmetic is surprisingly easy. There is a
coverage of positional number systems, octal and hexadecimal number system
conversions, addition and subtraction of nondecimal numbers, representation of
negative numbers, two’s complement addition and subtraction, one’s complement
addition and subtraction, binary multiplication, binary division, bcd or binary
coded decimal representation and fixed and floating point representations. There
is also coverage of a number of specific hardware platforms, including DEC PDP-
11, Motorola 68000, Zilog Z8000, TI 9900, Motorola 6809 and Intel 8086. A little
old but quite interesting nevertheless.

5.34 Problems

5.1 Compile and run Examples 1–3 in this chapter.

5.2 Have another look at Example 4. Compile and run it. It will generate an error
on some systems. Can you see where the error is?

5.3 Write a program to calculate the period of a pendulum. This is given mathemat-
ically as

t = 2π
√
length/9.81

use the following Fortran arithmetic assignment statement:

t = 2 * pi * (length / 9.81) ** .5

The length length is in metres, and the time t in seconds, and pi was given a
value earlier in this chapter.

Repeat the above using two other methods. Try a hand-held calculator and a
spreadsheet. Do you get the same answers?
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5.4 Base conversion.
In this chapter you have seen a brief coverage of base conversion. The following

program illustrates some of the problems that can occur when going from base 10 to
base 2 and back again. Which numbers will convert without loss?

program base_conversion

implicit none

real :: x1 = 1.0

real :: x2 = 0.1

real :: x3 = 0.01

real :: x4 = 0.001

real :: x5 = 0.0001

print *, ’ ’, x1

print *, ’ ’, x2

print *, ’ ’, x3

print *, ’ ’, x4

print *, ’ ’, x5

end program base_conversion

Which do you think will provide the same number as originally entered?

5.5 Simple subtraction. In this chapter we looked at representing floating point
numbers in a finite number of bits.

Try the following program:

program subtract

implicit none

real :: a = 1.0002

real :: b = 1.0001

real :: c

c = a - b

print *, a

print *, b

print *, c

end program subtract

What are the absolute and relative errors in this calculation?

5.6 Expression equivalence. We introduced some of the rules that apply in Fortran
for expression evaluation. In mathematics the following is true:

x2 − y2 = (x ∗ x − y ∗ y) = (x − y) ∗ (x + y)
Try the following program:
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program expression_equivalence

!

! simple evaluation of x*x-y*y

! when x and y are similar

!

! we will evaluate in three ways.

!

implicit none

real :: x = 1.002

real :: y = 1.001

real :: t1, t2, t3, t4, t5

t1 = x - y

t2 = x + y

print *, t1

print *, t2

t3 = t1*t2

t4 = x**2 - y**2

t5 = x*x - y*y

print *, t3

print *, t4

print *, t5

end program expression_equivalence

Solve the problem with pencil and paper, calculator and Excel.
The last three examples show that you must be careful when using a computer to

solve problems.

5.7 The following is a simple variant of ch0504. In this case we initialise light year
in an assignment statement. Do you think you will get the same results as from
running the earlier example?

program ch0504p

implicit none

real :: light_minute, distance, elapse

integer :: minute, second

real :: light_year

! Light_year : Distance travelled by light

! in one year in km

! Light_minute : Distance travelled by light

! in one minute in km

! Distance : Distance from sun to earth in km

! Elapse : Time taken to travel a

! distance (Distance) in minutes

! Minute : integer number part of elapse
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! Second : integer number of seconds

! equivalent to fractional part of elapse

!

light_year = 9.46*10**12

light_minute = light_year/(365.25*24.0*60.0)

distance = 150.0*10**6

elapse = distance/light_minute

minute = elapse

second = (elapse-minute)*60

print *, ’ Light takes ’, minute, ’ Minutes’

print *, ’ ’, second, ’ Seconds’

print *, ’ To reach the earth from sun’

end program ch0504p

5.8 Many communications satellites follow a geosynchronous orbit, some 35,870
km above the Earth s surface.What is the time lag incurred in using one such satellite
for a telephone conversation?

This will also be the time delay for satellite based internet access.
You can use the above program as the basis for this problem. You will need to

calculate the time in seconds (rather than minutes and seconds), as the distance is
much smaller.

5.9 The Moon is about 384,400 km from the Earth on average What implications
does this have for control of experiments on the Moon? What is the time lag?

5.10 The following table gives the distance in mkm from the Sun to the planets in
the Solar system.

Mercury 57.9

Venus 108.9

Earth 149.6

Mars 227.9

Jupiter 778.3

Saturn 1427.0

Uranus 2869.6

Neptune 4496.6

Pluto 5900.0

Use this information to find the greatest and least time taken to send a message
from the Earth to the other planets.

Assume that all orbits are in the same plane and circular. If it was good enough
for Copernicus it’s good enough for this example.



Chapter 6
Arrays 1: Some Fundamentals

Thy gifts, thy tables, are within my brain Full charactered with
lasting memory.

William Shakespeare, The Sonnets
Here, take this book, and peruse it well: The iterating of these
lines brings gold.
Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of the chapter are to introduce the fundamental concepts of arrays and do
loops, in particular:

• To introduce the idea of tables of data and some of the formal terms used to describe
them:

– Array.
– Vector.
– List and linear list.

• To discuss the array as a random access structure where any element can be
accessed as readily as any other and to note that the data in an array are all of
the same type.

• To introduce the twin concepts of data structure and corresponding control struc-
ture.

• To introduce the statements necessary in Fortran to support and manipulate these
data structures.

6.1 Tables of Data

Consider the examples below.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_6
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6.1.1 Telephone Directory

A telephone directory consists of the following kinds of entries:

Name Address Number
Adcroft A. 61 Connaught Road, Roath, Cardiff 223309
Beale K. 14 Airedale Road, Balham 745 9870
Blunt R.U. 81 Stanlake Road, Shepherds Bush 674 4546
…
…
…
Sims Tony 99 Andover Road,Twickenham 898 7330

This structure canbe considered in a variety ofways, but perhaps themost common
is to regard it as a table of data, where there are three columns and as many rows as
there are entries in the telephone directory.

Consider now the way we extract information from this table. We would scan the
name column looking for the name we are interested in, and then read along the row
looking for either the address or telephone number, i.e., we are using the name to
look up the item of interest.

6.1.2 Book Catalogue

A catalogue could contain:

Author(s) Title Publisher
Carroll L. Alice through the Looking Glass Penguin
Steinbeck J. Sweet Thursday Penguin
Wirth N. Algorithms plus data Structures = programs Prentice-Hall

Again, this can be regarded as a table of data, having three columns and many
rows. We would follow the same procedure as with the telephone directory to extract
the information. We would use the Author to look up what books are available.



6.1 Tables of Data 115

6.1.3 Examination Marks or Results

This could consist of:

Name Physics Maths Biology History English French
Fowler L. 50 47 28 89 30 46
Barron L.W 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

This can again be regarded as a table of data. This example has seven columns
and five rows. We would again look up information by using the Name.

6.1.4 Monthly Rainfall

The following data are a sample of monthly average rainfall for London in inches:

Month Rainfall
January 3.1
February 2.0
March 2.4
April 2.1
May 2.2
June 2.2
July 1.8
August 2.2
September 2.7
October 2.9
November 3.1
December 3.1

In this table there are two columns and twelve rows. To find out what the rainfall
was in July, we scan the table for July in the Month column and locate the value in
the same row, i.e., the rainfall figure for July.

These are just some of the many examples of problems where the data that are
being considered have a tabular structure. Most general purpose languages therefore
have mechanisms for dealing with this kind of structure. Some of the special names
given to these structures include:

• Linear list.
• List.
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• Vector.
• Array.

The term used most often here, and in the majority of books on Fortran program-
ming, is array.

6.2 Arrays in Fortran

There are three key things to consider here:

• The ability to refer to a set or group of items by a single name.
• The ability to refer to individual items or members of this set, i.e., look them up.
• The choice of a control structure that allows easy manipulation of this set or array.

6.2.1 The Dimension Attribute

The dimension attribute defines a variable to be an array. This satisfies the first
requirement of being able to refer to a set of items by a single name. Some examples
are given below:

real , dimension(1:100) :: wages

integer , dimension(1:10000) :: sample

For the variable wages it is of type real and an array of dimension or size 100,
i.e., the variable array wages can hold up to 100 real items.

For the variable sample it is of type integer and an array of dimension or
size 10,000, i.e., the variable sample can hold up to 10,000 integer items.

6.2.2 An Index

An index enables you to refer to or select individual elements of the array. In the
telephone directory, book catalogue, exammarks table andmonthly rainfall examples
we used the name to index or look up the items of interest. We will give concrete
Fortran code for this in the example of monthly rain fall.

6.2.3 Control Structure

The statement that is generally used to manipulate the elements of an array is the
do statement. It is typical to have several statements controlled by the do statement,
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and the block of repeated statements is often called a do loop. Let us look at two
complete programs that highlight the above.

6.3 Example 1: Monthly Rainfall

Let us look at this earlier example in more depth now. Consider the following:

Month Associated integer Array Rainfall
representation and index value

January 1 rainfall(1) 3.1
February 2 rainfall(2) 2.0
March 3 rainfall(3) 2.4
April 4 rainfall(4) 2.1
May 5 rainfall(5) 2.2
June 6 rainfall(6) 2.2
July 7 rainfall(7) 1.8
August 8 rainfall(8) 2.2
September 9 rainfall(9) 2.7
October 10 rainfall(10) 2.9
November 11 rainfall(11) 3.1
December 12 rainfall(12) 3.1

Most of you should be familiar with the idea of the use of an integer as an alternate
way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st March
2000 (Anglicised style) or January 3rd (Americanised style). Fortran, in common
with other programming languages, only allows the use of integers as an index into
an array. Thus when we write a program to use arrays we have to map between
whatever construct we use in everyday life as our index (names in our examples of
telephone directory, book catalogue, and exam marks) to an integer representation
in Fortran. The following is an example of an assignment statement showing the
use of an index:

rainfall(1)=3.1

We saw earlier that we could use the dimension attribute to indicate that a variable
was an array. In the above example Fortran statement our array is called rainfall.
In this statement we are assigning the value 3.1 to the first element of the array; i.e.,
the rainfall for the month of January is 3.1. We use the index 1 to represent the first
month. Consider the following statement:

summeraverage = (rainfall(6) + rainfall(7) + &

rainfall(8))/3
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This statement says take the values of the rainfall for June, July and August, add
themup and then divide by 3, and assign the result to the variable summeraverage,
thus providing us with the rainfall average for the three summer months—Northern
Hemisphere of course!

The following program reads in the 12 monthly values from the keyboard, com-
putes the sum and average for the year, and prints the average out.

program ch0601

implicit none

real :: total = 0.0, average = 0.0

real, dimension (1:12) :: rainfall

integer :: month

print *, ’ type in the rainfall values’

print *, ’ one per line’

do month = 1, 12

read *, rainfall(month)

end do

do month = 1, 12

total = total + rainfall(month)

end do

average = total/12

print *, ’ Average monthly rainfall was’

print *, average

end program ch0601

rainfall is the array name. The variable month in brackets is the index. It takes
on values from 1 to 12 inclusive, and is used to pick out or select elements of the
array. The index is thus a variable and this permits dynamic manipulation of the array
at run time. The general form of the do statement is

do counter = start, end, increment

The block of statements that form the loop is contained between the do statement,
which marks the beginning of the block or loop, and the enddo statement, which
marks the end of the block or loop.

In this program, the do loops take the form:

do month=1,12 start

... body

enddo end

The body of the loop in the program above has been indented. This is not required
by Fortran. However it is good practice and will make programs easier to follow.
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The number of times that the do loop is executed is governed by the last part of
the do statement, i.e., by the

counter = start, end, increment

start as it implies, is the initial value which the counter (or index, or control
variable) takes. Each time the loop is executed, the value of the counter will be
increasedby thevalue of increment, until the value of end is reached. If increment
is omitted, it is assumed to be 1.No other element of the do statement may be omitted.
In order to execute the statements within the loop (the body) it must be possible to
reach end from start. Thus zero is an illegal value of increment. In the event that
it is not possible to reach end, the loop will not be executed and control will pass to
the statement after the end of the loop.

In the example above, both loops would be executed 12 times. In both cases, the
first time around the loop the variable month would have the value 1, the second
time around the loop the variable month would have the value 2, etc., and the last
time around the loop month would have the value 12.

A summation:

i=12∑

i=1

xi

is often expressed in Fortran as a loop as in this example:

do month=1,12

total = total + rainfall(month)

enddo

6.4 Possible Missing Data

The rainfall data in this example has been taken from the UK Met Office site. Visit

https://www.metoffice.gov.uk/public/weather/

climate-historic/#?tab=climateHistoric

to see where some of the stations are. One of us was born in Wales, the other in
Yorkshire so we have chosen stations accordingly. The urls have been split over two
lines when too long.

The following is one of the mid Wales stations:

https://www.metoffice.gov.uk/pub/data/weather/

uk/climate/stationdata/cwmystwythdata.txt
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Here is a sample of data from this site for 1965.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1965 1 4.8 -0.2 17 214.8 38.8

1965 2 4.4 -1.2 17 25.1 33.3

1965 3 7.7 0.5 11 93.7 114.6

1965 4 9.9 2.4 9 146.9 134.3

1965 5 13.5 5.8 3 108.7 120.8

1965 6 15.9 8.3 0 115.0 140.4

1965 7 15.3 8.6 0 105.0 106.4

1965 8 --- 9.6 0 155.7 140.2

1965 9 --- 6.6 0 245.7 70.6

1965 10 13.5 7.0 0 92.5 134.3

1965 11 6.2 0.8 11 115.7 73.8

1965 12 7.0 1.6 8 417.3 31.4

Wales is relatively wet for the UK!
The following station is Whitby:

https://www.metoffice.gov.uk/pub/data/weather/

uk/climate/stationdata/whitbydata.txt

Here is a sample of the Whitby data.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1968 1 6.9 1.7 12 24.4

1968 2 4.3 -0.7 16 45.1

1968 3 9.4 3.4 2 34.5

1968 4 10.8 1.6 9 28.8

1968 5 10.6 2.8 2 37.1

1968 6 16.7 6.8 0 58.5

1968 7 15.0 8.1 0 81.4

1968 8 16.3 9.6 0 28.0

1968 9 15.7 --- --- 66.0

1968 10 14.7 --- --- 35.2

1968 11 8.5 5.1 1 35.1

1968 12 5.7 1.5 9 ---

Bram Stoker found some of his inspiration for Dracula after staying in the town.
If you look at the data for some of these stations youwill notice that data ismissing

for some months.
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How do you think you could cope with missing data in Fortran?
The SQL standard has the concept of nulls or missing values, and missing data in

a statistics package is commonly flagged by an exceptional value e.g. −999.
We will look at using this data in Chap. 10.

6.5 Example 2: People’s Weights and Setting the Array Size
With a Parameter

In the table below we have ten people, with their names as shown. We associate
each name with a number — in this case we have ordered the names alphabetically,
and the numbers therefore reflect their ordering. weight is the array name. The
number in brackets is called the index and it is used to pick out or select elements
of the array. The table is read as the first element of the array weight has the value
85, the second element has the value 76, etc.

Person Associated integer Array and Associated value
representation index

Andy 1 Weight(1) 85
Barry 2 Weight(2) 76
Cathy 3 Weight(3) 85
Dawn 4 Weight(4) 90
Elaine 5 Weight(5) 69
Frank 6 Weight(6) 83
Gordon 7 Weight(7) 64
Hannah 8 Weight(8) 57
Ian 9 Weight(9) 65
Jatinda 10 Weight(10) 76

In the first example we so-called hard coded the number 12, which is the number
of months, into the program. It occurred four times. Modifying the program to work
with a different number of months would obviously be tedious and potentially error
prone.

In this examplewe parameterise the size of the array and reduce the effort involved
in modifying the program to work with a different number of people:

program ch0602

! The program reads up to number_of_people

! weights into the array Weight

! Variables used

! Weight, holds the weight of the people

! Person, an index into the array

! Total, total weight

! Average, average weight of the people
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! Parameters used

! NumberOfPeople ,10 in this case.

! The weights are written out so that

! they can be checked

!

implicit none

integer, parameter :: number_of_people = 10

real :: total = 0.0, average = 0.0

integer :: person

real, dimension (1:number_of_people) :: weight

do person = 1, number_of_people

print *, ’ type in the weight for person ’, &

person

read *, weight(person)

total = total + weight(person)

end do

average = total/number_of_people

print *, ’ The total of the weights is ’, &

total

print *, ’ Average Weight is ’, average

print *, ’ ’, number_of_people, &

’ Weights were ’

do person = 1, number_of_people

print *, weight(person)

end do

end program ch0602

6.6 Summary

The dimension attribute declares a variable to be an array, and must come at
the start of a program unit, with other declarative statements. It has two forms and
examples of both of them are given below. In the first case we explicitly specify the
upper and lower bounds.

real , dimension(1:number_of_people) :: weight

In the second case the lower limit defaults to 1

real , dimension(number_of_people) :: weight

The latter form will be seen in legacy code, especially Fortran 77 code suites.
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The parameter attribute declares a variable to have a fixed value that cannot
be changed during the execution of a program. In our example above note that this
statement occurs before the other declarative statements that depend on it. Table 6.1
summarises Fortran’s statement ordering.

Table 6.1 Fortran statement ordering

Program First statement

Integer In any order and the dimension and
parameter attributes are added here

Real Declarative

Character

Arithmetic assignment In any order

Print *

Read * Executable

Do

Enddo

End program Last statement

We choose individual members using an index, and these are always of integer
type in Fortran.

The do loop is a very convenient control structure for manipulating arrays, and
we use indentation to clearly identify loops.

6.7 Problems

6.1 Compile and run example 1 from this chapter. If you live in the UK visit the
Met Office site mentioned earlier and choose a site near you, and a year of interest,
making sure that the data set is complete for that year.

If you don’t live in the UK is there a site similar to the Met Office site that has
data for the country your are from?

6.2 Compile and run program 2.

6.3 Using a do loop and an array rewrite the program which calculated the average
of three numbers to ten.

6.4 Modify the program that calculates the total and average of people’s weights
to additionally read in their heights and calculate the total and average of their
heights. Use the data given below, which have been taken from a group of first
year undergraduates:
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Height Weight

1.85 85

1.80 76

1.85 85

1.70 90

1.75 69

1.67 83

1.55 64

1.63 57

1.79 65

1.78 76

6.5 Your body mass index is given by your weight (in kilos) divided by your height
(in metres) squared. Calculate and print out the BMI for each person.

Grades of obesity according to Garrow as follows:

• Grade 0 (desirable) 20–24.9
• Grade 1 (overweight) 25–29.9
• Grade 2 (obese) 30–40
• Grade 3 (morbidly obese) >40
• Ideal BMI range,
• Men, Range 20.1–25kg/m2

• Women, Range 18.7–23.8kg/m2

6.6 When working on either a UNIX system or a PC in a DOS box it is possible to
use the following characters to enable you to read data from a file or write output to
a file when running your program:

character Meaning

< read from file

> write to file

On a typical UNIX system we could use

a.out < data.txt > results.txt

to read the data from the file called data.txt and write the output to a file called
results.txt.

On a PC in a DOS box the equivalent would be

program.exe < data.txt > results.txt

This is a quick and dirty way of developing programs that do simple I/O; we don’t
have to keep typing in the data and we also have a record of the behaviour of the
program. Rerun the program that prints out the BMI values to write the output to a
file called results.txt. Examine this file in an editor.
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6.7 Modify the program that read in your name to read in ten names. Use an array
and a do loop. When you have read the names into the array write them out in reverse
order on separate lines.

Hint: Look at the formal syntax of the do statement.

6.8 Modify the rainfall program (which assumes that the measurement is in inches)
to convert the values to centimetres. One inch equals 2.54cm. Print out the two sets
of values as a table.

Hint: use a second array to hold the metric measurements.

6.9 Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read the weights into one array
and the names into another. Allow 20 characters for the length of a name. print out
a table linking names and weights.

6.10 In an earlier chapter we used the following formula to calculate the period of
a pendulum:

t = 2 * pi * (length / 9.81) ** .5

write a program that uses a do loop to make the length go from 1 to 10m in 1-m
increments.

Produce a table with two columns, the first of lengths and the second of periods.



Chapter 7
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Sir, In your otherwise beautiful poem (The Vision of Sin) there is
a verse which reads Every moment dies a man, every moment
one is born. Obviously this cannot be true and I suggest that in
the next edition you have it read Every moment dies a man,
every moment 1 1/16 is born. Even this value is slightly in error
but should be sufficiently accurate for poetry.

Charles Babbage in a letter to Lord Tennyson

Aims
The aims of the chapter are to extend the concepts introduced in the previous chapter
and in particular:

• To set an array size at run time - allocatable arrays.
• To introduce the idea of an array with more than one dimension and the corre-
sponding control structure to permit easy manipulation of higher-dimensioned
arrays.

• To introduce an extended form of the dimension attribute declaration, and the
corresponding alternative form to the do statement, to manipulate the array in this
new form.

• To introduce the do loop as a mechanism for the control of repetition in general,
not just for manipulating arrays.

• To formally define the block do syntax.
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7.1 Varying the Array Size at Run Time

The earlier examples set the array size in the following two ways:

• Explicitly using a numeric constant
• Implicitly using a parameterised variable

In both cases we knew the size of the array at the time we compiled the program.
We may not know the size of the array at compile time and Fortran provides the
allocatable attribute to accommodate this kind of problem.

7.1.1 Example 1: Allocatable Arrays

Consider the following example.

program ch0701

!

! This program is a simple variant of ch0602.

! The array is now allocatable

! and the user is prompted for the

! number of people at run time.

!

implicit none

integer :: number_of_people

real :: total = 0.0, average = 0.0

integer :: person

real, dimension (:), allocatable :: weight

print *, ’ How many people?’

read *, number_of_people

allocate (weight(1:number_of_people))

do person = 1, number_of_people

print *, ’ type in the weight for person ’, &

person

read *, weight(person)

total = total + weight(person)

end do

average = total/number_of_people

print *, ’ The total of the weights is ’, &

total

print *, ’ Average Weight is ’, average

print *, ’ ’, number_of_people, &

’ Weights were ’
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do person = 1, number_of_people

print *, weight(person)

end do

end program ch0701

The first statement of interest is the type declaration with the dimension and
allocatable attributes, e.g.,

real , dimension(:) , allocatable :: weight

The second is the allocate statement

allocate(weight(1:number_of_people))

where the value of the variable number_of_people is not known until run time.
This is known in Fortran as a deferred shape array.

7.2 Higher-Dimension Arrays

There are many instances where it is necessary to have arrays with more than one
dimension. Consider the examples below.

7.2.1 Example 2: Two Dimensional Arrays and a Map

Considerthe representation of the height of an area of land expressed as a two dimen-
sional table of numbers e.g., we may have some information represented in a simple
table as follows:

Longitude

1 2 3

Latitude

1 10.0 40.0 70.0

2 20.0 50.0 80.0

3 30.0 60.0 90.0

The values in the array are the heights above sea level. The example is obviously
artificial, but it does highlight the concepts involved. For those who have forgotten
their geography, lines of latitude run east–west (the equator is a line of latitude) and
lines of longitude run north–south (they go through the poles and are all of the same
length). In the above table therefore the latitude values are ordered by row and the
longitude values are ordered by column.
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A program to manipulate this data structure would involve something like the
following:

program ch0702

! Variables used

! Height - used to hold the heights above sea

! level

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

! Correct - holds the correction factor

implicit none

integer, parameter :: n = 3

integer :: lat, long

real, dimension (1:n, 1:n) :: height

real, parameter :: correct = 10.0

do lat = 1, n

do long = 1, n

print *, ’ type in value at ’, lat, ’ ’, &

long

read *, height(lat, long)

end do

end do

do lat = 1, n

do long = 1, n

height(lat, long) = height(lat, long) + &

correct

end do

end do

print *, ’ Corrected data is ’

do lat = 1, n

do long = 1, n

print *, height(lat, long)

end do

end do

end program ch0702

Note the way in which indentation has been used to highlight the structure in
this example. Note also the use of a textual prompt to highlight which data value is
expected. Running the program highlights some of the problems with the simple i/o
used in the example above. We will address this issue in the next example.
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The inner loop is said to be nested within the outer one. It is very common to
encounter problems where nesting is a natural way to express the solution. Nesting
is permitted to any depth. Here is an example of a valid nested do loop:

do ! Start of outer loop

do ! Start of inner loop

.

.

enddo ! End of inner loop

enddo ! End of outer loop

This example introduces the concept of two indices, and can be thought of as a
row and column data structure.

7.2.2 Example 3: Sensible Tabular Output

The first example had the values printed in a format that wasn’t very easy to work
with. In this example we introduce a so-called implied do loop, which enables us to
produce neat and humanly comprehensible output:

program ch0703

! Variables used

! Height - used to hold the heights above sea

! level

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

implicit none

integer, parameter :: n = 3

integer :: lat, long

real, dimension (1:n, 1:n) :: height

real, parameter :: correct = 10.0

do lat = 1, n

do long = 1, n

read *, height(lat, long)

height(lat, long) = height(lat, long) + &

correct

end do

end do

do lat = 1, n

print *, (height(lat,long), long=1, n)
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end do

end program ch0703

The key statement in this example is

print * , (height(lat,long),long=1,n)

This is called an implied do loop, as the longitude variable takes on values
from 1 through 3 and will write out all three values on one line.

We will see other examples of this statement as we go on.

7.2.3 Example 4: Average of Three Sets of Values

This example extends the previous one. Now we have three sets of measurements
and we are interested in calculating the average of these three sets. The two new data
sets are:

9.5 39.5 69.5

19.5 49.5 79.5

29.5 59.5 89.5

and

10.5 40.5 70.5

20.5 50.5 80.5

30.5 60.5 90.5

and we have chosen the values to enable us to quickly check that the calculations for
the averages are correct.

This program also uses implied do loops to read the data, as data in files are
generally tabular:

program ch0704

! Variables used

! h1,h2,h3

! used to hold the heights above sea level

! h4

! used to hold the average of the above

! Long - used to represent the longitude

! Lat - used to represent the latitude

! both restricted to integer values.

implicit none
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integer, parameter :: n = 3

integer :: lat, long

real, dimension (1:n, 1:n) :: h1, h2, h3, h4

do lat = 1, n

read *, (h1(lat,long), long=1, n)

end do

do lat = 1, n

read *, (h2(lat,long), long=1, n)

end do

do lat = 1, n

read *, (h3(lat,long), long=1, n)

end do

do lat = 1, n

do long = 1, n

h4(lat, long) = (h1(lat,long)+h2(lat,long) &

+h3(lat,long))/n

end do

end do

do lat = 1, n

print *, (h4(lat,long), long=1, n)

end do

end program ch0704

The original data was accurate to three significant figures. The output from the
above has spurious additional accuracy. We will look at how to correct this in the
later chapter on output.

7.2.4 Example 5: Booking Arrangements in a Theatre
or Cinema

A theatre or cinema consists of rows and columns of seats. In a large cinema or a
typical theatre there would also be more than one level or storey. Thus, a program
to represent and manipulate this structure would probably have a 2-d or 3-d array.
Consider the following program extract:

program ch0705

implicit none

integer, parameter :: nr = 5

integer, parameter :: nc = 10

integer, parameter :: nf = 3

integer :: row, column, floor
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character *1, dimension (1:nr, 1:nc, 1:nf) :: &

seats = ’ ’

do floor = 1, nf

do row = 1, nr

read *, (seats(row,column,floor), column=1 &

, nc)

end do

end do

print *, ’ Seat plan is’

do floor = 1, nf

print *, ’ Floor = ’, floor

do row = 1, nr

print *, (seats(row,column,floor), column= &

1, nc)

end do

end do

end program ch0705

Note here the use of the term parameter in conjunction with the integer dec-
laration. This is called an entity orientated declaration. An alternative to this is an
attribute-orientated declaration, e.g.,

integer :: nr,nc,nf

parameter :: nr=5,nc=10,nf=3

and we will be using the entity-orientated declaration method throughout the rest of
the book. This is our recommended method as you only have to look in one place to
determine everything that you need to know about an entity.

7.3 Additional Forms of the Dimension Attribute and Do
Loop Statement

7.3.1 Example 6: Voltage from –20 to +20 Volts

Consider the problem of an experimentwhere the independent variable voltage varies
from –20 to +20 volts and the current is measured at 1-volt intervals. Fortran has a
mechanism for handling this type of problem:

program ch0706

implicit none

real, dimension (-20:20) :: current
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real :: resistance

integer :: voltage

print *, ’ type in the resistance’

read *, resistance

do voltage = -20, 20

current(voltage) = voltage/resistance

print *, voltage, ’ ’, current(voltage)

end do

end program ch0706

We appreciate that, due to experimental error, the voltage will not have exact
integer values. However, we are interested in representing and manipulating a set of
values, and thus from the point of view of the problem solution and the program this
is a reasonable assumption. There are several things to note.

This form of the dimension attribute

dimension(first:last)

is of considerable use when the problem has an effective index which does not start
at 1.

There is a corresponding form of the do statement which allows processing of
problems of this nature. This is shown in the above program. The general form of
the do statement statement is therefore:

do counter=start, end, increment

where start, end and increment can be positive or negative. Note that zero is
a legitimate value of the dimension limits and of a do loop index.

7.3.2 Example 7: Longitude from –180 to +180

Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from –180 to +180 degrees, and the time
will vary from +12 hours to –12 hours. A possible program segment is:

program ch0707

implicit none

real, dimension (-180:180) :: time = 0

integer :: degree, strip

real :: value

do degree = -180, 165, 15
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value = degree/15.

do strip = 0, 14

time(degree+strip) = value

end do

end do

do degree = -180, 180

print *, degree, ’ ’, time(degree)

end do

end program ch0707

7.3.3 Notes

The values of the time are not being calculated at every degree interval.
The variable time is a real variable. It would be possible to arrange for the time

to be an integer by expressing it in either minutes or seconds.
This example takes no account of all the wiggly bits separating time zones or of

British Summer Time or Daylight Saving Time.
What changes would you make to the program to accommodate +180? What is

the time at –180 and +180?

7.4 The Do Loop and Straight Repetition

7.4.1 Example 8: Table of Liquid Conversion Measurements

Consider the production of a table of liquid measurements. The independent variable
is the litre value; the gallon and US gallon are the dependent variables. Strictly
speaking, a program to do this does not have to have an array, i.e., the do loop can
be used to control the repetition of a set of statements that make no reference to an
array. The following shows a complete but simple conversion program:

program ch0708

implicit none

!

! 1 us gallon = 3.7854118 litres

! 1 uk gallon = 4.545 litres

!

integer :: litre

real :: gallon, usgallon

do litre = 1, 10
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gallon = litre/4.545

usgallon = litre/3.7854118

print *, litre, ’ ’, gallon, ’ ’, usgallon

end do

end program ch0708

Note here that the do statement has been used only to control the repetition of a
block of statements — there are no arrays at all in this program.

This is the other use of the do statement. The do loop thus has two functions
— its use with arrays as a control structure and its use solely for the repetition of a
block of statements.

7.4.2 Example 9: Means and Standard Deviations

In the calculation of the mean and standard deviation of a list of numbers, we can
use the following formulae. It is not actually necessary to store the values, nor to
accumulate the sumof the values and their squares. In thefirst case,wewould possibly
require a large array, whereas in the second, it is conceivable that the accumulated
values (especially of the squares) might be too large for the machine. The following
example uses an updating techniquewhich avoids these problems, but is still accurate.
The do loop is simply a control structure to ensure that all the values are read in,
with the index being used in the calculation of the updates:

program ch0709

! variables used are

! mean - for the running mean

! ssq - the running corrected sum of squares

! x - input values for

which

! mean and sd required

! w - local work variable

! sd - standard deviation

! r - another work variable

implicit none

real :: mean = 0.0, ssq = 0.0, x, w, sd, r

integer :: i, n

print *, ’ enter the number of readings’

read *, n

print *, ’ enter the ’, n, &

’ values, one per line’

do i = 1, n

read *, x
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w = x - mean

r = i - 1

mean = (r*mean+x)/i

ssq = ssq + w*w*r/i

end do

sd = (ssq/r)**0.5

print *, ’ mean is ’, mean

print *, ’ standard deviation is ’, sd

end program ch0709

7.5 Summary

Arrays can have up to fifteen dimensions.
Do loops may be nested, but they must not overlap.
The dimension attribute allows limits to be specified for a block of information

which is to be treated in a common way. The limits must be integer, and the second
limit must exceed the first, e.g.,

real , dimension(-123:-10) :: list

real , dimension(0:100,0:100) :: surface

real , dimension(1:100) :: value

The last example could equally be written

real , dimension(100) :: value

where the first limit is omitted and is given the default value 1. The array list
would contain 114 values, while surface would contain 10201.

A do statement and its corresponding enddo statement define a loop. The do
statement provides a starting value, terminal value, and optionally, an increment for
its index or counter.

The increment may be negative, but should never be zero. If it is not present, the
default value is 1. It must be possible for the terminating value to be reached from
the starting value.

The counter in a do loop is ideally suited for indexing an array, but it may be
used anywhere that repetition is needed, and of course the index or counter need not
be used explicitly.

The formal syntax of the block do construct is

[ do-construct-name : ] do [label] [ loop-control ]

[execution-part-construct ]

[ label ] end-do
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where the forms of the loop control are

[ , ] scalar-variable-name =

scalar-numeric-expression ,

scalar-numeric-expression

[ , scalar-numeric-expression ]

and the forms of the end-do are

end do [ do-construct-name ]

continue

and [] identify optional components of the block do construct. This statement is
looked at in much greater depth in Chap. 13.

We have introduced the concept of a deferred-shape array. Arrays do not need
to have their shape specified at compile time, only their rank. Their actual shape
is deferred until runtime. We achieve this by the combined use of the allocatable
attribute on the variable declaration and the allocate statement, whichmakes Fortran
a very flexible language for array manipulation.

7.6 Problems

7.1 Compile and run all the examples in this chapter, except example 5. This is
covered in Problem7.8.

7.2 Modify the first example to convert the height in feet to height in metres. The
conversion factor is one 1 foot equals 0.305m.

Hint: You can either overwrite the height array or introduce a second array.

7.3 The following are two equations for temperature conversion

c = 5 /9 * (t-32)

f = 32 + 9 /5 * t

Write a complete program where t is an integer do loop variable and loop from
–50 to 250. Print out the values of c, t and f on one line. What do you notice about
the c and f values?

7.4 Write a program to print out the 12 times table. Typical output would be of the
form:

1 * 12 = 12

2 * 12 = 24

3 * 12 = 36

etc.
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Hint: You don’t need to use an array here.

7.5 Write a program to read the following data into a two-dimensional array:

1 2 3

4 5 6

7 8 9

Calculate totals for each row and column and produce output similar to that shown
below:

1 2 3 6

4 5 6 15

7 8 9 24

12 15 18

Hint 1: Example ch0602 shows how to sum over a loop.
Hint 2: You need to introduce two one-dimensional arrays to hold the row and

column totals. You need to index over the rows to get the column totals and over the
columns to get the row totals.

7.6 Modify the above to produce averages for each row and column as well as the
totals.

7.7 Using the following data from Problem6.4 in Chap.6:

1.85 85

1.80 76

1.85 85

1.70 90

1.75 69

1.67 83

1.55 64

1.63 57

1.79 65

1.78 76

Use the program that evaluated the mean and standard deviation to do so for these
heights and weights.

In the first case use the program as is and run it twice, first with the heights then
with the weights.

What changes would you need to make to the program to read a height and a
weight in a pair?

Hint: You could introduce separate scalar variables for the heights and weights.
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7.8 Example 5 looked at seat bookings in a cinema or theatre. Here is an example
of a sample data file for this program

P P P P P P P P P P

P P P C C C C P P P

C C C E E P P P P P

C C C C C C C C C C

E E E P P P P P P P

C C E E P P C C E E

P P P P P P P P P P

P P P C C C C P P P

C C C E E P P P P P

C C C C C C C C C C

E E E P P P P P P P

C C E E P P C C E E

P P P P P P P P P P

P P P C C C C P P P

C C C E E P P P P P

The key for this is as follows:

C = Confirmed Booking

P = Provisional Booking

E = Seat Empty

Compile and run the program. The output would benefit from adding row and column
numbers to the information displayed.Wewill come back to this issue in a subsequent
chapter on output formatting.

The data are in a file on the web and the address is given below.

https://www.fortranplus.co.uk

Problem6.6 in the last chapter shows how to read data from a file.



Chapter 8
Whole Array and Additional Array
Features

A good notation has a subtlety and suggestiveness which at
times make it seem almost like a live teacher.

Bertrand Russell

Aims
The aims of the chapter are:

• To look more formally at the terminology required to precisely describe arrays.
• To introduce ways in which we can manipulate whole arrays and parts of arrays
(sections).

• To introduce the concept of array element ordering and physical and virtual mem-
ory.

• To introduce ways in which we can initialise arrays using array constructors.
• To introduce the where statement and array masking.
• To introduce the forall statement and construct.
• Physical and virtual memory
• Type declaration statement summary.

8.1 Terminology

Fortran supports an abundance of array handling features. In order to make the
description of these features more precise a number of additional terms have to be
covered and these are introduced and explained below.

• Rank - The number of dimensions of an array is called its rank. A one dimensional
array has rank 1, a two dimensional array has rank 2 and so on.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_8
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• Bounds - An array’s bounds are the upper and lower limits of the index in each
dimension.

• Extent - The number of elements along a dimension of an array is called the extent.

integer, dimension(-10:15):: current

has bounds –10 and 15 and an extent of 26.
• Size - The total number of elements in an array is its size.
• Shape - The shape of an array is determined by its rank and its extents in each
dimension.

• Conformable - Two arrays are said to be conformable if they have the same shape,
that is, they have the same rank and the same extent in each dimension.

8.2 Array Element Ordering

Array element ordering states that the elements of an array, regardless of rank, form
a linear sequence. The sequence is such that the subscripts along the first dimension
vary most rapidly, and those along the last dimension vary most slowly. This is best
illustrated by considering, for example, a rank 2 array a defined by

real , dimension(1:4,1:2) :: a

a has 8 real elements whose array element order is a(1, 1), a(2, 1), a(3, 1), a(4, 1),
a(1, 2), a(2, 2), a(3, 2), a(4, 2) i.e., mathematically by column and not row. We will
look more formally at this later in this chapter.

8.3 Whole Array Manipulation

The examples of arrays so far have shown operations on arrays via array elements.
One of the significant features of modern Fortran is its ability to manipulate arrays
as whole objects. This allows arrays to be referenced not just as single elements but
also as groups of elements. Along with this ability comes a whole host of intrinsic
procedures for array processing. These procedures are mentioned in Chap. 12, and
listed in alphabetical order with examples in Appendix D.

8.4 Assignment

An array name without any indices can appear on both sides of assignment and input
and output statements. For example, values can be assigned to all the elements of an
array in one statement:
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real, dimension(1:12):: rainfall

rainfall=0.0

The elements of one array can be assigned to another:

integer, dimension(1:50) :: a,b

.

.

a=b

Arrays a and b must be conformable in order to do this.
The following example is illegal since x is rank 1 and extent 20, whilst z is rank

1 and extent 41.

real, dimension(1:20) :: x

real, dimension(1:41) :: z

x=50.0

z=x

But the following is legal because both arrays are now conformable, i.e., they are
both of rank 1 and extent 41:

real , dimension (-20:20) :: x

real , dimension (1:41) :: y

x=50.0

y=x

8.5 Expressions

All the arithmetic operators available to scalars are available to arrays, but care must
be taken because mathematically they may not make sense.

real , dimension (1:50) :: a,b,c,d,e

c=a+b

adds each element of a to the corresponding element of b and assigns the result to c.

e=c*d

multiplies each element of c by the corresponding element of d. This is not vec-
tor multiplication. To perform a vector dot product there is an intrinsic procedure
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dot_product, and an example of this is given in a subsequent section on array
constructors.

For higher dimensions

real ,dimension (1:10,1:10) :: f,g,h

f=f**0.5

takes the square root of every element of f.

h=f+g

adds each element of f to the corresponding element of g.

h=f*g

multiplies each element of f by the corresponding element of g. The last state-
ment is not matrix multiplication. An intrinsic procedure matmul performs matrix
multiplication; further details are given in Appendix D.

8.6 Example 1: Rank 1 Whole Arrays in Fortran

Consider the following example, which is a solution to a problem set earlier, but is
now addressed using some of the whole array features of Fortran

program ch0801

implicit none

integer, parameter :: n = 12

real, dimension (1:n) :: rainfall_ins = 0.0

real, dimension (1:n) :: rainfall_cms = 0.0

integer :: month

print *, &

’ Input the rainfall values in inches’

read *, rainfall_ins

rainfall_cms = rainfall_ins*2.54

do month = 1, n

print *, ’ ’, month, ’ ’, rainfall_ins(month &

), ’ ’, rainfall_cms(month)

end do

end program ch0801

The statements
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real , dimension(1:n) :: rainfall_ins=0.0

real , dimension(1:n) :: rainfall_cms=0.0

are examples of whole array initialisation. Each element of the arrays is set to 0.0.
The statement

read *, rainfall_ins

is an example of whole array i/o, where we no longer have to use a do loop to read
each element in.

Finally, we have the statement

rainfall_cms = rainfall_ins * 2.54

which is an example of whole array arithmetic and assignment.

8.7 Example 2: Rank 2 Whole Arrays in Fortran

Here is a two-dimensional example:

program ch0802

! This program reads in a grid of temperatures

! (degrees Fahrenheit) at 25 grid references

! and converts them to degrees Celsius

implicit none

integer, parameter :: n = 5

real, dimension (1:n, 1:n) :: fahrenheit, &

celsius

integer :: long, lat

!

! read in the temperatures

!

do lat = 1, n

print *, ’ For Latitude= ’, lat

do long = 1, n

print *, ’ For Longitude’, long

read *, fahrenheit(lat, long)

end do

end do

!

! Conversion applied to all values

!
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celsius = 5.0/9.0*(fahrenheit-32.0)

print *, celsius

print *, fahrenheit

end program ch0802

Note the use of whole arrays in the print statements. The output does look rather
messy though, and also illustrates array element ordering.

8.8 Array Sections

Often it is necessary to access part of an array rather than the whole, and this is
possible with Fortran’s powerful array manipulation features.

8.8.1 Example 3: Rank 1 Array Sections

Consider the following:

program ch0803

implicit none

integer, dimension (-5:5) :: x

integer :: i

x(-5:-1) = -1

x(0) = 0

x(1:5) = 1

do i = -5, 5

print *, ’ ’, i, ’ ’, x(i)

end do

end program ch0803

The statement

x(-5:-1) = -1

is working with a section of an array. It assigns the value –1 to elements x(-5)
through x(-1).

The statement

x(1:5) = 1
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is also workingwith an array section. It assigns the value 1 to elementsx(1) through
x(5).

8.8.2 Example 4: Rank 2 Array Sections

In Chap.6 we gave an example of a table of examination marks, and this is given
again below:

Name Physics Maths Biology History English French
Fowler L. 50 47 28 89 30 46
Barron L.W 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

The following program reads the data in, scales column 3 by 2.5 as the Biology
marks were out of 40 (the rest are out of 100), calculates the averages for each subject
and for each person and prints out the results.

program ch0804

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (1:nrow, 1:ncol) :: &

exam_results = 0.0

real, dimension (1:nrow) :: people_average = &

0.0

real, dimension (1:ncol) :: subject_average = &

0.0

integer :: r, c

do r = 1, nrow

read *, exam_results(r, 1:ncol)

end do

exam_results(1:nrow, 3) = 2.5* &

exam_results(1:nrow, 3)

do r = 1, nrow

do c = 1, ncol

people_average(r) = people_average(r) + &

exam_results(r, c)

end do

end do
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people_average = people_average/ncol

do c = 1, ncol

do r = 1, nrow

subject_average(c) = subject_average(c) + &

exam_results(r, c)

end do

end do

subject_average = subject_average/nrow

print *, ’ People averages’

print *, people_average

print *, ’ Subject averages’

print *, subject_average

end program ch0804

The statement

read *, exam_results(r,1:ncol)

uses sections to replace the implied do loop in the earlier example, takes column 3 of
the two dimensional array exam_results, multiplies it by 2.5 (as a whole array)
and overwrites the original values.

The statement

exam_results(1:nrow,3) = &

2.5 * exam_results(1:nrow,3)

uses array sections in the arithmetic and the assignment.

8.9 Array Constructors

Arrays can be given initial values in Fortran using array constructors. Some examples
are given below.

8.9.1 Example 5: Rank 1 Array Initialisation — Explicit
Values

program ch0805

implicit none

integer, parameter :: n = 12

real :: total = 0.0, average = 0.0
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real, dimension (1:n) :: rainfall = (/ 3.1, &

2.0, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &

3.1, 3.1 /)

integer :: month

do month = 1, n

total = total + rainfall(month)

end do

average = total/n

print *, ’ Average monthly rainfall was’

print *, average

end program ch0805

The statement

real , dimension(1:n) :: rainfall = &

(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

provides initial values to the elements of the array rainfall.

8.9.2 Example 6: Rank 1 Array Initialisation Using
an Implied Do Loop

The next example uses a simple variant:

program ch0806

implicit none

!

! 1 us gallon = 3.7854118 litres

! 1 uk gallon = 4.545 litres

!

integer, parameter :: n = 10

real, parameter :: us = 3.7854118

real, parameter :: uk = 4.545

integer :: i

integer, dimension (1:n) :: litre = [ (i,i=1,n &

) ]

real, dimension (1:n) :: gallon, usgallon

gallon = litre/uk

usgallon = litre/us

print *, ’ Litres Imperial USA’
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print *, ’ Gallon Gallon’

do i = 1, n

print *, litre(i), ’ ’, gallon(i), ’ ’, &

usgallon(i)

end do

end program ch0806

The statement

integer , dimension(1:n) :: litre=[(i,i=1,n)]

initialises the 10 elements of the litre array to the values 1,2,3,4,5,6,7,8,9,10
respectively.

8.9.3 Example 7: Rank 1 Arrays and the dot_product
Intrinsic

This example uses an array constructor and the intrinsic procedure dot_product.

program ch0807

implicit none

integer, dimension (1:3) :: x, y

integer :: result

x = [ 1, 3, 5 ]

y = [ 2, 4, 6 ]

result = dot_product(x, y)

print *, result

end program ch0807

and result has the value 44, which is obtained by the normalmathematical dot product
operation, 1*2 + 3*4 + 5*6.

The general form of the array constructor is [list of expressions] or
(/ a list of expressions /) where each expression is of the same type.

8.9.4 Initialising Rank 2 Arrays

To construct arrays of higher rank than one the intrinsic function reshapemust be
used. An introduction to intrinsic functions is given in Chap.12, and an alphabetic
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list with a full explanation of each function is given in Appendix D. To use it in its
simplest form:

matrix = reshape ( source, shape)

where source is a rank 1 array containing the values of the elements required in
the new array, matrix, and shape is a rank 1 array containing the shape of the
new array matrix.

We consider the rank 1 array b=(1,3,5,7,9,11), and we wish to store these
values in a rank 2 array a, such that a is the matrix:

a =
⎛
⎝
1 7
3 9
5 11

⎞
⎠

The following code extract is needed:

integer, dimension(1:6) :: b

integer, dimension(1:3, 1:2) :: a

b = (/1,3,5,7,9,11/)

a = reshape(b,(/3,2/))

Note that the elements of the source array b must be stored in the array element
order of the required array a.

8.9.5 Example 8: Initialising a Rank 2 Array

The following example illustrates the additional forms of the reshape function that
are used when the number of elements in the source array is less than the number of
elements in the destination. The complete form is

reshape(source, shape, pad, order)

pad and order are optional. See Appendix D for a complete explanation of pad
and order:

program ch0808

implicit none

integer, dimension (1:2, 1:4) :: x

integer, dimension (1:8) :: y = (/ 1, 2, 3, 4, &

5, 6, 7, 8 /)

integer, dimension (1:6) :: z = (/ 1, 2, 3, 4, &
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5, 6 /)

integer :: r, c

print *, ’ Source array y’

print *, y

print *, ’ Source array z’

print *, z

print *, ’ Simple reshape sizes match’

x = reshape(y, (/2,4/) )

do r = 1, 2

print *, (x(r,c), c=1, 4)

end do

print *, &

’ Source 2 elements smaller pad with 0’

x = reshape(z, (/2,4/), (/0,0/) )

do r = 1, 2

print *, (x(r,c), c=1, 4)

end do

print *, &

’ As previous now specify order as 1*2’

x = reshape(z, (/2,4/), (/0,0/), (/1,2/) )

do r = 1, 2

print *, (x(r,c), c=1, 4)

end do

print *, &

’ As previous now specify order as 2*1’

x = reshape(z, (/2,4/), (/0,0/), (/2,1/) )

do r = 1, 2

print *, (x(r,c), c=1, 4)

end do

end program ch0808

8.10 Miscellaneous Array Examples

The following are examples of some of the flexibility of arrays in Fortran.

8.10.1 Example 9: Rank 1 Arrays and a Stride of 2

Consider the following example:
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program ch0809

implicit none

integer :: i

integer, dimension (1:10) :: x = (/ (i,i=1,10) &

/)

integer, dimension (1:5) :: odd = (/ (i,i=1,10 &

,2) /)

integer, dimension (1:5) :: even

even = x(2:10:2)

print *, ’ x’

print *, x

print *, ’ odd’

print *, odd

print *, ’ even’

print *, even

end program ch0809

The statement

integer , dimension(1:5) :: odd=(/(i,i=1,10,2)/)

steps through the array 2 at a time.
The statement

even=x(2:10:2)

shows an array section where we go from elements two through ten in steps of two.
The 2:10:2 is an example of a subscript triplet in Fortran, and the first 2 is the lower
bound, the 10 is the upper bound, and the last 2 is the increment. Fortran uses the
term stride to mean the increment in a subscript triplet.

8.10.2 Example 10: Rank 1 Array and the Sum Intrinsic
Function

The following example is based on ch0805. It uses the sum intrinsic to calculate the
sum of all the values in the rainfall array.

program ch0810

implicit none

real :: total = 0.0, average = 0.0

real, dimension (12) :: rainfall = (/ 3.1, 2.0 &
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, 2.4, 2.1, 2.2, 2.2, 1.8, 2.2, 2.7, 2.9, &

3.1, 3.1 /)

total = sum(rainfall)

average = total/12

print *, ’ Average monthly rainfall was’

print *, average

end program ch0810

The statement

total = sum(rainfall)

replaces the statements below from the earlier example.

do month=1,n

total = total + rainfall(month)

enddo

In this example the sum intrinsic function adds up all of the elements of the array
rainfall.

So we have three ways of processing arrays:

• Element by element.
• Using sections.
• On a whole array basis.

The ability to use sections andwhole arrayswhen programming is amajor advance
of the element by element processing supported by Fortran 77.

8.10.3 Example 11: Rank 2 Arrays and the Sum Intrinsic
Function

This example is based on the earlier exam results program:

program ch0811

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (1:nrow*ncol) :: results = (/ &

50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &

98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &

30, 65, 68, 78, 38, 76, 98, 65 /)

real, dimension (1:nrow, 1:ncol) :: &
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exam_results = 0.0

real, dimension (1:nrow) :: people_average = &

0.0

real, dimension (1:ncol) :: subject_average = &

0.0

exam_results = reshape(results, (/nrow,ncol/), &

(/0.0,0.0/), (/2,1/) )

exam_results(1:nrow, 3) = 2.5* &

exam_results(1:nrow, 3)

subject_average = sum(exam_results, dim=1)

people_average = sum(exam_results, dim=2)

people_average = people_average/ncol

subject_average = subject_average/nrow

print *, ’ People averages’

print *, people_average

print *, ’ Subject averages’

print *, subject_average

end program ch0811

This example has several interesting array features:

• We initialise a rank 1 array with the values we want in our exam marks array. The
data are laid out in the program as they would be in an external file in rows and
columns.

• We use reshape to initialise our exam marks array. We use the fourth parameter
(/2,1/) to populate the rank 2 array with the data in row order.

• We use sum with a dim of 1 to compute the sums for the subjects.
• We use sum with a dim of 2 to compute the sums for the people.

8.10.4 Example 12: Masked Array Assignment
and the where Statement

Fortran has array assignment both on an element by element basis and on a whole
array basis. There is an additional form of assignment based on the concept of a
logical mask.

Consider the example of time zones given in Chap. 7. The time array will have
values that are both negative and positive. We can then associate the positive values
with the concept of east of the Greenwich meridian, and the negative values with the
concept of west of the Greenwich meridian e.g.:

program ch0812

implicit none
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real, dimension (-180:180) :: time = 0

integer :: degree, strip

real :: value

character (len=1), dimension (-180:180) :: &

direction = ’ ’

do degree = -180, 165, 15

value = degree/15.

do strip = 0, 14

time(degree+strip) = value

end do

end do

do degree = -180, 180

print *, degree, ’ ’, time(degree)

end do

where (time>0.0)

direction = ’E’

elsewhere (time<0.0)

direction = ’W’

end where

print *, direction

end program ch0812

8.10.5 Notes

The arrays must be conformable, i.e., in our example time and direction are
the same shape.

The selective assignment is achieved through the where construct.
Both the where and elsewhere blocks can be executed.
The formal syntax is:

where (array logical expression)

...

elsewhere (array logical expression)

...

end where

The first array assignment is executed where time is positive and the second is
executed where time is negative. For further coverage of logical expressions see
Chaps. 13 and 16.
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8.11 Array Element Ordering in More Detail

Fortran compilerswill store arrays inmemory according to the array element ordering
scheme. Section 9.5.3.2 of theFortran 2018 standard provides details of this. Table8.1
summarises the information for rank 1, 2 and 3 arrays.

Table 8.1 Array element ordering in Fortran

Rank Subscript bounds Subscript list Subscript order value

1 j1:k1 s1 1 + (s1 − j1)

2 j1:k1, j2:k2 s1, s2 1 + (s1 − j1)
+ (s2 − j2)*d1

3 j1:k1, j2:k2, j3 − k3 s1, s2, s3 1 + (s1 − j1)
+ (s2 − j2)*d1
+ (s3 − j3)*d2*d1

8.11.1 Example 13: Array Element Ordering

Here is a short program illustrating the above for a 2*5 array.

program ch0813

implicit none

integer :: j1 = 1

integer :: k1 = 2

integer :: j2 = 1

integer :: k2 = 5

integer :: s1

integer :: s2

integer :: d1

integer :: position

d1 = k1 - j1 + 1

print *, ’ Row Column Position’

do s1 = j1, k1

do s2 = j2, k2

position = 1 + (s1-j1) + (s2-j2)*d1

print 100, s1, s2, position

100 format (3x, i2, 6x, i2, 10x, i2)

end do

end do

end program ch0813
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and here is the output.

Row Column Position

1 1 1

1 2 3

1 3 5

1 4 7

1 5 9

2 1 2

2 2 4

2 3 6

2 4 8

2 5 10

So for rank 2 arrays the array element ordering is by column, not row.

8.12 Physical and Virtual Memory

There will be a limit to the amount of physical memory available on any computer
system. To enable problems that require more than the amount of physical memory
available to be solved, most implementations will provide access to virtual memory,
which in reality means access to a portion of a physical disk.

Access to virtual memory is commonly provided by a paging mechanism of some
description. Paging is a technique whereby fixed-sized blocks of data are swapped
between real memory and disk as required.

In order to minimise paging (and hence reduce execution time) array operations
should be performed according to the array element order.

Page sizes, past and present, include:

• Sun UltraSparc – 4Kb, 8Kb.
• DEC Alpha – 8Kb, 16Kb, 32Kb, 64Kb.
• Intel 80× 86 – 4Kb.
• Intel Pentium PIII – 4Kb, 2Mb, 4Mb.
• AMD64 – 4Kb, 2Mb, 4Mb - legacy mode
• AMD64 – 4Kb, 2Mb, 1Gb - 64 bit mode
• Intel 64 and IA-32 – 4Kb, 2Mb, 1Gb - depending on mode.

See the references at the end of the chapter for more details.
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8.13 Type Declaration Statement Summary

It is a convenient time to introduce a summary of the syntax of type declarations.
You have already seen some of these, and we will cover the rest in later chapters.

A type declaration statement normally has three components

• a type declaration
• optional attributes
• variable list

Here are details of the type declaration.

• intrinsic type specifier
• type (derived type specification)
• class (derived type specification)
• class ( * )

The attribute specification is one of

• allocatable
• asynchronous
• bind
• dimension
• external
• intent
• intrinsic
• optional
• parameter
• pointer
• private
• protected
• public
• save
• target
• value
• volatile

8.14 Summary

We can now perform operations on whole arrays and partial arrays (array sections)
without having to refer to individual elements. This shortens program development
time and greatly clarifies the meaning of programs.

Array constructors can be used to assign values to rank 1 arrays within a program
unit. The reshape function allows us to assign values to a two or higher rank array
when used in conjunction with an array constructor.
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8.15 Problems

8.1 Compile and run all the examples.

8.2 Give the rank, bounds, extent and size of the following arrays:

real , dimension(1:15) :: a

integer , dimension(1:3,0:4) :: b

real , dimension(-2:2,0:1,1:4) :: c

integer , dimension(0:2,1:5) :: d

Which two of these arrays are conformable?

8.3 Write a program to read in five rank 1 arrays, a, b, c, d, e and then store them
as five columns in a rank 2 array table.

8.4 Take the first part of Problem 7.5 in Chap.7 and rewrite it using the sum intrinsic
function.
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Chapter 9
Output of Results

“Why, sometimes I’ve believed as many as six impossible things
before breakfast”

Lewis Carroll, Through the Looking-Glass and What Alice
Found There

Aims
The aims here are to introduce some of the facilities for producing neat output using
edit descriptors. There is also coverage of how to write the results to a file, rather
than to the screen.

There are examples which will illustrate the use of

• The i edit descriptor for integer data
• The f edit descriptor for real data
• The e edit descriptor for real data
• The g edit descriptor for real data
• The x edit descriptor for spaces
• The a edit descriptor for character data
• Repetition of edit descriptors
• New lines
• Output using array sections
• Output using whole arrays
• The open, write, and close statements.

We will also provide a brief summary of the rest of the control and data edit
descriptors, as people may see them in existing code.
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9.1 Introduction

When you have used print * a few times it becomes apparent that it is not always
as useful as it might be. The data are written out in a way which makes some sense,
but may not be especially easy to read. Real numbers are generally written out with
all their significant places, which is very often rather toomany, and it is often difficult
to line up the columns for data which are notionally tabular. It is possible to be much
more precise in describing the way inwhich information is presented by the program.
To do this, we use format statements. Through the use of the format we can:

• Specify how many columns a number should take up.
• Specify where a decimal point should lie.
• Specify where there should be white space.
• Specify titles.

The format statement has a label associated with it; through this label, the
print statement associates the data to be written with the form in which to write
them.

9.2 Integers and the i Format or Edit Descriptor

Integer format (or edit descriptor) is reasonably straightforward, and offers clues for
formats used in describing other numbers. i3 is an integer taking three columns. The
number is right justified, a bit of jargon meaning that it is written as far to the right
as it will go, so that there are no trailing or following blanks. Consider the following
example:

9.2.1 Example 1: Twelve Times Table

program ch0901

implicit none

integer :: t

print *, ’ ’

print *, ’ Twelve times table’

print *, ’ ’

do t = 1, 12

print 100, t, t*12

end do

100 format (’ ’, i3, ’ * 12 = ’, i3)

end program ch0901
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The first statement of interest is

print 100, t,t*12

The 100 is a statement label. There must be a format statement with this label in
the program. The variables to be written out are t and t*12.

The second statement of interest is

100 format(’ ’,i3,’ * 12 = ’,i3)

Inside the brackets we have ’ ’ print out what occurs between the quote marks,
in this case one space.

, the comma separates items in the format statement.
i3 print out the first variable in the print statement right justified in three columns
, item separator.
’ * 12 = ’ print out what occurs between the quote characters.
, item separator
i3 print out the second variable (in this case an expression) right justified in three

columns.
All of the output will appear on one line.

9.2.1.1 Notes

The numbers are right justified in the field width.
If the edit descriptor has too few columns for the data we will get asterisks *

displayed.
If the number to be displayed is negative we must allow one column for the

minus sign.

9.2.2 Example 2: Integer Overflow and the i Edit Descriptor

Now consider the following example:

program ch0902

implicit none

integer :: big = 10

integer :: i

do i = 1, 40

print 100, i, big

big = big*10

end do

100 format (’ ’, i3, ’ ’, i12)

end program ch0902
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This program will loop and the variable big will overflow, i.e., go beyond the
range of valid values for a 32-bit integer (2, 147, 483, 647). Does the program crash
or generate a run time error? This is the output from the NAG and Intel compilers.

1 10

2 100

3 1000

4 10000

5 100000

6 1000000

7 10000000

8 100000000

9 1000000000

10 1410065408

11 1215752192

12 -727379968

...

31 -2147483648

32 0

...

40 0

Is there a compiler switch to trap this kind of error?

9.3 Reals and the f Edit Descriptor

The f edit descriptor can be seen as an extension of the integer format, but here we
have to deal with the decimal point. The general form is

• fw.d
• where w is the total width
• The . is decimal point
• d is the number of digits after the decimal point.
• as with the integer edit descriptor the number is right justified in the field width.

Let us look at some examples to illustrate the use of the f edit descriptor.

9.3.1 Example 3: Imperial Pints and US Pints

program ch0903

implicit none
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integer :: fluid

real :: imperial_pint

real :: us_pint

print *, ’ US Imperial’

print *, ’ pint(s) pint(s)’

do fluid = 1, 10

imperial_pint = fluid*1.20095

us_pint = fluid/1.20095

print 100, imperial_pint, fluid, us_pint

100 format (’ ’, f5.2, ’ ’, i3, ’ ’, f5.2)

end do

end program ch0903

The first two print statements are a heading for the subsequent output. Some
experimentation is normally required to get a reasonable looking table. Note that is
this example we used the f5.2 edit descriptor to print out both imperial_pint
variable and the us_pint variable. That is an overall width of 5 spaces with 2 digits
after the decimal point.

Note also that rounding has occurred, i.e. the real values are rounded to 2 digits
after the decimal point.

9.3.2 Example 4: Imperial Pints and Litres

program ch0904

implicit none

integer :: fluid

real :: litres

real :: pints

print *, ’ Imperial Litre(s)’

print *, ’ pint(s) ’

do fluid = 1, 10

litres = fluid/1.75

pints = fluid*1.75

print 100, pints, fluid, litres

end do

100 format (’ ’, f6.2, ’ ’, i3, ’ ’, f5.2)

end program ch0904

Note that in this example we are using f6.2 to print out the pints variable, and
f5.2 to print out the litres variable.

Note again that rounding is taking place, i.e. both variables are rounded to 2 digits
after the decimal point.
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9.3.3 Example 5: Narrow Field Widths and the f Edit
Descriptor

Consider the following example.

program ch0905

implicit none

integer :: i

real :: r1 = 9.9

real :: r2 = 9.9

real :: r3 = -9.9

real :: r4 = -9.9

do i = 1, 10

print 100, i, r1, r2, r3, r4

100 format (’ ’, i3, ’ ’, f7.3, ’ ’, f7.3, &

’ ’, f7.3, ’ ’, f7.3)

r1 = r1/10.0

r2 = r2*10.0

r3 = r3/10.0

r4 = r4*10.0

end do

end program ch0905

Here is the output.

1 9.900 9.900 -9.900 -9.900

2 0.990 99.000 -0.990 -99.000

3 0.099 990.000 -0.099 *******

4 0.010 ******* -0.010 *******

5 0.001 ******* -0.001 *******

6 0.000 ******* -0.000 *******

7 0.000 ******* -0.000 *******

8 0.000 ******* -0.000 *******

9 0.000 ******* -0.000 *******

10 0.000 ******* -0.000 *******

When the number is too large for the field width asterisks are printed. Note also
that space has to be allowed for the sign of the variable.
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9.3.4 Example 6: Overflow and the f Edit Descriptor

Consider the following program:

program ch0906

implicit none

integer :: i

real :: small = 1.0

real :: big = 1.0

do i = 1, 50

print 100, i, small, big

100 format (’ ’, i3, ’ ’, f7.3, ’ ’, f7.3)

small = small/10.0

big = big*10.0

end do

end program ch0906

In this program the variable small will underflow and big will overflow. The
output from the Intel compiler is:

1 1.000 1.000

2 0.100 10.000

3 0.010 100.000

4 0.001 *******

...

39 0.000 *******

40 0.000 Infini

...

50 0.000 Infini

When the number is too small for the format, the printout is what you would
probably expect. When the number is too large, you get asterisks. When the number
actually overflows the Intel compiler tells you that the number is too big and has
overflowed. However the program ran to completion and did not generate a run time
error.

9.4 Reals and the e Edit Descriptor

The exponential or scientific notation is useful in cases where we need to provide a
format which may encompass a wide range of values. If likely results lie in a very
wide range, we can ensure that the most significant part is given. This takes a form
such as



172 9 Output of Results

e12.4

The 12 refers to the total width and the 4 to the number of significant digits.

9.4.1 Example 7: Simple e Edit Descriptor Example

Let’s look at a simple example to see what the output is like and then go over some
more about the rules that apply.

program ch0907

implicit none

integer :: i

real :: r1 = 1.23456

real :: r2 = 1.23456

do i = 1, 10

print 100, i, r1, r2

r1 = r1/10.0

r2 = r2*10.0

end do

100 format (’ ’, i3, ’ ’, e12.4, ’ ’, e12.4)

end program ch0907

Here is the output

1 0.1235E+01 0.1235E+01

2 0.1235E+00 0.1235E+02

3 0.1235E-01 0.1235E+03

4 0.1235E-02 0.1235E+04

5 0.1235E-03 0.1235E+05

6 0.1235E-04 0.1235E+06

7 0.1235E-05 0.1235E+07

8 0.1235E-06 0.1235E+08

9 0.1235E-07 0.1235E+09

10 0.1235E-08 0.1235E+10

There are a number of things to note here

• all exponent format numbers are written so that the number is between 0.1 and
0.9999..., with the exponent taking care of scale shifts, this implies that the first
four significant digits are to be printed out.

• rounding is taking place
• the numbers are right justified
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There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires:

• The decimal point.
• The sign of the entire number.
• The sign of the exponent.
• The magnitude of the exponent.
• The e.

The width of the number less the number of significant places should not be
less than 6. In the example given above, e12.4 meets this requirement. When the
exponent is in the range 0 to 99, the e will be printed as part of the number; when
the exponent is greater, the e is dropped, and its place is taken by a larger value;
however, the sign of the exponent is always given, whether it is positive or negative.
The sign of the whole number will usually only be given when it is negative. This
means that if the numbers are always positive, the rule of six given above can be
modified to a rule of five. It is safer to allow six places over, since, if the format is
insufficient, all you will get are asterisks.

The most common mistake with an e format is to make the edit descriptor too
small, so that there is insufficient room for all the padding to be printed.

9.5 Reals and the g Edit Descriptor

This edit descriptor combines both the f and e edit descriptors, depending on the
size of the number.

9.5.1 Example 8: Simple g Edit Descriptor Example

Here is a variant of the previous examples with the g edit descriptor replacing the e
edit descriptor.

program ch0908

implicit none

integer :: i

real :: r1 = 1.23456

real :: r2 = 1.23456

print 100

100 format (’ ’, &

’1234567890123456789012345678901’)

print 110
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110 format (’ i3 g12.4 g12.4’)

do i = 1, 10

print 120, i, r1, r2

r1 = r1/10.0

r2 = r2*10.0

end do

120 format (’ ’, i3, ’ ’, g12.4, ’ ’, g12.4)

end program ch0908

Here is the output

1234567890123456789012345678901

i3 g12.4 g12.4

1 1.235 1.235

2 0.1235 12.35

3 0.1235E-01 123.5

4 0.1235E-02 1235.

5 0.1235E-03 0.1235E+05

6 0.1235E-04 0.1235E+06

7 0.1235E-05 0.1235E+07

8 0.1235E-06 0.1235E+08

9 0.1235E-07 0.1235E+09

10 0.1235E-08 0.1235E+10

Fortran provides quite a useful set of edit descriptors for real numbers. Theprint
* is very useful when developing programs.

9.6 Spaces

Fortran provides a variety of ways of generating spaces in a format statement and
these include using quotes (’), double quotes (”) and the x edit descriptor.

9.6.1 Example 9: Three Ways of Generating Spaces

program ch0909

implicit none

integer :: i

do i = 1, 4

print 100, i, i*i
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print 110, i, i*i

print 120, i, i*i

100 format (’ ’, i2, ’ ’, i4)

110 format (’ ’, i2, ’ ’, i4)

120

format (1x, i2, 2x, i4)

end do

end program ch0909

The output is the same from each format statement.

9.7 Characters — a Format or Edit Descriptor

This is perhaps the simplest output of all. Since you will already have declared the
length of a character variable in your declarations,

character (10) :: b

when you come to write out b, the length is known — thus you need only specify
that a character string is to be output:

print 100,b

100 format(1x,a)

If you feel you need a little extra control, you can append an integer value to the a,
like a10 (a9 or a1), and so on. if you do this, only the first 10 (9 or 1) characters are
written out; the remainder are ignored. Do note that 10a1 and a10 are not the same
thing. 10a1 would be used to print out the first character of ten character variables,
while a10 would write out the first 10 characters of a single character variable. The
general form is therefore just a, but if more control is required, this may be followed
by a positive integer.

9.7.1 Example 10: Character Output and the a Edit
Descriptor

The following program is a simple rewrite of one of the programs from Chap. 4.

program ch0910

! This program reads in and prints out

! your
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first name

implicit none

character (20) :: first_name

print *, ’ Type in your first name.’

print *, ’ up to 20 characters’

read *, first_name

print 100, first_name

100 format (1x, a) end program ch0910

9.7.2 Example 11: Character, Integer and Real Output
in a Format Statement

The following example shows how to mix and match character, integer and real
output in one format statement:

program ch0911

implicit none

character (len=15) :: firstname

integer :: age

real :: weight

character (len=1) :: gender

print *, ’ type in your first name ’

read *, firstname

print *, ’ type in your age in years’

read *, age

print *, ’ type in your weight in kilos’

read *, weight

print *, ’ type in your gender (f/m)’

read *, gender

print *, ’ your personal details are’

print *

print 100

print 110, firstname, age, weight, gender

100 format (4x, ’first name’, 4x, ’age’, 1x, &

’weight’, 2x, ’gender’)

110 format (1x, a, 2x, i3, 2x, f5.2, 2x, a)

end program ch0911

Take care to match up the variables with the appropriate edit descriptors. You also
need to count the number of characters and spaces when lining up the heading.
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9.8 Common Mistakes

It must be stressed that an integer can only be printed out with an i format, and a
real with an f (or e) format. You cannot use integer variables or expressions with
f, e or g edit descriptors or real variables and expressions with i edit descriptors.
If you do, unpredictable results will follow. There are (at least) two other sorts of
errors you might make in writing out a value. You might try to write out something
which has never actually been assigned a value; this is termed an indefinite value.
You might find that the letter i is written out. In passing, note that many loaders and
link editors will preset all values to zero — i.e., unset (indefinite) values are actually
set to zero. On better systems there is generally some way of turning this facility off,
so that undefined is really indefinite. More often than not, indefinite values are the
result of mistyping rather than of never setting values. It is not uncommon to type O
for 0, or 1 for either I or l. The other likely error is to try to print out a value greater
than the machine can calculate — out of range values. Some machines will print out
such values as R, but some will actually print out something which looks right, and
such overflow and underflow conditions can go unnoticed. Be wary.

9.9 Files in Fortran

One of the particularly powerful features of Fortran is the way it allows you to
manipulate files. Up to now, most of the discussion has centred on reading from the
keyboard and writing to the screen. It is also possible to read and write to one or
more files. This is achieved using the open, write, read and close statements.
In a later chapter we will consider reading from files but here we will concentrate on
writing.

9.9.1 The open Statement

This statement sets up a file for either reading or writing. A typical form is

open (unit=1,file=’data.txt’)

The file will be known to the operating system as data.txt and can be written
to by using the unit number. This statement should come before you first read data
from or write data to to the file.

You can also use a character variable to hold the filename. This is shown in the
code segment below.
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character*60 :: filename

...

...

filename=’data.txt’

...

...

open (unit=1,file=filename)

It is not possible to write to the file data.txt directly; it must be referenced
through its unit number. Within the Fortran program you write to this file using a
statement such as

write(unit=1,fmt=100) x,y

or

write(1,100) x,y

These two statements are equivalent.

9.9.2 The close Statement

Besides opening a file, we really ought to close it when we have finished writing to it:

close(unit=1)

In fact, on many systems it is not obligatory to open and close all your files.
Almost certainly, the terminal will not require this, since INPUT and OUTPUT units
will be there by default. At the end of the job, the system will close all your files.
Nevertheless, explicit open and close cannot hurt, and the added clarity generally
assists in understanding the program.

9.9.3 Example 12: Open and Close Usage

The following program contains all of the above statements:

program ch0912

implicit none

integer :: fluid

real :: litres
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real :: pints

open (unit=1, file=’ch0912.txt’)

write (unit=1, fmt=100)

do fluid = 1, 10

litres = fluid/1.75

pints = fluid*1.75

write (unit=1, fmt=110) pints, fluid, litres

end do

close (1)

100 format (’ Pints Litres’)

110 format (’ ’, f7.3, ’ ’, i3, ’ ’, f7.3)

end program ch0912

In this example the file will be created in the directory that the program executable
runs in.

Using the following open statement

open (unit=1, file=&

’c:\document\fortran\ch0912.txt’)

creates the file in the

c:\document\fortran

directory under the Windows operating system.
Using the following open statement

open (unit=1, file=&

’/home/ian/document/fortran/ch0912.txt’)

creates the file in the

/home/ian/document/fortran

directory under a Linux operating system.

9.9.4 Example 13: Timing of Writing Formatted Files

The following example looks at the amount of time spent in different sections of a
program with the main emphasis on formatted output:
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program ch0913

implicit none

integer, parameter :: n = 10000000

integer, dimension (1:n) :: x = 0

real, dimension (1:n) :: y = 0.0

integer :: i

real :: t, t1, t2, t3, t4, t5

character *30 :: comment

open (unit=10, file=’ch0913.txt’)

call cpu_time(t)

t1 = t

comment = ’ Program starts ’

print 120, comment, t1

do i = 1, n

x(i) = i

end do

call cpu_time(t)

t2 = t - t1

comment = ’ Integer array initialised’

print 120, comment, t2

y = real(x)

call cpu_time(t)

t3 = t - t1 - t2

comment = ’ Real array initialised’

print 120, comment, t2

do i = 1, n

write (10, 100) x(i)

end do

call cpu_time(t)

t4 = t - t1 - t2 - t3

comment = ’ Integer write ’

print 120, comment, t4

do i = 1, n

write (10, 110) y(i)

end do

call cpu_time(t)

t5 = t - t1 - t2 - t3 - t4

comment = ’ Real write ’

print 120, comment, t5

100 format (1x, i10)

110 format (1x, f10.0)

120 format (1x, a, 2x, f7.3)

end program ch0913
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There is a call to the built-in intrinsic cpu_time to obtain timing information.
Try this example out with your compiler. Formatted output takes up a lot of time, as
we are converting from an internal binary representation to an external

decimal form.

Program starts 0.016

Integer array initialised 0.094

Real array initialised 0.094

Integer write 2.262

Real write 8.408

9.9.5 Example 14: Timing of Writing Unformatted Files

The following program is a variant of the above but now the output is in unformatted
or binary form:

program ch0914

implicit none

integer, parameter :: n = 10000000

integer, dimension (1:n) :: x = 0

real, dimension (1:n) :: y = 0

integer :: i

real :: t, t1, t2, t3, t4, t5

character *30 :: comment

open (unit=10, file=’ch0914.dat’, &

form=’unformatted’)

call cpu_time(t)

t1 = t

comment = ’ Program starts ’

print 100, comment, t1

do i = 1, n

x(i) = i

end do

call cpu_time(t)

t2 = t - t1

comment = ’ Integer assignment ’

print 100, comment, t2

y = real(x)

call cpu_time(t)

t3 = t - t1 - t2

comment = ’ Real assignment ’
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print 100, comment, t2

write (10) x

call cpu_time(t)

t4 = t - t1 - t2 - t3

comment = ’ Integer write ’

print 100, comment, t4

write (10) y

call cpu_time(t)

t5 = t - t1 - t2 - t3 - t4

comment = ’ Real write ’

print 100, comment, t5

100 format (1x, a, 2x, f7.3)

end program ch0914

Try this example out with your compiler. Unformatted is very efficient in terms
of time. It also has the benefit for real or floating point numbers of no information
loss.

Program starts 0.016

Integer assignment 0.078

Real assignment 0.078

Integer write 0.078

Real write 0.031

Note that binary or unformatted files are not necessarily portable between differ-
ent compilers and different hardware platforms. You should consult your compiler
documentation for help in this area.

9.10 Example 15: Implied Do Loops and Array Sections
for Array Output

The following program shows how to use both implied do loops and array sections
to output an array in a neat fashion:

program ch0915

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (1:nrow*ncol) :: results = (/ &

50, 47, 28, 89, 30, 46, 37, 67, 34, 65, 68, &

98, 25, 45, 26, 48, 10, 36, 89, 56, 33, 45, &

30, 65, 68, 78, 38, 76, 98, 65 /)
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real, dimension (1:nrow, 1:ncol) :: &

exam_results = 0.0

real, dimension (1:nrow) :: people_average = &

0.0

real, dimension (1:ncol) :: subject_average = &

0.0

integer :: r, c

exam_results = reshape(results, (/nrow,ncol/), &

(/0.0,0.0/), (/2,1/) )

exam_results(1:nrow, 3) = 2.5* &

exam_results(1:nrow, 3)

subject_average = sum(exam_results, dim=1)

people_average = sum(exam_results, dim=2)

people_average = people_average/ncol

subject_average = subject_average/nrow

do r = 1, nrow

print 100, (exam_results(r,c), c=1, ncol), &

people_average(r)

end do

print *, &

’ ==== ==== ==== ==== ==== ====’

print 110, subject_average(1:ncol)

100 format (1x,6(1x,f5.1), ’ = ’, f6.2)

110 format (1x, 6(1x,f5.1))

end program ch0915

The print 100 uses an implied do loop and the print 110 uses an array section.
Here is the output.

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33

37.0 67.0 85.0 65.0 68.0 98.0 = 70.00

25.0 45.0 65.0 48.0 10.0 36.0 = 38.17

89.0 56.0 82.5 45.0 30.0 65.0 = 61.25

68.0 78.0 95.0 76.0 98.0 65.0 = 80.00

==== ==== ==== ==== ==== ====

53.8 58.6 79.5 64.6 47.2 62.0

We are using repeat factors in this example in the format statement to repeat the
use of one or more edit descriptors, e.g. 6(1x,f5.1).

Wehave also added a print statement tomake the output a bitmore understandable.
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9.11 Example 16: Repetition and Whole Array Output

Take care when using whole arrays. Consider the following program:

program ch0916

real, dimension (10, 10) :: y

integer :: nrows = 6

integer :: ncols = 7

integer :: i, j

integer :: k = 0

do i = 1, nrows

do j = 1, ncols

k = k + 1

y(i, j) = k

end do

end do

write (unit=*, fmt=100) y

100 format (1x, 10f10.4)

end program ch0916

There are several points to note with this example. Firstly, this is a whole array
reference, and so the entire contents of the array will be written; there is no scope for
fine control. Secondly, the order in which the array elements are written is according
to Fortran’s array element ordering, i.e., the first subscript varying 1 to 10 (the array
bound), with the second subscript as 1, then 1 to 10 with the second subscript as 2
and so on; the sequence is

Y(1,1)Y(2,1)Y(3,1)Y(10,1)

Y(1,2)Y(2,2)Y(3,2)Y(10,2)

.

.

Y(1,10)Y(2,10)Y(10,10)

Thirdly we have defined values for part of the array.
Finally we have used write(unit=*,fmt=100) and this will print to the

screen.

9.12 Example 17: Choosing the Decimal Symbol

Fortran provides a mechanism to choose the decimal symbol. The dc edit descriptor
sets the decimal symbol to a comma. The dp edit descriptor sets the decimal symbol
to a full stop or period.
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The following example

program ch0917

implicit none

integer :: fluid

real :: litres

real :: pints

open (unit=1, file=’ch0917.txt’)

write (unit=1, fmt=100)

do fluid = 1, 10

litres = fluid/1.75

pints = fluid*1.75

write (unit=1, fmt=110) pints, fluid, litres

end do

close (1)

100 format (’ Pints Litres’)

110 format (dc, ’ ’, f7.3, ’ ’, i3, ’ ’, f7.3)

end program ch0917

produces the following output.

Pints Litres

1,750 1 0,571

3,500 2 1,143

5,250 3 1,714

7,000 4 2,286

8,750 5 2,857

10,500 6 3,429

12,250 7 4,000

14,000 8 4,571

15,750 9 5,143

17,500 10 5,714

9.13 Example 18: Alternative Format Specification
Using a String

Here is an example of an alternate format specification using a string.

program ch0918

implicit none

integer :: t
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print *, ’ ’

print *, ’ Twelve times table’

print *, ’ ’

do t = 1, 12

print ’(’’ ’’, i3, ’’ * 12 = ’’, i3)’, t, &

t*12

end do

end program ch0918

9.14 Example 19: Alternative Format Specification
Using a Character Variable

Here is an example of using a character variable in a format specification.

program ch0919

implicit none

integer :: t

character *30 :: fmt_100 = &

’(’’ ’’, i3, ’’ * 12 = ’’, i3)’

print *, ’ ’

print *, ’ Twelve times table’

print *, ’ ’

do t = 1, 12

write (unit=*, fmt=fmt_100) t, t*12

end do

end program ch0919

9.15 The Remaining Control and Data Edit Descriptors

Tables9.1 and 9.2 summarise details of the control and data edit descriptors available
in Fortran.
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Table 9.1 Summary of data edit descriptors

Descriptor Description: data conversion

A w character

B w[.m] integer to/from binary

D w.d real

DT [character literal constant][(v-list)] derived type

E w.d[Ee] real with exponent

EN w.d[Ee] real to engineering

ES w.d[Ee] real to scientific

F w.d real with no exponent

G w.d[Ee] any intrinsic type

I w[.m] integer

L w logical

O octal

Z hexadecimal

Symbol Explanation

w width of the field

m number of digits in the field

d number of digits after the decimal symbol

e number of digits in the exponent field

v signed integer literal constant

interpretation depends on the user

supplied derived type i/o subroutine

Table 9.2 Text edit descriptors

Descriptor Description: data conversion

’text’ transfer of a character literal constant to output record

”text” transfer of a character literal constant to output record

9.16 Summary

You have been introduced in this chapter to the use of format or layout descriptors
which will give you greater control over output.

The main features are:

• The i format for integer variables.
• The e, f and g formats for real numbers.
• The a format for characters.
• The x, which allows insertion of spaces.

Output canbedirected tofiles aswell as to the terminal through thewrite statement.
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The write, together with the open and close statements, also introduces
the class of Fortran statements which use equated keywords, as well as positionally
dependent parameters.

The format statement and its associated layout or edit descriptor are powerful
and allow repetition of patterns of output (both explicitly and implicitly).

9.17 Problems

9.1 Rewrite the temperature conversion program which was Problem7.3 in Chap.7
to produce neat tabular output. Pay attention to the number of significant decimal
places.

9.2 Information on car fuel consumption is usually given in miles per gallon in
Britain and the United States and in l/100km in Europe. Just to add an extra problem
US gallons are 0.8 imperial gallons.

Prepare a table which allows conversion from either US or imperial fuel consump-
tion figures to the metric equivalent. Use the parameter statement where appropriate:

1 imperial gallon = 4.54596 litres

1 mile = 1.60934 kilometres

9.3 The two most commonly used operating systems for Fortran programming are
UNIX and DOS. It is possible to use the operating system file redirection symbols

< >

to read from a file and write to a file, respectively. Rerun the program in Problem 1
to write to a file using the open statement. Examine the file using an editor.

9.4 Modify any of the above to write to a file rather than the screen or terminal.

9.5 What features of Fortran reveal its evolution from punched card input?

9.6 Try to create a real number greater than themaximumpossible on your computer
— write it out. Try to repeat this for an integer. You may have to exercise some
ingenuity.

9.7 Check what a number too large for the output format will be printed as on your
local system — is it all asterisks?

9.8 Write a program which stores litres and corresponding pints in arrays. You
should now be able to control the output of the table (excluding headings— although
this could be done too) in a single write or print statement. If you don’t like litres and
pints, try some other conversion (sterling to US dollars, leagues to fathoms, Scots
miles to Betelgeusian pfnings). The principle remains the same.
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9.9 Fortran is an old programming language and the text formatting functionality
discussed in this chapter assumes very dumb printing devices.

The primary assumption is that we are dealing with so-called monospace fonts,
i.e., that digits, alphabetic characters, punctuation, etc., all have the same width.

If you are using a PC try using:

• Notepad

and

• Word

To open your programs and some of the files created in this chapter.What happens
to the layout?

If you are using Notepad look at the Word wrap and set Font options under the
edit menu.

What fonts are available? What happens to the layout when you choose another
font?

If you are using Word what fonts are available? What happens when you make
changes to your file and exit Word? Is it sensible to save a Fortran source file as a
Word document?



Chapter 10
Reading in Data

Winnie-the-Pooh read the two notices very carefully, first from
left to right, and afterwards, in case he had missed some of it,
from right to left

A A Milne, Winnie-the-Pooh

Aims
The aims of this chapter are to introduce some of the ideas involved in reading data
into a program. In particular, using the following:

• Reading from files
• Reading integer data
• Reading real data
• Skipping columns of data in a file
• Skipping lines in a file
• Reading from several files consecutively
• Reading using internal files
• Timing of formatted and unformatted reads

10.1 Reading from Files

In the examples so far we have been reading from the keyboard using what Fortran
calls list directed input. In this chapter we will look at reading data from files where
the data is generally in tabular form.
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10.2 Example 1: Reading Integer Data

In this example we are interested in reading in people’s heights and weights in
imperial measurements (feet and inches and stones and pounds) from a file and
converting to their metric equivalent (metres and kilograms). The data is taken from
an undergraduate class of Mechanical Engineering students.

Here is the data.

6 1 13 5

5 11 11 13

6 1 13 5

5 7 14 2

5 9 10 12

5 6 13 1

5 1 10 1

5 4 8 13

5 10 10 3

5 10 11 13

The first two columns are the heights in feet and inches, and the second two
columns are the weights in stones and pounds.

Here is the program.

program ch1001

implicit none

integer, parameter :: npeople = 10

integer, dimension (1:npeople) :: height_feet, &

height_inch, weight_stone, weight_pound

real, dimension (1:npeople) :: weight_kg, &

height_m

integer :: i

open (unit=10, file=’ch1001.txt’,status=’old’)

open (unit=20, file=’ch1001.out’,status=’new’)

do i = 1, npeople

read (10, fmt=100) height_feet(i), &

height_inch(i), weight_stone(i), &

weight_pound(i)

100 format (i2, 2x, i2, 2x, i2, 2x, i2)

weight_kg(i) = (weight_stone(i)*14+ &

weight_pound(i))/2.2

height_m(i) = (height_feet(i)*12+height_inch &

(i))*2.54/100

write (unit=20, fmt=110) height_m(i), &
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weight_kg(i)

110 format (1x, f5.2, 2x, f4.1)

end do

close (10)

close (20)

end program ch1001

Here is the output.

1.85 85.0

1.80 75.9

1.85 85.0

1.70 90.0

1.75 69.1

1.68 83.2

1.55 64.1

1.63 56.8

1.78 65.0

1.78 75.9

The first statements of interest are

open (unit=10, file=’ch1001.txt’,status=’old’)

open (unit=20, file=’ch1001.out’,status=’new’)

which links the Fortran unit number 10 with a file called ch1001.txt, and links
the Fortran unit number 20 with a file called ch1001.out.

The next statements of interest are

read(10,fmt=100)height_feet(i) ,height_inch(i), &

weight_stone(i),weight_pound(i)

100 format(i2,2x,i2,2x,i2,2x,i2)

which reads 4 integer values from a line with integer data in columns 1–2, 5–6, 9–10
and 13–14 with 2 spaces between each value.

At the end of the program we close the files.

close(10)

close(20)

We write out the metric versions of the height and weight with the following
statement.

write(unit=20,fmt=200) height_m(i),weight_kg(i)

200 format(1x,f5.2,2x,f4.1)

to the file called ch1001.out.
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We recommend that when working with formatted files you use a text editor that
displays the column and line details.

Notepad under Windows has a status bar option under the View menu. Gvim
under Windows has line and column information available. Under Redhat, vim and
gedit both display line and column information. Under SuSe Linux kedit and vim
display line and column information. There should be an editor available on your
system that has this option.

10.3 Example 2: Reading Real Data

This example reads in the height and weight data created by the previous program
and calculates their BMI values. BMI stands for Body Mass Index and is calculated
as Weight/Height2

Here is the program.

program ch1002

implicit none

integer, parameter :: n = 10

real, dimension (1:n) :: h

real, dimension (1:n) :: w

real, dimension (1:n) :: bmi

integer :: i

open (unit=100, file=’ch1001.out’,status=’old’)

do i = 1, n

read (100, fmt=’(1x,f5.2, 2x, f4.1)’) h(i), &

w(i)

end do

close (100)

bmi = w/(h*h)

do i = 1, n

write (unit=*, fmt=’(1x,f4.1)’) bmi(i)

end do

end program ch1002

The following statement

open(unit=100,file=’ch1001.out’,status=’old’)

links the Fortran unit number 100 with the file ch1001.out.
The following statement

read (100,fmt=’(1x,f5.2, 2x, f4.1)’) h(i), w(i)
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reads the height and weight data from the file. We skip the first space then read the
height from the next 5 columns in f5.1 format. We skip two spaces and then read
the weight from the next 4 columns in f4.1 format.

The following statement

close(100)

closes the file.
The following statement

write(unit=*,fmt=’(1x,f4.1)’) bmi(i)

writes out the BMI values in f4.1 format.
Here is the output.

24.8

23.4

24.8

31.1

22.6

29.5

26.7

21.4

20.5

24.0

10.4 Met Office Historic Station Data

The UK Met Office makes historic station data available.
Visit

http://www.metoffice.gov.uk/public/weather/

climate-historic/#?tab=climateHistoric

to see the data. The line has been broken to fit the page width.
The data consists of

• Mean daily maximum temperature (tmax)
• Mean daily minimum temperature (tmin)
• Days of air frost (af)
• Total rainfall (rain)
• Total sunshine duration (sun)

Here is a sample of the Nairn data. Nairn is a town in Scotland on the North Sea.
The first seven lines have had to be formatted to fit the page width.
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Nairn there is a site change in 1998

Location before 1998 2869E 8568N 8m amsl

after 1998 2912E 8573N 23 m amsl

Estimated data is marked with a * after the value.

Missing data (more than 2 days missing in month)

is marked by ---.

Sunshine data taken from an automatic Kipp &

Zonen sensor marked with a #, otherwise

sunshine data taken from a

Campbell Stokes recorder.

yyyy mm tmax tmin af rain sun

degC degC days mm hours

1931 1 5.0 0.6 11 78.4 43.4

1931 2 6.7 0.7 7 48.9 63.6

1931 3 6.2 -1.5 19 37.6 145.4

1931 4 10.4 3.1 3 44.6 110.1

1931 5 13.2 6.1 1 63.7 167.4

1931 6 15.4 8.0 0 87.8 150.3

1931 7 17.3 10.6 0 121.4 111.2

1931 8 15.6 9.1 0 57.2 127.5

1931 9 15.0 8.4 0 38.1 122.3

1931 10 12.1 5.5 2 59.4 95.8

1931 11 10.3 3.9 3 43.7 61.5

1931 12 8.9 3.2 7 33.6 36.5

In the examples that follow we will be using this station’s data.

10.5 Example 3: Reading One Column of Data from a File

Here is the file we will be reading the rainfall values from.

1931 1 5.0 0.6 11 78.4 43.4

1931 2 6.7 0.7 7 48.9 63.6

1931 3 6.2 -1.5 19 37.6 145.4

1931 4 10.4 3.1 3 44.6 110.1

1931 5 13.2 6.1 1 63.7 167.4

1931 6 15.4 8.0 0 87.8 150.3

1931 7 17.3 10.6 0 121.4 111.2

1931 8 15.6 9.1 0 57.2 127.5

1931 9 15.0 8.4 0 38.1 122.3

1931 10 12.1 5.5 2 59.4 95.8

1931 11 10.3 3.9 3 43.7 61.5

1931 12 8.9 3.2 7 33.6 36.5

12345678901234567890123456789012345678901234567890

1 2 3 4 5
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We have added two additional lines at the end to indicate the columns where the
data is. These lines are not read by the program.

Here is the program.

program ch1003

implicit none

character *20 :: file_name = &

’nairndata_01.txt’

integer, parameter :: nmonths = 12

real, dimension (1:nmonths) :: rainfall

real :: rain_sum

real :: rain_average

integer :: i

open (unit=10, file=file_name)

do i = 1, nmonths

read (unit=10, fmt=100) rainfall(i)

100 format (37x, f5.1)

end do

close (10)

rain_sum = sum(rainfall)/25.4

rain_average = rain_sum/nmonths

write (unit=*, fmt=110)

110 format (19x, ’Yearly Monthly’, /, 19x, &

’Sum Average’)

write (unit=*, fmt=120) rain_sum, rain_average

120 format (’Rainfall (inches) ’, f7.2, 2x, &

f7.2)

end program ch1003

The data file is called nairndata_01.txt and we open the file at the start of
the program and associate the file with unit 100.

The following statements read the 12 monthly values from the file skipping the
first 37 characters.

do i=1,nmonths

read(unit=10,fmt=100) rainfall(i)

100 format(37x,f5.1)

end do

We then close the file and calculate the rainfall sums and average and print out
the results. Here is the output.
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Yearly Monthly

Sum Average

Rainfall (inches) 28.13 2.34

The format statement 110 uses a / to move to the next line, so that the headings
line up.

10.6 Example 4: Skipping Lines in a File

This program is a simple variant of the last one.
Now we are reading from the original Met Office Nairn data file, which has seven

header lines.

program ch1004

implicit none

character *20 :: file_name = ’nairndata.txt’

integer, parameter :: nmonths = 12

real, dimension (1:nmonths) :: rainfall

real :: rain_sum

real :: rain_average

integer :: i

open (unit=10, file=file_name,status=’old’)

do i = 1, 8

read (unit=10, fmt=*)

end do

do i = 1, nmonths

read (unit=10, fmt=100) rainfall(i)

100 format (37x, f5.1)

end do

close (100)

rain_sum = sum(rainfall)/25.4

rain_average = rain_sum/nmonths

write (unit=*, fmt=110)

110 format (19x, ’ Yearly Monthly’, /, 19x, &

’ Sum Average’)

write (unit=*, fmt=120) rain_sum, rain_average

120 format (’Rainfall (inches) ’, f7.2, 2x, &

f7.2)

end program ch1004
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The key statements are

do i=1,8

read(unit=10,fmt=*)

end do

which skips the data on these lines. Fortran reads a record at a time in this example.
The output is as before.

10.7 Example 5: Reading from Several Files Consecutively

In this examplewe read fromeight of theMetOffice data files forCardiff, Eastbourne,
Lerwick, Leuchars, Nairn, Paisley, Ross On Wye and Valley.

We skip the first seven lines, then read year, month rainfall and sunshine data,
skipping the other columns.

We then calculate rainfall and sunshine yearly totals and averages for these eight
stations.

We use a character array to hold the station file names.
Here is the program.

program ch1005

implicit none

character *20, dimension (8) :: file_name = (/ &

’cardiffdata.txt ’, ’eastbournedata.txt ’ &

, ’lerwickdata.txt ’, &

’leucharsdata.txt ’, ’nairndata.txt ’ &

, ’paisleydata.txt ’, &

’rossonwyedata.txt ’, ’valleydata.txt ’ &

/)

integer, parameter :: nmonths = 12

integer, dimension (1:nmonths) :: year, month

real, dimension (1:nmonths) :: rainfall, &

sunshine

real :: rain_sum

real :: rain_average

real :: sun_sum

real :: sun_average

integer :: i, j

character *80 :: fmt1 = ’(3x,i4,2x,i2,3x,4x,4x,&

&4x,4x,4x,3x,f5.1,3x,f5.1)’
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do j = 1, 8

open (unit=100, file=file_name(j),status=’old’)

do i = 1, 7

read (unit=100, fmt=’(a)’)

end do

if (j==5) then

read (unit=100, fmt=’(a)’)

end if

do i = 1, nmonths

read (unit=100, fmt=fmt1) year(i), &

month(i), rainfall(i), sunshine(i)

end do

close (100)

rain_sum = sum(rainfall)/25.4

sun_sum = sum(sunshine)

rain_average = rain_sum/nmonths

sun_average = sun_sum/nmonths

write (unit=*, fmt=’(//,"Station = ",a,/)’) &

file_name(j)

write (unit=*, fmt= &

’(2x,’’Start ’’,i4,2x,i2)’) year(1), &

month(1)

write (unit=*, fmt= &

’(2x,’’End ’’,i4,2x,i2)’) year(12), &

month(12)

write (unit=*, fmt=100)

100 format (19x, ’ Yearly Monthly’, /, 19x, &

’ Sum Average’)

write (unit=*, fmt=110) rain_sum, &

rain_average

110 format (’Rainfall (inches) ’, f7.2, 2x, &

f7.2)

write (unit=*, fmt=120) sun_sum, sun_average

120 format (’Sunshine ’, f7.2, 2x, &

f7.2)

end do

end program ch1005

Each time round the loop we open one of the data files.

open(unit=100,file=file_name(j),status=’old’)
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We then skip the next seven lines.

do i=1,8

read(unit=100,fmt=’(a)’)

end do

We then read the data.

do i=1,nmonths

read(unit=100,fmt=fmt1) &

year(i),month(i),&

rainfall(i),sunshine(i)

end do

We then close the file.

close(100)

We then do the calculations and print out the sum and average data for each site.
The format statement uses // to generate a blank line.

Programs that will download the latest versions of the Met Office station data
files are available on our web site. The programs are available for both Windows and
Linux.

10.8 Example 6: Reading Using Array Sections

Consider the following output, which is the exam results data from an earlier chapter
after scaling.

50.0 47.0 70.0 89.0 30.0 46.0

37.0 67.0 85.0 65.0 68.0 98.0

25.0 45.0 65.0 48.0 10.0 36.0

89.0 56.0 82.5 45.0 30.0 65.0

68.0 78.0 95.0 76.0 98.0 65.0

A program to read this file using array sections is as follows:

program ch1006

implicit none

integer, parameter :: nrow = 5

integer, parameter :: ncol = 6

real, dimension (1:nrow, 1:ncol) :: &

exam_results = 0.0
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real, dimension (1:nrow) :: people_average = &

0.0

real, dimension (1:ncol) :: subject_average = &

0.0

integer :: r, c

open (unit=100, file=’ch1006.txt’,status=’old’)

do r = 1, nrow

read (unit=100, fmt=100) exam_results(r, &

1:ncol)

people_average(r) = sum(exam_results(r,1: &

ncol))

end do

close (100)

people_average = people_average/ncol

do c = 1, ncol

subject_average(c) = sum(exam_results(1:nrow &

,c))

end do

subject_average = subject_average/nrow

do r = 1, nrow

print 110, (exam_results(r,c), c=1, ncol), &

people_average(r)

end do

print *, &

’ ==== ==== ==== ==== ==== ====’

print 120, subject_average(1:ncol)

100 format (1x, 6(1x,f5.1))

110 format (1x, 6(1x,f5.1), ’ = ’, f6.2)

120 format (1x, 6(1x,f5.1))

end program ch1006

Here is the output.

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33

37.0 67.0 85.0 65.0 68.0 98.0 = 70.00

25.0 45.0 65.0 48.0 10.0 36.0 = 38.17

89.0 56.0 82.5 45.0 30.0 65.0 = 61.25

68.0 78.0 95.0 76.0 98.0 65.0 = 80.00

==== ==== ==== ==== ==== ====

53.8 58.6 79.5 64.6 47.2 62.0
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10.9 Example 7: Reading Using Internal Files

Sometimes external data does not have a regular structure and it is not possible to
use the standard mechanisms we have covered so far in this chapter. Fortran provides
something called internal file that allow us to solve this problem. The following
example is based on a problem encountered whilst working at the following site

http://www.shmu.sk/sk/?page=1

They have data that is in the following format

#xxxxxxxxxx yyyyyyyyyy

where x and y can vary between 1 and 10 digits. The key here is to read the whole
line (a maximum of 22 characters) and then scan the line for the blank character
between the x and y digits.

We then use the index intrinsic to locate the position of the blank character. We
now have enough information to be able to read the x and y integer data into the
variables n1 and n2.

program ch1007

implicit none

integer :: ib1, ib2

integer :: n1, n2

character (len=22) :: buffer, buff1, buff2

! program to read a record of the form

! #xxxxxxxxxx yyyyyyyyyy

! so that integers n1 = xxxxxxxxxx n2 =

! yyyyyyyyyy

! where the number of digits varies from 1 to 10

!

! use internal files

print *, ’input micael’’s numbers’

read (*, ’(a)’) buffer

ib1 = index(buffer, ’ ’)

ib2 = len_trim(buffer)

buff1 = buffer(2:ib1-1)

buff2 = buffer(ib1+1:ib2)

read (buff1, ’(i10)’) n1

read (buff2, ’(i10)’) n2

print *, ’n1 = ’, n1

print *, ’n2 = ’, n2

end program ch1007
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The statement

read(buff1,’(i10)’)n1

reads from the string buff1 and extracts the x number into the variable n1, and the
statement

read(buff2,’(i10)’)n2

reads from the string buff2 and extracts the y number into the variable n2.
This is a very powerful feature and allows you to manage quite widely varying

external data formats in files. buff1 and buff2 are called internal files in Fortran
terminology.

10.10 Example 8: Timing of Reading Formatted Files

A program to read a formatted file is shown below:

program ch1008

implicit none

integer, parameter :: n = 10000000

integer, dimension (1:n) :: x

real, dimension (1:n) :: y

integer :: i

real :: t, t1, t2, t3

character *15 :: comment

call cpu_time(t)

t1 = t

comment = ’ Program starts ’

print 120, comment, t1

open (unit=10, file=’ch0913.txt’, &

status=’old’)

do i = 1, n

read (10, 100) x(i)

end do

call cpu_time(t)

t2 = t - t1

comment = ’ Integer read ’

print 120, comment, t2

do i = 1, n

read (10, 110) y(i)
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end do

call cpu_time(t)

t3 = t - t1 - t2

comment = ’ Real read ’

print 120, comment, t3

do i = 1, 10

print 130, x(i), y(i)

end do

100 format (1x, i10)

110 format (1x, f10.0)

120 format (1x, a, 2x, f7.3)

130 format (1x, i4, 2x, f10.7)

end program ch1008

Here is some sample timing.

Program starts 0.016

Integer read 2.964

Real read 4.072

1 1.0000000

2 2.0000000

...

...

9 9.0000000

10 10.0000000

10.11 Example 9: Timing of Reading Unformatted Files

The following is a program to read from an unformatted file:

program ch1009

implicit none

integer, parameter :: n = 10000000

integer, dimension (1:n) :: x

real, dimension (1:n) :: y

integer :: i

real :: t, t1, t2, t3

character *15 :: comment

call cpu_time(t)

t1 = t

comment = ’ Program starts ’
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print 100, comment, t1

open (unit=10, file=’ch0914.dat’, &

form=’unformatted’,status=’old’)

read (10) x

call cpu_time(t)

t2 = t - t1

comment = ’ Integer read ’

print 100, comment, t2

read (10) y

call cpu_time(t)

t3 = t - t1 - t2

comment = ’ Real read ’

print 100, comment, t3

do i = 1, 10

print 110, x(i), y(i)

end do

100 format (1x, a, 2x, f7.3)

110 format (1x, i10, 2x, f10.6)

end program ch1009

Here is some sample timing.

Program starts 0.031

Integer read 0.016

Real read 0.031

1 1.000000

2 2.000000

...

9 9.000000

10 10.000000

10.12 Summary

This chapter has provided a coverage of some of the basics of reading data into a
program in Fortran. We have seen examples that have

• Read integer data
• Read real data
• Skipped lines in a file
• Skipped columns of data in a file
• Read from files
• Used the open and close statements
• Associated unit numbers with files
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• Read using fixed format data files
• Shown the time difference between using formatted files and unformatted files
• Used internal files

The above coverage should enable you make effective use of reading data in
Fortran.

We would recommend not using edit descriptors when reading numeric data
entered via the keyboard as it is difficult to see if the data matches what the edit
descriptors expect.

10.13 Problems

10.1 Compile and run the examples in this chapter. Note that you will have to run
ch0913.f90 and ch0914.f90 to create the data files that are needed by ch1008.f90 and
ch1009.f90

10.2 Write a program to read in and write out a real number using the following:

format(f7.2)

What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and written
out?

10.3 Rewrite two of the earlier programs that used read,* and print,* to use
format statements.

10.4 Write a program to read the file created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the programs
ignore any header and title information. This kind of problem is very common in
programming (writing a program to read and possibly manipulate data created by
another program).

10.5 Demonstrate that input and output formats are not symmetric— i.e., what goes
in does not necessarily come out.

10.6 What happens at your computer when you enter faulty data, inappropriate for
the formats specified? We will look at how we address this problem in Chap. 18.



Chapter 11
Summary of I/O Concepts

It is a capital mistake to theorise before one has data
Sir Arthur Conan Doyle

Aims
This chapter covers more formally some of the concepts introduced in Chaps.9 and
10. There is a coverage of

• I/O concepts and I/O statements
• Files, records and streams
• Sequential, direct and stream access
• Options or specifiers on the open statement
• Options or specifiers on the close statement
• Options or specifiers on the write statement
• Options or specifiers on the read statement

11.1 I/O Concepts and Statements

Fortran input and output statements provide the means of transferring data from
external media to internal storage or from an internal file to internal storage and vice
versa.

The input/output statements are the open, close, read, write, print,
backspace, endfile, rewind, flush, wait, and inquire statements.

The inquire statement is a file inquiry statement.
The backspace, endfile, and rewind statements are file positioning state-

ments.
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Data is commonly organised in either record files or stream files. In a record type
file transfers are done a record at a time. In a stream type file transfers are done in
file storage units.

11.2 Records

A record is a sequence of values or a sequence of characters. There are three kinds
of records:

• formatted
• unformatted
• end of file

A record in Fortran is commonly called a logical record.
A formatted record is typically a sequence of printable characters. You have seen

examples in earlier chapters.
You saw examples of unformatted i/o in the previous chapters.

11.3 File Access

The three file access methods are:

• sequential
• direct
• stream

The examples so far have shown sequential access.
Direct access is a method of accessing the records of an external record file in

arbitrary order.
Stream access is a method of accessing the file storage units of an external stream

file. The properties of an external file connected for stream access depend on whether
the connection is for unformatted or formatted access.

11.4 The open Statement

An open statement initiates or modifies the connection between an external file and
a specified unit. The open statement can do a number of things including

• connect an existing file to a unit;
• create a file that is preconnected;
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• create a file and connect it to a unit;
• change certain modes of a connection between a file and a unit.

The only keyword option that can be omitted is theunit specifier. This is assumed
to be the first parameter of the open statement.

Table11.1 summarises the open statement options.

Table 11.1 Open statement options

unit = file-unit-number

access = sequential, direct or stream

action = read, write or readwrite

asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

encoding = utf8 or default

err = statement label

file = file name

form = formatted or unformatted

iomsg = iomsg-variable

iostat = scalar-int-variable

newunit = scalar-int-variable

pad = yes or no

position = asis, rewind, append

recl = record length, positive integer

round = up, down, zero, neareset, compatible or processor defined

sign = plus, suppress or processor defined

status = old, new, scratch, replace or unknown

11.5 Data Transfer Statements

The read, write and print statements are used to transfer data to and from files.
Table11.2 summarises the options of the data transfer statements.
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Table 11.2 Data transer statement options

unit = io-unit

fmt = format

nml = namelist-group-name

advance = yes or no

asynchronous = yes or no

blank = null or zero

decimal = comma or point

delim = apostrophe, quote or none

end = label

eor = label

err = label

id = scalar-int-variable

iomsg = iomsg-variable

iostat = scalar-int-variable

pad = yes or no

pos = file position in file storage units

rec = record number to be read or written

round = up, down, zero, neareset, compatible or processor defined

sign = plus, suppress or processor defined

size = scalar-int-variable

11.6 The inquire Statement

Table11.3 summarises the options on the inquire statement.

Table 11.3 Inquire statement options

unit = file-unit-number

file = file name

access = sequential, direct, stream

action = read, write, readwrite, undefined

asynchronous = yes, no

blank = zero, null

decimal = comma, point

delim = apostrophe, quote, none

direct = yes, no, unknown
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Table 11.4 (continued)

encoding = utf8, default

err = label

exist = true, false

form = formatted, unformatted, undefined

formatted = yes, no, unknown

id = scalar-int-expr

iomsg = iomsg-variable

iostat = scalar-int-variable

name = file name

named = scalar-logical-variable

nextrec = scalar-int-variable

number = unit number, -1 if unassigned

opened = true, false

pad = yes, no

pending = scalar-logical-variable

pos = scalar-int-variable

position = scalar-default-char-variable

read = yes, no, unknown

readwrite = yes, no, unknown

recl = scalar-int-variable

round = up, down, zero, neareset, compatible or processor defined

sequential = yes, no, unknown

sign = plus, suppress, processor defined

size = scalar-int-variable

stream = yes, no, unknown

unformatted = yes, no, unknown

write = yes, no, unknown

11.7 Error, End of Record and End of File

The set of input/output error conditions is processor dependent.
Anend-of-record conditionoccurswhenanon-advancing input statement attempts

to transfer data from a position beyond the end of the current record, unless the file
is a stream file and the current record is at the end of the file (an end-of-file condition
occurs instead). An end-of-file condition occurs when

• an endfile record is encountered during the reading of afile connected for sequential
access,

• an attempt is made to read a record beyond the end of an internal file, or
• an attempt is made to read beyond the end of a stream file.
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An end-of-file condition may occur at the beginning of execution of an input
statement. An end-of-file condition also may occur during execution of a formatted
input statement when more than one record is required by the interaction of the input
list and the format. An end-of-file condition also may occur during execution of a
stream input statement.

11.7.1 Error Conditions and the err= Specifier

The set of error conditions which are detected is processor dependent. The standard
does not specify any i/o errors. Compilers will vary in the errors they detect and how
they treat them. The err= option provides one way of catching errors and taking
the appropriate action.

11.7.2 End-of-File Condition and the end= Specifier

An end of file may occur during an input transfer. The end= option provides a way
of handling the end of file in a program.

11.7.3 End-of-Record Condition and the eor= Specifier

An end of record may occur during an input transfer. The eor= option provides a
way of handling this in a program.

11.7.4 iostat= Specifier

Execution of an input/output statement containing the iostat= specifier causes the
scalar-int-variable in the iostat= specifier to become defined with one of a set of
values. Normally

• 0 if no errors occur
• a processor dependent negative value if end-of-file occurs
• a processor dependent negative value if an end-of-record occurs

If you use iostat_inquire_internal_unit from the intrinsic mod-
uleiso_fortran_env you will get a processor-dependent positive integer value
if a unit number in an inquire statement identifies an internal file.
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When using iostat_inquire_internal_unit you will get a processor-
dependent positive integer value which is different from the above if any other error
condition occurs,

11.7.5 iomsg= Specifier

If an error, end-of-file, or end-of-record condition occurs during execution of
an input/output statement, the processor shall assign an explanatory message to
iomsg-variable. If no such condition occurs, the processor shall not change
the value of iomsg-variable.

11.8 Examples

Here are three examples using the iostat= option. Examples illustrating some of
the other options can be found throughout the rest of the book.

11.8.1 Example 1: Simple Use of the read, write, open,
close, unit Features

This example shows the use of several of the i/o features including

• the write statement
• the read statement
• the use of unit=6 on a write statement
• the use of unit=5 on a read statement
• several fmt= variations
• the open statement
• the file= option on the open statement
• the iostat= option on the open statement
• the close statement

program ch1101

implicit none

integer :: filestat

real :: x

character (len=20) :: which

do
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write (unit=6, fmt= &

’("data file name,or end")’)

read (unit=5, fmt=’(a)’) which

if (which==’end’) exit

open (unit=1, file=which, iostat=filestat, &

status=’old’)

if (filestat>0) then

print *, &

’error opening file, please check’

stop

end if

read (unit=1, fmt=100) x

write (unit=6, fmt=110) which, x

close (unit=1)

end do

100 format (f6.0)

110 format (’from file ’, a, ’ x = ’, f8.2)

end program ch1101

It is common for compilers to associate units 5 and 6with the keyboard and screen.

11.8.2 Example 2: Using iostat to Test for Errors

program ch1102

implicit none

integer :: io_stat_number = -1

integer :: i

do

print *, ’input integer i:’

read (unit=*, fmt=100, iostat=io_stat_number &

) i

print *, ’ iostat=’, io_stat_number

if (io_stat_number==0) exit

end do

print *, ’i = ’, i, ’ read successfully’

100 format (i3)

end program ch1102



11.8 Examples 217

11.8.3 Example 3: Use of newunit and lentrim

This example illustrates the use of the following:

• the len_trim function
• the newunit option on the read statement to get an unused unit number
• the use of iostat= to test whether a file was opened correctly
• the use of the cycle control statement to go back to the start of the do and try
reading the file name again

• the use of the iostat option to test if the read was successful

program ch1103

implicit none

character (len=20) :: station, file_name

integer :: i, io_stat_number, filestat, flen, &

uno

integer, parameter :: nmonths = 12

integer, dimension (1:nmonths) :: year, month

real, dimension (1:nmonths) :: rainfall, &

sunshine

real :: rain_sum

real :: rain_average

real :: sun_sum

real :: sun_average

do

print *, ’input weather station’

print *, ’ or "end" to stop program’

read ’(a)’, station

if (station==’end’) exit

flen = len_trim(station)

file_name = station(1:flen) // ’data.txt’

open (newunit=uno, file=file_name, &

iostat=filestat, status=’old’)

if (filestat/=0) then

print *, ’error opening file ’, file_name

print *, ’Retype the file name’

cycle

end if

do i = 1, 7

read (unit=uno, fmt=’(a)’)

end do

do i = 1, nmonths

read (unit=uno, fmt=100, iostat= &
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io_stat_number) year(i), month(i), &

rainfall(i), sunshine(i)

100 format (3x, i4, 2x, i2, 27x, f4.1, 3x, &

f5.1)

if (io_stat_number/=0) then

print *, ’ error reading record ’, &

i + 8, &

’ so following results incorrect:’

exit

end if

end do

close (unit=uno)

rain_sum = sum(rainfall)/25.4

sun_sum = sum(sunshine)

rain_average = rain_sum/nmonths

sun_average = sun_sum/nmonths

write (unit=*, fmt=110) station

110 format (/, /, ’Station = ’, a, /)

write (unit=*, fmt=120) year(1), month(1)

120 format (2x, ’Start ’, i4, 2x, i2)

write (unit=*, fmt=130) year(12), month(12)

130 format (2x, ’End ’, i4, 2x, i2)

write (unit=*, fmt=140)

140 format (19x, ’ Yearly Monthly’, /, 19x, &

’ Sum Average’)

write (unit=*, fmt=150) rain_sum, &

rain_average

150 format (’Rainfall (inches) ’, f7.2, 2x, &

f7.2)

write (unit=*, fmt=160) sun_sum, sun_average

160 format (’Sunshine ’, f7.2, 2x, f7.2)

end do

end program ch1103

In this program based on an earlier example in Chap. 10, we have use of the
newunit option on the open statement. A unique negative number is returned,
which cannot clash with any user specified unit number, which are always posi-
tive.We are also using the character intrinsic function len_trim and the character
operator

//

We also introduce the do end do and cycle statements. These are covered in
more detail in Chap.13.
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11.9 Unit Numbering

Care must be taken with unit numbering as firstly they must always be positive, and
secondly many compilers have conventions that apply, for example unit 5 is often
associated with the read * statement and unit 6 is often associated with the print
* statement.

11.10 Summary

This chapter has listed most of the i/o options available in Fortran. There are a small
number of examples that illustrate some of their use.

Later chapters provide additional examples.

11.11 Problems

The Whitby data and Cardiff data are on our web pages.

11.1 Compile and run the examples in this chapter.

11.2 With the Whitby or Cardiff data make a mistake, e.g. a non-numeric character
in the last column. Test program ch1103.f90 to see that it picks this up.



Chapter 12
Functions

I can call spirits from the vasty deep. Why so can I, or so can
any man; but will they come when you do call for them?

William Shakespeare, King Henry IV, part 1

Aims
The aims of this chapter are:

• To consider some of the reasons for the inclusion of functions in a programming
language.

• To introduce, with examples, some of the predefined functions available in Fortran.
• To introduce a classification of intrinsic functions, generic, elemental, transforma-
tional.

• To introduce the concept of a user defined function.
• To introduce the concept of a recursive function.
• To introduce the concept of user defined elemental and pure functions.
• To briefly look at scope rules in Fortran for variables and functions.
• To look at internal user defined functions.

12.1 Introduction

The role of functions in a programming language and in the problem-solving process
is considerable and includes:

• Allowing us to refer to an action using a meaningful name, e.g., sine(x) a very
concrete use of abstraction.
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• Providing a mechanism that allows us to break a problem down into parts, giving
us the opportunity to structure our problem solution.

• Providing us with the ability to concentrate on one part of a problem at a time and
ignore the others.

• Allowing us to avoid the replication of the same or very similar sections of code
when solving the same or a similar sub-problem which has the secondary effect
of reducing the memory requirements of the final program.

• Allowing us to build up a library of functions or modules for solving particu-
lar sub-problems, both saving considerable development time and increasing our
effectiveness and productivity.

Some of the underlying attributes of functions are:

• They take parameters or arguments.
• The parameter(s) can be an expression.
• A function will normally return a value and the value returned is normally depen-
dent on the parameter(s).

• They can sometimes take arguments of a variety of types.

Most languages provide both a range of predefined functions and the facility to
define our own. We will look at the predefined functions first.

12.2 An Introduction to Predefined Functions
and Their Use

Fortran provides over a hundred intrinsic functions and subroutines. For the purposes
of this chapter a subroutine can be regarded as a variation on a function. Subroutines
are covered in more depth in a later chapter. They are used in a straightforward
way. If we take the common trigonometric functions, sine, cosine and tangent, the
appropriate values can be calculated quite simply by:

x=sin(y)

z=cos(y)

a=tan(y)

This is in rather the same way that we might say that x is a function of y, or x is
sine y. Note that the argument, y, is in radians not degrees.
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12.2.1 Example 1: Simple Function Usage

A complete example is given below:

program ch1201

implicit none

real :: x

print *, ’ type in an angle (in radians)’

read *, x

print *, ’ Sine of ’, x, ’ = ’, sin(x)

end program ch1201

These functions are called intrinsic functions. Table 12.1 has details of some of
the intrinsic functions available in Fortran.

Table 12.1 Some of the intrinsic functions available in Fortran

Function Action Example

int conversion to integer j=int(x)

real conversion to real x=real(j)

abs absolute value x=abs(x)

mod remaindering k=mod(i,j)

remainder when i divided by j

sqrt square root x=sqrt(y)

exp exponentiation y=exp(x)

log natural logarithm x=log(y)

log10 common logarithm x=log10(y)

sin sine x=sin(y)

cos cosine x=cos(y)

tan tangent x=tan(y)

asin arcsine y=asin(x)

acos arccosine y=acos(x)

atan arctangent y=atan(x)

atan2 arctangent(a/b) y=atan2(a,b)

A more complete list is given in Appendix D.
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12.3 Generic Functions

All but four of the intrinsic functions and procedures are generic, i.e., they can be
called with arguments of one of a number of kind types.

12.3.1 Example 2: The abs Generic Function

The following short program illustrates this with the abs intrinsic function:

program ch1202

implicit none

complex :: c = cmplx(1.0, 1.0)

real :: r = 10.9

integer :: i = -27

print *, abs(c)

print *, abs(r)

print *, abs(i)

end program ch1202

Type this program in and run it on the system you use.
It is now possible with Fortran for the arguments to the intrinsic functions to be

arrays. It is convenient to categorise the functions into either elemental or transfor-
mational, depending on the action performed on the array elements.

12.4 Elemental Functions

These functions work with both scalar and array arguments, i.e., with arguments
that are either single or multiple valued.

12.4.1 Example 3: Elemental Function Use

Taking the earlier example with the evaluation of sine as a basis, we have:

program ch1203

implicit none

real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &

4.0, 5.0 /)
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print *, ’ sine of ’, x, ’ = ’, sin(x)

end program ch1203

In the above example the sine function of each element of the array x is calculated
and printed.

12.5 Transformational Functions

Transformational functions are those whose arguments are arrays, and work on these
arrays to transform them in some way.

12.5.1 Example 4: Simple Transformational Use

To highlight the difference between an element-by-element function and a transfor-
mational function consider the following examples:

program ch1204

implicit none

real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &

4.0, 5.0 /)

! elemental function

print *, ’ sine of ’, x, ’ = ’, sin(x)

! transformational function

print *, ’ sum of ’, x, ’ = ’, sum(x)

end program ch1204

The sum function adds each element of the array and returns the sum as a scalar,
i.e., the result is single valued and not an array.

12.5.2 Example 5: Intrinsic dot_product Use

The following program uses the transformational function dot_product:

program ch1205

implicit none

real, dimension (5) :: x = (/ 1.0, 2.0, 3.0, &

4.0, 5.0 /)
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print *, ’ dot product of x with x is’

print *, ’ ’, dot_product(x, x)

end program ch1205

Try typing these examples in and running them to highlight the differences
between elemental and transformational functions.

12.6 Notes on Function Usage

You should not use variables which have the same name as the intrinsic functions;
e.g., what does sin(x) mean when you have declared sin to be a real array?

When a function has multiple arguments care must be taken to ensure that the
arguments are in the correct position and of the appropriate kind type.

You may also replace arguments for functions by expressions, e.g.,

x = log(2.0)

or

x = log(abs(y))

or

x = log(abs(y)+z/2.0)

12.7 Example 6: Easter

This example uses only one function, the mod (or modulus). It is used several times,
helping to emphasise the usefulness of a convenient, easily referenced function. The
program calculates the date of Easter for a given year. It is derived from an algorithm
by Knuth, who also gives a fuller discussion of the importance of its algorithm. He
concludes that the calculation of Easter was a key factor in keeping arithmetic alive
during the Middle Ages in Europe. Note that determination of the Eastern churches’
Easter requires a different algorithm:

program ch1206

implicit none

integer :: year, metcyc, century, error1, &

error2, day

integer :: epact, luna, temp

! a program to calculate the date of easter

print *, ’ input the year for which easter’

print *, ’ is to be calculated’
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print *, ’ enter the whole year, e.g. 1978 ’

read *, year

! calculating the year in the 19 year

! metonic cycle using

variable metcyc

metcyc = mod(year, 19) + 1

if (year<=1582) then

day = (5*year)/4

epact = mod(11*metcyc-4, 30) + 1

else

! calculating the century-century

century = (year/100) + 1

! accounting for arithmetic inaccuracies

! ignores leap

years etc.

error1 = (3*century/4) - 12

error2 = ((8*century+5)/25) - 5

! locating Sunday

day = (5*year/4) - error1 - 10

! locating the epact(full moon)

temp = 11*metcyc + 20 + error2 - error1

epact = mod(temp, 30)

if (epact<=0) then

epact = 30 + epact

end if

if ((epact==25 .and. metcyc>11) .or. &

epact==24) then

epact = epact + 1

end if

end if

! finding the full moon

luna = 44 - epact

if (luna<21) then

luna = luna + 30

end if

! locating easter Sunday

luna = luna + 7 - (mod(day+luna,7))

! locating the correct month

if (luna>31) then

luna = luna - 31

print *, ’ for the year ’, year

print *, ’ easter falls on April ’, luna

else

print *, ’ for the year ’, year

print *, ’ easter falls on march ’, luna
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end if

end program ch1206

We have introduced a new statement here, the if then endif, and a variant
the if then else endif. A more complete coverage is given in the chapter
on control structures. The main point of interest is that the normal sequential flow
from top to bottom can be varied. In the following case,

if (expression) then

block of statements

endif

If the expression is true the block of statements between the if then and the
endif is executed. If the expression is false then this block is skipped, and execution
proceeds with the statements immediately after the endif.

In the following case,

if (expression) then

block 1

else

block 2

endif

if the expression is true block 1 is executed and block 2 is skipped. If the expression
is false then block 2 is executed and block 1 is skipped. Execution then proceeds
normally with the statement immediately after the endif.

As well as noting the use of the mod generic function in this program, it is also
worth noting the structure of the decisions. They are nested, rather like the nested do
loops we met earlier.

12.8 Intrinsic Procedures

An alphabetical list of all intrinsic functions and subroutines is given in Appendix
D. This list provides the following information:

• Function name.
• Description.
• Argument name and type.
• Result type.
• Classification.
• Examples of use.

This appendix should be consulted for a more complete and thorough understand-
ing of intrinsic procedures and their use in Fortran.
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12.9 Supplying Your Own Functions

There are two stages here: firstly, to define the function and, secondly, to reference
or use it. Consider the calculation of the greatest common divisor of two integers.

12.9.1 Example 7: Simple User Defined Function

The following defines a function to achieve this:

module gcd_module

contains

integer function gcd(a, b)

implicit none

integer, intent (in) :: a, b

integer :: temp

if (a<b) then

temp = a

else

temp = b

end if

do while ((mod(a,temp)/=0) .or. (mod(b, &

temp)/=0))

temp = temp - 1

end do

gcd = temp

end function gcd

end module gcd_module

To use this function, you reference or call it with a form like:

program ch1207

use gcd_module

implicit none

integer :: i, j, result

print *, ’ type in two integers’
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read *, i, j

result = gcd(i, j)

print *, ’ gcd is ’, result

end program ch1207

We will start by talking about the actual function and then cover the following
statements

module gcd_module

contains

..

..

end module gcd_module

later in the chapter on modules.
The first line of the function

integer function gcd(a,b)

has a number of items of interest:

• Firstly the function has a type, and in this case the function is of type integer, i.e.,
it will return an integer value.

• The function has a name, in this case gcd.
• The function takes arguments or parameters, in this case a and b.

The structure of the rest of the function is the same as that of a program, i.e., we
have declarations, followed by the executable part. This is because both a program
and a function can be regarded as a program unit in Fortran terminology. We will
look into this more fully in later chapters.

In the declaration we also have a new attribute for the integer declaration. The
two parameters a and b are of type integer, and the intent(in) attribute means
that these parameters will NOT be altered by the function. It is good programming
practice for functions not to have side effects, i.e not modify their arguments, and
do no i/o.

The value calculated is returned through the function name somewhere in the
body of the executable part of the function. In this case gcd appears on the left-hand
side of an arithmetic assignment statement at the bottom of the function. The end
of the function is signified in the same way as the end of a program:

end function gcd

We then have the program which actually uses the function gcd. In the program
the function is called or invoked with i and j as arguments. The variables are called
a and b in the function, and references to a and b in the function will use the values
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that i and j have respectively in the main program. We cover the area of argument
association in the next section.

Note also a new control statement, the do while enddo. In the following
case,

do while (expression)

block of statements

enddo

the block of statements between the do while and the enddo is executed whilst
the expression is true. There is a more complete coverage in Chap.13.

We have two options here regarding compilation. Firstly, to make the function
and the program into one file, and invoke the compiler once. Secondly, to make
the function and program into separate files, and invoke the compiler twice, once
for each file. With large programs comprising one program and several functions it
is probably worthwhile to keep the component parts in different files and compile
individually, whereas if it consists of a simple program and one function then keeping
things together in one file makes sense.

12.10 An Introduction to the Scope of Variables, Local
Variables and Interface Checking

One of the major strengths of Fortran is the ability to work on parts of a problem at
a time. This is achieved by the use of program units (a main program, one or more
functions and one or more subroutines) to solve discrete sub-problems. Interaction
between them is limited and can be isolated, for example, to the arguments of the
function. Thus variables in the main program can have the same name as variables
in the function and they are completely separate variables, even though they have the
same name. Thus we have the concept of a local variable in a program unit.

In the example above i, j, result, are local to the main program. The declara-
tion of gcd is to tell the compiler that it is an integer, and in this case it is an external
function.

a and b in the function gcd do not exist in any real sense; rather they will
be replaced by the actual variable values from the calling routine, in this case by
whatever values i and j have. temp is local to gcd.

A common programming error in Fortran 66 and 77 was mismatches between
actual and dummy arguments. Problems caused by this were often very subtle and
hard to find.

Fortran 90 introduced a solution to the problemvia the use ofmodules and contains
statements. We have added

module gcd_module

contains

..

end module gcd_module
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around the function definition, which contains the function in a module and the
following statement in the main program

use gcd_module

provides an explicit interface (in Fortran terminology) that requires the compiler to
check at compile time that the call is correct, i.e. that there are the correct number of
parameters, they are of the correct type and in this case that the function return type
is correct. We will cover this area in greater depth in later chapters.

12.11 Recursive Functions

There is an additional form of the function header that was required when recursive
function support was introduced in Fortran 90. The Fortran 2018 standard makes
this form optional. Recursion means the breaking down of a problem into a simpler
but identical sub-problem. The concept is best explained with reference to an actual
example. Consider the evaluation of a factorial, e.g., 5!. From simple mathematics
we know that the following is true:

5!=5*4!

4!=4*3!

3!=3*2!

2!=2*1!

1!=1

and thus 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 or 120.

12.11.1 Example 8: Recursive Factorial Evaluation

Let us look at a program with recursive function to solve the evaluation of factorials.

module factorial_module

implicit none

contains

recursive integer function factorial(i) &

result (answer)

implicit none

integer, intent (in) :: i
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if (i==0) then

answer = 1

else

answer = i*factorial(i-1)

end if

end function factorial

end module factorial_module

program ch1208

use factorial_module

implicit none

integer :: i, f

print *, ’ type in the number, integer only’

read *, i

do while (i<0)

print *, ’ factorial only defined for ’

print *, ’ positive integers: re-input’

read *, i

end do

f = factorial(i)

print *, ’ answer is’, f

end program ch1208

What additional information is there? Firstly, we have an additional attribute on
the function header that declares the function to be recursive. Secondly, we must
return the result in a variable, in this case answer. Let us look now at what happens
when we compile and run the whole program (both function and main program). If
we type in the number 5 the following will happen:

• The function is first invoked with argument 5. The else block is then taken and the
function is invoked again.

• The function now exists a second time with argument 4. The else block is then
taken and the function is invoked again.

• The function now exists a third time with argument 3. The else block is then taken
and the function is invoked again.

• The function now exists a fourth time with argument 2. The else block is then
taken and the function is invoked again.

• The function now exists a fifth time with argument 1. The else block is then taken
and the function is invoked again.

• The function now exists a sixth time with argument 0. The if block is executed
and answer=1. This invocation ends and we return to the previous level, with
answer=1*1.

• We return to the previous invocation and now answer=2*1.
• We return to the previous invocation and now answer=3*2.
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• We return to the previous invocation and now answer=4*6.
• We return to the previous invocation and now answer=5*24.

The function now terminates andwe return to themain program or calling routine.
The answer 120 is the printed out.

Add a print *,i statement to the function after the last declaration and type
the program in and run it. Try it out with 5 as the input value to verify the above
statements.

Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will
look at recursion in much more depth in the later chapters on dynamic data types,
and subroutines and modules.

12.12 Example 9: Recursive Version of gcd

The following is another example of the earlier gcd function but with the algorithm
in the function replaced with an alternate recursive solution:

module gcd_module

implicit none

contains

recursive integer function gcd(i, j) &

result (answer)

implicit none

integer, intent (in) :: i, j

if (j==0) then

answer = i

else

answer = gcd(j, mod(i,j))

end if

end function gcd

end module gcd_module

program ch1209

use gcd_module

implicit none

integer :: i, j, result

print *, ’ type in two integers’

read *, i, j

result = gcd(i, j)
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print *, ’ gcd is ’, result

end program ch1209

Try this program out on the system you work with, look at the timing information
provided, and compare the timing with the previous example. The algorithm is a
much more efficient algorithm than in the original example, and hence should be
much faster. On one system there was a twentyfold decrease in execution time
between the two versions.

Recursion is sometimes said to be inefficient, and the following example looks at
a non-recursive version of the second algorithm.

12.13 Example 10: gcd After Removing Recursion

The following is a variant of the above,with the samealgorithm, butwith the recursion
removed:

module gcd_module

implicit none

contains

integer function gcd(i, j)

implicit none

integer, intent (inout) :: i, j

integer :: temp

do while (j/=0)

temp = mod(i, j)

i = j

j = temp

end do

gcd = i

end function gcd

end module gcd_module

program ch1210

use gcd_module

implicit none

integer :: i, j, result

print *, ’ type in two integers’

read *, i, j

result = gcd(i, j)

print *, ’ gcd is ’, result

end program ch1210
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12.14 Internal Functions

An internal function is a more restricted and hidden form of the normal function
definition.

Since the internal function is specified within a program segment, it may only
be used within that segment and cannot be referenced from any other functions or
subroutines, unlike the intrinsic or other user defined functions.

12.14.1 Example 11: Stirling’s Approximation

In this example we use Stirling’s approximation for large n,

n! = √
2πn(n/e)n

and a complete program to use this internal function is given below:

program ch1211

implicit none

real :: result, n, r

print *, ’ type in n and r’

read *, n, r

! number of possible combinations that can ! be formed when ! r

objects are selected out of a group of n ! n!/r!(n-r)!

result = stirling(n)/(stirling(r)*stirling(n-r &

))

print *, result

print *, n, r

contains

real function stirling(x)

real, intent (in) :: x

real, parameter :: pi = 3.1415927, &

e = 2.7182828

stirling = sqrt(2.*pi*x)*(x/e)**x

end function stirling

end program ch1211

The difference between this example and the earlier ones lies in the contains
statement. The function is now an integral part of the program and could not, for
example, be used elsewhere in another function. This provides uswith a very powerful
way of information hiding and making the construction of larger programs more
secure and bug free.
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12.15 Pure Functions

Wementioned earlier that functions should not have side effects. If your functions do
have side effects and are running the code on parallel systems we have the additional
problem that it may not actuallywork!Wewould also like to be able to take advantage
of automatic parallelisation if possible. In the following example we show how to
do this using the pure prefix specification.

module gcd_module

implicit none

contains

pure integer function gcd(a, b)

implicit none

integer, intent (in) :: a, b

integer :: temp

if (a<b) then

temp = a

else

temp = b

end if

do while ((mod(a,temp)/=0) .or. (mod(b, &

temp)/=0))

temp = temp - 1

end do

gcd = temp

end function gcd

end module gcd_module

program ch1212

use gcd_module

implicit none

integer :: i, j, result

print *, ’ type in two integers’

read *, i, j

result = gcd(i, j)

print *, ’ gcd is ’, result

end program ch1212

Subroutines can also be made pure.
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12.15.1 Pure Constraints

The following are some of the constraints on pure procedures

• a dummy argument must be intent(in)
• local variables may not have the save attribute
• no i/o must be done in the procedure
• any procedures referenced must be pure
• you cannot have a stop statement in a pure procedure

The above information should be enough to write simple pure functions.

12.16 Elemental Functions

Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added
elemental intrinsic functions and the ability to write generic user defined functions.
Fortran 95 squared the circle and enabled us towrite elemental user defined functions.
Here is an example to illustrate this.

module reciprocal_module

contains

real elemental function reciprocal(a)

implicit none

real, intent (in) :: a

reciprocal = 1.0/a

end function reciprocal

end module reciprocal_module

program ch1213

use reciprocal_module

implicit none

real :: x = 10.0

real, dimension (5) :: y = [ 1.0, 2.0, 3.0, &

4.0, 5.0 ]

print *, ’ reciprocal of x is ’, reciprocal(x)

print *, ’ reciprocal of y is ’, reciprocal(y)

end program ch1213

Here is the output from one compiler.
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reciprocal of x is 0.1000000

reciprocal of y is 0.9999999

0.5000000 0.3333333

0.2500000 0.2000000

Hence we can call our own elemental functions with both scalar and array argu-
ments.

Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.

12.17 Resume

There are a large number of Fortran supplied functions and subroutines (intrinsic
functions) which extend the power and scope of the language. Some of these func-
tions are of generic type, and can take several different types of arguments. Others
are restricted to a particular type of argument. Appendix D should be consulted for
a fuller coverage concerning the rules that govern the use of the intrinsic functions
and procedures.

When the intrinsic functions are inadequate, it is possible to write user defined
functions. Besides expanding the scope of computation, such functions aid in prob-
lem visualisation and logical subdivision, may reduce duplication, and generally help
in avoiding programming errors.

In addition to separately defined user functions, internal functions may be
employed. These are functions which are used within a program segment.

Although the normal exit from a user defined function is through the end state-
ment, other, abnormal, exits may be defined through the return statement.

Communication with non-recursive functions is through the function name and
the function arguments. The function must contain a reference to the function name
on the left-hand side of an assignment. Results may also be returned through the
argument list.

We have also covered briefly the concept of scope for a variable, local variables,
and argument association. This area warrants a much fuller coverage and we will do
this after we have covered subroutines and modules.

12.18 Formal Syntax

The syntax of a function is:

{[function prefix] function_statement &

[result (result_name) ]
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[specification part]

[execution_part]

[internal sub program part]

end [function [function name]]

and prefix is:

[type specification] recursive

or

[recursive] type specification

and the function_statement is:

function function_name ([dummy argument name list])

[ ] represent optional parts to the specification.
The simple syntax for a module as we have used them in this chapter is

module module_name

...

end module_name

and

use module_name

in the calling routine.

12.19 Rules and Restrictions

The type of the function must only be specified once, either in the function statement
or in a type declaration.

The names must match between the function header and end function function
name statement.

If there is a result clause, that name must be used as the result variable, so all
references to the function name are recursive calls.

The function name must be used to return a result when there is no result
clause.

We will look at additional rules and restrictions in later chapters.
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12.20 Problems

12.1 Find out the action of the mod function function when one of the arguments
is negative. Write your own modulus function to return only a positive remainder.
Don’t call it mod!

12.2 Create a table which gives the sines, cosines and tangents for –1 to 91◦ in
1◦ intervals. Remember that the arguments have to be in radians. What value will
you give pi? One possibility is pi=4*atan(1.0). Pay particular attention to the
following angle ranges:

-1, 0,+1

29,30,31

44,45,46

59,60,61

89,90,91

What do you notice about sine and cosine at 0 and 90◦ ?What do you notice about
the tangent of 90◦ ? Why do you think this is?

Use a calculator to evaluate the sine, cosine at 0 and 90◦. do the same for the
tangent at 90◦. Does this surprise you?

Repeat using a spreadsheet, e.g., Excel.
Are you surprised?
Repeat the Fortran program using one or more real kind types.

12.3 Write a program that will read in the lengths a and b of a right-angled triangle
and calculate the hypotenuse c. Use the Fortran sqrt intrinsic.

12.4 Write a program that will read in the lengths a and b of two sides of a triangle
and the angle between them θ (in degrees). Calculate the length of the third side c
using the cosine rule: c2 = a2 + b2 − 2abcos(θ)

12.5 Write a function to convert an integer to a binary character representation. It
should take an integer argument and return a character string that is a sequence of
zeros and ones. Use the program in Chap.5 as a basis for the solution.

12.21 Bibliography
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The book also covers the work of Church and Turing, both of whom have made
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• contains a number of examples of the use of recursion in problem solving. Also
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Chapter 13
Control Structures and Execution
Control

Summarizing: as a slow-witted human being I have a very small
head and I had better learn to live with it and to respect my
limitations and give them full credit, rather than try to ignore
them, for the latter vain effort will be punished by failure

Edsger W. Dijkstra, Structured Programming

Aims
The aims of this chapter are to introduce:

• Selection among various courses of action as part of the algorithm.
• The concepts and statements in Fortran needed to support the above:

– execution control.
– executable constructs containing blocks.

the associate construct.
the block construct.
the do construct.
the if construct.
the select case construct.
the select rank construct.
the select type construct.

– Logical expressions and logical operators.
– One or more blocks of statements.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_13
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13.1 Introduction

When we look at this area it is useful to gain some historical perspective concerning
the control structures that are available in a programming language.

At the time of the development of Fortran in the 1950s there was little theoretical
work around and the control structures provided were very primitive and closely
related to the capability of the hardware.

At the time of the first standard in 1966 there was still little published work
regarding structured programming and control structures. The seminal work byDahl,
Dijkstra and Hoare was not published until 1972.

By the time of the second standard there was a major controversy regarding
languages with poor control structures like Fortran which essentially were limited to
the goto statement. The facilities in the language had led to the development and
continued existence of major code suites that were unintelligible, and the pejorative
term spaghetti was applied to these programs. Developing an understanding of what
a program did became an almost impossible task in many cases.

Fortran missed out in 1977 on incorporating some of the more modern and intel-
ligible control structures that had emerged as being of major use in making code
easier to understand and modify.

It was not until the 1990 standard that a reasonable set of control structures had
emerged and became an accepted part of the language. The more inquisitive reader
is urged to read at least the work by Dahl, Dijkstra and Hoare to develop some
understanding of the importance of control structures and the role of structured
programming.The paper by Knuth is also highly recommended as it provides a very
balanced coverage of the controversy of earlier times over the goto statement.

13.2 Selection Among Courses of Action

In most problems you need to choose among various courses of action, e.g.,

• if overdrawn, then do not draw money out of the bank.
• if Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.
• if Saturday, then go to watch Queens Park Rangers.
• if Sunday, then lie in bed for another two hours.

As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. Fortran
has a variety of selection mechanisms, some of which are introduced below.
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13.3 The Block If Statement

The following short example illustrates the main ideas:

. wake up

.

. check the date and time

if (Today = = Sunday) then

.

. lie in bed for another two hours

.

endif

.

. get up

. make breakfast

If today is Sunday then the block of statements between the if and the endif
is executed. After this block has been executed the program continues with the
statements after the endif. If today is not Sunday the program continues with the
statements after the endif immediately. This means that the statements after the
endif are executed whether or not the expression is true. The general form is:

if (logical expression) then

.

block of statements

.

endif

The logical expression is an expression that will be either true or false; hence its
name. Some examples of logical expressions are given below:

(alpha >= 10.1)

test if alpha is greater than or equal to 10.1

(balance <= 0.0)

test if overdrawn

(( today == saturday).or.( today == sunday))

test if today is saturday or sunday

((actual - calculated) <= 1.0e-6)

test if actual minus calculated

is less than or equal to 1.0e-6
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Table13.1 lists the Fortran logical and relational operators.

Table 13.1 Fortran logical and relational operators

Operator Meaning Type

== Equal Relational

/= Not equal Relational

>= Greater than or equal Relational

<= Less than or equal Relational

< Less than Relational

> Greater than Relational

.AND. and Logical

.OR. or Logical

.NOT. not Logical

The first six should be self-explanatory. They enable expressions or variables to
be compared and tested. The last three enable the construction of quite complex
comparisons, involving more than one test; in the example given earlier there was a
test to see whether today was Saturday or Sunday.

Use of logical expressions and logical variables (something not mentioned so far)
is covered again in a later chapter on logical data types.

The if expression then statements endif is called a block if con-
struct. There is a simple extension to this provided by the else statement. Consider
the following example:

if (balance > 0.0) then

. draw money out of the bank

else

. borrow money from a friend

endif

buy a round of drinks.

In this instance, one or other of the blocks will be executed. Then execution will
continue with the statements after the endif statement (in this case buy a round).

There is yet another extension to the block if which allows an elseif statement.
Consider the following example:

if (today == monday) then

.

elseif (today == tuesday) then

.

elseif (today == wednesday) then

.



13.3 The Block If Statement 247

elseif (today == thursday) then

.

elseif (today == friday) then

.

elseif (today == saturday) then

.

elseif (today == sunday) then

.

else

there has been an error.

the variable today has

taken on an illegal value.

endif

Note that as soon as one of the logical expressions is true, the rest of the test is
skipped, and execution continues with the statements after the endif. This implies
that a construction like

if(i < 2)then

...

elseif(i < 1)then

...

else

...

endif

is inappropriate. If i is less than 2, the latter condition will never be tested. The
else statement has been used here to aid in trapping errors or exceptions. This is
recommended practice. A very common error in programming is to assume that the
data are in certain well-specified ranges. The program then fails when the data go
outside this range. It makes no sense to have a day other than Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday or Sunday.

13.3.1 Example 1: Quadratic Roots

A quadratic equation is:

ax2 + bx + c = 0

This program has a simple structure. The roots of the quadratic are either real,
equal and real, or complex depending on the magnitude of the term b ** 2 - 4
* a * c. The program tests for this term being greater than or less than zero: it
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assumes that the only other case is equality to zero (from themechanics of a computer,
floating point equality is rare, but we are safe in this instance):

program ch1301

implicit none

real :: a, b, c, term, a2, root1, root2

! a b and c are the coefficients of the terms

! a*x**2+b*x+c

! find the roots of the quadratic, root1 and

! root2

print *, ’ give the coefficients a, b and c’

read *, a, b, c

term = b*b - 4.*a*c

a2 = a*2.

! if term < 0, roots are complex

! if term = 0, roots are equal

! if term > 0, roots are real and different

if (term<0.0) then

print *, ’ roots are complex’

else if (term>0.0) then

term = sqrt(term)

root1 = (-b+term)/a2

root2 = (-b-term)/a2

print *, ’ roots are ’, root1, ’ and ’, &

root2

else

root1 = -b/a2

print *, ’ roots are equal, at ’, root1

end if

end program ch1301

Given the understanding you now have about real arithmetic and finite precision
will the else block above ever be executed?

13.3.2 Example 2: Date Calculation

This next example is also straightforward. It demonstrates that, even if the conditions
on the if statement are involved, the overall structure is easy to determine. The com-
ments and the names given to variables should make the program self-explanatory.
Note the use of integer division to identify leap years:
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program ch1302

implicit none

integer :: year, n, month, day, t

! calculates day and month from year and

! day-within-year

! t is an offset to account for leap years.

! Note that the first criteria is division by 4

! but that centuries are only

! leap years if divisible by 400

! not 100 (4 * 25) alone.

print *, ’ year, followed by day within year’

read *, year, n

! checking for leap years

if ((year/4)*4==year) then

t = 1

if ((year/400)*400==year) then

t = 1

else if ((year/100)*100==year) then

t = 0

end if

else

t = 0

end if

! accounting for February

if (n>(59+t)) then

day = n + 2 - t

else

day = n

end if

month = (day+91)*100/3055

day = (day+91) - (month*3055)/100

month = month - 2

print *, ’ calendar date is ’, day, month, &

year

end program ch1302

13.4 The Case Statement

The case statement provides a very clear and expressive selection mechanism
between two or more courses of action. Strictly speaking it could be constructed
from the if then else if endif statement, but with considerable loss of
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clarity. Remember that programs have to be read and understood by both humans
and compilers!

13.4.1 Example 3: Simple Calculator

program ch1303

implicit none

! Simple case statement example

integer :: i, j, k

character :: operator

do

print *, ’ type in two integers’

read *, i, j

print *, ’ type in operator’

read ’(a)’, operator

calculator: select case (operator)

case (’+’) calculator

k = i + j

print *, ’ Sum of numbers is ’, k

case (’-’) calculator

k = i - j

print *, ’ Difference is ’, k

case (’/’) calculator

k = i/j

print *, ’ Division is ’, k

case (’*’) calculator

k = i*j

print *, ’ Multiplication is ’, k

case default calculator

exit

end select calculator

end do

end program ch1303

The user is prompted to type in two integers and the operation that they would
like carried out on those two integers. The case statement then ensures that the
appropriate arithmetic operation is carried out. The program terminates when the
user types in any character other than +, −, * or /.
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The case default option introduces the exit statement. This statement is used in
conjunction with the do statement. When this statement is executed control passes
to the statement immediately after the matching end do statement. In the example
above the program terminates, as there are no executable statements after the end
do.

13.4.2 Example 4: Counting Vowels, Consonants, etc.

This example ismore complex, but again is quite easy to understand. The user types in
a line of text and the program produces a summary of the frequency of the characters
typed in:

program ch1304

implicit none

! Simple counting of vowels, consonants,

! digits, blanks and the rest

integer :: vowels = 0, consonants = 0, &

digits = 0

integer :: blank = 0, other = 0, i

character :: letter

character (len=80) :: line

read ’(a)’, line

do i = 1, 80

letter = line(i:i)

! the above extracts one character

! at position i

select case (letter)

case (’A’, ’E’, ’I’, ’O’, ’U’, ’a’, ’e’, &

’i’, ’o’, ’u’)

vowels = vowels + 1

case (’B’, ’C’, ’D’, ’F’, ’G’, ’H’, ’J’, &

’K’, ’L’, ’M’, ’N’, ’P’, ’Q’, ’R’, ’S’, &

’T’, ’V’, ’W’, ’X’, ’Y’, ’Z’, ’b’, ’c’, &

’d’, ’f’, ’g’, ’h’, ’j’, ’k’, ’l’, ’m’, &

’n’, ’p’, ’q’, ’r’, ’s’, ’t’, ’v’, ’w’, &

’x’, ’y’, ’z’)

consonants = consonants + 1

case (’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, &

’8’, ’9’, ’0’)
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digits = digits + 1

case (’ ’)

blank = blank + 1

case default

other = other + 1

end select

end do

print *, ’ Vowels = ’, vowels

print *, ’ Consonants = ’, consonants

print *, ’ Digits = ’, digits

print *, ’ Blanks = ’, blank

print *, ’ Other characters = ’, other

end program ch1304

13.5 The Various Forms of the Do Statement

You have already been introduced in the chapters on arrays to the iterative form of
the do loop, i.e.,

do variable = start, end, increment

block of statements

end do

A complete coverage of this form is given in the three chapters on arrays.
There are a number of additional forms of the block do that complete our require-

ments:

do while (logical expression)

block of statements

enddo

do concurrent

block of statements

enddo

do

block of statements

if (logical expression) exit

end do

The first form is often called a while loop as the block of statements executes
whilst the logical expression is true, and the second form is often called a repeat until
loop as the block of statements executes until the statement is true.
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Note that the while block of statements may never be executed, and the repeat
until block will always be executed at least once.

13.5.1 Example 5: Sentinel Usage

The following example shows a complete program using this construct:

program ch1305

implicit none

! this program picks up the first occurrence

! of a number in a list.

! a sentinel is used, and the array is 1 more

! than the max size of the list.

integer, allocatable, dimension (:) :: a

integer :: mark

integer :: i, howmany

open (unit=1, file=’data.txt’,status=’old’)

print *, ’ What number are you looking for?’

read *, mark

print *, ’ How many numbers to search?’

read *, howmany

allocate (a(1:howmany+1))

read (unit=1, fmt=*)(a(i), i=1, howmany)

i = 1

a(howmany+1) = mark

do while (mark/=a(i))

i = i + 1

end do

if (i==(howmany+1)) then

print *, ’ item not in list’

else

print *, ’ item is at position ’, i

end if

end program ch1305

The repeat until construct is written in Fortran as:

do

...

...

if (logical expression) exit
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end do

There are problems in most disciplines that require a numerical solution. The two
main reasons for this are either that the problem can only be solved numerically or
that an analytic solution involves too much work. Solutions to this type of problem
often require the use of the repeat until construct. The problem will typically require
the repetition of a calculation until the answers from successive evaluations differ
by some small amount, decided generally by the nature of the problem. A program
extract to illustrate this follows:

real , parameter :: tol=1.0e-6

.

do

...

change=

...

if (change <= tol) exit

end do

Here the value of the tolerance is set to 1.0E–6. Note again the use of the exit
statement. The do end do block is terminated and control passes to the statement
immediately after the matching end do.

13.5.2 Cycle and Exit

These two statements are used in conjunction with the block do statement. You
have seen examples above of the use of the exit statement to terminate the block
do, and pass control to the statement immediately after the corresponding end do
statement.

The cycle statement can appear anywhere in a block do and will immediately
pass control to the start of the block do. Examples of cycle and exit are given in
the next two examples, and later chapters in the book.

13.5.3 Example 6: The Evaluation of e**x

The function etox illustrates one use of the repeat until construct. The function
evaluates ex This may be written as

1 + x/1! + x2/2! + x3/3! . . .

or
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1 +
∞∑

n=1

xn−1

(n − 1)! x/n

Every succeeding term is just the previous term multiplied by x/n. At some point
the term x/n becomes very small, so that it is not sensibly different from zero, and
successive terms add little to the value. The function therefore repeats the loop until
x/n is smaller than the tolerance. The number of evaluations is not known beforehand,
since this is dependent on x:

module etox_module

implicit none

contains

real function etox(x)

implicit none

real :: term

real, intent (in) :: x

integer :: nterm

real, parameter :: tol = 1.0e-6

etox = 1.0

term = 1.0

nterm = 0

do

nterm = nterm + 1

term = (x/nterm)*term

etox = etox + term

if (abs(term)<=tol) exit

end do

end function etox

end module etox_module

program ch1306

use etox_module

implicit none

real, parameter :: x = 1.0

real :: y

print *, ’ Fortran intrinsic ’, exp(x)

y = etox(x)

print *, ’ User defined etox ’, y

end program ch1306



256 13 Control Structures and Execution Control

The whole program compares the user defined function with the Fortran intrinsic
exp function.

13.5.4 Example 7: Wave Breaking on an Offshore Reef

This example is drawn from a situation where a wave breaks on an offshore reef or
sand bar, and then reforms in the near-shore zone before breaking again on the coast.
It is easier to observe the heights of the reformed waves reaching the coast than those
incident to the terrace edge.

Both types of loops are combined in this example. The algorithm employed here
finds the zero of a function. Essentially, it finds an interval in which the zero must lie;
the evaluations on either side are of different signs. The while loop ensures that the
evaluations are of different signs, by exploiting the knowledge that the incident wave
height must be greater than the reformed wave height (to give the lower bound). The
upper bound is found by experiment, making the interval bigger and bigger. Once the
interval is found, its mean is used as a new potential bound. The zero must lie on one
side or the other; in this fashion, the interval containing the zero becomes smaller
and smaller, until it lies within some tolerance. This approach is rather plodding and
unexciting, but is suitable for a wide range of problems

Here is the program:

program ch1307

implicit none

real :: hi, hr, hlow, high, half, xl

real :: xh, xm, d

real, parameter :: tol = 1.0e-6

! problem - find hi from expression given

! in function f

! F=A*(1.0-0.8*EXP(-0.6*C/A))-B

! The above is a Fortran 77

! statement function.

! hi is incident wave height (c)

! hr is reformed wave height (b)

! d is water depth at terrace edge (a)

print *, ’ Give reformed wave height, &

&and water depth’

read *, hr, d

! for hlow - let hlow=hr

! for high - let high=hlow*2.0

! check that signs of function



13.5 The Various Forms of the Do Statement 257

! results are different

hlow = hr

high = hlow*2.0

xl = f(hlow, hr, d)

xh = f(high, hr, d)

do while ((xl*xh)>=0.0)

high = high*2.0

xh = f(high, hr, d)

end do

do

half = (hlow+high)*0.5

xm = f(half, hr, d)

if ((xl*xm)<0.0) then

xh = xm

high = half

else

xl = xm

hlow = half

end if

if (abs(high-hlow)<=tol) exit

end do

print *, ’ Incident Wave Height Lies Between’

print *, hlow, ’ and ’, high, ’ metres’

contains

real function f(a, b, c)

implicit none

real, intent (in) :: a

real, intent (in) :: b

real, intent (in) :: c

f = a*(1.0-0.8*exp(-0.6*c/a)) - b

end function f

end program ch1307

13.6 Do Concurrent

Here is some of the formal syntax of do loops taken from the standard.

loop-control is [ , ] do-variable =
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scalar-int-expr,

scalar-int-expr

[ , scalar-int-expr ]

or [ , ] WHILE ( scalar-logical-expr )

or [ , ] CONCURRENT

concurrent-header

concurrent-locality

do-variable is scalar-int-variable-name

The do-variable shall be a variable of type integer.

concurrent-header is ( [ integer-type-spec :: ]

concurrent-control-list

[ , scalar-mask-expr ] )

concurrent-control is index-name =

concurrent-limit :

concurrent-limit [ : concurrent-step ]

concurrent-limit is scalar-int-expr

Here are the rules that apply to the do concurrent loop control.

• The concurrent-limit and concurrent-step expressions in the concurrent-control-
list are evaluated. These expressions may be evaluated in any order. The set of
values that a particular index-name variable assumes is determined as follows.

– The lower bound m1, the upper bound m2, and the step m3 are of type integer
with the same kind type parameter as the index-name. Their values are estab-
lished by evaluating the first concurrent-limit, the second concurrent-limit, and
the concurrent-step expressions, respectively, including, if necessary, conversion
to the kind type parameter of the index-name according to the rules for numeric
conversion (Table 10.9 from the current standard). If concurrent-step does
not appear, m3 has the value 1. The value m3 shall not be zero.

– Let the value of max be (m2 m1 + m3)/m3. If max 0 for some index-name,
the execution of the construct is complete. Otherwise, the set of values for the
index-name is m1 + (k 1) m3 where k = 1, 2, …, max.

• The set of combinations of index-name values is the Cartesian product of the sets
defined by each triplet specification. An index-name becomes defined when this
set is evaluated.
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• The scalar-mask-expr, if any, is evaluated for each combination of index-name
values. If there is no scalar-mask-expr, it is as if it appeared with the value true.
The index-name variables may be primaries in the scalar-mask-expr.

• The set of active combinations of index-name values is the subset of all possible
combinations for which the scalar-mask-expr has the value true.

Note that the index-name variables can appear in the mask, for example

DO CONCURRENT (I=1:10, J=1:10, &

A(I) > 0.0 .AND. B(J) < 1.0)

. . .

The following example illustrates a case in which the user knows that there are no
repeated values in the index array IND. The DO CONCURRENT construct makes
it easier for the processor to generate vector gather/scatter code, unroll the loop, or
parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)

DO CONCURRENT (I=1:M)

A(IND(I)) = I

END DO

The following code demonstrates the use of the LOCAL clause so that the X
inside the DO CONCURRENT construct is a temporary variable, and will not affect
the X outside the construct.

X = 1.0

DO CONCURRENT (I=1:10) LOCAL (X)

IF (A (I) > 0) THEN

X = SQRT (A (I))

A (I) = A (I) - X**2

END IF

B (I) = B (I) - A (I)

END DO

PRINT *, X ! Always prints 1.0.

A complete example of the do concurrent statement can be found in the
chapter onOpenMPprogramming. FThe examples compares the performance of four
ways of solving the same problem in Fortran using whole array syntax, a traditional
simple do loop, a do concurrent solution and a solution base on OpenMP usage.
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13.7 Summary

You have been introduced in this chapter to several control structures and these
include:

• The block if.
• The if then else if.
• The case construct.
• The block do in three forms:
• The iterative do or do variable=start, end, increment …end do.
• The while construct, or do while …end do.
• The repeat until construct, or do …if then exit end do.
• The cycle and exit statements, which can be used with the do statement
• The do concurrent statement.

These constructs are sufficient for solving awide class of problems.There are other
control statements available in Fortran, especially those inherited fromFortran 66 and
Fortran 77, but those covered here are the ones preferred. We will look in Chap.35
at one more control statement, the so-called goto statement, with recommendations
as to where its use is appropriate.

13.7.1 Control Structure Formal Syntax

case

select case ( case variable )

[ case case selector

[executable construct ] ... ] ...

[ case default

[executable construct ]

end select

do

do [ label ]

[executable construct ] ...

do termination

do [ label ] [ , ] loop variable =

initial value , final value , [

increment ]

[executable construct ] ...

do termination

do [ label ] [ , ] while

(scalar logical expression )

[executable construct ] ...

do termination



13.8 Problems 261

if

if ( scalar logical expression ) then

[executable construct ] ...

[ else if ( scalar logical expression then

[executable construct ] ... ] ...]

[ else

[executable construct ] ...]

end if

13.8 Problems

13.1 Rewrite the program for the period of a pendulum. The new program should
print out the length of the pendulum and period, for pendulum lengths from 0 to
100cm in steps of 0.5cm. The program should incorporate a function for the evalu-
ation of the period.

13.2 Write a program to read an integer that must be positive.
Hint. use a do while to make the user re-enter the value.

13.3 Using functions, do the following:

• Evaluate n! from n = 0 to n = 10
• Calculate 76!
• Now calculate (xn)/n!, with x = 13.2 and n = 20.
• Now do it another way.

13.4 The program ch1307 is taken from a real example. In the particular problem,
the reformed wave height was 1m, and the water depth at the reef edge was 2m.
What was the incident wave height? Rather than using an absolute value for the
tolerance, it might be more realistic to use some value related to the reformed wave
height. These heights are unlikely to be reported to better than about 5% accuracy.
Wave energy may be taken as proportional to wave height squared for this example.
What is the reduction in wave energy as a result of breaking on the reef or bar for
this particular case.

13.5 What is the effect of using int on negative real numbers? Write a program to
demonstrate this.

13.6 How would you find the nearest integer to a real number? Now do it another
way. Write a program to illustrate both methods. Make sure you test it for negative
as well as positive values.

13.7 The function etox has been given in this chapter. The standard Fortran func-
tion exp does the same job. Do they give the same answers? Curiously the Fortran
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standard does not specify how a standard function should be evaluated, or even how
accurate it should be.

The physical world has many examples in which processes require that some
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on. Unfor-
tunately, most of these sorts of calculations become rather complex and not really
appropriate here. The following problem tries to restrict the range of calculation,
whilst illustrating the possibilities of decision making.

13.8 If a cubic equation is expressed as

ax3 + bx2 + cx + d = 0

and we let

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2

We can determine the nature of the roots as follows
� > 0 : three distinct real roots
� = 0 : has a multiple root and all roots are real
� < 0 : 1 real root and 2 non real complex conjugate roots
Incorporate this into a program, to determine the nature of the roots of a cubic

from suitable input.

13.9 The form of breakingwaves on beaches is a continuum, but for conveniencewe
commonly recognise threemajor types: surging, plunging and spilling. Thesemay be
classified empirically by reference to the wave period, T (seconds), the breaker wave
height, Hb (metres), and the beach slope, m. These three variables are combined into
a single parameter, B, where

B = Hb/(gmT 2)

g is the gravitational constant (981cms−2). If B is less than 0.003, the breakers
are surging; if B is greater than 0.068, they are spilling, and between these values,
plunging breakers are observed.

(i) On the east coast of New Zealand, the normal pattern is swell waves, with wave
heights of 1 to 2m and wave periods of 10 to 15s. During storms, the wave period
is generally shorter, say 6 to 8 s, and the wave heights higher, 3 to 5m. The beach
slope may be taken as about 0.1. What changes occur in breaker characteristics as a
storm builds up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally
has a very low slope, say less than 1◦ (m = 0.018), but towards the high-tide mark,
the slope increases dramatically, to say 10◦ or more (m = 0.18). What changes in
wave type will be observed as the tide comes in?
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Chapter 14
Characters

These metaphysics of magicians, And necromantic books are
heavenly; Lines, circles, letters and characters.
Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of this chapter are:

• To extend the ideas about characters introduced in earlier chapters.
• To demonstrate that this enables us to solve a whole new range of problems in a
satisfactory way.

14.1 Introduction

For each type in a programming language there are the following concepts:

• Values are drawn from a finite domain.
• There are a restricted number of operations defined for each type.

For the character data type the basic unit is an individual character The complete
Fortran character set is given in Sect. 4.8 in Chap.4. This provides us with 95 printing
characters. Other characters may be available. The Wikipedia entry

http://en.wikipedia.org/wiki/Character_encoding

has quite detailed information on how complex this area actually is.

The original version of this chapter was revised: The belated correction has been incorporated. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-75502-1_43

© Springer Nature Switzerland AG 2018, corrected publication 2021
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_14
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As the most common current internal representation for the character data type
uses 8 bits this should provide access to 256 characters. However, there is little
agreement over the encoding of these 256 possible characters, and the best you can
normally assume is access to the ASCII character set, which is given in Chap. 4.
One of the problems at the end of this chapter looks at determining what characters
one has available.

The only operations defined are concatenation (joining character strings together)
and comparison.

We will look into the area of character sets in more depth later in this chapter.
We can declare our character variables:

character :: a, string, line

Note that there is no default typing of the character variable (unlike integer and
real data types), and we can use any convenient name within the normal Fortran
conventions. In the declaration above, each character variable would have been per-
mitted to store one character. This is limiting, and, to allow character strings which
are several units long, we have to add one item of information:

character (10) :: a

character (16) :: string

character (80) :: line

This indicates that a holds 10 characters, string holds 16, and line holds
80. if all the character variables in a single declaration contain the same number of
characters, we can abbreviate the declaration to

character(80) :: list, string, line

But we cannot mix both forms in the one declaration. We can now assign data to
these variables, as follows:

a=’first one ’

string=’a longer one’

line=’the quick brown fox jumps over the lazy dog’

The delimiter apostrophe (’) or quotation mark (“) is needed to indicate that
this is a character string (otherwise the assignments would have looked like invalid
variable names).

14.2 Character Input

In an earlier chapterwe sawhowwe could use theread * andprint * statements
to do both numeric and character input and output or I/O. When we use this form
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of the statement we have to include any characters we type within delimiters (either
the apostrophe ’ or the quotation mark “). This is a little restricting and there is a
slightly more complex form of the read statement that allows one to just type the
string on its own.

14.2.1 Example 1: The * Edit Descriptor

The following two programs illustrate the differences:

program ch1401

!

! Simple character i/o

!

character (80) :: line

read *, line

print *, line

end program ch1401

This form requires enclosing the string with delimiters.

14.2.2 Example 2: The a Edit Descriptor

Consider the next form:

program ch1402

!

! Simple character i/o

!

character (80) :: line

read ’(a)’, line

print *, line

end program ch1402

With this form one can just type the string in and input terminates with the carriage
return key. The additional syntax ’(a)’where ’(a)’ is a character edit descriptor.
The simple examples we have used so far have used implied format specifiers and
edit descriptors. For each data type we have one or more edit descriptors to choose
from. For the character data type only the a edit descriptor is available.
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14.3 Character Operators

The first manipulator is a new operator — the concatenation operator //. With this
operator we can join two character variables to form a third, as in

character (5) :: first, second

character (10) :: third

first=’three’

second=’blind’

...

third=first//second

.

third=first//’mice’

where there is a discrepancy between the created length of the concatenated string
and the declared lengths of the character strings, truncation will occur. For example,

third=first//’ blind mice’

will only append the first five characters of the string ‘blind mice’ i.e., ‘blin’, and
third will therefore contain ‘three blin’.

What would happen if we assigned a character variable of length ‘n’ a stringwhich
was shorter than n? For example,

character (4) :: c2

c2=’ab’

The remaining two characters are considered to be blank, that is, it is equivalent
to saying

c2=’ab ’

However, while the strings ‘ab’ and ’ab ‘are equivalent, ‘ab’ and ‘ab’ are not. In
the jargon, the character strings are always left justified, and the unset characters are
trailing blanks.

If we concatenate strings which have ‘trailing blanks’, the blanks, or spaces, are
considered to be legitimate characters, and the concatenation begins after the end of
the first string. Thus

character (4) :: c2,c3

character (8) :: jj

c2=’a’

c3=’man’

jj=c2//c3
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print*, ’the concatenation of ’,c2,’ and ’,c3,’ is’

print*,jj

would appear as

the concatenation of a man gives

a man

at the terminal.

14.4 Character Substrings

Sometimes we need to be able to extract parts of character variables — substrings.
The actual notation for doing this is a little strange at first, but it is very powerful. To
extract a substring we must provide two items:

• The position in the string at which the substring begins.
• The position at which it ends.

In the examples that follow we will use the following

string=’share and enjoy’

Substring Characters

string(3:3 ) a

string(3:5 ) are

string(:3 ) sha

string(11: ) enjoy

Character variables may also form arrays:

character (10) , dimension(20) :: a

sets up a character array of twenty elements, where each element contains ten char-
acters. In order to extract substrings from these array elements, we need to know
where the array reference and the substring reference are placed. The array reference
comes first, so that

do i=1,20

first=a(i)(1:1)

end do
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places the first character of each element of the array into the variable first. The
syntax is therefore ‘position in array, followed by position within string’.

Any argument can be replaced by an integer variable or expression:

string(i:j)

14.4.1 Example 3: Stripping Blanks from a String

This offers interesting possibilities, since we can, for example, strip blanks out of a
string:

program ch1403

implicit none

character (80) :: string, strip

integer :: ipos, i, length = 80

ipos = 0

print *, ’ type in a string’

read ’(a)’, string

do i = 1, length

if (string(i:i)/=’ ’) then

ipos = ipos + 1

strip(ipos:ipos) = string(i:i)

end if

end do

print *, string

print *, strip

end program ch1403

14.5 Character Functions

There are special functions available for use with character variables: index will
give the starting position of a string within another string.

14.5.1 Example 4: The index Character Function

If , for example, we were looking for all occurrences of the string ‘Geology’ in a file,
we could construct something like:
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program ch1404

implicit none

character (80) :: line

integer :: i

do

read ’(a)’, line

i = index(line, ’Geology’)

if (i/=0) then

print *, &

’ String Geology found at position ’, i

print *, ’ in line ’, line

exit

end if

end do

end program ch1404

There are two things to note about this program. Firstly the index function will
only report the first occurrence of the string in the line; any later occurrences in any
particular line will go unnoticed, unless you account for them in someway. Secondly,
if the string does not occur, the result of the index function is zero, and given the
infinite loop (do enddo) the programwill crash at run time with an end of file error
message. This isn’t good programming practice.

14.5.2 The len and len_trim Functions

The len function provides the length of a character string. This function is not
immediately useful, since you really ought to know howmany characters there are in
the string. However, as later examples will show, there are some cases where it can
be useful. Remember that trailing blanks do count as part of the character string,
and contribute to the length.

14.5.3 Example 5: Using len and len_trim

The following example illustrates the use of both len and len_trim:

program ch1405

implicit none

character (len=20) :: name

integer :: name_length
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print *, ’ type in your name’

read ’(a)’, name

! show len first

name_length = len(name)

print *, ’ name length is ’, name_length

print *, ’ ’, name(1:name_length), &

’<-end is here’

name_length = len_trim(name)

print *, ’ name length is ’, name_length

print *, ’ ’, name(1:name_length), &

’<-end is here’

end program ch1405

14.6 Collating Sequence

The next group of functions need to be considered together. They revolve around
the concept of a collating sequence. In other words, each character used in Fortran
is ordered as a list and given a corresponding weight. No two weights are equal.
Although Fortran has only 63 defined characters, the machine you use will generally
have more; 95 printing characters is a typical minimum number. On this type of
machine the weights would vary from 0 to 94. There is a defined collating sequence,
the ASCII sequence, which is likely to be the default. The parts of the collat-
ing sequence which are of most interest are fairly standard throughout all collating
sequences.

In general, we are interested in the numerals (0–9), the alphabetic characters
(A–Z, a-z) and a few odds and ends like the arithmetic operators (+ – / *), some
punctuation (. and ,) and perhaps the prime (’). As you might expect, 0–9 carry
successively higher weights (though not the weights 0 to 9), as do A to Z and a to z.
The other odds and ends are a little more problematic, but we can find out the weights
through the function ichar. This function takes a single character as argument and
returns an integer value. The ASCII weights for the alphanumerics are as follows:

0--9 48--57

A--Z 65--90

One of the exercises is to determine theweights for other characters. The reverse of
this procedure is to determine the character from itsweighting,which can be achieved
through the function char. char takes an integer argument and returns a single
character. Using the ASCII collating sequence, the alphabet would be generated
from
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do i=65,90

print*,char(i)

enddo

This idea of a weighting can then be used in four other functions:

function Action

lle lexically less than or equal to

lge lexically greater than or equal to

lgt lexically greater than

llt lexically less than

In the sequence we have seen before, A is lexically less than B, i.e., its weight is
less. Clearly, we can use ichar and get the same result. For example,

if(lgt(’a’,’b’)) then

is equivalent to

if(ichar(’a’) > ichar(’b’)) then

but these functions can take character string arguments of any length. They are not
restricted to single characters.

These functions provide very powerful tools for the manipulation of characters,
and open upwide areas of non-numerical computing throughFortran. Text formatting
andword processing applicationsmay now be tackled (conveniently ignoring the fact
that lower-case characters may not be available).

There are many problems that require the use of character variables. These range
from the ability to provide simple titles on reports, or graphical output, to the provision
of a natural language interface to one of your programs, i.e., the provision of an
English-like command language. Software Tools by Kernighan and Plauger contains
many interesting uses of characters in Fortran.

14.7 Example 6: Finding Out About the Character Set
Available

The following program prints out the characters between 32 and 127.

program ch1406

implicit none

integer :: i
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do i = 32, 62

print *, i, char(i), i + 32, char(i+32), &

i + 64, char(i+64)

end do

i = 63

print *, i, char(i), i + 32, char(i+32), &

i + 64, ’del’

end program ch1406

This is the output from the Intel compiler under Windows.

32 64 @ 96 ‘

33 ! 65 A 97 a

34 " 66 B 98 b

35 # 67 C 99 c

36 $ 68 D 100 d

37 % 69 E 101 e

38 & 70 F 102 f

39 ’ 71 G 103 g

40 ( 72 H 104 h

41 ) 73 I 105 I

42 * 74 J 106 j

43 + 75 K 107 k

44 , 76 L 108 l

45 - 77 M 109 m

46 . 78 N 110 n

47 / 79 O 111 o

48 0 80 P 112 p

49 1 81 Q 113 q

50 2 82 R 114 r

51 3 83 S 115 s

52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 v

55 7 87 W 119 w

56 8 88 X 120 x

57 9 89 Y 121 y

58 : 90 Z 122 z

59 ; 91 [ 123 {

60 < 92 \ 124 |

61 = 93 ] 125 }

62 > 94 ˆ 126 ˜

63 ? 95 _ 127 del

Try this program out on the system you use. Do the character sets match?
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14.8 The scan Function

The scan functions scans a string for characters from a set of characters. The syntax
is given below.

• scan(string,set) - Scans a string for any one of the characters in a set of
characters.

14.8.1 Example 7: Using the scan Function

program ch1407

implicit none

character (1024) :: string01

character (1) :: set = ’ ’

integer :: i

integer :: l

integer :: start, end

string01 = ’The important issue about &

&a language, is not so’

string01 = trim(string01) // ’ ’ // ’much &

&what features the language possesses, &

&but’

string01 = trim(string01) // ’ ’ // ’the &

&features it does possess, are sufficient, &

&to’

string01 = trim(string01) // ’ ’ // ’support &

&the desired programming styles, in &

&the’

string01 = trim(string01) // ’ ’ // &

’desired application areas.’

l = len(trim(string01))

print *, ’ Length of string is = ’, l

print *, ’ String is’

print *, trim(string01)

start = 1

end = l

print *, ’ Blanks at positions ’

do

i = scan(string01(start:end), set)

start = start + i

if (i==0) exit

write (*, 100, advance=’no’) start - 1
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end do

100 format (i5)

end program ch1407

Note the use of the trim function when using the concatenation operator to
initialise the string to the text we want.

The output from one compiler is given below. The text has been wrapped to fit
the page

Length of string is = 217

String is

The important issue about a language, is not so much

what features the language possesses,

but the features it does possess, are sufficient,

to support the desired programming styles,

in the desired application areas.

Blanks at positions

4 14 20 26 28 38 41 45 48 53 58

67 71 80 91 95 99 108 111 116 125 129

141 144 152 156 164 176 184 187 191 199 211

The text in this program is used in two problems at the end of this chapter.

14.9 Summary

Characters represent a different data type to anyother inFortran, and as a consequence
there is a restricted range of operations which may be carried out on them.

A character variable has a lengthwhichmust be assigned in a character declaration
statement.

Character strings are delimited by apostrophes (’) or quotation marks (“). Within
a character string, the blank is a significant character.

Character strings may be joined together (concatenated) with the // operator.
Substrings occurring within character strings may be also be manipulated.
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Table 14.1 has details of a number of functions especially for use with characters.

Table 14.1 String functions in Fortran

Function name Explanation

achar Return the character in the ASCII character set

adjustl Adjust left, remove leading blanks, add trailing
blanks

adjustr Adjust right,remove trailing blanks, insert
leading blanks

char Return the character in the processor collating
sequence

iachar As above but in the ASCII character set

index Locate one string in another

len Character length including trailing blanks

len_trim Character length without the trailing blanks

lle Lexically less than or equal to

lge Lexically greater than or equal to

lgt Lexically greater than

llt Lexically less than

repeat Concatenate several copies of a string

scan Scans a string for anyone of the characters in
the set

trim Remove the trailing blanks

verify Verify that a set of characters contains all the
characters in a string

A detailed explanation is given in appendix D.

14.10 Problems

14.1 Suggest some circumstances where PRIME=”” might be useful. What other
alternative is there and why do you think we use that instead?

14.2 Write a program to write out the weights for the Fortran character set. Mod-
ify this program to print out the weights of the complete implementation defined
character set for your version of Fortran. Is it ASCII? if not, how does it differ?

14.3 Write a program that produces the following output.

!

"#

$%&



278 14 Characters

’()*

+,-./

012345

6789:;<<

=>>?@ABCD

EFGHIJKLM

NOPQRSTUVW

XYZ[\]ˆ_‘ab

cdefghijklmn

opqrstuvwxyz{

|}˜

We assume the ASCII character set in this example.

14.4 Modify the above program to produce the following output.

!

"#$

%&’()

*+,-./0

123456789

:;<>?@ABCD

EFGHIJKLMNOPQ

RSTUVWXYZ[\]ˆ_‘

abcdefghijklmnopq

rstuvwxyz{|}˜

Again we assume the ASCII character set.

14.5 Modify program ch1407 to break the text into phrases, using the comma and
full stop as breaking characters. The output expected is given below.

The important issue about a language

is not so much what features the language possesses

but the features it does possess

are sufficient

to support the desired programming styles

in the desired application areas

Modify the above to break the text into words and count the frequency of occur-
rence of words by length. The output should be similar to that given below.

1 a 1

2 is so it to in 5

3 The not the but the are the the 8
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4 much what does 3

5 issue about areas 3

6 styles 1

7 possess support desired desired 4

8 language features language features 4

9 important possesses 2

10 sufficient 1

11 programming application 2

14.6 Use the index function in order to find the location of all the strings ‘is’ in
the following data:

If a programmer is found to be indispensable, the best thing to do is to get rid of
him as quickly as possible.

14.7 Find the ‘middle’ character in the following strings. Do you include blanks as
characters? What about punctuation?

Practice is the best of all instructors. experience is a dear teacher, but fools will
learn at no other.

14.8 In English, the order of occurrence of the letters, from most frequent to least
is

E, T, A, O, N, R, I, S, H, D, L,

F, C, M, U, G, Y, P, W, B, V, K,

X, J, Q, Z

Use this information to examine the two files given in appendix E (one is a
translation of the other) to see if this is true for these two extracts of text. The second
text is in medieval Latin (c. 1320). Note that a fair amount of compression has been
achieved by expressing the passage in Latin rather than modern English. Does this
provide a possible model for information compression?

14.9 A very common cypher is the substitution cypher, where, for example, every
letter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. These
enciphered messages can be broken by reference to the frequency of occurrence of
the letters (given in the previous question).

Since we know that (in English) E is the most commonly occurring letter, we can
assume that themost commonly occurring letter in the encipheredmessage represents
an E; we then repeat the process for the next most common and so on. Of course,
these correspondences may not be exact, since the message may not be long enough
to develop the frequencies fully.

However, it may provide sufficient information to break the cypher.
The file given in appendix E contains an encoded message. Break it.
Clue — Pg +Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

14.10 Write a program that counts the total number of vowels in a sentence or text.
Output the frequency of occurrence of each vowel.



Chapter 15
Complex

Make it as simple as possible, but no simpler.
Albert Einstein

Aims
The aims of this chapter are:

• To introduce the last predefined numeric data type in Fortran.
• To illustrate with examples how to use this type.

15.1 Introduction

This variable type reflects an extension of the real data type available in Fortran— the
complex data type, where we can store and manipulate complex variables. Problems
that require this data type are restricted to certain branches of mathematics, physics
and engineering. Complex numbers are defined as having a real and imaginary part,
i.e., a = x + iy where i is the square root of –1.

They are not supported in many programming languages as a base type which
makes Fortran the language of first choice for many people.

To use this variable type we have to write the number as two parts, the real and
imaginary elements of the number, for example,

complex :: u

u=cmplx(1.0,2.0)

represents the complex number 1 + i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrinsic
functions such as log, sin, cos, etc., accept a complex data type as argument.
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All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value, two
format descriptors must be given. You may use either E or F formats (or indeed,
mix them), as long as there are enough of them. Although you use brackets around
the pairs of numbers in a program, these must not appear in any input, nor will they
appear on the output.

15.2 Example 1: Use of cmplx, aimag and conjg

There are a number of intrinsic functions to enable complex calculations to be per-
formed. The program below uses some of them:

program ch1501

implicit none

complex :: z, z1, z2, z3, zbar

real :: x, y, zmod

real :: x2 = 3.0, y2 = 4.0

real :: x3 = -2.0, y3 = -3.0

z1 = cmplx(1.0, 2.0) ! 1 + i 2

z2 = cmplx(x2, y2) ! x2 + i y2

z3 = cmplx(x3, y3) ! x3 + i y3

z = z1*z2/z3

x = real(z) ! real part of

! z

y = aimag(z) ! imaginary

! part of z

zmod = abs(z) ! modulus of z

zbar = conjg(z) ! complex

! conjugate of

! z

print 100, z1, z2, z3

100 format (3(1x,f4.1,’ + i ’,f4.1,/))

print 110, z, zmod, zbar

110 format (1x, f4.1, ’ + i ’, f4.1, /, 1x, &

f4.1, /, 1x, f4.1, ’ + i ’, f4.1)

print 120, x, y

120 format (2(1x,f4.1,/)) end program ch1501
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15.3 Example 2: Polar Coordinate Example

The second order differential equation:

d2y

dt2
+ 2

dy

dt
+ y = x(t)

could describe the behaviour of an electrical system, where x(t) is the input voltage
and y(t) is the output voltage and dy/dt is the current. The complex ratio

y(w)

x(w)
= 1/(−w2 + 2 jw + 1)

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j
is

√
( − 1) The following program reads in a value of w and evaluates the frequency

response for this value of w together with its polar form (magnitude and phase):

program ch1502

implicit none

! program to calculate frequency

! response of a system

! for a given omega

! and its polar form (magnitude and phase).

real :: omega, real_part, imag_part, &

magnitude, phase

complex :: frequency_response

! Input frequency omega

print *, ’Input frequency’

read *, omega

frequency_response = 1.0/cmplx(-omega*omega+ &

1.0, 2.0*omega)

real_part = real(frequency_response)

imag_part = aimag(frequency_response)

! Calculate polar coordinates

! (magnitude and phase)

magnitude = abs(frequency_response)

phase = atan2(imag_part, real_part)
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print *, ’ at frequency ’, omega

print *, ’response = ’, real_part, ’ + i ’, &

imag_part

print *, ’in polar form’

print *, ’ magnitude = ’, magnitude

print *, ’ phase = ’, phase

end program ch1502

15.4 Complex and Kind Type

The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chapter 5 must be consulted for a full
coverage of real kind types. We would therefore use something like the following to
select a complex kind type other than the default:

integer , parameter :: &

dp = selected_real_kind(15,307)

complex (dp) :: z

Chapter 21 includes a good example of how to use modules to define and use
precision throughout a program and subprogram units.

15.5 Summary

Complex is used to store and manipulate complex numbers: those with a real and
an imaginary part. There are standard functions which allow conversion between the
numerical data types — cmplx, real and int.

15.6 Problem

15.1 The program used in Chap.13 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to remedy
this, remembering that it is necessary to declare any complex variables. Instead of
raising the expression to the power 0.5 in order to take its square root, use the function
sqrt. The formulae for the complex roots are

https://doi.org/10.1007/978-3-319-75502-1_5
https://doi.org/10.1007/978-3-319-75502-1_21
https://doi.org/10.1007/978-3-319-75502-1_13
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−b

2a
± i

√−(b2 − 4ac)

2a

If you manage this to your satisfaction, try your skills on the roots of a cubic (see
the problems in Chap.13).

https://doi.org/10.1007/978-3-319-75502-1_13


Chapter 16
Logical

A messenger yes/no semaphore her black/white keys in/out whirl
of morse hoopooe signals salvation deviously

Nathaniel Tarn, The Laurel Tree

Aims
The aims of this chapter are:

• To examine the last predefined type available in Fortran: logical.
• To introduce the concepts necessary to use logical expressions effectively:

– Logical variables.
– Logical operators.
– The hierarchy of operations.
– Truth tables.

16.1 Introduction

Often we have situations where we need on or off, true or false, yes or no switches,
and in such circumstances we can use logical type variables, e.g.,

logical :: flag

Logicals may take only two possible values, as shown in the following:

flag=.true.

or

flag=.false.
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Note the full stops, which are essential. With a little thought you can see why
they are needed. You will already have met some of the ideas associated with logical
variables from if statements:

if(a == b) then

.

else

.

endif

The logical expression (a == b) returns a value true or false, which then de-
termines the route to be followed; if the quantity is true, then we execute the next
statement, else we take the other route.

Similarly, the following example is also legitimate:

logical :: answer

answer=.true.

...

if (answer) then

...

else

...

endif

Again the expression if (answer) is evaluated; here the variable answer has
been set to .true., and therefore the statements following the then are executed.
Clearly, conventional arithmetic is inappropriate with logicals. What does 2 times
true mean? (very true?). There are a number of special operators for logicals:

• .not. which negates a logical value (i.e., changes true to false or vice versa).
• .and. logical intersection.
• .or. logical union.

To illustrate the use of these operators, consider the following program extract:

logical :: a,b,c

a=.true.

b=.not.a !(b now has the value ’false’)

c=a.or.b !(c has the value ’true’)

c=a.and.b !(c now has the value ’false’)
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Table16.1 shows the effect of these operators on logicals in a simple case.

Table 16.1 Simple truth table

x1 x2 .not.x1 x1.and.x2 x1.or.x2

true true false true true

true false false false true

false true true false true

false false true false false

As with arithmetic operators, there is an order of precedence associated with the
logical operators:

• .and. is carried out before
• .or. and .not.

In dealing with logicals, the operations are carried out within a given level, from
left to right. Any expressions in brackets would be dealt with first. The logical op-
erators are a lower order of precedence than the arithmetic operators, i.e., they are
carried out later. Table16.2 shows a more complete operator hierarchy.

Table 16.2 Fortran operator
hierarchy

Expressions within brackets

Exponentiation

Multiplication and division

Addition and subtraction

Relational and logical

.and.

.or. and .not

Although you can build up complicated expressions with mixtures of operators,
these are often difficult to comprehend, and it is generally more straightforward
to break ‘big’ expressions down into smaller ones whose purpose is more readily
appreciated.

Historically, logicals have not been in evidence extensively in Fortran programs,
although clearly there are occasions on which they are of considerable use. Their use
often aids significantly inmaking programsmoremodular and comprehensible. They
can be used to make a complex section of code involving several choices much more
transparent by the use of one logical function, with an appropriate name. Logicals
may be used to control output; e.g.,

logical :: debug

...

debug=.true.



290 16 Logical

...

if(debug)then

...

print *,’lots of printout’

...

endif

ensures that, while debugging a program you have more output then, when the pro-
gram is correct, run with debug=.false.

Note that Fortran does try to protect you while you use logical variables. You
cannot do the following:

logical :: up, down

up=down+.false.

or

logical :: a2

real , dimension(10):: omega

.

a2=omega(3)

The compiler will note that this is an error, and will not permit you to run the
program. This is an example of strong typing, since only a limited number of pre-
determined operations are permitted. The real, integer and complex variable
types are much more weakly typed (which helps lead to the confusion inherent in
mixing variable types in arithmetic assignments).

16.2 I/O

Since logicals may take only the values .true. and .false., the possibilities in
reading and writing logical values are clearly limited. The l edit descriptor or format
allows logicals to be input and output. On input, if the first nonblank characters are
either T or .T, the logical value .true. is stored in the corresponding list item; if
the first nonblank characters are F or .F, then .false. is stored. (Note therefore
that reading, say, ted and fahr in an l4 format would be acceptable.) if the first
nonblank character is not F, T, .F or .T, then an error message will be generated.
On output, the value T or F is written out, right justified, with blanks (if appropriate).
Thus,

logical :: flag

flag=.true.
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print 100, flag, .not.flag

100 format(2L3)

would produce

T F

at the terminal.
Assigning a logical variable to anything other than a .true. or .false. value

in your program will result in errors. The ’shorthand’ forms of .T, .F, F and T are
not acceptable in the program.

16.3 Summary

This chapter has introduced the logical data type. A logical variable may take
one of two values, .true. or .false..

• There are special operators for manipulating logicals:

– .not.
– .and.
– .or.

• Logical operators have a lower order of precedence than any others.

16.4 Problems

16.1 Why are the full stops needed in a statement like a = .true.?

16.2 Generate a truth table like the one given in this chapter.

16.3 Write a program which will read in numerical data from the terminal, but will
flag any data which is negative, and will also turn these negative values into positive
ones.



Chapter 17
Introduction to Derived Types

Russell’s theory of types leads to certain complexities in the
foundations of mathematics…Its interesting features for our
purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical
formulae; and that a check against violation of type constraints
can be made purely by scanning the text, without any knowledge
of the value which a particular symbol might happen to have

C.A.R. Hoare, Structured Programming

Aims
The aim of this chapter is to introduce the concepts and ideas involved in using the
facilities offered in modern Fortran for the construction and use of derived or user
defined types;

• defining our own types.
• declaring variables to be of a user defined type.
• manipulating variables of our own types.
• nesting types within types.

The examples are simple and are designed to highlight the syntax. More complex
and realistic examples of the use of user defined data types are to be found in later
chapters.

17.1 Introduction

In the coverage so far we have used the intrinsic types provided by Fortran. The only
data structuring technique available has been to construct arrays of these intrinsic
types.Whilst this enables us to solve a reasonable variety of problems, it is inadequate
for many purposes. In this chapter we look at the facilities offered by Fortran for
the construction of our own types and how we manipulate data of these new, user
defined types.
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With the ability to define our own types we can now construct aggregate data
types that have components of a variety of base types. These are given a variety of
names including

• Record in the Pascal family of languages and in many older books on computing
and data structuring;

• Structs in C;
• Classes in C++, Java, C# and Eiffel;
• Cartesian product is often used in mathematics and this is the terminology adopted
by Hoare;

Chapter3 has details of some books for further reading:

• Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming;
• Wirth N., Algorithms + Data Structures = Programs;
• Wirth N., Algorithms + Data Structures.

We will use the term user defined type and derived types interchangeably.
There are two stages in the process of creating and using our own data types: we

must first define the type, and then create variables of this type.

17.2 Example 1: Dates

program ch1701

implicit none

type date

integer :: day = 1

integer :: month = 1

integer :: year = 2000

end type date

type (date) :: d

print *, d%day, d%month, d%year

print *, ’ type in the date, day, month, year’

read *, d%day, d%month, d%year

print *, d%day, d%month, d%year

end program ch1701

https://doi.org/10.1007/978-3-319-75502-1_3
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This complete program illustrates both the definition and use of the type. It also
shows how you can define initial values within the type definition.

17.3 Type Definition

The type date is defined to have three component parts, comprising a day, a month
and a year, all of integer type. The syntax of a type construction comprises:

type typename

data type :: component_name

etc

end type typename

Reference can then be made to this new type by the use of a single word, date,
and we have a very powerful example of the use of abstraction.

17.4 Variable Definition

This is done by

type (typename) :: variablename

and we then define a variable d to be of this new type. The next thing we do is have
a read * statement that prompts the user to type in three integer values, and the
data are then echoed straight back to the user. We use the notation

variablename%component_name

to refer to each component of the new data type.

17.4.1 Example 2: Variant of Example 1 Using Modules

The following is a variant on the above and achieves the same result with a small
amount of additional syntax.
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module date_module

type date

integer :: day = 1

integer :: month = 1

integer :: year = 2000

end type date

end module date_module

program ch1702

use date_module

implicit none

type (date) :: d

print *, d%day, d%month, d%year

print *, ’ type in the date, day, month, year’

read *, d%day, d%month, d%year

print *, d%day, d%month, d%year

end program ch1702

The key here is that we have embedded the type declaration inside a module, and
then used the module in the main program. Modules are covered in more detail in a
later chapter.

If you are only using the type within one program unit then the first form is
satisfactory, but if you are going to use the type in several program units the second
is the required form.

We will use the second form in the examples that follow.

17.5 Example 3: Address Lists

module address_module

type address

character (len=40) :: name

character (len=60) :: street

character (len=60) :: district
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character (len=60) :: city

character (len=8) :: post_code

end type address

end module address_module

program ch1703

use address_module

implicit none

integer :: n_of_address

type (address), dimension (:), &

allocatable :: addr

integer :: i

print *, ’input number of addresses’

read *, n_of_address

allocate (addr(1:n_of_address))

open (unit=1, file=’address.txt’,status=’old’)

do i = 1, n_of_address

read (unit=1, fmt=’(a40)’) addr(i)%name

read (unit=1, fmt=’(a60)’) addr(i)%street

read (unit=1, fmt=’(a60)’) addr(i)%district

read (unit=1, fmt=’(a60)’) addr(i)%city

read (unit=1, fmt=’(a8)’) addr(i)%post_code

end do

do i = 1, n_of_address

print *, addr(i)%name

print *, addr(i)%street

print *, addr(i)%district

print *, addr(i)%city

print *, addr(i)%post_code
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end do

end program ch1703

In this example we define a type addresswhich has components that one would
expect for a person’s address. We then define an array addr of this type. Thus we
are now creating arrays of our own user defined types. We index into the array in the
way we would expect from our experience with integer, real and character arrays.
The complete example is rather trivial in a sense in that the program merely reads
from one file and prints the file out to the screen. However, it highlights many of the
important ideas of the definition and use of user defined types.

17.6 Example 4: Nested User Defined Types

The following example builds on the two data types already introduced. Here we
construct nested user defined data types based on them and construct a new data type
containing them both plus additional information.

module personal_module

type address

character (len=60) :: street

character (len=60) :: district

character (len=60) :: city

character (len=8) :: post_code

end type address

type date_of_birth

integer :: day

integer :: month

integer :: year

end type date_of_birth

type personal

character (len=20) :: first_name

character (len=20) :: other_names

character (len=40) :: surname

type (date_of_birth) :: dob

character (len=1) :: gender
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type (address) :: addr

end type personal

end module personal_module

program ch1704

use personal_module

implicit none

integer :: n_people

integer :: i

type (personal), dimension (:), &

allocatable :: p

print *, ’input number of people’

read *, n_people

allocate (p(1:n_people))

open (unit=1, file=’person.txt’,status=’old’)

do i = 1, n_people

read (1, fmt=100) p(i)%first_name, &

p(i)%other_names, p(i)%surname, &

p(i)%dob%day, p(i)%dob%month, &

p(i)%dob%year, p(i)%gender, p(i)%addr%street, &

p(i)%addr%district, p(i)%addr%city, &

p(i)%addr%post_code

end do

do i = 1, n_people

write (*, fmt=110) p(i)%first_name, &

p(i)%other_names, p(i)%surname, &

p(i)%dob%day, p(i)%dob%month, &

p(i)%dob%year, p(i)%gender, p(i)%addr%street, &

p(i)%addr%district, p(i)%addr%city, &

p(i)%addr%post_code
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end do

100 format (a20, /, a20, /, a40, /, i2, 1x, i2, &

1x, i4, /, a1, /, a60, /, a60, /, a60, /, &

a8)

110 format (a20, a20, a40, /, i2, 1x, i2, 1x, &

i4, /, a1, /, a60, /, a60, /, a60, /, a8)

end program ch1704

Here we have a date of birth data type (date_of_birth) based on the date
data type from the first example, plus a slightly modified address data type, incor-
porated into a new data type comprising personal details. Note the way in which we
reference the component parts of this new, aggregate data type.

17.7 Problem

17.1 Modify the last example to include a more elegant printed name. The current
example will pad with blanks the first_ name, other_names and surname
and span 80 characters on one line, which looks rather ugly.

Add a new variable name which will comprise all three subcomponents and write
out this new variable, instead of the three subcomponents.



Chapter 18
An Introduction to Pointers

Not to put too fine a point on it

Charles Dickens, Bleak House

Aim
The primary aim of the chapter is to introduce some of the key concepts of pointers
in Fortran.

18.1 Introduction

All of the data types introduced so far, with the exception of the allocatable array,
have been static. Even with the allocatable array a size has to be set at some stage
during program execution. The facilities provided in Fortran by the concept of a
pointer combined with those offered by a user defined type enable us to address
a completely new problem area, previously extremely difficult to solve in Fortran.
There are many problems where one genuinely does not know what requirements
there are on the size of a data structure. Linked lists allow sparse matrix problems
to be solved with minimal storage requirements, two-dimensional spatial problems
can be addressed with quad-trees and three-dimensional spatial problems can be
addressed with oct-trees. Many problems also have an irregular nature, and pointer
arrays address this problem.

First we need to cover some of the technical aspects of pointers. A pointer is a
variable that has the pointer attributeApointer is associatedwith a target by allocation
or pointer assignment. A pointer becomes associated as follows:
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• The pointer is allocated as the result of the successful execution of an allocate
statement referencing the pointer

or

• The pointer is pointer-assigned to a target that is associated or is specified with the
target attribute and, if allocatable, is currently allocated.

A pointer may have a pointer association status of associated, disassociated, or
undefined. Its association status may change during execution of a program. Unless
a pointer is initialised (explicitly or by default), it has an initial association status of
undefined. A pointer may be initialised to have an association status of disassociated.

A pointer shall neither be referenced nor defined until it is associated. A pointer
is disassociated following execution of a deallocate or nullify statement,
following pointer associationwith a disassociated pointer, or initially through pointer
initialisation.

Let us look at some examples to clarify these points.

18.2 Example 1: Illustrating Some Basic Pointer Concepts

With the introduction of pointers as a data type into Fortranwe also have the introduc-
tion of a new assignment statement — the pointer assignment statement. Consider
the following example:

program ch1801

implicit none

integer, pointer :: a => null(), b => null()

integer, target :: c

integer :: d

c = 1

a => c

c = 2

b => c

d = a + b

print *, a, b, c, d

end program ch1801

The following

integer , pointer :: a=>null(),b=>null()

is a declaration statement that defines a and b to be variables, with the pointer
attribute. This means we can use a and b to refer or point to integer values. We
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also use the null intrinsic to set the status of the pointers a and b to disassociated.
Using the null intrinsic means that we can test the status of a pointer variable and
avoid making a number of common pointer programming errors. Note that in this
case no space is set aside for the pointer variables a and b, i.e. a and b should not
be referenced in this state.

The second declaration defines c to be an integer, with the target attribute, i.e.,
we can use pointers to refer or point to the value of the variable c.

The last declaration defines d to be an ordinary integer variable.
In the case of the last two declarations space is set aside to hold two integers.
Let us now look at the various executable statements in the program, one at a

time:

c = 1

This is an example of the normal assignment statement with which we are already
familiar. We use the variable name c in our program and whenever we use that name
we get the value of the variable c.

a => c

This is an example of a pointer assignment statement. This means that both a and
c now refer to the same value, in this case 1. a becomes associated with the target
c. a can now be referenced.

c = 2

Conventional assignment statement, and c now has the value 2.

b => c

Second example of pointer assignment. b now points to the value that c has, in
this case 2. b becomes associated with the target c. b can now be referenced.

d = a + b

Simple arithmetic assignment statement. The value that a points to is added to
the value that b points to and the result is assigned to d.

The last statement prints out the values of a, b, c and d.
The output is

2 2 4
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18.3 Example 2: The associated Intrinsic Function

The associated intrinsic returns the association status of a pointer variable. Con-
sider the following example which is a simple variant on the first.

program ch1802

implicit none

integer, pointer :: a => null(), b => null()

integer, target :: c

integer :: d

print *, associated(a)

print *, associated(b)

c = 1

a => c

c = 2

b => c

d = a + b

print *, a, b, c, d

print *, associated(a)

print *, associated(b)

end program ch1802

The output from running this program is shown below

F

F

2 2 2 4

T

T

and as you can see we therefore have a mechanism to test pointers to see if they are
in a valid state before use.

18.4 Example 3: Referencing Pointer Variables Before
Allocation or Pointer Assignment

Consider the following example:

program ch1803

implicit none

integer, pointer :: a => null(), b => null()
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integer, target :: c

integer :: d

print *, a

print *, b

c = 1

a => c

c = 2

b => c

d = a + b

print *, a, b, c, d

end program ch1803

Here we are actually referencing the pointers a and b, even though their status
is disassociated. Most compilers generate a run time error with this example with
the default compiler options, and the error message tends to be a little cryptic.
It is recommended that you look at the diagnostic compilation switches for you
compiler. We include some sample output below from gfortran, Intel and Nag. The
error messages are now much more meaningful.

18.4.1 gfortran

Switches are

gfortran -W -Wall -fbounds-check -pedantic-errors

-std=f2003 -Wunderflow

-O -fbacktrace -ffpe-trap=zero,

overflow,underflow -g

The program runs to completion with no error message. Here is the output.

ch1803.out

0

0

2 2 2 4

18.4.2 Intel

Switches are
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/check:all /traceback

Here is the output.

D:\document\fortran\newbook\examples\ch18>>

ch1803

forrtl: severe (408): fort: (7):

Attempt to use pointer A when it

is not associated with a target

Image PC Routine Line

Source

ch1803.exe 000000013F0AC598 Unknown Unknown

Unknown

...

ntdll.dll 0000000077096611 Unknown Unknown

Unknown

18.4.3 Nag

Switches are

-C=all -C=undefined -info -g -gline

Here is the output.

Runtime Error: ch1803.f90, line 5:

Reference to disassociated POINTER A

Program terminated by fatal error

ch1803.f90, line 5: Error occurred in CH1803

18.5 Example 4: Pointer Allocation and Assignment

Consider the following example:

program ch1804

implicit none

integer, pointer :: a => null(), b => null()

integer, target :: c

integer :: d
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allocate (a)

a = 1

c = 2

b => c

d = a + b

print *, a, b, c, d

deallocate (a)

end program ch1804

In this example we allocate a and then can do conventional assignment. If we had
not allocated a the assignment would be illegal. Try out problem 18.2 to see what
will happen with your compiler.

Our simple recommendationwhenusingpointers is to nullify themwhendeclaring
them and to explicitly allocate them before conventional assignment.

18.6 Memory Leak Examples

Dynamic memory brings greater versatility but requires greater responsibility.

18.6.1 Example 5: Simple Memory Leak

program ch1805

implicit none

integer, pointer :: a => null(), b => null()

integer, target :: c

integer :: d

allocate (a)

allocate (b)

a = 100

b = 200

print *, a, b

c = 1

a => c

c = 2

b => c

d = a + b

print *, a, b, c, d

end program ch1805

What has happened to the memory allocated to a and b?
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18.6.2 Example 6: More Memory Leaks

Now consider the following example.

program ch1806

implicit none

integer :: allocate_status = 0

integer, parameter :: n1 = 10000000

integer, parameter :: n2 = 5

integer, dimension (:), pointer :: x

integer, dimension (1:n2), target :: y

integer :: i

do

allocate (x(1:n1), stat=allocate_status)

if (allocate_status>0) then

print *, ’ allocate failed. program ends.’

stop

end if

do i = 1, n1

x(i) = i

end do

do i = 1, n2

print *, x(i)

end do

do i = 1, n2

y(i) = i*i

end do

do i = 1, n2

print *, y(i)

end do

x => y ! x now points to y

do i = 1, n2

print *, x(i)

end do

! what has happened to the memory that x

! used to point to?

end do

end program ch1806

Before running the above example we recommend starting up a memory moni-
toring program.

Under Microsoft Windows holding [CTRL] + [ALT] + [DEL] will bring up the
Windows Task Manager. Choose the [Performance] tab to get a screen which will
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show CPU usage, PF Usage, CPU Usage History and Page File Usage History. You
will also get details of Physical and Kernel memory usage.

Under Linux type

top

in a terminal window.
In these exampleswe also see the recommended formof theallocate statement

when working with arrays. This enables us to test if the allocation has worked and
take action accordingly. A positive value indicates an allocation error, zero indicates
OK.

The second program can require a power off on aWindows operating systemwith
a compiler that will remain anonymous!

18.7 Non-standard Pointer Example

Some Fortran compilers provide a non-standard loc intrinsic. This can be used to
print out the address of the variable passed as an argument.

18.7.1 Example 7: Using the C loc Function

Some Fortran compilers provide non standard access to functions supported in the
C language. This example uses the C loc function.

program ch1807

implicit none

integer, pointer :: a => null(), b => null()

integer, target :: c

integer :: d

allocate (a)

allocate (b)

a = 100

b = 200

print *, a, b

print *, loc(a)

print *, loc(b)

print *, loc(c)

print *, loc(d)

c = 1
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a => c

c = 2

b => c

d = a + b

print *, a, b, c, d

print *, loc(a)

print *, loc(b)

print *, loc(c)

print *, loc(d)

end program ch1807

Here is the output from a compiler with loc support.

100 200

13803552

13803600

2948080

2948084

2 2 2 4

2948080

2948080

2948080

2948084

This program clearly shows the memory leak.

18.8 Problems

18.1 Compile and run all of the example programs in this chapter with your compiler
and examine the output.

18.2 Compile and run example 4 without the allocate(a) statement. See what
happens with your compiler.

Here is the output from the Nag compiler. The first run is with the default options.

nagfor ch1804p.f90

NAG Fortran Compiler:

[NAG Fortran Compiler normal termination]

a.exe

There is no meaningful output.
The following adds the -C=all compilation option.
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nagfor ch1804p.f90 -C=all

NAG Fortran Compiler:

[NAG Fortran Compiler normal termination]

a.exe

Runtime Error: ch1804p.f90, line 5:

Reference to disassociated POINTER

A

Program terminated by fatal error

We now get a meaningful error message.



Chapter 19
Introduction to Subroutines

A man should keep his brain attic stacked with all the furniture
he is likely to use, and the rest he can put away in the lumber
room of his library, where he can get at it if he wants.

Sir Arthur Conan Doyle, Five Orange Pips

Aims

The aims of this chapter are:

• To consider some of the reasons for the inclusion of subroutines in a programming
language.

• To introduce with a concrete example some of the concepts and ideas involved
with the definition and use of subroutines.

– Arguments or parameters.
– The intent attribute for parameters.
– The call statement.
– Scope of variables.
– Local variables and the save attribute.
– The use of parameters to report on the status of the action carried out in the
subroutine.

• Module procedures to provide interfaces.

19.1 Introduction

In the earlier chapter on functions we introduced two types of function

• Intrinsic functions - which are part of the language.
• User defined functions - by which we extend the language.
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We now introduce subroutines which collectively with functions are given the
name procedures. Procedures provide a very powerful extension to the language by:

• Providing us with the ability to break problems down into simpler more easily
solvable subproblems.

• Allowing us to concentrate on one aspect of a problem at a time.
• Avoiding duplication of code.
• Hiding away messy code so that a main program is a sequence of calls to proce-
dures.

• Providing us with the ability to put together collections of procedures that solve
commonly occurring subproblems, often given the name libraries, and generally
compiled.

• Allowing us to call procedures from libraries written, tested and documented by
experts in a particular field. There is no point in reinventing the wheel!

There are a number of concepts required for the successful use of subroutines and
we met some of them in Chap.12 when we looked at user defined functions. We will
extend the ideas introduced there of parameters and introduce the additional concept
of an interface via the use of modules. The ideas are best explained with a concrete
example.

Note that we use the terms parameters and arguments interchangeably.

19.2 Example 1: Roots of a Quadratic Equation

This example is one we met earlier that solves a quadratic equation, i.e., solves

ax2 + bx + c = 0

The program to do this originally was just one program. In the example below
we break that problem down into smaller parts and make each part a subroutine. The
components are:

• Main program or driving routine.
• Interaction with user to get the coefficients of the equation.
• Solution of the quadratic.

Let us look now at how we do this with the use of subroutines:

module interact_module

contains

subroutine interact(a, b, c, ok)

implicit none

real, intent (out) :: a

real, intent (out) :: b



19.2 Example 1: Roots of a Quadratic Equation 315

real, intent (out) :: c

logical, intent (out) :: ok

integer :: io_status = 0

print *, &

’ type in the coefficients a, b and c’

read (unit=*, fmt=*, iostat=io_status) a, b, &

c

if (io_status==0) then

ok = .true.

else

ok = .false.

end if

end subroutine interact

end module interact_module

module solve_module

contains

subroutine solve(e, f, g, root1, root2, ifail)

implicit none

real, intent (in) :: e

real, intent (in) :: f

real, intent (in) :: g

real, intent (out) :: root1

real, intent (out) :: root2

integer, intent (inout) :: ifail

! local variables

real :: term

real :: a2

term = f*f - 4.*e*g

a2 = e*2.0

! if term < 0, roots are complex

if (term<0.0) then

ifail = 1

else

term = sqrt(term)

root1 = (-f+term)/a2

root2 = (-f-term)/a2

end if

end subroutine solve

end module solve_module

program ch1901

use interact_module
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use solve_module

implicit none

! simple example of the use of a main program

! and two subroutines.

! one interacts with the user and the

! second solves a quadratic equation,

! based on the user input.

real :: p, q, r, root1, root2

integer :: ifail = 0

logical :: ok = .true.

call interact(p, q, r, ok)

if (ok) then

call solve(p, q, r, root1, root2, ifail)

if (ifail==1) then

print *, ’ complex roots’

print *, ’ calculation abandoned’

else

print *, ’ roots are ’, root1, ’ ’, root2

end if

else

print *, ’ error in data input program ends’

end if

end program ch1901

19.2.1 Referencing a Subroutine

To reference a subroutine you use the call statement:

call subroutine_name(optional actual argument list)

and from the earlier example the call to subroutine interact was of the form:

call interact(p,q,r,ok)

When a subroutine returns to the calling program unit control is passed to the
statement following the call statement.
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19.2.2 Dummy Arguments or Parameters and Actual
Arguments

Procedures and their calling program units communicate through their arguments.
We often use the terms parameter and arguments interchangeably through out this
text. The subroutine statement normally contains a list of dummy arguments,
separated by commas and enclosed in brackets. The dummy arguments have a type
associated with them; for example, in subroutine solve x is of type real, but no
space is put aside for this in memory. When the subroutine is referenced e.g., call
solve(p,q,r,root1,root2,ifail), then the dummy argument points to
the actual argument p, which is a variable in the calling program unit. The dummy
argument and the actual argument must be of the same type - in this case real.

19.2.3 The intent Attribute

It is recommended that dummy arguments have an intent attribute. In the earlier
example subroutine solve has a dummy argument e with intent(in), which
means thatwhen the subroutine is referenced or called it is expectinge to have a value,
but its value cannot be changed inside the subroutine. This acts as an extra security
measure besides making the program easier to understand. For each parameter it may
have one of three attributes:

• intent(in), where the parameter already has a value and cannot be altered in
the called routine.

• intent(out), where the parameter does not have a value, and is given one in
the called routine.

• intent(inout), where the parameter already has a value and this is changed
in the called routine.

19.2.4 Local Variables

We saw with functions that variables could be essentially local to the function and
unavailable elsewhere. The concept of local variables also applies to subroutines. In
the example above term and a2 are both local variables to the subroutine solve.

19.2.5 Local Variables and the save Attribute

Local variables are usually created when a procedure is called and their value lost
when execution returns to the calling program unit. To make sure that a local variable
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retains its values between calls to a subprogram the save attribute can be used on
a type statement: e.g.,

integer , save :: i

means that when this statement appears in a subprogram the value of the local
variable i is saved between calls.

19.2.6 Scope of Variables

In most cases variables are only available within the program unit that defines them.
The introduction of argument lists to procedures immediately opens up the possibility
of data within one program unit becoming available in one or more other program
units.

In the main program we declare the variables p, q, r, root1, root2, ifail
and ok.

Subroutine interact has no variables locally declared. It works on the argu-
ments a, b, c and ok; which map onto p, q, r and ok from the main program, i.e.,
it works with those variables.

Subroutine solve has two locally defined variables, term and a2. It works with
the variables e, f, g, root1, root2 and ifail, which map onto p, q, r, root1,
root2 and ifail from the main program.

19.2.7 Status of the Action Carried Out in the Subroutine

It is also useful to use parameters that carry information regarding the status of the
action carried out by the subroutine.With the subroutine interactwe use a logical
variable ok to report on the status of the interaction with the user. In the subroutine
solve we use the status of the integer variable ifail to report on the status of the
solution of the equation.

19.2.8 Modules ‘Containing’ Procedures

At the same time as introducing procedureswe have ‘contained’ them in amodule and
then the main program ‘uses’ the module in order to make the procedure available.
Procedures ‘contained’ in modules are called module procedures.

With the use statement the interface to the procedure is available to the compiler
so that the types and positions of the actual and dummy arguments can be checked.
This was a major source of errors with Fortran 77.
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The use statement must be the first statement in the main program or calling unit,
also the modules must be compiled before the program or calling unit.

We will cover modules in more depth in later chapters.
There are times when an interface is mandatory in Fortran so it’s good practice

to use module procedures from the start. There are other ways of providing explicit
interfaces and we will cover them later.

19.3 Why Bother with Subroutines?

Given the increase in the complexity of the overall program to solve a relatively
straightforward problem, one must ask why bother. The answer lies in our ability to
manage the solution of larger and larger problems. We need all the help we can get
if we are to succeed in our task of developing large-scale reliable programs.

We need to be able to break our problems down into manageable subcomponents
and solve each in turn. We are now in a very good position to be able to do this.
Given a problem that requires a main program, one or more functions and one or
more subroutines we can work on each subcomponent in relative isolation, and
know that by using features like module procedures we will be able to glue all of the
components together into a stable structure at the end.We can independently compile
the main program and the modules containing the functions and subroutines and use
the linker to generate the overall executable, and then test that. Providing we keep
our interfaces the same we can alter the actual implementations of the functions and
subroutines and just recompile the changed procedures.

19.4 Summary

We now have the following concepts for the use of subroutines:

• Module procedures providing interfaces.
• Intent attribute for parameters.
• Dummy parameters.
• The use of the call statement to invoke a subroutine.
• The concepts of variables that are local to the called routines and are unavailable
elsewhere in the over all program.

• Communication between program units via the argument list.
• The concept of parameters on the call that enable us to report back on the status
of the called routine.
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19.5 Problems

19.1 Type the program andmodule procedures for Example 1 into one file. Compile,
link and run providing data for complex roots to test this part of the code.

19.2 Split the main program and modules up into three separate files. Compile the
modules and then compile the main program and link the object files to create one
executable. Look at the file size of the executable and the individual object files.
What do you notice?

The development of large programs is eased considerably by the ability to compile
small program units and eradicate the compilation errors from one unit at a time.
The linker obviously also has an important role to play in the development process.

19.3 Write a subroutine to calculate new coordinates (x ′, y′) from (x, y) when the
axes are rotated counter clockwise through an angle of a radians using:

x ′ = xcosa + ysina
y′ = −xsina + ycosa

Hint:

The subroutine would look some thing like
subroutine ChangeCoordinate(x, y, a, xd, yd)
Write a main program to read in values of x, y and a and then call the subroutine

and print out the new coordinates. Use a module procedure.



Chapter 20
Subroutines: 2

It is one thing to show a man he is in error, and another to put
him in possession of the truth

John Locke

Aims
The aims of this chapter are to extend the ideas in the earlier chapter on subroutines
and look in more depth at parameter passing, in particular using a variety of ways of
passing arrays.

20.1 More on Parameter Passing

So far we have seen scalar parameters of type real, integer and logical. We will
now look at numeric array parameters and character parameters. We need to intro-
duce some technical terminology first. Don’t panic if you don’t fully understand the
terminology as the examples should clarify things.

20.1.1 Assumed-Shape Array

An assumed-shape array is a nonpointer dummy argument array that takes its shape
from the associated actual argument array.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_20

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_20&domain=pdf


322 20 Subroutines: 2

20.1.2 Deferred-Shape Array

A deferred-shape array is an allocatable array or an array pointer. An allocatable
array is an array that has the allocatable attribute and a specified rank, but its bounds,
and hence shape, are determined by allocation or argument association.

20.1.3 Automatic Arrays

An automatic array is an explicit-shape array that is a local variable. Automatic
arrays are only allowed in function and subroutine subprograms, and are declared in
the specification part of the subprogram. At least one bound of an automatic array
must be a nonconstant specification expression. The bounds are determined when
the subprogram is called.

20.1.4 Allocatable Dummy Arrays

Fortran provides the ability to declare an array in the main program and allocate in
a subroutine.

20.1.5 Keyword and Optional Arguments

Fortran provides the ability to supply the actual arguments to a procedure by keyword,
and hence in any order.

To do this the name of the dummy argument is referred to as the keyword and is
specified in the actual argument list in the form

dummy-argument = actual-argument

Anumber of points need to be notedwhen using keyword and optional arguments:

• if all the actual arguments use keywords, they may appear in any order.
• When only some of the actual arguments use keywords, the first part of the list
must be positional followed by keyword arguments in any order.

• When using a mixture of positional and keyword arguments, once a keyword
argument is used all subsequent arguments must be specified by keyword.

• if an actual argument is omitted the corresponding optional dummy argument must
not be redefined or referenced, except as an argument to the present intrinsic
function.
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• if an optional dummy argument is at the end of the argument list then it can just
be omitted from the actual argument list.

• Keyword arguments are needed when an optional argument not at the end of an
argument list is omitted, unless all the remaining arguments are omitted as well.

• Keyword and optional arguments require explicit procedure interfaces, i.e., the
proceduremust be internal, amodule procedure or have an interface block available
in the calling program unit.

Anumberof the intrinsicprocedureshaveoptionalarguments.ConsultAppendixD
for details.We look at a complete example using optional arguments in a later chapter.

20.2 Example 1: Assumed Shape Parameter Passing

We are going to use an example based on a main program and a subroutine that
calculates the mean and standard deviation of an array of numbers. The subroutine
has the following parameters:

• x - the array containing the real numbers.
• n - the number of elements in the array.
• mean - the mean of the numbers.
• std_dev - the standard deviation of the numbers.

Consider the following program and subroutine.

module statistics_module

implicit none

contains

subroutine stats(x, n, mean, std_dev)

implicit none

integer, intent (in) :: n

real, intent (in), dimension (:) :: x

real, intent (out) :: mean

real, intent (out) :: std_dev

real :: variance

real :: sumxi, sumxi2

integer :: i

variance = 0.0

sumxi = 0.0

sumxi2 = 0.0

do i = 1, n

sumxi = sumxi + x(i)

sumxi2 = sumxi2 + x(i)*x(i)
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end do

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqrt(variance)

end subroutine stats

end module statistics_module

program ch2001

use statistics_module

implicit none

integer, parameter :: n = 10

real, dimension (1:n) :: x

real, dimension (-4:5) :: y

real, dimension (10) :: z

real, allocatable, dimension (:) :: t

real :: m, sd

integer :: i

do i = 1, n

x(i) = real(i)

end do

call stats(x, n, m, sd)

print *, ’ x’

print 100, m, sd

100 format (’ Mean = ’, f7.3, ’ Std Dev = ’, &

f7.3)

y = x

call stats(y, n, m, sd)

print *, ’ y’

print 100, m, sd

z = x

call stats(z, 10, m, sd)

print *, ’ z’

print 100, m, sd

allocate (t(n))

t = x

call stats(t, 10, m, sd)

print *, ’ t’

print 100, m, sd

end program ch2001

A fundamental rule inmodern Fortran is that the shape of an actual array argument
and its associated dummy arguments are the same, i.e., they both must have the same
rank and the same extents in each dimension. The best way to apply this rule is to
use assumed-shape dummy array arguments as shown in the example above.
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In the subroutine we have

real , intent(in) , dimension(:) :: x

where x is an assumed-shape dummy array argument, and it will assume the shape
of the actual argument when the subroutine is called.

In two of the calls we have passed a variable n as the size of the array and
used a literal integer constant (10) in the other two cases. Both parameter passing
mechanisms work.

20.2.1 Notes

There are several restrictions when using assumed-shape arrays:

• The rank is equal to the number of colons, in this case 1.
• The lower bounds of the assumed-shape array are the specified lower bounds, if
present, and 1 otherwise. In the example above it is 1 because we haven’t specified
a lower bound.

• Theupper boundswill be determinedon entry to the procedure andwill bewhatever
values are needed tomake sure that the extents along each dimension of the dummy
argument are the same as the actual argument. In this case the upper bound will
be n.

• An assumed-shape array must not be defined with the pointer or allocatable
attribute in Fortran.

• When using an assumed-shape array an interface is mandatory. In this example it is
provided by the the stats subroutine being a contained subroutine in a module,
and the use of the module in the main program.

20.3 Example 2: Character Arguments and
Assumed-Length Dummy Arguments

The types of parameters considered so far have been real, integer and logical. Char-
acter variables are slightly different because they have a length associated with them.
Consider the following program and subroutinewhich, given the name of a file, opens
it and reads values into the real array x:

module read_module

implicit none

contains

subroutine readin(name, x, n)
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implicit none

integer, intent (in) :: n

real, dimension (:), intent (out) :: x

character (len=*), intent (in) :: name

integer :: i

open (unit=10, file=name, status=’old’)

do i = 1, n

read (10, *) x(i)

end do

close (unit=10)

end subroutine readin

end module read_module

program ch2002

use read_module

implicit none

real, allocatable, dimension (:) :: a

integer :: nos, i

character (len=20) :: filename

print *, ’ Type in the name of the data file’

read ’(a)’, filename

print *, ’ Input the number of items’

read *, nos

allocate (a(1:nos))

call readin(filename, a, nos)

print *, ’ data read in was’

do i = 1, nos

print *, ’ ’, a(i)

end do

end program ch2002

Themain program reads the file name from the user and passes it to the subroutine
that reads in the data. The dummy argument name is of type assumed-length, and
picks up the length from the actual argument filename in the calling routine, which is
in this case 20 characters. An interfacemust be providedwith assumed-shape dummy
arguments, and this is achieved in this case by the subroutine being in a module.
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20.4 Example 3: Rank 2 and Higher Arrays as Parameters

The following example illustrates themodernway of passing rank 2 and higher arrays
as parameters. We start with a simple rank 2 example.

module matrix_module

implicit none

contains

subroutine matrix_bits(a, b, c, a_t, n)

implicit none

integer, intent (in) :: n

real, dimension (:, :), intent (in) :: a, b

real, dimension (:, :), intent (out) :: c, &

a_t

integer :: i, j, k

real :: temp

! matrix multiplication c=ab

do i = 1, n

do j = 1, n

temp = 0.0

do k = 1, n

temp = temp + a(i, k)*b(k, j)

end do

c(i, j) = temp

end do

end do

! calculate a_t transpose of a

! set a_t to be transpose matrix a

do i = 1, n

do j = 1, n

a_t(i, j) = a(j, i)

end do

end do

end subroutine matrix_bits

end module matrix_module

program ch2003

use matrix_module

implicit none

real, allocatable, dimension (:, :) :: one, &

two, three, one_t

integer :: i, n
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print *, ’input size of matrices’

read *, n

allocate (one(1:n,1:n))

allocate (two(1:n,1:n))

allocate (three(1:n,1:n))

allocate (one_t(1:n,1:n))

do i = 1, n

print *, ’input row ’, i, ’ of one’

read *, one(i, 1:n)

end do

do i = 1, n

print *, ’input row ’, i, ’ of two’

read *, two(i, 1:n)

end do

call matrix_bits(one, two, three, one_t, n)

print *, ’ matrix three:’

do i = 1, n

print *, three(i, 1:n)

end do

print *, ’ matrix one_t:’

do i = 1, n

print *, one_t(i, 1:n)

end do

end program ch2003

The subroutine is doing a matrix multiplication and transpose. There are intrinsic
functions in Fortran called matmul and transpose that provide the same func-
tionality as the subroutine. One of the problems at the end of the chapter is to replace
the code in the subroutine with calls to the intrinsic functions.

20.4.1 Notes

The dummy array and actual array arguments look the same but there is a difference:

• The dummyarray argumentsa,b,c,a_t are all assumed-shape arrays and take the
shape of the actual array arguments one, two, three and one_t, respectively.

• The actual array arguments one, two, three and one_t in the main program
are allocatable arrays or deferred-shape arrays. An allocatable array is an array
that has an allocatable attribute. Its bounds and shape are declared when the array
is allocated, hence deferred-shape.
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20.5 Example 4: Automatic Arrays andMedian Calculation

This example looks at the calculation of the median of a set of numbers and also
illustrates the use of an automatic array.

The median is the middle value of a list, i.e., the smallest number such that at least
half the numbers in the list are no greater. If the list has an odd number of entries,
the median is the middle entry in the list after sorting the list into ascending order.
If the list has an even number of entries, the median is equal to the sum of the two
middle (after sorting) numbers divided by two. One way to determine the median
computationally is to sort the numbers and choose the item in the middle.

Wirth classifies sorting into simple and advanced, and his three simple methods
are as follows:

• Insertion sorting — The items are considered one at a time and each new item is
inserted into the appropriate position relative to the previously sorted item. If you
have ever played bridge then you have probably used this method.

• Selection sorting — First the smallest (or largest) item is chosen and is set aside
from the rest. Then the process is repeated for the next smallest item and set aside
in the next position. This process is repeated until all items are sorted.

• Exchange sorting— if two items are found to be out of order they are interchanged.
This process is repeated until no more exchanges take place.

Knuth also identifies the above three sorting methods. For more information on
sorting the Knuth and Wirth books are good starting places. Knuth is a little old
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is
therefore easier to translate into modern Fortran.

In the example below we use an exchange sort:

module statistics_module

implicit none

contains

subroutine stats(x, n, mean, std_dev, median)

implicit none

integer, intent (in) :: n

real, intent (in), dimension (:) :: x

real, intent (out) :: mean

real, intent (out) :: std_dev

real, intent (out) :: median

real, dimension (1:n) :: y

real :: variance

real :: sumxi, sumxi2

sumxi = 0.0
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sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqrt(variance)

y = x

if (mod(n,2)==0) then

median = (find(n/2)+find((n/2)+1))/2

else

median = find((n/2)+1)

end if

contains

real function find(k)

implicit none

integer, intent (in) :: k

integer :: l, r, i, j

real :: t1, t2

l = 1

r = n

do while (l<r)

t1 = y(k)

i = l

j = r

do

do while (y(i)<t1)

i = i + 1

end do

do while (t1<y(j))

j = j - 1

end do

if (i<=j) then

t2 = y(i)

y(i) = y(j)

y(j) = t2

i = i + 1

j = j - 1

end if

if (i>j) exit

end do

if (j<k) then

l = i

end if
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if (k<i) then

r = j

end if

end do

find = y(k)

end function find

end subroutine stats

end module statistics_module

program ch2004

use statistics_module

implicit none

integer :: n

integer :: i

real, allocatable, dimension (:) :: x

real :: m, sd, median

integer, dimension (8) :: timing

n = 1000000

do i = 1, 3

print *, ’ n = ’, n

allocate (x(1:n))

call random_number(x)

x = x*1000

call date_and_time(values=timing)

print *, ’ initial ’

print *, timing(6), timing(7), timing(8)

call stats(x, n, m, sd, median)

print *, ’ Mean = ’, m

print *, ’ Standard deviation = ’, sd

print *, ’ Median is = ’, median

call date_and_time(values=timing)

print *, timing(6), timing(7), timing(8)

n = n*10

deallocate (x)

end do

end program ch2004

In the subroutinestats the arrayy is automatic. Itwill be allocated automatically
when we call the subroutine. We use this array as a work array to hold the sorted
data. We then use this sorted array to determine the median.

Note the use of the sum intrinsic in this example:

sumxi=sum(x)

sumxi2=sum(x*x)
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These statements replace the do loop from the earlier example. A good optimising
compiler would not make two passes over the data with these two statements.

20.5.1 Internal Subroutines and Scope

The stats subroutine contains the find subroutine. The stats subroutine has
access to the following variables

• x, n, mean, std_dev, median — these are made available as they are passed
in as parameters.

• y, variance, sumxi, sumxi2 — are local to the subroutine stats.

The subroutine find has access to the above as it is contained within subrou-
tine stats. It also has the following local variables that are only available within
subroutine selection

• i, j, k, minimum

This program uses an algorithm developed by Hoare to determine the median.
The number of computations required to find the median is approximately 2 * n.

The limiting factor with this algorithm is the amount of installed memory. The
program will crash on systems with a failure to allocate the automatic array. This is
a drawback of automatic arrays in that there is no mechanism to handle this failure
gracefully. You would then need to use allocatable local work arrays. The drawback
here is that the programmer is then responsible for the deallocation of these arrays.
Memory leaks are then possible.

20.6 Example 5: Recursive Subroutines – Quicksort

In Chap.12 we saw an example of recursive functions. This example illustrates
the use of a recursive subroutine. In this example we use the additional form of the
subroutine header thatwas requiredwhen recursive procedure supportwas introduced
in Fortran 90. The Fortran 2018 standard makes this form optional. It uses a simple
implementation of Hoare’s Quicksort. References are given in the bibliography. We
took the algorithm from Wirth’s book for our example.

The program times the various components parts of the program

• dynamic allocation of the real array
• use the random_number subroutine to generate the numbers
• call the sort_data subroutine to sort the data
• print out the first 10 sorted elements
• deallocate the array
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We also use the date_and_time intrinsic subroutine to provide the timing
details.

module sort_data_module

implicit none

contains

subroutine sort_data(raw_data, how_many)

implicit none

integer, intent (in) :: how_many

real, intent (inout), dimension (:) :: &

raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

! local variables

integer :: i, j

real :: v, t

i = l

j = r

v = raw_data(int((l+r)/2))

do

do while (raw_data(i)<v)

i = i + 1

end do

do while (v<raw_data(j))

j = j - 1

end do

if (i<=j) then

t = raw_data(i)

raw_data(i) = raw_data(j)

raw_data(j) = t

i = i + 1

j = j - 1

end if

if (i>j) exit

end do

if (l<j) then

call quicksort(l, j)

end if
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if (i<r) then

call quicksort(i, r)

end if

end subroutine quicksort

end subroutine sort_data

end module sort_data_module

program ch2005

use sort_data_module

implicit none

integer, parameter :: n = 10000000

real, allocatable, dimension (:) :: x

integer, dimension (8) :: timing

real :: t1, t2

character *30, dimension (4) :: heading = [ &

’ Allocate = ’, &

’ Random number generation = ’, &

’ Sort = ’, &

’ Deallocate = ’ ]

call date_and_time(values=timing)

print *, ’ Program starts’

write (unit=*, fmt=100) timing(1:3), &

timing(5:7)

100 format (2x, i4, 2(’/’,i2), ’ ’, 2(i2,’:’), &

i2)

t1 = td()

allocate (x(n))

t2 = td()

write (unit=*, fmt=110) heading(1), (t2-t1)

110 format (a30, f8.3)

t1 = t2

!

! Random number generation

call random_number(x)

t2 = td()

write (unit=*, fmt=110) heading(2), (t2-t1)

t1 = t2

!

! Sorting

call sort_data(x, n)

t2 = td()

write (unit=*, fmt=110) heading(3), (t2-t1)

print *, ’ First 10 sorted numbers are’

write (unit=*, fmt=120) x(1:10)
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120 format (2x, e14.6)

t1 = t2

!

! Deallocation

deallocate (x)

t2 = td()

write (unit=*, fmt=110) heading(4), (t2-t1)

call date_and_time(values=timing)

print *, ’ Program terminates’

write (unit=*, fmt=100) timing(1:3), &

timing(5:7)

contains

function td()

real :: td

call date_and_time(values=timing)

td = 60*timing(6) + timing(7) + &

real(timing(8))/1000.0

end function td

end program ch2005

20.6.1 Note — Recursive Subroutine

The actual sorting is done in the recursive subroutine QuickSort. The actual
algorithm is taken from the Wirth book. See the bibliography for a reference.

Recursion provides us with a very clean and expressive way of solving many
problems. There will be instances where it is worthwhile removing the overhead of
recursion, but the first priority is the production of a program that is correct. It is
pointless having a very efficient but incorrect solution.

We will look again at recursion and efficiency in a later chapter and see under
what criteria we can replace recursion with iteration.

20.6.2 Note — Flexible Design

The QuickSort recursive routine can be replaced with another sorting algorithm
and we can maintain the interface to sort_data. We can thus decouple the imple-
mentation of the actual sorting routine from the defined interface. We would only
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need to recompile the sort_data routine and we could relink using the already
compiled main routine.

A later chapter looks at a non recursive implementation of quicksort where we
look at some of the ways of rewriting the above program by replacing the recursive
quicksort with the non recursive version.

We call the date_and_time intrinsic subroutine to get timing information.
The first three values are the year, month and day, and 5, 6 and 7 provide the hour
minute and second. The last element of the array is milliseconds.

20.7 Example 6: Allocatable Dummy Arrays

In the examples so far allocation of arrays has taken place in the main program and
the arrays have been passed into subroutines and functions.

In this example the allocation takes place in the read_data subroutine.

module read_data_module

implicit none

contains

subroutine read_data(file_name, raw_data, &

how_many)

implicit none

character (len=*), intent (in) :: file_name

integer, intent (in) :: how_many

real, intent (out), allocatable, &

dimension (:) :: raw_data

! local variables

integer :: i

allocate (raw_data(1:how_many))

open (unit=1, file=file_name, status=’old’)

do i = 1, how_many

read (unit=1, fmt=*) raw_data(i)

end do

end subroutine read_data

end module read_data_module

module sort_data_module

implicit none
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contains

subroutine sort_data(raw_data, how_many)

implicit none

integer, intent (in) :: how_many

real, intent (inout), dimension (:) :: &

raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

! local variables

integer :: i, j

real :: v, t

i = l

j = r

v = raw_data(int((l+r)/2))

do

do while (raw_data(i)<v)

i = i + 1

end do

do while (v<raw_data(j))

j = j - 1

end do

if (i<=j) then

t = raw_data(i)

raw_data(i) = raw_data(j)

raw_data(j) = t

i = i + 1

j = j - 1

end if

if (i>j) exit

end do

if (l<j) then

call quicksort(l, j)

end if

if (i<r) then

call quicksort(i, r)

end if

end subroutine quicksort

end subroutine sort_data

end module sort_data_module
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module print_data_module

implicit none

contains

subroutine print_data(raw_data, how_many)

implicit none

integer, intent (in) :: how_many

real, intent (in), dimension (:) :: raw_data

! local variables

integer :: i

open (file=’sorted.txt’, unit=2)

do i = 1, how_many

write (unit=2, fmt=*) raw_data(i)

end do

close (2)

end subroutine print_data

end module print_data_module

program ch2006

use read_data_module

use sort_data_module

use print_data_module

implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data

integer, dimension (8) :: timing

print *, ’ how many data items are there?’

read *, how_many

print *, ’ what is the file name?’

read ’(a)’, file_name

call date_and_time(values=timing)

print *, ’ initial’

print *, timing(6), timing(7), timing(8)

call read_data(file_name, raw_data, how_many)

call date_and_time(values=timing)

print *, ’ allocate and read’

print *, timing(6), timing(7), timing(8)

call sort_data(raw_data, how_many)

call date_and_time(values=timing)

print *, ’ sort’

print *, timing(6), timing(7), timing(8)

call print_data(raw_data, how_many)
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call date_and_time(values=timing)

print *, ’ print’

print *, timing(6), timing(7), timing(8)

print *, ’ ’

print *, ’ data written to file sorted.txt’

end program ch2006

We now have a choice of where we do the allocation. This is more flexible than
having to do the allocation in the main program, which is effectively a more Fortran
77 style of programming.

20.8 Example 7: Elemental Subroutines

We saw an example in Chap.12 of elemental functions. Here is an example of an
elemental subroutine.

module swap_module

implicit none

contains

elemental subroutine swap(x, y)

integer, intent (inout) :: x, y

integer :: temp

temp = x

x = y

y = temp

end subroutine swap

end module swap_module

program ch2007

use swap_module

implicit none

integer, dimension (10) :: a, b

integer :: i

do i = 1, 10

a(i) = i

b(i) = i*i

end do

print *, a

print *, b

call swap(a, b)
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print *, a

print *, b

end program ch2007

The subroutine is written as if the arguments are scalar, but works with arrays!
User defined elemental procedures came in with Fortran 95.

20.9 Summary

We now have a lot of the tools to start tackling problems in a structured and modular
way, breaking problems down into manageable chunks and designing subprograms
for each of the tasks.

20.10 Problems

20.1 Below is the random number program that was used to generate the data sets
for the Quicksort example:

program ch2008

implicit none

integer :: n

integer :: i

real, allocatable, dimension (:) :: x

print *, ’ how many values ?’

read *, n

allocate (x(1:n))

call random_number(x)

x = x*1000

open (unit=10, file=’random.txt’)

do i = 1, n

write (10, 100) x(i)

end do

100 format (f8.3)

end program ch2008

Run the Quick_Sort program in this chapter with the data file as input. Obtain
timing details.

What percentage of the time does the program spend in each subroutine? Is it
worth trying to make the sort much more efficient given these timings?
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20.2 Try using the operating system SORT command to sort the file. What timing
figures do you get now?

Was it worth writing a program?

20.3 Consider the following program:

program ch2009

! program to test array subscript checking

! when the array is passed as an argument.

implicit none

integer, parameter :: array_size = 10

integer :: i

integer, dimension (array_size) :: a

do i = 1, array_size

a(i) = i

end do

call sub01(a, array_size)

end program ch2009

subroutine sub01(a, array_size)

implicit none

integer, intent (in) :: array_size

integer, intent (in), dimension (array_size) &

:: a

integer :: i

integer :: atotal = 0

integer :: rtotal = 0

do i = 1, array_size

rtotal = rtotal + a(i)

end do

do i = 1, array_size + 1

atotal = atotal + a(i)

end do

print *, ’ Apparent total is ’, atotal

print *, ’ real total is ’, rtotal

end subroutine sub01

The key thing to note is that we haven’t used a module procedure (we haven’t
provided an interface for the subroutine) andwe have an error in the subroutinewhere
we go outside the array. Run this program. What answer do you get for the apparent
total?

Are there any compiler flags or switches which will enable you to trap this error?
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20.4 Use the intrinsic functions matmul and transpose to replace the current
Fortran 77 style code in program ch2003.
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20.12 Commercial Numerical and Statistical Subroutine
Libraries

There are two major suppliers of commercial numerical and statistical libraries:

• NAG: Numerical Algorithms Group

and

• Rogue Wave Software

They can be found at:

https://www.nag.co.uk/

and

https://www.roguewave.com/

respectively. Their libraries are written by numerical analysts, and are fully tested
and well documented. They are under constant development and available for a wide
range of hardware platforms and compilers. Parallel versions are also available. In
a later chapter we look at using a sorting routine from the Nag SMP & Multicore
library.



Chapter 21
Modules

Common sense is the best distributed commodity in the world,
for every man is convinced that he is well supplied with it.

Descartes

Aims
The aims of this chapter are to look at the facilities found in Fortran provided by
modules, in particular:

• The use of a module to aid in the consistent definition of precision throughout a
program and subprograms.

• The use of modules for global data.
• The use of modules for derived data types.
• Modules containing procedures
• A module for timing programs
• Public, private and protected attributes
• The use statement and its extensions

21.1 Introduction

We have now covered the major executable building blocks in Fortran and they are

• The main program unit
• functions
• subroutines

© Springer International Publishing AG, part of Springer Nature 2018
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and these provide uswith the tools to solvemany problems using just amain program,
and one or more external and internal procedures. Both external and internal pro-
cedures communicate through their argument lists, whilst internal procedures have
access to data in their host program units.

We have also introduced modules. The first set of examples was in the chapter on
functions. The second set were in the chapter on derived types and the third set were
in the subroutine chapters.

We will now look at examples of modules in more detail for

• Precision definition.
• Global data
• Modules containing procedures
• Derived type definition
• Simple timing information of a program

Modules provide the code organisationalmechanism in Fortran and can be thought
of as the equivalent of classes inC++, Java andC#. They are one of themost important
features of modern Fortran.

21.2 Basic Module Syntax

The form of a module is

module module_name

..

..

..

end module module_name

and the specifications and definitions contained within it is made available in the
program units that need to access it by

use module_name

The use statement must be the first statement after the program, function or
subroutine statement.

21.3 Modules for Global Data

So far the only way that a program unit can communicate with a procedure is through
the argument list. Sometimes this is very cumbersome, especially if a number of
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procedures want access to the same data, and it means long argument lists. The
problem can be solved using modules; e.g., by defining the precision to which you
wish to work and any constants defined to that precision which may be needed by a
number of procedures.

21.4 Example 1: Modules for Precision Specification and
Constant Definition

In the chapter on arithmetic we introduced the features in Fortran that enable us to
specify the precision of real numbers.

For the real numeric kind types, we used

• sp - single precision
• dp - double precision
• qp - quad precision

and here is the Fortran code segment from the program example.

integer, parameter :: &

sp = selected_real_kind( 6, 37)

integer, parameter :: &

dp = selected_real_kind(15, 307)

integer, parameter :: &

qp = selected_real_kind(30, 291)

In this example we are going to package the above in a module, and then use the
module to enable us to choose a working precision for the program and associated
functions and subroutines. This module will be referred to in many examples in the
book.

We will also have a second module with a set of physical and mathematical
constants.

module precision_module

implicit none

integer, parameter :: sp = selected_real_kind( &

6, 37)

integer, parameter :: dp = selected_real_kind( &

15, 307)

integer, parameter :: qp = selected_real_kind( &

30, 291)

end module precision_module
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module maths_module

use precision_module, wp => dp

implicit none

real (wp), parameter :: c = 299792458.0_wp

! units m s-1

real (wp), parameter :: e = &

2.7182818284590452353602874713526624977_wp

real (wp), parameter :: g = 9.812420_wp

! 9.780 356 m s-2 at sea level on the equator

! 9.812 420 m s-2 at sea level in London

! 9.832 079 m s-2 at sea level at the poles

real (wp), parameter :: pi = &

3.141592653589793238462643383279502884_wp

end module maths_module

module sub1_module

implicit none

contains

subroutine sub1(radius, area, circumference)

use precision_module, wp => dp

use maths_module

implicit none

real (wp), intent (in) :: radius

real (wp), intent (out) :: area, &

circumference

area = pi*radius*radius

circumference = 2.0_wp*pi*radius

end subroutine sub1

end module sub1_module
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program ch2101

use precision_module, wp => dp

use sub1_module

implicit none

real (wp) :: r, a, c

print *, ’radius?’

read *, r

call sub1(r, a, c)

print *, ’ for radius = ’, r

print *, ’ area = ’, a

print *, ’ circumference = ’, c

end program ch2101

In our example we have

use precision_module , wp => dp

and the wp => dp is called a rename-list in Fortran terminology.We are using
it in this example to make wp point to the dp precision in the module.

Thus we can chose the working precision of our program very easily.
The kind type parameter wp is then used with all the real type declaration e.g.,

real (wp):: r ,a,c

To make sure that all floating point calculations are performed to the working
precision specified by wp any constants such as 2.0 in subroutine Sub1 are specified
as const_wp e.g.,

2.0_wp

We set e and pi to over 33 digits as this is the number in a 128 bit real. This
ensures that all calculations are carried out accurately to the maximum precision.

21.5 Example 2: Modules for Globally Sharing Data

The following example uses a module to define a parameter and two arrays. The
module also contains three subroutines that have access to the data in the module.
The main program has the statement
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use data_module

which interfaces to the three subroutines.
Note that in this example the calls to the subroutines have no parameters. They

work with the data contained in the module.

module data_module

implicit none

integer, parameter :: n = 12

real, dimension (1:n) :: rainfall

real, dimension (1:n) :: sorted

contains

subroutine readdata

implicit none

integer :: i

character (len=40) :: filename

print *, ’ What is the filename ?’

read *, filename

open (unit=100, file=filename, status=’old’)

do i = 1, n

read (100, *) rainfall(i)

end do

end subroutine readdata

subroutine sortdata

implicit none

sorted = rainfall

call selection

contains

subroutine selection

implicit none

integer :: i, j, k

real :: minimum

do i = 1, n - 1

k = i

minimum = sorted(i)

do j = i + 1, n

if (sorted(j)<minimum) then

k = j

minimum = sorted(k)

end if
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end do

sorted(k) = sorted(i)

sorted(i) = minimum

end do

end subroutine selection

end subroutine sortdata

subroutine printdata

implicit none

integer :: i

print *, ’ original data is ’

do i = 1, n

print 100, rainfall(i)

end do

print *, ’ Sorted data is ’

do i = 1, n

print 100, sorted(i)

end do

100 format (1x, f7.1)

end subroutine printdata

end module data_module

program ch2102

use data_module

implicit none

call readdata

call sortdata

call printdata

end program ch2102

21.6 Modules for Derived Data Types

When using derived data types and passing them as arguments to procedures, both
the actual arguments and dummy arguments must be of the same type, i.e., they
must be declared with reference to the same type definition. The only way this can
be achieved is by using modules. The user defined type is declared in a module and
each program unit that requires that type uses the module.
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21.7 Example 3: Person Data Type

In this example we have a user defined type person which we wish to use in the
main program and pass arguments of this type to the subroutines read_data and
stats. In order to have the type person available to two subroutines and the
main program we have defined person in a module personal_module and
then made the module available to each program unit with the statement

use personal_module

Note that we have put both subroutines in one module.

module personal_module

implicit none

type person

real :: weight

integer :: age

character :: gender

end type person

end module personal_module

module subs_module

use personal_module

implicit none

contains

subroutine read_data(data, no)

implicit none

type (person), dimension (:), allocatable, &

intent (out) :: data

integer, intent (out) :: no

integer :: i

print *, ’input number of patients’

read *, no

allocate (data(1:no))

do i = 1, no

print *, ’for person ’, i

print *, ’weight ?’

read *, data(i)%weight

print *, ’age ?’

read *, data(i)%age

print *, ’gender ?’

read *, data(i)%gender

end do

end subroutine read_data
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subroutine stats(data, no, m_a, f_a)

implicit none

type (person), dimension (:), &

intent (in) :: data

real, intent (out) :: m_a, f_a

integer, intent (in) :: no

integer :: i, no_f, no_m

m_a = 0.0

f_a = 0.0

no_f = 0

no_m = 0

do i = 1, no

if (data(i)%gender==’M’ .or. &

data(i)%gender==’m’ &

) then

m_a = m_a + data(i)%weight

no_m = no_m + 1

else if (data(i)%gender==’F’ .or. &

data(i)%gender==’f’) then

f_a = f_a + data(i)%weight

no_f = no_f + 1

end if

end do

if (no_m>0) then

m_a = m_a/no_m

end if

if (no_f>0) then

f_a = f_a/no_f

end if

end subroutine stats

end module subs_module

program ch2103

use personal_module

use subs_module

implicit none

type (person), dimension (:), allocatable :: &

patient

integer :: no_of_patients

real :: male_average, female_average

call read_data(patient, no_of_patients)

call stats(patient, no_of_patients, &

male_average, female_average)

print *, ’average male weight is ’, &
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male_average

print *, ’average female weight is ’, &

female_average

end program ch2103

21.8 Example 4: A Module for Simple Timing of a Program

It is a common requirement to need timing details on how long parts of a program
take. In this module we have a start_timing and end_timing subroutines
and a time_difference real function. We will be using this module in several
examples in subsequent chapters.

module timing_module

implicit none

integer, dimension (8), private :: dt

real, private :: h, m, s, ms, tt

real, private :: last_tt

contains

subroutine start_timing()

implicit none

call date_and_time(values=dt)

print 100, dt(1:3), dt(5:8)

h = real(dt(5))

m = real(dt(6))

s = real(dt(7))

ms = real(dt(8))

last_tt = 60*(60*h+m) + s + ms/1000.0

100 format (1x, i4, ’/’, i2, ’/’, i2, 1x, i2, &

’:’, i2, ’:’, i2, 1x, i3)

end subroutine start_timing

subroutine end_timing()

implicit none

call date_and_time(values=dt)

print 100, dt(1:3), dt(5:8)

100 format (1x, i4, ’/’, i2, ’/’, i2, 1x, i2, &
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’:’, i2, ’:’, i2, 1x, i3)

end subroutine end_timing

real function time_difference()

implicit none

tt = 0.0

call date_and_time(values=dt)

h = real(dt(5))

m = real(dt(6))

s = real(dt(7))

ms = real(dt(8))

tt = 60*(60*h+m) + s + ms/1000.0

time_difference = tt - last_tt

last_tt = tt

end function time_difference

end module timing_module

21.9 private, public and protected Attributes

With the examples of modules so far every entity in a module has been accessible
to each program unit that ‘uses’ the module. By default all entities in a module have
the public attribute, but sometimes it is desirable to limit the access. If entities have
the private attribute this limits the possibility of inadvertent changes to a variable by
another program unit.

Example of using public and private attributes:

real, public : : a, b, c

integer, private :: i, j, k

If a variable in a module is declared to be public, its access can be partially
restricted by also giving it the protected attribute. This means that the variable can
still be seen by program units that use the module but its value cannot be changed
e.g.

integer, public, protected:: i
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21.10 The use Statement

In its simplest form the use statement is

use module_name

which thenmakes all themodule’s public entities available to the program unit. There
may be times when only certain entities should be available to a particular program
unit. In Example 1 subroutine sub1 ’uses’ maths_module but only needs pi and
not c, e and g. The use statement could therefore be

use maths_module, only: pi

There are also times when an entity in a module needs to have its name changed
when used in a program unit. For example variable g in maths_module needs to
be called gravity in subroutine sub1 so the use statement becomes

use maths_module, gravity=> g

We have also used this facility in example 1 where we renamed dp to wp.

21.11 Notes on Module Usage and Compilation

In the examples so far we have organised our code using one file. The file will
comprise one or more of the following program units:

• main program
• subroutine
• function
• module

Another way of organising our code is to use several files and include statements.
The next example shows a way of doing this.

21.12 Example 5: Modules and Include Statements

Here is the program source.

include ’precision_module.f90’

include ’maths_module.f90’

include ’sub1_module.f90’
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program ch2105

use precision_module, wp => dp

use sub1_module

implicit none

real (wp) :: r, a, c

print *, ’radius?’

read *, r

call sub1(r, a, c)

print *, ’ for radius = ’, r

print *, ’ area = ’, a

print *, ’ circumference = ’, c

end program ch2105

and we will use both styles throughout the rest of the book.

21.13 Formal Syntax

The following is taken from the Fortran standard and describes more fully require-
ments in the interface area.

21.13.1 Interface

The interface of a procedure determines the forms of reference through which it may
be invoked. The procedures interface consists of its name, binding label, generic
identifiers, characteristics, and the names of its dummy arguments. The character-
istics and binding label of a procedure are fixed, but the remainder of the interface
may differ in differing contexts, except that for a separate module procedure body
(15.6.2.5), the dummy argument names and whether it has the NON_RECURSIVE
attribute shall be the same as in its corresponding module procedure interface body
(15.4.3.2).

Anabstract interface is a set of procedure characteristicswith thedummyargument
names.
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21.13.2 Implicit and Explicit Interfaces

Within the scope of a procedure identifier, the interface of the procedure is either
explicit or implicit. The interface of an internal procedure, module procedure, or
intrinsic procedure is always explicit in such a scope.

The interface of a subroutine or a function with a separate result name is explicit
within the subprogram where the name is accessible.

21.13.3 Explicit Interface

A procedure other than a statement function shall have an explicit interface if it is
referenced and

• a reference to the procedure appears

– with an argument keyword, or
– in a context that requires it to be pure,

• the procedure has a dummy argument that

– has theallocatable,optional,pointer,target, or value attribute,
– is an assumed-shape array,
– is a coarray,
– is polymorphic,

• the procedure has a result that

– is an array,
– is a pointer or is allocatable, or
– has a nonassumed type parameter value that is not a constant expression,

• the procedure is elemental

21.14 Summary

We have now introduced the concept of a module, another type of program unit,
probably one of the most important features of modern Fortran. We have seen in this
chapter how they can be used:

• Define global data.
• Define derived data types.
• Contain explicit procedure interfaces.
• Package together procedures.
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This is a very powerful addition to the language, especially when constructing
large programs and procedure libraries.

21.15 Problems

21.1 Write two functions, one to calculate the volume of a cylinder πr2l where the
radius is r and the length is l, and the other to calculate the area of the base of the
cylinder πr2

Define π as a parameter in a module which is used by the two functions. Now
write a main program which prompts the user for the values of r and l, calls the two
functions and prints out the results.

21.2 Make all the real variables in the above problem have 15 significant digits and
a range of 10−307 to 10+307. Use a module.



Chapter 22
Data Structuring in Fortran

The good teacher is a guide who helps others to dispense with
his services.

R. S. Peters, Ethics and Education

Aims
The aims of this chapter are to look at several complete examples illustrating data
structuring in Fortran using the following

• Singly linked lists
• Ragged arrays
• A perfectly balanced tree
• A date data type

22.1 Introduction

This chapter looks at simple data structuring in Fortran using a range of examples.
We use modules throughout to define the data structures that we will be working
with. The chapter starts with a number of pointer examples.

22.2 Example 1: Singly Linked List: Reading an Unknown
Amount of Text

Conceptually a singly linked list consists of a sequence of boxes with compartments.
In the simplest case the first compartment holds a data item and the second contains
directions to the next box.
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In the diagram below we have a singly linked list that holds characters Jane. We
assume that the address of the start of the list is 100. We assume 4 bytes per character
(a 32 bit word) and 4 bytes per pointer.

• Element 1 is at address 100 and holds the character J and a pointer to the next
element at address 108.

• Element 2 holds the character a and a pointer to the next element at address 116.
• Element 3 holds the character n and a pointer to the next element at address 124.
• Element 4 holds the character e and does not point to anything - we use the null
pointer.

[J : 108] -> [a : 116] -> [n : 124] -> [e : null]

We can construct a data structure in Fortran to work with a singly linked list by
defining a link data type with two components, a character variable and a pointer
variable to a link data type. A complete program to do this is given below:

module link_module

type link

character (len=1) :: x

type (link), pointer :: next => null()

end type link

end module link_module

program ch2201

use link_module

implicit none

character (len=80) :: fname

integer :: io_stat_number = 0

type (link), pointer :: root, current

integer :: i = 0, n

character (len=:), allocatable :: string

print *, ’ Type in the file name ? ’

read ’(a)’, fname

open (unit=1, file=fname, status=’old’)

allocate (root)

! read first data item

read (unit=1, fmt=’(a)’, advance=’no’, &

iostat=io_stat_number) root%x

if (io_stat_number/=-1) then

i = i + 1

allocate (root%next)
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end if

current => root

! read the rest

do while (associated(current%next))

current => current%next

read (unit=1, fmt=’(a)’, advance=’no’, &

iostat=io_stat_number) current%x

if (io_stat_number/=-1) then

i = i + 1

allocate (current%next)

end if

end do

print *, i, ’ characters read’

n = i

allocate (character(len=n) :: string)

i = 0

current => root

do while (associated(current%next))

i = i + 1

string(i:i) = current%x

current => current%next

end do

print *, ’data read was:’

print *, string

end program ch2201

The first thing of interest is the type definition for the singly linked list. We have

module link_module

type link

character (len=1) :: c

type (link) , pointer :: next => null()

end type link

end module link_module

and we call the new type link. It comprises two component parts: the first holds
a character c, and the second holds a pointer called next to allow us to refer to
another instance of type link.

We use the intrinsic null() to provide an initial value for the next pointer.
The next item of interest is the variable definition. Here we define two variables

root and current to be pointers that point to items of type link. In Fortran
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when we define a variable to be a pointer we also have to define what it is allowed
to point to. This is a very useful restriction on pointers, and helps make using them
more secure. The first executable statement

allocate(root)

requests that the variable root be allocated memory. The next statement reads a
character from the file. We are using a number of additional features of the read
statement, including

iostat=io_stat_number

advance=’no’

and the two options combine to provide the ability to read an arbitrary number of text
from afile a character at a time. If there is data in the filewe allocate root%next and
increment the character count i. We then loop until we reach end of file. When end
of file is reached the while loop will terminate as next is null(). The statement

current => root

means that both current and root point to the same physical memory location, and
this holds a character data item and a pointer. We must do this as we have to know
where the start of the list is. This is now our responsibility, not the compilers.Without
this statement we are not able to do anything with the list except fill it up - hardly
very useful.

When end of file is reached the while loop will terminate as next is null().
We then print out the number of characters read.We then allocate a character variable
of the correct size. The next statement

current => root

means that we are back at the start of the list, and in a position to traverse the list and
copy each character from the linked list to the word character variable.

There is thus the concept with the pointer variable current of it providing us
with a window into memory where the complete linked list is held, and we look at
one part of the list at a time. Both while loops use the intrinsic function associated
to check the association status of a pointer.

It is recommended that this program be typed in, compiled and executed. It is
surprisingly difficult to believe that it will actually read in a completely arbitrary
amount of text from a file. Seeing is believing.
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22.3 Example 2: Reading in an Arbitrary Number of Reals
Using a Linked List and Copying to an Array

In this example wewill look at using a singly linked list to read in an arbitrary amount
of data and then allocating an array to copy it to for normal numeric calculations at
run time. Here is the program.

module link_module

type link

real :: x

type (link), pointer :: next => null()

end type link

end module link_module

program ch2202

use link_module

implicit none

character (len=80) :: fname

integer :: io_stat_number = 0

type (link), pointer :: root, current

integer :: i = 0, n

real, allocatable, dimension (:) :: y

print *, ’ Type in the file name ? ’

read ’(a)’, fname

open (unit=1, file=fname, status=’old’)

allocate (root)

! read first data item

read (unit=1, fmt=*, &

iostat=io_stat_number) root%x

if (io_stat_number/=-1) then

i = i + 1

allocate (root%next)

end if

current => root

! read the rest

do while (associated(current%next))

current => current%next

read (unit=1, fmt=*, &
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iostat=io_stat_number) current%x

if (io_stat_number/=-1) then

i = i + 1

allocate (current%next)

end if

end do

print *, i, ’ numbers read’

n = i

allocate (y(1:n))

i = 0

current => root

do while (associated(current%next))

i = i + 1

y(i) = current%x

current => current%next

end do

print *, ’data read was:’

do i = 1, n

print *, y(i)

end do

end program ch2202

A casual visual comparison of the two examples shows many similarities.
Diff is a line-oriented text file comparison utility. It tries to determine the smallest

set of deletions and insertions to create one file from the other. The diff command
displays the changes made in a standard format. Given one file and the changes, the
other file can be created.

Here is the output from running this utility on these two examples.

3c3

< character (len=1) :: x

---

> real :: x

8c8

< program ch2201

---

> program ch2202

15c15

< character (len=:), allocatable :: string

---

> real, allocatable, dimension (:) :: y

25c25
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< read (unit=1, fmt=’(a)’, advance=’no’, &

---

> read (unit=1, fmt=*, &

37c37

< read (unit=1, fmt=’(a)’, advance=’no’, &

---

> read (unit=1, fmt=*, &

45c45

< print *, i, ’ characters read’

---

> print *, i, ’ numbers read’

48c48

< allocate (character(len=n) :: string)

---

> allocate (y(1:n))

53c53

< string(i:i) = current%x

---

> y(i) = current%x

57,58c57,61

< print *, string

< end program ch2201

---

> do i = 1, n

> print *, y(i)

> end do

>

> end program ch2202

22.4 Example 3: Ragged Arrays

Arrays in Fortran are rectangular, even when allocatable. However if you wish to set
up a lower triangular matrix that uses minimal memory Fortran provides a number of
ways of doing this. The following example achieves it using allocatable components.

module ragged_module

implicit none

type ragged

real, dimension (:), allocatable :: &

ragged_row

end type ragged

end module ragged_module
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program ch2203

use ragged_module

implicit none

integer :: i

integer, parameter :: n = 3

type (ragged), dimension (1:n) :: lower_diag

do i = 1, n

allocate (lower_diag(i)%ragged_row(1:i))

print *, ’ type in the values for row ’, i

read *, lower_diag(i)%ragged_row(1:i)

end do

do i = 1, n

print *, lower_diag(i)%ragged_row(1:i)

end do

end program ch2203

Within the first do loop we allocate a row at a time and each time we go around
the loop the array allocated increases in size.

22.5 Example 4: Ragged Arrays and Variable Sized Data
Sets

The previous example showed how to use allocatable components in a derived type
to achieve ragged arrays.

In this example we are going to use data from the UK Met Office. Here is the
current web address.

https://www.metoffice.gov.uk/public/weather/

climate-historic/#?tab=climateHistoric

In this example both the number of stations and the number of data items for each
station is read in at run time and allocated accordingly. Notice that 0 is valid as the
number of data items for a station.

module ragged_module

type ragged

real, allocatable, dimension (:) :: rainfall

end type ragged

end module ragged_module
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program ch2204

use ragged_module

implicit none

integer :: i

integer :: nr

integer, allocatable, dimension (:) :: nc

type (ragged), allocatable, dimension (:) :: &

station

print *, ’ enter number of stations’

read *, nr

allocate (station(1:nr))

allocate (nc(1:nr))

do i = 1, nr

print *, ’ enter the number of data values ’ &

, ’for station ’, i

read *, nc(i)

allocate (station(i)%rainfall(1:nc(i)))

if (nc(i)==0) then

cycle

end if

print *, ’ Type in the values for station ’, &

i

read *, station(i)%rainfall(1:nc(i))

end do

print *, ’ Row N Data’

do i = 1, nr

print 100, i, nc(i), station(i)%rainfall(1: &

nc(i))

100 format (3x, i3, 2x, i3, 2x, 12(1x,f6.2))

end do

end program ch2204

Here is the input data file. It is the first 6 years rainfall data from the Met Office
Cwmystwyth site.

6

0

0

9

144.8

112.5

77.2

130.7

66.3
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66.1

141.1

149.5

134.8

8

117.8

72.8

56.7

236.2

218.0

69.7

85.2

204.4

10

106.2

159.7

126.9

121.6

62.9

154.3

165.0

139.0

234.4

19.7

12

83.1

38.5

67.3

76.4

90.4

83.5

177.0

180.5

66.0

171.9

174.5

334.8

Here is the output.

enter number of stations

enter the number of data values for station 1

enter the number of data values for station 2

enter the number of data values for station 3

Type in the values for station 3
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enter the number of data values for station 4

Type in the values for station 4

enter the number of data values for station 5

Type in the values for station 5

enter the number of data values for station 6

Type in the values for station 6

Row N Data

1 0

2 0

3 9 144.80 112.50 77.20 130.70 66.30

66.10 141.10 149.50 134.80

4 8 117.80 72.80 56.70 236.20 218.00

69.70 85.20 204.40

5 10 106.20 159.70 126.90 121.60 62.90

154.30 165.00 139.00 234.40 19.70

6 12 83.10 38.50 67.30 76.40 90.40

83.50 177.00 180.50 66.00 171.90

174.50 334.80

22.6 Example 5: Perfectly Balanced Tree

Let us now look at a more complex example that builds a perfectly balanced tree and
prints it out. A loose definition of a perfectly balanced tree is one that has minimum
depth for n nodes. More accurately a tree is perfectly balanced if for each node the
number of nodes in its left and right subtrees differ by at most 1:

module tree_node_module

implicit none

type tree_node

integer :: number

type (tree_node), pointer :: left => null(), &

right => null()

end type tree_node

end module tree_node_module

module tree_module

implicit none

contains
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recursive function tree(n) result (answer)

use tree_node_module

implicit none

integer, intent (in) :: n

type (tree_node), pointer :: answer

type (tree_node), pointer :: new_node

integer :: l, r, x

if (n==0) then

print *, ’ terminate tree’

nullify (answer)

else

l = n/2

r = n - l - 1

print *, l, r, n

print *, ’ next item’

read *, x

allocate (new_node)

new_node%number = x

print *, ’ left branch’

new_node%left => tree(l)

print *, ’ right branch’

new_node%right => tree(r)

answer => new_node

end if

print *, ’ function tree ends’

end function tree

end module tree_module

module print_tree_module

implicit none

contains

recursive subroutine print_tree(t, h)

use tree_node_module

implicit none

type (tree_node), pointer :: t

integer :: i

integer :: h

if (associated(t)) then

call print_tree(t%left, h+1)

do i = 1, h
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write (unit=*, fmt=100, advance=’no’)

end do

print *, t%number

call print_tree(t%right, h+1)

end if

100 format (’ ’)

end subroutine print_tree

end module print_tree_module

program ch2205

! construction of a perfectly balanced tree

use tree_node_module

use tree_module

use print_tree_module

implicit none

type (tree_node), pointer :: root

integer :: n_of_items

print *, ’enter number of items’

read *, n_of_items

root => tree(n_of_items)

call print_tree(root, 0)

end program ch2205

There are a number of very important concepts contained in this example and they
include:

• The use of a module to define a type. For user defined data types we must create
a module to define the data type if we want it to be available in more than one
program unit .

• The use of a function that returns a pointer as a result.
• As the function returns a pointer we must determine the allocation status
before the function terminates. This means that in the above case we use the
nullify(result) statement. The other option is to target the pointer.

• The use of associated to determine if the node of the tree is terminated or
points to another node.

Type the program in and compile, link and run it. Note that the tree only has the
minimal depth necessary to store all of the items. Experiment with the number of
items and watch the tree change its depth to match the number of items.
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22.7 Example 6: Date Class

The following is a complete manual rewrite of Skip Noble and Alan Millers date
module. Here are two urls for Alan Miller’s Fortran 90 version of the code. The
original Skip Noble Fortran 77 version is in Chap. 38.

http://jblevins.org/mirror/amiller/

http://jblevins.org/mirror/amiller/datesub.f90

Here are some details about the function and subroutine naming conversion.

Skip Noble Alan Miller

Fortran 77 Fortran 90 Current implementation

IDAY iday date_to_day_in_year

IZLR izlr date_to_weekday_number

CALEND calend year_and_day_to_date

CDATE cdate julian_to_date

NDAYS ndays ndays

DAYSUB daysub julian_to_date_and_week_and_day

JD jd calendar_to_julian

The original worked with the built-in Fortran intrinsic data types, i.e. year,
month and day were plain integer data types. It has been rewritten to work with a
derived date data type.

We have also added a function to print dates out in a variety of formats. This
is based on a subroutine called date_stamp from the original code. The first key
code segment is

type, public :: date

private

integer :: day

integer :: month

integer :: year

end type date

where the date data type is public but its components are private. This means that
access to the components must be done via subroutines and functions within the
date_module module. The next key segment is

character (9) :: day(0:6) = &

(/ ’Sunday ’, ’Monday ’, ’Tuesday ’, &

’Wednesday’, ’Thursday ’, ’Friday ’, &

’Saturday ’ /)

character (9) :: month(1:12) = &

https://doi.org/10.1007/978-3-319-75502-1_38
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(/ ’January ’, ’February ’, ’March ’, &

’April ’, ’May ’, ’June ’, &

’July ’, ’August ’, ’September’, &

’October ’, ’November ’, ’December ’ /)

which declares the variable day to be an array of characters of length 9. They are
initialised with the names of the days. The variable day is declared in the module
and is available to all contained functions and subroutines.

The variable month is an array of characters of length 9 and is initialised to the
names of the months. The variable month is declared in the module and is available
to all contained functions and subroutines. The next key code segment is

public :: &

calendar_to_julian, &

date_, &

date_to_day_in_year, &

date_to_weekday_number, &

get_day, &

get_month, &

get_year, &

julian_to_date, &

julian_to_date_and_week_and_day, &

ndays, &

print_date, &

year_and_day_to_date

where we explicitly make the listed subroutines and functions public, as the code
segment from the top of the module,

We have to provide a user defined constructor when the components of the derived
type are private. This is given below:

function date_(dd,mm,yyyy) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

x = date(dd,mm,yyyy)

end function date_

This in turn calls the built-in constructor date. As the date_ function is now
an executable statement we cannot initialise in a declaration, i.e. the following is not
allowed.

type (date) :: date1_(11,2,1952)
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We also provide three additional procedures to access the components of the date
class:

get_day

get_month

get_year

This is common programming practice in object oriented and object based pro-
gramming.

Theprint_date function also has examples of internal write statements. These
are

write(print_date(1:2),’(i2)’)x%day

write(print_date(4:5),’(i2)’)x%month

write(print_date(7:10) , ’(i4)’) x%year

write(print_date(pos:pos+1) ,’(i2)’) x%day

write(print_date(pos:pos+3) , ’(i4)’) x%year

where we construct the elements of the character variable from the integer values of
the x%day, x%month and x%year data.

module date_module

implicit none

private

type, public :: date

private

integer :: day

integer :: month

integer :: year

end type date

character (9) :: day(0:6) = (/ ’Sunday ’, &

’Monday ’, ’Tuesday ’, ’Wednesday’, &

’Thursday ’, ’Friday ’, ’Saturday ’ /)

character (9) :: month(1:12) = (/ ’January ’, &

’February ’, ’March ’, ’April ’, &

’May ’, ’June ’, ’July ’, &

’August ’, ’September’, ’October ’, &

’November ’, ’December ’ /)

public :: calendar_to_julian, date_, &

date_to_day_in_year, date_to_weekday_number, &
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get_day, get_month, get_year, &

julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

contains

function calendar_to_julian(x) result (ival)

implicit none

integer :: ival

type (date), intent (in) :: x

ival = x%day - 32075 + 1461*(x%year+4800+(x% &

month-14)/12)/4 + 367*(x%month-2-((x%month &

-14)/12)*12)/12 - 3*((x%year+4900+(x%month &

-14)/12)/100)/4

end function calendar_to_julian

function date_(dd, mm, yyyy) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

x = date(dd, mm, yyyy)

end function date_

! functions

! "izlr" date_to_day_in_year

! and

! "iday" date_to_weekday_number

! are taken from remark on

! algorithm 398, by j. douglas robertson,

! cacm 15(10):918.

function date_to_day_in_year(x)

implicit none

integer :: date_to_day_in_year

type (date), intent (in) :: x

intrinsic modulo

date_to_day_in_year = 3055*(x%month+2)/100 - &

(x%month+10)/13*2 - 91 + (1-(modulo(x%year &

,4)+3)/4+(modulo(x%year,100)+99)/100-( &

modulo(x%year,400)+399)/400)*(x%month+10)/ &

13 + x%day
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end function date_to_day_in_year

function date_to_weekday_number(x)

implicit none

integer :: date_to_weekday_number

type (date), intent (in) :: x

intrinsic modulo

date_to_weekday_number = modulo((13*( &

x%month+10-(x%month+10)/13*12)-1)/5+x%day+ &

77+5*(x%year+(x%month-14)/12-(x%year+ &

(x%month-14)/12)/100*100)/4+(x%year+(x% &

month-14)/12)/400-(x%year+(x%month- &

14)/12)/100*2, 7)

end function date_to_weekday_number

function get_day(x)

implicit none

integer :: get_day

type (date), intent (in) :: x

get_day = x%day

end function get_day

function get_month(x)

implicit none

integer :: get_month

type (date), intent (in) :: x

get_month = x%month

end function get_month

function get_year(x)

implicit none

integer :: get_year

type (date), intent (in) :: x

get_year = x%year

end function get_year

! cdate - julian_to_date

! see cacm 1968 11(10):657,

! letter to the editor by fliegel and van

! flandern.
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function julian_to_date(julian) result (x)

implicit none

integer, intent (in) :: julian

integer :: l, n

type (date) :: x

l = julian + 68569

n = 4*l/146097

l = l - (146097*n+3)/4

x%year = 4000*(l+1)/1461001

l = l - 1461*x%year/4 + 31

x%month = 80*l/2447

x%day = l - 2447*x%month/80

l = x%month/11

x%month = x%month + 2 - 12*l

x%year = 100*(n-49) + x%year + 1

end function julian_to_date

subroutine julian_to_date_and_week_and_day(jd, &

x, wd, ddd)

implicit none

integer, intent (out) :: ddd, wd

integer, intent (in) :: jd

type (date), intent (out) :: x

x = julian_to_date(jd)

wd = date_to_weekday_number(x)

ddd = date_to_day_in_year(x)

end subroutine julian_to_date_and_week_and_day

function ndays(date1, date2)

implicit none

integer :: ndays

type (date), intent (in) :: date1, date2

ndays = calendar_to_julian(date1) - &

calendar_to_julian(date2)

end function ndays

function print_date(x, day_names, &

short_month_name, digits)

implicit none

type (date), intent (in) :: x

logical, optional, intent (in) :: day_names, &
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short_month_name, digits

character (40) :: print_date

integer :: pos

logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if

if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then

want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ’(i2)’) x%day

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) x%month

print_date(6:6) = ’/’

write (print_date(7:10), ’(i4)’) x%year

else

if (want_day) then

pos = date_to_weekday_number(x)

print_date = trim(day(pos)) // ’ ’

pos = len_trim(print_date) + 2

else

pos = 1

print_date = ’ ’

end if

write (print_date(pos:pos+1), ’(i2)’) &

x%day

if (want_short_month_name) then

print_date(pos+3:pos+5) = month(x%month) &

(1:3)

pos = pos + 7

else

print_date(pos+3:) = month(x%month)

pos = len_trim(print_date) + 2
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end if

write (print_date(pos:pos+3), ’(i4)’) &

x%year

end if

return

end function print_date

! calend - year_and_day_to_date

! see acm algorithm 398,

! tableless date conversion, by

! dick stone, cacm 13(10):621.

function year_and_day_to_date(year, day) &

result (x)

implicit none

type (date) :: x

integer, intent (in) :: day, year

integer :: t

intrinsic modulo

x%year = year

t = 0

if (modulo(year,4)==0) then

t = 1

end if

if (modulo(year,400)/=0 .and. &

modulo(year,100)==0) then

t = 0

end if

x%day = day

if (day>59+t) then

x%day = x%day + 2 - t

end if

x%month = ((x%day+91)*100)/3055

x%day = (x%day+91) - (x%month*3055)/100

x%month = x%month - 2

if (x%month>=1 .and. x%month<=12) then

return

end if

write (unit=*, fmt=’(a,i11,a)’) ’$$year_and_d&

&ay_to_date: day of the year input &

&=’, day, ’ is out of range.’

end function year_and_day_to_date



380 22 Data Structuring in Fortran

end module date_module

program ch2206

use date_module, only: calendar_to_julian, &

date, date_, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date_and_week_and_day, &

ndays, print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy

integer :: val(8)

intrinsic date_and_time

type (date) :: date1, date2, x

call date_and_time(values=val)

yyyy = val(1)

mm = 10

do i = 31, 26, -1

x = date_(i, mm, yyyy)

if (date_to_weekday_number(x)==0) then

print *, ’Turn clocks back to EST on: ’, &

i, ’ October ’, get_year(x)

exit

end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 4

do i = 1, 8

x = date_(i, mm, yyyy)

if (date_to_weekday_number(x)==0) then

print *, ’Turn clocks ahead to DST on: ’, &

i, ’ April ’, get_year(x)

exit

end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 12

dd = 31

x = date_(dd, mm, yyyy)

if (date_to_day_in_year(x)==366) then

print *, get_year(x), ’ is a leap year’
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else

print *, get_year(x), ’ is not a leap year’

end if

x = date_(1, 1, 1970)

call julian_to_date_and_week_and_day &

(calendar_to_julian(x), x, wd, ddd)

if (get_year(x)/=1970 .or. get_month(x)/=1 &

.or. get_day(x)/=1 .or. wd/=4 .or. ddd/=1) &

then

print *, &

’julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ’, get_year(x), &

get_month(x), get_day(x), wd, ddd

stop

end if

date1 = date_(22, 5, 1984)

date2 = date_(22, 5, 1983)

ndiff = ndays(date1, date2)

yyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’ndays failed; ndiff = ’, ndiff

else

if (get_month(x)/=1 .and. get_day(x)/=1) &

then

print *, ’year_and_day_to_date failed’

print *, ’ mma, dda = ’, get_month(x), &

get_day(x)

else

print *, ’ calendar_to_julian OK’

print *, ’ date_ OK’

print *, ’ date_to_day_in_year OK’

print *, ’ date_to_weekday_number OK’

print *, ’ get_day OK’

print *, ’ get_month OK’

print *, ’ get_year OK’

print *, &

’ julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’

print *, ’ year_and_day_to_date OK’

end if

end if
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x = date_(11, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter ’, &

print_date(x)

print *, &

’ day_names=false short_month_name=false ’, &

print_date(x, day_names=.false., &

short_month_name=.false.)

print *, &

’ day_names=true short_month_name=false ’, &

print_date(x, day_names=.true., &

short_month_name=.false.)

print *, &

’ day_names=false short_month_name=true ’, &

print_date(x, day_names=.false., &

short_month_name=.true.)

print *, &

’ day_names=true short_month_name=true ’, &

print_date(x, day_names=.true., &

short_month_name=.true.)

print *, ’ digits=true ’, &

print_date(x, digits=.true.)

print *, ’ Test out a month’

yyyy = 1970

do dd = 1, 31

x = year_and_day_to_date(yyyy, dd)

print *, print_date(x, day_names=.false., &

short_month_name=.true.)

end do

end program ch2206

There are wrap problems with some of the lengthier arithmetic expressions. The
version on the web site is obviously correct.

We also have an alternate form of array declaration in this program, which is given
below. It is common in Fortran 77 style code:

integer :: val(8)
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One improvementwould be additional code to test the validity of dates. Thiswould
be called from within our constructor date_. This would mean that we could never
have an invalid date when using the date_module. This is left as a programming
exercise.

22.7.1 Notes: DST in the USA

The above program is no longer correct. Beginning in 2007, Daylight Saving Time
was brought forward by 3 or 4 weeks in Spring and extended by one week in the
Fall. Daylight Saving Time begins for most of the United States at 2 a.m. on the
second Sunday of March. Time reverts to standard time at 2 a.m. on the first Sunday
in November.

22.8 Example 7: Date Data Type with USA and ISO
Support

The date derived type in this chapter handles conventional UK or world data types.
To handle USA and ISO date formats we have added an extra component to this
derived type. Here is the updated type.

type, public :: date

private

integer :: day

integer :: month

integer :: year

integer :: date_type = 1

end type date

When we use the default constructor we set the date_type to 1. An integer
variable is often used in a problem like this. In the date_iso constructor we set
date_type to 3 and in the date_us constructor set set date_type to 2.

The only other method we have to alter is the print_date method. In this
method we have an if then else construct to choose how to print the date,
based on the date type.

We have solved the problem of how to handle a variety of date formats in a simple,
non object oriented fashion. First we have the date module.

module date_module

implicit none

private
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type, public :: date

private

integer :: day

integer :: month

integer :: year

integer :: date_type = 1

end type date

character (9) :: day(0:6) = (/ ’Sunday ’, &

’Monday ’, ’Tuesday ’, ’Wednesday’, &

’Thursday ’, ’Friday ’, ’Saturday ’ /)

character (9) :: month(1:12) = (/ ’January ’, &

’February ’, ’March ’, ’April ’, &

’May ’, ’June ’, ’July ’, &

’August ’, ’September’, ’October ’, &

’November ’, ’December ’ /)

public :: calendar_to_julian, date_, date_iso, &

date_us, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

contains

function date_(dd, mm, yyyy) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

integer :: dt = 1

x = date(dd, mm, yyyy, dt)

end function date_

function date_iso(yyyy, mm, dd) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

integer :: dt = 3

x = date(dd, mm, yyyy, dt)

end function date_iso
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function date_us(mm, dd, yyyy) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

integer :: dt = 2

x = date(dd, mm, yyyy, dt)

end function date_us

include ’date_module_include_code.f90’

function print_date(x, day_names, &

short_month_name, digits)

implicit none

type (date), intent (in) :: x

logical, optional, intent (in) :: day_names, &

short_month_name, digits

character (30) :: print_date

integer :: pos

logical :: want_day, want_short_month_name, &

want_digits

integer :: l, t

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if

if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then

want_digits = digits

end if

! Start of code dependent on date_type

! day month year

if (x%date_type==1) then

if (want_digits) then

write (print_date(1:2), ’(i2)’) x%day

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) x%month

print_date(6:6) = ’/’
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write (print_date(7:10), ’(i4)’) x%year

else

if (want_day) then

pos = date_to_weekday_number(x)

print_date = trim(day(pos)) // ’ ’

pos = len_trim(print_date) + 2

else

pos = 1

print_date = ’ ’

end if

write (print_date(pos:pos+1), ’(i2)’) &

x%day

if (want_short_month_name) then

print_date(pos+3:pos+5) &

= month(x%month)(1:3)

pos = pos + 7

else

print_date(pos+3:) = month(x%month)

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+3), ’(i4)’) &

x%year

end if

else if (x%date_type==2) then

! month day year

if (want_digits) then

write (print_date(1:2), ’(i2)’) x%month

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) x%day

print_date(6:6) = ’/’

write (print_date(7:10), ’(i4)’) x%year

else

pos = 1

if (want_short_month_name) then

print_date(pos:pos+2) = month(x%month) &

(1:3)

pos = pos + 4

else

print_date(pos:) = month(x%month)

pos = len_trim(print_date) + 2

end if

if (want_day) then

t = date_to_weekday_number(x)

l = len_trim(day(t))

print_date(pos:pos+l) = trim(day(t)) &
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// ’ ’

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+1), ’(i2)’) &

x%day

pos = pos + 3

write (print_date(pos:pos+3), ’(i4)’) &

x%year

end if

else if (x%date_type==3) then

! year month day

if (want_digits) then

write (print_date(1:4), ’(i4)’) x%year

print_date(5:5) = ’/’

write (print_date(6:7), ’(i2)’) x%month

print_date(8:8) = ’/’

write (print_date(9:10), ’(i2)’) x%day

else

pos = 1

write (print_date(pos:pos+3), ’(i4)’) &

x%year

pos = pos + 5

if (want_short_month_name) then

print_date(pos:pos+2) = month(x%month) &

(1:3)

pos = pos + 4

else

print_date(pos:) = month(x%month)

pos = len_trim(print_date) + 2

end if

if (want_day) then

t = date_to_weekday_number(x)

l = len_trim(day(t))

print_date(pos:pos+l) = trim(day(t))

pos = pos + l + 1

end if

write (print_date(pos:pos+1), ’(i2)’) &

x%day

end if

end if

return

end function print_date

end module date_module
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Note that we have put the common executable code from the earlier date module
into an include file.

include ’date_module_include_code.f90’

Next we have the program that uses the module.

include ’ch2207_date_module.f90’

program ch2207

use date_module, only: calendar_to_julian, &

date, date_, date_iso, date_us, &

date_to_day_in_year, date_to_weekday_number, &

get_day, get_month, get_year, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

implicit none

integer :: i

integer, parameter :: n = 3

type (date), dimension (1:n) :: x

x(1) = date_(11, 2, 1952)

x(2) = date_us(2, 11, 1952)

x(3) = date_iso(1952, 2, 11)

do i = 1, 3

print *, print_date(x(i))

end do

end program ch2207

Note that we used the alternate syntax of using the

include ’ch2207_date_module.f90’

statement in this example.

22.9 Bibliography

Chapter 2 provided details of some books that address data structuring, but mainly
from an historical viewpoint.

https://doi.org/10.1007/978-3-319-75502-1_2
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We provide a small number of references to books that look at data structuring
more generally.

Schneider G.M., Bruell S.C., Advanced Programming and Problem Solving with
Pascal, Wiley, 1981.

• The book is aimed at computer science students and follows the curriculum guide-
lines laid down in Communications of the ACM, August 1985, Course CS2. The
book is very good for the complete beginner as the examples are very clearly laid
out and well explained. There is a coverage of data structures, abstract data types
and their implementation, algorithms for sorting and searching, the principles of
software development as they relate to the specification, design, implementation
and verification of programs in an orderly and disciplined fashion — their words.

Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-
201-53351-0.

• The Modula 3 algorithms are relatively easy to translate into Fortran.

22.10 Problems

22.1 Compile and run the examples in this chapter with your compiler.

22.2 Using ch2202.f90 as a starting point rewrite it to work with a file of integer
data. You may find the diff output useful here.

22.3 Modify the ragged array example that processes a lower triangular matrix to
work with an upper triangular matrix.

22.4 Using the balanced tree example as a basis and modify it to work with a
character array rather than an integer. The routine that prints the tree will also have
to be modified to reflect this.

22.5 Modify the Date program to account for the current DST in the USA.

22.6 Modify ch2204 to calculate and print the average rainfall for each station.



Chapter 23
An Introduction to Algorithms
and the Big O Notation

Errors using inadequate data are much less than those using no
data at all.

Charles Babbage

Aims
The aims of this chapter are to provide an introduction to algorithms and their be-
haviour. InComputer Science this is normally done using the so called bigOnotation.

We will cover briefly a small set of behaviour types including

• Order O(1)
• Order O(n)
• Order O(log n)
• Order O(n log n)

23.1 Introduction

A method for dealing with approximations was introduced by Bachman in 1892 in
his work Analytische Zahlen Theorie. This is the big O notation.

The big O notation is used to classify algorithms by how they perform depending
on the size of the input data set they are working on. This typically means looking
at both their space and time behaviour.

Amore detailed andmathematical coverage can be found inKnuth’s Fundamental
Algorithms.

Chapter one of this book looks at the basic concepts and mathematical prelim-
inaries required for analysing algorithms, and is around 120 pages. Well worth a
read.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_23
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23.2 Basic Background

Table 23.1 summarises some of the details regarding commonly occurring types of
problem.

Table 23.1 Big O notation and complexity

Notation Name

O(1)
O(n)
O(log n)

Constant
Linear
Logarithmic

O(n log n) = O(log n!) Linearithmic,
loglinear,
quasilinear

O(log log n)
O(n log∗ n)
O(n2)
O(nc) 0 < c < 1

Double logarithmic
n log-star n
Quadratic
Fractional power

O(nc) c > 1 Polynomial
or algebraic

O(cn) c > 1
O(n!)

Exponential
Factorial

23.3 Brief Explanation

• O(1) Determining if a number is even or odd; using a constant-size lookup table
• O(log log n) Finding an item using interpolation search in a sorted array of
uniformly distributed values.

• O(log n) Finding an item in a sorted array with a binary search or a balanced
search tree as well as all operations in a Binomial heap.

• O(nc) 0 < c < 1 Searching in a kd-tree
• O(n) Finding an item in an unsorted list or a malformed tree (worst case) or in an
unsorted array; Adding two n-bit integers by ripple carry.

• O(n log∗ n) Performing triangulation of a simple polygon using Seidel’s algorith-
m.

• O(n log n) Performing a Fast Fourier transform; heapsort, quicksort (best and
average case), or merge sort.

• O(n2)Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst
case or naive implementation), Shell sort, quicksort (worst case), selection sort or
insertion sort.

• O(nc) c > 1 Tree-adjoining grammar parsing; maximum matching for bipartite
graphs.
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• O(cn) c > 1 Finding the (exact) solution to the travelling salesman problem using
dynamic programming; determining if two logical statements are equivalent using
brute-force search.

• O(n!) Solving the traveling salesman problem via brute-force search; generating
all unrestricted permutations of a poset; finding the determinant with expansion
by minors.

23.4 Example 1: Order Calculations

This program calculates values for 4 of the above functions, for n from 1 to 109.

include ’precision_module.f90’

program ch2301

use precision_module, wp => dp
implicit none

integer, parameter :: nn = 10
integer :: n
integer, dimension (nn) :: nvalues = [ 1, 10, &

100, 1000, 10000, 100000, 1000000, 10000000, &
100000000, 1000000000 ]

integer :: i
character *80 heading

heading = ’ i n O(1) O(n)’
heading = trim(heading) // &

’ O(n*n) O(log n) O(n log n)’
print *, heading
print *, ’ ’
do i = 1, nn

n = nvalues(i)
print 100, i, n, order_1(), order_n(n), &

order_n_squared(n), order_log_n(n), &
order_n_log_n(n)

100 format (1x, i2, 2x, i10, 2x, i4, 2x, i10, &
2x, e12.4, 2x, f7.2, 2x, e12.4)

end do

contains

integer function order_1()

order_1 = 1
end function order_1

integer function order_n(n)
integer, intent (in) :: n

order_n = n
end function order_n
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function order_n_squared(n)
use precision_module, wp => dp

integer, intent (in) :: n
real (wp) :: order_n_squared

order_n_squared = dble(n)*dble(n)
end function order_n_squared

real function order_log_n(n)
integer, intent (in) :: n

order_log_n = log(real(n))
end function order_log_n

real function order_n_log_n(n)
integer, intent (in) :: n

order_n_log_n = n*log(real(n))
end function order_n_log_n

end program ch2301

Here is the output from running the program.

i n O(1) O(n) O(n*n) O(log n) O(n log n)

1 1 1 1 0.1000E+01 0.00 0.0000E+00
2 10 1 10 0.1000E+03 2.30 0.2303E+02
3 100 1 100 0.1000E+05 4.61 0.4605E+03
4 1000 1 1000 0.1000E+07 6.91 0.6908E+04
5 10000 1 10000 0.1000E+09 9.21 0.9210E+05
6 100000 1 100000 0.1000E+11 11.51 0.1151E+07
7 1000000 1 1000000 0.1000E+13 13.82 0.1382E+08
8 10000000 1 10000000 0.1000E+15 16.12 0.1612E+09
9 100000000 1 100000000 0.1000E+17 18.42 0.1842E+10

10 1000000000 1 1000000000 0.1000E+19 20.72 0.2072E+11

23.5 Sorting

In the book we use two sorting algorithms

• Quicksort
• Insertion sort

Table 23.2 looks at their behaviour.
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Table 23.2 Quicksort and insertion sort comparison

Algorithm Data structure Time
complexity

Worst case
auxiliary

Space
complexity

Best Average Worst Worst

Quicksort Array O(n log(n)) O(n log(n)) O(n2) O(n)

Insertion sort Array O(n) O(n2) O(n2) O(1)

23.6 Basic Array and Linked List Performance

Table 23.3 summarises the array and linked list performance.

Table 23.3 Array and linked list performance

Data
structure

Time
com-
plexity

Space
com-
plexity

Average Worst Worst

Index Search Insert Delete Index Search Insert Delete

Basic
array

O(1) O(n) – – O(1) O(n) – – O(n)

Dynamic
array

O(1) O(n) O(n) O(n) O(1) O(n) O(n) O(n) O(n)

Singly-
linked
list

O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)

23.7 Bibliography

The earliest books that we have used in this area are those by Donald Knuth, and
details are given below in chronological order.

Volume 1, Fundamental Algorithms, first edition, 1968, xxi+634pp, ISBN 0-201-
03801-3.

Volume 2, Seminumerical Algorithms, first edition, 1969, xi+624pp, ISBN 0-
201-03802-1.

Volume 3, Sorting and Searching, first edition, 1973, xi+723pp, ISBN 0-201-
03803-X

Volume 1, second edition, 1973, xxi+634pp, ISBN 0-201-03809-9.
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Volume 2, second edition, 1981, xiii+688pp, ISBN 0-201-03822-6.

• Knuth uses the Mix assembly language (an artificial language) and this limits the
accessibility of the books.

• However within the Computer Science community they are generally regarded as
the first and most comprehensive treatment of its subject.

For something more accessible, Sedgewick has written several programming lan-
guage versions of a book on algorithms. He was a student of Knuth’s.

The earliest used Pascal, and later editions have used C, C++ and Modula 2 and
Modula 3.

Sedgewick, Robert (1992). Algorithms in C++, Addison-Wesley. ISBN 0-201-
51059-6.

Sedgewick, Robert (1993). Algorithms in Modula 3, Addison-Wesley. ISBN 0-
201-53351-0.

• The Modula 3 algorithms are relatively easy to translate into Fortran.



Chapter 24
Operator Overloading

All the persons in this book are real and none is fictitious even in
part.

Flann O’Brien, The Hard Life

Aims
The aims of this chapter are to look at operator overloading in Fortran.

24.1 Introduction

In programming operator overloading can be regarded as a way of achieving poly-
morphism in that operators (e.g.+,−, * , / or=) can have different implementations
depending on the types of their arguments.

In some programming languages overloading is defined by the language. In For-
tran for example, the addition + operator invokes quite different code when used with
integer, real or complex types.

Some languages allow the programmer to implement support for user defined
types. Fortran introduced support for operator and assignment overloading in the
1990 standard.

24.2 Other Languages

Operator overloading is not new and several languages offer support for the feature
including:

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_24
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• Algol 68 - 1968
• Ada - Ada 83
• C++ - First standard, 1998
• Eiffel - 1986
• C# - 2001

Java, however does not.

24.3 Example 1: Overloading the Addition (+) Operator

The following example overloads the addition operator.

module t_position

implicit none

type position

integer :: x

integer :: y

integer :: z

end type position

interface operator (+)

module procedure new_position

end interface operator (+)

contains

function new_position(a, b)

type (position), intent (in) :: a, b

type (position) :: new_position

new_position%x = a%x + b%x

new_position%y = a%y + b%y

new_position%z = a%z + b%z

end function new_position

end module t_position

program ch2401

use t_position

implicit none

type (position) :: a, b, c

a%x = 10

a%y = 10

a%z = 10

b%x = 20
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b%y = 20

b%z = 20

c = a + b

print *, a

print *, b

print *, c

end program ch2401

Wehave extended themeaning of the addition operator so that we canwrite simple
expressions in Fortran based on it and have our new position calculated using a user
supplied function that actually implements the calculation of the new position.

24.4 Problem

24.1 Compile and run this example. Overload the subtraction operator as well.



Chapter 25
Generic Programming

General notions are generally wrong.
Letter to Mr. Wortley Montegu, 28th March 1710.

Aims

This chapter looks at some examples that implement generic programming in Fortran.

25.1 Introduction

Fortran 77 had several generic functions, e.g. the sine function could be called with
arguments of type real, double precision or complex. Fortran 90 extended the idea
so that a programmer could write their own generic functions or subroutines. For
example we can now write a sort routine which works with arguments of a variety
of types, e.g. integer, real etc.

25.2 Generic Programming and Other Languages

Generic programming has a wider meaning in computer science and effectively is
a style of computer programming in which an algorithm is written once, but can be
made to work with a variety of types.

This style of programming is provided in several programming languages and in
a variety of ways.

Languages that support generics include

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
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• Ada
• C#
• Eiffel
• Java
• C++

To quote the generic programming pioneer Alexander Stepanov;

…Generic programming is about abstracting and classifying algorithms and data structures.
It gets its inspiration from Knuth and not from type theory. Its goal is the incremental
construction of systematic catalogs of useful, efficient and abstract algorithms and data
structures. Such an undertaking is still a dream.

and quoting Bjarne Stroustrup:

… lift algorithms and data structures from concrete examples to their most general and
abstract form.

We’ll look at a concrete example in Fortran next.

25.3 Example 1: Sorting Reals and Integers

In Chap.20 Example 5 had a module called sort_data_module that contained a
sort_data subroutine. The sort_data subroutine in turn contained an internal
quicksort subroutine that did the actual sorting.

Here is the start of the sort_data subroutine.

subroutine sort_data(raw_data, how_many)

implicit none

integer, intent (in) :: how_many

real, intent (inout), dimension (:) :: raw_data

and we called this subroutine as shown below from the main program.

call sort_data(x,n)

The subroutine worked with an array of default real type. We will use the module
sort_data_module and subroutine sort_data as the basis of a module that
will work with arrays of four integer types and three real types.

The first thing we need are modules that defines kind type parameters for the three
real types and four integer types.

These two modules are shown below.

module precision_module

implicit none
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integer, parameter :: sp = selected_real_kind( &

6, 37)

integer, parameter :: dp = selected_real_kind( &

15, 307)

integer, parameter :: qp = selected_real_kind( &

30, 291)

end module precision_module

module integer_kind_module

implicit none

integer, parameter :: i8 = selected_int_kind(2 &

)

integer, parameter :: i16 = selected_int_kind( &

4)

integer, parameter :: i32 = selected_int_kind( &

9)

integer, parameter :: i64 = selected_int_kind( &

15)

end module integer_kind_module

We can now use these modules in the new module sort_data_module and
main program.

We must use an interface to link the common calling name (sort_data) to the
specific subroutines that handle each specific type.

Here is the interface block from the module sort_data_module.

interface sort_data

module procedure sort_real_sp

module procedure sort_real_dp

module procedure sort_real_qp

module procedure sort_integer_8

module procedure sort_integer_16

module procedure sort_integer_32

module procedure sort_integer_64

end interface sort_data

In the original subroutine in Chap.20 we had a call

call sort_date(raw_data,how_many)

and the subroutine sort_data had two arguments or parameters, a real array, and
an integer for the size.

So the call is still the same, but now we can call the sort_data subroutine with
an array of any of the four integer types or three real types.
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The compiler will then look at the type, kind and ranks of the parameters in the
call to the sort_data subroutine and call the appropriate module procedure.

Here is the new module sort_data_module.

module sort_data_module

use precision_module

use integer_kind_module

interface sort_data

module procedure sort_real_sp

module procedure sort_real_dp

module procedure sort_real_qp

module procedure sort_integer_8

module procedure sort_integer_16

module procedure sort_integer_32

module procedure sort_integer_64

end interface sort_data

contains

subroutine sort_real_sp(raw_data, how_many)

use precision_module

implicit none

integer, intent (in) :: how_many

real (sp), intent (inout), dimension (:) :: &

raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

real (sp) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_real_sp
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subroutine sort_real_dp(raw_data, how_many)

use precision_module

implicit none

integer, intent (in) :: how_many

real (dp), intent (inout), dimension (:) :: &

raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

real (dp) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_real_dp

subroutine sort_real_qp(raw_data, how_many)

use precision_module

implicit none

integer, intent (in) :: how_many

real (qp), intent (inout), dimension (:) :: &

raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

real (qp) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_real_qp
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subroutine sort_integer_8(raw_data, how_many)

use integer_kind_module

implicit none

integer, intent (in) :: how_many

integer (i8), intent (inout), &

dimension (:) :: raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

integer (i8) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_integer_8

subroutine sort_integer_16(raw_data, how_many)

use integer_kind_module

implicit none

integer, intent (in) :: how_many

integer (i16), intent (inout), &

dimension (:) :: raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

integer (i16) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_integer_16

subroutine sort_integer_32(raw_data, how_many)
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use integer_kind_module

implicit none

integer, intent (in) :: how_many

integer (i32), intent (inout), &

dimension (:) :: raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

integer (i32) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_integer_32

subroutine sort_integer_64(raw_data, how_many)

use integer_kind_module

implicit none

integer, intent (in) :: how_many

integer (i64), intent (inout), &

dimension (:) :: raw_data

call quicksort(1, how_many)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

integer :: i, j

integer (i64) :: v, t

include ’quicksort_include_code.f90’

end subroutine quicksort

end subroutine sort_integer_64

end module sort_data_module
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In this module we have implementations for each of the module procedures listed
in the interface block.

Here is the include file,

i = l

j = r

v = raw_data(int((l+r)/2))

do

do while (raw_data(i)<v)

i = i + 1

end do

do while (v<raw_data(j))

j = j - 1

end do

if (i<=j) then

t = raw_data(i)

raw_data(i) = raw_data(j)

raw_data(j) = t

i = i + 1

j = j - 1

end if

if (i>j) exit

end do

if (l<j) then

call quicksort(l, j)

end if

if (i<r) then

call quicksort(i, r)

end if

which is used in each of the seven subroutines and is effectively a common algorithm
between all seven subroutines.

Here is the main program to test the generic sort module.

include ’integer_kind_module.f90’

include ’precision_module.f90’

include ’sort_data_module.f90’

program ch2501

use precision_module

use integer_kind_module

use sort_data_module
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implicit none

integer, parameter :: n = 1000000

real (sp), allocatable, dimension (:) :: x

integer (i32), allocatable, dimension (:) :: y

integer :: allocate_status

allocate_status = 0

print *, ’ Program starts’

allocate (x(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed.’

print *, ’ Program terminates’

stop 10

end if

print *, ’ Real allocate complete’

call random_number(x)

print *, ’ Real array initialised’

call sort_data(x, n)

print *, ’ Real sort ended’

print *, ’ First 10 reals’

write (unit=*, fmt=100) x(1:10)

100 format (5(2x,e14.6))

allocate (y(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed.’

print *, ’ Program terminates’

stop 10

end if

y = int(x*1000000)

deallocate (x)

print *, ’ Integer array initialised’

call sort_data(y, n)

print *, ’ Sort ended’

print *, ’ First 10 integers’

write (unit=*, fmt=110) y(1:10)

110 format (5(2x,i10))

deallocate (y)

print *, ’ Deallocate’

print *, ’ Program terminates’

end program ch2501
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This is obviously a very significant facility to have in a programming language.
Have a look at the following two examples which show the code for a generic

quicksort in C++ and C#.

25.3.1 Generic Quicksort in C++

Here is the C++ program.

template <class Type>

void swap(Type array[],int i, int j)

{

Type tmp=array[i];

array[i]=array[j];

array[j]=tmp;

}

template <class Type>

void quicksort( Type array[], int l, int r)

{

int i=l;

int j=r;

Type v=array[int((l+r)/2)];

for (;;)

{

while (array[i] < v) i=i+1;

while (v < array[j]) j=j-1;

if (i<=j)

{ swap(array,i,j); i=i+1 ; j=j-1; }

if (i>j) goto ended ;

}

ended: ;

if (l<j) quicksort(array,l,j);

if (i<r) quicksort(array,i,r);

}

template <class Type>

void print(Type array[],int size)

{

cout << " [ " ;

for (int ix=0;ix<size; ++ix)

cout << array[ix] << " ";

cout << "] \n";
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}

#include <iostream>

using namespace std;

int main()

{

double da[] =

{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};

int ia[] = {1,10,2,9,3,8,4,7,6,5};

int size=sizeof(da)/sizeof(double);

cout << " Quicksort of double array is \n";

quicksort(da,0,size-1);

print(da,size);

size=sizeof(ia)/sizeof(int);

cout << " Quicksort of integer array is \n";

quicksort(ia,0,size-1);

print(ia,size);

return(0);

}

25.3.2 Generic Quicksort in C#

Here is the C# version.

using System;

public static class generic

{

public static void

swap< Type > (Type[] array,int i, int j)

{

Type tmp=array[i];

array[i]=array[j];

array[j]=tmp;

}

public static void

quicksort< Type > ( Type[] array, int l, int r)

where Type : IComparable< Type >

{

int i=l;

int j=r;

Type v=array[(int)((l+r)/2)];
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for (;;)

{

while (array[i].CompareTo( v) < 0 ) i=i+1;

while (v.CompareTo(array[j]) < 0) j=j-1;

if (i<=j)

{ swap(array,i,j); i=i+1 ; j=j-1; }

if (i>j) goto ended ;

}

ended: ;

if (l<j) quicksort(array,l,j);

if (i<r) quicksort(array,i,r);

}

public static void

print< Type > (Type[] array,int size)

{

int i;

int l;

l=array.Length;

for (i=0;i<l;i++)

Console.WriteLine(array[i]);

}

public static int Main()

{

double[] da =

{1.9,8.2,3.7,6.4,5.5,1.8,9.2,3.6,7.4,5.5};

int[] ia = {1,10,2,9,3,8,4,7,6,5};

int size;

size=da.Length;

Console.WriteLine("Original array");

print(da,size);

quicksort(da,0,size-1);

Console.WriteLine("Sorted array");

print(da,size);

size=ia.Length;

Console.WriteLine("Original array");

print(ia,size);

quicksort(ia,0,size-1);

Console.WriteLine("Sorted array");

print(ia,size);

return(0);

}

}
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In C++ and C# we only have one version of the sort procedure and the compiler
generates the code for us for each type of array we call the procedure with, which
we have to actually write in Fortran.

25.4 Example 2: Generic Statistics Module

In this example we extend the statistics module from Chap.20 (Example 4) to work
with all three real kind types.

Here is the statistics module.

module statistics_module

use precision_module

interface calculate_statistics

module procedure calculate_sp

module procedure calculate_dp

module procedure calculate_qp

end interface calculate_statistics

contains

subroutine calculate_sp(x, n, mean, std_dev, &

median)

implicit none

integer, intent (in) :: n

real (sp), intent (in), dimension (:) :: x

real (sp), intent (out) :: mean

real (sp), intent (out) :: std_dev

real (sp), intent (out) :: median

real (sp), dimension (1:n) :: y

real (sp) :: variance

real (sp) :: sumxi, sumxi2

sumxi = 0.0

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqrt(variance)

y = x
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if (mod(n,2)==0) then

median = (find(n/2)+find((n/2)+1))/2

else

median = find((n/2)+1)

end if

contains

function find(k)

implicit none

real (sp) :: find

integer, intent (in) :: k

integer :: l, r, i, j

real (sp) :: t1, t2

include ’statistics_module_include_code.f90’

end function find

end subroutine calculate_sp

subroutine calculate_dp(x, n, mean, std_dev, &

median)

implicit none

integer, intent (in) :: n

real (dp), intent (in), dimension (:) :: x

real (dp), intent (out) :: mean

real (dp), intent (out) :: std_dev

real (dp), intent (out) :: median

real (dp), dimension (1:n) :: y

real (dp) :: variance

real (dp) :: sumxi, sumxi2

sumxi = 0.0

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqrt(variance)

y = x

if (mod(n,2)==0) then

median = (find(n/2)+find((n/2)+1))/2

else

median = find((n/2)+1)

end if
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contains

function find(k)

implicit none

real (dp) :: find

integer, intent (in) :: k

integer :: l, r, i, j

real (dp) :: t1, t2

include ’statistics_module_include_code.f90’

end function find

end subroutine calculate_dp

subroutine calculate_qp(x, n, mean, std_dev, &

median)

implicit none

integer, intent (in) :: n

real (qp), intent (in), dimension (:) :: x

real (qp), intent (out) :: mean

real (qp), intent (out) :: std_dev

real (qp), intent (out) :: median

real (qp), dimension (1:n) :: y

real (qp) :: variance

real (qp) :: sumxi, sumxi2

sumxi = 0.0

sumxi2 = 0.0

variance = 0.0

sumxi = sum(x)

sumxi2 = sum(x*x)

mean = sumxi/n

variance = (sumxi2-sumxi*sumxi/n)/(n-1)

std_dev = sqrt(variance)

y = x

if (mod(n,2)==0) then

median = (find(n/2)+find((n/2)+1))/2

else

median = find((n/2)+1)

end if

contains

function find(k)

implicit none

real (qp) :: find

integer, intent (in) :: k

integer :: l, r, i, j

real (qp) :: t1, t2

include ’statistics_module_include_code.f90’
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end function find

end subroutine calculate_qp

end module statistics_module

Here is the common include file.

l = 1

r = n

do while (l<r)

t1 = y(k)

i = l

j = r

do

do while (y(i)<t1)

i = i + 1

end do

do while (t1<y(j))

j = j - 1

end do

if (i<=j) then

t2 = y(i)

y(i) = y(j)

y(j) = t2

i = i + 1

j = j - 1

end if

if (i>j) exit

end do

if (j<k) then

l = i

end if

if (k<i) then

r = j

end if

end do

find = y(k)
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Here is the main program to test the statistics module.

include ’precision_module.f90’

include ’statistics_module.f90’

include ’timing_module.f90’

program ch2502

use precision_module

use statistics_module

use timing_module

implicit none

integer :: n

real (sp), allocatable, dimension (:) :: x

real (sp) :: x_m, x_sd, x_median

real (dp), allocatable, dimension (:) :: y

real (dp) :: y_m, y_sd, y_median

real (qp), allocatable, dimension (:) :: z

real (qp) :: z_m, z_sd, z_median

character *20, dimension (3) :: heading = [ &

’ Allocate ’, ’ Random ’, &

’ Statistics ’ ]

call start_timing()

n = 50000000

print *, ’ n = ’, n

print *, ’ Single precision’

allocate (x(1:n))

print 100, heading(1), time_difference()

100 format (a20, 2x, f8.3)

call random_number(x)

print 100, heading(2), time_difference()

call calculate_statistics(x, n, x_m, x_sd, &

x_median)

print 100, heading(3), time_difference()

write (unit=*, fmt=110) x_m

110 format (’ Mean = ’, f10.6)

write (unit=*, fmt=120) x_sd

120 format (’ Standard deviation = ’, f10.6)

write (unit=*, fmt=130) x_median

130 format (’ Median = ’, f10.6)
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deallocate (x)

print *, ’ Double precision’

allocate (y(1:n))

print 100, heading(1), time_difference()

call random_number(y)

print 100, heading(2), time_difference()

call calculate_statistics(y, n, y_m, y_sd, &

y_median)

print 100, heading(3), time_difference()

write (unit=*, fmt=110) y_m

write (unit=*, fmt=120) y_sd

write (unit=*, fmt=130) y_median

deallocate (y)

print *, ’ Quad precision’

allocate (z(1:n))

print 100, heading(1), time_difference()

call random_number(z)

print 100, heading(2), time_difference()

call calculate_statistics(z, n, z_m, z_sd, &

z_median)

print 100, heading(3), time_difference()

write (unit=*, fmt=110) z_m

write (unit=*, fmt=120) z_sd

write (unit=*, fmt=130) z_median

deallocate (z)

end program ch2502

Here are some results for the gfortran, Intel,NagandOracle compilers (Table25.1).
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Table 25.1 ch2502 results

Compiler gfortran Intel Nag Oracle

n = 50,000,000 Average time

Single precision

Allocate 0.000 0.000 0.000 0.000 0.000

Random 0.484 0.469 0.484 1.230 0.667

Statistics 1.312 0.766 1.031 0.773 0.971

Total time 1.796 1.235 1.515 2.003 1.637

Mean 0.335544 0.335544 0.335544 0.335544

Standard deviation 0.465684 0.442725 0.442758 0.442686

Median 0.500006 0.499965 0.500044 0.499957

Double precision

Allocate 0.020 0.016 0.016 0.000 0.013

Random 1.105 0.859 0.359 1.312 0.909

Statistics 1.520 0.953 1.172 1.055 1.175

Total time 2.645 1.828 1.547 2.367 2.097

Mean 0.500017 0.499931 0.499984 0.499984

Standard deviation 0.288686 0.288691 0.288699 0.288695

Median 0.500011 0.499889 0.499935 0.500012

Quad precision

Allocate 0.027 0.031 0.031 0.004 0.023

Random 6.363 2.500 0.734 2.395 2.998

Statistics 7.766 6.453 4.109 10.840 7.292

Total time 14.156 8.984 4.874 13.239 10.313

Mean 0.500019 0.499995 0.500030 0.500084

Standard deviation 0.288659 0.288660 0.288662 0.288688

Median 0.500041 0.499994 0.500065 0.500125

25.5 Problems

25.1 Write a generic swap routine, that swaps two rank 1 integer arrays and two
rank 1 real arrays.

25.2 Using Example 2 from Chap.22 as a starting point convert it to a generic
variant which handles files of integer data type and real data type.
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Chapter 26
Mathematical and Numerical Examples

You look at science (or at least talk of it) as some sort of
demoralising invention of man, something apart from real life,
and which must be cautiously guarded and kept separate from
everyday existence. But science and everyday life cannot and
should not be separated. Science, for me, gives a partial
explanation for life. In so far as it goes, it is based on fact,
experience and experiment.

Rosalind Franklin.

Aims
The aims of this chapter are to look at several mathematical and numeric examples
in Fortran.

• Using linked lists for sparse matrix problems.
• The solution of a system of ordinary differential equations using theRunge–Kutta–
Merson method, with the use of a procedure as a parameter, and the use of work
arrays.

• The use of optional and keyword arguments
• Diagonal extraction of a matrix.
• The solution of a system of linear simultaneous equations using Gaussian Elimi-
nation

• An elemental e**x function
• Examples of the relative and absolute errors involved in subtraction with 32 and
64 bit precision

© Springer International Publishing AG, part of Springer Nature 2018
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421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_26&domain=pdf


422 26 Mathematical and Numerical Examples

26.1 Introduction

This chapter looks at a small number of mathematical and numeric examples in
Fortran.

26.2 Example 1: Using Linked Lists for Sparse Matrix
Problems

A matrix is said to be sparse if many of its elements are zero. Mathematical models
in areas such as management science, power systems analysis, circuit theory and
structural analysis consist of very large sparse systems of linear equations. It is not
possible to solve these systems with classical methods because the sparsity would be
lost and the eventual systemwould become too large to solve. Many of these systems
consist of tens of thousands, hundreds of thousands and millions of equations. As
computer systems become ever more powerful with massive amounts of memory
the solution of even larger problems becomes feasible.

Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K.,
looks at direct methods for solving sparse systems of linear equations.

Sparse matrix techniques lend themselves to the use of dynamic data structures in
Fortran. Only the nonzero elements of a sparse matrix need be stored, together with
their positions in the matrix. Other information also needs to be stored so that row or
column manipulation can be performed without repeated scanning of a potentially
very large data structure. Sparsemethodsmay involve introducing some new nonzero
elements, and a way is needed of inserting them into the data structure. This is where
the Fortran pointer construct can be used. The sparse matrix can be implemented
using a linked list to which entries can be easily added and from which they can be
easily deleted.

As a simple introduction, consider the storage of sparse vectors. What we learn
here can easily be applied to sparse matrices, which can be thought of as sets of
sparse vectors.

26.2.1 Inner Product of Two Sparse Vectors

Assume that we have two sparse vectors x and y for example

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

3
0
5
0
0
4

⎤
⎥⎥⎥⎥⎥⎥⎦
y =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
3
0
2
1

⎤
⎥⎥⎥⎥⎥⎥⎦
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and we wish to calculate the inner product

xT y ≡
n∑

i=1

xi yi

There are a number of approaches to doing this and the one we use in the program
below stores them as two linked lists. Only the nonzero elements are stored (together
with their indices):

x data file y data file

3 1 1 2

5 3 3 3

4 6 2 5

1 6

Here is the program.

module sparse_vector_module

implicit none

type sparse_vector

integer :: index

real :: value

type (sparse_vector), pointer :: next => &

null()

end type sparse_vector

end module sparse_vector_module

module read_data_module

implicit none

contains

subroutine read_data(filename, root_z, ifail)

use sparse_vector_module

implicit none

type (sparse_vector), pointer, &

intent (inout) :: root_z

character (len=*), intent (inout) :: &

filename

integer, intent (inout) :: ifail
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integer :: io_status

type (sparse_vector), pointer :: current_z

ifail = 0

! open file for reading data and read 1st

! entry

open (unit=1, file=filename, status=’old’, &

iostat=io_status)

if (io_status/=0) then

ifail = 1

return

end if

allocate (root_z)

read (unit=1, fmt=*, iostat=io_status) &

root_z%value, root_z%index

if (io_status/=0) then

ifail = 2

return

end if

! read data from file until eof

current_z => root_z

allocate (current_z%next)

do while (associated(current_z%next))

current_z => current_z%next

read (unit=1, fmt=*, iostat=io_status) &

current_z%value, current_z%index

if (io_status==0) then

allocate (current_z%next)

cycle

else if (io_status>0) then

ifail = 3

end if

end do

close (unit=1)

return

end subroutine read_data

end module read_data_module
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program ch2601

! this program reads the non-zero elements of

! two sparse vectors x and y together with

! their indices, and stores them in two

! linked lists. using these linked lists it

! then calculates and prints out the inner

! product. it also prints the values.

use sparse_vector_module

use read_data_module

implicit none

character (len=30) :: filename

type (sparse_vector), pointer :: root_x, &

current_x, root_y, current_y

real :: inner_prod = 0.0

integer :: ifail = 0

! ask for name of file containing vector x

! non-zero values and indices

print *, ’input file name for vector x’

read ’(a)’, filename

! read vector x non-zero elements and indices

! into a linked list

call read_data(filename, root_x, ifail)

if (ifail==1) then

print *, ’error opening file ’, filename

stop 10

else if (ifail==2) then

print *, &

’error reading from beginning of file ’, &

filename

stop 20

else if (ifail==3) then

print *, ’error reading from file ’, &

filename

stop 30

end if



426 26 Mathematical and Numerical Examples

! ask for name of file containing vector y

! non-zero values and indices

print *, ’input file name for vector y’

read ’(a)’, filename

! read vector y non-zero elements and indices

! into a linked list

call read_data(filename, root_y, ifail)

if (ifail==1) then

print *, ’error opening file ’, filename

stop 40

else if (ifail==2) then

print *, &

’error reading from beginning of file ’, &

filename

stop 50

else if (ifail==3) then

print *, ’error reading from file ’, &

filename

stop 60

end if

! data has now been read and stored in 2 linked

! lists. start at the beginning of x linked list

! and y linked list and compare indices

! in order to perform inner product

current_x => root_x

current_y => root_y

do while (associated(current_x%next))

do while (associated(current_y%next) .and. &

current_y%index<current_x%index)

! move through y list

current_y => current_y%next

end do

! at this point

! current_y%index >= current_x%index

! or 2nd list is exhausted

if (current_y%index==current_x%index) then
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inner_prod = inner_prod + current_x%value* &

current_y%value

end if

current_x => current_x%next

end do

! print non-zero values of vector x and indices

print *, &

’non-zero values of vector x and indices:’

current_x => root_x

do while (associated(current_x%next))

print *, current_x%value, current_x%index

current_x => current_x%next

end do

! print non-zero values of vector y and indices

print *, &

’non-zero values of vector y and indices:’

current_y => root_y

do while (associated(current_y%next))

print *, current_y%value, current_y%index

current_y => current_y%next

end do

! print out inner product

print *, &

’inner product of two sparse vectors is :’, &

inner_prod

end program ch2601

26.3 Example 2: Solving a System of First-Order Ordinary
Differential Equations Using Runge–Kutta–Merson

Simulation and mathematical modelling of a wide range of physical processes often
leads to a system of ordinary differential equations to be solved. Such equations also
occur when approximate techniques are applied to more complex problems. We will
restrict ourselves to a class of ordinary differential equations called initial value
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problems. These are systems for which all conditions are given at the same value of
the independent variable. We will further restrict ourselves to first-order initial value
problems of the form:

dy1
dt

= f1(y, t)

dy2
dt

= f2(y, t)

...

dyn
dt

= fn(y, t)

or
ẏ = f (y, t) (26.1)

with initial conditions
y(t0) = y0

where

y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y1
.

.

.

.

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

f =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1
.

.

.

.

fn

⎞
⎟⎟⎟⎟⎟⎟⎠

y0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

y1(t0)
.

.

.

.

ynt (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

If we have a system of ordinary differential equations of higher order then they
can be reformulated to a system of order one. See the NAG library documentation
for solving ordinary differential equations.

One well-known class of methods for solving initial value ordinary differential
equations is Runge-Kutta. In this example we have coded the Runge-Kutta-Merson
algorithm, which is a fourth-order method and solves (26.1) from a point t = a to a
point t = b.

It starts with a step length h = (b − a)/100 and includes a local error control
strategy such that the solution at t + h is accepted if:

|error estimate| < user de f ined tolerance

If this isn’t satisfied the step length h is halved and the solution attempt is repeated
until the above is satisfied or the step length is too small and the problem is left
unsolved. If the error criterion is satisfied the algorithm progresses with a suitable
step length solving the equations at intermediate points until the end point b is
reached. For a full discussion of the algorithm and the error control mechanism used
see Numerical Methods in Practice by Tim Hopkins and Chris Phillips.
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Here is a module containing the subroutine runge_kutta_merson.

module rkm_module

use precision_module, wp => dp

implicit none

contains

subroutine runge_kutta_merson(y, fun, ifail, &

n, a, b, tol)

!

! runge-kutta-merson method for the solution

! of a system of n 1st order initial value

! ordinary differential equations.

! the routine tries to integrate from

! t=a to t=b with initial conditions in y,

! subject to the condition that the

! absolute error estimate <= tol. the step

! length is adjusted automatically to meet

! this condition.

! if the routine is successful it returns with

! ifail = 0, t=b and the solution in y.

!

implicit none

! define arguments

real (wp), intent (inout), dimension (:) :: &

y

real (wp), intent (in) :: a, b, tol

integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, f, n)

use precision_module, wp => dp

implicit none

real (wp), intent (in), dimension (:) :: &

y

real (wp), intent (out), &

dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun

end interface
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! local variables

real (wp), dimension (1:size(y)) :: s1, s2, &

s3, s4, s5, new_y_1, new_y_2, error

real (wp) :: t, h, h2, h3, h6, h8, &

factor = 1.e-2_wp

real (wp) :: smallest_step = 1.e-6_wp, &

max_error

integer :: no_of_steps = 0

ifail = 0

! check input parameters

if (n<=0 .or. a==b .or. tol<=0.0) then

ifail = 1

return

end if

! initialize t to be start of interval and

! h to be 1/100 of interval

t = a

h = (b-a)/100.0_wp

do

! ##### beginning of

! ##### repeat loop

h2 = h/2.0_wp

h3 = h/3.0_wp

h6 = h/6.0_wp

h8 = h/8.0_wp

! calculate s1,s2,s3,s4,s5

! s1=f(t,y)

call fun(t, y, s1, n)

new_y_1 = y + h3*s1

! s2 = f(t+h/3,y+h/3*s1)

call fun(t+h3, new_y_1, s2, n)

new_y_1 = y + h6*s1 + h6*s2
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! s3=f(t+h/3,y+h/6*s1+h/6*s2)

call fun(t+h3, new_y_1, s3, n)

new_y_1 = y + h8*(s2+3.0_wp*s3)

! s4=f(t+h/2,y+h/8*(s2+3*s3))

call fun(t+h2, new_y_1, s4, n)

new_y_1 = y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! s5=f(t+h,y+h/2*(s1-3*s3+4*s4))

call fun(t+h, new_y_1, s5, n)

! calculate values at t+h

new_y_1 = y + h6*(s1+4.0_wp*s4+s5)

new_y_2 = y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! calculate error estimate

error = abs(0.2_wp*(new_y_1-new_y_2))

max_error = maxval(error)

if (max_error>tol) then

! halve step length and try again

if (abs(h2)<smallest_step) then

ifail = 2

return

end if

h = h2

else

! accepted approximation so overwrite

! y with y_new_1, and t with t+h

y = new_y_1

t = t + h

! can next step be doubled?

if (max_error*factor<tol) then

h = h*2.0_wp

end if
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! does next step go beyond interval end b,

! if so set h = b-t

if (t+h>b) then

h = b - t

end if

no_of_steps = no_of_steps + 1

end if

if (t>=b) exit

! ##### end of

! ##### repeat loop

end do

end subroutine runge_kutta_merson

end module rkm_module

Consider trying to solve the following system of first-order ordinary differential
equations:

ẏ1 = tan y3

ẏ2 = −0.032 tan y3
y2

− 0.02y2
cos y3

ẏ3 = −0.032

y22

over an interval t = 0.0 to t = 8.0 with initial conditions

y1 = 0 y2 = 0.5 y3 = π/5

The user supplied subroutine, packaged as a module procedure, is:

module fun1_module

implicit none

contains

subroutine fun1(t, y, f, n)

use precision_module, wp => dp

implicit none

real (wp), intent (in), dimension (:) :: y

real (wp), intent (out), dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

f(1) = tan(y(3))



26.3 Example 2: Solving a System of First-Order Ordinary … 433

f(2) = -0.032_wp*f(1)/y(2) - &

0.02_wp*y(2)/cos(y(3))

f(3) = -0.032_wp/(y(2)*y(2))

end subroutine fun1

end module fun1_module

and the main program to solve this system of ordinary differential equations is

include ’precision_module.f90’

include ’ch2602_rkm_module.f90’

include ’ch2602_fun1_module.f90’

program ch2602

use precision_module, wp => dp

use rkm_module

use fun1_module

implicit none

real (wp), dimension (:), allocatable :: y

real (wp) :: a, b, tol

integer :: n, ifail, all_stat

print *, ’input no of equations’

read *, n

! allocate space for y - checking to see that it

! allocates properly

allocate (y(1:n), stat=all_stat)

if (all_stat/=0) then

print *, ’ not enough memory’

print *, ’ array y is not allocated’

stop

end if

print *, &

’ input start and end of interval over’

print *, ’ which equations to be solved’

read *, a, b

print *, ’input initial conditions’

read *, y(1:n)

print *, ’input tolerance’

read *, tol

print 100, a

100 format (’at t= ’, f5.2, &

’ initial conditions are :’)

print 110, y(1:n)



434 26 Mathematical and Numerical Examples

110 format (4(f5.2,2x))

call runge_kutta_merson(y, fun1, ifail, n, a, &

b, tol)

if (ifail/=0) then

print *, ’integration stopped with ifail = ’ &

, ifail

else

print 120, b

120 format (’at t= ’, f5.2, ’ solution is:’)

print 110, y(1:n)

end if

end program ch2602

The user is prompted for the number of equations, which is 3, the start and end of
the interval over which the equations are to be solved (0.0, 8.0), the initial conditions
(0.0, 0.5, π/5), and tolerance (1.0E-6).

26.3.1 Note: Alternative Form of the Allocate Statement

In the main program ch2602 we have defined y to be a deferred-shape array,
allocating it space after the variable n is read in. In order to make sure that enough
memory is available to allocate space to array y the allocate statement is used as
follows:

allocate(y(1:n),stat=all_stat)

If the allocation is successful variable all_stat returns zero; otherwise it is
given a processor dependent positive value. We have included code to check for this
and the program stops if all_stat is not zero.

26.3.2 Note: Automatic Arrays

The subroutine runge_kutta_merson needs a number of local rank 1 arrays
s1, s2, s3, s4 and s5 for workspace, their shape and size being the same as the
dummy argument y. Fortran supplies automatic arrays for this purpose and can be
declared as

real(wp), dimension (1:size(y)) :: &

s1, s2, s3, s4, s5
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The size of automatic arrays can depend on the size of actual arrays: in our
example they are the same shape and size as the dummy array y. Automatic arrays
are created when the procedure is called and destroyed when control passes back to
the calling program unit. They may have different shapes and sizes with different
calls to the procedure, and because of this automatic arrays cannot be saved or
initialised.

A word of warning should be given at this point. If there isn’t enough memory
available when an automatic array needs to be created problems will occur. Unlike
allocatable arrays there is no way of testing to see if an automatic array has been
created successfully. The general feeling is that even though they are nice, automatic
arrays should be used with care and perhaps shouldn’t be used in production code!

26.3.3 Note: Subroutine as a Dummy Procedure Argument:

In order to make the use of subroutine runge_kutta_merson as general as
possible the user can choose the name of the subroutine in which the actual sys-
tem of equations to be solved is defined. In this case we have chosen fun1 as the
name of the subroutine, which is then used as an actual argument when calling
runge_kutta_merson from the main program e.g.

call runge_kutta_merson(y,fun1,ifail,n,a,b,tol)

An explicit interface for subroutine fun1 is provided by it being contained in a
module.

The equivalent dummy subroutine argument is fun and this needs an explicit
interface in the subroutine runge_kutta_merson.

26.3.4 Note: Compilation When Using Modules

When compiling this program and the modules they must be done in the correct
order:

• precision_module
• rkm_module
• fun1_module

and then

• main program.
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26.3.5 Keyword and Optional Argument Variation

In modern Fortran arguments to procedures can be optional, and can be supplied
by keyword. To illustrate this we will use the previous example. The definition of
subroutine runge_kutta_merson and its dummy arguments is:

subroutine runge_kutta_merson(y,fun,ifail,n,a,b,tol)

where a is the initial point, b is the end point at which the solution is required, tol
is the accuracy to which the solution is required and n is the number of equations.

The subroutine can be called as follows:

call runge_kutta_merson( y , fun1 , ifail , a=0.0 ,&

b=8.0 , tol=1.0E-6 , n=3)

where the dummy arguments a, b, tol and n are now being used as keywords. The
use of keyword arguments makes the code easier to read and decreases the need to
remember their precise position in the argument list.

Also with Fortran comes the ability to specify that an argument is optional. This
is very useful when designing procedures for use by a range of programmers. Inside
a procedure defaults can be set for the optional arguments providing an easy-to-use
interface, while at the same time allowing sophisticated users a more comprehensive
one.

The optional attribute is needed to declare a dummy argument to be optional.
In the subroutine runge_kutta_merson the dummy argument tol could be
declared to be optional (although internally in the subroutine the code would have
to be changed to allow for this), e.g.,

subroutine runge_kutta_merson(y,fun,ifail,n,a,b,tol)

use precision_module , wp => dp

real (wp) , intent(inout), optional :: tol

and because it is at the end of the dummy argument list, calling the subroutine
with a positional argument list, tol can be omitted, e.g.,

call runge_kutta_merson(y,fun1,ifail,n,a,b)

The code of the subroutine will need to be changed to check to see if the argument
tol is supplied, the intrinsic function present being available for this purpose.
Sample code is given below:

subroutine runge_kutta_merson(y,fun,ifail,n,a,b,tol)

use precision_module , wp => dp

! code left out
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real (wp) , intent(in) , optional :: tol

real (wp) :: internal_tol = 1.0e-3_wp

if(present(tol)) then

internal_tol=tol

print*,’tol = ’, internal_tol,’ is supplied’

else

print*,"tol isn’t supplied, default tolerance = "

print *,internal_tol,’ is used’

endif

! code left out but all references to tol

! would have to be changed to internal_tol

end subroutine runge_kutta_merson

26.4 Example 3: A Subroutine to Extract the Diagonal
Elements of a Matrix

A common task mathematically is to extract the diagonal elements of a matrix. For
example if

A =
⎛
⎝
21 6 7
9 3 2
4 1 8

⎞
⎠

the diagonal elements are (21, 3, 8).
This can be thought of as extracting an array section, but the intrinsic function

pack is needed. In its simplest form pack(array,vector) packs an array,
array, into a rank 1 array, vector, according to array’s array element order.

Below is a complete program to demonstrate this:

module md_module

implicit none

contains

subroutine matrix_diagonal(a, diag, n)

implicit none

real, intent (in), dimension (:, :) :: a

real, intent (out), dimension (:) :: diag

integer, intent (in) :: n

real, dimension (1:size(a,1)*size(a,1)) :: &

temp

! subroutine to extract the diagonal
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! elements of an n * n matrix A

temp = pack(a, .true.)

diag = temp(1:n*n:n+1)

end subroutine matrix_diagonal

end module md_module

program ch2603

! program reads the n * n matrix from a file

use md_module

implicit none

integer :: i, n

real, allocatable, dimension (:, :) :: a

real, allocatable, dimension (:) :: adiag

character (len=20) :: filename

print *, ’input name of data file’

read ’(a)’, filename

open (unit=1, file=filename,status=’old’)

read (1, *) n

allocate (a(1:n,1:n), adiag(1:n))

do i = 1, n

read (1, *) a(i, 1:n)

end do

call matrix_diagonal(a, adiag, n)

print *, ’ diagonal elements of a are:’

print *, adiag

end program ch2603

26.5 Example 4: The Solution of Linear Equations
Using Gaussian Elimination

At this stage we have introduced many of the concepts needed to write numerical
code, and have included a popular algorithm, Gaussian Elimination, together with
a main program which uses it and a module to bring together many of the features
covered so far.

Finding the solution of a system of linear equations is very common in scien-
tific and engineering problems, either as a direct physical problem or indirectly, for
example, as the result of using finite difference methods to solve a partial differential
equation. We will restrict ourselves to the case where the number of equations and
the number of unknowns are the same. The problem can be defined as:
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a11x1 + a12x2 + ... + a1nxn = b1

a22x2 + a22x2 + ... + a2nxn = b2

...

an1x1 + an2x2 + ... + annxn = b1

or ⎛
⎜⎜⎝
a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...

an1 an2 ... ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1
x2
...

xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
b1
b2
...

bn

⎞
⎟⎟⎠ (26.2)

which can be written as:
Ax = b

where A is the n x n coefficient matrix, b is the right-hand-side vector and x is the
vector of unknowns. We will also restrict ourselves to the case where A is a general
real matrix.

Note that there is a unique solution to (26.2) if the inverse, A−1, of the coefficient
matrixA, exists. However, the system should never be solved by finding A−1 and then
solving A−1b = x because of the problems of rounding error and the computational
costs.

Awell-knownmethod for solving (26.2) isGaussian Elimination, wheremultiples
of equations are subtracted from others so that the coefficients below the diagonal
become zero, producing a system of the form:

⎛
⎜⎜⎝
a∗
11 a

∗
12 ... a∗1n

0 a∗
22 ... a∗

2n
... ... ... ...

0 0 0 a∗
nn

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x1
x2
...

xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
b∗
1
b∗
2

...

b∗
n

⎞
⎟⎟⎠

where A has been transformed into an upper triangular matrix. By a process of
backward substitution the values of x drop out.

The subroutine gaussian_elimination implements the Gaussian Elimina-
tion algorithm with partial pivoting, which ensure that the multipliers are less than
1 in magnitude, by interchanging rows if necessary. This is to try and prevent the
buildup of errors.

This implementation is based on two LINPACK routines SGEFA and SGESL and
a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in their
book Numerical Methods in Practice.

When the subroutine gaussian_elimination is called on exit both a and
b are overwritten. Mathematically Gaussian Elimination is described as working on
rows, and using partial pivoting row interchanges may be necessary. Due to Fortran’s
row element ordering, to implement this algorithm efficiently it works on columns
rather than rows by interchanging elements within a column if necessary.
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include ’precision_module.f90’

module ge_module

use precision_module, wp => dp

implicit none

contains

subroutine gaussian_elimination(a, n, b, x, &

singular)

! routine to solve a system ax=b

! using gaussian elimination

! with partial pivoting

! the code is based on the linpack routines

! sgefa and sgesl

! and operates on columns rather than rows!

implicit none

! matrix a and vector b are over-written

! arguments

integer, intent (in) :: n

real (wp), intent (inout) :: a(:, :), b(:)

real (wp), intent (out) :: x(:)

logical, intent (out) :: singular

! local variables

integer :: i, j, k, pivot_row

real (wp) :: pivot, sum, element

real (wp), parameter :: eps = 1.e-13_wp

! work through the matrix column by column

do k = 1, n - 1

! find largest element in column k for pivot

!

pivot_row = maxval(maxloc(abs(a(k:n,k)))) &

+ k - 1

! test to see if a is singular

! if so return to main program
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if (abs(a(pivot_row,k))<=eps) then

singular = .true.

return

else

singular = .false.

end if

! exchange elements in column k if largest

! is

! not on the diagonal

if (pivot_row/=k) then

element = a(pivot_row, k)

a(pivot_row, k) = a(k, k)

a(k, k) = element

element = b(pivot_row)

b(pivot_row) = b(k)

b(k) = element

end if

! compute multipliers

! elements of column k below diagonal

! are set to these multipliers for use

! in elimination later on

a(k+1:n, k) = a(k+1:n, k)/a(k, k)

! row elimination performed by columns for

! efficiency

do j = k + 1, n

pivot = a(pivot_row, j)

if (pivot_row/=k) then

! swap if pivot row is not k

a(pivot_row, j) = a(k, j)

a(k, j) = pivot

end if

a(k+1:n, j) = a(k+1:n, j) - &

pivot*a(k+1:n, k)

end do

! apply same operations to b
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b(k+1:n) = b(k+1:n) - a(k+1:n, k)*b(k)

end do

! backward substitution

do i = n, 1, -1

sum = 0.0

do j = i + 1, n

sum = sum + a(i, j)*x(j)

end do

x(i) = (b(i)-sum)/a(i, i)

end do

end subroutine gaussian_elimination

end module ge_module

program ch2604

use ge_module

implicit none

integer :: i, n

real (wp), allocatable :: a(:, :), b(:), x(:)

logical :: singular

print *, ’number of equations?’

read *, n

allocate (a(1:n,1:n), b(1:n), x(1:n))

do i = 1, n

print *, ’input elements of row ’, i, &

’ of a’

read *, a(i, 1:n)

print *, ’input element ’, i, ’ of b’

read *, b(i)

end do

call gaussian_elimination(a, n, b, x, &

singular)

if (singular) then

print *, ’matrix is singular’

else

print *, ’solution x:’

print *, x(1:n)

end if

end program ch2604
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26.5.1 Notes

26.5.1.1 Module for Precision Selection

We use the module precision_module from Chap.21 and choose a working
precision wp which maps to dp or double precision, to specify the floating point
precision to which we wish to work. This module is then used by the main program
and the subroutine, and wp is usedwith all the real type definitions and any constants,
e.g.

real(wp), parameter :: eps=1.E-13_wp

26.5.1.2 Deferred-Shape Arrays

In the main program matrix a and vectors b and x are declared as deferred-shape
arrays, by specifying their rank only and using the allocatable attribute . Their shape
is determined at run time when the variable n is read in and then the statement

allocate(a(1:n,1:n), b(1:n), x(1:n))

is used.

26.5.1.3 Intrinsic Functions maxval and maxloc

In the context of subroutine gaussian_elimination we have used:

maxval ( maxloc (abs ( a ( k:n,k ) ) ) ) + k - 1

Breaking this down,

maxloc ( abs ( a (k:n,k) ) )

takes the rank 1 array

(|a(k, k)|, |a(k + 1, k)|, ...|a(n, k)|) (26.3)

where |a(k, k)| = abs(a(k, k)) and of length n − k + 1. It returns the position of the
largest element as a rank 1 array of size one, e.g. l.

Applying maxval to this rank 1 array l returns l as a scalar, l being the position
of the largest element of array (1).
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What we actually want is the position of the largest element of (26.3), but in the
kth column of matrix a. We therefore have to add k-1 to l to give the actual position
in column k of a.

26.6 Example 5: Allocatable Function Results

A function may return an array, and in this example the array allocation takes place
in the function.

module running_average_module

implicit none

contains

function running_average(r, how_many) &

result (rarray)

integer, intent (in) :: how_many

real, intent (in), allocatable, &

dimension (:) :: r

real, allocatable, dimension (:) :: rarray

integer :: i

real :: sum = 0.0

allocate (rarray(1:how_many))

do i = 1, how_many

sum = sum + r(i)

rarray(i) = sum/i

end do

end function running_average

end module running_average_module

module read_data_module

implicit none

contains

subroutine read_data(file_name, raw_data, &

how_many)

implicit none

character (len=*), intent (in) :: file_name

integer, intent (in) :: how_many

real, intent (out), allocatable, &

dimension (:) :: raw_data

integer :: i
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allocate (raw_data(1:how_many))

open (unit=1, file=file_name, status=’old’)

do i = 1, how_many

read (unit=1, fmt=*) raw_data(i)

end do

end subroutine read_data

end module read_data_module

program ch2605

use running_average_module

use read_data_module

implicit none

integer :: how_many

character (len=20) :: file_name

real, allocatable, dimension (:) :: raw_data

real, allocatable, dimension (:) :: ra

integer :: i

print *, ’ how many data items are there?’

read *, how_many

print *, ’ what is the file name?’

read ’(a)’, file_name

call read_data(file_name, raw_data, how_many)

allocate (ra(1:how_many))

ra = running_average(raw_data, how_many)

do i = 1, how_many

print *, raw_data(i), ’ ’, ra(i)

end do

end program ch2605

This facility was introduced in Fortran 95.

26.7 Example 6: Elemental e**x Function

The following is an elemental version of the etox function covered in an earlier
chapter.

module etox_module

implicit none

contains
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elemental real function etox(x)

implicit none

real, intent (in) :: x

real :: term

integer :: nterm

real, parameter :: tol = 1.0e-6

etox = 1.0

term = 1.0

nterm = 0

do

nterm = nterm + 1

term = (x/nterm)*term

etox = etox + term

if (term<=tol) exit

end do

end function etox

end module etox_module

program ch2606

use etox_module

implicit none

integer :: i

real :: x

real, dimension (10) :: y

x = 1.0

do i = 1, 10

y(i) = i

end do

print *, y

x = etox(x)

print *, x

y = etox(y)

print *, y

end program ch2606

Elemental functions require the use of explicit interfaces, and we have therefore
used modules to achieve this.
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26.8 Example 7: Absolute and Relative Errors Involved in
Subtraction Using 32 bit Reals

It should be apparent by now that floating point arithmetic is by its very nature
inexact. Knuth and others identify the concept of significant digits or relative error
as a useful measure. As a general rule the operations of multiplication and division
do not magnify the relative error by very much, but floating point subtraction does.

In the next two exampleswe look at the the relative error involvedwith subtraction.
In the first example we use 32 bit reals, our sp kind type from our precision module.

Here is the program source.

include ’precision_module.f90’

program ch2607

use precision_module, wp => sp

implicit none

integer :: i

integer, parameter :: n = 4

real (wp), dimension (n) :: x1 = [ 1.1_wp, &

1.01_wp, 1.001_wp, 1.0001_wp ]

real (wp), dimension (n) :: x2 = [ 1.2_wp, &

1.02_wp, 1.002_wp, 1.0002_wp ]

real (wp), dimension (n) :: x3 = [ 0.1_wp, &

0.01_wp, 0.001_wp, 0.0001_wp ]

real (wp), dimension (n) :: rel_error = 0.0_wp

real (wp), dimension (n) :: abs_error = 0.0_wp

real (wp) :: z

character (len=11), dimension (n) :: heading_1 &

= [ ’1 in 10 ’, ’1 in 100 ’, &

’1 in 1,000 ’, ’1 in 10,000’ ]

character (len=6), dimension (n) :: heading_2 &

= [ ’1.1 ’, ’1.01 ’, ’1.001 ’, ’1.0001’ ]

character (len=15), dimension (2) :: heading_3 &

= [ ’Absolute error ’, ’Relative error ’ ]

do i = 1, n

z = x2(i) - x1(i)

abs_error(i) = abs(z-x3(i))

rel_error(i) = abs_error(i)/x3(i)

print *, ’ ’, heading_1(i), ’ ’, &

heading_2(i)
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print *, ’ Calculated = ’, z, ’ ’, &

heading_3(1), abs_error(i)

print *, ’ Expected = ’, x3(i), &

’ ’, heading_3(2), rel_error(i)

end do

end program ch2607

Here is sample output from the Nag compiler.

1 in 10 1.1
Calculated = 0.1000000 Absolute error 2.2351742E-08
Expected = 0.1000000 Relative error 2.2351742E-07
1 in 100 1.01
Calculated = 9.9999905E-03 Absolute error 9.3132257E-09
Expected = 9.9999998E-03 Relative error 9.3132257E-07
1 in 1,000 1.001
Calculated = 9.9992752E-04 Absolute error 7.2526745E-08
Expected = 1.0000000E-03 Relative error 7.2526745E-05
1 in 10,000 1.0001
Calculated = 1.0001659E-04 Absolute error 1.6596459E-08
Expected = 9.9999997E-05 Relative error 1.6596459E-04

26.9 Example 8: Absolute and Relative Errors Involved in
Subtraction Using 64 bit Reals

Here is the program source.

include ’precision_module.f90’

program ch2608

use precision_module, wp => dp

implicit none
integer :: i
integer, parameter :: n = 5

real (wp), dimension (n) :: x1 = [ &
1.000000001_wp, 1.0000000001_wp, &
1.00000000001_wp, 1.000000000001_wp, &
1.0000000000001_wp ]

real (wp), dimension (n) :: x2 = [ &
1.000000002_wp, 1.0000000002_wp, &
1.00000000002_wp, 1.000000000002_wp, &
1.0000000000002_wp ]
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real (wp), dimension (n) :: x3 = [ &
0.000000001_wp, 0.0000000001_wp, &
0.00000000001_wp, 0.000000000001_wp, &
0.0000000000001_wp ]

real (wp), dimension (n) :: rel_error = 0.0_wp
real (wp), dimension (n) :: abs_error = 0.0_wp

real (wp) :: z

character (len=23), dimension (n) :: heading_1 &
= [ ’1 in 1,000,000,000’, &
’1 in 10,000,000,000’, &
’1 in 100,000,000,000’, &
’1 in 1,000,000,000,000’, &
’1 in 10,000,000,000,000’ ]

character *15, dimension (n) :: heading_2 = [ &
’1.000000001 ’, ’1.0000000001 ’, &
’1.00000000001 ’, ’1.000000000001 ’, &
’1.0000000000001’ ]

character *15, dimension (2) :: heading_3 = [ &
’Absolute error ’, ’Relative error ’ ]

do i = 1, n
z = x2(i) - x1(i)
abs_error(i) = abs(z-x3(i))
rel_error(i) = abs_error(i)/x3(i)
print *, heading_1(i), ’ ’, heading_2(i)
print *, ’ Calculated = ’, z, ’ ’, &

heading_3(1), abs_error(i)
print *, ’ Expected = ’, x3(i), &

’ ’, heading_3(2), rel_error(i)
end do

end program ch2608

Here is sample output from the Nag compiler.

1 in 1,000,000,000 1.000000001
Calculated = 9.9999986069576607E-10

Absolute error 1.3930423398822253E-16
Expected = 1.0000000000000001E-09

Relative error 1.3930423398822253E-07
1 in 10,000,000,000 1.0000000001
Calculated = 1.0000000827403710E-10

Absolute error 8.2740370962658176E-18
Expected = 1.0000000000000000E-10

Relative error 8.2740370962658176E-08
1 in 100,000,000,000 1.00000000001
Calculated = 1.0000000827403710E-11
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Absolute error 8.2740371059593404E-19
Expected = 9.9999999999999994E-12

Relative error 8.2740371059593408E-08
1 in 1,000,000,000,000 1.000000000001
Calculated = 9.9986685597741598E-13

Absolute error 1.3314402258399958E-16
Expected = 9.9999999999999998E-13

Relative error 1.3314402258399958E-04
1 in 10,000,000,000,000 1.0000000000001
Calculated = 1.0014211682118912E-13

Absolute error 1.4211682118911691E-16
Expected = 1.0000000000000000E-13

Relative error 1.4211682118911691E-03

26.10 Problems

26.1 Compile and run the sparse matrix example with the data provided.

26.2 Compile and run the Runge Kutta Merson example with the data provided.

26.3 Compile and run the Gaussian Elimination example with the following data.

A =
⎛
⎝

33 16 72
−24 −10 −57
−8 −4 −17

⎞
⎠

b =
⎛
⎝

−359
281
85

⎞
⎠

and the solution is

x =
⎛
⎝

1
−2
−5

⎞
⎠

26.4 Edit the Runge Kutta Merson subroutine so that tol is an optional argument.
Compile and run the new code for the same set of ODE’s but don’t provide tol in
the main program’s call to the subroutine. Next provide tol with a value 1.0e-4.
What results do you get?
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Chapter 27
Parameterised Derived Types (PDTs)
in Fortran

Aims
The aims of this chapter are to look at some additional data structuring examples in
Fortran that use parameterised derived types - PDTs.

27.1 Introduction

Parameterised derived types were introduced in the Fortran 2003 standard. They
allow the kind, length, or shape of a derived type’s components to be chosen when
the derived type is used.

This feature was only available in two compilers (Cray and IBM) at the time
of the second edition. Support for this feature is now available in three additional
compilers. At the time of writing they were available in the following compilers:

• Cray
• IBM
• Intel
• Nag (partial)
• PGI

Consult ourCompiler Support for the Fortran 2003 and 2008 Standards document

https://www.fortranplus.co.uk/

fortran-information/

for up to date information.
A parameterised derived type can have the kind, length and shape of a derived type

chosen at run time. All type parameters are of type integer and have a kind, len
or dim attribute. A kind type parameter may be used in constant and specification
expressions. A length type parameter may only be used in a specification expression,
e.g. array declarations.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_27
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We have a small number of examples to illustrate their use.

27.2 Example 1: Linked List Parameterised by Real Kind

Here is the link module.

module link_module

use precision_module

type link(real_kind)

integer, kind :: real_kind

real (kind=real_kind) :: n

type (link(real_kind)), pointer :: next

end type link

end module link_module

Here is the complete program.

include ’precision_module.f90’

include ’ch2701_link_module.f90’

program ch2701

use precision_module

use link_module

implicit none

integer, parameter :: wp = dp

type (link(real_kind=wp)), pointer :: root, &

current

integer :: i = 0

integer :: error = 0

integer :: io_stat_number = 0

real (wp), allocatable, dimension (:) :: x

allocate (root)

print *, ’ type in some numbers’

read (unit=*, fmt=*, iostat=io_stat_number) &

root%n

if (io_stat_number>0) then

error = error + 1

else if (io_stat_number<0) then

nullify (root%next)

else

i = i + 1
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allocate (root%next)

end if

current => root

do while (associated(current%next))

current => current%next

read (unit=*, fmt=*, iostat=io_stat_number) &

current%n

if (io_stat_number>0) then

error = error + 1

else if (io_stat_number<0) then

nullify (current%next)

else

i = i + 1

allocate (current%next)

end if

end do

print *, i, ’ items read’

print *, error, ’ items in error’

allocate (x(1:i))

i = 1

current => root

do while (associated(current%next))

x(i) = current%n

i = i + 1

print *, current%n

current => current%next

end do

print *, x

end program ch2701

Let us look at the link_module in more depth.

type link(real_kind)

integer, kind :: real_kind

real (kind=real_kind) :: n

type (link(real_kind)), pointer :: next

end type link

The key is in the type declaration for linkwhere thelink type takes a parameter
real_kind.

We then can reference this parameter within the link kind type definition. Thus
the declarations for n and next are parameterised by real_kind.

In the main program we have
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integer, parameter :: wp = dp

type (link(real_kind=wp)), pointer :: root, &

current

and the type declarations for root and current are parameterised by wp, where
wp = dp.

This means that we write one type definition for the link type that will work
with any supported real kind type.

Without parameterised derived type support we would have to write separate kind
type definitions for each supported real kind.

27.3 Example 2: Ragged Array Parameterised by Real
Kind Type

Here is the ragged module.

module ragged_module

use precision_module

implicit none

type ragged(real_kind)

integer, kind :: real_kind

real (real_kind), dimension (:), &

allocatable :: ragged_row

end type ragged

end module ragged_module

Here is the complete program.

include ’precision_module.f90’

include ’ch2702_ragged_module.f90’

program ch2702

use precision_module

use ragged_module

implicit none

integer, parameter :: wp = sp

integer :: i

integer, parameter :: n = 3

type (ragged(wp)), dimension (1:n) :: &

lower_diag
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do i = 1, n

allocate (lower_diag(i)%ragged_row(1:i))

print *, ’ type in the values for row ’, i

read *, lower_diag(i)%ragged_row(1:i)

end do

do i = 1, n

print *, lower_diag(i)%ragged_row(1:i)

end do

end program ch2702

Let us look at the ragged_module in more depth.

module ragged_module

use precision_module

implicit none

type ragged(real_kind)

integer, kind :: real_kind

real (real_kind), dimension (:), &

allocatable :: ragged_row

end type ragged

end module ragged_module

The key is in the type declaration for the ragged type.
We have

type ragged(real_kind)

so the kind definition is parameterised by real_kind.
The ragged_row array declaration is parameterised by real_kind.
In the main program we have

type (ragged(wp)), dimension (1:n) :: &

lower_diag

so that the lower_diag declaration is parameterised by wp, where wp = sp.
So we have one declaration for the ragged type and can use this type with any

supported real kind type.

27.4 Example 3: Specifying len in a PDT

In this example we use both the kind attribute and the len attribute in the type
specification.
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Here is the matrix module.

module pdt_matrix_module

use precision_module

implicit none

type pdt_matrix(k, row, col)

integer, kind :: k

integer, len :: row, col

real (kind=k), dimension (row, col) :: m

end type pdt_matrix

interface scale_matrix

module procedure scale_matrix_sp

module procedure scale_matrix_dp

end interface scale_matrix

contains

subroutine scale_matrix_sp(a, scale)

type (pdt_matrix(sp,*,*)), intent (inout) :: &

a

real (sp) :: scale

a%m = a%m + scale

end subroutine scale_matrix_sp

subroutine scale_matrix_dp(a, scale)

type (pdt_matrix(dp,*,*)), intent (inout) :: &

a

real (dp) :: scale

a%m = a%m + scale

end subroutine scale_matrix_dp

end module pdt_matrix_module

Here is the complete program.

include ’precision_module.f90’

include ’ch2703_matrix_module.f90’

program ch2703
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use precision_module

use pdt_matrix_module

implicit none

real (sp) :: scs

real (dp) :: scd

integer, parameter :: nr = 2, nc = 3

integer :: i

type (pdt_matrix(sp,nr,nc)) :: as

type (pdt_matrix(dp,nr,nc)) :: ad

!

! single precision

!

do i = 1, nr

print *, ’input row ’, i, ’ of sp matrix’

read *, as%m(i, 1:nc)

end do

print *, ’input sp scaling factor’

read *, scs

call scale_matrix(as, scs)

print *, ’updated matrix:’

do i = 1, nr

print 100, as%m(i, 1:nc)

100 format (10(f6.2,2x))

end do

!

! double precision

!

do i = 1, nr

print *, ’input row ’, i, ’ of dp matrix’

read *, ad%m(i, 1:nc)

end do

print *, ’input dp scaling factor’

read *, scd

call scale_matrix(ad, scd)

print *, ’updated matrix:’

do i = 1, nr

print 110, ad%m(i, 1:nc)

110 format (10(e12.5,2x))

end do

end program ch2703
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27.5 Problems

27.1 Modify example 1 to read the data from a file.

27.2 Rewrite the tree derived type in Chap.22 as a parameterised derived type to
work with an integer of any type. Test it out.



Chapter 28
Introduction to Object Oriented
Programming

For Madmen only
Hermann Hesse, Steppenwolf

Aims
The aims of this chapter are to look at object oriented programming in Fortran.

28.1 Introduction

This chapter looks at object oriented programming in Fortran. The chapter on pro-
gramming languages covers the topic in a broader context.

28.2 Brief Review of the History of Object Oriented
Programming

Object oriented programming is not new. One of the first languages to offer support
was Simula 67, a language designed for discrete event simulation by Ole Johan Dahl,
Bjorn Myhrhaug and Kristen Nygaard whilst working at the Norwegian Computing
Centre in Oslo in the 1960’s.

One of the next major developments was in the 1970’s at the Xerox Palo Alto
Research Centre Learning Research Group who began working on a vision of the
ways different people might effectively use computing power. One of the outcomes
of their work was the Smalltalk 80 system. Objects are at the core of the Smalltalk
80 system.

© Springer International Publishing AG, part of Springer Nature 2018
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The 1980’s and 1990’s saw a number of object oriented programming languages
emerge. They include

• Eiffel. Bertrand Meyer, Eiffel Software.
• C++ from C with classes. Bjarne Stroustrup at Bell Labs.
• Oberon 2. Niklaus Wirth at ETH in Zurich.
• Java. James Gosling, originally Sun, now Oracle.
• C# is a recent Microsoft addition to the list.

Object-oriented programming is effectively a programming methodology or
paradigm using objects (data structures made up of data and methods). We will
use the concept of a shape class in our explanation and examples. The Simula Begin
book starts with shapes, and it is often used in introductions to object oriented pro-
gramming in other languages.

Some of the key concepts are

• encapsulation or information hiding - the implementation of the data is hidden
inside an object and clients or users of the data only have access to an abstract
view of it. Methods are used to access and manipulate the data. For example a
shape class may have an x and y position, and methods exist to get and set the
positions and draw and move the shape.

• data abstraction - if we have an abstract shape data type we can create multiple
variables of that type.

• inheritance - an existing abstract data type can be extended. It will inherit the data
and methods from the base type and add additional data and methods. A key to
inheritance is that the extended type is compatible with the base type. Anything
that works with objects or variables of the base type also works with objects of
the extended type. A circle would have a radius in addition to an x and y position,
a rectangle would have a width and height.

• dynamic binding - if we have a base shape class and derive circles and rectangles
from it dynamic binding ensures that the correct method to calculate the area is
called at run time.

• polymorphism - variables can therefore be polymorphic. Using the shape example
we can therefore create an array of shapes, one may be a shape, one may be a
circle and another may be a rectangle.

Extensible abstract data types with dynamically bound methods are often called
classes. This is the terminology we will use in what follows.

28.3 Background Technical Material

We need to look more formally at a number of concepts so that we can actually do
object oriented programming in Fortran. The following sections cover some of the
introductory material we need, and are taken from the standard.
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28.3.1 The Concept of Type

Fortran provides an abstract means whereby data can be categorized without relying
on a particular physical representation. This abstract means is the concept of type.
A type has a name, a set of valid values, a means to denote such values (constants),
and a set of operations to manipulate the values.

28.3.2 Type Classification

A type is either an intrinsic type or a derived type. This document defines five
intrinsic types: integer, real, complex, character, and logical. A derived type is one
that is defined by a derived-type definition (7.5.2) or by an intrinsic module. It shall
be used only where it is accessible (7.5.2.2). An intrinsic type is always accessible.

28.3.3 Set of Values

For each type, there is a set of valid values. The sets of valid values for integer,
character, and real are processor dependent. The set of valid values for complex
consists of the set of all the combinations of the values of the real and imaginary
parts. The set of valid values for a derived type is as defined in 7.5.8.

28.3.4 Type

A type type specifier is used to declare entities that are assumed-type, or of an
intrinsic or derived type.

An entity that is declared using the TYPE(*) type specifier is assumed-type and
is an unlimited polymorphic entity. It is not declared to have a type, and is not
considered to have the same declared type as any other entity, including another
unlimited polymorphic entity. Its dynamic type and type parameters are assumed
from its effective argument.

28.3.5 Class

The CLASS type specifier is used to declare polymorphic entities. A polymorphic
entity is a data entity that is able to be of differing dynamic types during program
execution.
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The declared type of a polymorphic entity is the specified type if the CLASS type
specifier contains a type name.

An entity declared with the CLASS(*) specifier is an unlimited polymorphic
entity. It is not declared to have a type, and is not considered to have the same
declared type as any other entity, including another unlimited polymorphic entity.

28.3.6 Attributes

The additional attributes that may appear in the attribute specification of a type
declaration statement further specify the nature of the entities being declared or
specify restrictions on their use in the program.

28.3.6.1 Accessibility Attribute

The accessibility attribute specifies the accessibility of an entity via a particular
identifier. The following is taken from Sect. 8.5.2 of the Fortran 2018 standard.

• access-spec is public or private
• An access-spec shall appear only in the specification-part of a module.

Identifiers that are specified in a module or accessible in that module by use
association have either the public or private attribute. Identifiers for which an
access-spec is not explicitly specified in that module have the default accessibility
attribute for that module. The default accessibility attribute for a module is public
unless it has been changed by a private statement. Only identifiers that have the
public attribute in that module are available to be accessed from that module by
use association.

28.3.7 Passed Object Dummy Arguments

Section3.107 of the Fortran 2018 standard introduces the concept of passed object
dummy argument. Here is an extract from the standard:

• A passed-object dummy argument is a distinguished dummy argument of a pro-
cedure pointer component or type-bound procedure (7.5.5). It affects procedure
overriding (7.5.7.3) and argument association (15.5.2.2).

• If NOPASS is specified, the procedure pointer component or type-bound procedure
has no passed-object dummy argument.

• If neither PASS nor NOPASS is specified or PASS is specified without arg-name,
the first dummy argument of a procedure pointer component or type-bound pro-
cedure is its passed-object dummy argument.
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• If PASS (arg-name) is specified, the dummy argument named arg-name is the
passed-object dummy argument of the procedure pointer component or named
type-bound procedure.

• Constraint C761 The passed-object dummy argument shall be a scalar, nonpointer,
nonallocatable dummy data object with the same declared type as the type being
defined; all of its length type parameters shall be assumed; it shall be polymorphic
(7.3.2.3) if and only if the type being defined is extensible (7.5.7). It shall not have
the VALUE attribute.

The key here is that we are going to use the pass and nopass attributes with
type bound procedures - a component of object oriented programming in Fortran.

28.3.8 Derived Types and Structure Constructors

A derived type is a type that is not defined by the language but requires a type
definition to declare its components. A scalar object of such a derived type is called a
structure. Assignment of structures is defined intrinsically, but there are no intrinsic
operations for structures. For each derived type, a structure constructor is available
to provide values.

A derived-type definition implicitly defines a corresponding structure constructor
that allows construction of values of that derived type.

28.3.9 Structure Constructors and Generic Names

A generic name may be the same as a type name. This can be used to emulate user-
defined structure constructors for that type, even if the type has private components.
The following example is taken from the standard to illustrate this.

module mytype_module

type mytype

private

complex value

logical exact

end type

interface mytype

module procedure int_to_mytype

end interface

! Operator definitions etc.

...

contains

type(mytype) function int_to_mytype(i)

integer,intent(in) :: i

int_to_mytype%value = i
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int_to_mytype%exact = .true.

end function

! Procedures to support operators etc.

...

end

28.3.10 Assignment

Execution of an assignment statement causes a variable to become defined or rede-
fined. Simplistically

variable = expression

28.3.11 Intrinsic Assignment Statement

An intrinsic assignment statement is an assignment statement that is not a defined
assignment statement (10.2.1.4). In an intrinsic assignment statement,

• if the variable is polymorphic it shall be allocatable and not a coarray,
• if expr is an array then the variable shall also be an array,
• the variable and expr shall be conformable unless the variable is an allocatable
array that has the same rank as expr and is not a coarray,

• if the variable is polymorphic it shall be type compatible with expr; otherwise the
declared types of the variable and expr shall conform as specified in Table 10.8 of
the standard,

• if the variable is of type character and of ISO 10646, ASCII, or default character
kind, expr shall be of ISO 10646, ASCII, or default character kind,

• otherwise if the variable is of type character expr shall have the same kind type
parameter,

• if the variable is of derived type each kind type parameter of the variable shall
have the same value as the corresponding kind type parameter of expr, and

• if the variable is of derived type each length type parameter of the variable shall
have the same value as the corresponding type parameter of expr unless the variable
is allocatable, is not a coarray, and its corresponding type parameter is deferred.

28.3.12 Defined Assignment Statement

A defined assignment statement is an assignment statement that is defined by a
subroutine and a generic interface that specifies ASSIGNMENT (=).
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28.3.13 Polymorphic Variables

Here are some of the technical definitions regarding polymorphic taken from the
standard.

• polymorphic - polymorphic data entity able to be of differing dynamic types during
program execution (7.3.2.3)

• unlimited polymorphic - able to have any dynamic type during program execution
(7.3.2.3)

A polymorphic variable must be a pointer or allocatable variable. We will use
allocatable variables to achieve polymorphism in our examples.

28.3.14 Executable Constructs Containing Blocks

The following are executable constructs that contain blocks:

• associate construct
• case construct
• do construct
• if construct
• select type construct

We will look at the associate construct and select type construct next.

28.3.15 The associate Construct

The associate construct associates named entities with expressions or variables
during the execution of its block. These named construct entities are associating
entities. The names are associate names.

The following example illustrates an association with a derived-type variable.

associate ( xc => ax%b(i,i)%c )

xc%dv = xc%dv + product(xc%ev(1:n))

end associate

28.3.16 The select type Construct

The select type construct selects for execution at most one of its constituent
blocks. The selection is based on the dynamic type of an expression. A name is
associated with the expression, in the same way as for the associate construct.

Quite a lot to take in! Let’s illustrate the use of the above in some actual examples.
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28.4 Example 1: The Basic Shape Class

The code for the base shape class is given below.

• shape class data: integer variables x and y for the position.
• shape class methods: get and set for the x and y values, and moveto and
draw.

We have used an include statement in the examples that follow to reduce code
duplication. In this example we have used the default accessibility for the data and
methods in the shape_module.

module shape_module

type shape_type

integer :: x_ = 0

integer :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x

procedure, pass (this) :: set_y

procedure, pass (this) :: moveto

procedure, pass (this) :: draw

end type shape_type

contains

include ’shape_module_include_code.f90’

end module shape_module

Here is the code in the include file.

!start shape_module_common_code

integer function get_x(this)

implicit none

class (shape_type), intent (in) :: this

get_x = this%x_

end function get_x
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integer function get_y(this)

implicit none

class (shape_type), intent (in) :: this

get_y = this%y_

end function get_y

subroutine set_x(this, x)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: x

this%x_ = x

end subroutine set_x

subroutine set_y(this, y)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: y

this%y_ = y

end subroutine set_y

subroutine moveto(this, newx, newy)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: newx

integer, intent (in) :: newy

this%x_ = newx

this%y_ = newy

end subroutine moveto

subroutine draw(this)

implicit none

class (shape_type), intent (in) :: this

print *, ’ x = ’, this%x_

print *, ’ y = ’, this%y_

end subroutine draw

!end shape_module_common_code
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28.4.1 Key Points

Some of the key concepts are:

• We use a module as the organisational unit for the class.
• We use type and end type to contain the data and the procedures - called type
bound procedures in Fortran terminology.

• The data in the base class is an x and y position.
• The type bound methods within the class are

– get_x and set_x
– get_y and set_y
– draw
– moveto

• We have used the default accessibility for the data and methods in the type.

Let us look at the code in stages.

module shape_module

The module is called shape_module

type shape_type

The type is called shape_type

integer :: x_ = 0

integer :: y_ = 0

The data associated with the shape type are integer variables that are the x and y
coordinates of the shape. We initialise to zero.

contains

The type also contains procedures or methods.

procedure, pass(this) :: get_x

procedure, pass(this) :: get_y

procedure, pass(this) :: set_x

procedure, pass(this) :: set_y

procedure, pass(this) :: moveto

procedure, pass(this) :: draw
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These are called type bound procedures in Fortran terminology. It is common
in object oriented programming to have get and set methods for each of the data
components of the type or object. We also have a moveto and draw method.

Each of these methods has the pass attribute. When a type bound procedure
is called or invoked the object through which is invoked is normally passed as a
hidden parameter. We have used the pass attribute to explicitly confirm the default
behaviour of passing the invoking object as the first parameter.We have also followed
the convention in object oriented programming of using the word this to refer to
the current object.

end type shape_type

This is the end of the type definition.

contains

Themodule then contains the actual implementation of the type bound procedures.
We will look at a couple of these.

integer function get_x(this)

implicit none

class (shape_type), intent (in) :: this

get_x = this%x_

end function get_x

As we stated earlier it is common in object oriented programming to have get and
set methods for each data item in an object. This function implements the get_x
method. The first argument is the current object, referred to as this. We then have
the type declaration for this parameter. We declare the variable using class rather
than type as we want the variable to be polymorphic. The rest of the function is self
explanatory.

subroutine set_x(this,x)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: x

this%x_ = x

end subroutine set_x

The set_x procedure is a subroutine. It takes two parameters, the current object
and the new x value. Again we use the class declaration mechanism as we want the
variable to be polymorphic.

Here is a program to test the above shape module out.
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include ’ch2801_shape_module.f90’

program ch2801

use shape_module

implicit none

type (shape_type) :: s1 = shape_type(10, 20)

integer :: x1 = 100

integer :: y1 = 200

print *, ’ get ’

print *, s1%get_x(), ’ ’, s1%get_y()

print *, ’ draw ’

call s1%draw()

print *, ’ moveto ’

call s1%moveto(x1, y1)

print *, ’ draw ’

call s1%draw()

print *, ’ set ’

call s1%set_x(99)

call s1%set_y(99)

print *, ’ draw’

call s1%draw()

end program ch2801

The first statement of interest is the use statement, where we make available the
shape_module to the test program. The next statement of interest is

type (shape_type) :: s1 = shape_type(10,20)

We then have a type declaration for the variable s1. We also have the use of what
Fortran calls a structure constructor shape_type to provide initial values to the x
and y positions. The term constructor is used in other object oriented programming
languages, e.g. C++, Java, C#. It has the same name as the type or class and is created
automatically for us by the compiler in this example.

The

print *, s1%get_x(), ’ ’, s1%get_y()

statement prints out the x andy values for the object s1. We use the standard %
notation that we used in derived types, to separate the components of the derived
types. If one looks at the implementation of the get_x function and examines the
first line, repeated below

integer function get_x(this)
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how we refer to the current object, s1, through the syntax s1%get_x(). The
following call:

call s1%draw()

shows how to invoke the draw method for the s1 object, using the s1%draw()
syntax. The first line of the draw subroutine

subroutine draw(this)

shows how the current object is passed as the first argument.

28.4.2 Notes

In this example we have accepted the default Fortran accessibility behaviour. This
means that we can use the compiler provided structure constructor shape_type()

type (shape_type) :: s1 = shape_type(10,20)

in the type declaration to provide initial values, as they are public by default. Direct
access to the data is often not a good idea, as it is possible to makes changes to the
data anywhere in the program. The next example makes the data private.

28.5 Example 2: Base Class with Private Data

Here is the modified base class.

module shape_module

type shape_type

integer, private :: x_ = 0

integer, private :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x

procedure, pass (this) :: set_y

procedure, pass (this) :: moveto
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procedure, pass (this) :: draw

end type shape_type

contains

include ’shape_module_include_code.f90’

end module shape_module

Here is the diff output between the two shape modules.

5,6c5,6

< integer :: x_ = 0

< integer :: y_ = 0

---

> integer, private :: x_ = 0

> integer, private :: y_ = 0

This example will now not compile as the default compiler provided structure
constructor does not have access to the private data.

The test program is the same as in the first example.
Here is the output from trying to compile this example.

Error: ch2802.f90, line 4:

Constructor for type SHAPE_TYPE has value

for PRIVATE component X_

Errors in declarations,

no further processing for CH2802

[NAG Fortran Compiler error termination, 1 error]

Not all compilers diagnose this problem. Test yours to see if you get an error
message!

An earlier solution to this type of problem can be found in the date class in
Chap.22, where we provide our own structure constructor date_(). Most object
oriented programming languages provide the ability to use the same name as a class
as a constructor name even if the data is private. Modern Fortran provides another
solution to this problem. In the example below we will provide our own structure
constructor inside an interface.

https://doi.org/10.1007/978-3-319-75502-1_22
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28.6 Example 3: Using an Interface to Use the Class Name
for the Structure Constructor

Here is the modified base class.

module shape_module

type shape_type

integer, private :: x_ = 0

integer, private :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x

procedure, pass (this) :: set_y

procedure, pass (this) :: moveto

procedure, pass (this) :: draw

end type shape_type

interface shape_type

module procedure shape_type_constructor

end interface shape_type

contains

type (shape_type) function &

shape_type_constructor(x, y)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

shape_type_constructor%x_ = x

shape_type_constructor%y_ = y

end function shape_type_constructor

include ’shape_module_include_code.f90’

end module shape_module

Here is the diff output between the second and third shape modules.
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18a19,22

> interface shape_type

> module procedure shape_type_constructor

> end interface shape_type

>

19a24,33

>

> type (shape_type) function &

> shape_type_constructor(x, y)

> implicit none

> integer, intent (in) :: x

> integer, intent (in) :: y

>

> shape_type_constructor%x_ = x

> shape_type_constructor%y_ = y

> end function shape_type_constructor

The key statements are

interface shape_type

module procedure shape_type_constructor

end interface

which enables us to map a call or reference to shape_type (our structure con-
structor name) to our implementation of shape_type_constructor. Here is
the implementation of this structure constructor.

type (shape_type) function &

shape_type_constructor(x,y)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

shape_type_constructor%x_ = x

shape_type_constructor%y_ = y

end function shape_type_constructor

The function is called shape_type_constructor hence we use this name
to initialise the components of the type, and the function returns a value of type
shape_type.

Here is the program to test the above out.

include ’ch2803_shape_module.f90’

program ch2803
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use shape_module

implicit none

type (shape_type) :: s1

integer :: x1 = 100

integer :: y1 = 200

s1 = shape_type(10, 20)

print *, ’ get ’

print *, s1%get_x(), ’ ’, s1%get_y()

print *, ’ draw ’

call s1%draw()

print *, ’ moveto ’

call s1%moveto(x1, y1)

print *, ’ draw ’

call s1%draw()

print *, ’ set ’

call s1%set_x(99)

call s1%set_y(99)

print *, ’ draw’

call s1%draw()

end program ch2803

Note that in this example we cannot initialise s1 at definition time using our own
(user defined) structure constructor. This must now be done within the execution part
of the program. This is a Fortran restriction, and makes it consistent with the rest of
the language.

These examples illustrate some of the basics of object oriented programming in
Fortran. To summarise

• the data in our class is private;
• access to the data is via get and set methods;
• the data andmethods are within the derived type definition - the methods are called
type bound procedures in Fortran terminology;

• we can use interfaces to provide user defined structure constructors, which have the
same name as the class - this is a common practice in object oriented programming;

• we have used class to declare the variables within the type bound methods. We
need to use class when we want to use polymorphic variables in Fortran.

28.6.1 Public and Private Accessibility

We have only made the internal data in the class private in the above example. There
will be cases where some of the methods are only used within the class, in which
case they can be made private.
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28.7 Example 4: Simple Inheritance

In this example we look at inheritance. We use the same base shape class and derive
two classes from it - circle and rectangle.

A circle has a radius. This is the additional data component of the derived class.
We also have get and set methods.

A rectangle has a width and height. These are the additional data components of
the derived rectangle class. We also have get and set methods.

28.7.1 Base Shape Class

The base shape class is as in the previous example.

28.7.2 Circle - Derived Type 1

Here is the code.

module circle_module

use shape_module

type, extends (shape_type) :: circle_type

integer, private :: radius_

contains

procedure, pass (this) :: get_radius

procedure, pass (this) :: set_radius

procedure, pass (this) :: draw => &

draw_circle

end type circle_type

interface circle_type

module procedure circle_type_constructor

end interface circle_type

contains
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type (circle_type) function &

circle_type_constructor(x, y, radius)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

integer, intent (in) :: radius

call circle_type_constructor%set_x(x)

call circle_type_constructor%set_y(y)

circle_type_constructor%radius_ = radius

end function circle_type_constructor

integer function get_radius(this)

implicit none

class (circle_type), intent (in) :: this

get_radius = this%radius_

end function get_radius

subroutine set_radius(this, radius)

implicit none

class (circle_type), intent (inout) :: this

integer, intent (in) :: radius

this%radius_ = radius

end subroutine set_radius

subroutine draw_circle(this)

implicit none

class (circle_type), intent (in) :: this

print *, ’ x = ’, this%get_x()

print *, ’ y = ’, this%get_y()

print *, ’ radius = ’, this%radius_

end subroutine draw_circle

end module circle_module

Let us look more closely at the statements within this class. Firstly we have

module circle_module

which introduces our circle module. We then

use shape_module
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within this module to make available the shape class. The next statement

type , extends(shape_type) :: circle_type

is the key statement in inheritance. What this statement says is base our new
circle_type on the base shape_type. It is an extension of the shape_type.
We then have the additional data in our circle_type

integer , private :: radius_

and the following additional type bound procedures.

procedure , pass(this) :: get_radius

procedure , pass(this) :: set_radius

procedure , pass(this) :: draw => draw_circle

and we have the simple get and set methods for the radius, and a type specific draw
method for our circle_type. It is this method that will be called when drawing
with a circle, rather than the draw method in the base shape_type.

We then have an interface to provide us with our own user defined structure
constructor for our circle_type.

interface circle_type

module procedure circle_type_constructor

end interface

As has been stated earlier it is common practice in object oriented programming
to use the same name as the type for constructors.

We then have the implementation of the constructor.

type (circle_type) function &

circle_type_constructor(x,y,radius)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

integer, intent (in) :: radius

call circle_type_constructor%set_x(x)

call circle_type_constructor%set_y(y)

circle_type_constructor%radius_=radius

end function circle_type_constructor

Note that we use the set_x and set_y methods to provide initial values to the
x and y values. They are private in the base class so we need to use these methods.
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We can directly initialise the radius as this is a data component of this class, and
we have access to it.

We next have the get and set methods for the radius.
Finally we have the implementation for the draw circle method.

subroutine draw_circle(this)

implicit none

class (circle_type), intent(in) :: this

print *,’ x = ’ , this%get_x()

print *,’ y = ’ , this%get_y()

print *,’ radius = ’ , this%radius_

end subroutine draw_circle

Notice again that we use the get_x and get_y methods to access the x andy
private data from the base shape class.

28.7.3 Rectangle - Derived Type 2

Here is the code for the second derived type.

module rectangle_module

use shape_module

type, extends (shape_type) :: rectangle_type

integer, private :: width_

integer, private :: height_

contains

procedure, pass (this) :: get_width

procedure, pass (this) :: set_width

procedure, pass (this) :: get_height

procedure, pass (this) :: set_height

procedure, pass (this) :: draw => &

draw_rectangle

end type rectangle_type

interface rectangle_type

module procedure rectangle_type_constructor
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end interface rectangle_type

contains

type (rectangle_type) function &

rectangle_type_constructor(x, y, width, &

height)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

integer, intent (in) :: width

integer, intent (in) :: height

call rectangle_type_constructor%set_x(x)

call rectangle_type_constructor%set_y(y)

rectangle_type_constructor%width_ = width

rectangle_type_constructor%height_ = height

end function rectangle_type_constructor

integer function get_width(this)

implicit none

class (rectangle_type), intent (in) :: this

get_width = this%width_

end function get_width

subroutine set_width(this, width)

implicit none

class (rectangle_type), intent (inout) :: &

this

integer, intent (in) :: width

this%width_ = width

end subroutine set_width

integer function get_height(this)

implicit none

class (rectangle_type), intent (in) :: this

get_height = this%height_

end function get_height

subroutine set_height(this, height)

implicit none

class (rectangle_type), intent (inout) :: &



28.7 Example 4: Simple Inheritance 483

this

integer, intent (in) :: height

this%height_ = height

end subroutine set_height

subroutine draw_rectangle(this)

implicit none

class (rectangle_type), intent (in) :: this

print *, ’ x = ’, this%get_x()

print *, ’ y = ’, this%get_y()

print *, ’ width = ’, this%width_

print *, ’ height = ’, this%height_

end subroutine draw_rectangle

end module rectangle_module

The code is obviously very similar to that of the first derived type.

28.7.4 Simple Inheritance Test Program

Here is a test program that illustrates the use of the shape type, circle type and
rectangle type.

include ’ch2803_shape_module.f90’

include ’ch2804_circle_module.f90’

include ’ch2804_rectangle_module.f90’

program ch2804

use shape_module

use circle_module

use rectangle_module

implicit none

type (shape_type) :: vs

type (circle_type) :: vc

type (rectangle_type) :: vr

vs = shape_type(10, 20)

vc = circle_type(100, 200, 300)
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vr = rectangle_type(1000, 2000, 3000, 4000)

print *, ’ get ’

print *, ’ shape ’, vs%get_x(), ’ ’, &

vs%get_y()

print *, ’ circle ’, vc%get_x(), ’ ’, &

vc%get_y(), ’radius = ’, vc%get_radius()

print *, ’ rectangle ’, vr%get_x(), ’ ’, &

vr%get_y(), ’width = ’, vr%get_width(), &

’height ’, vr%get_height()

print *, ’ draw ’

call vs%draw()

call vc%draw()

call vr%draw()

print *, ’ set ’

call vs%set_x(19)

call vs%set_y(19)

call vc%set_x(199)

call vc%set_y(199)

call vc%set_radius(199)

call vr%set_x(1999)

call vr%set_y(1999)

call vr%set_width(1999)

call vr%set_height(1999)

print *, ’ draw ’

call vs%draw()

call vc%draw()

call vr%draw()

end program ch2804

The first statements of note are

use shape_module

use circle_module

use rectangle_module

which make available the shape, circle and rectangle types within the program. The
following statements

type (shape_type) :: vs

type (circle_type) :: vc

type (rectangle_type) :: vr

declare vs, vc and vr to be of type shape, circle and rectangle respectively. The
following three statements
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vs = shape_type(10,20)

vc = circle_type(100,200,300)

vr = rectangle_type(1000,2000,3000,4000)

call the three user defined structure constructor functions.
We then use the get functions to print out the values of the private data in each

object.

print *,’ shape ’, vs%get_x(),&

’ ’,vs%get_y()

print *,’ circle ’, vc%get_x(),&

’ ’,vc%get_y(),’ radius = ’,vc%get_radius()

print *,’ rectangle ’, vr%get_x(),&

’ ’,vr%get_y(),’ width = ’,vr%get_width(),’

height ’,vr%get_height()

We then call the draw method for each type.

call vs%draw()

call vc%draw()

call vr%draw()

and the appropriate draw method is called for each type. We finally call the set
functions for each variable and repeat the calls to the draw methods.

The drawmethods in the derived types override the drawmethod in the base shape
class.

28.8 Example 5: Polymorphism and Dynamic Binding

An inheritance hierarchy can provide considerable flexibility in our ability to manip-
ulate objects, whilst still taking advantage of static or compile time type checking.
If we combine inheritance with polymorphism and dynamic binding we have a very
powerful programming tool. We will illustrate this with a concrete example.

28.8.1 Base Shape Class

This is our base class. A polymorphic variable is a variable whose data type may vary
at run time. It must be a pointer or allocatable variable, and it must be declared using
the class keyword. Our original base class declared variables using the class
keyword from the beginning as we always intended to design a class that could be
polymorphic.
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We have had to make one change to the previous one. To make the polymorphism
work we have had to provide our own assignment operator. So we have

interface assignment (=)

module procedure generic_shape_assign

end interface

which means that our implementation of generic_shape_assign will
replace the intrinsic assignment. Here is the actual implementation.

subroutine generic_shape_assign(lhs,rhs)

implicit none

class (shape_type), intent (out), &

allocatable :: lhs

class (shape_type), intent (in) :: rhs

allocate (lhs,source=rhs)

end subroutine generic_shape_assign

In an assignment we obviously have

left_hand_side = right_hand_side

and in our code we have variables lhs and rhs to clarify what is happening. We
also have an enhanced form of allocation statement:

allocate (lhs,source=rhs)

and the key is that the left hand side variable is allocated with the values and type of
the right hand side variable. Here is the complete code.

module shape_module

type shape_type

integer, private :: x_ = 0

integer, private :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x

procedure, pass (this) :: set_y

procedure, pass (this) :: moveto
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procedure, pass (this) :: draw

end type shape_type

interface shape_type

module procedure shape_type_constructor

end interface shape_type

interface assignment (=)

module procedure generic_shape_assign

end interface assignment (=)

contains

type (shape_type) function &

shape_type_constructor(x, y)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

shape_type_constructor%x_ = x

shape_type_constructor%y_ = y

end function shape_type_constructor

include ’shape_module_include_code.f90’

subroutine generic_shape_assign(lhs, rhs)

implicit none

class (shape_type), intent (out), &

allocatable :: lhs

class (shape_type), intent (in) :: rhs

allocate (lhs, source=rhs)

end subroutine generic_shape_assign

end module shape_module

28.8.2 Circle - Derived Type 1

The circle code is the same as before.
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28.8.3 Rectangle - Derived Type 2

The rectangle code is as before.

28.8.4 Shape Wrapper Module

Aswas stated earlier a polymorphic variablemust be a pointer or allocatable variable.
We have chosen to go the allocatable route. The following is a wrapper routine to
allow us to have a derived type whose types can be polymorphic.

module shape_wrapper_module

use shape_module

use circle_module

use rectangle_module

type shape_wrapper

class (shape_type), allocatable :: x

end type shape_wrapper

end module shape_wrapper_module

So now x can be of shape_type or of any type derived from shape_type.
Don’t panic if this isn’t clear at the moment, the complete program should help out!

28.8.5 Display Subroutine

This is the key subroutine in this example. We can pass into this routine an array of
type shape_wrapper. In the code so far we have variables of type

• shape_type
• circle_type
• rectangle_type

and we are passing in an array of elements and each element can be of any of these
types, i.e. the shape_array is polymorphic.

The next statement of interest is

call shape_array(i)%x%draw()

and at run time the correct draw method will be called. This is called dynamic
binding. Here is the complete code.
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module display_module

contains

subroutine display(n_shapes, shape_array)

use shape_wrapper_module

implicit none

integer, intent (in) :: n_shapes

type (shape_wrapper), dimension (n_shapes) &

:: shape_array

integer :: i

do i = 1, n_shapes

call shape_array(i)%x%draw()

end do

end subroutine display

end module display_module

28.8.6 Test Program for Polymorphism and Dynamic Binding

We now have the complete program that illustrates polymorphism and dynamic
binding in action.

include ’ch2805_shape_module.f90’

include ’ch2804_circle_module.f90’

include ’ch2804_rectangle_module.f90’

include ’ch2805_shape_wrapper_module.f90’

include ’ch2805_display_module.f90’

program ch2805

use shape_module

use circle_module

use rectangle_module

use shape_wrapper_module

use display_module

implicit none

integer, parameter :: n = 6

integer :: i

type (shape_wrapper), dimension (n) :: s

s(1)%x = shape_type(10, 20)
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s(2)%x = circle_type(100, 200, 300)

s(3)%x = rectangle_type(1000, 2000, 3000, &

4000)

s(4)%x = s(1)%x

s(5)%x = s(2)%x

s(6)%x = s(3)%x

print *, ’ calling display subroutine’

call display(n, s)

print *, ’ select type with get methods’

do i = 1, n

select type (t=>s(i)%x)

class is (shape_type)

print *, ’ x = ’, t%get_x(), ’ y = ’, &

t%get_y()

class is (circle_type)

print *, ’ x = ’, t%get_x(), ’ y = ’, &

t%get_y()

print *, ’ radius = ’, t%get_radius()

class is (rectangle_type)

print *, ’ x = ’, t%get_x(), ’ y = ’, &

t%get_y()

print *, ’ height = ’, t%get_height()

print *, ’ width = ’, t%get_width()

class default

print *, ’ do nothing’

end select

end do

print *, ’ select type with set methods’

do i = 1, n

select type (t=>s(i)%x)

class is (shape_type)

call t%set_x(19)

call t%set_y(19)

class is (circle_type)

call t%set_x(199)

call t%set_y(199)

call t%set_radius(199)

class is (rectangle_type)

call t%set_x(1999)

call t%set_y(1999)

call t%set_height(1999)

call t%set_width(1999)

class default

print *, ’ do nothing’

end select
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end do

print *, ’ calling display subroutine’

call display(n, s)

end program ch2805

Let us look at the key statements in more detail.

type (shape_wrapper), dimension (n) :: s

This is the key declaration statement. s will be our polymorphic array. The fol-
lowing six assignment statements

s(1) %x = shape_type(10,20)

s(2) %x = circle_type(100,200,300)

s(3) %x = rectangle_type(1000,2000,3000,4000)

s(4) %x = s(1)%x

s(5) %x = s(2)%x

s(6) %x = s(3)%x

will call our own assignment subroutine to do the assignment. The allocation is
hidden in the implementation. We then have

call display(n,s)

which calls the display subroutine. The compiler at run time works out which draw
method to call depending of the type of the elements in the shape_wrapper array.

Imagine now adding another shape type, let us say a triangle. We need to do the
following

• inherit from the base shape type
• add the additional data to define a triangle
• add the appropriate get and set methods
• add a draw triangle method
• add a use statement to the shape_wrapper_module
• add a use statement to the main program

and we now can work with the new triangle shape type. The display subroutine is
unchanged! We can repeat the above steps for any additional shape type we want.
Polymorphism and dynamic binding thus shorten our development and maintenance
time, as it reduces the amount of code we need to write and test.

We then have an example of the use of the select type statement. The com-
piler determines the type of the elements in the array and then executes the matching
block.
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do i=1,n

select type ( t=>s(i) %x )

class is (shape_type)

print *,’ x = ’, t%get_x(),’ y = ’,t%get_y()

class is (circle_type)

print *,’ x = ’, t%get_x(),’ y = ’,t%get_y()

print *,’ radius = ’, t%get_radius()

class is (rectangle_type)

print *,’ x = ’, t%get_x(),’ y = ’,t%get_y()

print *,’ height = ’, t%get_height()

print *,’ width = ’, t%get_width()

class default

print *,’ do nothing’

end select

end do

Now imagine adding support for the new triangle type. Anywhere we have select
type constructs we have to add support for our new triangle shape. There is obviously
more work involved when we use the select type construct in our polymorphic
code. However some problems will be amenable to polymorphism and dynamic
binding, others will require the explicit use of select type statements. This
example illustrates the use of both.

28.9 Fortran 2008 and Polymorphic Intrinsic Assignment

The previous example works with Fortran 2003 conformant compilers. This example
illustrates a simple variant that will work if your compiler supports a feature from
the 2008 standard - polymorphic intrinsic assignment. In this case we do not need to
provide a user defined assignment subroutine.

Here is the modified shape module.

module shape_module

type shape_type

integer, private :: x_ = 0

integer, private :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x
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procedure, pass (this) :: set_y

procedure, pass (this) :: moveto

procedure, pass (this) :: draw

end type shape_type

interface shape_type

module procedure shape_type_constructor

end interface shape_type

contains

type (shape_type) function &

shape_type_constructor(x, y)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

shape_type_constructor%x_ = x

shape_type_constructor%y_ = y

end function shape_type_constructor

include ’shape_module_include_code.f90’

end module shape_module

The rest of the code is the same as in the previous example.
Compiling with gfortran 6.4 will generate the following error message.
Error: Assignment to an allocatable polymorphic variable at (1) is not yet

supported
We maintain compiler standard conformance tables that document what features

from the 2003, 2008 and 2018 standards are supported by current compilers.
Visit

https://www.fortranplus.co.uk/fortran-information/

to get up to date information. At the time of writing Table28.1 was correct for
compilers we have used in this edition.
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Table 28.1 Polymorphic
intrinsic assignment support

Compiler Version Assignment
support

Cray 7.4 Yes

gfortran 4.x No

5.x No

6.x No

7.1 Yes

Intel 17.x No

18.x Yes

Nag 6.0 Yes

Oracle 12.6 No

Pathscale 6.0.1148 No

PGI 17.4.0 No

28.10 Summary

This chapter has introduced some of the essentials of object oriented programming.
The first example looked at object oriented programming as an extension of basic
data structuring. We used type bound procedures to implement our shape class. We
used methods to access the internal data of the shape object.

The second example looked at simple inheritance. We saw in this example how
we could reuse the methods from the base class and also add new data and methods
specific to the new shapes - circles and rectangles.

The third example then looked at how to achieve polymorphism in Fortran. We
could then create arrays of our base type and dynamically bind the appropriate
methods at run rime. Dynamic binding is needed when multiple classes contain
different implementations of the same method, i.e. to ensure in the following code

call shape_array(i) %x%draw()

that the correct draw method is invoked on the shape object.

28.11 Problems

28.1 Compile and run all of the examples in this chapter with your compiler.

28.2 Add a triangle type to the simple inheritance example.

28.3 Add a triangle type to the polymorphic example.
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28.12 Further Reading

The following book

ISO/IEC DIS 1539-1 Information technology–Programming languages–Fortran–
Part 1: Base language

• Fortran 2018 draft standard.

https://www.iso.org/standard/72320.html

• Rouson D., Xia J., Xu X., Scientific Software Design: The Object Oriented Way,
Cambridge University Press, 2011.

uses Fortran throughout and is a very good coverage of what is possible in modern
Fortran. Well worth a read.

The second edition of the following book

• Meyer Bertrand, Object Oriented Software Construction, Prentice Hall, 1997.

provides a very good coverage and uses Eiffel throughout - he did design the lan-
guage!



Chapter 29
Additional Object Oriented Examples

Smalltalk is a vision. Adele Goldberg and David Robson, Xerox
Palo Alto Research Center

Aims
The aim of this chapter are to look at some additional object oriented programming
examples in Fortran.

29.1 Introduction

The first set of examples are based on the date example (ch2206.f90) in the data
structuring chapter. We are going to convert this example into an object oriented
version.

• Example 1 - OO date example
We use the following files.

– ch2206_module.f90 - this is the module file for the example in Chap. 22
– ch2206_program.f90 - the program to test out the date data structure
– ch2901_day_and_month_name_module.f90 - a separate module containing the
day and month names. Has the advantage that one can provide versions for
different natural languages. We will be using Welsh.

– ch2901_date_module.f90 - an object oriented implementation of the original
date module.

– ch2901.f90 - a program to test out the above module.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_29

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_29&domain=pdf
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• Example 2 - OO date example with simple inheritance
We use the following files.

– ch2902_iso_date_module.f90 - simple inheritance module based on ISO date
format (yyyymmdd)

– ch2902.f90 - a program to test out the above module.

• Example 3 - OO date example with polymorphism
We use the following files.

– ch2903_date_wrapper_module.f90
– ch2903.f90

• Example 4 - abstract shape base class and concrete derived class
We use the following files.

– ch2904_abstract_shape_module.f90
– ch2904_square_module.f90
– ch2904.f90

• Example 5 - date checking module
We use the following file.

– ch2905_valid_date_module.f90.

29.2 The Date Class

The first thing to do is split the complete example in Chap. 22 into a date module
and a date test program.

We will convert the date module into an object oriented version.
We will then convert the date program into one that can be used to test our object

oriented date module.

29.3 Example 1: The Base Date Class

Files used

• day and month name module
• oo date module
• oo date program.

The first thing we need to do is identify the functions and subroutines in the
original program. Here is a list.
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function calendar_to_julian(x) result (ival)

function date_(dd, mm, yyyy) result (x)

function date_to_day_in_year(x)

function date_to_weekday_number(x)

function get_day(x)

function get_month(x)

function get_year(x)

function julian_to_date(julian) result (x)

subroutine

julian_to_date_and_week_and_day(jd,x, wd, ddd)

function ndays(date1, date2)

function

print_date(x, day_names, short_month_name, digits)

function year_and_day_to_date(year, day) result (x)

The conversion means making the above type bound procedures.
We have also made the following changes

• add setter subroutines for the day, month and year
• add a date constructor
• add a separate module for the day and month names, so that we can access this
data in any inherited versions

• change the calling syntax from a conventional Fortran function and subroutine
syntax to an object oriented version

Here are the type bound procedures, with partial signatures.

procedure , pass(this) :: calendar_to_julian

procedure , pass(this) :: date_to_day_in_year

procedure , pass(this) :: date_to_weekday_number

procedure , pass(this) :: get_day

procedure , pass(this) :: get_month

procedure , pass(this) :: get_year

procedure , nopass :: julian_to_date

procedure , nopass ::

julian_to_date_and_week_and_day

procedure , nopass :: ndays

procedure , pass(this) :: print_date

procedure , pass(this) :: set_day

procedure , pass(this) :: set_month

procedure , pass(this) :: set_year

procedure , nopass :: year_and_day_to_date
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Here is the interface for the date constructor.

interface date

module procedure date_constructor

end interface

Here is the complete source code.

29.3.1 Day and Month Name Module

module day_and_month_name_module

implicit none

character (9) :: day(0:6) = (/ ’Sunday ’, &

’Monday ’, ’Tuesday ’, ’Wednesday’, &

’Thursday ’, ’Friday ’, ’Saturday ’ /)

character (9) :: month(1:12) = (/ ’January ’, &

’February ’, ’March ’, ’April ’, &

’May ’, ’June ’, ’July ’, &

’August ’, ’September’, ’October ’, &

’November ’, ’December ’ /)

end module day_and_month_name_module

29.3.2 Date Module

module date_module

use day_and_month_name_module

implicit none

private

type, public :: date

private
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integer :: day

integer :: month

integer :: year

contains

procedure, pass (this) :: calendar_to_julian

procedure, pass (this) :: &

date_to_day_in_year

procedure, pass (this) :: &

date_to_weekday_number

procedure, pass (this) :: get_day

procedure, pass (this) :: get_month

procedure, pass (this) :: get_year

procedure, nopass :: julian_to_date

procedure, nopass :: &

julian_to_date_and_week_and_day

procedure, nopass :: ndays

procedure, pass (this) :: print_date

procedure, pass (this) :: set_day

procedure, pass (this) :: set_month

procedure, pass (this) :: set_year

procedure, nopass :: year_and_day_to_date

end type date

interface date

module procedure date_constructor

end interface date

public :: calendar_to_julian, &

date_to_day_in_year, date_to_weekday_number, &

get_day, get_month, get_year, &

julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, set_day, set_month, set_year, &

year_and_day_to_date

contains

function calendar_to_julian(this) &

result (ival)

implicit none

integer :: ival

class (date), intent (in) :: this
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ival = this%day - 32075 + 1461*(this%year+ &

4800+(this%month-14)/12)/4 + &

367*(this%month-2-((this%month- &

14)/12)*12)/12 - 3*((this%year+4900+(this% &

month-14)/12)/100)/4

end function calendar_to_julian

type (date) function date_constructor(dd, mm, &

yyyy)

implicit none

integer, intent (in) :: dd, mm, yyyy

date_constructor%day = dd

date_constructor%month = mm

date_constructor%year = yyyy

end function date_constructor

integer function date_to_day_in_year(this)

implicit none

class (date), intent (in) :: this

intrinsic modulo

date_to_day_in_year = 3055*(this%month+2)/ &

100 - (this%month+10)/13*2 - 91 + &

(1-(modulo(this%year,4)+3)/4+(modulo(this% &

year,100)+99)/100-(modulo(this%year, &

400)+399)/400)*(this%month+10)/13 + &

this%day

end function date_to_day_in_year

integer function date_to_weekday_number(this)

implicit none

class (date), intent (in) :: this

intrinsic modulo

date_to_weekday_number = modulo((13*( &

this%month+10-(this%month+10)/13*12)-1)/5+ &

this%day+77+5*(this%year+(this%month- &

14)/12-(this%year+(this%month-14)/12)/100* &

100)/4+(this%year+(this%month- &

14)/12)/400-(this%year+(this%month- &

14)/12)/100*2, 7)



29.3 Example 1: The Base Date Class 503

end function date_to_weekday_number

function get_day(this)

implicit none

integer :: get_day

class (date), intent (in) :: this

get_day = this%day

end function get_day

function get_month(this)

implicit none

integer :: get_month

class (date), intent (in) :: this

get_month = this%month

end function get_month

function get_year(this)

implicit none

integer :: get_year

class (date), intent (in) :: this

get_year = this%year

end function get_year

function julian_to_date(julian)

implicit none

type (date) :: julian_to_date

integer, intent (in) :: julian

integer :: l, n

l = julian + 68569

n = 4*l/146097

l = l - (146097*n+3)/4

julian_to_date%year = (4000*(l+1)/1461001)

l = l - 1461*julian_to_date%year/4 + 31

julian_to_date%month = (80*l/2447)

julian_to_date%day = (l-2447*julian_to_date% &

month/80)

l = julian_to_date%month/11

julian_to_date%month = (julian_to_date%month &

+2-12*l)
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julian_to_date%year = (100*(n-49)+ &

julian_to_date%year+1)

end function julian_to_date

subroutine julian_to_date_and_week_and_day(jd, &

d, wd, ddd)

implicit none

integer, intent (in) :: jd

type (date), intent (out) :: d

integer, intent (out) :: wd, ddd

d = julian_to_date(jd)

wd = date_to_weekday_number(d)

ddd = date_to_day_in_year(d)

end subroutine julian_to_date_and_week_and_day

function ndays(date1, date2)

implicit none

integer :: ndays

class (date), intent (in) :: date1, date2

ndays = calendar_to_julian(date1) - &

calendar_to_julian(date2)

end function ndays

function print_date(this, day_names, &

short_month_name, digits)

implicit none

class (date), intent (in) :: this

logical, optional, intent (in) :: day_names, &

short_month_name, digits

character (40) :: print_date

integer :: pos

logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if
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if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then

want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ’(i2)’) this%day

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) this%month

print_date(6:6) = ’/’

write (print_date(7:10), ’(i4)’) this%year

else

if (want_day) then

pos = date_to_weekday_number(this)

print_date = trim(day(pos)) // ’ ’

pos = len_trim(print_date) + 2

else

pos = 1

print_date = ’ ’

end if

write (print_date(pos:pos+1), ’(i2)’) &

this%day

if (want_short_month_name) then

print_date(pos+3:pos+5) = month(this% &

month)(1:3)

pos = pos + 7

else

print_date(pos+3:) = month(this%month)

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+3), ’(i4)’) &

this%year

end if

return

end function print_date

subroutine set_day(this, d)

implicit none

integer, intent (in) :: d

class (date), intent (inout) :: this

this%day = d

end subroutine set_day
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subroutine set_month(this, m)

implicit none

integer, intent (in) :: m

class (date), intent (inout) :: this

this%month = m

end subroutine set_month

subroutine set_year(this, y)

implicit none

integer, intent (in) :: y

class (date), intent (inout) :: this

this%year = y

end subroutine set_year

function year_and_day_to_date(year, &

day_in_year)

use day_and_month_name_module

implicit none

type (date) :: year_and_day_to_date

integer, intent (in) :: day_in_year, year

integer :: t

intrinsic modulo

year_and_day_to_date%year = year

t = 0

if (modulo(year,4)==0) then

t = 1

end if

if (modulo(year,400)/=0 .and. &

modulo(year,100)==0) then

t = 0

end if

year_and_day_to_date%day = day_in_year

if (day_in_year>59+t) then

year_and_day_to_date%day = &

year_and_day_to_date%day + 2 - t

end if

year_and_day_to_date%month = &

((year_and_day_to_date%day+91)*100)/3055

year_and_day_to_date%day = ( &

year_and_day_to_date%day+91) - &



29.3 Example 1: The Base Date Class 507

(year_and_day_to_date%month*3055)/100

year_and_day_to_date%month = &

year_and_day_to_date%month - 2

if (year_and_day_to_date%month>=1 .and. &

year_and_day_to_date%month<=12) then

return

end if

write (unit=*, fmt=’(a,i11,a)’) ’$$year_and_d&

&ay_to_date: day of the year input &

&=’, day_in_year, ’ is out of range.’

end function year_and_day_to_date

end module date_module

29.3.3 Diff Output Between Original Module and New
oo Module

Here is the diff output between the original module in example ch2206 and the new
oo module.

1c1,4

< module date_module

---

> module date_module_01

>

> use day_and_month_name_module

>

6a10

>

7a12

>

10a16,36

>

> contains

>

> procedure, pass (this) :: calendar_to_julian

> procedure, pass (this) :: &

> date_to_day_in_year

> procedure, pass (this) :: &

> date_to_weekday_number

> procedure, pass (this) :: get_day

> procedure, pass (this) :: get_month
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> procedure, pass (this) :: get_year

> procedure, nopass :: julian_to_date

> procedure, nopass :: &

> julian_to_date_and_week_and_day

> procedure, nopass :: ndays

> procedure, pass (this) :: print_date

> procedure, pass (this) :: set_day

> procedure, pass (this) :: set_month

> procedure, pass (this) :: set_year

> procedure, nopass :: year_and_day_to_date

>

13,20c39,41

< character (9) :: day(0:6) = (/ ’Sunday ’, &

< ’Monday ’, ’Tuesday ’, ’Wednesday’, &

< ’Thursday ’, ’Friday ’, ’Saturday ’ /)

< character (9) :: month(1:12) = (/ ’January ’, &

< ’February ’, ’March ’, ’April ’, &

< ’May ’, ’June ’, ’July ’, &

< ’August ’, ’September’, ’October ’, &

< ’November ’, ’December ’ /)

---

> interface date

> module procedure date_constructor

> end interface date

22c43

< public :: calendar_to_julian, date_, &

---

> public :: calendar_to_julian, &

27c48,49

< print_date, year_and_day_to_date

---

> print_date, set_day, set_month, set_year, &

> year_and_day_to_date

31c53,54

< function calendar_to_julian(x) result (ival)

---

> function calendar_to_julian(this) &

> result (ival)

34c57

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

36,39c59,63

< ival = x%day - 32075 + 1461*(x%year+4800+(x% &
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< month-14)/12)/4 + 367*(x%month-2-((x%month &

< -14)/12)*12)/12 - 3*((x%year+4900+(x%month &

< -14)/12)/100)/4

---

> ival = this%day - 32075 + 1461*(this%year+ &

> 4800+(this%month-14)/12)/4 + &

> 367*(this%month-2-((this%month- &

> 14)/12)*12)/12 - 3*((this%year+4900+(this% &

> month-14)/12)/100)/4

42c66,68

< function date_(dd, mm, yyyy) result (x)

---

> type (date) function date_constructor(dd, mm, &

> yyyy)

>

44d69

< type (date) :: x

47,48c72,74

< x = date(dd, mm, yyyy)

< end function date_

---

> date_constructor%day = dd

> date_constructor%month = mm

> date_constructor%year = yyyy

50c76,78

< function date_to_day_in_year(x)

---

> end function date_constructor

>

> integer function date_to_day_in_year(this)

52,53c80

< integer :: date_to_day_in_year

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

56,60c83,88

< date_to_day_in_year = 3055*(x%month+2)/100 - &

< (x%month+10)/13*2 - 91 + (1-(modulo(x%year &

< ,4)+3)/4+(modulo(x%year,100)+99)/100-( &

< modulo(x%year,400)+399)/400)*(x%month+10)/ &

< 13 + x%day

---

> date_to_day_in_year = 3055*(this%month+2)/ &

> 100 - (this%month+10)/13*2 - 91 + &
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> (1-(modulo(this%year,4)+3)/4+(modulo(this% &

> year,100)+99)/100-(modulo(this%year, &

> 400)+399)/400)*(this%month+10)/13 + &

> this%day

63c91

< function date_to_weekday_number(x)

---

> integer function date_to_weekday_number(this)

65,66c93

< integer :: date_to_weekday_number

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

70,73c97,101

< x%month+10-(x%month+10)/13*12)-1)/5+x%day+ &

< 77+5*(x%year+(x%month-14)/12-(x%year+ &

< (x%month-14)/12)/100*100)/4+(x%year+(x% &

< month-14)/12)/400-(x%year+(x%month- &

---

> this%month+10-(this%month+10)/13*12)-1)/5+ &

> this%day+77+5*(this%year+(this%month- &

> 14)/12-(this%year+(this%month-14)/12)/100* &

> 100)/4+(this%year+(this%month- &

> 14)/12)/400-(this%year+(this%month- &

77c105

< function get_day(x)

---

> function get_day(this)

80c108

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

82c110

< get_day = x%day

---

> get_day = this%day

85c113

< function get_month(x)

---

> function get_month(this)

88c116

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this
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90c118

< get_month = x%month

---

> get_month = this%month

93c121

< function get_year(x)

---

> function get_year(this)

96c124

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

98c126

< get_year = x%year

---

> get_year = this%year

101c129

< function julian_to_date(julian) result (x)

---

> function julian_to_date(julian)

102a131

> type (date) :: julian_to_date

103a133

>

105d134

< type (date) :: x 110,116c139,148

< x%year = 4000*(l+1)/1461001

< l = l - 1461*x%year/4 + 31

< x%month = 80*l/2447

< x%day = l - 2447*x%month/80

< l = x%month/11

< x%month = x%month + 2 - 12*l

< x%year = 100*(n-49) + x%year + 1

---

> julian_to_date%year = (4000*(l+1)/1461001)

> l = l - 1461*julian_to_date%year/4 + 31

> julian_to_date%month = (80*l/2447)

> julian_to_date%day = (l-2447*julian_to_date% &

> month/80)

> l = julian_to_date%month/11

> julian_to_date%month = (julian_to_date%month &

> +2-12*l)

> julian_to_date%year = (100*(n-49)+ &

> julian_to_date%year+1)
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120c152

< x, wd, ddd)

---

> d, wd, ddd)

122d153

< integer, intent (out) :: ddd, wd

124c155,156

< type (date), intent (out) :: x

---

> type (date), intent (out) :: d

> integer, intent (out) :: wd, ddd

126,128c158,160

< x = julian_to_date(jd)

< wd = date_to_weekday_number(x)

< ddd = date_to_day_in_year(x)

---

> d = julian_to_date(jd)

> wd = date_to_weekday_number(d)

> ddd = date_to_day_in_year(d)

134c166

< type (date), intent (in) :: date1, date2

---

> class (date), intent (in) :: date1, date2

140c172

< function print_date(x, day_names, &

---

> function print_date(this, day_names, &

143c175

< type (date), intent (in) :: x

---

> class (date), intent (in) :: this

166c198

< write (print_date(1:2), ’(i2)’) x%day

---

> write (print_date(1:2), ’(i2)’) this%day

168c200

< write (print_date(4:5), ’(i2)’) x%month

---

> write (print_date(4:5), ’(i2)’) this%month

170c202

< write (print_date(7:10), ’(i4)’) x%year

---

> write (print_date(7:10), ’(i4)’) this%year

173c205



29.3 Example 1: The Base Date Class 513

< pos = date_to_weekday_number(x)

---

> pos = date_to_weekday_number(this)

181c213

< x%day

---

> this%day

183,184c215,216

< print_date(pos+3:pos+5) = month(x%month) &

< (1:3)

---

> print_date(pos+3:pos+5) = month(this% &

> month)(1:3)

187c219

< print_date(pos+3:) = month(x%month)

---

> print_date(pos+3:) = month(this%month)

191c223

< x%year

---

> this%year

197,198c229

< function year_and_day_to_date(year, day) &

< result (x)

---

> subroutine set_day(this, d)

200,201c231,258

< type (date) :: x

< integer, intent (in) :: day, year

---

> integer, intent (in) :: d

> class (date), intent (inout) :: this

>

> this%day = d

> end subroutine set_day

>

> subroutine set_month(this, m)

> implicit none

> integer, intent (in) :: m

> class (date), intent (inout) :: this

>

> this%month = m

> end subroutine set_month

>
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> subroutine set_year(this, y)

> implicit none

> integer, intent (in) :: y

> class (date), intent (inout) :: this

>

> this%year = y

> end subroutine set_year

>

> function year_and_day_to_date(year, &

> day_in_year)

> use day_and_month_name_module

> implicit none

> type (date) :: year_and_day_to_date

> integer, intent (in) :: day_in_year, year

205c262

< x%year = year

---

> year_and_day_to_date%year = year

214,221c271,284

< x%day = day

< if (day>59+t) then

< x%day = x%day + 2 - t

< end if

< x%month = ((x%day+91)*100)/3055

< x%day = (x%day+91) - (x%month*3055)/100

< x%month = x%month - 2

< if (x%month>=1 .and. x%month<=12) then

---

> year_and_day_to_date%day = day_in_year

> if (day_in_year>59+t) then

> year_and_day_to_date%day = &

> year_and_day_to_date%day + 2 - t

> end if

> year_and_day_to_date%month = &

> ((year_and_day_to_date%day+91)*100)/3055

> year_and_day_to_date%day = ( &

> year_and_day_to_date%day+91) - &

> (year_and_day_to_date%month*3055)/100

> year_and_day_to_date%month = &

> year_and_day_to_date%month - 2

> if (year_and_day_to_date%month>=1 .and. &

> year_and_day_to_date%month<=12) then

226c289

< &=’, day, ’ is out of range.’
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---

> &=’, day_in_year, ’ is out of range.’

229c292

< end module date_module

---

> end module date_module_01

29.3.4 Main Program

This is the main test program. This is a conversion of the main program in example
ch2206.

include ’ch2901_day_and_month_name_module.f90’

include ’ch2901_date_module.f90’

program ch2901

use date_module , only : calendar_to_julian, &

date, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy

integer :: julian

integer :: val(8)

intrinsic date_and_time

type (date) :: date1, date2, x, tx1, tx2

call date_and_time(values=val)

yyyy = val(1)

mm = 10

do i = 31, 26, -1

x = date(i, mm, yyyy)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks back to EST on: ’, &

i, ’ October ’, x%get_year()

exit

end if

end do
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call date_and_time(values=val)

yyyy = val(1)

mm = 4

do i = 1, 8

x = date(i, mm, yyyy)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks ahead to DST on: ’, &

i, ’ April ’, x%get_year()

exit

end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 12

dd = 31

x = date(dd, mm, yyyy)

if (x%date_to_day_in_year()==366) then

print *, x%get_year(), ’ is a leap year’

else

print *, x%get_year(), ’ is not a leap year’

end if

x = date(1, 1, 1970)

call julian_to_date_and_week_and_day &

(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month()/=1 &

.or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1) &

then

print *, &

’julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ’, x%get_year(), &

x%get_month(), x%get_day(), wd, ddd

stop

end if

date1 = date(22, 5, 1984)

date2 = date(22, 5, 1983)

ndiff = ndays(date1, date2)

yyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’ndays failed; ndiff = ’, ndiff

else

if (x%get_month()/=1 .and. x%get_day()/=1) &
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then

print *, ’year_and_day_to_date failed’

print *, ’ mma, dda = ’, x%get_month(), &

x%get_day()

else

print *, ’ calendar_to_julian OK’

print *, ’ date_ OK’

print *, ’ date_to_day_in_year OK’

print *, ’ date_to_weekday_number OK’

print *, ’ get_day OK’

print *, ’ get_month OK’

print *, ’ get_year OK’

print *, &

’ julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’

print *, ’ year_and_day_to_date OK’

end if

end if

tx1 = date(1, 1, 1970)

julian = tx1%calendar_to_julian()

tx2 = julian_to_date(julian)

if (tx1%get_day()==tx2%get_day() .and. &

tx1%get_month()==tx2%get_month() .and. &

tx1%get_year()==tx2%get_year()) then

print *, ’ calendar_to_julian and ’

print *, ’ julian_to_date worked’

end if

x = date(11, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter ’, &

x%print_date()

print *, &

’ day_names=false short_month_name=false ’, &

x%print_date(day_names=.false., &

short_month_name=.false.)

print *, &

’ day_names=true short_month_name=false ’, &

x%print_date(day_names=.true., &

short_month_name=.false.)

print *, &
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’ day_names=false short_month_name=true ’, &

x%print_date(day_names=.false., &

short_month_name=.true.)

print *, &

’ day_names=true short_month_name=true ’, &

x%print_date(day_names=.true., &

short_month_name=.true.)

print *, ’ digits=true ’, &

x%print_date(digits=.true.)

print *, ’ Test out a month’

yyyy = 1970

do dd = 1, 31

x = year_and_day_to_date(yyyy, dd)

print *, x%print_date(day_names=.false., &

short_month_name=.true.)

end do

end program ch2901

29.3.5 Diff Output Between Original Program and New
oo Test Program

Here is the diff output between the original and the new oo one.

1,3c1,4

< program ch2206

< use date_module, only: calendar_to_julian, &

< date, date_, date_to_day_in_year, &

---

> program date_program_01

>

> use date_module_01, only: calendar_to_julian, &

> date, date_to_day_in_year, &

5,6c6,8

< get_year, julian_to_date_and_week_and_day, &

< ndays, print_date, year_and_day_to_date

---

> get_year, julian_to_date, &

> julian_to_date_and_week_and_day, ndays, &

> print_date, year_and_day_to_date
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9a12

> integer :: julian

12c15

< type (date) :: date1, date2, x

---

> type (date) :: date1, date2, x, tx1, tx2

18,19c21,22

< x = date_(i, mm, yyyy)

< if (date_to_weekday_number(x)==0) then

---

> x = date(i, mm, yyyy)

> if (x%date_to_weekday_number()==0) then

21c24

< i, ’ October ’, get_year(x)

---

> i, ’ October ’, x%get_year()

29,30c32,33

< x = date_(i, mm, yyyy)

< if (date_to_weekday_number(x)==0) then

---

> x = date(i, mm, yyyy)

> if (x%date_to_weekday_number()==0) then

32c35

< i, ’ April ’, get_year(x)

---

> i, ’ April ’, x%get_year()

40,42c43,45

< x = date_(dd, mm, yyyy)

< if (date_to_day_in_year(x)==366) then

< print *, get_year(x), ’ is

a leap year’

---

> x = date(dd, mm, yyyy)

> if (x%date_to_day_in_year()==366) then

> print *, x%get_year(), ’ is a leap year’

44c47

< print *, get_year(x), ’ is not a leap year’

---

> print *, x%get_year(), ’ is not a leap year’

46c49

< x = date_(1, 1, 1970)

---

> x = date(1, 1, 1970)

49,50c52,53
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< if (get_year(x)/=1970 .or. get_month(x)/=1 &

< .or. get_day(x)/=1 .or. wd/=4 .or. ddd/=1) &

---

> if (x%get_year()/=1970 .or. x%get_month()/=1 &

> .or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1) &

54,55c57,58

< print *, ’ date, wd, ddd = ’, get_year(x), &

< get_month(x), get_day(x), wd, ddd

---

> print *, ’ date, wd, ddd = ’, x%get_year(), &

> x%get_month(), x%get_day(), wd, ddd

58,59c61,62

< date1 = date_(22, 5, 1984)

< date2 = date_(22, 5,

1983)

---

> date1 = date(22, 5, 1984)

> date2 = date(22, 5, 1983)

68c71

< if (get_month(x)/=1 .and. get_day(x)/=1) &

---

> if (x%get_month()/=1 .and. x%get_day()/=1) &

71,72c74,75

< print *, ’ mma, dda = ’, get_month(x), &

< get_day(x)

---

> print *, ’ mma, dda = ’, x%get_month(), &

> x%get_day()

88c91,101

< x = date_(11, 2, 1952)

---

> tx1 = date(1, 1, 1970)

> julian = tx1%calendar_to_julian()

> tx2 = julian_to_date(julian)

> if (tx1%get_day()==tx2%get_day() .and. &

> tx1%get_month()==tx2%get_month() .and. &

> tx1%get_year()==tx2%get_year()) then

> print *, ’ calendar_to_julian and ’

> print *, ’ julian_to_date worked’

> end if

>

> x = date(11, 2, 1952)

92c105

< print_date(x)
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---

> x%print_date()

95c108

< print_date(x, day_names=.false., &

---

> x%print_date(day_names=.false., &

99c112

< print_date(x, day_names=.true., &

---

> x%print_date(day_names=.true., &

103c116

< print_date(x, day_names=.false., &

---

> x%print_date(day_names=.false., &

107c120

< print_date(x, day_names=.true., &

---

> x%print_date(day_names=.true., &

110c123

< print_date(x, digits=.true.)

---

> x%print_date(digits=.true.)

117c130

< print *, print_date(x, day_names=.false., &

---

> print *, x%print_date(day_names=.false., &

121c134

< end program ch2206

---

> end program date_program_01

Here is the build sequence

ch2901_day_and_month_name_module.f90

ch2901_date_module.f90

ch2901.f90

Here is the output from running the program.

Turn clocks ahead to DST on: 5 April 2015

2015 is not a leap year

calendar_to_julian OK

date_ OK

date_to_day_in_year OK
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date_to_weekday_number OK

get_day OK

get_month OK

get_year OK

julian_to_date_and_week_and_day OK

ndays OK

year_and_day_to_date OK

calendar_to_julian and

julian_to_date worked

print_date test

Single parameter 11 February 1952

day_names=false short_month_name=false

11 February 1952

day_names=true short_month_name=false

Monday 11 February 1952

day_names=false short_month_name=true

11 Feb 1952

day_names=true short_month_name=true

Monday 11 Feb 1952

digits=true 11/ 2/1952

Test out a month

1 Jan 1970

2 Jan 1970

3 Jan 1970

4 Jan 1970

5 Jan 1970

6 Jan 1970

7 Jan 1970

8 Jan 1970

9 Jan 1970

10 Jan 1970

11 Jan 1970

12 Jan 1970

13 Jan 1970

14 Jan 1970

15 Jan 1970

16 Jan 1970

17 Jan 1970

18 Jan 1970

19 Jan 1970

20 Jan 1970

21 Jan 1970

22 Jan 1970

23 Jan 1970
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24 Jan 1970

25 Jan 1970

26 Jan 1970

27 Jan 1970

28 Jan 1970

29 Jan 1970

30 Jan 1970

31 Jan 1970

29.4 Example 2: Simple Inheritance Based on an ISO Date
Format

Files used

• day and month name module
• oo date module
• iso date module
• iso date program.

29.4.1 ISO Date Module

Here is the source code for the ISO date module.

module iso_date_module

use day_and_month_name_module

use date_module

implicit none

public

type, extends (date) :: iso_date

contains

procedure, pass (this) :: print_date => &

print_iso_date

procedure, nopass :: julian_to_iso_date

procedure, nopass :: &
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julian_to_iso_date_and_week_and_day

procedure, nopass :: &

year_and_day_to_iso_date

end type iso_date

interface iso_date

module procedure iso_date_constructor

end interface iso_date

contains

type (iso_date) function iso_date_constructor( &

yyyy, mm, dd)

implicit none

integer, intent (in) :: dd, mm, yyyy

call iso_date_constructor%set_day(dd)

call iso_date_constructor%set_month(mm)

call iso_date_constructor%set_year(yyyy)

end function iso_date_constructor

function julian_to_iso_date(julian)

implicit none

type (iso_date) :: julian_to_iso_date

integer, intent (in) :: julian

integer :: l, n

l = julian + 68569

n = 4*l/146097

l = l - (146097*n+3)/4

call julian_to_iso_date%set_year((4000*(l+ &

1)/1461001))

l = l - 1461*julian_to_iso_date%get_year()/4 &

+ 31

call julian_to_iso_date%set_month((80*l/ &

2447))

call julian_to_iso_date%set_day((l- &

2447*julian_to_iso_date%get_month()/80))

l = julian_to_iso_date%get_month()/11

call julian_to_iso_date%set_month &
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((julian_to_iso_date%get_month()+2-12*l))

call julian_to_iso_date%set_year((100*(n- &

49)+julian_to_iso_date%get_year()+1))

end function julian_to_iso_date

subroutine julian_to_iso_date_and_week_and_day &

(jd, d, wd, ddd)

implicit none

integer, intent (in) :: jd

type (iso_date), intent (out) :: d

integer, intent (out) :: wd, ddd

d = julian_to_iso_date(jd)

wd = date_to_weekday_number(d)

ddd = date_to_day_in_year(d)

end subroutine &

julian_to_iso_date_and_week_and_day

function print_iso_date(this, day_names, &

short_month_name, digits)

use day_and_month_name_module

implicit none

class (iso_date), intent (in) :: this

logical, optional, intent (in) :: day_names, &

short_month_name, digits

character (40) :: print_iso_date

integer :: pos

logical :: want_day, want_short_month_name, &

want_digits

integer :: l, t

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_iso_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if

if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then
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want_digits = digits

end if

! year month day

if (want_digits) then

write (print_iso_date(1:4), ’(i4)’) &

this%get_year()

print_iso_date(5:5) = ’/’

write (print_iso_date(6:7), ’(i2)’) &

this%get_month()

print_iso_date(8:8) = ’/’

write (print_iso_date(9:10), ’(i2)’) &

this%get_day()

else

pos = 1

write (print_iso_date(pos:pos+3), ’(i4)’) &

this%get_year()

pos = pos + 5

if (want_short_month_name) then

print_iso_date(pos:pos+2) &

= month(this%get_month())(1:3)

pos = pos + 4

else

print_iso_date(pos:) = month(this% &

get_month())

pos = len_trim(print_iso_date) + 2

end if

if (want_day) then

t = date_to_weekday_number(this)

l = len_trim(day(t))

print_iso_date(pos:pos+l) = trim(day(t))

pos = pos + l + 1

end if

write (print_iso_date(pos:pos+1), ’(i2)’) &

this%get_day()

end if

end function print_iso_date

function year_and_day_to_iso_date(year, &

day_in_year)

use day_and_month_name_module

implicit none

type (iso_date) :: year_and_day_to_iso_date

integer, intent (in) :: day_in_year, year

integer :: t
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intrinsic modulo

call year_and_day_to_iso_date%set_year(year)

t = 0

if (modulo(year,4)==0) then

t = 1

end if

if (modulo(year,400)/=0 .and. &

modulo(year,100)==0) then

t = 0

end if

call year_and_day_to_iso_date%set_day &

(day_in_year)

if (day_in_year>59+t) then

call year_and_day_to_iso_date%set_day &

(year_and_day_to_iso_date%get_day()+2-t)

end if

call year_and_day_to_iso_date%set_month((( &

year_and_day_to_iso_date%get_day()+ &

91)*100)/3055)

call year_and_day_to_iso_date%set_day &

((year_and_day_to_iso_date%get_day( &

)+91)-(year_and_day_to_iso_date%get_month( &

)*3055)/100)

call year_and_day_to_iso_date%set_month &

(year_and_day_to_iso_date%get_month()-2)

if (year_and_day_to_iso_date%get_month()>= &

1 .and. year_and_day_to_iso_date%get_month &

()<=12) then

return

end if

write (unit=*, fmt=’(a,i11,a)’) ’$$year_and_d&

&ay_to_date: day of the year input &

&=’, day_in_year, ’ is out of range.’

end function year_and_day_to_iso_date

end module iso_date_module

29.4.2 ISO Test Program

Here is the source code for the ISO date test program.
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include ’ch2901_day_and_month_name_module.f90’

include ’ch2901_date_module.f90’

include ’ch2902_iso_date_module.f90’

program ch2902

use date_module , only: calendar_to_julian, &

date, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

use iso_date_module

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy

integer :: julian

integer :: val(8)

intrinsic date_and_time

type (iso_date) :: date1, date2, x, tx1, tx2

call date_and_time(values=val)

yyyy = val(1)

mm = 10

do i = 31, 26, -1

x = iso_date(yyyy, mm, i)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks back to EST on: ’, &

i, ’ October ’, x%get_year()

exit

end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 4

do i = 1, 8

x = iso_date(yyyy, mm, i)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks ahead to DST on: ’, &

i, ’ April ’, x%get_year()

exit

end if

end do
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call date_and_time(values=val)

yyyy = val(1)

mm = 12

dd = 31

x = iso_date(yyyy, mm, dd)

if (x%date_to_day_in_year()==366) then

print *, x%get_year(), ’ is a leap year’

else

print *, x%get_year(), ’ is not a leap year’

end if

x = iso_date(1970, 1, 1)

call julian_to_iso_date_and_week_and_day &

(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month()/=1 &

.or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1) &

then

print *, &

’julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ’, x%get_year(), &

x%get_month(), x%get_day(), wd, ddd

stop

end if

date1 = iso_date(1984, 5, 22)

date2 = iso_date(1983, 5, 22)

ndiff = ndays(date1, date2)

yyyy = 1970

x = year_and_day_to_iso_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’ndays failed; ndiff = ’, ndiff

else

if (x%get_month()/=1 .and. x%get_day()/=1) &

then

print *, ’year_and_day_to_date failed’

print *, ’ mma, dda = ’, x%get_month(), &

x%get_day()

else

print *, ’ calendar_to_julian OK’

print *, ’ date_ OK’

print *, ’ date_to_day_in_year OK’

print *, ’ date_to_weekday_number OK’

print *, ’ get_day OK’

print *, ’ get_month OK’
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print *, ’ get_year OK’

print *, &

’ julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’

print *, ’ year_and_day_to_date OK’

end if

end if

tx1 = iso_date(1970, 1, 1)

julian = tx1%calendar_to_julian()

tx2 = julian_to_iso_date(julian)

if (tx1%get_day()==tx2%get_day() .and. &

tx1%get_month()==tx2%get_month() .and. &

tx1%get_year()==tx2%get_year()) then

print *, ’ calendar_to_julian and ’

print *, ’ julian_to_iso_date worked’

end if

x = iso_date(1952, 2, 11)

print *, ’ print iso date test’

print *, ’ Single parameter ’, &

x%print_date()

print *, &

’ day_names=false short_month_name=false ’, &

x%print_date(day_names=.false., &

short_month_name=.false.)

print *, &

’ day_names=true short_month_name=false ’, &

x%print_date(day_names=.true., &

short_month_name=.false.)

print *, &

’ day_names=false short_month_name=true ’, &

x%print_date(day_names=.false., &

short_month_name=.true.)

print *, &

’ day_names=true short_month_name=true ’, &

x%print_date(day_names=.true., &

short_month_name=.true.)

print *, &

’ digits=true ’, &

x%print_date(digits=.true.)
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print *, ’ Test out a month’

yyyy = 1970

do dd = 1, 31

x = year_and_day_to_iso_date(yyyy, dd)

print *, x%print_date(day_names=.false., &

short_month_name=.true.)

end do

end program ch2902

29.5 Example 3: Using the Two Date Formats and Showing
Polymorphism and Dynamic Binding

Files used

• day and month name module
• date module
• date wrapper module
• iso date module
• test program.

29.5.1 Date Wrapper Module

Here is the source code for the date wrapper module.

module date_wrapper_module

use date_module

type date_wrapper

class (date), allocatable :: date

end type date_wrapper

end module date_wrapper_module
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29.5.2 Polymorphic and Dynamic Binding Test Program

Here is the source code for the polymorphic date test program.

include ’ch2901_day_and_month_name_module.f90’

include ’ch2901_date_module.f90’

include ’ch2902_iso_date_module.f90’

include ’ch2903_date_wrapper_module.f90’

program ch2903

use date_module

use iso_date_module

use date_wrapper_module

! use us_date_module_01

implicit none

integer :: i, ndiff

integer, parameter :: n_dates = 2

type (date_wrapper), dimension (1:n_dates) :: &

x

x(1)%date = date(1, 1, 1970)

x(2)%date = iso_date(1980, 1, 1)

! x(3)%date = us_date(1, 1, 1990)

do i = 1, n_dates

if (x(i)%date%date_to_day_in_year()==366) &

then

print *, x(i)%date%get_year(), &

’ is a leap year’

else

print *, x(i)%date%get_year(), &

’ is not a leap year’

end if

end do

ndiff = ndays(x(1)%date, x(2)%date)

print *, ’ Number of days = ’, ndiff

x(1)%date = date(1, 1, 1970)

x(2)%date = iso_date(1980, 1, 1)
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! x(3)%date = us_date(1, 1, 1990)

do i = 1, n_dates

print *, ’ print date test’

print *, ’ Single parameter ’, &

x(i)%date%print_date()

print *, &

’ day_names=false short_month_name=false ’ &

, x(i)%date%print_date(day_names=.false., &

short_month_name=.false.)

print *, &

’ day_names=true short_month_name=false ’ &

, x(i)%date%print_date(day_names=.true., &

short_month_name=.false.)

print *, &

’ day_names=false short_month_name=true ’ &

, x(i)%date%print_date(day_names=.false., &

short_month_name=.true.)

print *, &

’ day_names=true short_month_name=true ’ &

, x(i)%date%print_date(day_names=.true., &

short_month_name=.true.)

print *, &

’ digits=true ’ &

, x(i)%date%print_date(digits=.true.)

end do

end program ch2903

This example requires a compiler that supports polymorphic intrinsic assignment.

29.6 Dates, Date Validity and Calendars

In this section we look at dates, date validity and calendars.

29.6.1 Calendars

A calendar date is most commonly regarded as a reference to a particular day repre-
sented within a calendar system.

The most widely used calendar system is the Gregorian.
The Gregorian calendar, also called the Western calendar and the Christian cal-

endar, is internationally the most widely used civil calendar. It is named for Pope
Gregory XIII, who introduced it in October 1582.



534 29 Additional Object Oriented Examples

The calendar was a refinement to the Julian calendar amounting to a 0.002%
correction in the length of the year. The motivation for the reform was to stop the
drift of the calendar with respect to the equinoxes and solstices particularly the vernal
equinox, which set the date for Easter celebrations. Transition to theGregorian calen-
dar would restore the holiday to the time of the year in which it was celebrated when
introduced by the early Church. The reform was adopted initially by the Catholic
countries of Europe. Protestants and Eastern Orthodox countries continued to use
the traditional Julian calendar and adopted the Gregorian reform after a time, for the
sake of convenience in international trade. The last European country to adopt the
reform was Greece, in 1923.

A particular day may be represented by a different date in another calendar as in
the Gregorian calendar and the Julian calendar, which have been used simultaneously
in different places.

The Julian calendar, introduced by Julius Caesar in 46 BC (708 AUC), was a
reform of the Roman calendar. It took effect in 45 BC (AUC 709), shortly after the
Roman conquest of Egypt. It was the predominant calendar in the Roman world,
most of Europe, and in European settlements in the Americas and elsewhere, until it
was refined and gradually replaced by the Gregorian calendar, promulgated in 1582
by Pope Gregory XIII. The Julian calendar gains against the mean tropical year at
the rate of one day in 128 years. For the Gregorian the figure is one day in 3,226
years. The difference in the average length of the year between Julian (365.25 days)
and Gregorian (365.2425 days) is 0.002%.

From a history point of view the course of the Sun and Moon have been the basis
of timekeeping, and hence calendars.

29.6.2 Date Formats

There are a number of commonly used date formats. Here are some Gregorian vari-
ations, with figures for the countries that use these formats.

• DMY - Asia (Central, SE, West), Australia (24), New Zealand (5), parts of Europe
(ca. 675), Latin America (570), North Africa; India (1240), Indonesia (250),
Nigeria (170), Bangladesh (150), Russia (140) 3295

• YMD - China (1360), Koreas (75), Taiwan (23), Hungary (10), Iran (80), Japan
(130), Lithuania. Known in other countries due to ISO 8601. 1660

• MDY - Federated States of Micronesia, United States (320) 320
• DMY, MDY Philippines (100), Saudi Arabia (30) 130
• DMY, YMD Albania (3), Austria (9), Croatia (4), Czech Republic (11), Denmark
(6), [1] Germany (81), [2][not in citation given] HongKong (9), Kenya (45), Latvia
(2), Macau (1), Nepal (50), South Africa (54), Slovenia (2), Sweden (10) [3] 290

• DMY, MDY, YMD Canada (40) 40
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29.6.3 Other Calendar Systems

Quite a number of calendar systems exist, including

• Chinese
• Coptic
• Islamic
• Jewish
• Julian

29.6.4 Proleptic Gregorian Calendar

The proleptic Gregorian calendar is produced by extending the Gregorian calendar
backward to dates preceding its official introduction in 1582. In countries that adopted
the Gregorian calendar later, dates occurring in the interim (between 1582 and the
local adoption) are sometimes “Gregorian-ized” as well. For example, GeorgeWash-
ington was born on February 11, 1731 (Old Style), as Britain was using the Julian
calendar. After the switch, that day became February 22, which is the date commonly
given as Washington’s birthday.

The proleptic Gregorian calendar is explicitly required for all dates before 1582 by
ISO 8601:2004 (clause 4.3.2.1 TheGregorian calendar) if the partners to information
exchange agree. It is also used bymostMaya scholars, [2] especiallywhen converting
Long Count dates (1st century BC 10th century).

Extending the Gregorian calendar backwards to dates preceding its official intro-
duction produces a proleptic calendar, which should be used with some caution.
For ordinary purposes, the dates of events occurring prior to 15 October 1582 are
generally shown as they appeared in the Julian calendar, with the year starting on 1
January, and no conversion to their Gregorian equivalents. For example, the Battle of
Agincourt is universally considered to have been fought on 25 October 1415 which
is Saint Crispin’s Day.

29.6.5 References

Wikipedia is a good starting place.

https://en.wikipedia.org/wiki/Calendar

https://en.wikipedia.org/wiki/List_of_calendars

https://en.wikipedia.org/wiki/Date_format_by_country
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29.7 An Abstract Base Class in Fortran

A type in Fortran can have the abstract attribute.
The DEFERRED attribute defers the implementation of a type-bound procedure

to extensions of the type and it can appear only in an abstract type. The dynamic type
of an object cannot be abstract; therefore, a deferred type-bound procedure cannot
be invoked. An extension of an abstract type need not be abstract if it has no deferred
type-bound procedures.

A short example of an abstract type taken from the standard is given below.

TYPE, ABSTRACT :: FILE_HANDLE

CONTAINS

PROCEDURE(OPEN_FILE), DEFERRED, &

PASS(HANDLE) :: OPEN

...

END TYPE

Section C.2.4 of the standard has an additional example on abstract types. It
illustrates how an abstract type can be used as the basis for a collection of related
types, and how a non-abstract member of that collection can be created by type
extension.

TYPE, ABSTRACT :: DRAWABLE_OBJECT

REAL, DIMENSION(3) :: &

RGB_COLOR = (/1.0,1.0,1.0/) ! White

REAL, DIMENSION(2) :: &

POSITION = (/0.0,0.0/) ! Centroid

CONTAINS

PROCEDURE(RENDER_X), &

PASS(OBJECT), DEFERRED :: RENDER

END TYPE DRAWABLE_OBJECT

ABSTRACT INTERFACE

SUBROUTINE RENDER_X(OBJECT, WINDOW)

IMPORT DRAWABLE_OBJECT, X_WINDOW

CLASS(DRAWABLE_OBJECT), INTENT(IN) :: OBJECT

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW

END SUBROUTINE RENDER_X

END INTERFACE

...

TYPE, EXTENDS(DRAWABLE_OBJECT) :: DRAWABLE_TRIANGLE

! Not ABSTRACT
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REAL, DIMENSION(2,3) :: VERTICES

! In relation to centroid

CONTAINS

PROCEDURE, PASS(OBJECT) :: &

RENDER=>RENDER_TRIANGLE_X

END TYPE DRAWABLE_TRIANGLE

The actual drawing procedure will draw a triangle in WINDOW with vertices at
x and y coordinates at OBJECT%POSITION(1)+OBJECT%VERTICES(1,1:3) and
OBJECT%POSITION(2)+OBJECT%VERTICES(2,1:3):

SUBROUTINE RENDER_TRIANGLE_X(OBJECT, WINDOW)

CLASS(DRAWABLE_TRIANGLE), INTENT(IN) :: OBJECT

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW

...

END SUBROUTINE RENDER_TRIANGLE_X

The following example is a variant of the shape class in the earlier chapter on
object oriented programming.

module shape_module

type, abstract :: shape_type

integer, private :: x_ = 0

integer, private :: y_ = 0

contains

procedure, pass (this) :: get_x

procedure, pass (this) :: get_y

procedure, pass (this) :: set_x

procedure, pass (this) :: set_y

procedure (calculate_area), pass (this), &

deferred :: area

end type shape_type

abstract interface

integer function calculate_area(this)

import :: shape_type

class (shape_type), intent (in) :: this

end function calculate_area
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end interface

contains

integer function get_x(this)

implicit none

class (shape_type), intent (in) :: this

get_x = this%x_

end function get_x

integer function get_y(this)

implicit none

class (shape_type), intent (in) :: this

get_y = this%y_

end function get_y

subroutine set_x(this, x)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: x

this%x_ = x

end subroutine set_x

subroutine set_y(this, y)

implicit none

class (shape_type), intent (inout) :: this

integer, intent (in) :: y

this%y_ = y

end subroutine set_y

end module shape_module

Let us look at this example in more depth.
Here is the derived class.

module square_module



29.7 An Abstract Base Class in Fortran 539

use shape_module

type, extends (shape_type) :: square_type

integer, private :: side_ = 0

contains

procedure, pass (this) :: area => &

square_area

end type square_type

interface square_type

module procedure square_type_constructor

end interface square_type

contains

type (square_type) function &

square_type_constructor(x, y, side)

implicit none

integer, intent (in) :: x

integer, intent (in) :: y

integer, intent (in) :: side

call square_type_constructor%set_x(x)

call square_type_constructor%set_y(y)

square_type_constructor%side_ = side

end function square_type_constructor

integer function square_area(this)

implicit none

class (square_type), intent (in) :: this

square_area = this%side_*this%side_

end function square_area

end module square_module

here is the test program that demonstrates the use of an abstract base class and simple
concrete derived class.
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include ’ch2904_abstract_shape_module.f90’

include ’ch2904_square_module.f90’

program ch2904

use square_module

type (square_type) :: x

x = square_type(1, 2, 3)

print *, ’ Square area = ’, x%area()

end program ch2904

29.8 Problems

29.1 Compile and run the examples in this chapter.

29.2 Add a US date module and test program for simple inheritance.

29.3 Add the US date data type to the polymorphic example.

29.4 The names of the days of the week and months in the year are English.
Here are their Welsh equivalents.

Llun Monday

Mawrth Tuesday

Mercher Wednesday

Iau Thursday

Gwener Friday

Sadwrn Saturday

Sul Sunday

January Ionawr July Gorffennaf

February Chwefror August Awst

March Mawrth September Medi

April Ebrill October Hydref

May Mai November Tachwedd

June Mehefin December Rhagfyr

Choose a language of you own, and write another language version of the date
class. Test it out.
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29.5 The following module contains code that tests the validity of a date using a
date expressed in terms of days, months and years.

module valid_date_module

implicit none

contains

logical function leap_year(year)

implicit none

integer, intent (in) :: year

if ((year/4)*4==year) then

leap_year = .true.

if ((year/400)*400==year) then

leap_year = .true.

else if ((year/100)*100==year) then

leap_year = .false.

end if

else

leap_year = .false.

end if

end function leap_year

subroutine check_date(day, month, year, ifail)

implicit none

integer, intent (in) :: day

integer, intent (in) :: month

integer, intent (in) :: year

integer, intent (inout) :: ifail

integer, parameter :: n_months = 12

integer, dimension (1:n_months) :: &

days_in_month = [ 31, 28, 31, 30, 31, 30, &

31, 31, 30, 31, 30, 31 ]

! Initialise ifail to 0

ifail = 0

! Simple test for Gregorian start date

! This is a warning. See the book for more

! details
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! about dates and calendars.

if (year<1582) then

ifail = 1

end if

if ((month<1) .or. (month>12)) then

ifail = ifail + 2

return

end if

! Now have a valid month

! reset in case of leap year in previous call

days_in_month(2) = 28

if (leap_year(year)) then

days_in_month(2) = 29

end if

if ((day<1) .or. (day>days_in_month(month))) &

then

ifail = ifail + 4

return

end if

return

end subroutine check_date

end module valid_date_module

How easy would it be to add date checking to the base class?
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Chapter 30
Introduction to Submodules

The competent programmer is fully aware of the limited size of
his own skull. He therefore approaches his task with full
humility, and avoids clever tricks like the plague

Edsger Dijkstra

Aims
The aims of this chapter is to provide a short introduction to submodules.

30.1 Introduction

Modules were introduced into Fortran in the 1990 standard. Over the next ten or so
years a number of issues arose that lead to the TR on Enhanced Module Facilities,
N1602, which was the starting point for the submodule facility in Fortran. A copy
can be found at the WG5 site. Visit

https://wg5-fortran.org/

to obtain a copy.
The actual published technical report (TR 19767) can be found at the ISO site.

https://www.iso.org/standard/37995.html

The document discussed the fact that the module system of Fortran was adequate
for a wide range of problems, but had shortcomings when one ended up with large
modules.

Four areas of concern were identified in this document:

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_30
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• Decomposing large and interconnected facilities. If an intellectual concept is large
and internally interconnected, it requires a large module to implement it. Decom-
posing such a concept into components of tractable size usingmodulesmay require
one to convert private data to public data. One problem occurs duringmaintenance,
when one must then answer the question where is this entity used?

• Avoiding recompilation cascades. Once the design of a program is stable, few
changes to a module occur in its interface, that is, in its public data, public types,
the interfaces of its public procedures, and private entities that affect their defini-
tions. We refer to the rest of a module, that is, private entities that do not affect
the definitions of public entities, and the bodies of its public procedures, as its
implementation. Changes in the implementation have no effect on the translation
of other program units that access the module. The existing module facility, how-
ever, draws no structural distinction between the interface and the implementation.
Therefore, if one changes any part of a module, most language translation systems
have no alternative but to conclude that a change might have occurred that could
affect the translation of other modules that access the changed module. This effect
cascades into modules that access modules that access the changed module, and
so on. This can cause a substantial expense to re-translate and re-certify a large
program. Re-certification can be several orders of magnitude more costly than
retranslation.

• Packaging proprietary software. If a module is used to package proprietary soft-
ware, the source text of the module cannot be published as authoritative docu-
mentation of the interface of the module, without either exposing trade secrets, or
requiring the expense of separating the implementation from the interface every
time a revision is published.

• Easier library creation. Most Fortran translator systems produce a single file of
computer instructions and data, frequently called an object file, for each module.
This is easier than producing an object file for the specification part and one for
each module procedure. It is also convenient, and conserves space and time, when
a program uses all or most of the procedures in each module. It is inconvenient,
and results in a larger program, when only a few of the procedures in a general
purpose module are needed in a particular program.

We provide a brief technical background below and then look at an example based
on the date class from the second object oriented chapter.

30.2 Brief Technical Background

The following is taken from Sect. 14.2.3 of the Fortran 2018 standard.
A submodule is a program unit that extends a module or another submodule. The

program unit that it extends is its host, and is specified by the parent-identifier in the
submodule-stmt.
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A module or submodule is an ancestor program unit of all of its descendants,
which are its submodules and their descendants. The submodule identifier is the
ordered pair whose first element is the ancestor module name and whose second
element is the submodule name; the submodule name by itself is not a local or global
identifier.

A module and its submodules stand in a tree-like relationship one to another, with
the module at the root. Therefore, a submodule has exactly one ancestor module and
can have one or more ancestor submodules.

A submodule may provide implementations for separate module procedures
(15.6.2.5), each of which is declared within that submodule or one of its ances-
tors, and declarations and definitions of other entities that are accessible by host
association in its descendants.

Here is an example taken from N1602.
The example module POINTS below declares a type POINT and a module proce-

dure interface body for a module function POINT_DIST. Because the interface body
includes the MODULE prefix, it accesses the scoping unit of the module by host
association, without needing an IMPORT statement; indeed, an IMPORT statement
is prohibited.

MODULE POINTS

TYPE :: POINT

REAL :: X, Y

END TYPE POINT

INTERFACE

REAL MODULE FUNCTION POINT_DIST ( A, B ) &

RESULT ( DISTANCE )

TYPE(POINT), INTENT(IN) :: A, B

! POINT is accessed by host association

REAL :: DISTANCE

END FUNCTION POINT_DIST

END INTERFACE

END MODULE POINTS

The example submodule POINTSAbelow is a submodule of the POINTSmodule.
The type POINT and the interface POINT_DIST are accessible in the submodule
by host association. The characteristics of the function POINT_DIST are redeclared
in the module function body, and the dummy arguments have the same names. The
function POINT_DIST is accessible by use association because itsmodule procedure
interface body is in the ancestor module and has the PUBLIC attribute.

SUBMODULE ( POINTS ) POINTS_A
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CONTAINS

REAL MODULE FUNCTION POINT_DIST ( A, B ) &

RESULT ( DISTANCE )

TYPE(POINT), INTENT(IN) :: A, B

DISTANCE = SQRT( (A%X-B%X)**2 + (A%Y-B%Y)**2 )

END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

A complete example is given below.

30.3 Example 1: Rewrite of the Date Class Using
Submodules

In this example we rewrite the base date module to have type declarations and inter-
faces for each of the contained module procedures.

The submodule will be based on the base date module and will have the imple-
mentations of the contained methods.

We have thus effectively decoupled the interface from the implementation.
The stages we followed are

• Duplicate the original module, creating an interface module and a implementation
submodule

• Add interfaces for each function and subroutine to the interface module
• Add the new syntax to the interfaces in themodule, i.e. add theMODULE keyword
to each function and subroutine

• Remove all executable code from the interface module, in this example all code
after the contains statement

• Remove all code before the contains statement in the implementation module
• Add the new submodule syntax
• Add the new syntax to each contained procedure, i.e. add the MODULE keyword
to each function and subroutine

• Copy the module test program
• Change the test program to use the new module names

We can distribute the module interface, and effectively keep the implementation
functions and subroutines hidden.

Here is the first source file. This is the base date class, but now rewritten just to
have the interfaces, and no executable or implementation code.

module date_module_interface

use day_and_month_name_module
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implicit none

private

type, public :: date

private

integer :: day

integer :: month

integer :: year

contains

procedure, pass (this) :: calendar_to_julian

procedure, pass (this) :: date_to_day_in_year

procedure, pass (this) :: &

date_to_weekday_number

procedure, pass (this) :: get_day

procedure, pass (this) :: get_month

procedure, pass (this) :: get_year

procedure, nopass :: julian_to_date

procedure, nopass :: &

julian_to_date_and_week_and_day

procedure, nopass :: ndays

procedure, pass (this) :: print_date

procedure, pass (this) :: set_day

procedure, pass (this) :: set_month

procedure, pass (this) :: set_year

procedure, nopass :: year_and_day_to_date

end type date

interface date

module procedure date_constructor

end interface date

interface

module function calendar_to_julian(this) &

result (ival)

implicit none

integer :: ival

class (date), intent (in) :: this

end function calendar_to_julian

end interface



548 30 Introduction to Submodules

interface

type (date) module function &

date_constructor(dd, mm, yyyy)

implicit none

integer, intent (in) :: dd, mm, yyyy

end function date_constructor

end interface

interface

integer module function &

date_to_day_in_year(this)

implicit none

class (date), intent (in) :: this

intrinsic modulo

end function date_to_day_in_year

end interface

interface

integer module function &

date_to_weekday_number(this)

implicit none

class (date), intent (in) :: this

intrinsic modulo

end function date_to_weekday_number

end interface

interface

module function get_day(this)

implicit none

integer :: get_day

class (date), intent (in) :: this

end function get_day

end interface

interface

module function get_month(this)

implicit none

integer :: get_month

class (date), intent (in) :: this

end function get_month

end interface
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interface

module function get_year(this)

implicit none

integer :: get_year

class (date), intent (in) :: this

end function get_year

end interface

interface

module function julian_to_date(julian)

implicit none

type (date) :: julian_to_date

integer, intent (in) :: julian

end function julian_to_date

end interface

interface

module subroutine &

julian_to_date_and_week_and_day &

(jd, d, wd, ddd)

implicit none

integer, intent (in) :: jd

type (date), intent (out) :: d

integer, intent (out) :: wd, ddd

end subroutine &

julian_to_date_and_week_and_day

end interface

interface

module function ndays(date1, date2)

implicit none

integer :: ndays

class (date), intent (in) :: date1, date2

end function ndays

end interface

interface

module function &

print_date(this, day_names, &

short_month_name, digits)

implicit none

class (date), intent (in) :: this

logical, optional, intent (in) :: &

day_names, short_month_name, digits

character (len=40) :: print_date
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end function print_date

end interface

interface

module subroutine set_day(this, d)

implicit none

integer, intent (in) :: d

class (date), intent (inout) :: this

end subroutine set_day

end interface

interface

module subroutine set_month(this, m)

implicit none

integer, intent (in) :: m

class (date), intent (inout) :: this

end subroutine set_month

end interface

interface

module subroutine set_year(this, y)

implicit none

integer, intent (in) :: y

class (date), intent (inout) :: this

end subroutine set_year

end interface

interface

module function &

year_and_day_to_date(year, day_in_year)

use day_and_month_name_module

implicit none

type (date) :: year_and_day_to_date

integer, intent (in) :: day_in_year, year

end function year_and_day_to_date

end interface

public :: calendar_to_julian, &

date_to_day_in_year, &

date_to_weekday_number, get_day, &

get_month, &

get_year, julian_to_date, &

julian_to_date_and_week_and_day, &

ndays, print_date, &

set_day, set_month, set_year, &
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year_and_day_to_date

end module date_module_interface

Here is the submodule that actually has the implementation.

submodule (date_module_interface) &

date_module_implementation

contains

module function &

calendar_to_julian(this) &

result (ival)

implicit none

integer :: ival

class (date), intent (in) :: this

ival = this%day - 32075 + 1461*&

(this%year+ &

4800+(this%month-14)/12)/4 + &

367*(this%month-2-((this%month- &

14)/12)*12)/12 - 3*&

((this%year+4900+(this% &

month-14)/12)/100)/4

end function calendar_to_julian

type (date) module function &

date_constructor(dd, mm, &

yyyy)

implicit none

integer, intent (in) :: dd, mm, yyyy

date_constructor%day = dd

date_constructor%month = mm

date_constructor%year = yyyy

end function date_constructor

integer module function &

date_to_day_in_year(this)

implicit none

class (date), intent (in) :: this
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intrinsic modulo

date_to_day_in_year = 3055*&

(this%month+2)/ &

100 - (this%month+10)/13*2 - &

91 + &

(1-(modulo(this%year,4)+3)/4+&

(modulo(this% &

year,100)+99)/100-(modulo(this%year, &

400)+399)/400)*(this%month+10)/13 + &

this%day

end function date_to_day_in_year

integer module function &

date_to_weekday_number(this)

implicit none

class (date), intent (in) :: this

intrinsic modulo

date_to_weekday_number = modulo((13*( &

this%month+10-&

(this%month+10)/13*12)-1)/5+ &

this%day+77+5*(this%year+(this%month- &

14)/12-(this%year+&

(this%month-14)/12)/100* &

100)/4+(this%year+(this%month- &

14)/12)/400-(this%year+(this%month- &

14)/12)/100*2, 7)

end function date_to_weekday_number

module function get_day(this)

implicit none

integer :: get_day

class (date), intent (in) :: this

get_day = this%day

end function get_day

module function get_month(this)

implicit none

integer :: get_month

class (date), intent (in) :: this

get_month = this%month

end function get_month
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module function get_year(this)

implicit none

integer :: get_year

class (date), intent (in) :: this

get_year = this%year

end function get_year

module function julian_to_date(julian)

implicit none

type (date) :: julian_to_date

integer, intent (in) :: julian

integer :: l, n

l = julian + 68569

n = 4*l/146097

l = l - (146097*n+3)/4

julian_to_date%year = (4000*(l+1)/1461001)

l = l - 1461*julian_to_date%year/4 + 31

julian_to_date%month = (80*l/2447)

julian_to_date%day = &

(l-2447*julian_to_date% &

month/80)

l = julian_to_date%month/11

julian_to_date%month = &

(julian_to_date%month &

+2-12*l)

julian_to_date%year = (100*(n-49)+ &

julian_to_date%year+1)

end function julian_to_date

module subroutine &

julian_to_date_and_week_and_day(jd, &

d, wd, ddd)

implicit none

integer, intent (in) :: jd

type (date), intent (out) :: d

integer, intent (out) :: wd, ddd

d = julian_to_date(jd)

wd = date_to_weekday_number(d)

ddd = date_to_day_in_year(d)

end subroutine &
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julian_to_date_and_week_and_day

module function ndays(date1, date2)

implicit none

integer :: ndays

class (date), intent (in) :: date1, date2

ndays = calendar_to_julian(date1) - &

calendar_to_julian(date2)

end function ndays

module function &

print_date(this, day_names, &

short_month_name, digits)

implicit none

class (date), intent (in) :: this

logical, optional, intent (in) :: &

day_names, &

short_month_name, digits

character (40) :: print_date

integer :: pos

logical :: want_day, &

want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if

if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then

want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ’(i2)’) this%day

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) &

this%month

print_date(6:6) = ’/’
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write (print_date(7:10), ’(i4)’) this%year

else

if (want_day) then

pos = date_to_weekday_number(this)

print_date = trim(day(pos)) // ’ ’

pos = len_trim(print_date) + 2

else

pos = 1

print_date = ’ ’

end if

write (print_date(pos:pos+1), ’(i2)’) &

this%day

if (want_short_month_name) then

print_date(pos+3:pos+5) = month(this% &

month)(1:3)

pos = pos + 7

else

print_date(pos+3:) = month(this%month)

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+3), ’(i4)’) &

this%year

end if

return

end function print_date

module subroutine set_day(this, d)

implicit none

integer, intent (in) :: d

class (date), intent (inout) :: this

this%day = d

end subroutine set_day

module subroutine set_month(this, m)

implicit none

integer, intent (in) :: m

class (date), intent (inout) :: this

this%month = m

end subroutine set_month

module subroutine set_year(this, y)

implicit none
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integer, intent (in) :: y

class (date), intent (inout) :: this

this%year = y

end subroutine set_year

module function year_and_day_to_date(year, &

day_in_year)

use day_and_month_name_module

implicit none

type (date) :: year_and_day_to_date

integer, intent (in) :: day_in_year, year

integer :: t

intrinsic modulo

year_and_day_to_date%year = year

t = 0

if (modulo(year,4)==0) then

t = 1

end if

if (modulo(year,400)/=0 .and. &

modulo(year,100)==0) then

t = 0

end if

year_and_day_to_date%day = day_in_year

if (day_in_year>59+t) then

year_and_day_to_date%day = &

year_and_day_to_date%day + 2 - t

end if

year_and_day_to_date%month = &

((year_and_day_to_date%day+91)*100)/3055

year_and_day_to_date%day = ( &

year_and_day_to_date%day+91) - &

(year_and_day_to_date%month*3055)/100

year_and_day_to_date%month = &

year_and_day_to_date%month - 2

if (year_and_day_to_date%month>=1 .and. &

year_and_day_to_date%month<=12) then

return

end if

write (unit=*, fmt=’(a,i11,a)’) &

’$$year_and_d&

&ay_to_date: day of the year input &

&=’, day_in_year, ’ is out of range.’

end function year_and_day_to_date
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end submodule date_module_implementation

Here is the Fortran driving program to test the submodule out.

include ’day_and_month_name_module.f90’

include ’date_module_interface.f90’

include ’date_module_implementation.f90’

program ch3001

use date_module_interface , only : &

calendar_to_julian, &

date, date_to_day_in_year, &

date_to_weekday_number, get_day, get_month, &

get_year, julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date

implicit none

integer :: dd, ddd, i, mm, ndiff, wd, yyyy

integer :: julian

integer :: val(8)

intrinsic date_and_time

type (date) :: date1, date2, x, tx1, tx2

call date_and_time(values=val)

yyyy = val(1)

mm = 10

do i = 31, 26, -1

x = date(i, mm, yyyy)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks back to EST on: ’, &

i, ’ October ’, x%get_year()

exit

end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 4

do i = 1, 8

x = date(i, mm, yyyy)

if (x%date_to_weekday_number()==0) then

print *, ’Turn clocks ahead to DST on: ’, &

i, ’ April ’, x%get_year()

exit
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end if

end do

call date_and_time(values=val)

yyyy = val(1)

mm = 12

dd = 31

x = date(dd, mm, yyyy)

if (x%date_to_day_in_year()==366) then

print *, x%get_year(), ’ is a leap year’

else

print *, x%get_year(), ’ is not a leap year’

end if

x = date(1, 1, 1970)

call julian_to_date_and_week_and_day &

(calendar_to_julian(x), x, wd, ddd)

if (x%get_year()/=1970 .or. x%get_month()/=1 &

.or. x%get_day()/=1 .or. wd/=4 .or. ddd/=1) &

then

print *, &

’julian_to_date_and_week_and_day failed’

print *, ’ date, wd, ddd = ’, x%get_year(), &

x%get_month(), x%get_day(), wd, ddd

stop

end if

date1 = date(22, 5, 1984)

date2 = date(22, 5, 1983)

ndiff = ndays(date1, date2)

yyyy = 1970

x = year_and_day_to_date(yyyy, ddd)

if (ndiff/=366) then

print *, ’ndays failed; ndiff = ’, ndiff

else

if (x%get_month()/=1 .and. x%get_day()/=1) &

then

print *, ’year_and_day_to_date failed’

print *, ’ mma, dda = ’, x%get_month(), &

x%get_day()

else

print *, ’ calendar_to_julian OK’

print *, ’ date_ OK’

print *, ’ date_to_day_in_year OK’

print *, ’ date_to_weekday_number OK’

print *, ’ get_day OK’
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print *, ’ get_month OK’

print *, ’ get_year OK’

print *, &

’ julian_to_date_and_week_and_day OK’

print *, ’ ndays OK’

print *, ’ year_and_day_to_date OK’

end if

end if

tx1 = date(1, 1, 1970)

julian = tx1%calendar_to_julian()

tx2 = julian_to_date(julian)

if (tx1%get_day()==tx2%get_day() .and. &

tx1%get_month()==tx2%get_month() .and. &

tx1%get_year()==tx2%get_year()) then

print *, ’ calendar_to_julian and ’

print *, ’ julian_to_date worked’

end if

x = date(11, 2, 1952)

print *, ’ print_date test’

print *, ’ Single parameter ’, &

x%print_date()

print *, &

’ day_names=false short_month_name=false ’, &

x%print_date(day_names=.false., &

short_month_name=.false.)

print *, &

’ day_names=true short_month_name=false ’, &

x%print_date(day_names=.true., &

short_month_name=.false.)

print *, &

’ day_names=false short_month_name=true ’, &

x%print_date(day_names=.false., &

short_month_name=.true.)

print *, &

’ day_names=true short_month_name=true ’, &

x%print_date(day_names=.true., &

short_month_name=.true.)

print *, ’ digits=true ’, &

x%print_date(digits=.true.)

print *, ’ Test out a month’
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yyyy = 1970

do dd = 1, 31

x = year_and_day_to_date(yyyy, dd)

print *, x%print_date(day_names=.false., &

short_month_name=.true.)

end do

end program ch3001

As can be seen the test or driving program is identical to the earlier, non submodule
version.

30.4 Example 2: Rewrite of the First Order RKM ODE
Solver Using Modules

The module rkm_module from Chap.26 contained the runge_kutta_merson
subroutine which was an implementation of the Runge Kutta Merson (RKM) algo-
rithm.

Wehavenow introduced a submodule calledrkm_module_implementation
which contains the runge_kutta_merson subroutine. By moving the body of
the procedure into a submodule any subsequent changes to the body will typically
only require recompilation of the submodule. Here is the new RKM module code.

module rkm_module

interface

module subroutine &

runge_kutta_merson(y, fun, ifail, n, a, b, tol)

use precision_module, wp=> dp

implicit none

real (wp), intent (inout), dimension (:) :: y

real (wp), intent (in) :: a, b, tol

integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, f, n)



30.4 Example 2: Rewrite of the First Order RKM ODE Solver Using Modules 561

use precision_module, wp => dp

implicit none

real (wp), intent (in), dimension (:) :: y

real (wp), intent (out), dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun

end interface

end subroutine runge_kutta_merson

end interface

end module rkm_module

Here is the RKM submodule.

submodule (rkm_module) rkm_module_implementation

contains

module subroutine &

runge_kutta_merson(y, fun, ifail, n, a, b, tol)

use precision_module, wp => dp

! runge-kutta-merson method for the solution

! of a system of n 1st order initial value

! ordinary differential equations.

! the routine tries to integrate from

! t=a to t=b with initial conditions in y,

! subject to the condition that the

! absolute error estimate <= tol. the step

! length is adjusted automatically to meet

! this condition.

! if the routine is successful it returns with

! ifail = 0, t=b and the solution in y.

implicit none

! define arguments

real (wp), intent (inout), &

dimension (:) :: y

real (wp), intent (in) :: a, b, tol
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integer, intent (in) :: n

integer, intent (out) :: ifail

interface

subroutine fun(t, y, f, n)

use precision_module, wp => dp

implicit none

real (wp), intent (in), &

dimension (:) :: y

real (wp), intent (out), &

dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

end subroutine fun

end interface

! local variables

real (wp), dimension (1:size(y)) :: &

s1, s2, s3, s4, s5, new_y_1, new_y_2, error

real (wp) :: &

t, h, h2, h3, h6, h8, factor = 1.e-2_wp

real (wp) :: &

smallest_step = 1.e-6_wp, max_error

integer :: no_of_steps = 0

ifail = 0

! check input parameters

if (n<=0 .or. a==b .or. tol<=0.0) then

ifail = 1

return

end if

! initialize t to be start of interval and

! h to be 1/100 of interval

t = a

h = (b-a)/100.0_wp

do

! ##### beginning of

! ##### repeat loop
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h2 = h/2.0_wp

h3 = h/3.0_wp

h6 = h/6.0_wp

h8 = h/8.0_wp

! calculate s1,s2,s3,s4,s5 !

s1=f(t,y)

call fun(t, y, s1, n)

new_y_1 = y + h3*s1

! s2 = f(t+h/3,y+h/3*s1)

call fun(t+h3, new_y_1, s2, n)

new_y_1 = y + h6*s1 + h6*s2

! s3=f(t+h/3,y+h/6*s1+h/6*s2)

call fun(t+h3, new_y_1, s3, n)

new_y_1 = y + h8*(s2+3.0_wp*s3)

! s4=f(t+h/2,y+h/8*(s2+3*s3))

call fun(t+h2, new_y_1, s4, n)

new_y_1 = y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! s5=f(t+h,y+h/2*(s1-3*s3+4*s4))

call fun(t+h, new_y_1, s5, n)

! calculate values at t+h

new_y_1 = y + h6*(s1+4.0_wp*s4+s5)

new_y_2 = y + h2*(s1-3.0_wp*s3+4.0_wp*s4)

! calculate error estimate

error = abs(0.2_wp*(new_y_1-new_y_2))

max_error = maxval(error)

if (max_error>tol) then

! halve step length and try again

if (abs(h2)<smallest_step) then

ifail = 2
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return

end if

h = h2

else

! accepted approximation so overwrite

! y with y_new_1, and t with t+h

y = new_y_1

t = t + h

! can next step be doubled?

if (max_error*factor<tol) then

h = h*2.0_wp

end if

! does next step go beyond interval end b,

! if so set h = b-t

if (t+h>b) then

h = b - t

end if

no_of_steps = no_of_steps + 1

end if

if (t>=b) exit

! ##### end of

! ##### repeat loop

end do

end subroutine runge_kutta_merson

end submodule rkm_module_implementation

Here is the fun1_module, which is the same code as in Chap.26.

module fun1_module

implicit none

contains

subroutine fun1(t, y, f, n)

use precision_module, wp => dp
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implicit none

real (wp), intent (in), dimension (:) :: y

real (wp), intent (out), dimension (:) :: f

real (wp), intent (in) :: t

integer, intent (in) :: n

f(1) = tan(y(3))

f(2) = -0.032_wp*f(1)/y(2) - &

0.02_wp*y(2)/cos(y(3))

f(3) = -0.032_wp/(y(2)*y(2))

end subroutine fun1

end module fun1_module

Here is the main program, which is the same code as in Chap. 26.

include ’precision_module.f90’

include ’ch3002_fun1_module.f90’

include ’ch3002_rkm_interface_module.f90’

include ’ch3002_rkm_implementation_module.f90’

program ch3002

use precision_module, wp => dp

use rkm_module

use fun1_module

implicit none

real (wp), dimension (:), allocatable :: y

real (wp) :: a, b, tol

integer :: n, ifail, all_stat

print *, ’input no of equations’

read *, n

! allocate space for y - checking to see that it

! allocates properly

allocate (y(1:n), stat=all_stat)

if (all_stat/=0) then

print *, ’ not enough memory’

print *, ’ array y is not allocated’

stop

end if

print *, ’ input start and end of interval over’
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print *, ’ which equations to be solved’

read *, a, b

print *, ’input initial conditions’

read *, y(1:n)

print *, ’input tolerance’

read *, tol

print 100, a

100 format &

(’at t= ’, f5.2, ’ initial conditions are :’)

print 110, y(1:n)

110 format (4(f5.2,2x))

call &

runge_kutta_merson(y, fun1, ifail, n, a, b, tol)

if (ifail/=0) then

print *, &

’integration stopped with ifail = ’, ifail

else

print 120, b

120 format (’at t= ’, f5.2, ’ solution is:’)

print 110, y(1:n)

end if

end program ch3002

30.5 Problems

30.1 Compile and run the above example. Compare the output to the previous ver-
sion.

30.2 Convert an earlier module example to use submodules, with an interface mod-
ule and an implementation submodule.

30.6 Bibliography

ISO/IEC DIS 1539-1 Information technology – Programming languages – Fortran –
Part 1: Base language

• Fortran 2018 draft standard.

https://www.iso.org/standard/72320.html



Chapter 31
Introduction to Parallel Programming

‘Can you do addition?’ the White Queen asked. ‘What’s one and
one and one and one and one and one and one and one and one
and one?’
‘I don’t know’ said Alice. ‘I lost count.’
‘She can’t do addition,’ the Red Queen interrupted.

Lewis Carroll, Through the Looking Glass and What Alice
Found There

Aims
The aims of this chapter is to provide a short introduction to parallel programming.

31.1 Introduction

Parallel programming involves breaking a program down into parts that can be exe-
cuted concurrently. Here is a simple diagram to illustrate the idea.

Sequential Parallel Step

Execution Execution

| | 1

/ \ #

| | | 2

| | | 3

\ / @

| | 4
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| | 5

/ \ ##

| | | 6

| | | 7

\ / @@

| | 8

On the left hand side we have a sequential program and this steps through linearly
from beginning to end. The right hand side has the same program that has been
partially parallelised. There are two parallel regions and the work here is now shared
between two processes or threads. At each parallel part of the program we have the
following

Parallel Parallel

Region 1 Region 2

Set up cost Step # Step ##

Parallel section Steps 2,3 Steps 6,7

Synchronisation cost Step @ Step @@

The theory is that the overall run time of the program will have been reduced or
we will have been able to solve a larger problem by parallelising our code. In the
above example we have divided the work between two processes or threads. Here are
some details of a range of processors which support multiple cores. Visit the AMD
and Intel sites for up to date information.

Processor Cores Hyper

Threading

AMD Phenom II X6 6

Intel Core i7 920 4 * 2

Intel Core i7 2600K 4 * 2

AMD Opteron Shanghai 4

Istanbul 6

Magny Cours 8

Magny Cours 12

Intel E5-2697 12 * 2

Intel introduced hyperthreading technology in 2002. For each physical processor
core the Intel chip has the operating system can see or address two virtual or logical
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cores, and can share the workload between them when possible. See the Wikipedia
entry for more information.

http://en.wikipedia.org/wiki/Hyper-threading

There are several ways of doing parallel programming, and this chapter will look
at three ways of doing this in Fortran. There are a common set of concepts and
terminology that are useful to know about, whichever method we use, and we will
cover these first.

31.2 Parallel Computing Classification

Parallel computing is often classified by the way the hardware supports parallelism.
Two of the most common are:

• multi-processor and multi-core computers having multiple processing elements
within a single system

• clusters or grids with multiple computers connected to work together.

Modern large systems are increasingly hybrids of the two above.

31.3 Amdahl’s Law

Amdahl’s law is a simple equation for the speedup of a program when parallelised.
It assumes that the problem size remains the same when parallelised. In the equation
below

• P is the proportion of the program that can be parallelised
• (1-P) is the serial proportion
• N is the number of processors
• speedup = 1 / ((1-P) + P/N).

We have included a couple of graphs to illustrate the above. We have written
programs that use the dislin graphics library to do the plots. More information on
these programs can be found in Chap.35, where we have a look at third party numeric
and graphics libraries.
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31.3.1 Amdahl’s Law Graph 1–8 Processors or Cores

31.3.2 Amdahl’s Law Graph 2–64 Processors or Cores
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31.4 Gustafson’s Law

Gustafson’s Law is often seen as a contradiction of Amdahl’s Law. Simplistically it
states that programmers solve larger problems when parallelising programs.

The equation for Gustafson’s Law is given below.

• N is the number of processors
• Serial is the proportion that remains serial
• Speedup(N) = N - Serial * (N - 1).

We have again included a graph to illustrate the above.

31.4.1 Gustafson’s Law Graph 1–64 Processors or Cores

31.5 Memory Access

Memory access times fall into two main categories that are of interest in parallel
computing

• uma - uniform memory access. Each element of main memory can be accessed
with the same latency and bandwidth. Multi-processor and multi-core computers
typically have this behaviour.
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• numa - non uniform memory access. Distributed memory systems have non-
uniform memory access. Clusters or grids with multiple computers connected
to work together have this behaviour.

31.6 Cache

Modern processors have amemory hierarchy. They typically have two ormore levels:

• main memory
• cpu memory

and there is a speed and cost link. Main memory is cheap and relatively slow in
comparison to the cpu memory.

The cpu memory or cache is used to reduce the effective access time to memory.
If the information that the program requires is in the cpu cache then the average
latency of memory accesses will be closer to the cache latency than to the latency of
main memory. Getting high performance from a computer normally means writing
cache friendly programs. This means that the data and instructions that the program
needs are already in the cache and don’t need to be accessed from the much slower
main memory.

In a multi-core and multi-cpu system each core and cpu will have their own mem-
ory or cache. This introduces the problem of cache coherency - i.e. the consistency
of data stored in local caches compared to the data in the common shared memory.
This problem must obviously be addressed when doing parallel programming.

31.7 Bandwidth and Latency

Bandwidth is the rate at which data can be transferred. Latency is the start up time
for a data transfer. We normally want a high bandwidth and low latency. Table31.1
looks at some figures for several interconnects.

Table 31.1 Bandwidth and latency

MPI bandwidth or
theoretical maximum
GB/s

latency
µs

Gigabit ethernet 0.125 ≈100

Infiniband 1.3 4.0

Myrinet 10-G 1.2 2.1

Quadrics QsNet II 0.9 2.7

Cray SeStar2 2.1 4.5
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31.8 Flynn’s Taxonomy

Flynn’s taxonomy is an old, but still widely used, classification scheme for computer
architecture.

• Single Instruction, Single Data stream (SISD) A sequential computer which
exploits no parallelism in either the instruction or data streams. Term rarely used.

• Single Instruction, Multiple Data streams (SIMD) A computer which exploits
multiple data streams against a single instruction stream to perform operations
which may be naturally parallelised. For example, an array processor or GPU.

• Multiple Instruction, Single Data stream (MISD) Multiple instructions operate on
a single data stream. Term rarely used.

• Multiple Instruction,MultipleData streams (MIMD)Multiple autonomousproces-
sors simultaneously executing different instructions on different data. Distributed
systems are generally recognized to be MIMD architectures; either exploiting a
single shared memory space or a distributed memory space. Essentially separate
computers working together to solve a problem.

We also have the term

• Single Program Multiple Data - An identical program executes on a MIMD com-
puter system. Conditional statements in the code mean that different parts of the
program execute on each system.

31.9 Consistency Models

Parallel programming languages and parallel computers must have a consistency
model (also known as a memory model). The consistency model defines rules for
how operations on computer memory occur and how results are produced.

31.10 Threads and Threading

In computing a thread of execution is often regarded as the smallest unit of processing
that can be scheduled by an operating system. The implementation of threads and
processes generally varies with operating system.
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31.11 Threads and Processes

From a strict computer science point of view threads and processes are different.
However when looking simply at parallel programming the term can often be used
interchangeably. In the following we use the term thread.

31.12 Data Dependencies

A data dependency is when one statement in a program depends on a calculation
from a previous statement. This will obviously hinder parallelism.

31.13 Race Conditions

Race conditions can occur in programs when separate threads depend on a shared
state or variable.

31.14 Mutual Exclusion - Mutex

A mutex is a programming construct that is used to allow multiple threads to share
a resource. The sharing is not simultaneous. One thread will acquire the mutex and
then lock the other threads from accessing it until it has completed.

31.15 Monitors

In concurrent programming, a monitor is an object or module intended to be used
safely by more than one thread. The defining characteristic of a monitor is that its
methods are executedwithmutual exclusion. That is, at each point in time, atmost one
thread may be executing any of its methods. This mutual exclusion greatly simplifies
reasoning about the implementation of monitors compared with code that may be
executed in parallel.

31.16 Locks

In computing a lock is a synchronization mechanism for enforcing limits on access
to a resource in an environment where there are many threads of execution. Locks
are one way of enforcing concurrency control policies.
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31.17 Synchronization

The concept of synchronisation is often split into process and data synchronisation.
In process synchronisation several processes or threads come together at a certain

part of a program.
Data synchronisation is concerned with keeping data consistent.

31.18 Granularity and Types of Parallelism

Granularity is a useful concept in parallel programming. A common classification is

• Fine-grained - a lot of small components, larger amounts of communication and
synchronisation

• Coarse-grained - a small number of larger components, hence smaller amounts of
communication and less synchronisation

The terms are of course relative.
We also have the concept of

• Embarrassingly parallel - very little effort is required to partition the task and there
is little or no communication and synchronisation.

A simple example of this would be a graphics processor processing individual
pixels.

31.19 Partitioned Global Address Space - PGAS

PGAS is a parallel programming model. It assumes a global memory address space
that is logically partitioned and a portion of it is local to each processor. The PGAS
model is the basis of Unified Parallel C, Coarray Fortran, Titanium, Fortress, Chapel
and X10.

31.20 Fortran and Parallel Programming

Most Fortran compilers now offer support for parallel programming.We next provide
a brief coverage of three methods

• MPI - Message Passing Interface
• OpenMP - Open Multi-Processing
• CoArray Fortran.

Subsequent chapters look at simple examples using each method.
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31.21 MPI

MPI started with a meeting that was held at the Supercomputing 92 conference. The
attendants agreed to develop and implement a common standard formessage passing.
The first MPI standard, called MPI-1 was completed in May 1994. The second MPI
standard, MPI-2, was completed in 1998.

MPI is effectively a library of C and Fortran callable routines. It has become
widely used and is available on a number of platforms. Some useful web addresses
are given below. The first is hosted at Argonne National Laboratory.

http://www.mcs.anl.gov/research/projects/mpi/

MPI was designed by a broad group of parallel computer users, vendors, and
software writers. These included

• Vendors - IBM, Intel, TMC, Meiko, Cray, Convex, Ncube
• Library writers - PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda
• Companies - ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG,
nCUBE, Parasoft, Shell, TMC

• Laboratories - ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia,
SDSC, SRC

• Universities - UC Santa Barbara, Syracuse University, Michigan State University,
Oregon Grad Inst, University of New Mexico, Mississippi State University, Uni-
versity of Southampton, University of Colorado, Yale University, University of
Tennessee, University of Maryland, Western Michigan University, University of
Edinburgh, Cornell University, Rice University, University of San Francisco.

So whilst MPI is not a formal standard like Fortran, C or C++, its development
has involved quite a wide range of people. The following site has details of MPI
meetings.

http://meetings.mpi-forum.org/

The steering committee (March 2015) and affiliations are given below

• Jack Dongarra - Computer Science Department, University of Tennessee
• Al Geist - Group Leader, Computer Science Research Group, Oak Ridge National
Laboratory

• Richard Graham
• Bill Gropp - Computer Science Department, University of Illinois Urbana-Cham-
paign

• Andrew Lumsdaine - Computer Science Department, Indianna University
• Ewing Lusk - Mathematics and Computer Science Division, Argonne National
Laboratory

• Rolf Rabenseifner - High Performance Computing Center, Germany.
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Another useful site is the Open MPI site.

http://www.open-mpi.org/

The following is taken from their site.
The Open MPI Project is an open source MPI implementation that is developed

and maintained by a consortium of academic, research, and industry partners. Open
MPI is therefore able to combine the expertise, technologies, and resources from
all across the High Performance Computing community in order to build the best
MPI library available. OpenMPI offers advantages for system and software vendors,
application developers and computer science researchers.

Both sites provide free down loadable implementations. Commercial implemen-
tations are available from

• Cray
• IBM
• Intel
• Microsoft

amongst others.
MPI is, at the time of writing, the dominant parallel programming method used in

Fortran. MPI and Fortran currently account for over 80% of the code running on the
Archer Service in Edinburgh. Archer is the UK’s national supercomputing resource,
funded by the UK Research Councils. Visit

http://www.archer.ac.uk

for more information.

31.22 OpenMP

OpenMP (OpenMulti-Processing) is an application programming interface that sup-
ports sharedmemorymultiprocessing programming in threemain languages (C,C++,
and Fortran) on a range of hardware platforms and operating systems. It consists of a
set of compiler directives, library routines, and environment variables that determine
the run time behaviour of a program.

The OpenMP Architecture Review Board (ARB) has published several versions

• October 1997 - OpenMP for Fortran 1.0. October the following year they released
the C/C++ standard.

• 2000 - Fortran version
• 2005 - Fortran 2.5
• 2008 - OpenMP 3.0. Included in the new features in 3.0 is the concept of tasks and
the task construct.



578 31 Introduction to Parallel Programming

• 2011 - OpenMP 3.1
• 2013 - OpenMP 4.0 was released in July 2013.

A number of compilers from various vendors or open source communities imple-
ment the OpenMP API, including

• Absoft
• Cray
• gnu
• Hewlett Packard
• IBM
• Intel
• Lahey/Fujitsu
• Nag
• Oracle/Sun
• PGI

The main OpenMP web site is:

http://www.openmp.org/

31.23 Coarray Fortran

Coarrays became part of Fortran in the 2008 standard. The original ideas came from
work by Robert Numrich and John Reid in the 1990s. They are based on a single
program multiple data model. A coarray Fortran program is interpreted as if it were
duplicated several times and all copies execute asynchronously. Each copy has its
own set of data objects and is termed an image. The array syntax of Fortran is
extended with additional trailing subscripts in square brackets to provide a concise
representation of references to data that is spread across images.

The syntax is architecture independent and may be implemented on:

• Distributed memory machines.
• Shared memory machines.
• Clustered machines.

Work has now been completed on additional Coarray functionality and is in the
Fortran 2018 standard.

31.24 Other Parallel Options

There are a number of additional parallel methods. They are covered for complete-
ness.
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31.24.1 PVM

ParallelVirtualMachine consists of a library and a run-time environmentwhich allow
the distribution of a programover a network of (even heterogeneous) computers. Visit

• http://www.netlib.org/pvm3/

for more details.

31.24.2 HPF

To quote their home page

http://hpff.rice.edu/index.htm

‘The High Performance Fortran Forum (HPFF), a coalition of industry, academic
and laboratory representatives, works to define a set of extensions to Fortran 90
known collectively as High Performance Fortran (HPF). HPF extensions provide
access to high-performance architecture featureswhilemaintaining portability across
platforms.’

They also provide details of:

• Surveys of HPF compilers and tools.
• Currently available commercial HPF compilers.
• public domain HPF compilation systems.
• Research prototypes of HPF and HPF-related compilation systems.
• Mailing list.

31.25 Top 500 Supercomputers

Have a look at

https://www.top500.org/

for a lot of links to supercomputing centres and information on parallel computing
in general. To see what can be done with all this processing power visit:

http://www.metoffice.gov.uk/
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31.26 Summary

Fortran has long been one of the main languages used in parallel programming.
This chapter has provided a brief coverage of some of the background to parallel
programming in general, and Fortran in particular.

In the next three chapterswewill look at a small number of programs that introduce
some of the basic syntax of parallel programming with MPI, OpenMP and Coarray
Fortran. We will also look at solving one problem serially and then solve it using
the parallel features provided by MPI, OpenMP and Coarray Fortran. We provide
timing details so that we can see the benefits that parallel solutions offer.
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Chapter 32
MPI - Message Passing Interface

In almost every computation a great variety of arrangements for
the succession of the processes is possible, and various
considerations must influence the selections amongst them for
the purposes of a calculating engine. One essential object is to
choose that arrangement which shall tend to reduce to a
minimum the time necessary for completing the calculation.

Ada Lovelace

Aim
The aims of this chapter is to provide a short introduction to MPI programming in
Fortran.

32.1 Introduction

Documents for the MPI standard are available from the MPI Forum. Their web
address is

http://www.mpi-forum.org

If you are going to do MPI programming we recommend getting hold of the
document that refers to your implementation.

32.2 MPI Programming

MPI programming typically requires two components, a compiler and anMPI imple-
mentation. Two common ways of doing MPI programming are

• a cluster or multiple systems running MPI

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_32
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• a single system running MPI

In both cases anMPI installation will normally provide anMPI daemon or service
that can then be called from an MPI program.

32.3 Compiler and Implementation Combination

A number of commercial companies provide a combined bundle including

• Cray
• IBM
• Intel
• PGI

TheCray and IBMofferingswill most likely be for a cluster. Intel and PGI provide
products for both clusters and single systems. You should check their sites for up to
date information.

32.4 Individual Implementation

A low cost option is to get hold of an MPI implementation that works with your
existing compiler, and install it yourself on your own system.

The Intel MPI product is available as a free download for evaluation purposes.
There are a number of free MPI implementations, and details are given below for

two of them.

32.4.1 MPICH2

They are based at Argonne National Laboratory

http://www.mpich.org/

MPICH2 is distributed as source (with an open-source, freely available license).
It has been tested on several platforms, including Linux (on IA32 and x86-64), Mac
OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.
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32.4.2 Open MPI

They can be found at

http://www.open-mpi.org/

They developOpenMPI on Linux, OSX, Solaris (both 32 and 64 on all platforms)
and Windows (Windows XP, Windows HPC Server 2003/2008 and also Windows 7
RC).

32.5 Compiler and MPI Combinations Used in the Book

We have used a variety of compilers and MPI combinations, including

• Intel compiler + mpich2, Windows
• Intel compiler + Intel MPI, Windows
• gfortran + openmpi, openSuSe Linux
• Cray compiler, Hector Service
• Cray compiler, Archer Service
• PGI compiler, Hector Service
• IBM compiler, Met Office Slovakia

We haven’t tried out all of the examples with all of the compiler and MPI imple-
mentations.

32.5.1 Cray Archer System

The Archer hardware consists of the Cray XC30MPP supercomputer, external login
nodes and postprocessing nodes, and the associated filesystems. There are 4920 com-
pute nodes inArcher phase 2 and each compute node has two 12-core Intel IvyBridge
Xeon series processors (2.7GHz Intel E5-2697) giving a total of 118,080 processing
cores. Each node has a total of 64 GB of memory with a subset of large memory
nodes having 128 GB. A high-performance Lustre storage system is available to all
compute nodes. There is no local disk on the compute nodes as they are housed in
4-node blades (the image below shows an XC30 blade with 4 compute nodes).
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32.6 The MPI Memory Model

MPI is characterised generally by distributed memory and

• All threads/processes have access to their own private memory only
• Data transfer and most synchronization has to be programmed explicitly
• All data is private
• Data is shared explicitly by exchanging buffers in MPI terminology

but in this chapter we will also show the use of MPI on one system.

32.7 Example 1: Hello World

The first example is the classic hello world program.

program ch3201

use mpi

implicit none

integer :: error_number

integer :: this_process_number

integer :: number_of_processes

call mpi_init(error_number)

call mpi_comm_size(mpi_comm_world, &

number_of_processes, error_number)

call mpi_comm_rank(mpi_comm_world, &

this_process_number, error_number)

print *, ’ Hello from process ’, &

this_process_number, ’ of ’, &

number_of_processes, ’processes!’

call mpi_finalize(error_number)

end program ch3201

Let us look at each statement in turn.

use mpi

With most modern MPI implementations we can make available the MPI setup
with a use statement. Older implementations required an include file option.

call mpi_init( error_number )
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This must be the first MPI routine called. The Fortran binding only takes one
argument, an integer variable that is used to return an error number. It sets up
the MPI environment.

call mpi_comm_size( mpi_comm_world, &

number_of_processes , error_number )

is typically the second MPI routine called. All MPI communication is associated
with a so called communicator that describes the communication context and an
associated set of processes. In this simple example we use the default communicator,
called mpi_comm_world. The number of processes available is returned via the
second argument. This means that the above program is duplicated on each process,
i.e. number_of_processes determines how many copies are running.

call mpi_comm_rank( mpi_comm_world, &

this_process_number , error_number )

The call above returns the process number for this process or copy of the program.

print *, " Hello from process " , &

this_process_number , " of ", &

number_of_processes , " processes!"

Each copy of the program will print out this message.

call mpi_finalize(error_number)

The call to mpi_finalize is the last call to the MPI system we need to make.
Here is the output from the Intel compiler and Intel MPI option under a Windows

system.

mpiexec -n 8 ch3201

Hello from process 0 of 8 processes!

Hello from process 4 of 8 processes!

Hello from process 1 of 8 processes!

Hello from process 5 of 8 processes!

Hello from process 7 of 8 processes!

Hello from process 6 of 8 processes!

Hello from process 3 of 8 processes!

Hello from process 2 of 8 processes!

Notice that process numbering starts at 0. Note also that there is no particular
order to the process numbers.
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Here is the output from gfortran and openmpi on a openSuSe system. This is the
same system as the above, as it is dual boot.

mpiexec -n 8 ch3201.out

Hello from process 0 of 8 processes!

Hello from process 1 of 8 processes!

Hello from process 2 of 8 processes!

Hello from process 3 of 8 processes!

Hello from process 4 of 8 processes!

Hello from process 5 of 8 processes!

Hello from process 6 of 8 processes!

Hello from process 7 of 8 processes!

Now the ordering is sequential.
Here is the output from the Cray Archer service. This uses 48 processes. The job

is submitted as a batch job, via a queueing mechanism. This is a commonmechanism
on larger multi user systems.

Hello world from image 16

Hello world from image 6

Hello world from image 13

Hello world from image 25

Hello world from image 34

lines deleted

Hello world from image 38

Hello world from image 44

Hello world from image 35

Hello world from image 28

Hello world from image 33

Hello world from image 32

Hello world from image 30

Hello world from image 29

The order appears to be pretty random!

32.8 Example 2: Hello World Using Send and Receive

The following is a variation of the above. In the first example we had no com-
munication between processes. Sending and receiving of messages by processes is
the basic MPI communication mechanism. The basic point-to-point communication
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operations are send and receive. Their use is shown in the example below. These
are blocking send and receive operations. A blocking send does not return until the
message data and envelope have been safely stored away so that the sender is free
to modify the send buffer. The message might be copied directly into the matching
receive buffer, or it might be copied into a temporary system buffer.

In this example process 0 is the master process and this communicates with every
other process or program.

program ch3202

use mpi

implicit none

integer :: error_number

integer :: this_process_number

integer :: number_of_processes

integer :: i

integer, dimension (mpi_status_size) :: status

call mpi_init(error_number)

call mpi_comm_size(mpi_comm_world, &

number_of_processes, error_number)

call mpi_comm_rank(mpi_comm_world, &

this_process_number, error_number)

if (this_process_number==0) then

print *, ’ Hello from process ’, &

this_process_number, ’ of ’, &

number_of_processes, ’processes.’

do i = 1, number_of_processes - 1

call mpi_recv(this_process_number, 1, &

mpi_integer, i, 1, mpi_comm_world, &

status, error_number)

print *, ’ Hello from process ’, &

this_process_number, ’ of ’, &

number_of_processes, ’processes.’

end do

else

call mpi_send(this_process_number, 1, &

mpi_integer, 0, 1, mpi_comm_world, &

error_number)

end if

call mpi_finalize(error_number)

end program ch3202

The calls to

• mpi_init
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• mpi_comm_size
• mpi_comm_rank
• mpi_finalize

are the same as in the first example. We have the additional code

• A test to see if we are process 0. If we are we then print out a message saying that
we are process 0. We next loop from 1 to number_of_processes -1 and call
mpi_recv.

• If we are not process 0 we make a call to mpi_send - remember that the program
executes on all processes.

Let us look at the calls to mpi_recv and mpi_send in more depth. Here is an
extract from the MPI 2.2 specification describing mpi_recv

<> buf(*)

initial address of receive buffer

integer count

number of elements in the receive buffer

datatype

data type of each receive buffer element

source - rank of source

tag - message tag

comm - communicator

status(mpi_status_size),

ierror

The following shows themapping betweenMPI data types and Fortran data types.

mpi datatype fortran datatype

mpi_integer integer

mpi_real real

mpi_double_precision double precision

mpi_complex complex

mpi_logical logical

mpi_character character(1)

our arguments to mpi_recv are

• this_process_number - process 0 is doing the receiving
• 1 item
• mpi_integer - an mpi_integer variable
• i - receive from this process
• 1 - tag
• mpi_comm_world - the communicator
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• status - an integer array of size mpi_status_size
• error_number

Here is an extract from the 2.2 specification regarding mpi_send

<> buf(*) - initial address of send buffer

integer count - number of elements in send buffer

datatype - data type of each send buffer element

dest - rank of destination

tag - message tag

comm - communicator

ierror - error number\index{Error number}

the arguments to our mpi_send are

• this_process_number - send from this process
• 1
• mpi_integer
• 0 - send to this process number
• 1
• mpi_comm_world - the communicator
• error_number

and as you can see the sends and receives are in matching pairs.
Here is an Intel sample run.

Hello from process 0 of 8 processes.

Hello from process 1 of 8 processes.

Hello from process 2 of 8 processes.

Hello from process 3 of 8 processes.

Hello from process 4 of 8 processes.

Hello from process 5 of 8 processes.

Hello from process 6 of 8 processes.

Hello from process 7 of 8 processes.

Here is a Cray Archer sample run.

Hello from process 0 of 48 processes.

Hello from process 1 of 48 processes.

Hello from process 2 of 48 processes.

Hello from process 3 of 48 processes.

Hello from process 4 of 48 processes.

lines deleted
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Hello from process 43 of 48 processes.

Hello from process 44 of 48 processes.

Hello from process 45 of 48 processes.

Hello from process 46 of 48 processes.

Hello from process 47 of 48 processes.

32.9 Example 3: Serial Solution for pi Calculation

We choose numerical integration in this example. The following integral

∫ 1

0

4

1+ x2
dx

is one way of calculating an approximation to π , and is a problem that is easy to
parallelise. The integral can be approximated by

1/n
n∑
1

4

1+ (
i−0.5
n

)2

According to Wikipedia π to 50 digits is
3.14159265358979323846264338327950288419716939937510
Another way of calculating π is using the formula 4 tan−1(1) and in Fortran this

is 4.0*atan(1.0).
Consider the following plot of the above equation.

To do the evaluation numerically we divide the interval between 0 and 1 into n
sub intervals. The higher the value of n the more accurate our value of π will be, or
should be.

Here is a serial program to do this calculation. The program is in three main parts.
These are
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• The module precision_module - to set the precision throughout the whole
code.

• The module timing_module - a timing module to enable us to time parts of
the program. We will be using this module throughout the parallel examples to
provide information about the performance of the algorithms.

• the program - that actually does the integration.

The first two modules are straightforward and we will only cover the integration
solution in depth. We will be using this integration example in this chapter on MPI
and the subsequent two on OpenMP and coarray Fortran.

include ’precision_module.f90’

include ’timing_module.f90’

program ch3203

use precision_module

use timing_module

implicit none

integer :: i, j

integer :: n_intervals

real (dp) :: interval_width, x, total, pi

real (dp) :: fortran_internal_pi

call start_timing()

n_intervals = 1000000

fortran_internal_pi = 4.0_dp*atan(1.0_dp)

print *, ’ fortran_internal_pi = ’, &

fortran_internal_pi

print *, ’ ’

do j = 1, 4

interval_width = 1.0_dp/n_intervals

total = 0.0_dp

do i = 1, n_intervals

x = interval_width*(real(i,dp)-0.5_dp)

total = total + f(x)

end do

pi = interval_width*total

print 100, n_intervals, time_difference()

print 110, pi, abs(pi-fortran_internal_pi)

n_intervals = n_intervals*10

end do

100 format (’ N intervals = ’, i12, ’ time = ’, &

f8.3)

110 format (’ pi = ’, f20.16, /, &
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’ difference = ’, f20.16)

call end_timing()

stop

contains

real (dp) function f(x)

implicit none

real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)

end function f

end program ch3203

The first part of the code has the declarations for the variables we will be using.
These are

integer :: n_intervals

real (dp) :: interval_width, x, total, pi

real (dp) :: fortran_internal_pi

We have an integer variable for the number of intervals we will be using. We have
made this of default integer type, which will be 32 bit on most platforms, and will
be up to 2, 147, 483, 647.

We then have the following variables

• interval_width
• z - the variable we will be calculating numerically
• total - our total for the integration
• pi - our calculated value of π

• fortran_internal_pi - we use a common way of defining this using the
internal atan function.

We then call the start_timing routine to print out details of the start time.
We next set the number of intervals. We choose 10 as an initial value. We will be

doing the calculation for a number of interval sizes.
We calculate π using the atan intrinsic and print out its value. We will be using

this value to determine the accuracy of our calculations.
We then have the loop that does the calculations for 9 values of the interval size

from 10 to 1,000,000,000.
We calculate the interval width at the start of each loop and reset the total to zero

at the start of each loop.
The following
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do i = 1, n_intervals

x = interval_width*(real(i,dp)-0.5_dp)

total = total + f(x)

end do

is the code that actually does the integration. We calculate x each time round the
loop and then use this calculated value in our call to our function, summing up as
we go along. We need to subtract a as we need the mid point of the interval for our
value of x.

The loop finishes and we then calculate the value of π and print out details of
the number of intervals, the calculated value of pi and the difference between the
internal value of π and the calculated value.

We also print out timing information about this calculation. We then increment
the number of intervals and repeat the above.

We need to knowhow long the serial version takes and how accurate our calculated
value for π is.

Here is output from this program on a couple of systems and compilers.
Compiler 1 - Intel compiler, Windows

2015/ 3/12 13:16:55 739

fortran_internal_pi = 3.14159265358979

N intervals = 1000000 time = 0.000

pi = 3.1415926535899033

difference = 0.0000000000001101

N intervals = 10000000 time = 0.031

pi = 3.1415926535896861

difference = 0.0000000000001070

N intervals = 100000000 time = 0.281

pi = 3.1415926535902168

difference = 0.0000000000004237

N intervals = 1000000000 time = 2.871

pi = 3.1415926535897682

difference = 0.0000000000000249

2015/ 3/12 13:16:58 922

Compiler 2 - gfortran, Windows

2015/ 3/12 15:14:42 110

fortran_internal_pi = 3.1415926535897931

N intervals = 1000000 time = 0.016

pi = 3.1415926535899601

difference = 0.0000000000001670
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N intervals = 10000000 time = 0.016

pi = 3.1415926535897216

difference = 0.0000000000000715

N intervals = 100000000 time = 0.281

pi = 3.1415926535900236

difference = 0.0000000000002305

N intervals = 1000000000 time = 2.793

pi = 3.1415926535896523

difference = 0.0000000000001408

2015/ 3/12 15:14:45 214

Compiler 3 - Cray, Archer Service. Hardware details of this system are given
earlier.

sttp1553@eslogin008:˜> ./ch3003.x

2015/ 3/22 11:42: 5 50

fortran_internal_pi = 3.1415926535897931

N intervals = 1000000 time = 0.000

pi = 3.1415926535899033

difference = 0.0000000000001101

N intervals = 10000000 time = 0.023

pi = 3.1415926535896861

difference = 0.0000000000001070

N intervals = 100000000 time = 0.207

pi = 3.1415926535902168

difference = 0.0000000000004237

N intervals = 1000000000 time = 2.074

pi = 3.1415926535897682

difference = 0.0000000000000249

2015/ 3/22 11:42: 7 356

STOP

The three sample serial runs provide us with information that we can use as a basis
for an analysis of our parallel solution. We have information about the accuracy of
the solution and timing details.

32.10 Example 4: Parallel Solution for pi Calculation

This example is a parallel solution to the above problem usingMPI.We only show the
parallel program. The precision and timing modules are the same as in the previous
example.
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include ’precision_module.f90’

include ’timing_module.f90’

program ch3204

use precision_module

use timing_module

use mpi

implicit none

real (dp) :: fortran_internal_pi

real (dp) :: partial_pi

real (dp) :: total_pi

real (dp) :: width

real (dp) :: partial_sum

real (dp) :: x

integer :: n

integer :: this_process

integer :: n_processes

integer :: i

integer :: j

integer :: error_number

call mpi_init(error_number)

call mpi_comm_size(mpi_comm_world, &

n_processes, error_number)

call mpi_comm_rank(mpi_comm_world, &

this_process, error_number)

n = 100000

fortran_internal_pi = 4.0_dp*atan(1.0_dp)

if (this_process==0) then

call start_timing()

print *, ’ fortran_internal_pi = ’, &

fortran_internal_pi

end if

do j = 1, 5

width = 1.0_dp/n

partial_sum = 0.0_dp

do i = this_process + 1, n, n_processes

x = width*(real(i,dp)-0.5_dp)

partial_sum = partial_sum + f(x)

end do

partial_pi = width*partial_sum

call mpi_reduce(partial_pi, total_pi, 1, &

mpi_double_precision, mpi_sum, 0, &

mpi_comm_world, error_number)
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if (this_process==0) then

print 100, n, time_difference()

print 110, total_pi, abs(total_pi- &

fortran_internal_pi)

end if

n = n*10

end do

call mpi_finalize(error_number)

100 format (’ N intervals = ’, i12, ’ time = ’, &

f8.3)

110 format (’ pi = ’, f20.16, /, &

’ difference = ’, f20.16)

contains

real (dp) function f(x)

implicit none

real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)

end function f

end program ch3204

The first difference is the

use mpi

statement. This makes available theMPI functionality. We next have several variable
declarations.

real (dp) :: fortran_internal_pi

real (dp) :: partial_pi

real (dp) :: total_pi

real (dp) :: width

real (dp) :: partial_sum

real (dp) :: x

integer :: n

integer :: this_process

integer :: n_processes

integer :: i

integer :: j

integer :: error_number
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The variables partial_pi, total_pi and partial_sum are required by our
parallel algorithm. The variable n is the number of intervals and we start this at
100,000 rather than 10 as we have seen from the serial solution that there are quite
large differences between the internal value of pi and the calculated value below
100,000.

The variables this_process, n_processes and error_number are
required for the MPI solution.

The real work is done in the following do loop.

do i = this_process + 1, n, n_processes

x = width*(real(i,dp)-0.5_dp)

partial_sum = partial_sum + f(x)

end do

The key is to split up the work of the calculation between the processes we have
available. The following shows how the work will be split up for n = 10 and with
the number of processes ranging from 1 to 8.

n_processes=1 do i=1,n,1 1,2,3,4,5,6,7,8,9,10

n_processes=2 do i=1,n,2 1,3,5,7,9

do i=2,n,2 2,4,6,8,10

n_processes=4 do i=1,n,4 1,5,9

do i=2,n,4 2,6,10

do i=3,n,5 3,7

do i=4,n,4 4,8

n_processes=8 do i=1,n,8 1,9

do i=2,n,8 2,10

do i=3,n,8 3

do i=4,n,8 4

do i=5,n,8 5

do i=6,n,8 6

do i=7,n,8 7

do i=8,n,8 8

The above also shows how the algorithm balances the load of the computation
across the processes.

Each process has its own partial_sum and partial_pi. We then use the
call to the MPI subroutine mpi_reduce to calculate the total value of pi from the
partial values of pi. Here is the MPI description of the mpi_reduce routine

MPI_REDUCE( sendbuf, recvbuf, count,

datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer
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(choice, significant only at root)

IN count number of elements in send buffer

(non-negative integer)

IN datatype data type of elements of send buffer

(handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

and

partial_pi is our send buffer

total_pi is our receive buffer

1 - the number of elements

mpi_double_precision - the type of the elements

mpi_sum - the reduction operation

0 - the root process

mpi_comm_world - the communicator

error_number - the error number

We then control the printing from process 0.
Here is sample output from the Intel compiler on a 6 core AMD system.

mpiexec -n 6 ch3004.exe

2015/ 3/12 13:16:39 671

fortran_internal_pi = 3.14159265358979

N intervals = 100000 time = 0.000

pi = 3.1415926535981256

difference = 0.0000000000083324

N intervals = 1000000 time = 0.000

pi = 3.1415926535898762

difference = 0.0000000000000830

N intervals = 10000000 time = 0.000

pi = 3.1415926535897674

difference = 0.0000000000000258

N intervals = 100000000 time = 0.062

pi = 3.1415926535897389

difference = 0.0000000000000542

N intervals = 1000000000 time = 0.637

pi = 3.1415926535898402

difference = 0.0000000000000471

We get a nearly linear speed up over the serial version, which shows how good
the parallel solution is. Note that the time value is not the total time taken by all
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processes, but rather the effective running time of the program. If we are sat in front
of the pc the program would complete in about a quarter of the time of the serial
version. The numerical results are similar to the serial solution.

Table 32.1 summarises the output from the Intel compiler on an Intel I7 system.
The table has the execution time details when running the program on 1 to 8 cores.
The timing for cores 1–4 are for the program runs on real physical cores. The tim-
ing for cores 5–8 are when running on hyperthreaded cores. The execution time is
worse when running on 5–7 cores. You should time your programs on hyperthreaded
systems to see if running on the extra cores brings any benefit.

Table 32.1 Intel I7 with hyperthreading

Cores

Intervals 1 2 3 4 5 6 7 8

100,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1,000,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10,000,000 0.016 0.016 0.012 0.000 0.016 0.000 0.000 0.016

100,000,000 0.234 0.109 0.078 0.062 0.094 0.094 0.078 0.062

1,000,000,000 2.203 1.141 0.816 0.609 0.984 0.812 0.703 0.594

As can be seen the performance for 5–8 cores is similar to that for 4 cores. Cores
5–8 represent the hyperthreaded cores.

Here is the output from the Cray at the Archer service. This is for 48 processes
running on 2 nodes.

2015/ 3/21 1:11:47 841

fortran_internal_pi = 3.1415926535897931

N intervals = 1000000 time = 0.004

pi = 3.1415926535898757

difference = 0.0000000000000826

N intervals = 10000000 time = 0.000

pi = 3.1415926535897958

difference = 0.0000000000000027

N intervals = 100000000 time = 0.006

pi = 3.1415926535897909

difference = 0.0000000000000022

N intervals = 1000000000 time = 0.054

pi = 3.1415926535897949

difference = 0.0000000000000018
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32.11 Example 5: Work Sharing Between Processes

This example looks at one way of splitting work up between processes. We use the
process number of determine which process does which work.

program ch3205

use mpi

implicit none

integer :: error_number

integer :: this_process_number

integer :: number_of_processes

integer, dimension (mpi_status_size) :: status

integer, allocatable, dimension (:) :: x

integer :: n

integer, parameter :: factor = 5

integer :: i, j, k

integer :: start

integer :: end

integer :: recv_start

call mpi_init(error_number)

call mpi_comm_size(mpi_comm_world, &

number_of_processes, error_number)

call mpi_comm_rank(mpi_comm_world, &

this_process_number, error_number)

n = number_of_processes*factor

allocate (x(1:n))

x = 0

start = (factor*this_process_number) + 1

end = factor*(this_process_number+1)

print 100, this_process_number, start, end

do i = start, end

x(i) = i*factor

end do

do i = 1, n

print 110, this_process_number, i, x(i)

end do

if (this_process_number==0) then

do i = 1, number_of_processes - 1

recv_start = (factor*i) + 1

call mpi_recv(x(recv_start), factor, &

mpi_integer, i, 1, mpi_comm_world, &

status, error_number)

end do
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else

call mpi_send(x(start), factor, mpi_integer, &

0, 1, mpi_comm_world, error_number)

end if

if (this_process_number==0) then

do i = 1, n

print 120, i, factor, x(i)

end do

end if

call mpi_finalize(error_number)

100 format (’ Process number = ’, i3, ’ start ’, &

i3, ’ end ’, i3)

110 format (1x, i4, ’ i ’, i4, ’ x(i) ’, i4)

120 format (1x, i4, ’ * ’, i2, ’ = ’, i5)

end program ch3205

What we are going to do is allocate an array based on the number of processes and
then split the (simple) work on the array up between the processes. We will calculate
array indices from the process numbers.

n = number_of_processes*factor

This statement calculates the array size based on the number of processes and a
constant factor.

allocate (x(1:n))

This statement allocates the array.

x = 0

This statement initialises the whole array to zero. The following statements define
the start and end points for the array processing for each process.

start = (factor*this_process_number) + 1

end = factor*(this_process_number+1)

and partition the work up between the processes. Each process will have its own start
and end values. The following do loop does the work:

do i = start, end

x(i) = i*factor

end do
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and all we are doing as this is filling sections of the array up with data based in
process numbers.

The following

if (this_process_number==0) then

do i = 1, number_of_processes - 1

recv_start = (factor*I) + 1

call mpi_recv(x(recv_start), &

factor,mpi_integer,i,1,mpi_comm_world,&

status ,error_number)

end do

else

call mpi_send(x(start),factor, &

mpi_integer,0,1,mpi_comm_world,error_number)

end if

uses sends and receives to transfer the updated array sections back to process zero.
We are using recv_start to specify the starting point for the array transfer, and
x(start) is the starting point for the transfer from the x array to process zero.

Here is sample output from the program when the number of processes is three.

mpiexec -n 3 ch3205

Process number = 2 start 11 end 15

Process number = 1 start 6 end 10

1 I 1 x(i) 0

1 I 2 x(i) 0

1 I 3 x(i) 0

1 I 4 x(i) 0

1 I 5 x(i) 0

1 I 6 x(i) 30

1 I 7 x(i) 35

1 I 8 x(i) 40

1 I 9 x(i) 45

1 I 10 x(i) 50

1 I 11 x(i) 0

1 I 12 x(i) 0

Process number = 0 start 1 end 5

0 I 1 x(i) 5

0 I 2 x(i) 10

0 I 3 x(i) 15

0 I 4 x(i) 20

0 I 5 x(i) 25

0 I 6 x(i) 0

0 I 7 x(i) 0
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0 I 8 x(i) 0

0 I 9 x(i) 0

0 I 10 x(i) 0

0 I 11 x(i) 0

0 I 12 x(i) 0

0 I 13 x(i) 0

0 I 14 x(i) 0

0 I 15 x(i) 0

1 * 5 = 5

2 * 5 = 10

3 * 5 = 15

4 * 5 = 20

5 * 5 = 25

6 * 5 = 30

7 * 5 = 35

2 I 1 x(i) 0

2 I 2 x(i) 0

2 I 3 x(i) 0

2 I 4 x(i) 0

2 I 5 x(i) 0

2 I 6 x(i) 0

2 I 7 x(i) 0

2 I 8 x(i) 0

2 I 9 x(i) 0

2 I 10 x(i) 0

2 I 11 x(i) 55

2 I 12 x(i) 60

2 I 13 x(i) 65

2 I 14 x(i) 70

2 I 15 x(i) 75

1 I 13 x(i) 0

1 I 14 x(i) 0

1 I 15 x(i) 0

8 * 5 = 40

9 * 5 = 45

10 * 5 = 50

11 * 5 = 55

12 * 5 = 60

13 * 5 = 65

14 * 5 = 70

15 * 5 = 75

Sowith three processes we have an array of size 15, and thework that each process
does is
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Process number = 0 start 1 end 5

Process number = 1 start 6 end 10

Process number = 2 start 11 end 15

and each process works on its own section of the array. At the end we use the sends
and receives to make sure that the x array on process zero now has all of the updated
values.

This code achieves load balancing across the processes.

32.12 Summary

The programs in this chapter provide an introduction to the use of MPI to achieve
parallel programs in Fortran.We have also seen some of the timing benefits of parallel
programming with MPI.

32.13 Problem

32.1 Compile and run the programswith your compiler and implementation ofMPI.
You should get similar results.



Chapter 33
OpenMP

The best way to have a good idea is to have a lot of ideas.

Linus Pauling

Aim
The aims of this chapter is to provide a short introduction to OpenMP programming
in Fortran.

33.1 Introduction

The main OpenMP site is

http://www.openmp.org/

and this has details about the various specifications

http://www.openmp.org/specifications/

We recommend downloading the documentation if you are going to do OpenMP
programming. You should visit

http://www.openmp.org/resources/openmp-compilers/

to see an up to date list of what compilers support the OpenMP specification, and at
what level.

© Springer International Publishing AG, part of Springer Nature 2018
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The OpenMP site has a range of resources available, check out

http://www.openmp.org/resources/

for more information.
We’ve run the examples in this chapterwith one ormore of the following compilers

• Cray
• gfortran
• Intel
• Nag

33.2 OpenMP Memory Model

OpenMP is a shared memory programming model. It has several features including

• All threads have access to the same shared memory
• Data can be shared or private
• Data transfer is transparent to the programmer
• Synchronization takes place and is generally implicit

We will look at a small number of examples to highlight some of the key features.
We provide a brief coverage of some of the OpenMP glossary to provide a basic
background to OpenMP.

• Threading Concepts

– Thread - An execution entity with a stack and associated static memory, called
thread private memory.

– OpenMP thread - A thread that is managed by the OpenMP run time system.
– Thread-safe routine - A routine that performs the intended function even when
executed concurrently (by more than one thread).

• OpenMP language terminology

– Structured block - For Fortran, a block of executable statements with a single
entry at the top and a single exit at the bottom.

– Loop directive - An OpenMP executable directive whose associated user code
must be a loop that is a structured block. For Fortran, only the do directive and
the optional end do directive are loop directives.

– Master thread - The thread that encounters a parallel construct, creates a team,
generates a set of tasks, then executes one of those tasks as thread number 0.

– Work sharing construct - A construct that defines units of work, each of which is
executed exactly once by one of the threads in the team executing the construct.
For Fortran, work sharing constructs are do, sections, single and work share.
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– Barrier - A point in the execution of a program encountered by a team of threads,
beyondwhich no thread in the teammay execute until all threads in the teamhave
reached the barrier and all explicit tasks generated by the team have executed
to completion.

• Data Terminology

– Variable - A named data object, whose value can be defined and redefined during
the execution of a program. Only an object that is not part of another object is
considered a variable. For example, array elements, structure components, array
sections and substrings are not considered variables.

– Private variable -With respect to a given set of task regions that bind to the same
parallel region, a variable whose name provides access to a different block of
storage for each task region.

– Shared variable - With respect to a given set of task regions that bind to the
same parallel region, a variable whose name provides access to the same block
of storage for each task region.

• Execution Model

– The OpenMP API uses the fork-join model of parallel execution. Multiple
threads of execution perform tasks defined implicitly or explicitly by OpenMP
directives. OpenMP is intended to support programs that will execute correctly
both as parallel programs (multiple threads of execution and a full OpenMP
support library) and as sequential programs (directives ignored and a simple
OpenMP stubs library).

The above coverage should be enough to get started with OpenMP and understand
the examples that follow.

33.3 Example 1: Hello World

This is the classic hello world program.

program ch3301

use omp_lib

implicit none

integer :: nthreads

integer :: thread_number

integer :: i

nthreads = omp_get_max_threads()

print *, ’ Number of threads = ’, nthreads

! $omp parallel do
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do i = 1, nthreads

print *, ’ Hello from thread ’, &

omp_get_thread_num()

end do

! $omp end parallel do

end program ch3301

Let us go through the program one statement at a time.

use omp_lib

This use statement makes available the OpenMP environment. OpenMP state-
ments are treated as comments without this statement.

nthreads = omp_get_max_threads()

print *, ’ Number of threads = ’, nthreads

The first statement sets the variable nthread to the value returned by the
OpenMP function omp_get_max_threads(). We then print out this value.

!$omp parallel do

OpenMP directives in Fortran start with the comment character (!), followed by
a $ symbol and the characters omp. We use this form as it is works with both free
format and fixed format Fortran source code.

The parallel do words indicate that the code that follows is a parallel region
construct. In this case a do loop. Here is a small table listing some of the OpenMP
directives.

Parallel region construct

!$omp parallel [clause]

structured block

!$omp end parallel

Work sharing constructs

!$omp do [clause] ...

do loop

!$omp end parallel

!$omp sections [clause] ...

[!$omp section

structured block ] ...
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!$omp end sections [nowait]

!$omp single [clause]

structured block

!$omp end single [nowait]

Combined parallel work

sharing constructs

!$omp parallel do [clause]

structured block

!$omp end parallel do

!$omp parallel sections [clause] ...

[!$omp section

structured block ] ...

!$omp end parallel sections

Synchronisation constructs

!$omp master

structured block

!$omp end master

!$omp critical [(name)]

structured block

!$omp end critical [(name)]

!$omp barrier

$omp atomic

expression list

!$omp flush

!$omp ordered

structured block

!$omp end ordered

Data environment

!$omp threadprivate (/c1/,/c2/)

We next have the parallel do.

do i = 1, nthreads

print *, ’ Hello from thread ’, &

omp_get_thread_num()

end do

This loop prints out a message from each thread showing the thread number.
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!$omp end parallel do

This marks the end of the OpenMP parallel loop.
So at the start of the loop the OpenMP run time system does a fork and creates

multiple threads. At the end of the loop we have a join operation and we are back to
one thread of execution.

Here is the output from the Intel compiler on an Intel i7 system.

Number of threads = 8

Hello from thread 0

Hello from thread 4

Hello from thread 2

Hello from thread 3

Hello from thread 1

Hello from thread 7

Hello from thread 6

Hello from thread 5

These Intel systems have four real cores and each core supports hyper threading
in Intel terminology. So the OpenMP system sees eight threads.

Here is the output from the gfortran compiler on the same system.

Number of threads = 8

Hello from thread 1

Hello from thread 3

Hello from thread 2

Hello from thread 4

Hello from thread 5

Hello from thread 6

Hello from thread 0

Hello from thread 7

The output is very similar, as one would expect.

33.4 Example 2: Hello World Using Default Variable Data
Scoping

This is a simple variation on the first example. At first sight it appears to be identical
in effect to example one.

program ch3302

use omp_lib
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implicit none

integer :: nthreads

integer :: thread_number

integer :: i

nthreads = omp_get_max_threads()

print *, ’ Number of threads = ’, nthreads

!$omp parallel do

do i = 1, nthreads

thread_number = omp_get_thread_num()

print *, ’ Hello from thread ’, &

thread_number

end do

!$omp end parallel do end program ch3302

However we have introduced a variable thread_number and are using the
OpenMP default data scoping rules, i.e. we have said nothing. Here is the output
from the Intel compiler.

Number of threads = 8

Hello from thread 4

Hello from thread 5

Hello from thread 0

Hello from thread 1

Hello from thread 2

Hello from thread 3

Hello from thread 7

Hello from thread 6

We appear to have a working program. Here is the output from the gfortran
compiler.

$ ./a.exe

Number of threads = 8

Hello from thread 6

Hello from thread 7

Hello from thread 7

Hello from thread 7

Hello from thread 7

Hello from thread 7

Hello from thread 7

Hello from thread 7

Now something appears to be not quite right! The default variable scoping rules
mean that the variable thread_number is available to all threads - in OpenMP
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terminology it is shared. The opposite of shared is private and each thread has their
own copy. Example3 corrects this problem.

33.5 Example 3: Hello World with Private
thread_number variable

program ch3303

use omp_lib

implicit none

integer :: nthreads

integer :: thread_number

integer :: i

nthreads = omp_get_max_threads()

print *, ’ Number of threads = ’, nthreads

!$omp parallel do private(thread_number)

do i = 1, nthreads

thread_number = omp_get_thread_num()

print *, ’ Hello from thread ’, &

thread_number

end do

!$omp end parallel do

end program ch3303

Here is the output from the gfortran compiler.

$ ./a.exe

Number of threads = 8

Hello from thread 2

Hello from thread 1

Hello from thread 4

Hello from thread 3

Hello from thread 0

Hello from thread 6

Hello from thread 5

Hello from thread 7

Care must be taken with variables in OpenMP to ensure they have the correct data
scoping state.
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33.6 Example 4: Parallel Solution for pi Calculation

This is an OpenMP parallel implementation of the integration problem (Example3)
from the previous chapter. You should compare it with the MPI solution - Example4
in the last chapter.

include ’precision_module.f90’

include ’timing_module.f90’

program ch3304

use precision_module

use timing_module

use omp_lib

implicit none

real (dp) :: fortran_internal_pi

real (dp) :: partial_pi

real (dp) :: openmp_pi

real (dp) :: width

real (dp) :: x

integer :: nthreads

integer :: i

integer :: j

integer :: k

integer :: n

nthreads = omp_get_max_threads()

fortran_internal_pi = 4.0_dp*atan(1.0_dp)

print *, ’ Maximum number of threads is ’, &

nthreads

do k = 1, nthreads

call start_timing()

n = 100000

call omp_set_num_threads(k)

print *, ’ Number of threads = ’, k

do j = 1, 5

width = 1.0_dp/n

partial_pi = 0.0_dp

!$omp parallel do private(x) &

!$omp shared(width) reduction(+:partial_pi)

do i = 1, n

x = width*(real(i,dp)-0.5_dp)

partial_pi = partial_pi + f(x)

end do
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!$omp end parallel do

openmp_pi = width*partial_pi

print 100, n, time_difference()

print 110, openmp_pi, abs(openmp_pi- &

fortran_internal_pi)

n = n*10

end do

end do

100 format (’ N intervals = ’, i12, ’ time =’, &

f8.3)

110 format (’ openmp_pi = ’, f20.16, /, &

’difference = ’, f20.16)

call end_timing()

stop

contains

real (dp) function f(x)

implicit none

real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)

end function f

end program ch3304

Here is the output from the Intel compiler.

Maximum number of threads is 8

..

Number of threads = 1

N intervals = 100000 time = 0.004

openmp_pi = 3.1415926535981167

difference = 0.0000000000083236

N intervals = 1000000 time = 0.012

openmp_pi = 3.1415926535899033

difference = 0.0000000000001101

N intervals = 10000000 time = 0.051

openmp_pi = 3.1415926535896861

difference = 0.0000000000001070

N intervals = 100000000 time = 0.449

openmp_pi = 3.1415926535902168

difference = 0.0000000000004237

N intervals = 1000000000 time = 4.398

openmp_pi = 3.1415926535897682
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difference = 0.0000000000000249

..

Number of threads = 2

N intervals = 100000 time = 0.000

openmp_pi = 3.1415926535981260

difference = 0.0000000000083329

N intervals = 1000000 time = 0.000

openmp_pi = 3.1415926535898624

difference = 0.0000000000000693

N intervals = 10000000 time = 0.020

openmp_pi = 3.1415926535897829

difference = 0.0000000000000102

N intervals = 100000000 time = 0.219

openmp_pi = 3.1415926535898926

difference = 0.0000000000000995

N intervals = 1000000000 time = 2.195

openmp_pi = 3.1415926535897380

difference = 0.0000000000000551

..

Number of threads = 4

N intervals = 100000 time = 0.004

openmp_pi = 3.1415926535981287

difference = 0.0000000000083356

N intervals = 1000000 time = 0.004

openmp_pi = 3.1415926535898726

difference = 0.0000000000000795

N intervals = 10000000 time = 0.027

openmp_pi = 3.1415926535898153

difference = 0.0000000000000222

N intervals = 100000000 time = 0.137

openmp_pi = 3.1415926535898038

difference = 0.0000000000000107

N intervals = 1000000000 time = 1.781

openmp_pi = 3.1415926535898544

difference = 0.0000000000000613

..

Number of threads = 8

N intervals = 100000 time = 0.000

openmp_pi = 3.1415926535981278

difference = 0.0000000000083347

N intervals = 1000000 time = 0.004

openmp_pi = 3.1415926535898784

difference = 0.0000000000000853

N intervals = 10000000 time = 0.016

openmp_pi = 3.1415926535897962
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difference = 0.0000000000000031

N intervals = 100000000 time = 0.113

openmp_pi = 3.1415926535898162

difference = 0.0000000000000231

N intervals = 1000000000 time = 1.137

openmp_pi = 3.1415926535898824

difference = 0.0000000000000893

We have similar timing improvements to the MPI solutions.

33.7 Example 5: Comparing the Timing of Whole Array
Syntax, Simple Do Loops, Do Concurrent
and an OpenMP Solution

The chapter on data structuring introduced the do concurrent statement. In the
example we solve a summation problem using the following four methods:

• whole array syntax
• simple do loop
• do concurrent loop
• OpenMP parallel loop

Here is the program.

include ’timing_module.f90’

include ’precision_module.f90’

program ch3305

use timing_module

use precision_module

use omp_lib

implicit none

integer , parameter :: n=10000000

integer , parameter ::loop_count=10

integer , parameter :: n_types=4

integer :: i

integer :: j

integer :: nthreads

real (dp) , allocatable , dimension(:) :: x
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real (dp) , allocatable, dimension(:) :: y

real (dp) , allocatable , dimension(:) :: z

real , dimension(n_types,loop_count) :: &

timing_details = 0.0

real , dimension(n_types) :: t_sum = 0.0

real , dimension(n_types) :: t_average = 0.0

real :: reset = 0.0

character (15) , dimension(n_types) :: &

heading_1 = &

[ ’ Whole array ’ , &

’ Do loop ’ , &

’ Do concurrent ’ , &

’ openmp ’ ]

call start_timing()

print *,’ ’

nthreads = omp_get_max_threads()

open(unit=20,file=’ch3305.dat’)

print 10,nthreads

10 format(’ Nthreads = ’,i3)

allocate (x(n))

allocate (y(n))

allocate (z(n))

call random_number(x)

call random_number(y)

z=0.0_dp

print 20,time_difference()

20 format(’ Initialise time = ’,f6.3)

write(20,30) x(1),y(1),z(1)

30 format(3(2x,f6.3))

print *, ’ ’

do j=1,loop_count

print 40,j

40 format(’ Iteration = ’,i3)

!

! Whole array syntax

!

z=x+y

timing_details(1,j) = time_difference()
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write(20,30) x(1),y(1),z(1)

z = 0.0_dp

reset = time_difference()

!

! Simple traditional do loop

!

do i=1,n

z(i)=x(i)+y(i)

end do

timing_details(2,j) = time_difference()

z = 0.0_dp

reset = time_difference()

!

! do concurrent loop

!

do concurrent (i=1:n)

z(i)=x(i)+y(i)

end do

timing_details(3,j) = time_difference()

write(20,30) x(1),y(1),z(1)

z = 0.0_dp

reset = time_difference()

!

! OpenMP parallel loop

!

!$omp parallel do

do i=1,n

z(i)=x(i)+y(i)

end do

!$omp end parallel do

timing_details(4,j) = time_difference()

write(20,30) x(1),y(1),z(1)

z = 0.0_dp

reset = time_difference()

end do

close(20)

print 50

50 format(15x,70x,’ Sum Average’)

do i=1,n_types

t_sum(i) = &

sum(timing_details(i,1:loop_count))

t_average(i) = t_sum(i)/loop_count

print 60,heading_1(i) , &
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timing_details(i,1:loop_count),&

t_sum(i),t_average(i)

60 format(a,10(1x,f6.3),2(3x,f6.3))

end do

print *,’ ’

call end_timing()

end program ch3305

Here are some timing details for three compilers on one system under both Linux
and Windows.

gfortran Intel Nag
Linux Windows Linux Windows Linux Windows

Whole array 0.019 0.018 0.013 0.015 0.034 0.053
Do loop 0.019 0.019 0.018 0.019 0.020 0.019
Do concurrent 0.019 0.018 0.018 0.020 0.019 0.020
openmp 0.016 0.016 0.012 0.012 0.016 0.016

33.8 Summary

This chapter briefly introduced the essentials of OpenMP programming. We have
also seen the timing benefits that OpenMP programming can offer in the solution of
the same problem as in the MPI chapter. We finished off by doing a comparison of
summation in Fortran using four methods.

33.9 Problem

33.1 Compile and run the examples in this chapter with your compiler and compare
the results.
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Coarray Fortran

Science is a wonderful thing if one does not have to earn one’s
living at it.

Einstein

Aim
The aims of this chapter is to provide a short introduction to coarray programming
in Fortran.

34.1 Introduction

Coarrays were the major component of the Fortran 2008 standard. As stated earlier
they are based on a single programmultiple datamodel. Coarrays are a simple parallel
programming extension to Fortran. They are effectively variables that can be shared
across multiple instances of the same program or images in Fortran terminology.

Coarray variables look like conventional Fortran arrays, except that they use []
brackets instead of () brackets. In the simple declaration below

character(len=20) :: name[*]=’*****’

We declare name to be a coarray and the * in the [] brackets means that the
bounds of the coarray are calculated at run time, rather than compile time.

read *, name

is a reference to the coarray on the current image.
We can then use the following statement

name[i] = name
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to broadcast the value read in to each of the other images.
Note the Fortran coarray syntax here. We use the [] brackets to reference the

coarray variable on other images and the omission of the [] brackets is a reference
to the coarray variable on the current image.

34.2 Some Basic Coarray Terminology

The following is taken from the Fortran 2018 standard and covers some of the basic
coarray terminology.

• codimension attribute - The codimension attribute species that an entity is
a coarray. The coarray-spec specifies its corank or corank and cobounds.

• Allocatable coarray -Acoarraywith the allocatable attribute has a specified corank,
but its cobounds are determined by allocation or argument association.

• Explicit-coshape coarray - An explicit-coshape coarray is a named coarray that
has its corank and cobounds declared by an explicit-coshape-spec.

• Coindexed named objects - A coindexed-named-object is a named scalar coarray
variable followed by an image selector.

• Image selectors - An image selector determines the image index for a coindexed
object.

• Image execution control and image control statements - The execution sequence
on each image is specified in 5.3.5 of the standard.

• Execution of an image control statement divides the execution sequence on an
image into segments. Each of the following is an image control statement:

– sync all statement;
– sync images statement;
– sync memory statement;
– allocate or deallocate statement that has a coarray allocate-object;
– critical or end critical;
– lock or unlock statement;
– Any statement that completes execution of a block or procedure and which
results in the implicit deallocation of a coarray;

– stop statement;
– end statement of a main program.

• Coarray - A coarray is a data entity that has nonzero corank; it can be directly
referenced or defined by any image. It may be a scalar or an array.

• Coarray dummy variables - If the dummy argument is a coarray, the corresponding
actual argument shall be a coarray and shall have the volatile attribute if and
only if the dummy argument has the volatile attribute.

• Some coarray intrinsics

– image_index - convert a cosubscript to an image index
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– lcobound - cobounds of a coarray
– num_images - the number of images
– this_image - image index or cosubscripts
– ucobound - cobounds of a coarray

Let us look now at some simple examples.

34.3 Example 1: Hello World

The first is the classic Hello world.

program ch3401

implicit none

print *, ’ Hello world from image ’, &

this_image()

end program ch3401

Here is the output from the Intel compiler.

Hello world from image 5

Hello world from image 3

Hello world from image 4

Hello world from image 8

Hello world from image 1

Hello world from image 6

Hello world from image 2

Hello world from image 7

Here is sample output from the Cray Archer service.

Hello world from image 16

Hello world from image 6

Hello world from image 13

Hello world from image 25

Hello world from image 34

lines deleted

Hello world from image 38

Hello world from image 44
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Hello world from image 35

Hello world from image 28

Hello world from image 33

Hello world from image 32

Hello world from image 30

Hello world from image 29

The output is obviously very similar to the corresponding MPI and OpenMP
versions.

34.4 Example 2: Broadcasting Data

Here is a simple program that broadcasts data from one image to the rest. This is a
common requirement in parallel programming.

program ch3402

implicit none

integer :: i

character (len=20) :: name [ * ] = ’*****’

print 100, name, this_image()

if (this_image()==1) then

print *, ’ Type in your name’

read *, name

do i = 2, num_images()

name [ i ] = name

end do

end if

sync all

print 100, name, this_image()

100 format (1x, ’ Hello ’, a20, ’ from image ’, &

i3)

end program ch3402

Here is the output from the Intel compiler.

Hello ***** from image 1
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Hello ***** from image 3

Hello ***** from image 5

Hello ***** from image 7

Hello ***** from image 2

Hello ***** from image 4

Hello ***** from image 8

Type in your name

Hello ***** from image 6

Jane

Hello Jane from image 4

Hello Jane from image 8

Hello Jane from image 2

Hello Jane from image 6

Hello Jane from image 7

Hello Jane from image 3

Hello Jane from image 5

Hello Jane from image 1

Again no particular ordering of the image numbers.

34.5 Example 3: Parallel Solution for pi Calculation

include ’precision_module.f90’

include ’timing_module.f90’

program ch3403

use precision_module

use timing_module

implicit none

real (dp) :: fortran_internal_pi

real (dp) :: partial_pi

real (dp) :: coarray_pi

real (dp) :: width

real (dp) :: total_sum

real (dp) :: x

real (dp), codimension [ * ] :: partial_sum

integer :: n_intervals



626 34 Coarray Fortran

integer :: i

integer :: j

integer :: current_image

integer :: n_images

fortran_internal_pi = 4.0_dp*atan(1.0_dp)

n_images = num_images()

current_image = this_image()

if (current_image==1) then

print *, ’ Number of images = ’, n_images

end if

n_intervals = 100000

do j = 1, 5

if (current_image==1) then

call start_timing()

end if

width = 1.0_dp/real(n_intervals, dp)

total_sum = 0.0_dp

partial_sum = 0.0_dp

do i = current_image, n_intervals, n_images

x = (real(i,dp)-0.5_dp)*width

partial_sum = partial_sum + f(x)

end do

partial_sum = partial_sum*width

sync all

if (current_image==1) then

do i = 1, n_images

total_sum = total_sum + partial_sum [ i &

]

end do

coarray_pi = total_sum

print 100, n_intervals, time_difference()

print 110, coarray_pi, abs(coarray_pi- &

fortran_internal_pi)

end if

n_intervals = n_intervals*10

sync all

end do

100 format (’ n intervals = ’, i12, ’ time =’, &

f8.3)

110 format (’ pi = ’, f20.16, /, &
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’ difference = ’, f20.16)

contains

real (dp) function f(x)

implicit none

real (dp), intent (in) :: x

f = 4.0_dp/(1.0_dp+x*x)

end function f

end program ch3403

Here is the output from the Intel compiler.

Number of images = 8

2011/ 6/10 13:40:48 479

n intervals = 100000 time = 0.004

pi = 3.1415926535981260

difference = 0.0000000000083329

2011/ 6/10 13:40:48 486

n intervals = 1000000 time = 0.004

pi = 3.1415926535898802

difference = 0.0000000000000870

2011/ 6/10 13:40:48 490

n intervals = 10000000 time = 0.012

pi = 3.1415926535897936

difference = 0.0000000000000004

2011/ 6/10 13:40:48 500

n intervals = 100000000 time = 0.105

pi = 3.1415926535897749

difference = 0.0000000000000182

2011/ 6/10 13:40:48 605

n intervals = 1000000000 time = 0.992

pi = 3.1415926535898455

difference = 0.0000000000000524

Here is the output from the Cray compiler.

Number of images = 48

2015/ 3/21 1:11:50 130

n intervals = 100000 time = 0.005

pi = 3.1415926535981265
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difference = 0.0000000000083333

2015/ 3/21 1:11:50 135

n intervals = 1000000 time = 0.000

pi = 3.1415926535898762

difference = 0.0000000000000830

2015/ 3/21 1:11:50 135

n intervals = 10000000 time = 0.001

pi = 3.1415926535897953

difference = 0.0000000000000022

2015/ 3/21 1:11:50 136

n intervals = 100000000 time = 0.006

pi = 3.1415926535897905

difference = 0.0000000000000027

2015/ 3/21 1:11:50 142

n intervals = 1000000000 time = 0.054

pi = 3.1415926535897949

difference = 0.0000000000000018

We get the time improvement we have seen with both the MPI and OpenMP
solutions.

34.6 Example 4: Work Sharing

This example looks at one way of splitting work up between images. We use the
image number to determine which image does which work. It is a coarray version of
the MPI work sharing example.

program ch3404

implicit none

integer :: n, i, j

integer :: me, nim, start, end

integer, parameter :: factor = 5

integer, dimension (1:factor), &

codimension [ * ] :: x

nim = num_images()

me = this_image()

n = nim*factor

x = 0

start = factor*(me-1) + 1

end = factor*me

j = 1

do i = start, end
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x(j) = i*factor

print *, ’on image ’, me, ’j = ’, j, &

’ x(j) = ’, x(j)

j = j + 1

end do

sync all

if (me==1) then

print *, ’coarray x on image ’, me, ’ is: ’, &

x

do i = 2, nim

print *, ’coarray x on image ’, i, &

’ is: ’, x(:) [ i ]

end do

end if

end program ch3404

The following statements define the start and end points for the array processing
for each image:

start = factor*(me-1) + 1

end = factor*me

and partitions the work between the images. Each image will have its own start and
end values. The following do loop does the work:

do i=start,end

x(j) = i*factor

print*,’on image ’,me, ’j = ’,j,’ x(j) = ’,x(j)

j = j + 1

end do

We need the

sync all

to ensure that each image has completed before further processing, and we then print
out the data from each image on image 1.

Here is a subset of the output from the Intel compiler. This example runs on 8
images.

on image 2 j = 1 x(j) = 30

on image 7 j = 1 x(j) = 155

on image 8 j = 1 x(j) = 180

on image 8 j = 2 x(j) = 185

on image 8 j = 3 x(j) = 190
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on image 8 j = 4 x(j) = 195

on image 8 j = 5 x(j) = 200

on image 6 j = 1 x(j) = 130

on image 6 j = 2 x(j) = 135

on image 6 j = 3 x(j) = 140

...

...

...

coarray x on image 1 is:

5 10

15

20 25

on image 4 j = 1 x(j) = 80

on image 4 j = 2 x(j) = 85

on image 4 j = 3 x(j) = 90

on image 4 j = 4 x(j) = 95

on image 4 j = 5 x(j) = 100

coarray x on image 2 is:

30 35

40

45 50

coarray x on image 3 is:

55 60

65

70 75

coarray x on image 4 is:

80 85

90

95 100

coarray x on image 5 is:

105 110

115dir

120 125

coarray x on image 6 is:

130 135

140

145 150

coarray x on image 7 is:

155 160

165

170 175

coarray x on image 8 is:

180 185

190

195 200
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Here is a sample of the output from the Cray compiler on the Archer service. This
example runs on 48 images.

on image 1 j = 1 x(j) = 5

on image 1 j = 2 x(j) = 10

on image 3 j = 1 x(j) = 55

on image 3 j = 2 x(j) = 60

stuff deleted

on image 22 j = 5 x(j) = 550

coarray x on image 1 is: 5, 10, 15, 20, 25

on image 21 j = 1 x(j) = 505

stuff deleted

on image 20 j = 3 x(j) = 490

on image 6 j = 3 x(j) = 140

on image 13 j = 2 x(j) = 310

on image 6 j = 4 x(j) = 145

stuff deleted

on image 7 j = 1 x(j) = 155

on image 10 j = 2 x(j) = 235

stuff deleted

on image 27 j = 2 x(j) = 660

on image 41 j = 4 x(j) = 1020

on image 28 j = 2 x(j) = 685

stuff deleted

on image 33 j = 5 x(j) = 825

on image 36 j = 5 x(j) = 900

on image 40 j = 1 x(j) = 980

stuff deleted

on image 40 j = 2 x(j) = 985

on image 40 j = 3 x(j) = 990

on image 40 j = 4 x(j) = 995

on image 40 j = 5 x(j) = 1000
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on image 45 j = 4 x(j) = 1120

on image 46 j = 5 x(j) = 1150

on image 45 j = 5 x(j) = 1125

Application 13271719 resources: utime ˜7s,

stime ˜52s, Rss ˜4288,

inblocks ˜22292, outblocks ˜39436

34.7 Summary

This chapter has looked briefly at some of the simple syntax of coarrays using a small
set of examples. We have also seen the timing benefits that coarray programming
can offer in the solution of the same problem.

34.8 Problem

34.1 Compile and run the examples in this chapter with your compiler.



Chapter 35
C Interop

We can’t solve problems by using the same kind of thinking we
used when we created them.

Einstein

Aim
This chapter looks briefly at C interoperability.

35.1 Introduction

C is a widely used programming language and there is a considerable amount of soft-
warewritten inC orwith aC calling interface. Fortran 2003 introduced a standardised
mechanism for interoperating with C.

There were limitations to this interoperability and ISO TS 29113 significantly
extended the scope of the interoperation facilities. The TS was published in 2012.

In this chapterwe provide a brief coverage of some of the technical details required
for interoperability and then have a look at a couple of examples.

35.2 The iso_c_binding Module

There is an intrinsic module called iso_c_binding that contains named con-
stants, derived types and module procedures to support interoperability.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_35

633

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75502-1_35&domain=pdf


634 35 C Interop

35.3 Named Constants and Derived Types in the Module

In Table 35.1 the entities listed in the second column are named constants of type
default integer.

Table 35.1 iso_c_binding module - named constants

Fortran type Named constant from the
iso_c_binding module (kind
type parameter is positive if
supported)

C type

integer c_int int

c_short short int

c_long long int

c_long_long long long int

c_signed_char signed char

unsigned char

c_size_t size_t

c_int8_t int8_t

c_int16_t int16_t

c_int32_t int32_t

c_int64_t int64_t

c_int_least8_t int_least8_t

c_int_least16_t int_least16_t

c_int_least32_t int_least32_t

c_int_least64_t int_least64_t

c_int_fast8_t int_fast8_t

c_int_fast16_t int_fast16_t

c_int_fast32_t int_fast32_t

c_int_fast64_t int_fast64_t

c_intmax_t intmax_t

c_intptr_t intptr_t

real c_float float

c_double double

c_long_double long double

complex c_float_complex float complex

c_double_complex double complex

c_long_double_complex long double complex

logical c_bool bool

character c_char char
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35.4 Character Interoperability

Table 35.2 shows the mapping between Fortran and C character types. The semantics
of these values are explained in 5.2.1 and 5.2.2 of the C International Standard.

Table 35.2 C Interop character interoperability

Name C definition c_char = −1 c_char /= −1

c_null_char Null character char(0) ’\0’

c_alert Alert achar(7) ’\a’

c_backspace Backspace achar(8) ’\b’

c_form_feed Form feed achar(12) ’\f’

c_new_line New line achar(10) ’\n’

c_carriage_return Carriage return achar(13) ’\r’

c_horizontal_tab Horizontal tab achar(9) ’\t’

c_vertical_tab Vertical tab achar(11) ’\v’

35.5 Procedures in the Module

There are several procedures in this module. In the descriptions below, procedure
names are generic and not specific.

A C procedure argument is often defined in terms of a C address. The c_loc
and c_funloc functions are provided so that Fortran applications can determine
the appropriate value to use with C facilities.

The c_associated function is provided so that Fortran programs can compare
C addresses.

The c_f_pointer and c_f_procpointer subroutines provide a means of
associating a Fortran pointer with the target of a C pointer.

More information can be found in Chap. 18 of the Fortran 2018 standard.

35.6 Interoperability of Intrinsic Types

Table 35.1 shows the interoperability between Fortran intrinsic types and C types. A
Fortran intrinsic type with particular type parameter values is interoperable with a C
type if the type and kind type parameter value are listed in the table on the same row
as that C type; if the type is character, interoperability also requires that the length
type parameter be omitted or be specified by an initialization expression whose value
is one. A combination of Fortran type and type parameters that is interoperable with
a C type listed in the table is also interoperable with any unqualified C type that is
compatible with the listed C type.
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The second column of the table refers to the named constants made accessible by
the iso_c_binding intrinsic module.

A combination of intrinsic type and type parameters is interoperable if it is inter-
operable with a C type.

The above mentioned C types are defined in the C International Standard, clauses
6.2.5, 7.17, and 7.18.1.

35.7 Other Aspects of Interoperability

There are considerable restrictions on other aspects of interoperability. The following
provides some brief details of other areas:

35.7.1 Interoperability with C Pointer Types

c_ptr and c_funptr shall be derived types with private components. c_ptr is
interoperable with any C object pointer type. c_funptr is interoperable with any
C function pointer type.

35.7.2 Interoperability of Scalar Variables

A scalar Fortran variable is interoperable if its type and type parameters are interop-
erable and it has neither the pointer nor the allocatable attribute.

An interoperable scalar Fortran variable is interoperable with a scalar C entity if
their types and type parameters are interoperable.

35.7.3 Interoperability of Array Variables

An array Fortran variable is interoperable if its type and type parameters are inter-
operable and it is of explicit shape or assumed size.

35.7.4 Interoperability of Procedures and Procedure
Interfaces

AFortran procedure is interoperable if it has the bind attribute, that is, if its interface
is specified with a proc-language-binding-spec.

35.7.5 Interoperation with C Global Variables

A C variable with external linkage may interoperate with a common block or with a
variable declared in the scope of a module. The common block or variable shall be
specified to have the bind attribute.
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35.7.6 Binding Labels for Common Blocks and Variables

The binding label of a variable or common block is a value of type default character
that specifies the name by which the variable or common block is known to the
companion processor.

35.7.7 Interoperation with C Functions

A procedure that is interoperable may be defined either by means other than Fortran
or by means of a Fortran subprogram, but not both.

Another useful source can be found in the December 2009 edition of Fortran
Forum. Details are given at the end of the chapter.

35.8 Compilers Used in the Examples

Not all Fortran compilers work with all C and C++ compilers and vice versa.
Table 35.3 has some details of the compilers we have used in the examples that

follow.

Table 35.3 Compilers used

Main program Subprogram Operating system

gfortran gcc cygwin, Windows

gfortran gcc MinGW-W64, Windows

gfortran gcc openSuSe Linux

Intel Fortran Microsoft Visual C++ Windows

Intel Fortran Intel C++ Windows

Nag Fortran Nag integrated gcc Windows

Nag Fortran gcc MinGW-W64, Windows

Oracle Fortran Oracle cc openSuSe Linux

gcc gfortran cygwin, Windows

gcc gfortran openSuSe Linux

Intel C Intel Fortran openSuSe Linux

Nag C Nag Fortran Windows

Oracle C Oracle Fortran openSuSe Linux

g++ gfortran cygwin, Windows

g++ gfortran openSuSe Linux

Intel C++ Intel Fortran openSuSe Linux

Intel C++ Intel Fortran Windows

Microsoft Visual C++ Intel Fortran Windows

Nag C++ Nag Fortran Windows

Oracle C++ Oracle Fortran openSuSe Linux
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35.9 Example 1: Kind Type Support

This example uses Table 35.1 as its basis. It prints out the kind types for each of the
kind types in the table. If the value of one of the named constants is positive it will be
a valid kind value for the intrinsic type, i.e. the corresponding C type is interoperable
with the Fortran intrinsic type of that kind. If the value of one of the named constants
is negative then there is no interoperable Fortran kind for that C type.

program ch3501

use iso_c_binding

implicit none

print *, ’integer support’

print *, ’ c_int = ’, c_int

print *, ’ c_short = ’, c_short

print *, ’ c_long = ’, c_long

print *, ’ c_long_long = ’, c_long_long

print *, ’ c_signed_char = ’, c_signed_char

print *, ’ c_size_t = ’, c_size_t

print *, ’ c_int8_t = ’, c_int8_t

print *, ’ c_int16_t = ’, c_int16_t

print *, ’ c_int32_t = ’, c_int32_t

print *, ’ c_int64_t = ’, c_int64_t

print *, ’ c_int_least8_t = ’, c_int_least8_t

print *, ’ c_int_least16_t = ’, &

c_int_least16_t

print *, ’ c_int_least32_t = ’, &

c_int_least32_t

print *, ’ c_int_least64_t = ’, &

c_int_least64_t

print *, ’ c_int_fast8_t = ’, c_int_fast8_t

print *, ’ c_int_fast16_t = ’, c_int_fast16_t

print *, ’ c_int_fast32_t = ’, c_int_fast32_t

print *, ’ c_int_fast64_t = ’, c_int_fast64_t

print *, ’ c_intmax_t = ’, c_intmax_t

print *, ’ c_intptr_t = ’, c_intptr_t

print *, ’real support’

print *, ’ c_float = ’, c_float

print *, ’ c_double = ’, c_double

print *, ’ c_long_double = ’, c_long_double

print *, ’complex support’

print *, ’ c_float_complex = ’, &

c_float_complex

print *, ’ c_double_complex = ’, &
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c_double_complex

print *, ’ c_long_double_complex = ’, &

c_long_double_complex

print *, ’logical support’

print *, ’ c_bool = ’, c_bool

print *, ’character support’

print *, ’ c_char = ’, c_char

end program ch3501

Table 35.4 summarises support for several compilers.
A negative number means not supported.

Table 35.4 Basic C Interop table

Compiler vendors gfortran Intel Nag Sun

C interop type

C_INT 4 4 4 4

C_SHORT 2 2 2 2

C_LONG 8 4 4 8

C_LONG_LONG 8 8 8 8

C_SIGNED_CHAR 1 1 1 1

C_SIZE_T 8 8 8 8

C_INT8_T 1 1 1 1

C_INT16_T 2 2 2 2

C_INT32_T 4 4 4 4

C_INT64_T 8 8 8 8

C_INT_LEAST8_T 1 1 1 1

C_INT_LEAST16_T 2 2 2 2

C_INT_LEAST32_T 4 4 4 4

C_INT_LEAST64_T 8 8 8 8

C_INT_FAST8_T 1 1 1 1

C_INT_FAST16_T 8 2 2 2

C_INT_FAST32_T 8 4 4 4

C_INT_FAST64_T 8 8 8 8

C_INTMAX_T 8 8 8 8

C_INTPTR_T 8 8 8 8

C_FLOAT 4 4 4 4

C_DOUBLE 8 8 8 8

C_LONG_DOUBLE 10 8 -4 -3

C_FLOAT_COMPLEX 4 4 4 4

C_DOUBLE_COMPLEX 8 8 8 8

C_LONG_DOUBLE_COMPLEX 10 8 -4 -3

C_BOOL 1 1 1 1

C_CHAR 1 1 1 1
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35.10 Example 2: Fortran Calling a C Function

Here is the Fortran source.

program ch3502

use iso_c_binding

interface

real (c_float) function reciprocal(x) &

bind (c, name=’reciprocal’)

use iso_c_binding

real (c_float), value :: x

end function reciprocal

end interface

real :: x

x = 10.0

print *, ’ Fortran calling C function’

print *, x, ’ reciprocal = ’, reciprocal(x)

end program ch3502

Here is the C source.

float reciprocal(float x)

{

return(1.0f/x);

}

The first key statement is

use iso_c_binding

which makes available named constants, derived types and module procedures to
support interoperability.

The next part of the program

interface

real (c_float) function reciprocal(x) &

bind(c,name=’reciprocal’)

use iso_c_binding

real (c_float) , value :: x

end function reciprocal

end interface
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provides the compiler with details of the C function that is being called. It is called
reciprocal, takes an argument of type real in Fortran or float in C termi-
nology, and returns a value of type real in Fortran or float in C terminology.

35.11 Example 3: C Calling a Fortran Function

Here is the Fortran source.

function reciprocal(x) bind (c, name= &

’reciprocal’)

use iso_c_binding

implicit none

real (c_float), intent (in) :: x

real (c_float) :: reciprocal

reciprocal = 1.0/x

end function reciprocal

Here is the C source.

#include <stdio.h>

float reciprocal(float *x);

int main()

{

float x;

x=10.0f;

printf(" C calling a Fortran function\n");

printf(" (1 / %f ) = %f \n" ,x,reciprocal(&x));

return(0);

}

Let us look at the Fortran code first.

function reciprocal(x) bind(c,name=reciprocal)

This line tells the compiler that the reciprocal function has to have a name
and calling convention that is interoperable with C.

real (c_float), intent(in) :: x

says that the argument x is intent(in) and is of type real in Fortran and type
float in C.
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real (c_float) :: reciprocal

says that the function will return a value of type real in Fortran or float in C
terminology.

The function prototype

float reciprocal(float *x);

is required in theC source code to tell the compiler about the reciprocal function.

35.12 Example 4: C++ Calling a Fortran Function

Here is the Fortran source.

function reciprocal(x) bind (c, name= &

’reciprocal’)

use iso_c_binding

implicit none

real (c_float), intent (in) :: x

real (c_float) :: reciprocal

reciprocal = 1.0/x

end function reciprocal

Here is the C++ source.

#include <iostream> using namespace std;

extern "C" { float reciprocal(float *); }

int main()

{

float x;

x=10.0f;

cout << " C++ calling a Fortan function" << endl;

cout << " x = " << x << " reciprocal = ";

cout << reciprocal(&x) << endl;

return(0);

}

The Fortran code and explanation is as for the previous example.
The

extern "C" { float reciprocal(float *); }
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code is required in the C++ code to tell the compiler about the Fortran function
reciprocal.

In C++ we have to tell the compiler that the function has C calling semantics.

35.13 Example 5: Passing an Array from Fortran to C

Here is the Fortran source.

program ch3505

use iso_c_binding

interface

function summation(x, n) bind (c, &

name=’summation’)

use iso_c_binding

integer (c_int), value :: n

real (c_float), dimension (1:n), &

intent (in) :: x

real (c_float) :: summation

end function summation

end interface

integer, parameter :: n = 10

real, dimension (1:n) :: x = 1.0

print *, ’ Fortran calling c function’

print *, ’ 1 d array as parameter’

print *, summation(x, n)

end program ch3505

Here is the C source.

float summation(float *x,int n)

{

int i;

float t;

t=0.0f;

for (i=0;i<n;i++)

{

t+=x[i];

}

return(t);

}
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The following code

interface

function summation(x,n) bind(c,name=summation)

use iso_c_binding

integer (c_int) , value :: n

real (c_float), dimension(1:n) , intent(in) :: x

real (c_float) :: summation

end function summation

end interface

is required to tell the Fortran compiler the details of the C function.
Arrays in C are passed as pointers or by address sowe have the following signature

float summation(float *x,int n)

in the C code.

35.14 Example 6: Passing an Array from C to Fortran

Here is the Fortran source.

function summation(x, n) bind (c, &

name=’summation’)

use iso_c_binding

implicit none

integer (c_int), value :: n

real (c_float), dimension (1:n), &

intent (in) :: x

real (c_float) :: summation

integer :: i

summation = sum(x(1:n))

end function summation

Here is the C source.

#include <stdio.h>

float summation(float *x,int n);

int main()

{

const int n=10;
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float x[n];

int i;

for (i=0;i<n;i++)

x[i]=1.0;

printf(" C calling Fortran\n");

printf(" 1 d array as parameter\n");

printf(" Sum is = %f \n " ,summation(x,n));

return(0);

}

The bind(c) attribute is required to tell the Fortran compiler that the function
will be called from C.

The other declarations provide details of the parameters passed into the function
from the C calling routine.

The following function prototype

float summation(float *x,int n);

is required to tell the C compiler the details of the Fortran function.

35.15 Example 7: Passing an Array from C++ to Fortran

Here is the Fortran source.

function summation(x, n) bind (c, &

name=’summation’)

use iso_c_binding

implicit none

integer (c_int), value :: n

real (c_float), dimension (1:n), &

intent (in) :: x

real (c_float) :: summation

integer :: i

summation = sum(x(1:n))

end function summation

Here is the C++ source.

#include <iostream>

using namespace std;

extern "C" float summation(float *,int );

int main()

{
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const int n=10;

float *x;

int i;

x = new float[n];

for (i=0;i<n;i++)

x[i]=1.0f;

cout << " C++ calling Fortran" << endl;

cout << " 1 d array as parameter" << endl;

cout << " Sum is " << summation(x,n) << endl;

return(0);

}

The explanation of the Fortran source is the same as for the previous example.
The following function prototype

float summation(float *x,int n);

is required to tell the C++ compiler about the Fortran function.

35.16 Example 8: Passing a Rank 2 Array from Fortran
to C

Here is the Fortran source.

program ch3508

use iso_c_binding

interface

subroutine reciprocal(nr, nc, x, y) bind (c, &

name=’reciprocal’)

use iso_c_binding

integer (c_int), value :: nr

integer (c_int), value :: nc

real (c_float), dimension (nr, nc) :: x

real (c_float), dimension (nr, nc) :: y

end subroutine reciprocal

end interface

integer, parameter :: nr = 2

integer, parameter :: nc = 6

integer :: i

real, dimension (nr, nc) :: x

real, dimension (nr, nc) :: y

real, dimension (nr*nc) :: t = [ (i,i=1,nr*nc) &

]
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integer :: r

integer :: c

x = reshape(t, (/nr,nc/), order=(/2,1/) )

print *, ’ Fortran calling C’

print *, ’ two d array as parameter’

print *, ’ using C 99 VLA’

do r = 1, nr

print 100, x(r, 1:nc)

100 format (10(f5.1))

end do

call reciprocal(nr, nc, x, y)

do r = 1, nr

print 110, y(r, 1:nc)

110 format (10(f6.3))

end do

end program ch3508

Here is the C source.

void reciprocal(int nrow,int ncol,

float matrix1[nrow][ncol],

float matrix2[nrow][ncol])

{

int i;

int j;

for (i=0;i<nrow;i++)

for (j=0;j<ncol;j++)

matrix2[i][j]=1.0f/matrix1[i][j];

}

In this example we are using the variable length array syntax that was introduced
in the C 99 standard.

This feature is not supported in all C compilers.
This enables us to use the following syntax in C.

void reciprocal(int nrow,int ncol,

float matrix1[nrow][ncol],

float matrix2[nrow][ncol])

35.17 Example 9: Passing a Rank 2 Array from C
to Fortran

Here is the Fortran source.
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subroutine reciprocal(nr, nc, x, y) bind (c, &

name=’reciprocal’)

use iso_c_binding

implicit none

integer (c_int), value :: nr

integer (c_int), value :: nc

real (c_float), dimension (1:nr, 1:nc), &

intent (in) :: x

real (c_float), dimension (1:nr, 1:nc), &

intent (out) :: y

y = 1.0/x

end subroutine reciprocal

Here is the C source.

#include <stdio.h>

void reciprocal(int nr,int nc,

float x[nr][nc],

float y[nr][nc]);

int main()

{

const int nr=2;

const int nc=5;

float x[nr][nc];

float y[nr][nc];

int r;

int c;

int i=1;

for (r=0;r<nr;r++)

for (c=0;c<nc;c++)

{

x[r][c]=(float)(i);

i++;

}

printf(" C calling Fortran\n");

printf(" 2 d array as parameter\n");

printf(" C99 vla\n");

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

printf(" %5.2f " , x[r][c]);

}

printf("\n");
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}

reciprocal(nr,nc,x,y);

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

printf(" 1 / %5.2f = %6.3f \n"

, x[r][c],y[r][c]);

}

printf("\n");

}

return(0);

}

We use C99 VLAs in this example too.

35.18 Example 10: Passing a Rank 2 Array from C++
to Fortran

Here is the Fortran source.

subroutine reciprocal(nr, nc, x, y) bind (c, &

name=’reciprocal’)

use iso_c_binding

implicit none

integer (c_int), value :: nr

integer (c_int), value :: nc

real (c_float), dimension (1:nr, 1:nc), &

intent (in) :: x

real (c_float), dimension (1:nr, 1:nc), &

intent (out) :: y

y = 1.0/x

end subroutine reciprocal

Here is the C++ source.

#include <iostream>

using namespace std;

extern "C" void reciprocal(int nr,int nc,

float *x,float *y);

int main()
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{

const int nr=2;

const int nc=5;

float x[nr][nc];

float y[nr][nc];

int r;

int c;

int i=1;

for (r=0;r<nr;r++)

for (c=0;c<nc;c++)

{

x[r][c]=(float)(i);

i++;

}

cout << " C++ calling Fortran" << endl;

cout << " 2 d array as parameter\n";

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

cout << " " << x[r][c] << " ";

}

cout << endl;

}

reciprocal(nr,nc,(float*)x,(float*)y);

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

cout << " 1 / " << x[r][c] << " = "

<< y[r][c] << endl;

}

return(0);

}

The key syntax in this example is

extern "C" void reciprocal(int nr,int nc,

float *x,float *y);

where we have to pass pointers to the two d arrays.
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35.19 Example 11: Passing a Rank 2 Array from C++
to Fortran and Taking Care of Array Storage

Two dimensional arrays are stored by column in Fortran and by row in C++. In
this example we take care of the array element ordering changes between C++ and
Fortran. We handle the change in the Fortran subroutine.

Here is the C++ calling program.

#include <iostream>

#include <iomanip>

using namespace std;

extern "C" void sums(int nr,int nc,

int *x,int *rsum, int *csum);

int main()

{

const int nr=2;

const int nc=6;

int x[nr][nc];

int rsum[nr];

int csum[nc];

int r;

int c;

int i=1;

for (r=0;r<nr;r++)

for (c=0;c<nc;c++)

{

x[r][c]=i;

i++;

}

for (r=0;r<nr;r++)

rsum[r]=0;

for (c=0;c<nc;c++)

csum[c]=0;

cout << " C++ calling Fortran" << endl;

cout << " 2 d array as parameter\n";

cout << " Original 2 d array" << endl;

cout << endl;

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

cout << setw(3) << x[r][c] << " ";

}

cout << endl;
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}

cout << endl;

sums(nr,nc,(int*)x,rsum,csum);

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

cout << setw(3) << x[r][c] << " ";

}

cout << " = " << rsum[r] << endl;

}

cout << endl;

for (c=0;c<nc;c++)

cout << setw(3) << csum[c] << " " ;

cout << endl;

return(0);

}

Here is the Fortran subroutine.

subroutine sums(nr, nc, x, rsum, csum) bind (c, &

name=’sums’)

! g++ needs -lgfortran to link

use iso_c_binding

implicit none

integer (c_int), value :: nr

integer (c_int), value :: nc

integer (c_int), dimension (1:nr, 1:nc), &

intent (in) :: x

integer (c_int), dimension (1:nr), &

intent (out) :: rsum

integer (c_int), dimension (1:nc), &

intent (out) :: csum

integer (c_int), dimension (1:nc, 1:nr) :: t

t = reshape(x, (/nc,nr/) )

rsum = sum(t, dim=1)

csum = sum(t, dim=2)

end subroutine sums

The key syntax in the C++ code is shown below.

extern "C" void sums(int nr,int nc,

int *x,int *rsum, int *csum);
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where all arrays are passed by address.
The key statements in the Fortran are

t=reshape(x,(/nc,nr/))

where we use the reshape intrinsic to transform from row storage to column
storage.

The reshape intrinsic and the following statements

rsum=sum(t,dim=1)

csum=sum(t,dim=2)

show the power and expressiveness of array handling in Fortran compared to the C
family of languages (C, C++, C# and Java).

Here is some sample output.

C++ calling Fortran

2 d array as parameter

Original 2 d array

1 2 3 4 5 6

7 8 9 10 11 12

1 2 3 4 5 6 = 21

7 8 9 10 11 12 = 57

8 10 12 14 16 18

35.19.1 Compiler Switches

We now have to ensure that we include the necessary components of the Fortran run
time system.

Here are details of how to make this work with the following compiler combina-
tions.

gfortran and g++, openSuSe Linux and Windows

gfortran -c ch3511.f90 -o ch3511_f.o

g++ ch3511.cxx ch3511_f.o -lgfortran

ifort and icc, openSuSe Linux
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ifort -c ch3511.f90 -o ch3511_f.o

icc ch3511.cxx ch3511_f.o

nagfor, openSuSe linux

nagfor -c ch3511.f90 -o ch3511_nag.o

nagfor ch3511.cxx ch3511_nag.o

sunf90 and sunCC, openSuSe Linux

sunf90 -c ch3511.f90 -o ch3511_f.o

sunCC ch3512.cxx ch3511_c.o -xlang=f90

35.20 Example 12: Passing a Rank 2 Array from C
to Fortran and Taking Care of Array Storage

Two dimensional arrays are stored by column in Fortran and by row in C. In this
example we take care of the array element ordering changes between C and Fortran.
We handle the change in the Fortran subroutine.

Here is the C calling program.

#include <stdio.h>

void sums(int nr,int nc,int x[nr][nc],

int * rsum, int * csum);

int main()

{

const int nr=2;

const int nc=6;

int x[nr][nc];

int rsum[nr];

int csum[nc];

int r;

int c;

int i=1;

for (r=0;r<nr;r++)

rsum[r]=0;

for (c=0;c<nc;c++)

csum[c]=0;

for (r=0;r<nr;r++)

for (c=0;c<nc;c++)

{

x[r][c]=i;
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i++;

}

printf(" C calling Fortran\n");

printf(" 2 d array as parameter\n");

printf(" c99 vla\n");

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

printf(" %3d " , x[r][c]);

}

printf("\n");

}

printf("\n");

sums(nr,nc,x,rsum,csum);

for (r=0;r<nr;r++)

{

for (c=0;c<nc;c++)

{

printf(" %3d " , x[r][c]);

}

printf(" %3d ",rsum[r]);

printf("\n");

}

printf("\n");

for (c=0;c<nc;c++)

printf(" %3d ",csum[c]);

printf("\n");

return(0);

}

Here is the Fortran subroutine.

subroutine sums(nr, nc, x, rsum, csum) bind (c, &

name=’sums’)

! gcc requires -lgfortran

use iso_c_binding

implicit none

integer (c_int), value :: nr

integer (c_int), value :: nc

integer (c_int), dimension (1:nr, 1:nc), &

intent (in) :: x

integer (c_int), dimension (1:nr), &

intent (out) :: rsum

integer (c_int), dimension (1:nc), &
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intent (out) :: csum

integer (c_int), dimension (1:nc, 1:nr) :: t

t = reshape(x, (/nc,nr/) )

rsum = sum(t, dim=1)

csum = sum(t, dim=2)

end subroutine sums

Here is some sample output.

C calling Fortran

2 d array as parameter

c99 vla

1 2 3 4 5 6

7 8 9 10 11 12

1 2 3 4 5 6 21

7 8 9 10 11 12 57

8 10 12 14 16 18

35.20.1 Compiler Switches

In this example we are calling a Fortran subroutine from C++ and the subroutine
calls the reshape intrinsic function.

We now have to ensure that we include the necessary components of the Fortran
run time system.

Here are details of how to make this work with the following compiler combina-
tions.

gfortran and gcc, openSuSe Linux and Windows

gfortran -c ch3512.f90 -o ch3512_f.o

gcc ch3512.c ch3512_f.o -lgfortran

ifort and icc, openSuSe Linux

ifort -c ch3512.f90 -o ch3512_f.o

icc ch3512.c ch3512_f.o

nagfor, openSuSe linux and Windows

nagfor -c ch3512.f90 -o ch3512_nag.o
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nagfor ch3512.c ch3512_nag.o

sunf90 and sunc99, openSuSe Linux

sunf90 -c ch3512.f90 -o ch3512_f.o

sunc99 -c ch3512.c -o ch3512_c.o

sunf90 ch3512_f.o ch3512_c.o

35.21 Example 13: Passing a Fortran Character Variable
to C

A Fortran character variable normally has a length type parameter. In this example
we will pass a Fortran character variable to three C routines.

Weuse amodule to provide functions that help convert fromFortran style character
variables to C style character variables.

Here is the C source.

#include <stdio.h>

#include <string.h>

void print_string(char * string)

{

printf(" %s\n",string);

}

void replace_string(char * string)

{

strcpy(string,"Hello Hello");

}

void concatenate_string(char * string)

{

strcat(string," Hello Hello");

}

Here is the Fortran source. The font size has been reduced to fit the page width.

include ’c_interop_module.f90’

program ch3513

use iso_c_binding

use c_interop_module
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implicit none

interface

subroutine print_string(x) bind (c, name=’print_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine print_string

subroutine replace_string(x) bind (c, name=’replace_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine replace_string

subroutine concatenate_string(x) bind (c, name=’concatenate_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine concatenate_string

end interface

integer , parameter :: line_length=80

character ( len=line_length ) :: fortran_string
character ( len=line_length , kind=c_char ) :: c_string

fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ print_string ’
call print_string( c_string )

fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ replace_string ’
call replace_string( c_string )
fortran_string = c_to_f( c_string )
print *, ’ After ’ , fortran_string

fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ concatenate_string ’
call concatenate_string( c_string )
fortran_string = c_to_f( c_string )
print *, ’ After ’ , fortran_string

end program ch3513

Here is the module that has the functions that help converting from Fortran style
string variables to C style string variables.

module c_interop_module

use iso_c_binding
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implicit none

integer , parameter :: n=80

contains

function f_to_c(fortran_string)

implicit none

character (len=n,kind=c_char) :: f_to_c

character (len=n) :: fortran_string

integer :: f_length

f_length = len_trim(fortran_string)

if (f_length >= n) then

f_length = 79

end if

f_to_c = fortran_string(1:f_length) // c_null_char

end function f_to_c

function c_to_f(c_string)

implicit none

character (len=n) :: c_to_f

character (len=n,kind=c_char) :: c_string

integer :: c_length

integer :: i

c_length = 1

c_to_f = ’ ’

do i=1,n

if ( c_string(i:i) == c_null_char ) exit

c_length = c_length +1

end do

c_length = c_length -1

c_to_f = c_string(1:c_length)

end function c_to_f

end module c_interop_module

Here is the sample output.

print_string

Hello

replace_string

After Hello Hello

concatenate_string

After Hello Hello Hello



660 35 C Interop

35.22 Example 14: Passing a Fortran Character Variable
to C++

This is a C++ version of the previous one.
Here is the Fortran source. The font size has been reduced to fit the page width.

include ’c_interop_module.f90’

program ch3514

use iso_c_binding

use c_interop_module

implicit none

interface

subroutine print_string(x) bind (c, name=’print_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine print_string

subroutine replace_string(x) bind (c, name=’replace_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine replace_string

subroutine concatenate_string(x) bind (c, name=’concatenate_string’)
use iso_c_binding
character (c_char) :: x(*)

end subroutine concatenate_string

end interface

integer , parameter :: line_length=80

character ( len=line_length ) :: fortran_string
character ( len=line_length , kind=c_char ) :: c_string

fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ print_string ’
call print_string( c_string )

fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ replace_string ’
call replace_string( c_string )
fortran_string = c_to_f( c_string )
print *, ’ After ’ , fortran_string
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fortran_string = ’Hello’
c_string = f_to_c(fortran_string)

print *, ’ concatenate_string ’
call concatenate_string( c_string )
fortran_string = c_to_f( c_string )
print *, ’ After ’ , fortran_string

end program ch3514

Here is the C++ source.

#include <cstring>

#include <cstdio>

using namespace std;

extern "C"

{

void print_string(char *);

}

extern "C"

{

void replace_string(char *);

}

extern "C"

{

void concatenate_string(char *);

}

void print_string(char * string)

{

printf(" %s\n",string);

}

void replace_string(char * string)

{

strcpy(string,"Hello Hello");

}

void concatenate_string(char * string)

{

strcat(string," Hello Hello");

}
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We use the same module.
Here is the sample output.

print_string

Hello

replace_string

After Hello Hello

concatenate_string

After Hello Hello Hello

35.23 c_loc Examples on Our Web Site

We have examples of using the c_loc function on our web site for both 32 bit and
64 bit operating systems.

https://www.fortranplus.co.uk/

Here is some background technical information on c_loc from the Fortran 2008
standard.

35.23.1 c_loc(x) Description

Description: Returns the C address of the argument.
Class: Inquiry function.
Argument: x shall either

• (1) have interoperable type and type parameters and be

– (a) a variable that has the target attribute and is interoperable,
– (b) an allocated allocatable variable that has the target attribute and is not an
array of zero size, or

– (c) an associated scalar pointer, or

• (2) be a nonpolymorphic scalar, have no length type parameters, and be

– (a) a nonallocatable, nonpointer variable that has the target attribute,
– (b) an allocated allocatable variable that has the target attribute, or
– (c) an associated pointer.

Result Characteristics: Scalar of type c_ptr.
Result Value: The result value will be described using the result name cptr.
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• (1) If x is a scalar data entity, the result is determined as if c_ptr were a derived
type containing a scalar pointer component px of the type and type parameters of
x and the pointer assignment

cptr%px => x

were executed.
• (2) If x is an array data entity, the result is determined as if c_ptrwere a derived
type containing a scalar pointer component px of the type and type parameters of
x and the pointer assignment of cptr%px to the first element of xwere executed.

If x is a data entity that is interoperable or has interoperable type and type param-
eters, the result is the value that the C processor returns as the result of applying the
unary & operator (as defined in the C International Standard, 6.5.3.2) to the target of
cptr

The result is a value that can be used as an actual cptr argument in a call to
c_f_pointerwhere fptr has attributes that would allow the pointer assignment

fptr => x

Such a call to c_f_pointer shall have the effect of the pointer assignment

fptr => x

NOTE 15.6 - Where the actual argument is of noninteroperable type or type
parameters, the result of c_loc provides an opaque “handle” for it. In an actual
implementation, this handle may be the C address of the argument; however, portable
C functions should treat it as a void (generic) C pointer that cannot be dereferenced
(6.5.3.2 in the C International Standard).

The key issues are that we must take care with the argument to the function, the
return value is of type c_ptr, and that this is an opaque type. Let us now look at
some examples using this function.
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35.24 Problem

35.1 Compile and run the example programs in this chapter with your compiler and
examine the output.
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Chapter 36
IEEE Arithmetic

Any effectively generated theory capable of expressing
elementary arithmetic cannot be both consistent and complete.
In particular, for any consistent, effectively generated formal
theory that proves certain basic arithmetic truths, there is an
arithmetical statement that is true, but not provable in the theory.

Godel, First incompleteness theorem

Aims
The aims of this chapter are to look in more depth at arithmetic and in particular at
the support that Fortran provides for the IEEE 754 and later standards. There is a
coverage of:

• hardware support for arithmetic.
• integer formats.
• floating point formats: single and double.
• special values: denormal, infinity and not a number — nan.
• exceptions and flags: divide by zero, inexact, invalid, overflow, underflow.

36.1 Introduction

The literature contains details of the IEEE arithmetic standards. The bibliography
contains details of a number of printed and on-line sources.

36.2 History

When we use programming languages to do arithmetic two major concerns are the
ability to develop reliable and portable numerical software. Arithmetic is done in
hardware and there are a number of things to consider:

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_36
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• the range of hardware available both now and in the past.
• the evolution of hardware.

There has been a very considerable change in arithmetic units since the first
computers. Table 36.1 is a list of hardware and computing systems that the authors
have used or have heard of. It is not exhaustive or definitive, but rather reflects the
authors’ age and experience.

Table 36.1 Computer hardware and manufacturers

CDC Cray IBM ICL

Fujitsu DEC Compaq Gateway

Sun Silicon graphics Hewlett Packard Data general

Harris Honeywell Elliot Mostek

National semiconductors Intel Zilog Motorola

Signetics Amdahl Texas instruments Cyrix

AMD NEC

Table 36.2 lists some of the operating systems.

Table 36.2 Operating systems

NOS NOS/BE Kronos UNIX

VMS Dos Windows 3.x Windows 95

Windows 98 Windows NT Windows 2000 Windows XP

Windows vista Windows 7.x Windows 8.x MVS

VM VM/CMS CP/M Macintosh

OS/2 Linux (too many)

Again the list is not exhaustive or definitive. The intention is simply to provide
some idea of the wide range of hardware, computer manufacturers and operating
systems that have been around in the past 50 years.

To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of
the IEEE) convened a meeting which led to the birth of IEEE 754.

The first draft, whichwas prepared byWilliamKahan, JeromeCoonen andHarold
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinating
account of the development of this standard can be found inAn Interviewwith theOld
Man of Floating Point, and the bibliography provides aweb address for this interview.
Kahan went on to get the ACM Turing Award in 1989 for his work in this area.

This has become ade facto standard amongst arithmetic units inmodern hardware.
Note that it is not possible to describe precisely the answers a program will give, and
the authors of the standard knew this. This goal is virtually impossible to achieve
when one considers floating point arithmetic. Reasons for this include:
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• the conversions of numbers between decimal and binary formats.
• the use of elementary library functions.
• results of calculations may be in hardware inaccessible to the programmer.
• intermediate results in subexpressions or arguments to procedures.

The bibliography contains details of a paper that addresses this issue in much
greater depth — Differences Among IEEE 754 Implementations.

Fortran is one of a small number of languages that provides access to IEEE
arithmetic, and it achieves this via TR1880 which is an integral part of Fortran 2003.
The C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic
support. More information can be found in the references at the end of the chapter.

36.3 IEEE Specifications

There have been several IEEE arithmetic standards. The following information is
taken from the ISO site.

The url is

https://www.iso.org/standard/57469.html

ISO/IEC/IEEE 60559:2011(E) specifies formats and methods for floating-point
arithmetic in computer systems - standard and extended functionswith single, double,
extended, and extendable precision and recommends formats for data interchange.
Exception conditions are defined and standard handling of these conditions is spec-
ified. It provides a method for computation with floating-point numbers that will
yield the same result whether the processing is done in hardware, software, or a
combination of the two. The results of the computation will be identical, indepen-
dent of implementation, given the same input data. Errors, and error conditions, in
the mathematical processing will be reported in a consistent manner regardless of
implementation. This first edition, published as ISO/IEC/IEEE 60559, replaces the
second edition of IEC 60559.

Here is the standard history.

• ISO/IEC/IEEE 60559:2011(E)
• IEC 559:1989
• IEC 559:1982

The standard provides coverage of the following areas, which is taken from the table
of contents.

• Floating-point formats

– Overview
– Specification levels
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– Sets of floating-point data
– Binary interchange format encodings
– Decimal interchange format encodings
– Interchange format parameters
– Extended and extendable precisions

• Attributes and rounding

– Attribute specification
– Dynamic modes for attributes
– Rounding-direction attributes

• Operations

– Overview
– Decimal exponent calculation
– Homogeneous general-computational operations
– Format of general-computational operations
– Quiet-computational operations
– Signaling-computational operations
– Non-computational operations
– Details of conversions from floating-point to integer formats
– Details of operations to round a floating-point datum to integral value
– Details of totalorder predicate
– Details of comparison predicates
– Details of conversion between floating-point data and external character
sequences

• Infinity, NaNs, and sign bit

– Infinity arithmetic
– Operations with NaNs
– The sign bit

• Default exception handling

– Overview: exceptions and flags
– Invalid operation
– Division by zero
– Overflow
– Underflow
– Inexact

• Alternate exception handling attributes

– Overview
– Resuming alternate exception handling attributes
– Immediate and delayed alternate exception handling attributes
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• Recommended operations

– Conforming language- and implementation-defined functions
– Recommended correctly rounded functions
– Operations on dynamic modes for attributes
– Reduction operations

• Expression evaluation

– Expression evaluation rules
– Assignments, parameters, and function values
– preferred width attributes for expression evaluation
– Literal meaning and value-changing optimizations

• Reproducible floating-point results

36.4 Floating Point Formats

Table36.3 summarises the formats specified in the IEEE 754-2008 standard.

Table 36.3 IEEE formats

Name Common Base Digits Decimal Exponent Decimal Exponent E min

name digits bits E max bias[1] E min

Binary16 Half 2 11 3.31 5 4.51 2**4−1 −14 [2]

precision = 15 +15

Binary32 Single 2 24 7.22 8 38.23 2**7−1 −126

precision = 127 +127

Binary64 Double 2 53 15.95 11 307.95 2**10−1 −1022

precision = 1023 +1023

Binary128 Quadruple 2 113 34.02 15 4931.77 2**14−1 −16382

precision = 16383 +16383

Binary256 Octuple 2 237 71.34 19 78913.2 2**18−1 −262142 [2]

precision = 262143 +262143

Decimal32 10 7 7 7.58 96 101 −95 [2]

+96

Decimal64 10 16 16 9.58 384 398 −383

+384

Decimal128 10 34 34 13.58 6144 6176 −6143

+6144

36.5 Procedure Summary

Tables36.4 and 36.5 summarise the procedures.
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Table 36.4 IEEE Arithmetic module procedure summary

Procedure arguments Class Description

IEEE_CLASS(X)
IEEE_COPY_SIGN(X,Y)
IEEE_FMA(A,B,C)
IEEE_GET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_GET_UNDERFLOW_MODE
(GRADUAL)
IEEE_INT(A,ROUND[, KIND])
IEEE_IS_FINITE(X)
IEEE_IS_NAN(X)
IEEE_IS_NEGATIVE(X)
IEEE_IS_NORMAL(X)
IEEE_LOGB(X)
IEEE_MAX_NUM(X,Y)
IEEE_MAX_NUM_MAG(X,Y)
IEEE_MIN_NUM(X,Y)
IEEE_MIN_NUM_MAG(X,Y)
IEEE_NEXT_AFTER(X,Y)
IEEE_NEXT_DOWN(X)
IEEE_NEXT_UP(X)
IEEE_QUIET_EQ(A,B)
IEEE_QUIET_GE(A,B)
IEEE_QUIET_GT(A,B)
IEEE_QUIET_LE(A,B)
IEEE_QUIET_LT(A,B)
IEEE_QUIET_NE(A,B)
IEEE_REAL(A[,KIND])
IEEE_REM(X,Y)
IEEE_RINT(X)
IEEE_SCALB(X,I)
IEEE_SELECTED_REAL_KIND
([P,R,RADIX])
IEEE_SET_ROUNDING_MODE
(ROUND_VALUE[,RADIX])
IEEE_SET_UNDERFLOW_MODE
(GRADUAL)
IEEE_SIGNALING_EQ(A,B)
IEEE_SIGNALING_GE(A,B)
IEEE_SIGNALING_GT(A,B)
IEEE_SIGNALING_LE(A,B)
IEEE_SIGNALING_LT(A,B)
IEEE_SIGNALING_NE(A,B)
IEEE_SIGNBIT(X)
IEEE_SUPPORT_DATATYPE([X])
IEEE_SUPPORT_DENORMAL([X])
IEEE_SUPPORT_DIVIDE([X])
IEEE_SUPPORT_INF([X])
IEEE_SUPPORT_IO([X])
IEEE_SUPPORT_NAN([X])
IEEE_SUPPORT_ROUNDING
(ROUND_VALUE[,X])

E
E
E
S
S
S
S
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
T
S
S
S
S
S
E
E
E
E
E
E
E
I
I
I
I
I
I
T
T

Classify number
Copy sign
Fused multiply-add operation
Get rounding mode
Get rounding mode
Get underflow mode
Get underflow mode
Conversion to integer type
Whether a value is finite
Whether a value is an IEEE NaN
Whether a value is negative
Whether a value is a normal number
Exponent
Maximum numeric value
Maximum magnitude numeric value
Minimum numeric value
Minimum magnitude numeric value
Adjacent machine number
Adjacent lower machine number
Adjacent higher machine number
Quiet compares equal
Quiet compares greater than or equal
Quiet compares greater than
Quiet compares less than or equal
Quiet compares less than
Quiet compares not equal
Conversion to real type
Exact remainder
Round to integer
X 2I
IEEE kind type parameter value
IEEE kind type parameter value
Set
Set
Set underflow mode
Set underflow mode
Signaling compares equal
Signaling compares greater than or equal
Signaling compares greater than
Signaling compares less than or equal
Signaling compares less than
Signaling compares not equal
Test sign bit
Query IEEE arithmetic support
Query subnormal number support
Query IEEE division support
Query IEEE infinity support
Query IEEE formatting support
Query IEEE NaN support
Query IEEE rounding support
Query IEEE rounding support
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Table 36.4 (continued)

Procedure Arguments Class Description

IEEE_SUPPORT_SQRT([X])
IEEE_SUPPORT_SUBNORMAL([X])
IEEE_SUPPORT_STANDARD([X])
IEEE_SUPPORT_UNDERFLOW
_CONTROL([X])
IEEE_UNORDERED(X,Y)
IEEE_VALUE(X,CLASS)

I
I
I
I
I
E
E

Query IEEE square root support
Query subnormal number support
Query IEEE standard support
Query underflow control support
Query underflow control support
Whether two values are unordered
Return number in a class

Table 36.5 IEEE Exceptions module procedure summary

Procedure Arguments Class Description

IEEE_GET_FLAG
IEEE_GET_HALTING_MODE
IEEE_GET_MODES
IEEE_GET_STATUS
IEEE_SET_FLAG
IEEE_SET_HALTING_MODE
IEEE_SET_MODES
IEEE_SET_STATUS
IEEE_SUPPORT_FLAG
IEEE_SUPPORT_HALTING

(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG,FLAG_VALUE)
(FLAG,HALTING)
(MODES)
(STATUS_VALUE)
(FLAG [,X])
(FLAG)

ES
ES
S
S
PS
PS
S
S
T
T

Get an exception flag
Get a halting mode
Get floating-point modes
Get floating-point status
Set an exception flag
Set a halting mode
Set floating-point modes
Restore floating-point status
Query exception support
Query halting mode support

36.6 General Comments About the Standard

The special bit patterns provide the following:

• +0
• −0
• subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45
• +∞
• −∞
• quiet NaN (Not a Number)
• signalling NaN

One of the first systems that the authors worked with that had special bit patterns
set aside was the CDC 6000 range of computers that had negative indefinite and
infinity. Thus the ideas are not new, as this was in the late 1970s.

The support of positive and negative zero means that certain problems can be
handled correctly including:

• The evaluation of the log function which has a discontinuity at zero.
• The equation

√
1/z = 1/z can be solved when z = −1
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See also theKahan paperBranch Cuts for complex Elementary functions, orMuch
Ado About Nothing’s Sign Bit for more details.

Subnormals, which permit gradual underflow, fill the gap between 0 and the small-
est normal number.

Simply stated underflow occurs when the result of an arithmetic operation is so
small that it is subject to a larger than normal rounding error when stored. The
existence of subnormals means that greater precision is available with these small
numbers than with normal numbers. The key features of gradual underflow are:

• When underflow does occur there should never be a loss of accuracy any greater
than that from ordinary roundoff.

• The operations of addition, subtraction, comparison and remainder are always
exact.

• Algorithms written to take advantage of subnormal numbers have smaller error
bounds than other systems.

• if x and y are within a factor of 2 then x-y is error free, which is used in a number
of algorithms that increase the precision at critical regions.

The combination of positive and negative zero and subnormal numbersmeans that
when x and y are small and x-y has been flushed to zero the evaluation of 1/(x − y)
can be flagged and located.

Certain arithmetic operations cause problems including:

• 0 ∗ ∞
• 0/0
• √

x when x < 0

and the support for NaN handles these cases.
The support for positive and negative infinity allows the handling of x/0 when x is

nonzero and of either sign, and the outcome of this means that we write our programs
to take the appropriate action. In some cases this would mean recalculating using
another approach.

For more information see the references in the bibliography.

36.7 Resume

The above has provided a quick tour of the IEEE standard. We’ll now look at what
Fortran has to offer to support it.
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36.8 Fortran Support for IEEE Arithmetic

Fortran first introduced support for IEEE arithmetic in ISO TR 15580. The Fortran
2003 standard integrated support into the main standard. Fortran 2018 offers more
support, and for more details one should consult Chap. 17 of that document.

The intrinsic modules

• ieee_features
• ieee_exceptions
• ieee_arithmetic

provide support for exceptions and IEEE arithmetic. Whether the modules are pro-
vided is processor dependent. If the module ieee_features is provided, which
of the named constants defined in this standard are included is processor dependent.
The module ieee_arithmetic behaves as if it contained a use statement for
ieee_exceptions; everything that is public in ieee_exceptions is public
inieee_arithmetic.

The first thing to consider is the degree of conformance to the IEEE standard. It is
possible that not all of the features are supported. Thus the first thing to do is to run
one or more test programs to determine the degree of support for a particular system.

36.9 Derived Types and Constants Defined in the Modules

The modules

• ieee_exceptions
• ieee_arithmetic
• ieee_features

define five derived types, whose components are all private.

36.9.1 ieee_exceptions

Thismodule definesieee_flag_type, for identifying a particular exception flag.
Possible values are

ieee_invalid

ieee_overflow

ieee_divide_by_zero

ieee_underflow

ieee_inexact



674 36 IEEE Arithmetic

The module also defines the array named constants

ieee_usual = (/ ieee_overflow,

ieee_divide_by_zero, ieee_invalid /)

ieee_all = (/ ieee_usual, ieee_underflow,

ieee_inexact /)

ieee_status_type

The last is for saving the current floating point status.

36.9.2 ieee_arithmetic

This module defines ieee_class_type, for identifying a class of floating-point
values.

Possible values are:

ieee_signalling_nan

ieee_quiet_nan

ieee_negative_inf

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_positive_inf

ieee_other_value

The module defines ieee_round_type, for identifying a particular round-
ing mode. Its only possible values are those of named constants defined in the
module: ieee_nearest, ieee_to_zero, ieee_up, and ieee_down for the
ieee_modes; and ieee_other for any other mode.

The elemental operator == for two values of one of these types to return true if
the values are the same and false otherwise.

The elemental operator /= for two values of one of these types to return true if
the values differ and false otherwise.
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36.9.3 ieee_features

This module defines ieee_features_type, for expressing the need for particu-
lar ieee_features. Its only possible values are those of named constants defined
in the module:

• ieee_datatype
• ieee_denormal
• ieee_divide
• ieee_halting
• ieee_inexact_flag
• ieee_inf
• ieee_invalid_flag
• ieee_nan
• ieee_rounding
• ieee_sqrt
• ieee_underflow_flag

36.9.4 Further Information

There are a number of additional sources of information.

• the Fortran standard.
• documentation that comes with your compiler.

The latter has the benefit of describing what is supported in that compiler.

36.10 Example 1: Testing IEEE Support

The first examples test basic IEEE arithmetic support.
Here is a program to illustrate the above.

include ’precision_module.f90’

program ch3601

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x = 1.0
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real (dp) :: y = 1.0_dp

real (qp) :: z = 1.0_qp

if (ieee_support_datatype(x)) then

print *, ’ 32 bit IEEE support’

end if

if (ieee_support_datatype(y)) then

print *, ’ 64 bit IEEE support’

end if

if (ieee_support_datatype(z)) then

print *, ’ 128 bit IEEE support’

end if

end program ch3601

Table 36.6 summarises the support for a number of compilers.

Table 36.6 Compiler IEEE support for various precisions

Precision gfortran intel nag sun

32 bit IEEE
support

Yes Yes Yes Yes

64 bit IEEE
support

Yes Yes Yes Yes

128 bit IEEE
support

No Yes No Yes

36.11 Example 2: Testing What Flags Are Supported

Here is a program to illustrate the above.

include ’precision_module.f90’

program ch3602

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x = 1.0
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real (dp) :: y = 1.0_dp

real (qp) :: z = 1.0_qp

integer :: i

character *20, dimension (5) :: flags = (/ &

’IEEE_DIVIDE_BY_ZERO ’, &

’IEEE_INEXACT ’, &

’IEEE_INVALID ’, &

’IEEE_OVERFLOW ’, &

’IEEE_UNDERFLOW ’ /)

do i = 1, 5

if (ieee_support_flag(ieee_all(i),x)) then

write (unit=*, fmt=100) flags(i)

100 format (a20, ’ 32 bit support’)

end if

if (ieee_support_flag(ieee_all(i),y)) then

write (unit=*, fmt=110) flags(i)

110 format (a20, ’ 64 bit support’)

end if

if (ieee_support_flag(ieee_all(i),z)) then

write (unit=*, fmt=120) flags(i)

120 format (a20, ’128 bit support’)

end if

end do

end program ch3602

Here is the output from the Intel compiler.

IEEE_DIVIDE_BY_ZERO 32 bit support

IEEE_DIVIDE_BY_ZERO 64 bit support

IEEE_DIVIDE_BY_ZERO 128 bit support

IEEE_INEXACT 32 bit support

IEEE_INEXACT 64 bit support

IEEE_INEXACT 128 bit support

IEEE_INVALID 32 bit support

IEEE_INVALID 64 bit support

IEEE_INVALID 128 bit support

IEEE_OVERFLOW 32 bit support

IEEE_OVERFLOW 64 bit support

IEEE_OVERFLOW 128 bit support

IEEE_UNDERFLOW 32 bit support
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IEEE_UNDERFLOW 64 bit support

IEEE_UNDERFLOW 128 bit support

36.12 Example 3: Overflow

Here is a program to illustrate the above.

program ch3603

use ieee_arithmetic

implicit none

integer :: i

real :: x = 1.0

logical :: overflow_happened = .false.

if (ieee_support_datatype(x)) then

print *, &

’ IEEE support for default precision’

end if

do i = 1, 50

if (overflow_happened) then

print *, ’ overflow occurred ’

print *, ’ program terminates’

stop 20

else

print 100, i, x

100 format (’ ’, i3, ’ ’, e12.4)

end if

x = x*10.0

call ieee_get_flag(ieee_overflow, &

overflow_happened)

end do

end program ch3603

36.13 Example 4: Underflow

Here is a program to illustrate the above.
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program ch3604

use ieee_arithmetic

implicit none

integer :: i

real :: x = 1.0

logical :: underflow_happened = .false.

if (ieee_support_datatype(x)) then

print *, ’ IEEE arithmetic ’

print *, &

’ is supported for default precision’

end if

do i = 1, 50

if (underflow_happened) then

print *, ’ underflow occurred ’

print *, ’ program terminates’

stop 20

else

print 100, i, x

100 format (’ ’, i3, ’ ’, e12.4)

end if

x = x/10.0

call ieee_get_flag(ieee_underflow, &

underflow_happened)

end do

end program ch3604

36.14 Example 5: Inexact Summation

Here is a program to illustrate the above.

program ch3605

use ieee_arithmetic

implicit none

integer :: i

real :: computed_sum

real :: real_sum
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integer :: array_size

logical :: inexact_happened = .false.

integer :: allocate_status

character *13, dimension (3) :: heading = (/ &

’ 10,000,000’, ’ 100,000,000’, &

’1,000,000,000’ /)

real, allocatable, dimension (:) :: x

if (ieee_support_datatype(x)) then

print *, &

’ IEEE support for default precision’

end if

! 10,000,000

array_size = 10000000

do i = 1, 3

write (unit=*, fmt=100) array_size, &

heading(i)

100 format (’ Array size = ’, i15, 2x, a13)

allocate (x(1:array_size), stat= &

allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate fails, program ends’

stop

end if

x = 1.0

computed_sum = sum(x)

call ieee_get_flag(ieee_inexact, &

inexact_happened)

real_sum = array_size*1.0

write (unit=*, fmt=110) computed_sum

110 format (’ Computed sum = ’, e12.4)

write (unit=*, fmt=120) real_sum

120 format (’ Real sum = ’, e12.4)

if (inexact_happened) then

print *, ’ inexact arithmetic’

print *, ’ in the summation’

print *, ’ program terminates’

stop 20

end if
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deallocate (x)

array_size = array_size*10

end do

end program ch3605

Here is the output from several compilers.

gfortran

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1000E+09

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

Intel

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1000E+09

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

nag

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1678E+08

Real sum = 0.1000E+09

inexact arithmetic
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in the summation

program terminates

sun/oracle

IEEE support for default precision

Array size = 10000000 10,000,000

Computed sum = 0.1000E+08

Real sum = 0.1000E+08

Array size = 100000000 100,000,000

Computed sum = 0.1678E+08

Real sum = 0.1000E+09

inexact arithmetic

in the summation

program terminates

What do you notice about the value of the computed sum?

36.15 Example 6: NAN and Other Specials

Here is a program to illustrate some additional IEEE functionality.

program ch3606

use precision_module

use ieee_arithmetic

implicit none

real (sp) :: x0 = 0.0

real (dp) :: y0 = 0.0_dp

real (qp) :: z0 = 0.0_qp

real (sp) :: x1 = 1.0

real (dp) :: y1 = 1.0_dp

real (qp) :: z1 = 1.0_qp

real (sp) :: xnan = 1.0

real (dp) :: ynan = 1.0_dp

real (qp) :: znan = 1.0_qp

real (sp) :: xinfinite = 1.0

real (dp) :: yinfinite = 1.0_dp



36.15 Example 6: NAN and Other Specials 683

real (qp) :: zinfinite = 1.0_qp

xinfinite = x1/x0

yinfinite = y1/y0

zinfinite = z1/z0

xnan = x0/x0

ynan = y0/y0

znan = z0/z0

if (ieee_support_datatype(x1)) then

print *, ’ 32 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(x1)

print *, ’ nan ’, ieee_support_nan(x1)

print *, ’ 1/0 finite’, ieee_is_finite( &

xinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(xnan)

end if

if (ieee_support_datatype(y1)) then

print *, ’ 64 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(y1)

print *, ’ nan ’, ieee_support_nan(y1)

print *, ’ 1/0 finite’, ieee_is_finite( &

yinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(ynan)

end if

if (ieee_support_datatype(z1)) then

print *, ’ 128 bit IEEE support’

print *, ’ inf ’, ieee_support_inf(z1)

print *, ’ nan ’, ieee_support_nan(z1)

print *, ’ 1/0 finite’, ieee_is_finite( &

zinfinite)

print *, ’ 0/0 nan’, ieee_is_nan(znan)

end if

end program ch3606

36.16 Summary

Compiler support in this area is now quite widespread as the above examples have
shown.
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36.18 Problem

36.1 Compile and run each of the examples in this chapter with your compiler(s).
If you have access to more than one compiler do the compilers behave in the same
way?



Chapter 37
Derived Type I/O

37.1 Introduction

In this chapter we look at a facility introduced in the Fortran 2003 standard - derived
type I/O. The Fortran 2018 standard calls it defined type input/output, and is now
widely available in current compilers.

When a derived type is encountered in an I/O list, we can arrange to call a Fortran
subroutine. For a particular derived type and a particular set of kind type param-
eter values, there are four possible sets of characteristics for defined input/output
procedures; one each for

• formatted input
• formatted output
• unformatted input
• unformatted output

A program need not supply all four procedures.
Wewill look at formatted I/O and the use of the DT edit descriptor in the examples

that follow.
The following information is taken fromSect. 12.6.4.8.2 of the 2018 standard. The

characteristics for a formatted read are the same as those specified by the following
interface:

SUBROUTINE my_read_routine_formatted (dtv, &

unit, &

iotype, v_list, &

iostat, iomsg)

! the derived-type variable

dtv-type-spec , INTENT(INOUT) :: dtv

INTEGER, INTENT(IN) :: unit ! unit number

! the edit descriptor string

CHARACTER (LEN=*), INTENT(IN) :: iotype

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_37
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INTEGER, INTENT(IN) :: v_list(:)

INTEGER, INTENT(OUT) :: iostat

CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

The characteristics for a formatted write are the same as those specified by the
following interface:

SUBROUTINE my_write_routine_formatted (dtv, &

unit, &

iotype, v_list, &

iostat, iomsg)

! the derived-type value/variable

dtv-type-spec , INTENT(IN) :: dtv

INTEGER, INTENT(IN) :: unit

! the edit descriptor string

CHARACTER (LEN=*), INTENT(IN) :: iotype

INTEGER, INTENT(IN) :: v_list(:)

INTEGER, INTENT(OUT) :: iostat

CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

Let us look at each parameter in turn.

dtv-type-spec , INTENT(IN) :: dtv

This is the derived type we are interested in printing out.

INTEGER, INTENT(IN) :: unit

The unit number for the I/O. It is a scalar of default integer type. It is negative if
on an internal file.

CHARACTER (LEN=*), INTENT(IN) :: iotype

For formatted data transfer, the processor shall pass an iotype argument that
has the value:

• LISTDIRECTED if the parent data transfer statement specified list directed for-
matting,

• NAMELIST if the parent data transfer statement specified namelist formatting, or
• DT concatenated with the char-literal-constant, if any, of the DT edit descriptor in
the format specification of the parent data transfer statement.
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INTEGER, INTENT(IN) :: v_list(:)

The v_list array. It is a rank one array of intent in and type default integer.

INTEGER, INTENT(OUT) :: iostat

The iostat value.

CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

The iomsg value.
For the edit descriptor DT’Link List’(10, 4, 2), iotype is “DTLink List” and v_list

is [10, 4, 2].
If the v-list of the edit descriptor appears in the parent data transfer statement,

the processor shall provide the values from it in the v_list dummy argument, with
the same number of elements in the same order as v-list. If there is no v-list in
the edit descriptor or if the data transfer statement specifies list-directed or namelist
formatting, the processor shall provide v_list as a zero-sized array.

The elements of the v_list array can be used for anything in the subroutine. In
our examples below we will use them to control the fields widths.

It can also choose an arbitrary interpretation (or none) for iotype.

37.2 User-Defined Derived-Type Editing

We have examples illustrating some of the basics of defined type I/O.

37.3 Example1: Basic Syntax, No Parameters in Call

Here is the derived type.

module ch3701_person_module

implicit none

type :: person

character (len=30) :: name

integer :: age

real :: height

real :: weight
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contains

procedure :: print_person

generic :: write(formatted) => print_person

procedure :: read_person

generic :: read(formatted) => read_person

end type person

contains

subroutine print_person(p,unit_number,&

iotype,vlist,iostat,iomsg)

implicit none

class (person) , intent(in) :: p

integer , &

intent(in) :: unit_number

character (len=*) , intent(in) :: iotype

integer , dimension(:) , intent(in) :: vlist

integer , intent(out) :: iostat

character (len=*) , intent(inout) :: iomsg

character (len=40) :: person_format

person_format="(a,2x,i3,2x,f4.2,2x,f3.0)"

write (unit_number,fmt=person_format) &

p%name,p%age,p%height,p%weight

iostat=0

end subroutine print_person

subroutine read_person(p,unit_number,&

iotype,vlist,iostat,iomsg)

implicit none

class (person) , intent(inout) :: p

integer , &

intent(in) :: unit_number

character (len=*) , intent(in) :: iotype
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integer , dimension(:) , intent(in) :: vlist

integer , intent(out) :: iostat

character (len=*) , intent(inout) :: iomsg

character (len=40) :: person_format

person_format=’(a,2x,i3,2x,f4.2,2x,f3.0)’

read (unit_number,fmt=person_format) &

p%name,p%age,p%height,p%weight

iostat=0

end subroutine read_person

end module ch3701_person_module

Here is the driving program.

include ’ch3701_person_module.f90’

program ch3701

use ch3701_person_module

integer , parameter :: n=4

type (person) , dimension(n) :: p

integer :: i

open(unit=99,file=’ch3701_input_file.txt’)

do i=1,n

read( 99 , 10 ) p(i)

10 format( DT )

write( * , 20 ) p(i)

20 format( DT )

end do

end program ch3701

Here is the data input file.

Zahpod Beeblebrox 42 1.85 75

Ford Prefect 25 1.75 65
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Arthur Dent 30 1.72 68

Trillian 30 1.65 45

123456789012345678901234567890123456789012345

1 2 3 4

Extra lines have been added at the end to indicate the column positions in the read
statement. Here is the output.

Zahpod Beeblebrox 42 1.85 75.

Ford Prefect 25 1.75 65.

Arthur Dent 30 1.72 68.

Trillian 30 1.65 45.

37.4 Example2: Extended Syntax, Passing Parameters

Here is the derived type.

module ch3702_person_module

implicit none

type :: person

character (len=30) :: name

integer :: age

real :: height

real :: weight

contains

procedure :: print_person

generic :: write(formatted) &

=> print_person

procedure :: read_person

generic :: read(formatted) &

=> read_person

end type person

contains

subroutine print_person(p,unit_number,&
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iotype,vlist,iostat,iomsg)

implicit none

class (person) , intent(in) :: p

integer , &

intent(in) :: unit_number

character (len=*) , intent(in) :: iotype

integer , dimension(:) , intent(in) :: vlist

integer , intent(out) :: iostat

character (len=*) , intent(inout) :: iomsg

character (len=40) :: person_format

write(person_format,10)’(a’,vlist(1),&

’,’ ,&

’i’,vlist(2),&

’,2x,’ ,&

’f’,vlist(3),&

’.’,vlist(4),&

’,2x,’ ,&

’f’,vlist(5),&

’.0)’

10 format(a,i2,&

a, &

a,i1,&

a, &

a,i1,&

a,i1,&

a, &

a,i1,&

a)

write (unit_number,fmt=person_format) &

p%name,p%age,p%height,p%weight

iostat=0

end subroutine print_person

subroutine read_person(p,unit_number,&

iotype,vlist,iostat,iomsg)

implicit none
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class (person) , intent(inout) :: p

integer , &

intent(in) :: unit_number

character (len=*) , intent(in) :: iotype

integer , dimension(:) , intent(in) :: vlist

integer , intent(out) :: iostat

character (len=*) , intent(inout) :: iomsg

character (len=40) :: person_format

write(person_format,10)’(a’,vlist(1),&

’,2x,’ ,&

’i’,vlist(2),&

’,2x,’ ,&

’f’,vlist(3),&

’.’,vlist(4),&

’,2x,’ ,&

’f’,vlist(5),&

’.0)’

10 format(a,i2,&

a, &

a,i1,&

a, &

a,i1,&

a,i1,&

a, &

a,i1,&

a)

read (unit_number,fmt=person_format) &

p%name,p%age,p%height,p%weight

iostat=0

end subroutine read_person

end module ch3702_person_module

Here is the driving program.

include ’ch3702_person_module.f90’

program ch3702

use ch3702_person_module
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integer , parameter :: n=4

type (person) , dimension(n) :: p

integer :: i

integer :: file_stat = 0

open(unit=99 , file=’ch3701_input_file.txt’ , &

status=’old’ , iostat = file_stat)

if (file_stat /=0) then

print *,’ File not found’

print *,’ Program terminates’

stop

end if

do i=1,n

read( 99 , 10 ) p(i)

10 format( DT(30,3,4,2,3) )

write( * , 20 ) p(i)

20 format( DT(20,5,4,2,3) )

end do

end program ch3702

Here is the diff output between the two main programs.

1c1

< include ’ch3701_person_module.f90’

---

> include ’ch3702_person_module.f90’

3,5c3

< program ch3701

<

< use ch3701_person_module

---

> program ch3702

6a5

> use ch3702_person_module

23c22

< 10 format( DT )

---

> 10 format( DT(30,3,4,2,3) )

25c24

< 20 format( DT )

---

> 20 format( DT(20,5,4,2,3) )
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28c27

< end program ch3701

---

> end program ch3702

Here is the diff output between the two person modules.

1c1

< module ch3701_person_module

---

> module ch3702_person_module

14,17c14,19

< procedure :: print_person

< generic :: write(formatted) => print_person

< procedure :: read_person

< generic :: read(formatted) => read_person

---

> procedure :: print_person

> generic :: write(formatted) &

> => print_person

> procedure :: read_person

> generic :: read(formatted) &

> => read_person

38c40,57

< person_format="(a,2x,i3,2x,f4.2,2x,f3.0)"

---

> write(person_format,10)’(a’,vlist(1),&

> ’,’ ,&

> ’i’,vlist(2),&

> ’,2x,’ ,&

> ’f’,vlist(3),&

> ’.’,vlist(4),&

> ’,2x,’ ,&

> ’f’,vlist(5),&

> ’.0)’

> 10 format(a,i2,&

> a, &

> a,i1,&

> a, &

> a,i1,&

> a,i1,&

> a, &

> a,i1,&

> a)

62c81,98
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< person_format=’(a,2x,i3,2x,f4.2,2x,f3.0)’

---

> write(person_format,10)’(a’,vlist(1),&

> ’,2x,’ ,&

> ’i’,vlist(2),&

> ’,2x,’ ,&

> ’f’,vlist(3),&

> ’.’,vlist(4),&

> ’,2x,’ ,&

> ’f’,vlist(5),&

> ’.0)’

> 10 format(a,i2,&

> a, &

> a,i1,&

> a, &

> a,i1,&

> a,i1,&

> a, &

> a,i1,&

> a)

71,72c107

< end module ch3701_person_module

<

---

> end module ch3702_person_module

The data input file is the same as in the last example.
Here is the output.

Zahpod Beeblebrox 42 1.85 75.

Ford Prefect 25 1.75 65.

Arthur Dent 30 1.72 68.

Trillian 30 1.65 45.

37.5 Example3: Basic Syntax with Timing

This example is a variation on the first example. We are now interested in timing the
I/O.

Here is the driving program.

include ’timing_module.f90’

include ’ch3701_person_module.f90’

program ch3703
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use ch3701_person_module

use timing_module

implicit none

integer :: i

integer , parameter :: n=1000000

type (person) :: p1 = &

person(’Zaphod Beeblebrox’,42,1.85,70)

open(unit=10,file=’ch3703.txt’)

call start_timing()

do i=1,n

write(10,100) p1%name,p1%age,p1%height,p1%weight

100 format(a39,2x,i2,2x,f4.2,2x,f3.0)

end do

print 200,time_difference()

200 format(2x,f8.3)

do i=1,n

write( 10 , 10 ) p1

10 format( DT )

end do

print 200,time_difference()

close(10)

call end_timing()

end program ch3703

Here is the output from one compiler.

2017/11/24 13: 7:44 790

15.613

17.266

2017/11/24 13: 8:17 685
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37.6 Example4: Extended Syntax with Timing

This example is a variation on the second example. We are now interested in timing
the I/O.

Here is the driving program.

include ’timing_module.f90’

include ’ch3702_person_module.f90’

program ch3704

use ch3702_person_module

use timing_module

implicit none

integer :: i

integer , parameter :: n=1000000

type (person) :: p1 = &

person(’Zaphod Beeblebrox’,42,1.85,70)

open(unit=10,file=’ch3704.txt’)

call start_timing()

do i=1,n

write(10,100) p1%name,p1%age,p1%height,p1%weight

100 format(a30,2x,i2,2x,f4.2,2x,f3.0)

end do

print 200,time_difference()

200 format(2x,f8.3)

do i=1,n

write( 10 , 10 ) p1

10 format( DT(20,5,4,2,3) )

end do

print 200,time_difference()

close(10)

call end_timing()
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end program ch3704

Here is the output from one compiler.

2017/11/24 13:12:32 523

15.547

19.941

2017/11/24 13:13: 8 12

37.7 Summary

This chapter has illustrated simple usage of derived type I/O.

37.8 Problem

37.1 Compile and run the examples in this chapter. What timing figures do you get
with your compiler for the last two examples?



Chapter 38
Sorting and Searching

The Analytical Engine weaves algebraic patterns, just as the
Jacquard loom weaves flowers and leaves.

Ada Lovelace

Aims
We look at a number of sorting and searching examples:

• three numeric sorting examples, using a recursive algorithm, a non recursive algo-
rithm and a parallelised subroutine from the Nag library

– timing details for our generic serial Quicksort algorithm for five of the numeric
kind types

– timing details of the Netlib serial non recursive Quicksort for 32 bit integers, 32
bit reals and 64 bit reals

– a comparison of the timing of the above two sorting algorithms
– the Nag SMP sorting routine m01caf for 64 bit reals
– timing details of the parallel Nag sorting subroutine

• Sorting an array of a derived type
• A searching example

38.1 Example 1: Generic Recursive Quicksort Example
with Timing Details

This example has several components

• a module called precision_module from Chap.21
• a module called integer_kind_module from Chap.25

© Springer International Publishing AG, part of Springer Nature 2018
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• a timing module
• the generic Quicksort module from Chap.25
• a main program to provide the timing information

Here is the source code for the main program. The source code for the other
modules is the same as in earlier chapters.

include ’integer_kind_module.f90’

include ’precision_module.f90’

include ’sort_data_module.f90’

include ’timing_module.f90’

program ch3801

use sort_data_module

use timing_module

implicit none

integer, parameter :: n = 100000000

character *12 :: nn = ’100,000,000’

character *80 :: report_file_name = &

’ch3601.report’

real (sp), allocatable, dimension (:) :: x_sp

real (dp), allocatable, dimension (:) :: x_dp

real (qp), allocatable, dimension (:) :: x_qp

integer (i32), allocatable, dimension (:) :: &

y_i32

integer (i64), allocatable, dimension (:) :: &

y_i64

integer :: allocate_status = 0

character *20, dimension (5) :: heading1 = [ &

’ 32 bit real’, ’ 32 bit int ’, &

’ 64 bit real’, ’ 64 bit int ’, &

’ 128 bit real’ ]

character *20, dimension (3) :: heading2 = [ &

’ Allocate ’, ’ Random ’, &

’ Sort ’ ]

print *, ’Program starts’

print *, ’N = ’, nn

call start_timing()
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open (unit=100, file=report_file_name)

print *, heading1(1)

allocate (x_sp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, &

’ Allocate failed. Program terminates’

stop 10

end if

print 100, heading2(1), time_difference()

100 format (a20, 2x, f8.3)

call random_number(x_sp)

print 100, heading2(2), time_difference()

call sort_data(x_sp, n)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’ First 10 32 bit reals’

write (unit=100, fmt=110) x_sp(1:10)

110 format (5(2x,e14.6))

print *, heading1(2)

allocate (y_i32(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, &

’Allocate failed. Program terminates’

stop 20

end if

print 100, heading2(1), time_difference()

y_i32 = int(x_sp*1000000000, i32)

deallocate (x_sp)

print 100, heading2(2), time_difference()

call sort_data(y_i32, n)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 32 bit integers’

write (unit=100, fmt=120) y_i32(1:10)

120 format (5(2x,i10))

deallocate (y_i32)

print *, heading1(3)
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allocate (x_dp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, &

’Allocate failed. Program terminates’

stop 30

end if

print 100, heading2(1), time_difference()

call random_number(x_dp)

print 100, heading2(2), time_difference()

call sort_data(x_dp, n)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 64 bit reals’

write (unit=100, fmt=110) x_dp(1:10)

print *, heading1(4)

allocate (y_i64(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, &

’Allocate failed. Program terminates’

stop 40

end if

print 100, heading2(1), time_difference()

y_i64 = int(x_dp*1000000000000000_i64, i64)

deallocate (x_dp)

print 100, heading2(2), time_difference()

call sort_data(y_i64, n)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 64 bit integers’

write (unit=100, fmt=120) y_i64(1:10)

deallocate (y_i64)

print *, heading1(5)

allocate (x_qp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, &

’Allocate failed. Program terminates’

stop 50

end if
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print 100, heading2(1), time_difference()

call random_number(x_qp)

print 100, heading2(2), time_difference()

call sort_data(x_qp, n)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 128 bitreals’

write (unit=100, fmt=110) x_qp(1:10)

close (200)

print *, ’Program terminates’

call end_timing()

end program ch3801

Table38.1 has timing information for four compilers.

Table 38.1 Generic recursive quicksort timing

gfortran Intel Nag Oracle Mean StdDev

Allocate 32 bit real 0.008 0.000 0.000 0.000 0.002 0.004

Allocate 32 bit int 0.000 0.000 0.000 0.008 0.002 0.004

Allocate 64 bit real 0.094 0.031 0.031 0.000 0.039 0.039

Allocate 64 bit int 0.016 0.000 0.016 0.000 0.008 0.009

Allocate 128 bit real 0.156 0.047 0.047 0.000 0.063 0.066

Allocate Total 0.274 0.078 0.094 0.008 0.114 0.113

Random 32 bit real 0.562 0.422 0.609 2.125 0.930 0.801

Random 32 bit int 0.219 0.172 0.328 0.062 0.195 0.110

Random 64 bit real 1.492 0.594 0.531 2.219 1.209 0.804

Random 64 bit int 0.414 0.328 0.609 0.133 0.371 0.197

Random 128 bit real 11.203 3.797 1.070 3.625 4.924 4.368

Random Total 13.890 5.313 3.147 8.164 7.629 4.653

Sort 32 bit real 13.742 12.328 15.063 11.586 13.180 1.541

Sort 32 bit int 3.492 2.891 4.781 2.203 3.342 1.095

Sort 64 bit real 14.945 13.266 16.078 12.664 14.238 1.561

Sort 64 bit int 2.742 2.312 2.906 1.633 2.398 0.568

Sort 128 bit real 45.703 33.141 18.750 36.633 33.557 11.201

Sort Total 80.624 63.938 57.578 64.719 66.715 9.809

Overall Total 94.788 69.329 60.819 72.891 74.457 14.469

Here are some simple observations about the timing information in this table:

• allocation is a negligible component of the overall time
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• random number generation takes between 5 and 15% of total timing
• integer sorting is much faster than real sorting
• sorting of 32 and 64 bit reals is similar
• overall processing of the Nag format 128 bit real is faster than the other 128 bit
formats

38.2 Example 2: Non Recursive Quicksort Example
with Timing Details

The subroutines in this example are taken from the Netlib site. They are 3 non
recursive Fortran 77 implementation of Quicksort.

Visit the Netlib site for more details.

http://www.netlib.org/

The following is taken directly from their FAQ.

• What is Netlib? The Netlib repository contains freely available software, docu-
ments, and databases of interest to the numerical, scientific computing, and other
communities. The repository is maintained by AT&T Bell Laboratories, the Uni-
versity of Tennessee andOakRidgeNational Laboratory, and by colleaguesworld-
wide. The collection is replicated at several sites around the world, automatically
synchronized, to provide reliable and network efficient service to the global com-
munity.

The routines we are interested in are in the following directory.

http://www.netlib.org/slatec/src/

Three versions are provided.

http://www.netlib.org/slatec/src/isort.f

http://www.netlib.org/slatec/src/ssort.f

http://www.netlib.org/slatec/src/dsort.f

They are fixed form Fortran 77. A small set of changes need to be made to enable
them to be compiled and used in this example.

We will cover the changes we have made for the double precision sort routine
dsort.f.

Here is the subroutine header for the double precision subroutine.

SUBROUTINE DSORT (DX, DY, N, KFLAG)

The routine takes 4 parameters and we look at the implementation of the dsort
routine to find out more details about each parameter. This line
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C***TYPE DOUBLE PRECISION (SSORT-S, DSORT-D, ISORT-I)

provides the first clue as to the nature of the parameters.
The following provide some more.

C Description of Parameters
C DX - array of values to be sorted (usually abscissas)
C DY - array to be (optionally) carried along
C N - number of values in array DX to be sorted
C KFLAG - control parameter
C = 2 means sort DX in increasing order and carry DY
along.
C = 1 means sort DX in increasing order (ignoring DY)
C = -1 means sort DX in decreasing order (ignoring DY)
C = -2 means sort DX in decreasing order and carry DY
along.

The following lines then complete the information.

C .. Scalar Arguments ..

INTEGER KFLAG, N

C .. Array Arguments ..

DOUBLE PRECISION DX(*), DY(*)

If we set the fourth parameter to 1, we can use the same array for the first and
second arguments.

We have made source code changes to the three subroutines.
The changes are summarised below, and we have included details of the line

numbers in each sort subroutine. The changes involve commenting out 4 sets of
lines.

Line number(s) in subroutines

dsort.f ssort.f isort.f

*DECK 1 1 1

EXTERNAL 61 60 60

XERMSG

1st Call 66-70 65-69 65-69

to XERMSG

2nd call 73-78 72-77 72-77

to XERMSG
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Here are the lines that need to be commented out.

*DECK DSORT
..
..

EXTERNAL XERMSG
..
..

IF (NN .LT. 1) THEN
CALL XERMSG (’SLATEC’, ’DSORT’,

+ ’The number of values to be sorted is not positive.’,
1, 1)

RETURN
ENDIF

..

..
IF (KK.NE.1 .AND. KK.NE.2) THEN

CALL XERMSG (’SLATEC’, ’DSORT’,
+ ’The sort control parameter, K, is not 2, 1, -1, or -2.’,

2,
+ 1)

RETURN
ENDIF

..

..

The following lines

C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
C for sorting with minimal storage, Communications
of
C the ACM, 12, 3 (1969), pp. 185-187.
C***ROUTINES CALLED XERMSG
C***REVISION HISTORY (YYMMDD)
C 761101 DATE WRITTEN
C 761118 Modified to use the Singleton quicksort algorithm. (JAW)
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891009 Removed unreferenced statement labels. (WRB)
C 891024 Changed category. (WRB)
C 891024 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 901012 Declared all variables; changed X,Y to DX,DY; changed
C code to parallel SSORT. (M. McClain)
C 920501 Reformatted the REFERENCES section. (DWL, WRB)
C 920519 Clarified error messages. (DWL)
C 920801 Declarations section rebuilt and code restructured to use
C IF-THEN-ELSE-ENDIF. (RWC, WRB)

provide details about the algorithm and its revision history. This information is
extremely useful when working with the subroutine.

We are now going to look at one solution to the problem of how to integrate the
original program and the three sorting subroutines.
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The simplest solution is to independently compile the three routines as Fortran
77 source. Here is the Nag compiler command to achieve this

nagfor -c -O4 dsort.f ssort.f isort.f

On the Windows platform this will generate the following files

dsort.o

ssort.o

isort.o

The following command will then compile the modern Fortran code and link the
Fortran 77 compiled code into the executable.

nagfor -O4 ch3802.f90 dsort.o ssort.o isort.o

Here is the command line for the Intel compiler to compile the Fortran 77 netlib
routines.

ifort /c /fast /Qparallel dsort.f ssort.f isort.f

Here is the command line for gfortran to compile the Fortran 77 Netlib routines.

gfortran -c -O3 -ffast-math -funroll-loops

dsort.f ssort.f isort.f

Here is the main program.

include ’precision_module.f90’

include ’integer_kind_module.f90’

include ’timing_module.f90’

program ch3802

use precision_module

use integer_kind_module

use timing_module

implicit none

integer, parameter :: n = 100000000

character *12 :: nn = ’100,000,000’

character *80 :: report_file_name = ’ch3502.report’

real (sp), allocatable, dimension (:) :: x_sp

real (dp), allocatable, dimension (:) :: x_dp

integer (i32), allocatable, dimension (:) :: y_i32

integer :: allocate_status

character *20, dimension (5) :: heading1 = &
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[ ’ 32 bit real ’, &

’ 32 bit int ’, &

’ 64 bit real ’, &

’ 64 bit int ’, &

’ 128 bit real ’ ]

character *20, dimension (3) :: heading2 = &

[ ’ Allocate ’, &

’ Random ’, &

’ Sort ’ ]

allocate_status = 0

print *, ’Program starts’

print *, ’N = ’, nn

call start_timing()

open (unit=100, file=report_file_name)

print *, heading1(1)

allocate (x_sp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed. Program terminates’

stop 10

end if

print 100, heading2(1), time_difference()

100 format (a20, 2x, f8.3)

call random_number(x_sp)

print 100, heading2(2), time_difference()

call ssort(x_sp, x_sp, n, 1)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’ First 10 32 bit reals’

write (unit=100, fmt=110) x_sp(1:10)

110 format (5(2x,e14.6))

print *, heading1(2)

allocate (y_i32(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed. Program terminates’

stop 20

end if

print 100, heading2(1), time_difference()
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y_i32 = int(x_sp*1000000000, i32)

deallocate (x_sp)

print 100, heading2(2), time_difference()

call isort(y_i32, y_i32, n, 1)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 32 bit integers’

write (unit=100, fmt=120) y_i32(1:10)

120 format (5(2x,i10))

deallocate (y_i32)

print *, heading1(3)

allocate (x_dp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’ Allocate failed. Program terminates’

stop 30

end if

print 100, heading2(1), time_difference()

call random_number(x_dp)

print 100, heading2(2), time_difference()

call dsort(x_dp, x_dp, n, 1)

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) &

’First 10 64 bit reals’

write (unit=100, fmt=110) x_dp(1:10)

print *, ’ Program terminates’

call end_timing()

end program ch3802

It is then possible to link to the already compiled subroutines when compiling the
main program.

The following command will then compile the modern Fortran code and link the
Fortran 77 compiled code into the executable using the Nag compiler.

nagfor -O4 ch3802.f90 dsort.o ssort.o isort.o
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Table38.2 summarises the timing information for the above four compilers.

Table 38.2 Non recursive quicksort timing

gfortran Intel Nag Oracle Mean StdDev

Allocate 32 bit real 0.000 0.016 0.008 0.000 0.006 0.008

Allocate 32 bit int 0.000 0.000 0.000 0.000 0.000 0.000

Allocate 64 bit real 0.094 0.023 0.031 0.004 0.038 0.039

Allocate Sum 0.094 0.039 0.039 0.004 0.044 0.037

Random 32 bit real 0.562 0.609 0.625 2.062 0.965 0.732

Random 32 bit int 0.203 0.375 0.297 0.066 0.235 0.133

Random 64 bit real 1.484 0.523 0.516 2.090 1.153 0.772

Random Sum 2.249 1.507 1.438 4.218 2.353 1.296

Sort 32 bit real 11.508 11.563 11.852 12.207 11.783 0.321

Sort 32 bit int 2.945 2.961 3.000 2.242 2.787 0.364

Sort 64 bit real 12.625 12.406 12.320 12.953 12.576 0.282

Sort Sum 27.078 26.930 27.172 27.402 27.146 0.198

Overall Sum 29.421 28.476 28.649 31.624 29.543 1.447

Here are some simple observations about the timing information in this table:

• allocation is again a negligible component of the overall time
• random number generation takes between 5% and 15% of total timing
• integer sorting is much faster than real sorting
• sorting of 32 and 64 bit reals is similar
• the sums for the sorting are very similar, as the standard deviation shows

38.2.1 Notes - Version Control Systems

The original program had the following statement

*DECK DSORT

and this statement was one used in version control or revision control software of the
time. Two version control programs that were available on CDC systems from the
1970s and 1980s were called update and modify that used the above. In computer
programming, revision control is any practice that tracks and provides control over
changes to source code. Software developers also use revision control software to
maintain documentation and configuration files as well as source code.

The use of this kind of software is common for medium to large scale program
development.

Wikipedia provides a comparison of what is currently available. See
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http://en.wikipedia.org/wiki/

Comparison_of_revision_control_software

for more information.

38.3 Subroutine and Function Libraries

A software library is a set of precompiled program units (functions and subroutines)
that has been written to solve common problems.

In a university environment many departments (e.g. Mechanical Engineering,
Electrical Engineering, Mathematics, Physics etc) have libraries that solve common
problems in each discipline.

38.4 The Nag Library for SMP and Multicore

The major commercial cross platform numerical library is the Nag library. Nag
provide an SMP and multicore version of their library.

More information can be found at:-

https://www.nag.co.uk/numeric/numerical_libraries.asp

https://www.nag.co.uk/numeric/FL/FSdescription.asp

The library is available on a range of platforms.

• Windows
• Linux (including 64-bit)
• Solaris
• Mac OS X
• AIX

A subset of the library is thread safe.
Many of the algorithms, or routines, in the library are specifically tuned to run

significantly faster on multi-socket and multicore systems. We will look at timing
information for one of the sorting routines and compare the times to those of our
serial sorting routines.

38.5 Example 3: Calling the Nag m01caf Sorting Routine

Here is the program source.
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include ’precision_module.f90’

include ’timing_module.f90’

program ch3803

use precision_module

use timing_module

implicit none

integer, parameter :: n = 100000000

character *12 :: nn = ’100,000,000’

character *80 :: report_file_name = ’ch3505.report’

real (dp), allocatable, dimension (:) :: x_dp

integer :: allocate_status = 0

integer :: ifail = 0

character *20, dimension (5) :: heading1 = &

[ ’ 32 bit real’, &

’ 32 bit int ’, &

’ 64 bit real’, &

’ 64 bit int ’, &

’ 128 bit real’ ]

character *20, dimension (3) :: heading2 = &

[ ’ Allocate ’, &

’ Random ’, &

’ Sort ’ ]

print *, ’Program starts’

print *, ’N = ’, nn

call start_timing()

open (unit=100, file=report_file_name)

100 format (a20, 2x, f8.3)

110 format (5(2x,e14.6))

120 format (5(2x,i10))

print *, heading1(3)

allocate (x_dp(1:n), stat=allocate_status)

if (allocate_status/=0) then

print *, ’Allocate failed. Program terminates’
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stop 30

end if

print 100, heading2(1), time_difference()

call random_number(x_dp)

print 100, heading2(2), time_difference()

call m01caf(x_dp, 1, n, ’A’, ifail)

if (ifail/=0) then

print *, ’sort failed. Program terminates’

stop 100

end if

print 100, heading2(3), time_difference()

write (unit=100, fmt=’(a)’) ’First 10 64 bit reals’

write (unit=100, fmt=110) x_dp(1:10)

close (200)

print *, ’Program terminates’

call end_timing()

end program ch3803

Table38.3 has details of timing information for the serial sorting algorithms.

Table 38.3 Sixty four bit real sort timings

gfortran Intel Nag Oracle Mean StdDev

Recursive sort 64 bit
real

14.945 13.266 16.078 12.664 14.238 1.561

Non-recursive
Sort

64 bit
real

12.625 12.406 12.320 12.953 12.576 0.282

The non recursive solution is faster for three out of four compilers.
Table38.4 has the timing information for the Nag SMP routine, for 1–8 cores.

Table 38.4 Nag sort m01caf
timing

N threads Time

1 11.938

2 6.773

3 5.047

4 4.211

5 4.094

6 3.703

7 3.586

8 3.391
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As can be seen the Nag m01caf timing is faster for one core and shows a very
impressive speed up as the number of cores goes up. The system is an Intel I7 system,
which has 4 physical cores and is also hyper-threaded giving 8 cores overall.

This link

https://www.nag.co.uk/numeric/fl/

performance_examples.asp

has some examples of how the NAG SMP library performance scales on multiple
cores. At the time of writing they were drawn from the following library chapters

• Sorting
• Correlation and Regression Analysis
• Wavelet Transforms
• Interpolation
• Random number generators
• Special Functions

This link

https://www.nag.co.uk/numeric/fl/

nagdoc_fl24/html/GENINT/smptuned.html

has details of the tuned routines in the SMP library.
Here are some details that were correct at the time of writing.

• There are 77 tuned LAPACK routines
• There are 149 Tuned NAG-specific routines within the Library

The Nag library may well offer you a very cost effective way to improve the speed
of your programs. Nag have effectively done the work of parallelisingmany common
problems and sub problems and thus the use of their library routines may save you
significant development time and help you produce programs that run faster.

As you are probably aware by now parallelising your own code can be hard work!

38.6 Example 4: Sorting an Array of a Derived Type

In this section we look at rewriting the quicksort algorithm to work with an array of
a user defined type, or Fortran derived type. We will use the date data type from an
earlier chapter to illustrate the key points.
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38.6.1 Compare Function

For each derived type the user needs needs to implement a logical function that
compares two variables of that type. This comparison function will replace the <

and > comparison tests in the quicksort sorting routine.

38.6.2 Fortran Sources

There are three source files:

• The date module with comparison function
• the new sort routine
• the Fortran test program

They are listed below.

38.6.3 Date Module

module date_module

implicit none

private

type, public :: date

private

integer :: day

integer :: month

integer :: year

end type date

character (9) :: day(0:6) = (/ ’Sunday ’, &

’Monday ’, ’Tuesday ’, ’Wednesday’, &

’Thursday ’, ’Friday ’, ’Saturday ’ /)

character (9) :: month(1:12) = (/ ’January ’, &

’February ’, ’March ’, ’April ’, &

’May ’, ’June ’, ’July ’, &

’August ’, ’September’, ’October ’, &

’November ’, ’December ’ /)

public :: calendar_to_julian, date_, &

date_to_day_in_year, date_to_weekday_number, &
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get_day, get_month, get_year, &

julian_to_date, &

julian_to_date_and_week_and_day, ndays, &

print_date, year_and_day_to_date, less_than

contains

function calendar_to_julian(x) result (ival)

implicit none

integer :: ival

type (date), intent (in) :: x

ival = x%day - 32075 + 1461*(x%year+4800+(x% &

month-14)/12)/4 + 367*(x%month-2-((x%month &

-14)/12)*12)/12 - 3*((x%year+4900+(x%month &

-14)/12)/100)/4

end function calendar_to_julian

function date_(dd, mm, yyyy) result (x)

implicit none

type (date) :: x

integer, intent (in) :: dd, mm, yyyy

x = date(dd, mm, yyyy)

end function date_

function date_to_day_in_year(x)

implicit none

integer :: date_to_day_in_year

type (date), intent (in) :: x

intrinsic modulo

date_to_day_in_year = 3055*(x%month+2)/100 - &

(x%month+10)/13*2 - 91 + (1-(modulo(x%year &

,4)+3)/4+(modulo(x%year,100)+99)/100-( &

modulo(x%year,400)+399)/400)*(x%month+10)/ &

13 + x%day

end function date_to_day_in_year

function date_to_weekday_number(x)

implicit none

integer :: date_to_weekday_number

type (date), intent (in) :: x

intrinsic modulo
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date_to_weekday_number = modulo((13*( &

x%month+10-(x%month+10)/13*12)-1)/5+x%day+ &

77+5*(x%year+(x%month-14)/12-(x%year+ &

(x%month-14)/12)/100*100)/4+(x%year+(x% &

month-14)/12)/400-(x%year+(x%month- &

14)/12)/100*2, 7)

end function date_to_weekday_number

function get_day(x)

implicit none

integer :: get_day

type (date), intent (in) :: x

get_day = x%day

end function get_day

function get_month(x)

implicit none

integer :: get_month

type (date), intent (in) :: x

get_month = x%month

end function get_month

function get_year(x)

implicit none

integer :: get_year

type (date), intent (in) :: x

get_year = x%year

end function get_year

function julian_to_date(julian) result (x)

implicit none

integer, intent (in) :: julian

integer :: l, n

type (date) :: x

l = julian + 68569

n = 4*l/146097

l = l - (146097*n+3)/4

x%year = 4000*(l+1)/1461001

l = l - 1461*x%year/4 + 31
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x%month = 80*l/2447

x%day = l - 2447*x%month/80

l = x%month/11

x%month = x%month + 2 - 12*l

x%year = 100*(n-49) + x%year + 1

end function julian_to_date

subroutine julian_to_date_and_week_and_day(jd, &

x, wd, ddd)

implicit none

integer, intent (out) :: ddd, wd

integer, intent (in) :: jd

type (date), intent (out) :: x

x = julian_to_date(jd)

wd = date_to_weekday_number(x)

ddd = date_to_day_in_year(x)

end subroutine julian_to_date_and_week_and_day

logical function less_than(x1, x2)

implicit none

type (date), intent (in) :: x1

type (date), intent (in) :: x2

if (calendar_to_julian(x1)< &

calendar_to_julian(x2)) then

less_than = .true.

else

less_than = .false.

end if

end function less_than

function ndays(date1, date2)

implicit none

integer :: ndays

type (date), intent (in) :: date1, date2

ndays = calendar_to_julian(date1) - &

calendar_to_julian(date2)

end function ndays

function print_date(x, day_names, &

short_month_name, digits)
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implicit none

type (date), intent (in) :: x

logical, optional, intent (in) :: day_names, &

short_month_name, digits

character (40) :: print_date

integer :: pos

logical :: want_day, want_short_month_name, &

want_digits

intrinsic len_trim, present, trim

want_day = .false.

want_short_month_name = .false.

want_digits = .false.

print_date = ’ ’

if (present(day_names)) then

want_day = day_names

end if

if (present(short_month_name)) then

want_short_month_name = short_month_name

end if

if (present(digits)) then

want_digits = digits

end if

if (want_digits) then

write (print_date(1:2), ’(i2)’) x%day

print_date(3:3) = ’/’

write (print_date(4:5), ’(i2)’) x%month

print_date(6:6) = ’/’

write (print_date(7:10), ’(i4)’) x%year

else

if (want_day) then

pos = date_to_weekday_number(x)

print_date = trim(day(pos)) // ’ ’

pos = len_trim(print_date) + 2

else

pos = 1

print_date = ’ ’

end if

write (print_date(pos:pos+1), ’(i2)’) &

x%day

if (want_short_month_name) then

print_date(pos+3:pos+5) = month(x%month) &

(1:3)

pos = pos + 7

else
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print_date(pos+3:) = month(x%month)

pos = len_trim(print_date) + 2

end if

write (print_date(pos:pos+3), ’(i4)’) &

x%year

end if

return

end function print_date

function year_and_day_to_date(year, day) &

result (x)

implicit none

type (date) :: x

integer, intent (in) :: day, year

integer :: t

intrinsic modulo

x%year = year

t = 0

if (modulo(year,4)==0) then

t = 1

end if

if (modulo(year,400)/=0 .and. &

modulo(year,100)==0) then

t = 0

end if

x%day = day

if (day>59+t) then

x%day = x%day + 2 - t

end if

x%month = ((x%day+91)*100)/3055

x%day = (x%day+91) - (x%month*3055)/100

x%month = x%month - 2

if (x%month>=1 .and. x%month<=12) then

return

end if

write (unit=*, fmt=’(a,i11,a)’) ’$$year_and_d&

&ay_to_date: day of the year input &

&=’, day, ’ is out of range.’

end function year_and_day_to_date

end module date_module
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38.6.4 Sort Module

module generic_sort_module

! use user_module , internal_type => user_type

! less_than is a logical function in the module

use date_module, internal_type => date

implicit none

contains

subroutine sort(x, n)

integer, intent (in) :: n

type (internal_type), intent (inout), &

dimension (n) :: x

call quicksort(1, n)

contains

recursive subroutine quicksort(l, r)

implicit none

integer, intent (in) :: l, r

! local variables

integer :: i, j

type (internal_type) :: v, t

i = l

j = r

v = x(int((l+r)/2))

do

do while (less_than(x(i),v))

i = i + 1

end do

do while (less_than(v,x(j)))

j = j - 1

end do

if (i<=j) then

t = x(i)

x(i) = x(j)

x(j) = t

i = i + 1
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j = j - 1

end if

if (i>j) exit

end do

if (l<j) then

call quicksort(l, j)

end if

if (i<r) then

call quicksort(i, r)

end if

end subroutine quicksort

end subroutine sort

end module generic_sort_module

38.6.5 Main Program

include ’ch3804_date_module.f90’

include ’ch3804_generic_sort_module.f90’

include ’timing_module.f90’

program ch3804

use date_module

use generic_sort_module

use timing_module

implicit none

integer :: i

integer, parameter :: n = 1000000

integer, dimension (1:n) :: julian_dates

type (date), dimension (n) :: x

character *20 :: heading

call start_timing()

print *, ’ ’

open (unit=100, file=’julian_dates.dat’, &

form=’unformatted’)

heading = ’open’
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print 100, heading, time_difference()

100 format (a20, f7.3)

read (100) julian_dates

heading = ’read’

print 100, heading, time_difference()

do i = 1, n

x(i) = julian_to_date(julian_dates(i))

end do

heading = ’copy’

print 100, heading, time_difference()

call sort(x, n)

heading = ’sort’

print 100, heading, time_difference()

print *, ’ ’

do i = 1, n, 100000

print *, print_date(x(i))

end do

print *, ’ ’

call end_timing()

end program ch3804

Here is some sample output.

2016/12/ 5 16:56:24 112

open 0.023

read 0.004

copy 0.031

sort 0.344

1 January 1859

31 January 1887

6 June 1914

1 November 1941

28 March 1969

22 June 1996
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21 November 2023

15 March 2051

20 August 2078

28 February 2106

2016/12/ 5 16:56:24 540

38.7 Example 5: Binary Search Example

Searching is a common problem in programming. Wirth’s book has a short chapter
on searching, with coverage of

• linear search
• binary search
• table search
• straight string search
• the Knuth-Morris-Pratt string search
• the Boyer-Moore string search

A linear search of a collection can obviously be quite an expensive operation. The
worst case is that the object of interest is the last member of the collection.

In this example we make the assumption that the data is sorted and can then use
a very efficient algorithm - a binary search. Here is the program.

include ’timing_module.f90’

module character_binary_search_module

contains

function binary_search(x, n, key) &

result (position)

implicit none

! Algorithm taken from Algorithms +

! Data Structures - N. Wirth

! ISBN 0-13-021999-1

! Pages 57:59

integer, intent (in) :: n

character *32, dimension (1:n), &

intent (in) :: x

character *32, intent (in) :: key
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integer :: position

integer :: l, r, m

l = 1

r = n

do while (l<r)

m = (l+r)/2

if (x(m)<key) then

l = m + 1

else

r = m

end if

end do

if (x(r)==key) then

position = r

else

position = 0

end if

end function binary_search

end module character_binary_search_module

program ch3805

use character_binary_search_module

use timing_module

implicit none

integer, parameter :: nwords = 173528

character *32, dimension (1:nwords) :: &

dictionary

character *32 :: word

character *1 :: answer

integer :: position

call start_timing()

call read_words()

write (*, 100) time_difference()

100 format (2x, f7.3)
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do

print *, &

’Type in the word you are looking for’

read *, word

write (*, 100) time_difference()

position = binary_search(dictionary, nwords, &

word)

write (*, 100) time_difference()

if (position==0) then

print *, ’ Word not found’

else

write (*, 110) trim(word), position

110 format (a, ’ found at position ’, i6)

end if

print *, ’ Try again (y/n) ?’

read *, answer

if ((answer==’y’) .or. (answer==’Y’)) then

cycle

else

exit

end if

end do

call end_timing()

contains

subroutine read_words()

implicit none

integer :: i

character *80 :: file_name = ’words.txt’

open (unit=10, file=file_name, status=’old’)

do i = 1, nwords

read (10, 100) dictionary(i)

100 format (a)

end do
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close (10)

end subroutine read_words

end program ch3805

The program reads in a dictionary. Historically on Unix systems there was a
spelling checker, and there would be a words file, often in

/etc

This is an example of one of these files. Many language versions were available. We
then search the dictionary to see if the word entered is in the dictionary. The program
provides timing information.

Here is the output from a sample run. The data was read from a file.

2015/ 3/10 14:56: 8 430

0.070

Type in the word you are looking for

0.000

0.000

qwerty found at position 122712

Try again (y/n) ?

Type in the word you are looking for

0.000

0.000

Word not found

Try again (y/n) ?

Type in the word you are looking for

0.000

0.000

albumin found at position 3309

Try again (y/n) ?

Type in the word you are looking for

0.000

0.000

transubstantiation found at position 158170

Try again (y/n) ?

2015/ 3/10 14:56: 8 500

As can be seen the timing reading in the file takes less than one tenth of a second,
and the search takes less than a microsecond - the resolution made available via the
date_time subroutine.

The dictionary has over 170,000 words. Handy for Scrabble!
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The dictionary word file is called

words.txt

in the program.

38.8 Problems

38.1 Try out the examples on your system. What timing details do you get?

38.2 Using the non recursive 32 bit integer sort subroutine as a starting point produce
a 64 bit integer version. How long did it take to get a working version?

38.3 If you have successfully solved the above problem now produce subroutines
for 8 bit and 16 bit integers.

38.4 Using the non recursive 64 bit real subroutine as a starting point produce a 128
bit version. How long did this take?



Chapter 39
Handling Missing Data in Statistics
Calculations

Jupiter and beyond the infinite
Stanley Kubrick - 2001: A Space Odyssey

39.1 Introduction

In this chapter we look at a case study of processing the Met Office historic data files
and generating statistics accommodating missing data values.

Several steps are involved

• a program to download and save the data files locally
• a sed script to convert the missing values.
• a modified statistics module that will process and report on missing values.
• a module that encapsulates the Met Office station data information.
• a program that actually does the calculations and generates the summary informa-
tion.

• a site description module that encapsulates the site information.
• a program to generate the site information summary data.

39.2 Example 1: Program to Download and Save the Data
Files Locally

This is a C# program. We have programs in Python and Java on our web site that
have the same functionality.

Here is the Met Office web address.

http://www.metoffice.gov.uk/public/weather/
climate-historic/#?tab=climateHistoric

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_39
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Here is the program.

using System;
using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Text;

class ch3901 {

static int Main()
{

const int n_sites=37;

string base_address =
@"http://www.metoffice.gov.uk/pub/"
+"data/weather/uk/climate/stationdata/";

string [] station_name =
{
"aberporth", "armagh",
"ballypatrick", "bradford",
"braemar", "camborne",
"cambridge", "cardiff",
"chivenor", "cwmystwyth",
"dunstaffnage", "durham",
"eastbourne", "eskdalemuir",
"heathrow", "hurn",
"lerwick", "leuchars",
"lowestoft", "manston",
"nairn", "newtonrigg",
"oxford", "paisley",
"ringway", "rossonwye",
"shawbury", "sheffield",
"southampton", "stornoway",
"suttonbonington", "tiree",
"valley", "waddington",
"whitby", "wickairport",
"yeovilton",
};

string [] web_address = new string[n_sites];

string last_part="data.txt";

string input_string;

int i;

// create the web address of each file

for (i=0;i<n_sites;i++)
{

web_address[i]=
base_address+station_name[i]+last_part;
System.Console.WriteLine(web_address[i]);

}

string[] local_data_file =
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{
"aberporthdata.txt", "armaghdata.txt",
"ballypatrickdata.txt", "bradforddata.txt",
"braemardata.txt", "cambornedata.txt",
"cambridgedata.txt", "cardiffdata.txt",
"chivenordata.txt", "cwmystwythdata.txt",
"dunstaffnagedata.txt", "durhamdata.txt",
"eastbournedata.txt", "eskdalemuirdata.txt",
"heathrowdata.txt", "hurndata.txt",
"lerwickdata.txt", "leucharsdata.txt",
"lowestoftdata.txt", "manstondata.txt",
"nairndata.txt", "newtonriggdata.txt",
"oxforddata.txt", "paisleydata.txt",
"ringwaydata.txt", "rossonwyedata.txt",
"shawburydata.txt", "sheffielddata.txt",
"southamptondata.txt", "stornowaydata.txt",
"suttonboningtondata.txt", "tireedata.txt",
"valleydata.txt", "waddingtondata.txt",
"whitbydata.txt", "wickairportdata.txt",
"yeoviltondata.txt"

};

StreamWriter output_file;

for (i=0;i<n_sites;i++)
{

// create the web addresses

HttpWebRequest httpwreq = (HttpWebRequest)
WebRequest.Create(web_address[i]);

// set up connection

HttpWebResponse httpwresp = (HttpWebResponse)
httpwreq.GetResponse();

// set up input stream

StreamReader input_stream = new
StreamReader
(httpwresp.GetResponseStream(),Encoding.ASCII);

// read the whole file

input_string=input_stream.ReadToEnd();

// create the output file

output_file =
File.CreateText("before_"+local_data_file[i]);

output_file.WriteLine(input_string);

input_stream.Close();
output_file.Close();

}
return(0);

}}
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39.3 Example 2: The Sed Script and Command File
That Converts the Missing Values

Here is an extract from one of the Met Office station files.

yyyy mm tmax tmin af rain sun
degC degC days mm hours

1959 1 4.5 -1.9 20 --- 57.2
1959 2 7.3 0.9 15 --- 87.2
1959 3 8.4 3.1 3 --- 81.6
1959 4 10.8 3.7 1 --- 107.4
1959 5 15.8 5.8 1 --- 213.5
1959 6 16.9 8.2 0 --- 209.4
1959 7 18.5 9.5 0 --- 167.8
1959 8 19.0 10.5 0 --- 164.8
1959 9 18.3 5.9 0 --- 196.5
1959 10 14.8 7.9 1 --- 101.1
1959 11 8.8 3.9 3 --- 38.9
1959 12 7.2 2.5 3 --- 19.2
1960 1 6.3 0.6 15 --- 30.7
1960 2 5.3 -0.3 17 --- 50.2
1960 3 8.2 2.4 4 --- 73.9
1960 4 11.2 2.6 7 --- 146.8
1960 5 15.4 6.5 2 --- 153.9
1960 6 18.5 8.2 0 --- 225.6
1960 7 16.0 9.3 0 --- 111.3
1960 8 16.5 9.4 0 --- 119.2
1960 9 15.0 7.9 0 --- 120.3
1960 10 12.0 5.3 5 --- ---
1960 11 8.8 2.9 5 --- 37.3
1960 12 5.9 0.4 13 --- 33.9
1961 1 5.4 0.2 11 144.8 31.0
1961 2 8.7 2.9 2 112.5 45.2
1961 3 10.2 2.1 10 77.2 102.6
1961 4 11.9 5.0 1 130.7 83.9
1961 5 --- --- --- 66.3 173.7
1961 6 --- 7.4 --- 66.1 190.6
1961 7 16.7 8.2 0 141.1 149.2
1961 8 16.8 10.1 0 149.5 106.6
1961 9 17.4 9.3 0 134.8 79.7

The Met Office uses

---

to indicate a missing value. One way of processing the missing values is to convert
the

---

into a number that cannot occur in the data.
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We convert

--- to
-999

in this case study. We use the Unix sed command.
sed (stream editor) is a Unix utility that parses and transforms text, using a simple

programming language syntax. sed was developed from 1973 to 1974 by Lee E.
McMahon of Bell Labs, and is available today for most operating systems. sed was
based on the scripting features of the interactive editor ed. ed and vi are sometimes
the only editors one has access to on a Unix system. ed is the command driven
component of vi. sed was one of the earliest tools to support regular expressions.

The bibliography has some references to sed material.
We can then read the whole file in and adjust the statistics routines to ignore the

−999 data values.
Here is the sed command to do the conversion.

s/ ---/-999/g

Here is an example of the sed command to convert one of the Met Office data
files.

sed -f convert.sed before_aberporthdata.txt
> aberporthdata.txt

The -f means read the sed command from a file. sed will read from the file
before_aberporthdata.txt and write the converted output to the file aberporth-
data.txt

39.4 Example 3: The Program to Do the Statistics
Calculations

The complete solution is made up of three source files.
Here is the source code for the statistics module.

module statistics_module

implicit none

contains

subroutine calculate_month_averages(x, n, &
n_months, sum_x, average_x, index_by_month, &
month_names)

implicit none

real, dimension (:), intent (in) :: x



738 39 Handling Missing Data in Statistics Calculations

integer, intent (in) :: n
integer, intent (in) :: n_months

real, dimension (1:n_months), &
intent (inout) :: sum_x

real, dimension (1:n_months), &
intent (inout) :: average_x

integer, dimension (1:n), intent (in) :: &
index_by_month

character *9, dimension (1:n_months), &
intent (in) :: month_names

integer, dimension (1:n_months) :: n_missing
integer, dimension (1:n_months) :: n_actual

integer :: m

sum_x = 0.0
average_x = 0.0
n_missing = 0
n_actual = 0

do m = 1, n
if (x(m)>-98.9) then

sum_x(index_by_month(m)) &
= sum_x(index_by_month(m)) + x(m)

n_actual(index_by_month(m)) &
= n_actual(index_by_month(m)) + 1

else
n_missing(index_by_month(m)) &

= n_missing(index_by_month(m)) + 1
end if

end do

do m = 1, n_months
average_x(m) = sum_x(m)/(n_actual(m))

end do

print *, ’ Summary of actual missing’
print *, ’ values values’
do m = 1, n_months

print 100, month_names(m), n_actual(m), &
n_missing(m)

100 format (2x, a9, 2x, i6, 2x, i6)
end do

end subroutine calculate_month_averages
end module statistics_module

The following Fortran segment

do m = 1, n
if (x(m)>-98.9) then

sum_x(index_by_month(m)) &
= sum_x(index_by_month(m)) + x(m)

n_actual(index_by_month(m)) &
= n_actual(index_by_month(m)) + 1

else
n_missing(index_by_month(m)) &
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= n_missing(index_by_month(m)) + 1
end if

end do

is the code to skip processing of the missing data.
Here is the source code for the Met Office station module.

module met_office_station_module

implicit none

type station_type

integer :: year
integer :: month
real :: tmax
real :: tmin
integer :: af_days
real :: rainfall
real :: sunshine

end type station_type

! Number of stations

integer, parameter :: n_stations = 37

! Number of lines per station, read in later

integer, dimension (n_stations) :: nl = 0

! Site names

character *15, dimension (n_stations) :: &
site_name = (/ ’aberporth ’, &
’armagh ’, ’ballypatrick ’, &
’bradford ’, ’braemar ’, &
’camborne ’, ’cambridge ’, &
’cardiff ’, ’chivenor ’, &
’cwmystwyth ’, ’dunstaffnage ’, &
’durham ’, ’eastbourne ’, &
’eskdalemuir ’, ’heathrow ’, &
’hurn ’, ’lerwick ’, &
’leuchars ’, ’lowestoft ’, &
’manston ’, ’nairn ’, &
’newtonrigg ’, ’oxford ’, &
’paisley ’, ’ringway ’, &
’rossonwye ’, ’shawbury ’, &
’sheffield ’, ’southampton ’, &
’stornoway ’, ’suttonbonington’, &
’tiree ’, ’valley ’, &
’waddington ’, ’whitby ’, &
’wickairport ’, ’yeovilton ’ /)

! Station data file names

character *23, dimension (n_stations) :: &
station_data_file_name = (/ &
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’aberporthdata.txt ’, &
’armaghdata.txt ’, &
’ballypatrickdata.txt ’, &
’bradforddata.txt ’, &
’braemardata.txt ’, &
’cambornedata.txt ’, &
’cambridgedata.txt ’, &
’cardiffdata.txt ’, &
’chivenordata.txt ’, &
’cwmystwythdata.txt ’, &
’dunstaffnagedata.txt ’, &
’durhamdata.txt ’, &
’eastbournedata.txt ’, &
’eskdalemuirdata.txt ’, &
’heathrowdata.txt ’, &
’hurndata.txt ’, &
’lerwickdata.txt ’, &
’leucharsdata.txt ’, &
’lowestoftdata.txt ’, &
’manstondata.txt ’, &
’nairndata.txt ’, &
’newtonriggdata.txt ’, &
’oxforddata.txt ’, &
’paisleydata.txt ’, &
’ringwaydata.txt ’, &
’rossonwyedata.txt ’, &
’shawburydata.txt ’, &
’sheffielddata.txt ’, &
’southamptondata.txt ’, &
’stornowaydata.txt ’, &
’suttonboningtondata.txt’, &
’tireedata.txt ’, &
’valleydata.txt ’, &
’waddingtondata.txt ’, &
’whitbydata.txt ’, &
’wickairportdata.txt ’, &
’yeoviltondata.txt ’ /)

! cwmystwyth 1959 - 2011
! ringway 1946 - 2004
! southampton 1855 - 2000

! default header line count

integer, dimension (1:n_stations) :: hl = 7

integer, parameter :: n_months = 12

character *9, dimension (1:n_months) :: &
month_names = (/ ’January ’, ’February ’, &
’March ’, ’April ’, ’May ’, &
’June ’, ’July ’, ’August ’, &
’September’, ’October ’, ’November ’, &
’December ’ /)

contains

subroutine initialise_station_data()
implicit none
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integer :: i

! Braemar, Lowestoft, Nairn, Southampton,
! Whitby
! have 8 header lines, as the position of
! the station moved.

hl(5) = 8
hl(19) = 8
hl(21) = 8
hl(29) = 8
hl(35) = 8

! Next read in the current number of
! lines per station
! This changes as the data is collected,
! and when you
! run the C# program that gets the files.
!
! I generate this information using wc on the
! data files.

open (unit=100, file=’line_count.txt’,&
status=’old’)

do i = 1, n_stations
read (100, 100) nl(i)

100 format (i7)
nl(i) = nl(i) - hl(i)
print 110, station_data_file_name(i), &

nl(i)
110 format (’ Station ’, a30, ’ = ’, i6, &

’ records’)
end do

close (100)

end subroutine initialise_station_data

subroutine skip_header_lines(j)

implicit none
integer, intent (in) :: j
integer :: i

! Skip header lines

do i = 1, hl(j)
read (unit=100, fmt=’(a)’)

end do

end subroutine skip_header_lines

end module met_office_station_module

Here is the source code for the driving program.

include ’ch3903_statistics_module.f90’
include ’ch3903_met_office_station_module.f90’
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program ch3903

use met_office_station_module
use statistics_module

implicit none

! met office data user defined type

type (station_type), dimension (:), &
allocatable :: station_data

! Temporary variables used on the read

integer :: year
integer :: month
real :: tmax
real :: tmin
integer :: af_days
real :: rainfall
real :: sunshine

! Currently we only calculate the
! rainfall sum and averages.

! real, dimension (1:n_months) :: sum_tmax
! real, dimension (1:n_months) :: sum_tmin
! real, dimension (1:n_months) :: sum_af_days

real, dimension (1:n_months) :: sum_rainfall
! real, dimension (1:n_months) :: sum_sunshine

! real, dimension (1:n_months) :: average_tmax
! real, dimension (1:n_months) :: average_tmin
! real, dimension (1:n_months) ::
! average_af_days

real, dimension (1:n_months) :: &
average_rainfall

! real, dimension (1:n_months) ::
! average_sunshine

! Table to hold the monthly rainfall averages
! for all stations.

real, dimension (1:n_months, 1:n_stations) :: &
rainfall_table = 0

integer :: n_years

integer :: i, j

call initialise_station_data()

! Process each station

do j = 1, n_stations

print *, ’ ’
print *, ’ Processing ’, &
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station_data_file_name(j)
print *, ’ ’

open (unit=100,&
file=station_data_file_name(j),&
status=’old’)

! skip the header lines before starting to
! read the data

call skip_header_lines(j)

! the number of observations at each station
! is stored in the nl array.

allocate (station_data(1:nl(j)))

! Read in the data for each station

do i = 1, nl(j)
read (unit=100, fmt=100) year, month, &

tmax, tmin, af_days, rainfall, sunshine
100 format (3x, i4, 2x, i2, 2x, f5.1, 3x, &

f5.1, 3x, i5, 2x, f6.1, 1x, f6.1)
station_data(i) = station_type(year, &

month, tmax, tmin, af_days, rainfall, &
sunshine)

end do

close (100)

! Do the monthly average calculations
! for each station

call calculate_month_averages(station_data% &
rainfall, nl(j), n_months, sum_rainfall, &
average_rainfall, station_data%month, &
month_names)

n_years = station_data(nl(j))%year - &
station_data(1)%year + 1

print *, ’ ’
print *, ’ Start date ’, station_data(1)% &

year, ’ ’, station_data(1)%month
print *, ’ ’
print *, ’ Rainfall monthly averages over’
print 110, n_years

110 format (’ ˜ ’, i5, &
’ years mm ins’)

do i = 1, n_months
print 120, month_names(i), &

average_rainfall(i), (average_rainfall(i &
)/25.4)

120 format (2x, a9, 8x, f7.2, 2x, f5.2)
end do
print 130, sum(average_rainfall), &

(sum(average_rainfall)/25.4)
130 format (’ Annual rainfall’, /, &
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’ average ’, f8.2, 2x, f5.2)
print *, ’ ’
print *, ’ End date ’, station_data(nl(j))% &

year, ’ ’, station_data(nl(j))%month

rainfall_table(1:n_months, j) &
= average_rainfall

! Deallocate the arrays

deallocate (station_data)

! move on to next station

end do

print *, ’ ’
print 140, site_name(1:n_stations)

140 format (37(2x,a7))
print *, ’ ’

do i = 1, n_months
print 150, rainfall_table(i, 1:n_stations)/ &

25.4
150 format (37(2x,f7.2))

end do

end program ch3903

Here are the required files.

line_count.txt

Here is some sample output from running the program. It is a subset of the complete
output, which can be found on our web site.

Station aberporthdata.txt = 906 records
Station armaghdata.txt = 1962 records
Station ballypatrickdata.txt = 660 records
Station bradforddata.txt = 1302 records

... lines deleted

Processing aberporthdata.txt

Summary of actual missing
values values

January 76 0
February 76 0
March 76 0
April 76 0
May 76 0
June 76 0
July 75 0
August 75 0
September 75 0
October 75 0
November 75 0
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December 75 0

Start date 1941 1

Rainfall monthly averages over
˜ 76 years mm ins
January 90.71 3.57
February 62.75 2.47
March 59.25 2.33
April 53.98 2.13
May 57.99 2.28
June 57.23 2.25
July 61.94 2.44
August 73.03 2.88
September 79.43 3.13
October 104.40 4.11
November 107.61 4.24
December 102.01 4.02
Annual rainfall
average 910.35 35.84

End date 2016 6

... lines deleted

Processing ballypatrickdata.txt

Summary of actual missing
values values

January 28 27
February 28 27
March 28 27
April 28 27
May 28 27
June 28 27
July 27 28
August 27 28
September 27 28
October 26 29
November 28 27
December 27 28

Start date 1961 7

Rainfall monthly averages over
˜ 56 years mm ins
January 133.76 5.27
February 108.66 4.28
March 95.51 3.76
April 87.12 3.43
May 81.26 3.20
June 87.10 3.43
July 90.06 3.55
August 104.44 4.11
September 98.58 3.88
October 148.92 5.86
November 146.29 5.76
December 146.13 5.75
Annual rainfall
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average 1327.85 52.28

End date 2016 6

... lines deleted

... following lines truncated

... to fit page

aberpor armagh ballypa bradfor

3.57 3.00 5.27 3.60
2.47 2.25 4.28 2.78
2.33 2.27 3.76 2.45
2.13 2.18 3.43 2.28
2.28 2.35 3.20 2.34
2.25 2.45 3.43 2.40
2.44 2.82 3.55 2.61
2.88 3.23 4.11 3.01
3.13 2.71 3.88 2.66
4.11 3.20 5.86 3.16
4.24 2.90 5.76 3.48
4.02 3.19 5.75 3.68

39.5 Example 4: Met Office Utility Program

The complete solution is made up of two source files.
Here is the source for the site description module.

module site_description_module

type site_description
character *15 :: site_name = ’ ’
character *7 :: easting_1 = ’ ’
character *7 :: northing_1 = ’ ’
real :: lat_1 = 0.0
real :: long_1 = 0.0
integer :: height_1 = 0
character *7 :: easting_2 = ’ ’
character *7 :: northing_2 = ’ ’
real :: lat_2 = 0.0
real :: long_2 = 0.0
integer :: height_2 = 0
integer :: start_date_month_1 = 0
integer :: start_date_year_1 = 0
integer :: end_date_month_1 = 0
integer :: end_date_year_1 = 0
integer :: start_date_month_2 = 0
integer :: start_date_year_2 = 0
integer :: end_date_month_2 = 0
integer :: end_date_year_2 = 0

end type site_description

end module site_description_module
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Here is the source for the driving program.

include ’ch3904_site_description_module.f90’

program ch3904

use site_description_module

implicit none

integer, parameter :: n_stations = 37

! site names

character *15, dimension (n_stations) :: &
site_name = (/ ’aberporth ’, &
’armagh ’, ’ballypatrick ’, &
’bradford ’, ’braemar ’, &
’camborne ’, ’cambridge ’, &
’cardiff ’, ’chivenor ’, &
’cwmystwyth ’, ’dunstaffnage ’, &
’durham ’, ’eastbourne ’, &
’eskdalemuir ’, ’heathrow ’, &
’hurn ’, ’lerwick ’, &
’leuchars ’, ’lowestoft ’, &
’manston ’, ’nairn ’, &
’newtonrigg ’, ’oxford ’, &
’paisley ’, ’ringway ’, &
’rossonwye ’, ’shawbury ’, &
’sheffield ’, ’southampton ’, &
’stornoway ’, ’suttonbonington’, &
’tiree ’, ’valley ’, &
’waddington ’, ’whitby ’, &
’wickairport ’, ’yeovilton ’ /)

! Braemar, Lowestoft, Nairn,
! Southampton, Whitby
! have 8 header lines, as the position
! of the station moved.

type (site_description), dimension (1: &
n_stations) :: site_details

integer :: i

open (unit=10, &
file=’location_line.txt’,&
status=’old’)

do i = 1, n_stations

site_details(i)%site_name = site_name(i)
read (unit=10, fmt=100) site_details(i) &

%easting_1, site_details(i)%northing_1, &
site_details(i)%lat_1, site_details(i)% &
long_1, site_details(i)%height_1

100 format (10x, a6, 2x, a7, 7x, f6.3, 5x, f6.3, &
2x, i3)

end do
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close (10)

open (unit=20,&
file=’third_line.txt’,&
status=’old’)

! Update Braemar

! print *,’ Braemar’

read (unit=20, fmt=110) site_details(5) &
%easting_2, site_details(5)%northing_2, &
site_details(5)%lat_2, site_details(5)% &
long_2, site_details(5)%height_2

110 format (2x, a6, 2x, a6, 7x, f6.3, 5x, f6.3, &
2x, i3)

site_details(5)%end_date_month_1 = 4
site_details(5)%end_date_year_1 = 2005
site_details(5)%start_date_month_2 = 8
site_details(5)%start_date_year_2 = 2005

! Update Lowestoft

! print *,’ Lowestoft’

read (unit=20, fmt=110) site_details(19) &
%easting_2, site_details(19)%northing_2, &
site_details(19)%lat_2, site_details(19)% &
long_2, site_details(19)%height_2

site_details(19)%end_date_month_1 = 8
site_details(19)%end_date_year_1 = 2007
site_details(19)%start_date_month_2 = 9
site_details(19)%start_date_year_2 = 2007

! Update Nairn

! print *,’ Nairn’

read (unit=20, fmt=110) site_details(21) &
%easting_2, site_details(21)%northing_2, &
site_details(21)%lat_2, site_details(21)% &
long_2, site_details(21)%height_2

site_details(21)%end_date_month_1 = 12
site_details(21)%end_date_year_1 = 1997
site_details(21)%start_date_month_2 = 1
site_details(21)%start_date_year_2 = 1998

! Update Southampton

! print *,’ Southampton’

read (unit=20, fmt=110) site_details(29) &
%easting_2, site_details(29)%northing_2, &
site_details(29)%lat_2, site_details(29)% &
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long_2, site_details(29)%height_2

site_details(29)%end_date_month_1 = 12
site_details(29)%end_date_year_1 = 1969
site_details(29)%start_date_month_2 = 1
site_details(29)%start_date_year_2 = 1970

! Update Whitby

! print *,’ Whitby’

read (unit=20, fmt=110) site_details(35) &
%easting_2, site_details(35)%northing_2, &
site_details(35)%lat_2, site_details(35)% &
long_2, site_details(35)%height_2

site_details(35)%end_date_month_1 = 12
site_details(35)%end_date_year_1 = 1999
site_details(35)%start_date_month_2 = 1
site_details(35)%start_date_year_2 = 2000

close (20)

! Start dates

open (unit=30, &
file=’first_data_line.txt’,&
status=’old’)

do i = 1, n_stations
read (30, fmt=120) site_details(i) &

%start_date_year_1, site_details(i)% &
start_date_month_1

120 format (3x, i4, 2x, i2)
end do

close (30)

! End dates

open (unit=40, &
file=’end_data_line.txt’,&
status=’old’)

do i = 1, n_stations
select case (i)
case (5, 19, 21, 29, 35)

read (40, fmt=130) site_details(i) &
%end_date_year_2, site_details(i)% &
end_date_month_2

case default
read (40, fmt=130) site_details(i) &

%end_date_year_1, site_details(i)% &
end_date_month_1

130 format (3x, i4, 2x, i2)
end select

end do
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close (40)

do i = 1, n_stations
print 140, site_details(i)

140 format (a15, 2x, a7, 2x, a7, 2x, f6.3, 2x, &
f6.3, 2x, i3, 2x, a7, 2x, a7, f6.3, 2x, &
f6.3, 2x, i3, 4(2x,i2,2x,i4))

end do

end program ch3904

Here are the required files.

location_line.txt
third_line.txt
first_data_line.txt
end_data_line.txt

Here is sample output. It has been reformatted to fit the printed page.

aberporth 224100 252100 52.139 -4.570 133
0.000 0.000 0 1 1941 6 2016 0 0 0 0

armagh 287800 345800 54.352 -6.649 62
0.000 0.000 0 1 1853 6 2016 0 0 0 0

ballypatrick 317600 438600 55.181 -6.153 156
0.000 0.000 0 7 1961 6 2016 0 0 0 0

bradford 414900 435200 53.813 -1.772 134
0.000 0.000 0 1 1908 6 2016 0 0 0 0

braemar 315200 791400 0.000 0.000 339
315200 791900 57.006 -3.396 327 1

1959 4 2005 8 2005 6 2016
camborne 162700 40700 50.218 -5.327 87

0.000 0.000 0 9 1978 6 2016 0 0 0 0
cambridge 543500 260600 52.245 0.102 26

0.000 0.000 0 1 1959 6 2016 0 0 0 0
cardiff 317600 177300 51.488 -3.187 9

0.000 0.000 0 9 1977 6 2016 0 0 0 0
chivenor 249600 134400 51.089 -4.147 6

0.000 0.000 0 1 1951 6 2016 0 0 0 0
cwmystwyth 277300 274900 52.358 -3.802 301

0.000 0.000 0 1 1959 3 2011 0 0 0 0
dunstaffnage 188100 734000 56.451 -5.439 3

0.000 0.000 0 6 1971 6 2016 0 0 0 0
durham 426700 541500 54.768 -1.585 102

0.000 0.000 0 1 1880 6 2016 0 0 0 0
eastbourne 561100 98300 50.762 0.285 7

0.000 0.000 0 1 1959 6 2016 0 0 0 0
eskdalemuir 323400 602600 55.311 -3.206 242

0.000 0.000 0 1 1911 6 2016 0 0 0 0
heathrow 507800 176700 51.479 -0.449 25

0.000 0.000 0 1 1948 6 2016 0 0 0 0
hurn 411700 97800 50.779 -1.835 10

0.000 0.000 0 1 1957 6 2016 0 0 0 0
lerwick 445300 1139700 60.139 -1.183 82

0.000 0.000 0 12 1930 6 2016 0 0 0 0
leuchars 346800 720900 56.377 -2.861 10

0.000 0.000 0 1 1957 6 2016 0 0 0 0
lowestoft 654300 294600 0.000 0.000 25
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653000 293800 52.483 1.727 18 1
1914 8 2007 9 2007 6 2016
manston 632300 166100 51.346 1.337 49

0.000 0.000 0 7 1934 6 2016 0 0 0 0
nairn 286900 856800 0.000 0.000 8

291200 857300 57.593 -3.821 23 1
1931 12 1997 1 1998 6 2016
newtonrigg 349300 530800 54.670 -2.786 169

0.000 0.000 0 1 1959 6 2016 0 0 0 0
oxford 450900 207200 51.761 -1.262 63

0.000 0.000 0 1 1853 6 2016 0 0 0 0
paisley 247800 664200 55.846 -4.430 32

0.000 0.000 0 1 1959 6 2016 0 0 0 0
ringway 381400 384400 53.356 -2.279 69

0.000 0.000 0 1 1946 10 2004 0 0 0 0
rossonwye 359800 223800 51.911 -2.584 67

0.000 0.000 0 12 1930 6 2016 0 0 0 0
shawbury 355200 322100 52.794 -2.663 72

0.000 0.000 0 1 1946 6 2016 0 0 0 0
sheffield 433900 387200 53.381 -1.490 131

0.000 0.000 0 1 1883 6 2016 0 0 0 0
southampton 442000 112500 0.000 0.000 20

441600 111200 50.898 -1.408 3 1
1855 12 1969 1 1970 3 2000
stornoway 146400 933200 58.214 -6.318 15

0.000 0.000 0 7 1873 6 2016 0 0 0 0
suttonbonington 450700 325900 52.833 -1.250 48

0.000 0.000 0 1 1959 6 2016 0 0 0 0
tiree 99800 744800 56.500 -6.880 12

0.000 0.000 0 1 1928 6 2016 0 0 0 0
valley 230800 375800 53.252 -4.535 10

0.000 0.000 0 12 1930 6 2016 0 0 0 0
waddington 498800 365300 53.175 -0.522 68

0.000 0.000 0 1 1947 6 2016 0 0 0 0
whitby 490400 511400 0.000 0.000 60

489100 510400 54.481 -0.624 41 9
1961 12 1999 1 2000 6 2016
wickairport 336500 952200 58.454 -3.088 36

0.000 0.000 0 1 1914 6 2016 0 0 0 0
yeovilton 355100 123200 51.006 -2.641 20

0.000 0.000 0 9 1964 6 2016 0 0 0 0
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39.7 Problem

39.1 Compile and run the examples in this chapter.



Chapter 40
Converting from Fortran 77

Twas brillig, and the slithy toves did gyre and gimble in the
wabe; All mimsy were the borogoves, And the mome raths
outgrabe.

Lewis Carroll

Aim
This chapter looks at some of the options available when working with older Fortran
code.

40.1 Introduction

This chapter looks at converting Fortran 77 code to a modern Fortran style.
The aim is to provide the Fortran 77 programmer (and in particular the person

with legacy code) with some simple guidelines for conversion.
The first thing that one must have is a thorough understanding of the newer, better

language features of Fortran. It is essential that the material in the earlier chapters of
this book are covered, and some of the problems attempted. This will provide a feel
for modern Fortran.

The second thing one must have is a thorough understanding of the language
constructs used in your legacy code. Use should be made of the compiler docu-
mentation for whatever Fortran 77 compiler you are using, as this will provide the
detailed (often system specific) information required. The recommendations below
are therefore brief.

It is possible to move gradually from Fortran 77 to modern Fortran. In many
cases existing code can be quite simply recompiled by a suitable choice of compiler
options. This enables us to mix and match old and new in one program. This process
is likely to highlight nonstandard language features in your old code. There will
inevitably be some problems here.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_40
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The standard identifies two kinds of decremented features; deleted and obsoles-
cent. In the long-term these features are candidates for removal from future standards.
These deleted and obsolescent features may well be supported by compilers even
though they have been removed from the standard.

The following information is taken from the Fortran 2018 standard.

40.2 Deleted Features from Fortran 90

These deleted features are those features of Fortran 90 that were redundant and
considered largely unused. The following Fortran 90 features are not required.

• (1) Real and double precision DO variables.
In Fortran 77 and Fortran 90, a DO variable was allowed to be of type real or
double precision in addition to type integer; this has been deleted. A similar result
can be achieved by using a DO construct with no loop control and the appropriate
exit test.

• (2) Branching to an END IF statement from outside its block.
In Fortran 77 and Fortran 90, it was possible to branch to an END IF statement from
outside the IF construct; this has been deleted. A similar result can be achieved
by branching to a CONTINUE statement that is immediately after the END IF
statement.

• (3) PAUSE statement.
The PAUSE statement, provided in Fortran 66, Fortran 77, and Fortran 90, has been
deleted. A similar result can be achieved by writing a message to the appropriate
unit, followed by reading from the appropriate unit.

• (4) ASSIGN and assigned GO TO statements, and assigned format specifiers.
The ASSIGN statement and the related assigned GO TO statement, provided in
Fortran 66, Fortran 77, and Fortran 90, have been deleted. Further, the ability to
use an assigned integer as a format, provided in Fortran 77 and Fortran 90, has
been deleted. A similar result can be achieved by using other control constructs
instead of the assigned GO TO statement and by using a default character variable
to hold a format specification instead of using an assigned integer.

• (5) H edit descriptor.
In Fortran 77 and Fortran 90, there was an alternative form of character string edit
descriptor, which had been the only such form in Fortran 66; this has been deleted.
A similar result can be achieved by using a character string edit descriptor.

• (6) Vertical format control.
In Fortran 66, Fortran 77, Fortran 90, and Fortran 95 formatted output to certain
units resulted in the first character of each record being interpreted as controlling
vertical spacing. There was no standard way to detect whether output to a unit
resulted in this vertical format control, and no way to specify that it should be
applied; this has been deleted. The effect can be achieved by post-processing a
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formatted file. See ISO/IEC 1539:1991 for detailed rules of how these deleted
features worked.

40.3 Deleted Features from Fortran 2008

These deleted features are those features of Fortran 2008 that were redundant and
considered largely unused. The following Fortran 2008 features are not required.

• (1) Arithmetic IF statement.
The arithmetic IF statement is incompatible with ISO/IEC/IEEE 60559:2011 and
necessarily involves the use of statement labels; statement labels can hinder opti-
mization, and make code hard to read and maintain. Similar logic can be more
clearly encoded using other conditional statements.

• (2) Nonblock DO construct
The nonblock forms of the DO loop were confusing and hard to maintain. Shared
termination and dual use of labeled action statements as do termination and branch
targets were especially error11 prone.

40.4 Obsolescent Features

The obsolescent features are those features of Fortran 90 that were redundant and
for which better methods were available in Fortran 90. Subclause 4.4.3 describes the
nature of the obsolescent features. The obsolescent features in this document are the
following.

• (1) Alternate return
• (2) Computed GO TO
• (3) Statement functions
• (4) DATA statements amongst executable statements
• (5) Assumed length character functions
• (6) Fixed form source
• (7) CHARACTER* form of CHARACTER declaration
• (8) ENTRY statements
• (9) Label form of DO statement
• (10) COMMONand EQUIVALENCE statements, and the block data program unit
• (11) Specific names for intrinsic functions
• (12) FORALL construct and statement
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40.4.1 Alternate Return

An alternate return introduces labels into an argument list to allow the called proce-
dure to direct the execution of the caller upon return. The same effect can be achieved
with a return code that is used in a SELECT CASE construct on return. This avoids
an irregularity in the syntax and semantics of argument association. For example,

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

can be replaced by

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)
SELECT CASE (RETURN_CODE)
CASE (1)
...
CASE (2)
...
CASE (3)
...
CASE DEFAULT
...
END SELECT

40.4.2 Computed GO TO Statement

The computed GO TO statement has been superseded by the SELECT CASE con-
struct, which is a generalized, easier to use, and clearer means of expressing the same
computation.

40.4.3 Statement Functions

Statement functions are subject to a number of nonintuitive restrictions and are a
potential source of error because their syntax is easily confused with that of an
assignment statement. The internal function is a more generalized form of the state-
ment function and completely supersedes it.

40.4.4 DATA Statements Among Executables

The statement ordering rules allow DATA statements to appear anywhere in a pro-
gram unit after the specification statements. The ability to position DATA state-
ments amongst executable statements is very rarely used, unnecessary, and a potential
source of error.
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40.4.5 Assumed Character Length Functions

Assumed character length for functions is an irregularity in the language in that
elsewhere in Fortran the philosophy is that the attributes of a function result depend
only on the actual arguments of the invocation and on any data accessible by the
function through host or use association. Some uses of this facility can be replaced
with an automatic character length function, where the length of the function result
is declared in a specification expression. Other uses can be replaced by the use of
a subroutine whose arguments correspond to the function result and the function
arguments. Note that dummy arguments of a function can have assumed character
length.

40.4.6 Fixed Form Source

Fixed form source was designed when the principal machine-readable input medium
for new programs was punched cards. Now that new and amended programs are
generally entered via keyboards with screen displays, it is an unnecessary overhead,
and is potentially error-prone, to have to locate positions 6, 7, or 72 on a line. Free
form source was designed expressly for this more modern technology. It is a simple
matter for a software tool to convert from fixed to free form source.

40.4.7 CHARACTER* Form of CHARACTER Declaration

In addition to the CHARACTER*char-length form introduced in Fortran 77, Fortran
90 provided the CHAR3 ACTER([ LEN = ] type-param-value) form. The older form
(CHARACTER*char-length) is redundant.

40.4.8 ENTRY Statements

ENTRY statements allow more than one entry point to a subprogram, facilitating
sharing of data items and executable statements local to that subprogram. This can
be replaced by amodule containing the (private) data items, with a module procedure
for each entry point and the shared code in a private module procedure.



758 40 Converting from Fortran 77

40.4.9 Label DO Statement

The label in the DO statement is redundant with the construct name. Furthermore,
the label allows unrestricted branches and, for its main purpose (the target of a
conditional branch to skip the rest of the current iteration), is redundant with the
CYCLE statement, which is clearer.

40.4.10 COMMON and EQUIVALENCE Statements
and the Block Data Program Unit

Common blocks are error-prone and have largely been superseded by modules.
EQUIVALENCE similarly is error-prone. Whilst use of these statements was invalu-
able prior to Fortran 90 they are now redundant and can inhibit performance. The
block data program unit exists only to serve common blocks and hence is also
redundant.

40.4.11 Specific Names for Intrinsic Functions

The specific names of the intrinsic functions are often obscure and hinder portability.
They have been redundant since Fortran 90. Use generic names for references to
intrinsic procedures.

40.4.12 FORALL Construct and Statement

The FORALL construct and statement were added to the language in the expectation
that they would enable highly efficient execution, especially on parallel processors.
However, experience indicates that they are too complex and have too many restric-
tions for compilers to take advantage of them. They are redundant with the DO
CONCURRENT construct, and many of the manipulations for which they might
be used can be done more effectively using pointers, especially using pointer rank
remapping.

40.5 Better Alternatives

Below we are looking at the new features of the Fortran standard, and how we can
replace our current coding practices with the better facilities that now exist.
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• double precision—use themoduleprecision_modulewhichwas introduced
in Chap.21 and used subsequently throughout the book.

• fixed format — use free format
• implicit typing — use implicit none
• block data — use modules
• common statement — use modules
• equivalence — Invariably the use of this feature requires considerable system
specific knowledge. There will be cases where there have been extremely good
reasons why this feature has been used, normally efficiency related. However with
the rapid changes taking place in the power and speed of hardware these reasons
are diminishing.

• assumed-size/explicit-shape dummy array arguments — if a dummy argument is
assumed-size or explicit-shape (the only ones available inFortran77) then the ranks
of the actual argument and the associated argument don’t have to be the same.With
modern Fortran arrays are now objects instead of a linear sequence of elements, as
was the case with Fortran 77, and now for array arguments the fundamental rule
is that actual and dummy arguments have the same rank and same extents in each
dimension, i.e., the same shape, and this is done using assumed-shape dummy
array arguments. An explicit interface is mandatory for assumed-shape arrays.

• entry statement — use module plus use statement.
• statement functions — use internal function, see Chap. 12, and examples later this
chapter.

• computed goto — use case statement, see Chap.13.
• alternate return — use error flags on calling routine.
• external statement for dummy procedure arguments - use modules and interface
blocks. See the Runge-Kutta-Merson example in Chap. 26.

Use explicit interfaces everywhere, i.e. use module procedures.
This also provides argument checking and other benefits.

40.6 Free and Commercial Conversion Tools

At the time of writing there are several options. Have a look at our Fortran resource
file:

https://www.fortranplus.co.uk/

for up to date information.
Here are brief details of the tools currently available.
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40.6.1 Convert

Fortran 77 to Fortran 90 converter by Mike Metcalf.

http://rhymneyconsulting.co.uk/fortran/convert.f90

Here are some of the comments from the program.

! A program to convert FORTRAN 77 source form to Fortran 90 source *
! form. It also formats the code by indenting the bodies of DO-loops *
! and IF-blocks by ISHIFT columns. Statement keywords are *
! followed if necessary by a blank, and blanks within tokens are *
! are suppressed; this handling of blanks is optional. *
! If a CONTINUE statement terminates a single DO loop, it is *
! replaced by END DO. *
! Procedure END statements have the procedure name added, if *
! blanks are handled. *
! Statements like INTEGER*2 are converted to INTEGER(2), if blanks *
! are handled. Depending on the target processor, a further global *
! edit might be required (e.g. where 2 bytes correspond to KIND=1). *
! Typed functions and assumed-length character specifications are *
! treated similarly. The length specification *4 is removed for all *
! data types except CHARACTER, as is *8 for COMPLEX. This *
! treatment of non-standard type declarations includes any *
! non-standard IMPLICIT statements. *
! Optionally, interface blocks only may be produced; this requires *
! blanks processing to be requested. The interface blocks are *
! compatible with both the old and new source forms. *

40.6.2 Forcheck

A Fortran analyser and programming aid.

http://www.forcheck.nl/

40.6.3 Nag Compiler Polish Tool

Here is the home page for the Nag compiler.

https://www.nag.co.uk/nag-compiler

Here is a brief description of the tools.

In addition the Compiler provides software tools to: convert fixed-format code to free-
format; pretty print (“polish”) code; list dependency information of modules and include
files; produce callgraphs; and generate explicit procedure interfaces as module or INCLUDE
files.
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40.6.4 Plusfort

Fortran 77 to Fortran 90 converter.

https://www.polyhedron.com/

40.7 Example 1: Using the plusFORT Tool Suite
from Polyhedron Software

Below is an example from their site that looks at the same subroutine in Fortran 66,
77 and 90 styles.

40.7.1 Original Fortran 66

This subroutine picks off digits from an integer and branches depending on their
value.

SUBROUTINE OBACT(TODO)
INTEGER TODO,DONE,IP,BASE
COMMON /EG1/N,L,DONE
PARAMETER (BASE=10)

13 if(TODO.EQ.0) GO TO 12
I=MOD(TODO,BASE)
TODO=TODO/BASE
GO TO(62,42,43,62,404,45,62,62,62),I
GO TO 13

42 CALL COPY
GO TO 127

43 CALL MOVE
GO TO 144

404 N=-N
44 CALL DELETE

GO TO 127
45 CALL print

GO TO 144
62 CALL BADACT(i)

GO TO 12
127 L=L+N
144 DONE=DONE+1

CALL RESYNC
GO TO 13

12 RETURN
END
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40.7.2 Fortran 77 Version

In addition to restructuring, SPAG has renamed some variables, removed the unused
variable IP, inserted declarations, and used upper and lower case to distinguish dif-
ferent types of variable:

SUBROUTINE OBACT(TODO)
IMPLICIT NONE

C*** START OF DECLARATIONS INSERTED BY SPAG
INTEGER ACT , LENGTH , NCHAR

C*** END OF DECLARATIONS INSERTED BY SPAG
INTEGER TODO , DONE , BASE
COMMON /EG1 / NCHAR , LENGTH , DONE
PARAMETER (BASE=10)

100 IF ( TODO.NE.0 ) THEN
ACT = MOD(TODO,BASE)
TODO = TODO/BASE
IF ( ACT.EQ.1 .OR. ACT.EQ.4 .OR.

& ACT.EQ.7 .OR. ACT.EQ.8 .OR.
& ACT.EQ.9 ) THEN

CALL BADACT(ACT)
GOTO 200

ELSEIF ( ACT.EQ.2 ) THEN
CALL COPY
LENGTH = LENGTH + NCHAR

ELSEIF ( ACT.EQ.3 ) THEN
CALL MOVE

ELSEIF ( ACT.EQ.5 ) THEN
NCHAR = -NCHAR
CALL DELETE
LENGTH = LENGTH + NCHAR

ELSEIF ( ACT.EQ.6 ) THEN
CALL PRINT

ELSE
GOTO 100

ENDIF
DONE = DONE + 1
CALL RESYNC
GOTO 100

ENDIF
200 RETURN

END

40.7.3 Fortran 90 Version

SPAG has used do while, select case, exit and cycle. No GOTOs or
labels remain.

subroutine obact(todo)
implicit none

!*** start of declarations inserted by spag
integer act , length , nchar

!*** end of declarations inserted by spag
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integer todo , done , base
common /eg1 / nchar , length , done
parameter (base=10)
do while ( todo.ne.0 )

act = mod(todo,base)
todo = todo/base
select case (act)
case (1,4,7,8,9)

call badact(act)
exit

case (2)
call copy
length = length + nchar

case (3)
call move

case (5)
nchar = -nchar
call delete
length = length + nchar

case (6)
call print

case default
cycle

end select
done = done + 1
call resync

enddo
return
end

This tool suite can also be used in the maintenance of code during development.

40.8 Example 2: Leaving as Fortran 77

The simplest option if the function or subroutine works and does not need updating
is to leave it as Fortran 66 or 77 fixed source form. The Netlib routines in Chap.36
are a good example of this. They are

dsort.f
ssort.f
isort.f

We had to make some changes to get them to compile, and the changes are
documented in the earlier chapter.
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40.9 Example 3: Simple Conversion to Fortran 90

The Metcalf convert program can be used to simply convert from Fortran 77 to
Fortran 90.

Using this utility on the Netlib dsort.f Fortran 77 code will produce a Fortran 90
equivalent. Here is the converted code.

SUBROUTINE DSORT (DX, DY, N, KFLAG)
!***BEGIN PROLOGUE DSORT
!***PURPOSE Sort an array and optionally make the same interchanges in
! an auxiliary array. The array may be sorted in increasing
! or decreasing order. A slightly modified QUICKSORT
! algorithm is used.
!***LIBRARY SLATEC
!***CATEGORY N6A2B
!***TYPE DOUBLE PRECISION (SSORT-S, DSORT-D, ISORT-I)
!***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
!***AUTHOR Jones, R. E., (SNLA)
! Wisniewski, J. A., (SNLA)
!***DESCRIPTION
!
! DSORT sorts array DX and optionally makes the same interchanges in
! array DY. The array DX may be sorted in increasing order or
! decreasing order. A slightly modified quicksort algorithm is used.
!
! Description of Parameters
! DX - array of values to be sorted (usually abscissas)
! DY - array to be (optionally) carried along
! N - number of values in array DX to be sorted
! KFLAG - control parameter
! = 2 means sort DX in increasing order and carry DY along.
! = 1 means sort DX in increasing order (ignoring DY)
! = -1 means sort DX in decreasing order (ignoring DY)
! = -2 means sort DX in decreasing order and carry DY along.
!
!***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
! for sorting with minimal storage, Communications of
! the ACM, 12, 3 (1969), pp. 185-187.
!***ROUTINES CALLED XERMSG
!***REVISION HISTORY (YYMMDD)
! 761101 DATE WRITTEN
! 761118 Modified to use the Singleton quicksort algorithm. (JAW)
! 890531 Changed all specific intrinsics to generic. (WRB)
! 890831 Modified array declarations. (WRB)
! 891009 Removed unreferenced statement labels. (WRB)
! 891024 Changed category. (WRB)
! 891024 REVISION DATE from Version 3.2
! 891214 Prologue converted to Version 4.0 format. (BAB)
! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
! 901012 Declared all variables; changed X,Y to DX,DY; changed
! code to parallel SSORT. (M. McClain)
! 920501 Reformatted the REFERENCES section. (DWL, WRB)
! 920519 Clarified error messages. (DWL)
! 920801 Declarations section rebuilt and code restructured to use
! IF-THEN-ELSE-ENDIF. (RWC, WRB)
!***END PROLOGUE DSORT
! .. Scalar Arguments ..
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INTEGER KFLAG, N
! .. Array Arguments ..

DOUBLE PRECISION DX(*), DY(*)
! .. Local Scalars ..

DOUBLE PRECISION R, T, TT, TTY, TY
INTEGER I, IJ, J, K, KK, L, M, NN

! .. Local Arrays ..
INTEGER IL(21), IU(21)

! .. External Subroutines ..
! EXTERNAL XERMSG
! .. Intrinsic Functions ..

INTRINSIC ABS, INT
!***FIRST EXECUTABLE STATEMENT DSORT

NN = N
! IF (NN .LT. 1) THEN
! CALL XERMSG (’SLATEC’, ’DSORT’,
! + ’The number of values to be sorted is not positive.’, 1, 1)
! RETURN
! ENDIF
!

KK = ABS(KFLAG)
! IF (KK.NE.1 .AND. KK.NE.2) THEN
! CALL XERMSG (’SLATEC’, ’DSORT’,
! + ’The sort control parameter, K, is not 2, 1, -1, or -2.’, 2
! + 1)
! RETURN
! ENDIF
!
! Alter array DX to get decreasing order if needed
!

IF (KFLAG .LE. -1) THEN
DO 10 I=1,NN

DX(I) = -DX(I)
10 CONTINUE

ENDIF
!

IF (KK .EQ. 2) GO TO 100
!
! Sort DX only
!

M = 1
I = 1
J = NN
R = 0.375D0

!
20 IF (I .EQ. J) GO TO 60

IF (R .LE. 0.5898437D0) THEN
R = R+3.90625D-2

ELSE
R = R-0.21875D0

ENDIF
!

30 K = I
!
! Select a central element of the array and save it in location T
!

IJ = I + INT((J-I)*R)
T = DX(IJ)

!
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! If first element of array is greater than T, interchange with T
!

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)

ENDIF
L = J

!
! If last element of array is less than than T, interchange with T
!

IF (DX(J) .LT. T) THEN
DX(IJ) = DX(J)
DX(J) = T
T = DX(IJ)

!
! If first element of array is greater than T, interchange with T
!

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)

ENDIF
ENDIF

!
! Find an element in the second half of the array which is smaller
! than T
!

40 L = L-1
IF (DX(L) .GT. T) GO TO 40

!
! Find an element in the first half of the array which is greater
! than T
!

50 K = K+1
IF (DX(K) .LT. T) GO TO 50

!
! Interchange these elements
!

IF (K .LE. L) THEN
TT = DX(L)
DX(L) = DX(K)
DX(K) = TT
GO TO 40

ENDIF
!
! Save upper and lower subscripts of the array yet to be sorted
!

IF (L-I .GT. J-K) THEN
IL(M) = I
IU(M) = L
I = K
M = M+1

ELSE
IL(M) = K
IU(M) = J
J = L
M = M+1

ENDIF
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GO TO 70
!
! Begin again on another portion of the unsorted array
!

60 M = M-1
IF (M .EQ. 0) GO TO 190
I = IL(M)
J = IU(M)

!
70 IF (J-I .GE. 1) GO TO 30

IF (I .EQ. 1) GO TO 20
I = I-1

!
80 I = I+1

IF (I .EQ. J) GO TO 60
T = DX(I+1)
IF (DX(I) .LE. T) GO TO 80
K = I

!
90 DX(K+1) = DX(K)

K = K-1
IF (T .LT. DX(K)) GO TO 90
DX(K+1) = T
GO TO 80

!
! Sort DX and carry DY along
!

100 M = 1
I = 1
J = NN
R = 0.375D0

!
110 IF (I .EQ. J) GO TO 150

IF (R .LE. 0.5898437D0) THEN
R = R+3.90625D-2

ELSE
R = R-0.21875D0

ENDIF
!

120 K = I
!
! Select a central element of the array and save it in location T
!

IJ = I + INT((J-I)*R)
T = DX(IJ)
TY = DY(IJ)

!
! If first element of array is greater than T, interchange with T
!

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)
DY(IJ) = DY(I)
DY(I) = TY
TY = DY(IJ)

ENDIF
L = J

!
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! If last element of array is less than T, interchange with T
!

IF (DX(J) .LT. T) THEN
DX(IJ) = DX(J)
DX(J) = T
T = DX(IJ)
DY(IJ) = DY(J)
DY(J) = TY
TY = DY(IJ)

!
! If first element of array is greater than T, interchange with T
!

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)
DY(IJ) = DY(I)
DY(I) = TY
TY = DY(IJ)

ENDIF
ENDIF

!
! Find an element in the second half of the array which is smaller
! than T
!

130 L = L-1
IF (DX(L) .GT. T) GO TO 130

!
! Find an element in the first half of the array which is greater
! than T
!

140 K = K+1
IF (DX(K) .LT. T) GO TO 140

!
! Interchange these elements
!

IF (K .LE. L) THEN
TT = DX(L)
DX(L) = DX(K)
DX(K) = TT
TTY = DY(L)
DY(L) = DY(K)
DY(K) = TTY
GO TO 130

ENDIF

!
! Save upper and lower subscripts of the array yet to be sorted
!

IF (L-I .GT. J-K) THEN
IL(M) = I
IU(M) = L
I = K
M = M+1

ELSE
IL(M) = K
IU(M) = J
J = L
M = M+1

ENDIF
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GO TO 160
!
! Begin again on another portion of the unsorted array
!

150 M = M-1
IF (M .EQ. 0) GO TO 190
I = IL(M)
J = IU(M)

!
160 IF (J-I .GE. 1) GO TO 120

IF (I .EQ. 1) GO TO 110
I = I-1

!
170 I = I+1

IF (I .EQ. J) GO TO 150
T = DX(I+1)
TY = DY(I+1)
IF (DX(I) .LE. T) GO TO 170
K = I

!
180 DX(K+1) = DX(K)

DY(K+1) = DY(K)
K = K-1
IF (T .LT. DX(K)) GO TO 180
DX(K+1) = T
DY(K+1) = TY
GO TO 170

!
! Clean up
!

190 IF (KFLAG .LE. -1) THEN
DO 200 I=1,NN

DX(I) = -DX(I)
200 CONTINUE

ENDIF
RETURN
END

The Unix diff command will document the changes between the original Fortran
77 and the new Fortran 90 version.

As can be seen, converting the comment symbol from a C in column 1 to the !
character makes it valid free form Fortran 90.

40.10 Example 4: Simple Syntax Conversion to Modern
Fortran

The Nag compiler offers a Polish option that will automatically convert Fortran 77
to Fortran 90.



770 40 Converting from Fortran 77

Here is the converted version of the Netlib dsort.f subroutine.

subroutine dsort(dx, dy, n, kflag)
!***BEGIN PROLOGUE DSORT
!***PURPOSE Sort an array and optionally make the same interchanges in
! an auxiliary array. The array may be sorted in increasing
! or decreasing order. A slightly modified QUICKSORT
! algorithm is used.
!***LIBRARY SLATEC
!***CATEGORY N6A2B
!***TYPE DOUBLE PRECISION (SSORT-S, DSORT-D, ISORT-I)
!***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
!***AUTHOR Jones, R. E., (SNLA)
! Wisniewski, J. A., (SNLA)
!***DESCRIPTION
!
! DSORT sorts array DX and optionally makes the same interchanges in
! array DY. The array DX may be sorted in increasing order or
! decreasing order. A slightly modified quicksort algorithm is used.
!
! Description of Parameters
! DX - array of values to be sorted (usually abscissas)
! DY - array to be (optionally) carried along
! N - number of values in array DX to be sorted
! KFLAG - control parameter
! = 2 means sort DX in increasing order and carry DY along.
! = 1 means sort DX in increasing order (ignoring DY)
! = -1 means sort DX in decreasing order (ignoring DY)
! = -2 means sort DX in decreasing order and carry DY along.
!
!***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
! for sorting with minimal storage, Communications of
! the ACM, 12, 3 (1969), pp. 185-187.
!***ROUTINES CALLED XERMSG
!***REVISION HISTORY (YYMMDD)
! 761101 DATE WRITTEN
! 761118 Modified to use the Singleton quicksort algorithm. (JAW)
! 890531 Changed all specific intrinsics to generic. (WRB)
! 890831 Modified array declarations. (WRB)
! 891009 Removed unreferenced statement labels. (WRB)
! 891024 Changed category. (WRB)
! 891024 REVISION DATE from Version 3.2
! 891214 Prologue converted to Version 4.0 format. (BAB)
! 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
! 901012 Declared all variables; changed X,Y to DX,DY; changed
! code to parallel SSORT. (M. McClain)
! 920501 Reformatted the REFERENCES section. (DWL, WRB)
! 920519 Clarified error messages. (DWL)
! 920801 Declarations section rebuilt and code restructured to use
! IF-THEN-ELSE-ENDIF. (RWC, WRB)
!***END PROLOGUE DSORT
! .. Scalar Arguments ..

integer kflag, n
! .. Array Arguments ..

double precision dx(*), dy(*)
! .. Local Scalars ..

double precision r, t, tt, tty, ty
integer i, ij, j, k, kk, l, m, nn

! .. Local Arrays ..
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integer il(21), iu(21)
! .. External Subroutines ..
! EXTERNAL XERMSG
! .. Intrinsic Functions ..

intrinsic abs, int
!***FIRST EXECUTABLE STATEMENT DSORT

nn = n
! IF (NN .LT. 1) THEN
! CALL XERMSG (’SLATEC’, ’DSORT’,
! + ’The number of values to be sorted is not positive.’, 1, 1)
! RETURN
! ENDIF
!

kk = abs(kflag)
! IF (KK.NE.1 .AND. KK.NE.2) THEN
! CALL XERMSG (’SLATEC’, ’DSORT’,
! + ’The sort control parameter, K, is not 2, 1, -1, or -2.’, 2,
! + 1)
! RETURN
! ENDIF
!
! Alter array DX to get decreasing order if needed
!

if (kflag<=-1) then
do i = 1, nn

dx(i) = -dx(i)
end do

end if
!

if (kk==2) go to 180
!
! Sort DX only
!

m = 1
i = 1
j = nn
r = 0.375d0

!
100 if (i==j) go to 140

if (r<=0.5898437d0) then
r = r + 3.90625d-2

else
r = r - 0.21875d0

end if
!
110 k = i
!
! Select a central element of the array and save it in location T
!

ij = i + int((j-i)*r)
t = dx(ij)

!
! If first element of array is greater than T, interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)

end if
l = j
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!
! If last element of array is less than than T, interchange with T
!

if (dx(j)<t) then
dx(ij) = dx(j)
dx(j) = t
t = dx(ij)

!
! If first element of array is greater than T, interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)

end if
end if

!
! Find an element in the second half of the array which is smaller
! than T
!
120 l = l - 1

if (dx(l)>t) go to 120
!
! Find an element in the first half of the array which is greater
! than T
! 130 k = k + 1

if (dx(k)<t) go to 130
!
! Interchange these elements
!

if (k<=l) then
tt = dx(l)
dx(l) = dx(k)
dx(k) = tt
go to 120

end if
!
! Save upper and lower subscripts of the array yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1

else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 150

!
! Begin again on another portion of the unsorted array
!
140 m = m - 1

if (m==0) go to 270

i = il(m)
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j = iu(m)
!
150 if (j-i>=1) go to 110

if (i==1) go to 100
i = i - 1

!
160 i = i + 1

if (i==j) go to 140
t = dx(i+1)
if (dx(i)<=t) go to 160
k = i

!
170 dx(k+1) = dx(k)

k = k - 1
if (t<dx(k)) go to 170
dx(k+1) = t
go to 160

!
! Sort DX and carry DY along
!
180 m = 1

i = 1
j = nn
r = 0.375d0

!
190 if (i==j) go to 230

if (r<=0.5898437d0) then
r = r + 3.90625d-2

else
r = r - 0.21875d0

end if
!
200 k = i
!
! Select a central element of the array and save it in location T
!

ij = i + int((j-i)*r)
t = dx(ij)
ty = dy(ij)

!
! If first element of array is greater than T, interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)
dy(ij) = dy(i)
dy(i) = ty
ty = dy(ij)

end if
l = j

!
! If last element of array is less than T, interchange with T
!

if (dx(j)<t) then
dx(ij) = dx(j)
dx(j) = t
t = dx(ij)
dy(ij) = dy(j)
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dy(j) = ty
ty = dy(ij)

!
! If first element of array is greater than T, interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)
dy(ij) = dy(i)
dy(i) = ty
ty = dy(ij)

end if
end if

!
! Find an element in the second half of the array which is smaller
! than T
!
210 l = l - 1

if (dx(l)>t) go to 210
!
! Find an element in the first half of the array which is greater
! than T
!
220 k = k + 1

if (dx(k)<t) go to 220
!
! Interchange these elements
!

if (k<=l) then
tt = dx(l)
dx(l) = dx(k)
dx(k) = tt
tty = dy(l)
dy(l) = dy(k)
dy(k) = tty
go to 210

end if
!
! Save upper and lower subscripts of the array yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1

else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 240

!
! Begin again on another portion of the unsorted array
!
230 m = m - 1

if (m==0) go to 270
i = il(m)
j = iu(m)
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!
240 if (j-i>=1) go to 200

if (i==1) go to 190
i = i - 1

!
250 i = i + 1

if (i==j) go to 230
t = dx(i+1)
ty = dy(i+1)
if (dx(i)<=t) go to 250
k = i

!
260 dx(k+1) = dx(k)

dy(k+1) = dy(k)
k = k - 1
if (t<dx(k)) go to 260
dx(k+1) = t
dy(k+1) = ty
go to 250

!
! Clean up
!
270 if (kflag<=-1) then

do i = 1, nn
dx(i) = -dx(i)

end do
end if
return

end subroutine

As can be seen we have a much more Fortran 90 style after conversion. We use
the Nag compiler polish option on all of our old Fortran 77 style code.

40.11 Example 5: Date Case Study

In this example we look at a variety of conversions. We start with a set of Fortran 77
functions and subroutines for date manipulation put together by Skip Noble.

We next look at a modern Fortran 90 version written by Alan Miller.
Both of these versions manipulate dates using independent integer variables to

represent days, months, and years.
We next refer to the version in Chap. 22, where we introduce a date derived type

throughout.
We will start by looking at the Fortran 77 version.

C======DATESUB.FOR with Sample Drivers.
C COLLECTED AND PUT TOGETHER JANUARY 1972, H. D. KNOBLE .
C ORIGINAL REFERENCES ARE CITED IN EACH ROUTINE.
C
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INTEGER YYYY,MM,DD,JD,WD,DDD,MMA,DDA,NDIFF,I
INTEGER*2 YYYY2,MM2,DD2

C
C------IDAY IS A COMPANION TO CALEND; GIVEN A CALENDAR DATE, YYYY, MM,
C DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
C EXAMPLE: IDAY(1984,4,22)=113

IDAY(YYYY,MM,DD)=3055*(MM+2)/100-(MM+10)/13*2-91
, +(1-(MOD(YYYY,4)+3)/4+(MOD(YYYY,100)+99)/100
, -(MOD(YYYY,400)+399)/400)*(MM+10)/13+DD

C
C------IZLR(YYYY,MM,DD) GIVES THE WEEKDAY NUMBER 0=SUNDAY, 1=MONDAY,
C ... 6=SATURDAY. EXAMPLE: IZLR(1970,1,1)=4=THURSDAY

IZLR(YYYY,MM,DD)=MOD((13*(MM+10-(MM+10)/13*12)-1)/5+DD+77
, +5*(YYYY+(MM-14)/12-(YYYY+(MM-14)/12)/100*100)/4
, + (YYYY+(MM-14)/12)/400-(YYYY+(MM-14)/12)/100*2,7)

C
C Compute date this year for changing clocks back to EST.
C I.e., compute date for the last Sunday in October for this year.

CALL GETDAT(YYYY2,MM2,DD2)
YYYY=YYYY2
DO I=31,26,-1
IF (IZLR(YYYY,10,I).EQ.0) THEN

WRITE(*,*) ’Turn Clocks back to EST on: ’,I,’ October ’,YYYY
EXIT

ENDIF
END DO

C Compute date this year for turning clocks ahead to DST
C I.e., compute date for the first Sunday in April for this year.

CALL GETDAT(YYYY2,MM2,DD2)
YYYY=YYYY2
DO I=1,8
IF (IZLR(YYYY,4,I).EQ.0) THEN

WRITE(*,*) ’Turn Clocks ahead to DST on: ’,I,’ April ’,YYYY
EXIT

ENDIF
END DO

C
C Is this a leap year? I.e. is 12/31/yyyy the 366th day of the year?

CALL GETDAT(YYYY2,MM2,DD2)
C---GETDAT is builtin using most Compilers.

YYYY=YYYY2
IF(IDAY(YYYY,12,31).EQ.366) THEN

WRITE(*,*) YYYY,’ is a Leap Year’
ELSE

WRITE(*,*) YYYY,’ is not a Leap Year’
ENDIF

C
C DAYSUB SHOULD RETURN: 1970, 1, 1, 4, 1

CALL DAYSUB(JD(1970,1,1),YYYY,MM,DD,WD,DDD)
IF(YYYY.NE.1970.OR.MM.NE.1.OR.DD.NE.1.OR.WD.NE.4.OR.DDD.NE.1)

* THEN
WRITE(*,*)’DAYSUB Failed; YYYY,MM,DD,WD,DDD=’,YYYY,MM,DD,WD,DDD
STOP 1

ENDIF
C DIFFERENCE BETWEEN TWO SAME MONTHS AND DAYS OVER 1 LEAP YEAR IS 366.

NDIFF=NDAYS(5,22,1984,5,22,1983)
IF(NDIFF.NE.366) THEN

WRITE(*,*) ’NDAYS FAILED; NDIFF=’,NDIFF
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ELSE
C RECOVER MONTH AND DAY FROM YEAR AND DAY NUMBER.

CALL CALEND(YYYY,DDD,MMA,DDA)
IF(MMA.NE.1.AND.DDA.NE.1) THEN

WRITE(*,*) ’CALEND FAILED; MMA,DDA=’,MMA,DDA
ELSE

WRITE(*,*) ’** DATE MANIPULATION SUBROUTINES SIMPLE TEST OK.’
END IF

END IF
STOP
END

SUBROUTINE CALEND(YYYY,DDD,MM,DD)
C=============CALEND WHEN GIVEN A VALID YEAR, YYYY, AND DAY OF THE
C YEAR, DDD, RETURNS THE MONTH, MM, AND DAY OF THE
C MONTH, DD.
C SEE ACM ALGORITHM 398, TABLELESS DATE CONVERSION, BY
C DICK STONE, CACM 13(10):621.

INTEGER YYYY,DDD,MM,DD,T
T=0
IF(MOD(YYYY,4).EQ.0) T=1

C-----------THE FOLLOWING STATEMENT IS NECESSARY IF YYYY IS LESS TNAN
C 1900 OR GREATER THAN 2100.

IF(MOD(YYYY,400).NE.0.AND.MOD(YYYY,100).EQ.0) T=0
DD=DDD
IF(DDD.GT.59+T) DD=DD+2-T
MM=((DD+91)*100)/3055
DD=(DD+91)-(MM*3055)/100
MM=MM-2

C----------MM WILL BE CORRECT IFF DDD IS CORRECT FOR YYYY.
IF(MM.GE.1 .AND. MM.LE.12) RETURN
WRITE(*,1) DDD

1 FORMAT(’0$$$CALEND: DAY OF THE YEAR INPUT =’,I11,
, ’ IS OUT OF RANGE.’)
STOP 8
END

SUBROUTINE CDATE(JD,YYYY,MM,DD)
C=======GIVEN A JULIAN DAY NUMBER, NNNNNNNN, YYYY,MM,DD ARE RETURNED AS
C AS THE CALENDAR DATE. JD=NNNNNNNN IS THE JULIAN DATE
C FROM AN EPOCK IN THE VERY DISTANT PAST. SEE CACM
C 1968 11(10):657, LETTER TO THE EDITOR BY FLIEGEL AND
C VAN FLANDERN.
C EXAMPLE CALL CDATE(2440588,YYYY,MM,DD) RETURNS 1970 1 1 .
C

INTEGER JD,YYYY,MM,DD,L,N
L=JD+68569
N=4*L/146097
L=L-(146097*N + 3)/4
YYYY=4000*(L+1)/1461001
L=L-1461*YYYY/4+31
MM=80*L/2447
DD=L-2447*MM/80
L=MM/11
MM=MM + 2 - 12*L
YYYY=100*(N-49) + YYYY + L
RETURN
END
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SUBROUTINE DAYSUB(JD,YYYY,MM,DD,WD,DDD)
C========GIVEN JD, A JULIAN DAY # (SEE ASF JD), THIS ROUTINE
C CALCULATES DD, THE DAY NUMBER OF THE MONTH; MM, THE MONTH
C NUMBER; YYYY THE YEAR; WD THE WEEKDAY NUMBER, AND DDD
C THE DAY NUMBER OF THE YEAR.
C ARITHMETIC STATEMENT FUNCTIONS ’IZLR’ AND ’IDAY’ ARE TAKEN
C FROM REMARK ON ALGORITHM 398, BY J. DOUGLAS ROBERTSON,
C CACM 15(10):918.
C
C EXAMPLE: CALL DAYSUB(2440588,YYYY,MM,DD,WD,DDD) YIELDS 1970 1 1 4 1.
C

INTEGER JD,YYYY,MM,DD,WD,DDD
C
C------IZLR(YYYY,MM,DD) GIVES THE WEEKDAY NUMBER 0=SUNDAY, 1=MONDAY,
C ... 6=SATURDAY. EXAMPLE: IZLR(1970,1,1)=4=THURSDAY
C

IZLR(YYYY,MM,DD)=MOD((13*(MM+10-(MM+10)/13*12)-1)/5+DD+77
, +5*(YYYY+(MM-14)/12-(YYYY+(MM-14)/12)/100*100)/4
, + (YYYY+(MM-14)/12)/400-(YYYY+(MM-14)/12)/100*2,7)

C
C------IDAY IS A COMPANION TO CALEND; GIVEN A CALENDAR DATE, YYYY, MM,
C DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
C EXAMPLE: IDAY(1984,4,22)=113
C

IDAY(YYYY,MM,DD)=3055*(MM+2)/100-(MM+10)/13*2-91
, +(1-(MOD(YYYY,4)+3)/4+(MOD(YYYY,100)+99)/100
, -(MOD(YYYY,400)+399)/400)*(MM+10)/13+DD

C
CALL CDATE(JD,YYYY,MM,DD)
WD=IZLR(YYYY,MM,DD)
DDD=IDAY(YYYY,MM,DD)
RETURN
END

FUNCTION JD(YYYY,MM,DD)
INTEGER YYYY,MM,DD

C DATE ROUTINE JD(YYYY,MM,DD) CONVERTS CALENDER DATE TO
C JULIAN DATE. SEE CACM 1968 11(10):657, LETTER TO THE
C EDITOR BY HENRY F. FLIEGEL AND THOMAS C. VAN FLANDERN.
C EXAMPLE JD(1970,1,1)=2440588

JD=DD-32075+1461*(YYYY+4800+(MM-14)/12)/4
, +367*(MM-2-((MM-14)/12)*12)/12-3*
, ((YYYY+4900+(MM-14)/12)/100)/4
RETURN
END

FUNCTION NDAYS(MM1,DD1,YYYY1, MM2,DD2,YYYY2)
INTEGER YYYY1,MM1,DD1,YYYY2,MM2,DD2

C==============NDAYS IS RETURNED AS THE NUMBER OF DAYS BETWEEN TWO
C DATES; THAT IS MM1/DD1/YYYY1 MINUS MM2/DD2/YYYY2,
C WHERE DATEI AND DATEJ HAVE ELEMENTS MM, DD, YYYY.
C-------NDAYS WILL BE POSITIVE IFF DATE1 IS MORE RECENT THAN DATE2.

NDAYS=JD(YYYY1,MM1,DD1)-JD(YYYY2,MM2,DD2)
RETURN
END
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Here some comments about the code.

• it is fixed format
• the Fortran code is upper case only
• variables names are a maximum of 6 characters
• There is no program statement at the start of the program
• default typing is in effect, with variables that begin with I-N as integer
• the following is a statement function

C
C------IDAY IS A COMPANION TO CALEND; GIVEN A CALENDAR DATE, YYYY, MM,
C DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
C EXAMPLE: IDAY(1984,4,22)=113

IDAY(YYYY,MM,DD)=3055*(MM+2)/100-(MM+10)/13*2-91
, +(1-(MOD(YYYY,4)+3)/4+(MOD(YYYY,100)+99)/100
, -(MOD(YYYY,400)+399)/400)*(MM+10)/13+DD

• the following is a statement function

C
C------IZLR(YYYY,MM,DD) GIVES THE WEEKDAY NUMBER 0=SUNDAY, 1=MONDAY,
C ... 6=SATURDAY. EXAMPLE: IZLR(1970,1,1)=4=THURSDAY

IZLR(YYYY,MM,DD)=MOD((13*(MM+10-(MM+10)/13*12)-1)/5+DD+77
, +5*(YYYY+(MM-14)/12-(YYYY+(MM-14)/12)/100*100)/4
, + (YYYY+(MM-14)/12)/400-(YYYY+(MM-14)/12)/100*2,7)

• The program has calls to a non-standard routine GETDAT

Here is the modern Fortran 90 version using independent integer variables for the
days, months and years.

module date_sub

! COLLECTED AND PUT TOGETHER JANUARY 1972, H. D.
! KNOBLE .

! ORIGINAL REFERENCES ARE CITED IN EACH ROUTINE.

! Code converted using TO_F90 by Alan Miller
! Date: 1999-12-22 Time: 10:23:47
! Compatible with Imagine1 F compiler:
! 2002-07-19

implicit none

public :: iday, izlr, calend, cdate, ndays, &
daysub, jd

contains

! ARITHMETIC FUNCTIONS "IZLR" AND "IDAY" ARE
! TAKEN FROM REMARK ON
! ALGORITHM 398, BY J. DOUGLAS ROBERTSON, CACM
! 15(10):918.
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function iday(yyyy, mm, dd) result (ival)
! IDAY IS A COMPANION TO CALEND; GIVEN A
! CALENDAR DATE, YYYY, MM,
! DD, IDAY IS RETURNED AS THE DAY OF THE YEAR.
! EXAMPLE: IDAY(1984, 4, 22) = 113

integer, intent (in) :: yyyy, mm, dd
integer :: ival

ival = 3055*(mm+2)/100 - (mm+10)/13*2 - 91 + &
(1-(modulo(yyyy,4)+3)/4+(modulo(yyyy, &
100)+99)/100-(modulo(yyyy, &
400)+399)/400)*(mm+10)/13 + dd

return
end function iday

function izlr(yyyy, mm, dd) result (ival)
! IZLR(YYYY, MM, DD) GIVES THE WEEKDAY NUMBER
! 0 = SUNDAY, 1 = MONDAY,
! ... 6 = SATURDAY. EXAMPLE: IZLR(1970, 1, 1)
! = 4 = THURSDAY

integer, intent (in) :: yyyy, mm, dd
integer :: ival

ival = modulo((13*(mm+10-(mm+10)/13*12)-1)/5 &
+dd+77+5*(yyyy+(mm-14)/12-(yyyy+ &
(mm-14)/12)/100*100)/4+(yyyy+(mm- &
14)/12)/400-(yyyy+(mm-14)/12)/100*2, 7)

return
end function izlr

subroutine calend(yyyy, ddd, mm, dd)
! CALEND WHEN GIVEN A VALID YEAR, YYYY, AND
! DAY OF THE YEAR, DDD,
! RETURNS THE MONTH, MM, AND DAY OF THE MONTH,
! DD.
! SEE ACM ALGORITHM 398, TABLELESS DATE
! CONVERSION, BY
! DICK STONE, CACM 13(10):621.

integer, intent (in) :: yyyy
integer, intent (in) :: ddd
integer, intent (out) :: mm
integer, intent (out) :: dd

integer :: t

t = 0
if (modulo(yyyy,4)==0) t = 1

! ------THE FOLLOWING STATEMENT IS NECESSARY
! IF YYYY IS < 1900 OR > 2100.

if (modulo(yyyy,400)/=0 .and. &
modulo(yyyy,100)==0) t = 0

dd = ddd
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if (ddd>59+t) dd = dd + 2 - t
mm = ((dd+91)*100)/3055
dd = (dd+91) - (mm*3055)/100
mm = mm - 2

! ----------MM WILL BE CORRECT IFF DDD IS
! CORRECT FOR YYYY.

if (mm>=1 .and. mm<=12) return
write (unit=*, fmt=’(a,i11,a)’) &

’$$CALEND: DAY OF THE YEAR INPUT =’, ddd, &
’ IS OUT OF RANGE.’

stop
end subroutine calend

subroutine cdate(jd, yyyy, mm, dd)
! GIVEN A JULIAN DAY NUMBER, NNNNNNNN,
! YYYY,MM,DD ARE RETURNED AS THE
! CALENDAR DATE. JD = NNNNNNNN IS THE JULIAN
! DATE FROM AN EPOCH
! IN THE VERY DISTANT PAST. SEE CACM 1968
! 11(10):657,
! LETTER TO THE EDITOR BY FLIEGEL AND VAN
! FLANDERN.
! EXAMPLE CALL CDATE(2440588, YYYY, MM, DD)
! RETURNS 1970 1 1 .

integer, intent (in) :: jd
integer, intent (out) :: yyyy
integer, intent (out) :: mm
integer, intent (out) :: dd

integer :: l, n

l = jd + 68569
n = 4*l/146097
l = l - (146097*n+3)/4
yyyy = 4000*(l+1)/1461001
l = l - 1461*yyyy/4 + 31
mm = 80*l/2447
dd = l - 2447*mm/80
l = mm/11
mm = mm + 2 - 12*l
yyyy = 100*(n-49) + yyyy + l
return

end subroutine cdate

subroutine daysub(jd, yyyy, mm, dd, wd, ddd)
! GIVEN JD, A JULIAN DAY # (SEE ASF JD), THIS
! ROUTINE CALCULATES DD,
! THE DAY NUMBER OF THE MONTH; MM, THE MONTH
! NUMBER; YYYY THE YEAR;
! WD THE WEEKDAY NUMBER, AND DDD THE DAY
! NUMBER OF THE YEAR.

! EXAMPLE:
! CALL DAYSUB(2440588, YYYY, MM, DD, WD, DDD)
! YIELDS 1970 1 1 4 1.

integer, intent (in) :: jd
integer, intent (out) :: yyyy
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integer, intent (out) :: mm
integer, intent (out) :: dd
integer, intent (out) :: wd
integer, intent (out) :: ddd

call cdate(jd, yyyy, mm, dd)
wd = izlr(yyyy, mm, dd)
ddd = iday(yyyy, mm, dd)

return
end subroutine daysub

function jd(yyyy, mm, dd) result (ival)

integer, intent (in) :: yyyy
integer, intent (in) :: mm
integer, intent (in) :: dd
integer :: ival

! DATE ROUTINE JD(YYYY, MM, DD) CONVERTS
! CALENDER DATE TO
! JULIAN DATE. SEE CACM 1968 11(10):657,
! LETTER TO THE
! EDITOR BY HENRY F. FLIEGEL AND THOMAS C. VAN
! FLANDERN.
! EXAMPLE JD(1970, 1, 1) = 2440588

ival = dd - 32075 + 1461*(yyyy+4800+(mm-14)/ &
12)/4 + 367*(mm-2-((mm-14)/12)*12)/12 - &
3*((yyyy+4900+(mm-14)/12)/100)/4

return
end function jd

function ndays(mm1, dd1, yyyy1, mm2, dd2, &
yyyy2) result (ival)

integer, intent (in) :: mm1
integer, intent (in) :: dd1
integer, intent (in) :: yyyy1
integer, intent (in) :: mm2
integer, intent (in) :: dd2
integer, intent (in) :: yyyy2
integer :: ival

! NDAYS IS RETURNED AS THE NUMBER OF DAYS
! BETWEEN TWO
! DATES; THAT IS MM1/DD1/YYYY1 MINUS
! MM2/DD2/YYYY2,
! WHERE DATEI AND DATEJ HAVE ELEMENTS MM, DD,
! YYYY.
! NDAYS WILL BE POSITIVE IFF DATE1 IS MORE
! RECENT THAN DATE2.

ival = jd(yyyy1, mm1, dd1) - &
jd(yyyy2, mm2, dd2)

return
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end function ndays

end module date_sub

program test_datesub

! ======DATESUB.FOR with Sample Drivers.

use date_sub
implicit none
integer :: yyyy, mm, dd, wd, ddd, mma, dda, &

ndiff, i
integer, dimension (8) :: val

! Compute date this year for changing clocks
! back to EST.
! I.e.compute date for the last Sunday in
! October for this year.

call date_and_time(values=val)
yyyy = val(1)
do i = 31, 26, -1

if (izlr(yyyy,10,i)==0) then
print *, ’Turn Clocks back to EST on: ’, &

i, ’ October ’, yyyy
exit

end if
end do

! Compute date this year for turning clocks
! ahead to DST
! I.e., compute date for the first Sunday in
! April for this year.

call date_and_time(values=val)
yyyy = val(1)
do i = 1, 8

if (izlr(yyyy,4,i)==0) then
print *, ’Turn Clocks ahead to DST on: ’, &

i, ’ April ’, yyyy
exit

end if
end do

call date_and_time(values=val)
yyyy = val(1)

! Is this a leap year? I.e. is 12/31/yyyy the
! 366th day of the year?

if (iday(yyyy,12,31)==366) then
print *, yyyy, ’ is a Leap Year’

else
print *, yyyy, ’ is not a Leap Year’

end if

! DAYSUB SHOULD RETURN: 1970, 1, 1, 4, 1
call daysub(jd(1970,1,1), yyyy, mm, dd, wd, &

ddd)
if (yyyy/=1970 .or. mm/=1 .or. dd/=1 .or. &

wd/=4 .or. ddd/=1) then
print *, &
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’DAYSUB Failed; YYYY, MM, DD, WD, DDD = ’, &
yyyy, mm, dd, wd, ddd

stop
end if

! DIFFERENCE BETWEEN TO SAME MONTHS AND DAYS
! OVER 1 LEAP YEAR IS 366.

ndiff = ndays(5, 22, 1984, 5, 22, 1983)
if (ndiff/=366) then

print *, ’NDAYS FAILED; NDIFF = ’, ndiff
else

! RECOVER MONTH AND DAY FROM YEAR AND DAY
! NUMBER.

call calend(yyyy, ddd, mma, dda)
if (mma/=1 .and. dda/=1) then

print *, ’CALEND FAILED; MMA, DDA = ’, &
mma, dda

else
print *, ’** DATE MANIPULATION SUBROUTINES &

&SIMPLE TEST OK.’
end if

end if

stop
end program test_datesub

The next version using derived types and amodern Fortran 90 syntax can be found
in Chap.22.

This version required manual conversion. As can be seen by comparing the ver-
sions there is quite a difference.

The final version using an object oriented style can be found in Chap.29. Again
this required manual conversion.

40.12 Example 6: Creating 64 Bit Integer and 128 Bit Real
Sorting Subroutines from the Netlib Sorting Routines

Netlib provides three non recursive sorting routines and they are

• dsort.f - Fortran 77 double precision, 64 bit normally
• ssort.f - Fortran default real type, 32 bit normally
• isort.f - Fortran default integer type, 32 bit normally

The aim is to provide a 64 bit integer sorting subroutine and a 128 bit real sorting
subroutine, to accompany the above routines.

The first step is to rewrite the double precision version to use our precisionmodule,
and use that to create the 128 bit real subroutine.
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The second step is to rewrite the 32 bit integer subroutine to use our integer kind
module. We can then create our 64 bit integer sorting routine from that one.

Here are some of the major differences between the original Netlib version which
uses double precision and the latest real versions which use kind types.

> subroutine dsort_dp(dx, dy, n, kflag)
> use precision_module , wp => dp
> implicit none
54c7
< double precision dx(*), dy(*)
---
> real (wp) :: dx(*), dy(*)
56c9
< double precision r, t, tt, tty, ty
---
> real (wp) :: r, t, tt, tty, ty

95c34
< r = 0.375d0
---
> r = 0.375_wp
97,99c36,38
< 100 if (i==j) go to 140
< if (r<=0.5898437d0) then
< r = r + 3.90625d-2
---
> 20 if (i==j) go to 60
> if (r<=0.5898437_wp) then
> r = r + 3.90625_wp/100.0_wp
101c40
< r = r - 0.21875d0
---
> r = r - 0.21875_wp

200c139
< r = 0.375d0
---
> r = 0.375_wp
202,204c141,143
< 190 if (i==j) go to 230
< if (r<=0.5898437d0) then
< r = r + 3.90625d-2
---
> 110 if (i==j) go to 150
> if (r<=0.5898437_wp) then
> r = r + 3.90625_wp/100.0_wp
206c145
< r = r - 0.21875d0
---
> r = r - 0.21875_wp

Here is the 128 bit real sort subroutine.

subroutine dsort_qp(dx, dy, n, kflag)
use precision_module, wp => qp
implicit none



786 40 Converting from Fortran 77

! .. Scalar Arguments ..
integer kflag, n

! .. Array Arguments ..
real (wp) :: dx(*), dy(*)

! .. Local Scalars ..
real (wp) :: r, t, tt, tty, ty
integer i, ij, j, k, kk, l, m, nn

! .. Local Arrays ..
integer il(21), iu(21)

! .. Intrinsic Functions ..
intrinsic abs, int

! ***FIRST EXECUTABLE STATEMENT DSORT
nn = n
kk = abs(kflag)

!
! Alter array DX to get decreasing order if
! needed
!

if (kflag<=-1) then
do i = 1, nn

dx(i) = -dx(i)
end do

end if
!

if (kk==2) go to 180
!
! Sort DX only
!

m = 1
i = 1
j = nn
r = 0.375_wp

!
100 if (i==j) go to 140

if (r<=0.5898437_wp) then
r = r + 3.90625_wp/100.0_wp

else
r = r - 0.21875_wp

end if
!
110 k = i
!
! Select a central element of the array and save
! it in location T
!

ij = i + int((j-i)*r)
t = dx(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)

end if
l = j

!
! If last element of array is less than than T,
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! interchange with T
!

if (dx(j)<t) then
dx(ij) = dx(j)
dx(j) = t
t = dx(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)

end if
end if

!
! Find an element in the second half of the
! array which is smaller
! than T
!
120 l = l - 1

if (dx(l)>t) go to 120
!
! Find an element in the first half of the array
! which is greater
! than T
!
130 k = k + 1

if (dx(k)<t) go to 130
!
! Interchange these elements
!

if (k<=l) then
tt = dx(l)
dx(l) = dx(k)
dx(k) = tt
go to 120

end if
!
! Save upper and lower subscripts of the array
! yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1

else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 150
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!
! Begin again on another portion of the unsorted
! array
!
140 m = m - 1

if (m==0) go to 270
i = il(m)
j = iu(m)

!
150 if (j-i>=1) go to 110

if (i==1) go to 100
i = i - 1

!
160 i = i + 1

if (i==j) go to 140
t = dx(i+1)
if (dx(i)<=t) go to 160
k = i

!
170 dx(k+1) = dx(k)

k = k - 1
if (t<dx(k)) go to 170
dx(k+1) = t
go to 160

!
! Sort DX and carry DY along
!
180 m = 1

i = 1
j = nn
r = 0.375_wp

!
190 if (i==j) go to 230

if (r<=0.5898437_wp) then
r = r + 3.90625_wp/100.0_wp

else
r = r - 0.21875_wp

end if

!
200 k = i
!
! Select a central element of the array and save
! it in location T
!

ij = i + int((j-i)*r)
t = dx(ij)
ty = dy(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)
dy(ij) = dy(i)
dy(i) = ty
ty = dy(ij)

end if
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l = j
!
! If last element of array is less than T,
! interchange with T
!

if (dx(j)<t) then
dx(ij) = dx(j)
dx(j) = t
t = dx(ij)
dy(ij) = dy(j)
dy(j) = ty
ty = dy(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (dx(i)>t) then
dx(ij) = dx(i)
dx(i) = t
t = dx(ij)
dy(ij) = dy(i)
dy(i) = ty
ty = dy(ij)

end if
end if

!
! Find an element in the second half of the
! array which is smaller
! than T
!
210 l = l - 1

if (dx(l)>t) go to 210
!
! Find an element in the first half of the array
! which is greater
! than T
!
220 k = k + 1

if (dx(k)<t) go to 220
!
! Interchange these elements
!

if (k<=l) then
tt = dx(l)
dx(l) = dx(k)
dx(k) = tt
tty = dy(l)
dy(l) = dy(k)
dy(k) = tty
go to 210

end if
!
! Save upper and lower subscripts of the array
! yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1
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else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 240

!
! Begin again on another portion of the unsorted
! array
!
230 m = m - 1

if (m==0) go to 270
i = il(m)
j = iu(m)

!
240 if (j-i>=1) go to 200

if (i==1) go to 190
i = i - 1

!
250 i = i + 1

if (i==j) go to 230
t = dx(i+1)
ty = dy(i+1)
if (dx(i)<=t) go to 250
k = i

!
260 dx(k+1) = dx(k)

dy(k+1) = dy(k)
k = k - 1
if (t<dx(k)) go to 260
dx(k+1) = t
dy(k+1) = ty
go to 250

!
! Clean up
!
270 if (kflag<=-1) then

do i = 1, nn
dx(i) = -dx(i)

end do
end if
return

end subroutine dsort_qp

Here is the 64 bit integer sort subroutine.

subroutine isort_64(ix, iy, n, kflag)
use integer_kind_module, wp => i64
implicit none

! .. Scalar Arguments ..
integer (wp) :: kflag, n

! .. Array Arguments ..
integer (wp) :: ix(*), iy(*)

! .. Local Scalars ..
real r
integer (wp) :: i, ij, j, k, kk, l, m, nn, t, &

tt, tty, ty
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! .. Local Arrays ..
integer (wp) :: il(21), iu(21)

! .. Intrinsic Functions ..
intrinsic abs, int

! ***FIRST EXECUTABLE STATEMENT ISORT
nn = n

!
kk = abs(kflag)

!
! Alter array IX to get decreasing order if
! needed
!

if (kflag<=-1) then
do i = 1, nn

ix(i) = -ix(i)
end do

end if
!

if (kk==2) go to 180
!
! Sort IX only
!

m = 1
i = 1
j = nn
r = 0.375e0

!
100 if (i==j) go to 140

if (r<=0.5898437e0) then
r = r + 3.90625e-2

else
r = r - 0.21875e0

end if
!
110 k = i
!
! Select a central element of the array and save
! it in location T
!

ij = i + int(((j-i)*r), wp)
t = ix(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (ix(i)>t) then
ix(ij) = ix(i)
ix(i) = t
t = ix(ij)

end if
l = j

!
! If last element of array is less than than T,
! interchange with T
!

if (ix(j)<t) then
ix(ij) = ix(j)
ix(j) = t
t = ix(ij)

!
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! If first element of array is greater than T,
! interchange with T
!

if (ix(i)>t) then
ix(ij) = ix(i)
ix(i) = t
t = ix(ij)

end if
end if

!
! Find an element in the second half of the
! array which is smaller
! than T
!
120 l = l - 1

if (ix(l)>t) go to 120
!
! Find an element in the first half of the array
! which is greater
! than T
!
130 k = k + 1

if (ix(k)<t) go to 130
!
! Interchange these elements
!

if (k<=l) then
tt = ix(l)
ix(l) = ix(k)
ix(k) = tt
go to 120

end if
!
! Save upper and lower subscripts of the array
! yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1

else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 150

!
! Begin again on another portion of the unsorted
! array
!
140 m = m - 1

if (m==0) go to 270
i = il(m)
j = iu(m)

!
150 if (j-i>=1) go to 110

if (i==1) go to 100
i = i - 1
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!
160 i = i + 1

if (i==j) go to 140
t = ix(i+1)
if (ix(i)<=t) go to 160
k = i

!
170 ix(k+1) = ix(k)

k = k - 1
if (t<ix(k)) go to 170
ix(k+1) = t
go to 160

!
! Sort IX and carry IY along
!
180 m = 1

i = 1
j = nn
r = 0.375e0

! 190 if (i==j) go to 230
if (r<=0.5898437e0) then

r = r + 3.90625e-2
else

r = r - 0.21875e0
end if

!
200 k = i
!
! Select a central element of the array and save
! it in location T
!

ij = i + int(((j-i)*r), wp)
t = ix(ij)
ty = iy(ij)

!
! If first element of array is greater than T,
! interchange with T
!

if (ix(i)>t) then
ix(ij) = ix(i)
ix(i) = t
t = ix(ij)
iy(ij) = iy(i)
iy(i) = ty
ty = iy(ij)

end if
l = j

!
! If last element of array is less than T,
! interchange with T
!

if (ix(j)<t) then
ix(ij) = ix(j)
ix(j) = t
t = ix(ij)
iy(ij) = iy(j)
iy(j) = ty
ty = iy(ij)

!
! If first element of array is greater than T,
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! interchange with T
!

if (ix(i)>t) then
ix(ij) = ix(i)
ix(i) = t
t = ix(ij)
iy(ij) = iy(i)
iy(i) = ty
ty = iy(ij)

end if
end if

!
! Find an element in the second half of the
! array which is smaller
! than T
!
210 l = l - 1

if (ix(l)>t) go to 210
!
! Find an element in the first half of the array
! which is greater
! than T
!
220 k = k + 1

if (ix(k)<t) go to 220
!
! Interchange these elements
!

if (k<=l) then
tt = ix(l)
ix(l) = ix(k)
ix(k) = tt
tty = iy(l)
iy(l) = iy(k)
iy(k) = tty
go to 210

end if
!
! Save upper and lower subscripts of the array
! yet to be sorted
!

if (l-i>j-k) then
il(m) = i
iu(m) = l
i = k
m = m + 1

else
il(m) = k
iu(m) = j
j = l
m = m + 1

end if
go to 240
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!
! Begin again on another portion of the unsorted
! array
!
230 m = m - 1

if (m==0) go to 270
i = il(m)
j = iu(m)

!
240 if (j-i>=1) go to 200

if (i==1) go to 190
i = i - 1

!
250 i = i + 1

if (i==j) go to 230
t = ix(i+1)
ty = iy(i+1)
if (ix(i)<=t) go to 250
k = i

!
260 ix(k+1) = ix(k)

iy(k+1) = iy(k)
k = k - 1
if (t<ix(k)) go to 260
ix(k+1) = t
iy(k+1) = ty
go to 250

!
! Clean up
!
270 if (kflag<=-1) then

do i = 1, nn
ix(i) = -ix(i)

end do
end if
return

end subroutine isort_64

All five subroutines are available on our web site.
isort_32.f90
isort_64.f90
dsort_sp.f90
dsort_dp.f90
dsort_qp.f90

We have also taken the generic recursive sort module from an earlier chapter and
converted it to work with the Netlib routines. A copy of this module can also be
found on our web site.
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40.13 Summary

This chapter has shown some of the options open to you when working with legacy
code. The emphasis has been on relatively straightforward code restructuring. The
use of software tools to aid in this is highly recommended as converting manually
using an editor is obviously going to involve much more work.

40.14 Problems

40.1 Compile and run the examples in this chapter.

40.2 Create a 16 bit integer sorting routine using the 32 bit integer sort subroutine
in Example 5.

40.3 Create a generic sorting module from the subroutines in Example 5.



Chapter 41
Graphics Libraries - Simple Dislin Usage

Modern data graphics can do much more than simply substitute
for small statistical tables. At their best, graphics are
instruments for reasoning about quantitative information. Often
the most effective way to describe, explore and summarise a set
of numbers — even a large set — is to look at pictures of those
numbers.

Edward R Tufte, The Visual Display of Quantitative
Information.

A picture paints a thousand words.
Reportedly first used by Frederick R. Barnard in Printer’s Ink

(December, 1921), while commenting that graphics can tell a
story as effectively as a large amount of descriptive text.

41.1 Introduction

In science and engineering graphics are essential part of the presentation of infor-
mation.

A graphics library is generally a set of routines that can be called from one or
more programming languages to help in the display of graphical output to a screen
or monitor with the option normally of targetting a hard copy device.

Our resource file

https://www.fortranplus.co.uk/

fortran-information/

provides details of some of the graphics libraries available.
We will be using the Dislin library in our examples.

41.2 The Dislin Graphics Library

This is the dislin home page.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_41
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http://www.mps.mpg.de/dislin/

Here is a description of the software from the above page.

• Dislin is a high-level and easy to use plotting library for displaying data as curves,
bar graphs, pie charts, 3D-colour plots, surfaces, contours, and maps. The library
contains about 500 plotting and parameter setting routines. The approach used is
to have only a few graphics routines with short parameter lists. A large variety
of parameter setting routines can then be used to create customized graphics.
Several output formats are supported such as X11, VGA, PostScript, PDF, SVG,
CGM, HPGL, TIFF, GIF, PNG and BMP. Dislin is available for the programming
languages C, Fortran 77, Fortran 90, Perl, Python and Java.

41.3 Example 1: Using Dislin to Plot Amdahl’s Law Graph
1 – 8 Processors or Cores

Here is the source code for this program.

program ch41_dislin_01

use dislin

implicit none

integer :: i, j

! Total number of processors and hence data ! points

integer, parameter :: nprocs = 8

! Number of percentage values from

! 10% -> 90% 9

! 95% 1

! Total 10

integer, parameter :: nn = 10

real, dimension (nn) :: pp = (/ 0.1, 0.2, 0.3, &

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)

real, dimension (nprocs) :: x

real, dimension (nprocs) :: y

real, dimension (nprocs, nn) :: ydata

integer :: nx

integer :: ny

character *30 cbuf

do i = 1, nprocs

x(i) = real(i)

end do

! Amdahl calculations. Store in 2 d array and

! then
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! assign to 1 d array for plotting.

do i = 1, nprocs

do j = 1, nn

ydata(i, j) = 1/((1-pp(j))+pp(j)/i)

end do

end do

! Write the data to a file for verification

! purposes

open (unit=10, file=’amdahl_table_08.txt’)

do i = 1, nprocs

write (unit=10, fmt=100) x(i), &

ydata(i, 1:nn)

100 format (11(f7.2,2x))

end do

close (10)

call disini

call complx

call axspos(450, 1800)

call axslen(2200, 1400)

call name(’Number of processors’, ’x’)

call name(’Speed up’, ’y’)

call titlin(’Plot of Amdahls Law’, 1)

call titlin(’8 Processors’, 3)

call labdig(-1, ’x’)

call ticks(10, ’xy’)

call graf(1.0, 8.0, 1.0, 1.0, 1.0, 7.0, 1.0, &

1.0)

call title

call xaxgit

call chncrv(’line’)

! Plot the curves. Copy from 2 d array to 1 d

! array

! before the call to curve.

do i = 1, nn

y = ydata(1:nprocs, i)

call curve(x, y, nprocs)

end do

call legini(cbuf, 10, 3)

! Coordinates of the start of the legend

! for the curves.

nx = 500

ny = 450

call legpos(nx, ny)

call leglin(cbuf, ’10%’, 1)

call leglin(cbuf, ’20%’, 2)
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call leglin(cbuf, ’30%’, 3)

call leglin(cbuf, ’40%’, 4)

call leglin(cbuf, ’50%’, 5)

call leglin(cbuf, ’60%’, 6)

call leglin(cbuf, ’70%’, 7)

call leglin(cbuf, ’80%’, 8)

call leglin(cbuf, ’90%’, 9)

call leglin(cbuf, ’95%’, 10)

call legtit(’legend’)

call legend(cbuf, 3)

call disfin

end program ch41_dislin_01

41.4 Example 2: Using Dislin to Plot Amdahl’s Law Graph
2 – 64 Processors or Cores

Here is the source code for this program.

program ch41_dislin_02

use dislin

implicit none

integer :: i, j

! Total number of processors and hence data

! points

integer, parameter :: nprocs = 64

! Number of percentage values from

! 10% -> 90% 9

! 95% 1

! Total 10

integer, parameter :: nn = 10

real, dimension (nn) :: pp = (/ 0.1, 0.2, 0.3, &

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)

real, dimension (nprocs) :: x

real, dimension (nprocs) :: y

real, dimension (nprocs, nn) :: ydata

integer :: nx

integer :: ny

character *30 cbuf

do i = 1, nprocs

x(i) = real(i)

end do

! Amdahl calculations. Store in 2 d array and
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! then

! assign to 1 d array for plotting.

do i = 1, nprocs

do j = 1, nn

ydata(i, j) = 1/((1-pp(j))+pp(j)/i)

end do

end do

! Write the data to a file for verification

! purposes

open (unit=10, file=’amdahl_table_08.txt’)

do i = 1, nprocs

write (unit=10, fmt=100) x(i), &

ydata(i, 1:nn)

100 format (11(f7.2,2x))

end do

close (10)

call disini

call complx

call axspos(450, 1800)

call axslen(2200, 1400)

call name(’Number of processors’, ’x’)

call name(’Speed up’, ’y’)

call titlin(’Plot of Amdahls Law’, 1)

call titlin(’8 Processors’, 3)

call labdig(-1, ’x’)

call ticks(10, ’xy’)

call graf(1.0, 8.0, 1.0, 1.0, 1.0, 7.0, 1.0, &

1.0)

call title

call xaxgit

call chncrv(’line’)

! Plot the curves. Copy from 2 d array to 1 d

! array

! before the call to curve.

do i = 1, nn

y = ydata(1:nprocs, i)

call curve(x, y, nprocs)

end do

call legini(cbuf, 10, 3)

! Coordinates of the start of the legend

! for the curves.

nx = 500

ny = 450

call legpos(nx, ny)

call leglin(cbuf, ’10%’, 1)
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call leglin(cbuf, ’20%’, 2)

call leglin(cbuf, ’30%’, 3)

call leglin(cbuf, ’40%’, 4)

call leglin(cbuf, ’50%’, 5)

call leglin(cbuf, ’60%’, 6)

call leglin(cbuf, ’70%’, 7)

call leglin(cbuf, ’80%’, 8)

call leglin(cbuf, ’90%’, 9)

call leglin(cbuf, ’95%’, 10)

call legtit(’legend’)

call legend(cbuf, 3)

call disfin

end program ch41_dislin_02

It is similar to the previous example.

41.5 Example 3: Using Dislin to Plot Gustafson’s Law
Graph 1 – 64 Processors or Cores

Here is the source code for this program.

program ch41_dislin_03

use dislin

implicit none

integer :: i, j

! Total number of processors and hence data

! points

integer, parameter :: nprocs = 64

! Number of percentage values from

! 10% -> 90% 9

! 95% 1

! Total 10

integer, parameter :: nn = 10

real, dimension (nn) :: pp = (/ 0.1, 0.2, 0.3, &

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 /)

real, dimension (nprocs) :: x

real, dimension (nprocs) :: y

real, dimension (nprocs, nn) :: ydata

integer :: nx

integer :: ny

character *30 cbuf

do i = 1, nprocs
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x(i) = real(i)

end do

! gustafson calculations. Store in 2 d array and

! then

! assign to 1 d array for plotting.

do i = 1, nprocs

do j = 1, nn

ydata(i, j) = i - (1-pp(j))*(i-1)

end do

end do

! Write the data to a file for verification

! purposes

open (unit=10, file=’gustafson_table.txt’)

do i = 1, nprocs

write (unit=10, fmt=100) x(i), &

ydata(i, 1:nn)

100 format (11(f7.2,2x))

end do

close (10)

call disini

call complx

call axspos(450, 1800)

call axslen(2200, 1400)

call name(’Number of processors’, ’x’)

call name(’Speed up’, ’y’)

call titlin(’Plot of Gustafsons Law’, 1)

call titlin(’64 Processors’, 3)

call labdig(-1, ’x’)

call ticks(10, ’xy’)

call graf(0.0, 64.0, 0.0, 10.0, 0.0, 70.0, &

0.0, 10.0)

call title

call xaxgit

call chncrv(’line’)

! Plot the curves. Copy from 2 d array to 1 d

! array

! before the call to curve.

do i = 1, nn

y = ydata(1:nprocs, i)

call curve(x, y, nprocs)

end do

call legini(cbuf, 10, 3)

! Coordinates of the start of the legend

! for the curves.

nx = 500
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ny = 450

call legpos(nx, ny)

call leglin(cbuf, ’10%’, 1)

call leglin(cbuf, ’20%’, 2)

call leglin(cbuf, ’30%’, 3)

call leglin(cbuf, ’40%’, 4)

call leglin(cbuf, ’50%’, 5)

call leglin(cbuf, ’60%’, 6)

call leglin(cbuf, ’70%’, 7)

call leglin(cbuf, ’80%’, 8)

call leglin(cbuf, ’90%’, 9)

call leglin(cbuf, ’95%’, 10)

call legtit(’legend’)

call legend(cbuf, 3)

call disfin

end program ch41_dislin_03

It is similar to the first example.

41.6 Example 4: Using Dislin to Plot Tsunami Events

Here is the source code for this program.

program ch41_dislin_04

use dislin

logical :: trial, screen

real :: long, lat

screen = .false.

trial = .false.

! read in the tsunami data

call datain(trial)

! I now have all the tsunami data latitude and

! longitude values read in to the arrays in the

! tsunam common block.

iproj = 1

lat = 0.0

long = 180.0



41.6 Example 4: Using Dislin to Plot Tsunami Events 805

nreg = 0

! dislin initialisation routines and setting of

! some basic components

! of the plot. these are based on two sample

! dislin programs.

! initialise dislin

call disini

! choose font

call psfont(’times-roman’)

! determines the position of an axis system.

! the lower left corner of the axis system

call axspos(400, 1850)

! the size of the axis system

! are the length and height of an axis system in

! plot coordinates. the default

! values are set to 2/3 of the page length and ! height.

call axslen(2400, 1400)

! define axis title

call name(’longitude’, ’x’)

! define axis title

call name(’latitude’, ’y’)

! this routine plots a title over an axis

! system.

call titlin(’plot of 3034 tsunami events ’, 3)

! determines which label types will be plotted

! on an axis.

! map defines geographical labels which are

! plotted as non negative floating-point

! numbers with the following characters ’w’, ! ’e’, ’n’



806 41 Graphics Libraries - Simple Dislin Usage

and ’s’.

call labels(’map’, ’xy’)

! plots a geographical axis system.

call grafmp(-180., 180., -180., 90., -90., &

90., -90., 30.)

! the statement call gridmp (i, j) overlays an

! axis system with a longitude

! and latitude grid where i and j are the number

! of grid lines between labels in

! the x- and y-direction.

call gridmp(1, 1)

! the routine world plots coastlines and lakes.

call world

! the angle and height of the characters can be

! changed with the routines

! angle and height.

call height(50)

! this routine plots a title over an axis

! system.

! the title may contain up to four lines of text

! designated

! with titlin.

call title

! this is a call to the routine that actually

! plots each event.

call plotem(trial, nreg)

! disfin terminates dislin and prints a message

! on the screen.

! the level is set back to 0.

call disfin
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end program ch41_dislin_04

subroutine datain(trial)

common /tsunam/reg0la(378), reg0lo(378), &

reg1la(206), reg1lo(206), reg2la(41), &

reg2lo(41), reg3la(54), reg3lo(54), &

reg4la(60), reg4lo(60), reg5la(1540), &

reg5lo(1540), reg6la(80), reg6lo(80), &

reg7la(144), reg7lo(144), reg8la(245), &

reg8lo(245), reg9la(285), reg9lo(285)

logical :: trial

character (80) :: filnam

if (trial) then

print *, ’ entering data input phase’

end if

filnam = ’tsunami.txt’

open (unit=50, file=filnam, err=100, &

status=’old’)

go to 110

100 print *, ’ error opening data file’

print *, ’ program terminates’

stop

110 do i = 1, 378

read (unit=50, fmt=120) reg0la(i), reg0lo(i)

end do

100 format (1x, f7.2, 2x, f7.2)

do i = 1, 206

read (unit=50, fmt=120) reg1la(i), reg1lo(i)

end do

do i = 1, 41

read (unit=50, fmt=120) reg2la(i), reg2lo(i)

end do

do i = 1, 54

read (unit=50, fmt=120) reg3la(i), reg3lo(i)

end do

do i = 1, 60

read (unit=50, fmt=120) reg4la(i), reg4lo(i)

end do

do i = 1, 1540

read (unit=50, fmt=120) reg5la(i), reg5lo(i)

end do

do i = 1, 80
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read (unit=50, fmt=120) reg6la(i), reg6lo(i)

end do

do i = 1, 144

read (unit=50, fmt=120) reg7la(i), reg7lo(i)

end do

do i = 1, 245

read (unit=50, fmt=120) reg8la(i), reg8lo(i)

end do

do i = 1, 285

read (unit=50, fmt=120) reg9la(i), reg9lo(i)

end do

if (trial) then

do i = 1, 10

print *, reg0la(i), ’ ’, reg0lo(i)

end do

print *, ’ exiting data input phase’

read *, dummy

end if

end subroutine datain

subroutine plotem(trial, nreg)

use dislin

common /tsunam/reg0la(378), reg0lo(378), &

reg1la(206), reg1lo(206), reg2la(41), &

reg2lo(41), reg3la(54), reg3lo(54), &

reg4la(60), reg4lo(60), reg5la(1540), &

reg5lo(1540), reg6la(80), reg6lo(80), &

reg7la(144), reg7lo(144), reg8la(245), &

reg8lo(245), reg9la(285), reg9lo(285)

! this subroutine plots all of the tsunamis onto

! the map as coloured

! points, with a different colour per region. i

! have chosen

! a dot size of 1 mm, and step through the

! colour pallette.

! the default may not be appropriate.

logical :: trial

integer :: nreg

integer :: kolour = 10

data dwidth/1.0/

if (trial) then

dwidth = 5.0
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print *, ’ entering plot points’

end if

call incmrk(-1)

if (nreg==0) then

call setclr(kolour)

call curvmp(reg0lo, reg0la, 378)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg1lo, reg1la, 206)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg2lo, reg2la, 41)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg3lo, reg3la, 54)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg4lo, reg4la, 60)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg5lo, reg5la, 1540)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg6lo, reg6la, 80)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg7lo, reg7la, 144)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg8lo, reg8la, 245)

kolour = kolour + 30

call setclr(kolour)

call curvmp(reg9lo, reg9la, 285)

else if (nreg==1) then

kolour = 10

call setclr(kolour)

call curvmp(reg0lo, reg0la, 378)

else if (nreg==2) then

kolour = 20

call setclr(kolour)

call curvmp(reg1lo, reg1la, 206)

else if (nreg==3) then

kolour = 30

call setclr(kolour)

call curvmp(reg2lo, reg2la, 41)
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else if (nreg==4) then

kolour = 40

call setclr(kolour)

call curvmp(reg3lo, reg3la, 54)

else if (nreg==5) then

kolour = 50

call setclr(kolour)

call curvmp(reg4lo, reg4la, 60)

else if (nreg==6) then

kolour = 60

call setclr(kolour)

call curvmp(reg5lo, reg5la, 1540)

else if (nreg==7) then

kolour = 70

call setclr(kolour)

call curvmp(reg6lo, reg6la, 80)

else if (nreg==8) then

kolour = 80

call setclr(kolour)

call curvmp(reg7lo, reg7la, 144)

else if (nreg==9) then

kolour = 90

call setclr(kolour)

call curvmp(reg8lo, reg8la, 245)

else if (nreg==10) then

kolour = 100

call setclr(kolour)

call curvmp(reg9lo, reg9la, 285)

end if

if (trial) then

print *, ’ exiting plot points’

end if

end subroutine plotem

The original program on which this is based was written by Ian whilst he was
on secondment to the United Nations Environment Programme. Section 9 of their
Environmental Data Reports cover natural disasters and these include

• Earthquakes
• Volcanoes
• Tsunamis
• Floods
• Landslides
• Natural dams
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• Droughts
• Wildfires

See the bibliography for more details of these publications. The tsunami data sets
are from this chapter.

The tsunami data file and graphics program can be found at:

https://www.fortranplus.co.uk/

Here is the plot produced by this program.

As you can see there are a lot of tsunami events in the Pacific rim area. A colour
A4 pdf of the plot can be found at the Fortranplus website.

41.7 Example 5: Using Dislin to Plot the Met Office Data

Here is the source code for this program.
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program ch41_dislin_05

use dislin

parameter (n=906)

dimension x(n), y(n)

open (unit=100, file=’aberporth_rainfall.csv’,&

status=’old’)

do i = 1, n

read (100, 100) x(i), y(i)

100 format (f3.0, 6x, f4.2)

end do

! Must call initialisation routine

call disini

! Plot a border round a page

call pagera

! Bounding box

!

! 0 , 0 2969 , 0

! 0 , 2099 2969, 2099

! Position of axis systems

call axspos(450, 1800)

! axis length

call axslen(2400, 1400)

! Change symbol rectangle by default

call symbol(4, 0, 0)

! X axis

call name(’Months’, ’X’)

! Y axis
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call name(’Rainfall inches’, ’Y’)

call labdig(1, ’X’)

call ticks(1, ’XY’)

call titlin(’Demonstration of scatterplot’, 1)

call titlin(’of rainfall by month’, 3)

! call mylab(’Jan’,1,’X’)

! call mylab(’Feb’,2,’X’)

! call mylab(’Mar’,3,’X’)

! call mylab(’Apr’,4,’X’)

! call mylab(’May’,5,’X’)

! call mylab(’Jun’,6,’X’)

! call mylab(’Jul’,7,’X’)

! call mylab(’Aug’,8,’X’)

! call mylab(’Sep’,9,’X’)

! call mylab(’Oct’,10,’X’)

! call mylab(’Nov’,11,’X’)

! call mylab(’Dec’,12,’X’)

! Plot a 2 d axis system

call graf(0.0, 13.0, 1.0, 1.0, 0.0, 11.0, 0.0, &

1.0)

! Scatter plot

call qplsca(x, y, n)

! Must call terminating routine

call disfin

end program ch41_dislin_05

Here is dislin output.
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These examples have shown some of the capability of the dislin library. Most
graphics libraries will offer similar functionality.

41.8 Graphics Production Notes

Most graphics libraries will enable you to view the image on the screen. They will
also have the option to generate the image in one or more file formats.

We used Postscript and encapsulated postscript in the production of the graphics
included in the book.

There is a brief coverage of the postscript programming language in Chap. 3.
Encapsulated PostScript (EPS) is a postscript document with additional restric-

tions which is intended to be usable as a graphics file format. EPS files can be thought
of as more-or-less self-contained postscript documents that describe an image or
drawing and can be placed within another postscript document.

When generating the book we use the − > ps − > pdf print option.

41.9 Bibliography

United Nations Environment Programme, Environmental Data Report: 1989–1990,
Second Edition, Blackwell Reference, 1989.
United Nations Environment Programme, Environmental Data Report: 1991–1992,
Third Edition, Blackwell Reference, 1991.
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• Part 9 of these two publications are dedicated to natural disasters

Andries Van Dam; James D. Foley, The Fundamentals of Interactive Computer
Graphics Addison-Wesley.

• The classic graphics textbook. Dated, but very good.

Edward R Tufte, Visual Explanations, Images and quantities, evidence and nar-
rative, Graphics Press, Chesire, Connecticut.

Edward R Tufte, The Visual Display of Quantitative Information, Graphics Press,
Chesire, Connecticut.

• Two very good books on how to present information visually

41.10 Problems

41.1 Try out the examples in this chapter.

41.2 Have a look at our resource file to find out more about what libraries are
available.



Chapter 42
Abstract Interfaces and Procedure
Pointers

No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.

Albert Einstein

42.1 Introduction

We look at an example that illustrates the use of abstract interfaces and procedure
pointers.

42.2 Example 1: Abstract Interfaces and Procedure
Pointers

Abstract interfaces and procedure pointers were introduced into Fortran in the 2003
standard. One of the things their addition did was simplify the waywe could program
where several procedures shared a common interface.

Their addition alsomade it possible to solve problems involving procedure pointer
components and abstract type bound procedures.

Here is some background technical material taken from the standard.
A procedure pointer is a procedure that has the EXTERNAL and POINTER

attributes; it may be pointer associated with an external procedure, an internal pro-
cedure, an intrinsic procedure, a module procedure, or a dummy procedure that is
not a procedure pointer.

An interface body in a generic or specific interface block specifies the EXTER-
NAL attribute and an explicit specific interface for an external procedure, dummy
procedure, or procedure pointer.

A procedure declaration statement declares procedure pointers, dummy proce-
dures, and external procedures. It specifies the EXTERNAL attribute for all entities
in the proc-decl-list.

© Springer International Publishing AG, part of Springer Nature 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1_42
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Here is the syntax for a procedure declaration statement.

PROCEDURE ( [ proc-interface ] )

[ [ , proc-attr-spec ] ... :: ] proc-decl-list

We use abstract interfaces and procedure pointers in the example below.

module abstract_function_interface_module

abstract interface

real function f(i)

implicit none

integer , intent(in) :: i

end function f

end interface

end module abstract_function_interface_module

module fun01

implicit none

contains

real function f1(i)

implicit none

integer, intent (in) :: i

f1 = 1.0/i

end function f1

real function f2(i)

implicit none

integer, intent (in) :: i

f2 = 1.0/(i*i)

end function f2

end module fun01

module fun02
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use abstract_function_interface_module

contains

real function f3(fun, i)

implicit none

integer, intent (in) :: i

procedure (f) :: fun

f3 = fun(i)

end function f3

real function f4(fun, i)

implicit none

integer, intent (in) :: i

procedure (f) :: fun

integer :: n

real :: t

t = 0.0

do n = 1, 5

t = t + fun(i)

end do

f4 = t

end function f4

end module fun02

program ch4201

use abstract_function_interface_module

use fun01

use fun02
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implicit none

procedure (f) , pointer :: p1

p1 => f1

print *, ’ p1 => f1, calling f3’

print *, f3(p1, 2)

p1 => f2

print *, ’ p1 => f2, calling f3’

print *, f3(p1, 2)

p1 => f1

print *, ’ p1 => f1, calling f4’

print *, f4(p1, 2)

p1 => f2

print *, ’ p1 => f2, calling f4’

print *, f4(p1, 2)

end program ch4201

Here is sample output.

p1 => f1, calling f3

0.5000000

p1 => f2, calling f3

0.2500000

p1 => f1, calling f4

2.5000000

p1 => f2, calling f4

1.2500000

42.3 Problem

42.1 Try out the example in this chapter.
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Appendix A
Glossary

This appendix is based on the terms and definitions chapter in the standard. Refer-
ences are to the standard.
Actual argument entity (R1524) that appears in a procedure reference
Allocatable having the ALLOCATABLE attribute (8.5.3)
Array set of scalar data, all of the same type and type parameters, whose individual
elements are arranged in a rectangular pattern (8.5.8, 9.5)

Array element scalar individual element of an array
Array pointer array with the POINTER attribute (8.5.14)
Array section array subobject designated by array-section, and which is itself

an array (9.5.3.3)
Assumed-shape array nonallocatable nonpointer dummyargument array that

takes its shape from its effective argument (8.5.8.3)
Assumed-size array dummy argument array whose size is assumed from that

of its effective argument (8.5.8.5)
Deferred-shape array allocatable array or array pointer, declared with a

deferred-shape-spec-list (8.5.8.4)
Explicit-shape array array declared with an explicit-shape-spec-list, which

specifies explicit values for the bounds in each dimension of the array (8.5.8.2)

ASCII character character whose representation method corresponds to ISO/IEC
646:1991 (International Reference Version)
Associate name name of construct entity associated with a selector of an ASSO-
CIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE construct (11.1.3,
11.1.5, 11.1.10, 11.1.11)
Associating entity ‘in a dynamically-established association’ the entity that did not
exist prior to the establishment of the association (19.5.5)
Association inheritance association, nameassociation, pointer association, or storage
association.

Argument association association between an effective argument
and a dummy argument

© Springer Nature Switzerland AG 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1
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Construct association association between a selector and an associate name
in an ASSOCIATE, CHANGE TEAM, SELECT RANK, or SELECT TYPE
construct (11.1.3, 11.1.5, 11.1.10, 11.1.11, 19.5.1.6)

Host association name association, other than argument association, between
entities in a submodule or contained scoping unit and entities in its host
(19.5.1.4)

Inheritance association association between the inherited components of an
extended type and the components of its parent component (19.5.4)

Linkage association association between a variable or common block with
the BIND attribute and a C global variable (18.9, 19.5.1.5)

Name association argument association, construct association, host associa-
tion, linkage association, or use association (19.5.1)

Pointer association association between a pointer and an entity with the TAR-
GET attribute (19.5.2)

Storage association association between storage sequences (19.5.3)
Use association association between entities in a module and entities in a

scoping unit or construct that references that module, as specified by a USE
statement (14.2.2)

Assumed-rank dummy data object dummy data object that assumes the rank,
shape, and size of its effective argument (8.5.8.7)
Assumed-type declared with a TYPE(*) type specifier (7.3.2)
Attribute property of an entity that determines its uses (8.1)
Automatic data object nondummy data object with a type parameter or array bound
that depends on the value of a specification-expr that is not a constant expression
(8.3)
Base object ‘data-ref’ object designated by the leftmost part-name (9.4.2)
Binding type-bound procedure or final subroutine (7.5.5)
Binding name name given to a specific or generic type-bound procedure in the type
definition (7.5.5)
Binding label default character value specifying the name by which a global entity
with the BIND attribute is known to the companion processor (18.10.2, 18.9.2)
Block sequence of executable constructs formed by the syntactic class block and
which is treated as a unit by the executable constructs described in 11.1
Bound array bound limit of a dimension of an array (8.5.8)
Branch target statement action-stmt, associate-stmt, end-associate-stmt,
if-then-stmt, end-if-stmt, select-case-stmt, end-select-stmt, selectrank-stmt, end-
select-rank-stmt, select-type-stmt, end-select-type-stmt, do-stmt,
end-do-stmt, block-stmt, endblock-stmt, critical-stmt, end-critical-stmt,
forall-construct-stmt, where-construct-stmt, end-function-stmt,
end-mp-subprogram-stmt, end-program-stmt, or end-subroutine-stmt.
C address value identifying the location of a data object or procedure either defined
by the companion processor orwhichmight be accessible to the companion processor
NOTE 3.1 This is the concept that ISO/IEC 9899:2011 calls the address.
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C descriptor C structure of type CFI_cdesc_t defined in the source file
ISO_Fortran_binding.h (18.4, 18.5)
Character context within a character literal constant (7.4.4) or within a character
string edit descriptor (13.3.2)
Characteristics ‘dummy argument’ being a dummy data object, dummy procedure,
or an asterisk (alternate return indicator)
Characteristics ‘dummy data object’ properties listed in 15.3.2.2
Characteristics ‘dummy procedure or dummy procedure pointer’ properties listed
in 15.3.2.3
Characteristics ‘function result’ properties listed in 15.3.3
Characteristics ‘procedure’ properties listed in 15.3.1
Coarray data entity that has nonzero corank (5.4.7)

Established coarray coarray that is accessible using an image-selector (5.4.8)

Cobound bound (limit) of a codimension (8.5.6)
Codimension dimension of the pattern formed by a set of corresponding coarrays
(8.5.6)
Coindexed object data object whose designator includes an image-selector (R924,
9.6)
Collating sequence one-to-one mapping from a character set into the nonnegative
integers (7.4.4.4)
Common block block of physical storage specified by a COMMON statement
(8.10.2)

Blank common unnamed common block

Companion processor processor-dependent mechanism by which global data and
procedures may be referenced or defined (5.5.7)
Component part of a derived type, or of an object of derived type, defined by a
component-def-stmt (7.5.4)

Direct component one of the components, or one of the direct components of
a nonpointer nonallocatable component (7.5.1)

Parent component component of an extended type whose type is that of the
parent type and whose components are inheritance associated with the inher-
ited components of the parent type (7.5.7.2)

Potential subobject component nonpointer component, or potential subob-
ject component of a nonpointer component (7.5.1)

Subcomponent ‘structure’ direct component that is a subobject of the structure
(9.4.2)

Ultimate component component that is of intrinsic type, a pointer, or allocat-
able; or an ultimate component of a nonpointer nonallocatable component of
derived type

Component order ordering of the nonparent components of a derived type that is
used for intrinsic formatted input/output and structure constructors (where compo-
nent keywords are not used) (7.5.4.7)
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Conformable ‘of two data entities’ having the same shape, or one being an array
and the other being scalar
Connected relationship between a unit and a file: each is connected if and only if
the unit refers to the file (12.5.4)
Constant data object that has a value and which cannot be defined, redefined, or
become undefined during execution of a program (6.2.3, 9.3)

Literal constant constant that does not have a name (R605, 7.4)
Named constant named data object with the PARAMETER attribute (8.5.13)

Construct entity entity whose identifier has the scope of a construct (19.1, 19.4)
Constant expression expression satisfying the requirements specified in 10.1.12,
thus ensuring that its value is constant
Contiguous ‘array’ having array elements in order that are not separated by other
data objects, as specified in 8.5.7
Contiguous ‘multi-part data object’ that the parts in order are not separated by other
data objects
Corank number of codimensions of a coarray (zero for objects that are not coarrays)
(8.5.6)
Cosubscript (R925) scalar integer expression in an image-selector (R924)
Data entity data object, result of the evaluation of an expression, or the result of the
execution of a function reference
Data object object constant, variable, or subobject of a constant
Decimal symbol character that separates thewhole and fractional parts in the decimal
representation of a real number in a file (13.6)
Declaration specification of attributes for various program entities NOTE 3.2 Often
this involves specifying the type of a named data object or specifying the shape of a
named array object.
Default initialization mechanism for automatically initializing pointer components
to have a defined pointer association status, and nonpointer components to have a
particular value (7.5.4.6)
Default-initialized ‘subcomponent’ subject to a default initialization specified in the
type definition for that component (7.5.4.6)
Definable capable of definition and permitted to become defined
Defined ‘data object’ has a valid value
Defined ‘pointer’ has a pointer association status of associated or disassociated
(19.5.2.2)
Defined assignment assignment defined by a procedure (10.2.1.4, 15.4.3.4.3)
Defined input/output input/output defined by a procedure and accessed via a
defined-io-generic-spec (R1509, 12.6.4.8)
Defined operation operation defined by a procedure (10.1.6.1, 15.4.3.4.2)
Definition ‘data object’ process by which the data object becomes defined (19.6.5)
Definition ‘derived type (7.5.2), enumeration (7.6), or procedure (15.6)’ specification
of the type, enumeration, or procedure
Descendant ‘module or submodule’ submodule that extends that module or sub-
module or that extends another descendant thereof (14.2.3)
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Designator name followed by zero ormore component selectors, complex part selec-
tors, array section selectors, array element selectors, image selectors, and substring
selectors (9.1)

Complex part designator designator that designates the real or imaginary
part of a complex data object, independently of the other part (9.4.4)

Object designator data object designator designator for a data object NOTE
3.3 An object name is a special case of an object designator.

Procedure designator designator for a procedure

Disassociated ‘pointer association’ pointer association status of not being associated
with any target and not being undefined (19.5.2.2)
Disassociated ‘pointer’ has a pointer association status of disassociated
Dummy argument entity whose identifier appears in a dummy argument list in a
FUNCTION, SUBROUTINE, ENTRY, or statement function statement, or whose
name can be used as an argument keyword in a reference to an intrinsic procedure
or a procedure in an intrinsic module

Dummy data object dummy argument that is a data object
Dummy function dummy procedure that is a function

Effective argument entity that is argument-associated with a dummy argument
(15.5.2.3)
Effective item scalar object resulting from the application of the rules in 12.6.3 to
an input/output list
Elemental independent scalar application of an action or operation to elements of
an array or corresponding elements of a set of conformable arrays and scalars, or
possessing the capability of elemental operation NOTE 3.4 Combination of scalar
and array operands or arguments combine the scalar operand(s) with each element
of the array operand(s).

Elemental assignment assignment that operates elementally
Elemental operation operation that operates elementally
Elemental operator operator in an elemental operation
Elemental procedure elemental intrinsic procedure or procedure defined by

an elemental subprogram (15.8)
Elemental reference reference to an elemental procedure with at least one

array actual argument
Elemental subprogram subprogram with the ELEMENTAL prefix (15.8.1)

ENDstatement end-block-data-stmt, end-function-stmt, end-module-stmt, end-mp-
subprogram-stmt, end-program-stmt, end-submodule-stmt, or end-subroutine-stmt
Explicit initialization initialization of a data object by a specification statement (8.4,
8.6.7)
Extent number of elements in a single dimension of an array
External file file that exists in a medium external to the program (12.3)
External unit external input/output unit entity that can be connected to an external
file (12.5.3, 12.5.4)
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File storage unit unit of storage in a stream file or an unformatted record file (12.3.5)
Final subroutine subroutine whose name appears in a FINAL statement (7.5.6) in
a type definition, and which can be automatically invoked by the processor when an
object of that type is finalized (7.5.6.2)
Finalizable ‘type’ has a final subroutine or a nonpointer nonallocatable component
of finalizable type
Finalizable ‘nonpointer data entity’ of finalizable type
Finalization process of calling final subroutines when one of the events listed in
7.5.6.3 occurs
Function procedure that is invoked by an expression
Function result entity that returns the value of a function (15.6.2.2)
Generic identifier lexical token that identifies a generic set of procedures, intrinsic
operations, and/or intrinsic assignments (15.4.3.4.1)
Host instance ‘internal procedure, or dummy procedure or procedure pointer asso-
ciated with an internal procedure’ instance of the host procedure that supplies the
host environment of the internal procedure (15.6.2.4)
Host scoping unit host scoping unit immediately surrounding another scoping unit,
or the scoping unit extended by a submodule
IEEE infinity ISO/IEC/IEEE 60559:2011 conformant infinite floating-point value
IEEE NaN ISO/IEC/IEEE 60559:2011 conformant floating-point datum that does
not represent a number
Image instance of a Fortran program (5.3.4)

Active image image that has not failed or stopped (5.3.6)
Failed image image that has not initiated termination but which has ceased to

participate in program execution (5.3.6)
Stopped image image that has initiated normal termination (5.3.6)

Image index integer value identifying an image within a team
Image control statement statement that affects the execution ordering between
images (11.6)
Inclusive scope nonblock scoping unit plus every block scoping unit whose host is
that scoping unit or that is nested within such a block scoping unit NOTE 3.5 That
is, inclusive scope is the scope as if BLOCK constructs were not scoping units.
Inherit ‘extended type’ acquire entities (components, type-bound procedures, and
type parameters) through type extension from the parent type (7.5.7.2)
Inquiry function intrinsic function, or function in an intrinsic module, whose result
depends on the properties of one or more of its arguments instead of their values
Interface ‘procedure’ name, procedure characteristics, dummy argument names,
binding label, and generic identifiers (15.4.1)

Abstract interface set of procedure characteristics with dummy argument
names (15.4.1)

Explicit interface interface of a procedure that includes all the characteristics
of the procedure and names for its dummy arguments except for asterisk
dummy arguments (15.4.2)



Appendix A: Glossary 827

Generic interface set of procedure interfaces identified by a generic identifier
Implicit interface interface of a procedure that is not an explicit interface

(15.4.2, 15.4.3.8)
Specific interface interface identified by a nongeneric name

Interface block abstract interface block, generic interface block, or specific interface
block (15.4.3.2)

Abstract interface block interface block with the ABSTRACT keyword; col-
lection of interface bodies that specify named abstract interfaces

Generic interface block interface block with a generic-spec; collection of
interface bodies and procedure statements that are to be given that generic
identifier

Specific interface block interface block with no generic-spec or ABSTRACT
keyword; collection of interface bodies that specify the interfaces of proce-
dures

Interoperable ‘Fortran entity’ equivalent to an entity defined by or definable by the
companion processor (18.3)
Intrinsic type, procedure, module, assignment, operator, or input/output operation
defined in this document and accessible without further definition or specification,
or a procedure or module provided by a processor but not defined in this document

Standard intrinsic ‘procedure or module’ defined in this document (16)
Nonstandard intrinsic ‘procedure or module’ provided by a processor but

not defined in this document

Internal file character variable that is connected to an internal unit (12.4)
Internal unit input/output unit that is connected to an internal file (12.5.4)
ISO 10646 character character whose representation method corresponds to UCS-4
in ISO/IEC 10646
Keyword statement keyword, argument keyword, type parameter keyword, or com-
ponent keyword

Argument keyword word that identifies the corresponding dummy argument
in an actual argument list (15.5.2.1)

Component keyword word that identifies a component in a structure con-
structor (7.5.10)

Statement keyword word that is part of the syntax of a statement (5.5.2)
Type parameter keyword word that identifies a type parameter in a type

parameter list

Lexical token keyword, name, literal constant other than a complex literal constant,
operator, label, delimiter, comma, =, =>, :, ::, ;, or % (6.2)
Line sequence of zero or more characters
Main program program unit that is not a subprogram, module, submodule, or block
data program unit (14.1)
Masked array assignment assignment statement in a WHERE statement or
WHERE construct
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Module program unit containing (or accessing from other modules) definitions that
are to be made accessible to other program units (14.2)
Name identifier of a program constituent, formed according to the rules given in
6.2.2
NaN Not a Number, a symbolic floating-point datum (ISO/IEC/IEEE 60559:2011)
Operand data value that is the subject of an operator
Operator intrinsic-operator, defined-unary-op, or defined-binary-op (R608, R1003,
R1023)
Passed-object dummy argument dummy argument of a type-bound procedure or
procedure pointer component that becomes associated with the object through which
the procedure is invoked (7.5.4.5)
Pointer data pointer or procedure pointer

Data pointer data entity with the POINTER attribute (8.5.14)
Procedure pointer procedure with the EXTERNAL and POINTER attributes

(8.5.9, 8.5.14)
Local procedure pointer procedure pointer that is part of a local variable, or

a named procedure pointer that is not a dummy argument or accessed by use
or host association

Pointer assignment association of a pointer with a target, by execution of a pointer
assignment statement (10.2.2) or an intrinsic assignment statement (10.2.1.2) for a
derived-type object that has the pointer as a subobject
Polymorphic ‘data entity’ able to be of differing dynamic types during program
execution (7.3.2.3)
Preconnected ‘file or unit’ connected at the beginning of execution of the program
(12.5.5)
Procedure entity encapsulating an arbitrary sequence of actions that can be invoked
directly during program execution

Dummy procedure procedure that is a dummy argument (15.2.2.3)
External procedure procedure defined by an external subprogram (R503) or

by means other than Fortran (15.6.3)
Internal procedure procedure defined by an internal subprogram (R512)
Module procedure procedure defined by a module subprogram, or a proce-

dure provided by an intrinsic module (R1408)
Pure procedure procedure declared or defined to be pure (15.7)
Type-bound procedure procedure that is bound to a derived type and refer-

enced via an object of that type (7.5.5)

Processor combination of a computing system and mechanism by which programs
are transformed for use on that computing system
Processor dependent not completely specified in this document, having methods
and semantics determined by the processor
Program set of Fortran program units and entities defined by means other than
Fortran that includes exactly one main program
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Program unit main program, external subprogram, module, submodule, or block
data program unit (5.2.1)
Rank number of array dimensions of a data entity (zero for a scalar entity)
Record sequence of values or characters in a file (12.2)
Record file file composed of a sequence of records (12.1)
Reference data object reference, procedure reference, or module reference

Data object reference appearance of a data object designator (9.1) in a context
requiring its value at that point during execution

Function reference appearance of the procedure designator for a function, or
operator symbol for a defined operation, in a context requiring execution of
the function during expression evaluation (15.5.3)

Module reference appearance of a module name in a USE statement (14.2.2)
Procedure reference appearance of a procedure designator, operator symbol,

or assignment symbol in a context requiring execution of the procedure at
that point during execution; or occurrence of defined input/output (13.7.6) or
derived-type finalization (7.5.6.2)

Saved having the SAVE attribute (8.5.16)
Scalar data entity that can be represented by a single value of the type and that is
not an array (9.5)
Scoping unit BLOCK construct, derived-type definition, interface body, program
unit, or subprogram, excluding all nested scoping units in it

Block scoping unit scoping unit of a BLOCK construct

Sequence set of elements ordered by a one-to-one correspondence with the numbers
1, 2, to n
Sequence structure scalar data object of a sequence type (7.5.2.3)
Sequence type derived type with the SEQUENCE attribute (7.5.2.3)

Character sequence type sequence type with no allocatable or pointer com-
ponents, and whose components are all default character or of another char-
acter sequence type

Numeric sequence type sequence type with no allocatable or pointer compo-
nents, and whose components are all default complex, default integer, default
logical, default real, double precision real, or of another numeric sequence
type

Shape array dimensionality of a data entity, represented as a rank-one array whose
size is the rank of the data entity and whose elements are the extents of the data entity
NOTE 3.6 Thus the shape of a scalar data entity is an array with rank one and size
zero.
Simply contiguous ‘array designator or variable’ satisfying the conditions specified
in 9.5.4 NOTE 3.7 These conditions are simple ones which make it clear that the
designator or variable designates a contiguous array.
Size ‘array’ total number of elements in the array
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Specification expression expression satisfying the requirements specified in 10.1.11,
thus being suitable for use in specifications
Specific name name that is not a generic name
Standard-conforming program program that uses only those forms and relation-
ships described in, and has an interpretation according to, this document
Statement sequence of one or more complete or partial lines satisfying a syntax rule
that ends in -stmt (6.3)

Executable statement end-function-stmt, end-mp-subprogram-stmt,
end-program-stmt, end-subroutine-stmt, or statement that is a member of the
syntactic class executable-construct, excluding those in theblock-specification-
part of a BLOCK construct

Nonexecutable statement statement that is not an executable statement

“aStatement entity entity whose identifier has the scope of a statement or part of
a statement (19.1, 19.4)
Statement label label unsigned positive number of up to five digits that refers to an
individual statement (6.2.5)
Storage sequence contiguous sequence of storage units (19.5.3.2)
Storage unit character storage unit, numeric storage unit, file storage unit, or unspec-
ified storage unit (19.5.3.2)

Character storage unit unit of storage that holds a default character value
(19.5.3.2)

Numeric storage unit unit of storage that holds a default real, default integer,
or default logical value (19.5.3.2)

Unspecified storage unit unit of storage that holds a value that is not default
character, default real, double precision real, default logical, or default com-
plex (19.5.3.2)

Stream file file composed of a sequence of file storage units (12.1)
Structure scalar data object of derived type (7.5)

Structure component component of a structure
Structure constructor syntax (structure-constructor, 7.5.10) that specifies a

structure value or creates such a value

Submodule program unit that extends a module or another submodule (14.2.3)
Subobject portion of data object that can be referenced, and if it is a variable defined,
independently of any other portion
Subprogram function-subprogram (R1529) or subroutine-subprogram (R1534)

External subprogram subprogram that is not contained in a main program,
module, submodule, or another subprogram

Internal subprogram subprogram that is contained in a main program or
another subprogram

Module subprogram subprogram that is contained in a module or submodule
but is not an internal subprogram
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Subroutine procedure invoked by a CALL statement, by defined assignment, or by
some operations on derived-type entities

Atomic subroutine intrinsic subroutine that performs an action on its ATOM
argument atomically

Collective subroutine intrinsic subroutine that performs a calculation on a
team of images without requiring synchronization

Target entity that is pointer associated with a pointer (19.5.2.2), entity on the right-
hand-side of a pointer assignment statement (R1033), or entity with the TARGET
attribute (8.5.17)
Team ordered set of images created by execution of a FORM TEAM statement, or
the initial ordered set of all images

Current team team specified by themost recently executed CHANGETEAM
statement of a CHANGE TEAM construct that has not completed execution
(11.1.5), or initial team if no CHANGE TEAM construct is being executed

Initial team team existing at the beginning of program execution, consisting
of all images

Parent team ‘team except for initial team’ current team at time of execution
of the FORM TEAM statement that created the team (11.6.9)

Team number -1 which identifies the initial team, or positive integer that
identifies a team within its parent team

Transformational function intrinsic function, or function in an intrinsic module,
that is neither elemental nor an inquiry function
Type data type named category of data characterized by a set of values, a syntax
for denoting these values, and a set of operations that interpret and manipulate the
values (7.1)

Abstract type type with the ABSTRACT attribute (7.5.7.1)
Declared type type that a data entity is declared to have, either explicitly or

implicitly (7.3.2, 10.1.9)
Derived type type defined by a type definition (7.5) or by an intrinsic module
Dynamic type type of a data entity at a particular point during execution of a

program (7.3.2.3, 10.1.9)
Extended type type with the EXTENDS attribute (7.5.7.1)
Extensible type type that may be extended using the EXTENDS clause

(7.5.7.1)
Extension type ‘of one type with respect to another’ is the same type or is an

extended type whose parent type is an extension type of the other type
Intrinsic type type defined by this document that is always accessible (7.4)
Numeric type one of the types integer, real, and complex
Parent type ‘extended type’ type named in the EXTENDS clause
Type compatible compatibility of the type of one entitywith respect to another

for purposes such as argument association, pointer association, and allocation
(7.3.2)
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Type parameter value used to parameterize a type (7.2)
Assumed type parameter length type parameter that assumes the type param-

eter value from another entity NOTE 3.8 The other entity is the selector for
an associate name, the constant-expr for a named constant of type character,
or NOTE 3.8 (cont.) the effective argument for a dummy argument.

Deferred type parameter length type parameter whose value can change dur-
ing execution of a program and whose type-param-value is a colon

Kind type parameter type parameter whose value is required to be defaulted
or given by a constant expression

Length type parameter typeparameterwhosevalue is permitted to be assumed,
deferred, or given by a specification expression

Type parameter inquiry syntax (type-param-inquiry) that is used to inquire
the value of a type parameter of a data object (9.4.5)

Type parameter order ordering of the type parameters of a type (7.5.3.2)
used for derived-type specifiers (derived-type-spec, 7.5.9)

Ultimate argument nondummy entity with which a dummy argument is associated
via a chain of argument associations (15.5.2.3)
Undefined ‘data object’ does not have a valid value
Undefined ‘pointer’ does not have a pointer association status of associated or dis-
associated (19.5.2.2)
Unit input/output unit means, specified by an io-unit, for referring to a file (12.5.1)
Unlimited polymorphic able to have any dynamic type during program execution
(7.3.2.3)
Unsaved not having the SAVE attribute (8.5.16)
Variable data entity that can be defined and redefined during execution of a program

Event variable scalar variable of type EVENT_TYPE (16.10.2.10) from the
intrinsic module ISO_FORTRAN_ENV

Local variable variable in a scoping unit that is not a dummy argument or part
thereof, is not a global entity or part thereof, and is not an entity or part of an
entity that is accessible outside that scoping unit

Lock variable scalar variable of type LOCK_TYPE (16.10.2.19) from the
intrinsic module ISO_FORTRAN_ENV

Team variable scalar variable of type TEAM_TYPE (16.10.2.32) from the
intrinsic module ISO_FORTRAN_ENV

Vector subscript section-subscript that is an array (9.5.3.3.2)
Whole array array component or array name without further qualification (9.5.2)
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Attribute Declarations and Specifications

This appendix is based on Chap.8 in the standard. References are to the standard.

Attributes of Procedures and Data Objects

Every data object has a type and rank and may have type parameters and other
properties that determine the uses of the object. Collectively, these properties are the
attributes of the object. The declared type of a named data object is either specified
explicitly in a type declaration statement or determined implicitly by the first letter
of its name (8.7). All of its attributes may be specified in a type declaration statement
or individually in separate specification statements.

A function has a type and rank and may have type parameters and other attributes
that determine the uses of the function. The type, rank, and type parameters are the
same as those of the function result.

A subroutine does not have a type, rank, or type parameters, but may have other
attributes that determine the uses of the subroutine.

Type Declaration Statement

A type declaration statement specifies the declared type of the entities in the entity
declaration list.

Attribute Specification

An attribute specifier can be one or more of

• ALLOCATABLE
• ASYNCHRONOUS
• BIND C
• CODIMENSION
• CONTIGUOUS
• DIMENSION
• EXTERNAL
• INTENT
• INTRINSIC
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• OPTIONAL
• PARAMETER
• POINTER
• PRIVATE
• PROTECTED
• PUBLIC
• SAVE
• TARGET
• VALUE
• VOLATILE

Attribute Specification Statements
These include

• ALLOCATABLE
• ASYNCHRONOUS
• BIND C
• CODIMENSION
• CONTIGUOUS
• DATA
• DIMENSION
• INTENT
• OPTIONAL
• PARAMETER
• POINTER
• PROTECTED
• SAVE
• TARGET
• VALUE
• VOLATILE



Appendix C
Compatibility

Previous Fortran Standards

TableC.1 lists the previous editions of the Fortran International Standard, along with
their informal names.

Table C.1 Previous editions of the Fortran standard

Official name Informal name

ISO R 1539-1972 Fortran 66

ISO 1539-1980 Fortran 77

ISO/IEC 1539:1991 Fortran 90

ISO/IEC 1539-1:1997 Fortran 95

ISO/IEC 1539-1:2004 Fortran 2003

ISO/IEC 1539-1:2010 Fortran 2008

New Intrinsic Procedures

Each Fortran International Standard since ISO 1539:1980 (Fortran 77), defines more
intrinsic procedures than the previous one. Therefore, a Fortran program conforming
to an older standard might have a different interpretation under a newer standard if
it invokes an external procedure having the same name as one of the new standard
intrinsic procedures, unless that procedure is specified to have the EXTERNAL
attribute.

Fortran 2008 Compatibility

Except as identified in this subclause, and except for the deleted features noted
in Annex B.2, the Fortran 2018 standard is an upward compatible extension to
the preceding Fortran International Standard, ISO/IEC 1539-1:2010 (Fortran). Any
standard-conforming Fortran 2008 program that does not use any deleted features,
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and does not use any feature identified in this subclause as being no longer permitted,
remains standard-conforming in the Fortran 2018 standard.

Fortran 2008 specifies that the IOSTAT = variable shall be set to a processor-
dependent negative value if the flush operation is not supported for the unit specified.
the Fortran 2018 standard specifies that the processor-dependent negative integer
value shall be different from the named constants IOSTAT_EOR or IOSTAT_END
from the intrinsic module ISO_FORTRAN_ENV.

Fortran 2008 permitted a noncontiguous array that was supplied as an actual
argument corresponding to a contiguous INTENT (INOUT) dummy argument in
one iteration of a DO CONCURRENT construct, without being previously defined
in that iteration, to be defined in another iteration;

Fortran 2008 permitted a pure statement function to reference a volatile variable,
and permitted a local variable of a pure subprogram or of a BLOCK construct within
a pure subprogram to be volatile (provided it was not used); the Fortran 2018 standard
does not permit this.

Fortran 2008 permitted a pure function to have a result that has a polymorphic
allocatable ultimate component; the Fortran 2018 standard does not permit this.

Fortran 2008 permitted a PROTECTED TARGET variable accessed by use asso-
ciation to be used as an initial7 data-target; the Fortran 2018 standard does not permit
this.

Fortran 2008 permitted a named constant to have declared type LOCK_TYPE, or
have a noncoarray potential subobject component with declared type LOCK_TYPE;
the Fortran 2018 standard does not permit this.

Fortran 2008 permitted a polymorphic object to be finalized within a DO CON-
CURRENT construct; the Fortran 2018 standard does not permit this.

Fortran 2003 Compatibility

Except as identified in this subclause, the Fortran 2018 standard is an upward com-
patible extension to ISO/IEC 1539-1:2004 (Fortran 2003). Except as identified in
this subclause, any standard-conforming Fortran 2003 program remains standard-
conforming in the Fortran 2018 standard.

Fortran 2003 permitted a sequence type to have type parameters; that is not per-
mitted by the Fortran 2018 standard.

Fortran 2003 specified that array constructors and structure constructors of final-
izable type are finalized. The Fortran 2018 standard specifies that these constructors
are not finalized.

The form produced by theG edit descriptor for some values and some input/output
rounding modes differs from that specified by Fortran 2003.

Fortran 2003 required an explicit interface only for a procedure that was actually
referenced in the scope, not merely passed as an actual argument. the Fortran 2018
standard requires an explicit interface for a procedure under the conditions listed in
15.4.2.2, regardless of whether the procedure is referenced in the scope.

Fortran 2003 permitted the function result of a pure function to be a polymorphic
allocatable variable, to have a polymorphic allocatable ultimate component, or to
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be finalizable by an impure final subroutine. These are not permitted by the Fortran
2018 standard.

Fortran 2003 permitted an INTENT (OUT) argument of a pure subroutine to be
polymorphic; that is not permitted by the Fortran 2018 standard.

Fortran 2003 interpreted assignment to an allocatable variable from a noncon-
formable array as intrinsic assignment, even when an elemental defined assignment
was in scope; the Fortran 2018 standard does not permit assignment from a noncon-
formable array in this context.

Fortran 2003 permitted a statement function to be of parameterized derived type;
the Fortran 2018 standard does not permit this.

Fortran 2003 permitted a pure statement function to reference a volatile variable,
and permitted a local variable of a pure subprogram to be volatile (provided it was
not used); the Fortran 2018 standard does not permit this

Fortran 95 Compatibility

Except as identified in this subclause, the Fortran 2018 standard is an upward compat-
ible extension to ISO/IEC 1539-1:1997 (Fortran 95). Except as identified in this sub-
clause, any standard-conforming Fortran 95 program remains standard-conforming
in the Fortran 2018 standard.

Fortran 95 permitted defined assignment between character strings of the same
rank and different kinds. This document does not permit that if both of the different
kinds are ASCII, ISO 10646, or default kind.

The following Fortran 95 features might have different interpretations in the For-
tran 2018 standard.

Earlier Fortran standards had the concept of printing, meaning that column one of
formatted output had special meaning for a processor-dependent (possibly empty) set
of external files. This could be neither detected nor specified by a standard-specified
means. The interpretation of the first column is not specified by the Fortran 2018
standard.

The Fortran 2018 standard specifies a different output format for real zero values
in list-directed and namelist output.

If the processor distinguishes between positive and negative real zero, the Fortran
2018 standard requires different returned values for ATAN2(Y,X) when X < 0 and
Y is negative real zero and for LOG(X) and SQRT(X) when X is complex with
X%RE < 0 and X%I M is negative real zero.

The Fortran 2018 standard has fewer restrictions on constant expressions than
Fortran 95; this might affect whether a variable is considered to be an automatic data
object.

The form produced by the G edit descriptor with d equal to zero differs from that
specified by Fortran 95 for some values.

Fortran 90 Compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this
subclause, the Fortran 2018 standard is an upward compatible extension to ISO/IEC
1539:1991 (Fortran 90). Any standard-conforming Fortran 90 program that does not
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use one of the deleted features remains standard-conforming in the Fortran 2018
standard.

The PAD = specifier in the INQUIRE statement in the Fortran 2018 standard
returns the value UNDEFINED if there is no connection or the connection is for
unformatted input/output. Fortran 90 specified YES.

Fortran 90 specified that if the second argument to MOD or MODULO was zero,
the result was processor dependent. The Fortran 2018 standard specifies that the
second argument shall not be zero.

Fortran 90 permitted defined assignment between character strings of the same
rank and different kinds. This document does not permit that if both of the different
kinds are ASCII, ISO 10646, or default kind.

The following Fortran 90 features have different interpretations in the Fortran
2018 standard:

if the processor distinguishes between positive and negative real zero, the result
value of the intrinsic function SIGN when the second argument is a negative real
zero;

formatted output of negative real values (when the output value is zero);
whether an expression is a constant expression (thus whether a variable is con-

sidered to be an automatic data object);
the G edit descriptor with d equal to zero for some values.

FORTRAN 77 Compatibility

Except for the deleted features noted in Annex B.1, and except as identified in this
subclause, the Fortran 2018 standard is an upward compatible extension to ISO
1539:1980 (Fortran 77). Any standard-conforming Fortran 77 program that does
not use one of the deleted features noted in Annex B.1 and that does not depend
on the differences specified here remains standard-conforming in the Fortran 2018
standard. the Fortran 2018 standard restricts the behaviour for some features that
were processor dependent in Fortran 77. Therefore, a standard-conforming Fortran
77 program that uses one of these processor-dependent features might have a dif-
ferent interpretation in the Fortran 2018 standard, yet remain a standard-conforming
program. The following Fortran 77 features might have different interpretations in
the Fortran 2018 standard.

Fortran 77 permitted a processor to supply more precision derived from a default
real constant than can be represented in a default real datum when the constant is
used to initialize a double precision real data object in a DATA statement. the Fortran
2018 standard does not permit a processor this option.

If a named variable that was not in a common block was initialized in a DATA
statement and did not have the SAVE attribute specified, Fortran 77 left its SAVE
attribute processor dependent. the Fortran 2018 standard specifies (8.6.7) that this
named variable has the SAVE attribute.

Fortran 77 specified that the number 1 of characters required by the input list was
to be less than or equal to the number of characters in the record during formatted
input. the Fortran 2018 standard specifies (12.6.4.5.3) that the input record is logically
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padded with blanks if there are not enough characters in the record, unless the PAD=
specifierwith the value ‘NO’ is specified in an appropriateOPENorREADstatement.

A value of 0 for a list item in a formatted output statement will be formatted in
a different form for some G edit descriptors. In addition, the Fortran 2018 standard
specifies how rounding of values will affect the output field form, but Fortran 77
did not address this issue. Therefore, the form produced for certain combinations of
values and G edit descriptors might differ from that produced by some Fortran 77
processors.

Fortran 77 did not permit a processor to distinguish between positive and negative
real zero; if the processor does so distinguish, the result will differ for the intrinsic
function SIGNwhen the second argument is negative real zero, and formatted output
of negative real zero will be different.



Appendix D
Intrinsic Functions and Procedures

This appendix has a brief coverage of some of the more commonly used intrinsic
functions and procedures. Chapter16 of the standard should be consulted for an
exhaustive coverage.

The following abbreviations and typographic conventions are used in this appendix.

D.1 Argument Type and Return Type

These are documented in TableD.1.

Table D.1 Argument and return type abbreviations

Abbreviation Meaning

a Any

i Integer

r Real

c Complex

n Numeric (any of integer, real, complex)

l Logical

p Pointer

p* Polymorphic

t Target

dp Double precision

char Character, length = 1

s Character

boz Boz-literal-constant

co Coarray or coindexed object

te Team type
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D.2 Classes of Function

There are several classes of function in Fortran and they are documented below
(TableD.2).

Table D.2 Classes of function

Class Description

a Indicates that the procedure is an atomic subroutine

e Indicates that the procedure is an elemental function

es Indicates that the procedure is an elemental subroutine

i Indicates that the procedure is an inquiry function

ps Indicates that the procedure is a pure subroutine

s Indicates that the procedure is an impure subroutine

t Indicates that the procedure in a transformational function

D.3 Optional Arguments

Arguments in italics or [] brackets are optional arguments.
In the example ALL(mask,dim) dim may be omitted.

D.4 Common Optional Arguments

These are documented in TableD.3.

Table D.3 Common optional arguments

Argument Description

Back Controls the direction of string scan, forward or
backward

Dim A selected dimension of an array argument

Kind Describes the kind type parameter of the result
If the kind argument is absent the result is the
same type as the first argument.

Mask size A mask may be applied to the arguments f an
array, the total number of elements
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D.5 Double Precision

Before Fortran 90 if you required real variables to have greater precision than the
default real then the only option available was to declare them as double precision.
With the introduction of kind types with Fortran 90 the use of double precision
declarations is not recommended, and instead real entities with a kind type offering
more than the default precision should be used.

D.6 Result Type

When the result type is the same as the argument type then the result is not just the
same type as the argument but also the same kind.

D.7 Miscellaneous Rules

All intrinsic proceduresmay be invokedwith either positional arguments or argument
keywords.

Many of the intrinsic functions have optional arguments.
Unless otherwise specified the intrinisc inquiry functions accept array arguments

for which the shape need not be defined. The shape of array arguments to transfor-
mational and elemental intrinsic functions shall be defined.

Some array intrinsic functions are reduction functions - they reduce the rank of
an array by collapsing one dimension (or all dimensions, usually producing a scalar
result).

When the argument is back it is of logical type.
When the argument is count_rate, count_max, dim, kind, len, order,

n_copies, shape, shift, values it is of integer type.
When the argument is mask it is of logical type.
When the argument is target it is of pointer or target type.
Fortran 2008 introduced several changes to Fortran 2003 that affected intrinsic

procedures.

• The following functions can now have arguments of type complex: acos, asin,
atan, cosh, sinh, tan and tanh.

• The intrinsic function atan2 can be referenced by the name atan.
• The intrinsic functions lge, lgt, lle and llt can have arguments of ASCII
kind.

• The intrinsic functions maxloc and minloc have an additional back argument.
• The intrinsic function selected_real_kind has an additional radix argu-
ment.
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Fortran 2018 introduced the following intrinsic functions and procedures

• ATOMIC_ADD (ATOM, VALUE [, STAT])
• ATOMIC_AND (ATOM, VALUE [, STAT])
• ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])
• ATOMIC_DEFINE (ATOM, VALUE [, STAT])
• ATOMIC_FETCH_ADD (ATOM, VALUE, OLD [, STAT])
• ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])
• ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])
• ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])
• ATOMIC_OR (ATOM, VALUE [, STAT])
• ATOMIC_REF (VALUE, ATOM [, STAT])
• ATOMIC_XOR (ATOM, VALUE [, STAT])
• CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])
• CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])
• CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])
• CO_REDUCE(A, OPERATION [, RESULT_IMAGE, STAT, ERRMSG])
• CO_SUM(A [, RESULT_IMAGE, STAT, ERRMSG])
• COSHAPE (COARRAY [, KIND])
• FAILED_IMAGES([TEAM, KIND])
• FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK])
• FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK])
• GET_TEAM([LEVEL])
• IMAGE_STATUS (IMAGE [, TEAM])
• LCOBOUND (COARRAY [, DIM, KIND])
• OUT_OF_RANGE (X, MOLD [, ROUND])
• RANDOM_INIT (REPEATABLE, IMAGE_DISTINCT)
• RANK (A)
• REDUCE (ARRAY, OPERATION [, MASK, IDENTITY, ORDERED])
• REDUCE (ARRAY, OPERATION, DIM [, MASK, IDENTITY,ORDERED])
• STOPPED_IMAGES([TEAM, KIND])
• TEAM_NUMBER([TEAM])
• THIS_IMAGE ([TEAM]) or THIS_IMAGE (COARRAY [, TEAM])
• THIS_IMAGE (COARRAY, DIM [, TEAM])
• UCOBOUND (COARRAY [, DIM, KIND])

D.8 Intrinsic functions list

These are documented in TableD.4, where some of the procedure names are split
over multiple lines.
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Table D.4 Standard generic intrinsic procedure summary

Procedure Class Description

ABS E Absolute value

ACHAR E Character from ASCII code value

ACOS E function

ACOSH E Inverse hyperbolic cosine function

ADJUSTL E Left-justified string value

ADJUSTR E Right-justified string value

AIMAG E Imaginary part of a complex number

AINT E Truncation toward 0 to a whole number

ALL T Array reduced by AND operator

ALLOCATED I Allocation status of allocatable variable

ANINT E Nearest whole number

ANY T Array reduced by OR operator

ASIN E function

ASINH E Inverse hyperbolic sine function

ASSOCIATED I Pointer association status inquiry

ATAN E function

ATAN2 E function

ATANH E Inverse hyperbolic tangent function

ATOMIC_ADD A Atomic addition

ATOMIC_AND A Atomic bitwise AND

ATOMIC_CAS A Atomic compare and swap

ATOMIC_DEFINE A Define a variable atomically

ATOMIC_FETCH_ADD A Atomic fetch and add

ATOMIC_FETCH_AND A Atomic fetch and bitwise AND

ATOMIC_FETCH_OR A Atomic fetch and bitwise OR

ATOMIC_FETCH_XOR A Atomic fetch and bitwise exclusive OR

ATOMIC_OR A Atomic bitwise OR

ATOMIC_REF A Reference a variable atomically

ATOMIC_XOR A Atomic bitwise exclusive OR

BESSEL_J0 E Bessel function of the 1st kind, order 0

BESSEL_J1 E Bessel function of the 1st kind, order 1

BESSEL_JN E Bessel function of the 1st kind, order N

BESSEL_JN T Bessel functions of the 1st kind

BESSEL_Y0 E Bessel function of the 2nd kind, order 0

BESSEL_Y1 E Bessel function of the 2nd kind, order 1

BESSEL_YN E Bessel function of the 2nd kind, order N

BESSEL_YN T Bessel functions of the 2nd kind

BGE E Bitwise greater than or equal to

BGT E Bitwise greater than

BIT_SIZE I Number of bits in integer model
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Table D.4 (continued)

BLE E Bitwise less than or equal to

BLT E Bitwise less than

BTEST E Test single bit in an integer

CEILING E Least integer greater than or equal to A

CHAR E Character from code value

CMPLX E Conversion to complex type

CO_BROADCAST C Broadcast value to images

CO_MAX C Compute maximum value across images

CO_MIN C Compute minimum value across images

CO_REDUCE C Generalized reduction across images

CO_SUM C Compute sum across images

COMMAND_ARGUMENT_COUNT T Number of command arguments

CONJG E Conjugate of a complex number

COS E Cosine function

COSH E Hyperbolic cosine function

COSHAPE I Sizes of codimensions of a coarray

COUNT T Logical array reduced by counting true values

CPU_TIME S Processor time used

CSHIFT T Circular shift of an array

DATE_AND_TIME S Date and time

DBLE E Conversion to double precision real

DIGITS I Significant digits in numeric model

DIM E Maximum of X - Y and zero

DOT_PRODUCT T Dot product of two vectors

DPROD E Double precision real product

DSHIFTL E Combined left shift

DSHIFTR E Combined right shift

EOSHIFT T End-off shift of the elements of an array

EPSILON I Model number that is small compared to 1

ERF E Error function

ERFC E Complementary error function

ERFC_SCALED E Scaled complementary error function

EVENT_QUERY S Query event count

EXECUTE_COMMAND_LINE S Execute a command line

EXP E Exponential function

EXPONENT E Exponent of floating-point number

EXTENDS_TYPE_OF I Dynamic type extension inquiry

FAILED_IMAGES T Indices of failed images

FINDLOC T Location(s) of a specified value

FLOOR E Greatest integer less than or equal to A
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Table D.4 (continued)

FRACTION E Fractional part of number

GAMMA E Gamma function

GET_COMMAND S Get program invocation command

GET_COMMAND_ ARGUMENT S Get program invocation argument

GET_ENVIRONMENT_VARIABLE S Get environment variable

GET_TEAM T Team

HUGE I Largest model number

HYPOT E Euclidean distance function

IACHAR E ASCII code value for character

IALL T Array reduced by IAND function

IAND E Bitwise AND

IANY T Array reduced by IOR function

IBCLR E I with bit POS replaced by zero

IBITS E Specified sequence of bits

IBSET E I with bit POS replaced by one

ICHAR E Code value for character

IEOR E Bitwise exclusive OR

IMAGE_INDEX I Image index from cosubscripts

IMAGE_STATUS T Image execution state

INDEX E Character string search

INT E Conversion to integer type

IOR E Bitwise inclusive OR

IPARITY T Array reduced by IEOR function

ISHFT E Logical shift

ISHFTC E Circular shift of the rightmost bits

IS_CONTIGUOUS I Array contiguity test

IS_IOSTAT_END E IOSTAT value test for end of file

IS_IOSTAT_EOR E IOSTAT value test for end of record

KIND I Value of the kind type parameter of X

LBOUND I Lower bound(s)

LCOBOUND I Lower cobound(s) of a coarray

LEADZ E Number of leading zero bits

LEN I Length of a character entity

LEN_TRIM E Length without trailing blanks

LGE E ASCII greater than or equal

LGT E ASCII greater than

LLE E ASCII less than or equal

LLT E ASCII less than

LOG E Natural logarithm

LOG_GAMMA E Logarithm of the absolute value of the
gamma function
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Table D.4 (continued)

LOG10 E Common logarithm

LOGICAL E Conversion between kinds of logical

MASKL E Left justified mask

MASKR E Right justified mask

MATMUL T Matrix multiplication

MAX E Maximum value

MAXEXPONENT I Maximum exponent of a real model

MAXLOC T Location(s) of maximum value

MAXVAL T Maximum value(s) of array

MERGE E Expression value selection

MERGE_BITS E Merge of bits under mask

MIN E Minimum value

MINEXPONENT I Minimum exponent of a real model

MINLOC T Location(s) of minimum value

MINVAL T Minimum value(s) of array

MOD E Remainder function

MODULO E Modulo function

MOVE_ALLOC PS Move an allocation

MVBITS ES Copy a sequence of bits

NEAREST E Adjacent machine number

NEW_LINE I Newline character

NINT E Nearest integer

NORM2 T L2 norm of an array

NOT E Bitwise complement

NULL T Disassociated pointer or unallocated
allocatable entity

NUM_IMAGES T Number of images

OUT_OF_RANGE E Whether a value cannot be converted safely

PACK T Array packed into a vector

PARITY T Array reduced by NEQV operator

POPCNT E Number of one bits

POPPAR E Parity expressed as 0 or 1

PRECISION I Decimal precision of a real model

PRESENT I Presence of optional argument

PRODUCT T Array reduced by multiplication

RADIX I Base of a numeric model

RANDOM_INIT S Initialise the pseudorandom number generator

RANDOM_NUMBER S Generate pseudorandom number(s)

RANDOM_SEED S Restart or query the pseudorandom number
generator

RANGE I Decimal exponent range of a numeric model
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Table D.4 (continued)

RANK I Rank of a data object

REAL E Conversion to real type

REDUCE T General reduction of array

REPEAT T Repetitive string concatenation

RESHAPE T Arbitrary shape array construction

RRSPACING E Reciprocal of relative spacing of model numbers

SAME_TYPE_AS I Dynamic type equality test

SCALE E Real number scaled by radix power

SCAN E Character set membership search

SELECTED_CHAR_KIND T Character kind selection

SELECTED_INT_KIND T Integer kind selection

SELECTED_REAL_KIND T Real kind selection

SET_EXPONENT E Real value with specified exponent

SHAPE I Shape of an array or a scalar

SHIFTA E Right shift with fill

SHIFTL E Left shift

SHIFTR E Right shift

SIGN E Magnitude of A with the sign of B

SIN E Sine function

SINH E Hyperbolic sine function

SIZE I Size of an array or one extent

SPACING E Spacing of model numbers

SPREAD T Value replicated in a new dimension

SQRT E Square root

STOPPED_IMAGES T Indices of stopped images

STORAGE_SIZE I Storage size in bits

SUM T Array reduced by addition

SYSTEM_CLOCK S Query system clock

TAN E Tangent function

TANH E Hyperbolic tangent function

TEAM_NUMBER T Team number

THIS_IMAGE T Index of the invoking image

THIS_IMAGE T Cosubscript(s) of this image

TINY I Smallest positive model number

TRAILZ E Number of trailing zero bits

TRANSFER T Transfer physical representation

TRANSPOSE T Transpose of an array of rank two

TRIM T String without trailing blanks

UBOUND I Upper bound(s)

UCOBOUND I Upper cobound(s) of a coarray

UNPACK T Vector unpacked into an array

VERIFY E Character manipulation
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D.9 Intrinsic Function Examples

In this section we provide coverage of a large subset of the intrinsic functions and
procedures.

ABS(a) : Absolute value.

argument: a type: n
result: as argument class: e

Note(s):
If a is complex(x,y) then the functions returns

√
x2 + y2

Example(s): r1=abs(a)

ACHAR(i, kind) : Returns character in the ASCII character set.

argument: i type: i
result: char class: e

Note(s):
Inverse of the iachar function.

Example(s): c=achar(i)

ACOS(x) : Arccosine, inverse cosine.

argument: x type: r,c
result: as argument class: e

Note(s):
|x | <= 1

Example(s): y=acos(x)

ACOSH(x) : Inverse hyperbolic cosine function.

argument: x type: r,c
result: as argument class: e

Example(s): y = acosh(x)

ADJUSTL(string) : Adjust string left, removing leading blanks and inserting
trailing blanks.
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argument: string type: s
result: as argument class: e

Example(s): s=adjustl(s)

ADJUSTR(string) : Adjust string right, removing trailing blanks and inserting
leading blanks.

argument: string type: s
result: as argument class: e

Example(s): s=adjustr(s)

AIMAG(z) : Imaginary part of complex argument.

argument: z type: c
result: as argument class: e

Example(s): y=aimag(z)

AINT(a, kind) : Truncation toward zero to a whole number.

argument: a type: r
result: as a class: e

Example(s): y=aint(z)

z y

0.3 0

2.73 2.0

-2.73 -2.0

ALL(mask, dim) : Determines whether all values are true in mask.

argument:mask type: l
result: l class: t

Note(s):
dim is optional and must be a scalar in the range 1 <= dim <= n where n is the

rank of mask. The result is scalar if dim is absent or mask has rank 1. Otherwise it
works on the dimension dim of mask and the result is an array of rank n − 1
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Example(s): t=all(m)

ALLOCATED(variable) : Returns true if and only if the allocatable variable is
allocated.

argument: variable type: any
result: l class: i

Note(s):
variable must be declared with the allocatable attribute and can be an array

or a scalar.
Example(s): if (allocated(array) ) then ...

ANINT(a, kind) : Nearest whole number.

argument: a type: r
result: as a class: e

Example(s): z=anint(a)

a z

5.63 6

-5.7 -6.0

ANY(mask, dim) : Determines whether any value is true in mask along dimension
dim.

argument:mask type: l
result: l class: t

Note(s):
mask must be an array. The result is a scalar if dim is absent or if mask is of

rank 1. Otherwise it works on the dimension dim of mask and the result is an array
of rank n − 1
Example(s): t=any(a)

ASIN(x) : Arcsine.

argument: x type: r,c
result: as argument class: e
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Example(s): z=asin(x)

ASINH(x) : Inverse hyperbolic sine function.

argument: x type: r,c
result: as argument class: e

Example(s): y = asinh(x)

ASSOCIATED(pointer, target) : Returns the association status of the pointer.

argument: pointer type: p
result: l class: i

Note(s):
1. If target is absent then the result is true if pointer is associated with a target,
otherwise false.
2. If target is present and is a target, the result is true if pointer is currently
associated with target and false if it is not.
3. If target is present and is a pointer, the result is true if both pointer and target are
currently associated with the same target, and is false otherwise. If either pointer
or target is disassociated the result is false.
Example(s): t=associated(p)

ATAN(x) or
ATAN(y,x) : Arctangent.

argument: x type: r,c
argument: y type: r
result: as argument class: e

Note(s):
If y appears, x shall be of type real with the same kind type parameter as y.
If y has the value zero, x shall not have the value zero.
If y does not appear, x shall be of type real or complex.

Example(s): z=atan(x)

ATAN2(y,x) : Arctangent of y / x.

argument: y type: r
result: as arguments class: e
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Example(s): z=atan2(y,x)

ATANH(x) : Inverse hyperbolic tangent function.

argument: x type: r,c
result: as argument class: e

Example(s): y = atanh(x)

BESSEL_J0(x) : Bessel function of the first kind, order 0.

argument: x type: r
result: as argument class: e

Example(s): y = bessel_j0(1.0) has the value 0.765 (approximately)

BESSEL_J1(x) : Bessel function of the first kind, order 1.

argument: x type: r
result: as argument class: e

Example(s): y = bessel_j1(1.0) has the value 0.440 (approximately).

BESSEL_JN(n, x) : Bessel functions of the first kind. Elemental
BESSEL_JN(n1,n2,x) : Bessel function of the first kind. Transformational.

arguments: n type: i
arguments: n1 type: i
arguments: n2 type: i
arguments: x type: r
result: as x class: e or t

Note(s):
n shall be nonnegative.
n1 shall be nonnegative.
n2 shall be nonnegative.
x if the function is transformational, x shall be scalar.

Additional Note(s):
The result of bessel_jn(n, x) is processor dependent approximation to the

Bessel function of the first kind and order n of x.
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Element i of the result value of bessel_jn(n1,n2,x) is a processor depen-
dent approximation to the bessel function of the first kind and order n1 + i − 1 of
x.
Example(s): y = bessel_jn(2, 1.0) has the value 0.115 (approximately).

BESSEL_Y0(x) : Bessel function of the second kind, order 0.

argument: x type: r
result: as argument class: e

Example(s): y = bessel_y0(1.0) has the value 0.088 (approximately).

BESSEL_Y1(x) : Bessel function of the second kind, order 1.

argument: x type: r
result: as argument class: e

Example(s): y = bessel_y1(1.0) has the value −0.781 (approximately).

BESSEL_YN(n1,n2,x) Bessel functions of the second kind. Transformational.
BESSEL_YN(n, x) : Bessel functions of the second kind. Elemental.

arguments: n type: i
arguments: n1 type: i
arguments: n2 type: i
arguments: x type: r
result: as x class: e or t

Note(s):
n nonnegative.
n1 nonnegative.
n2 nonnegative.
x if the function is transformational, x shall be scalar. Its value shall be greater

than zero.
Example(s): y = bessel_yn(2, 1.0) has the value -1.651 (approximately).

BGE(i, j) : True if i is bitwise greater than or equal to j.

arguments: i,j type: i or boz
result: l class: e
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Example(s): If bit_size(j) has the value 8, bge(z’ff’, j) has the value
true for any value of j. bge(0, -1) has the value false.

BGT(i, j) : True if i is bitwise greater than j

arguments: i,j type: i or boz
result: l class: e

The result is true if the sequence of bits represented by i is greater than the
sequence of bits represented by j, according to the method of bit sequence compar-
ison in 16.3.2 of the standard; otherwise the result is false.
Example(s): bgt(z’ff’, z’fc’) has the value true. bgt(0, -1) has the
value false.

BLE(i, j) : True if i is bitwise less than or equal to j.

arguments: i,j type: i or boz
result: l class: e

The result is true if the sequence of bits represented by i is less than or equal
to the sequence of bits represented by j, according to the method of bit sequence
comparison in 16.3.2 of the standard; otherwise the result is false.
Example(s): ble(0, j) has the value true for any value of j. ble(-1, 0) has
the value false.

BLT(i, j) : Bitwise less than.

arguments: i,j type: i or boz
result: l class: e

The result is true if the sequence of bits represented by i is less than the sequence
of bits represented by j, according to the method of bit sequence comparison in
16.3.2 of the standard; otherwise the result is false.
Example(s): blt(0, -1) has the value true. blt(z’ff’, z’fc’) has the
value false.

BIT_SIZE(i) : Returns the number of bits, as defined by the bit model of Sect. 16.3
of the standard.

argument: i type: i
result: as argument class: i

https://doi.org/10.1007/978-3-319-75502-1_16
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Example(s): n_bits=bit_size(i)

BTEST(i, pos) : True if and only if a specified bit of an integer value is one.

argument: i type: i
result: l class: e

Example(s): t=btest(i,pos)

CEILING(a, kind) : Least integer greater than or equal to a.

argument: a type: r
result: i class: e

Note(s):
If kind is present the result has the kind type parameter kind. otherwise the

result is of type default integer.
Example(s): i=ceiling(a) If a = 12.21 then i = 13, if a = −3.16 then i = −3.

CHAR(i, kind) : Returns the character in a given position in the processor collating
sequence associated with the specified kind type parameter. It is the inverse of the
ICHAR function.

argument: i type: i
result: char class: e

Note(s):
ASCII is the default character set.

Example(s): c=char(65) and for the ASCII character set c=’a’.

CMPLX(x,kind) or
CMPLX(x, y, kind) : Converts to complex type.

First form.

argument: x type: c
result: c class: e

Second form.
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argument: x type: i, r, boz
argument: y type: i, r boz
result: c class: e

Note(s):
1. The result is of type complex. If kind is present, the kind type parameter is

that specified by the value of kind; otherwise, the kind type parameter is that of
default real kind

2. If Y is absent and X is not complex, it is as if Y were present with the value
zero. If kind is absent, it is as if kindwere present with the value kind (0.0). If X
is complex, the result is the same as that of cmplx (real (x), aimag (x),
kind). The result of cmplx (x, y, kind) has the complex value whose real
part is real (x, kind) and whose imaginary part is real (y, kind).
Example(s): z=cmplx(x,y)

COMMAND_ARGUMENT_COUNT( ) : Number of command arguments.

arguments: none result: i
class: t

The result value is equal to the number of command arguments available. If
there are no command arguments available or if the processor does not support
command arguments, then the result has the value zero. if the processor has a concept
of a command name, the command name does not count as one of the command
arguments.
Example(s): i = command_argument_count( )

CONJG(z) : Conjugate of a complex argument.

argument: z type: c
result: as z class: e

Example(s): z1=conjg(z)

COS(x) : Cosine.

argument: x type: r, c
result: as argument class: e

Note(s):
The arguments of all trigonometric functions should be in radians, not degrees.

Example(s): a=cos(x)

COSH(x) : Hyperbolic cosine.
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argument: x type: r,c
result: as argument class: e

Example(s): z=cosh(x)

COUNT(mask, dim, kind) : Returns the number of true elements in mask along
dimension dim.

argument:mask type: l
result: i class: t

Note(s):
dimmust be a scalar in the range 1 <= dim <= n, where n is the rank of mask.

The result is scalar if dim is absent or mask has rank 1. Otherwise it works on the
dimension dim of mask and the result is an array of rank n − 1
Example(s): n=count(a)

CPU_TIME(time) : Returns the processor time.

argument: time type: r
result: n/a class: s

Example(s): call cpu_time(time)

CSHIFT(array, shift, dim) : Circular shift on a rank 1 array or rank 1 sections of
higher-rank arrays.

argument: array type: any
result: as array class: t

Note(s):
array must be an array
shiftmust be a scalar if array has rank 1, otherwise it is an array of rank n − 1,

where n is the rank of array.
dim must be a scalar with a value in the range 1 < dim <= n.

Example(s): array=cshift(array,10)

DATE_AND_TIME(date, time, zone, values) : Returns the current date and time
(compatible with ISO 8601:1988).
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Note(s):
1. Date is optional and must be scalar and 8 characters long in order to return

the complete value of the form ccyymmdd, where cc is the century, yy is the year,
mm is the month and dd is the day. It is intent(out).

2.Time is optional andmust be scalar and 10 characters long in order to return the
complete value of the form hhmmss.sss where hh is the hour, mm is the minutes
and ss.sss is the seconds and milliseconds. It is intent(out).

3. Zone is optional and must be scalar and must be 5 characters long in order
to return the complete value of the form hhmm where hh and mm are the time
differences with respect to coordinated universal time in hours and minutes. It is
intent(out).

4. Values is optional and a rank 1 array of size 8. It is intent(out). The
values returned are as shown below.

values(1) year

values(2) month

values(3) day

values(4) time with respect to coordinated

universal time in minutes.

values(5) hour (24 hour clock)

values(6) minutes

values(7) seconds

values(8) milliseconds in the range 0 - 999.

Example(s): call date_time(d,t,z,v)

DBLE(a) : Converts to double precision from integer, real, and complex

argument: a type: n
result: dp class: e

Example(s): d=dble(a)

DIGITS(x) : Returns the number of significant digits of the argument as defined in
the numeric models for integer and reals in Chap.5.

argument: x type: i,r
result: i class: i

Example(s): i=digits(x)

DIM(x,y) : Difference of two values if positive or zero otherwise.

https://doi.org/10.1007/978-3-319-75502-1_5
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argument: x type: i
result: as arguments class: e

Example(s): z=dim(x,y)

DOT_PRODUCT(vector_1,vector_2) : Performs the mathematical dot product of
two rank 1 arrays.

argument: vector_ 1 type: n
argument: vector_ 2 type: n
result: as arguments class: t

vector_2 is as vector_1.
Note(s):

1. For integer and real vector_1 result has the value
sum(vector_1*vector_2).

2. For complex vector_1 result has the value
sum(conjg(vector_1)*vector_2).

3. For logical vector_1 result has the value
any(vector_1 .and. vector_2).
Example(s): a=dot_product(x,y)

DPROD(x,y) : Double precision product of two reals.

argument: x type: r
result: dp class: e

Example(s): d=dprod(x,y)

DSHIFTL(i, j, shift) : Combined left shift.

arguments: i,j type: i or boz
argument: shift type: i
result: See note below. class: e

Note(s):
Result type: Same as i if i is of type integer; otherwise, same as j. If either i or j

is a boz-literal-constant, it is first converted as if by the intrinsic function int to type
integer with the kind type parameter of the other. The rightmost shift bits of the result
value are the same as the leftmost bits of j, and the remaining bits of the result value
are the same as the rightmost bits of i. This is equal to ior(shiftl(i, shift), shiftr(j, bit
size(j)-shift)). The model for the interpretation of an integer value as a sequence of
bits is in Sect. 16.3 of the standard.

https://doi.org/10.1007/978-3-319-75502-1_16
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Example(s): dshiftl(1, 2**30, 2) has the value 5 if default integer has 32
bits. dshiftl(i, i, shift) has the same result value as ishftc(i, shift).

DSHIFTR(i, j, shift) : Combined right shift.

arguments: i,j type: i or boz
argument: shift type: i
result: See note below. class: e

Note(s):
Result: Same as i if i is of type integer; otherwise, same as j. If either i or j is

a boz-literal-constant, it is first converted as if by the intrinsic function int to type
integer with the kind type parameter of the other. The leftmost shift bits of the result
value are the same as the rightmost bits of i, and the remaining bits of the result value
are the same as the leftmost bits of j. This is equal to ior(shiftl(i, bit size(i)-shift),
shiftr(j, shift)). The model for the interpretation of an integer value as a sequence of
bits is in 16.3 of the standard.
Example(s): dshiftr(1, 16, 3) has the value 229 +2 if default integer has 32
bits. dshiftr(i, i, shift) has the same result value as ishftc(i,-shift).

EOSHIFT(array, shift, boundary, dim) : End of shift of a rank 1 array or rank 1
section of a higher-rank array.

argument: array type: any
argument: shift type: n
argument: boundary type: n
result: as array class: t

Note(s):
1. boundary is as array.
2. arraymust be an array, shiftmust be a scalar if array has rank 1, otherwise

it is an array of rank n − 1, where n is the rank of array.
3. boundary shall be of the same type and type parameters as array. It must

be scalar if array has rank 1, otherwise it must be either scalar or of rank n − 1. See
section 16.9.67 of the standard for additional information.

4. dim must be a scalar with a value in the range 1 <= dim <= n.
Example(s): a=eoshift(a,shift)

EPSILON(x) : Smallest difference between two reals of that kind. See Chap.5 and
real numeric model.

argument: x type: r
result: as argument class: i

https://doi.org/10.1007/978-3-319-75502-1_5


Appendix D: Intrinsic Functions and Procedures 863

Example(s): tiny=epsilon(x)

ERF(x) : Error function.

argument: x type: r
result: as x class: e

Example(s): y = erf(1.0) has the value 0.843 (approximately).

ERFC(x) : Complementary error function.

argument: x type: r
result: as x class: e

Example(s): y = erfc(1.0) has the value 0.157 (approximately).

ERFC_SCALED(x) : Scaled complementary error function.

argument: x type: r
result: as x class: e

Example(s): y = erfc_scaled(20.0) has the value 0.0282 (approximately).

EXECUTE_COMMAND_LINE(command, wait, exitstat,cmdstat, cmdmsg ) :
Execute a command line.
Note(s):

command shall be a default character scalar. It is an intent(in) argument. Its
value is the command line to be executed. the interpretation is processor dependent.

wait shall be a default logical scalar. It is an intent(in) argument. If wait
is present with the value false, and the processor supports asynchronous execution
of the command, the command is executed asynchronously; otherwise it is executed
synchronously.

exitstat shall be a default integer scalar. It is an intent(inout) argument. If
the command is executed synchronously, it is assigned the value of the processor-
dependent exit status. Otherwise, the value of exitstat is unchanged.

cmdstat shall be a default integer scalar. It is an intent(out) argument. It
is assigned the value -1 if the processor does not support command line execution,
a processor-dependent positive value if an error condition occurs, or the value -2 if
no error condition occurs but wait is present with the value false and the processor
does not support asynchronous execution. otherwise it is assigned the value 0.

cmdmsg shall be a default character scalar. It is an intent(inout) argu-
ment. If an error condition occurs, it is assigned a processor-dependent explanatory
message. otherwise, it is unchanged.
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Example(s):call execute_command_line(‘pwd’)will print the full path-
name of the current directory under unix and an error message from windows.

EXP(x) : Exponential. ex

argument: x type: r, c
result: as argument class: e

Example(s): y=exp(x)

EXPONENT(x) : Returns the exponent component of the argument. See Chap.5
and the real numeric model.

argument: x type: r
result: i class: e

Example(s): i=exponent(x)

EXTENDS_TYPE_OF(a, mold) : Query dynamic type for extension.

arguments: a, mold type: p*
result: l class: i

Note(s):
a shall be an object of extensible declared type or unlimited polymorphic. If it is

a polymorphic pointer, it shall not have an undefined association status.
mold shall be an object of extensible declared type or unlimited polymorphic. If

it is a polymorphic pointer, it shall not have an undefined association status.
If mold is unlimited polymorphic and is either a disassociated pointer or unallo-

cated allocatable variable, the result is true; otherwise if a is unlimited polymorphic
and is either a disassociated pointer or unallocated allocatable variable, the result is
false; otherwise if the dynamic type of a or mold is extensible, the result is true if
and only if the dynamic type of a is an extension type of the dynamic type of mold;
otherwise the result is processor dependent.
Example(s):

if(extends_type_of(a, mold)) then

print *,’dynamic type of a is an’

print *,’extension of dynamic type of mold’

end if

FINDLOC(array, value, dim, mask, kind, back) or
FINDLOC(array, value, mask, kind, back) : Location(s) of a specified value.

https://doi.org/10.1007/978-3-319-75502-1_5


Appendix D: Intrinsic Functions and Procedures 865

argument: array type: intrinsic type
argument: value type: as array
argument: dim type: i
argument:mask type: l
argument: kind type: i
argument: back type: l
result: i class: t

Note(s):
1.dim shall be an integer scalar with a value in the range 1 <= dim <= n, where

n is the rank of array.
2. mask shall be conformable with array.
3. result characteristics: If kind is present, the kind type parameter is that

specified by the value of kind; otherwise the kind type parameter is that of default
integer type. If dim does not appear, the result is an array of rank one and of
size equal to the rank of array; otherwise, the result is of rank n − 1 and shape
[d1, d2, ..., dDIM−1, dDIM+1, ..., dn], where [d1, d2, ..., dn] is the shape of array.
Example(s):

1. The value of

findloc ([1, 3, 5, 3, 1], value=3)

is [2]

The value of

findloc ([1, 3, 5, 3, 1], value=3, back=.true.)

is [4]

The value of

findloc ([1, 3, 5, 3, 1], value=3, dim=1)

is [2]

2. If B has the value [
1 2 −9
2 2 6

]

findloc (b, value=2, dim=1) has the value [2, 1, 0] and
findloc (b,value=2, dim=2) has the value [2, 1]. This is independent of
the declared lower bounds for b.

FLOOR(a, kind) : Returns the greatest integer less than or equal to the argument

argument: a type: r
result: i class: e
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Note(s):
If kind is present the result has the kind type parameter kind, otherwise the result

is of type default integer.
Example(s): i=floor(a) when a = 5.2 i has the value 5, when a = − 9.7 i has
the value −10.

FRACTION(x) : Returns the fractional part of the real numeric model of the argu-
ment. See Chap.5 and the real numeric model.

argument: x type: r
result: as x class: e

Example(s): f=fraction(x)

GAMMA(x) : Gamma function.

argument: x type: r
result: as x class: e

Example(s): y = gamma(1.0) has the value 1.000 (approximately).

GET_COMMAND(command, length, status) : Query program invocation com-
mand.

GET_COMMAND_ARGUMENT(number, value, length, status) : Query argu-
ments from program invocation.

GET_ENVIRONMENT_VARIABLE(name, value, length, status, trim name) :
Query environment variable.

HUGE(x) : Returns the largest number for the kind type of the argument. See Chap.5
and the real and integer numeric models.

argument: x type: i,r
result: as argument class: i

Example(s): h=huge(x)

https://doi.org/10.1007/978-3-319-75502-1_5
https://doi.org/10.1007/978-3-319-75502-1_5
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HYPOT(x, y) : Euclidean distance function.

arguments: x,y type: r
result: r class: e

Example(s): h = hypot(3.0, 4.0) has the value 5.0 (approximately).

IACHAR(c) : Returns the position of the character argument in the ASCII collating
sequence.

argument: c type: char
result: i class: e

Example(s): i=iachar(’a’) returns the value 65.

IALL(array, dim, mask) or
IALL(array, mask) : Reduce array with bitwise and operation.
IAND(i,j) : Performs a logical and on the arguments.

argument: i type: i
result: as arguments class: e

Example(s): k=iand(i,j)

IANY(array, dim, mask) or
IANY(array, mask) : Reduce array with bitwise or operation.
IBCLR(i,pos) : Clears one bit of the argument to zero.

argument: i type: i
result: as i class: e

Example(s): i=ibclr(i,pos)

IBITS(i,pos,len) : Returns a sequence of bits.

argument: i type: i
result: as i class: e

Example(s): slice=ibits(i,pos,len)

IBSET(i,pos) : Sets one bit of the argument to one.
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argument: i type: i
result: as i class: e

Note(s):
0 <= pos <= bit_si ze(i)

Example(s): i=ibset(i,pos)

ICHAR(c) : Returns the position of a character in the processor collating sequence
associated with the kind type parameter of the argument. Normally the position in
the ASCII collating sequence.

argument: c type: char
result: i class: e

Example(s): i=ichar(’a’) would return the value 65 for the ASCII character
set.

IEOR(i, j) : Performs an exclusive or on the arguments.

argument: i type: i
result: Same asi ifi is of type integer; otherwise, same asj. class: e

Example(s): i=ieor(i,j)

IMAGE_INDEX(coarray, sub) or
IMAGE_INDEX(coarray, sub, team) or
IMAGE_INDEX(coarray, sub, team_number) : Convert cosubscripts to image
index.

argument: coarray type: co
argument: sub type: rank-one integer array
argument: team type: te
argument: team_ number type: i
result: i class: i

Note(s):
1. coarray is of any type.
2. team is scalar.
3. team_number is scalar.

Example(s):
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integer, codimension[0:*]:: x

integer, dimension(10,15), &

codimension[3,0:1,-1:*]:: z

print*, image_index(x,(/0/));

print*, image_index(z,(/2,0,-1/))

would print 1 and 2 respectively.

INDEX(string, substring,back, kind) : Locates one substring in another, i.e., returns
position of substring in character expression string.

argument: string type: s
argument: substring type: s
argument: back type: l
result: i class: e

Note(s):
If len(string) < len(substring) the result is zero.
Otherwise, if there is an integer i in the range
1 <= i <= (len(string) − len(substring) + 1)
such that string(i : i + len(substring) - 1) is equal to

substring, the result has the value of the smallest such i if back is absent or
present with the value false, and the greatest such i if back is present with the value
true.

If the substring is not found the result is zero.
Example(s):

where=index(’ hello world hello’,’hello’)
the result 2 is returned.
where=index(’ hello world hello’,’hello’,.true.)
the result 14 is returned.

INT(a, kind) : Converts to integer from integer, real, and complex.

argument: a type: n
result: i class: e

Example(s): i=int(f)

IOR(i, j) : Performs an inclusive or on the arguments.

argument: i type: i
result: as i class: e
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Example(s): i=ior(i,j)

IPARITY(array, dim, mask) or
IPARITY(array, mask) : Array reduced by ieor function. Transformational.

argument: array type: i
argument: dim type: i
argument:mask type: l
result: as i class: e

Note(s):
dim integer scalar with a value in the range 1 <= dim <= n, where n is the rank

of array.
mask shall be of type logical and shall be conformable with array.

Example(s):

iparity ([14, 13, 8]) has the value 11.
iparity ([14, 13, 8], mask=[.true., .false., .true])

has the value 6.

ISHFT(i, shift) : Performs a logical shift. The bits of i are shifted by shift positions.

argument: i type: i
result: as i class: e

Note(s):
|shi f t | <= bit_si ze(i)
If shift is positive, the shift is to the left.
If shift is negative, the shift is to the right.
If shift is zero, no shift is performed.
Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are

shifted in from the opposite end.
Example(s): i=ishft(i,shift).

ISHFTC(i, shift, size) : Performs a circular shift of the rightmost bits. The size
rightmost bits of i are circularly shifted by shift positions.

argument: i type: i
result: i class: e

Note(s):
|shi f t | <= si ze
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The result has the value obtained by shifting the size rightmost bits of i circu-
larly by shift positions.

If shift is positive, the shift is to the left.
If shift is negative, the shift is to the right.
If shift is zero, no shift is performed.
No bits are lost. The unshifted bits are unaltered.

Example(s): i=ishftc(i,shift,size)

IS_CONTIGUOUS(array) : Test contiguity of an array.

argument: array type: any
result: l class: i

Example(s):

integer,target, dimension(10)::a

integer,pointer,dimension(:) :: p

p= a(1:10:2); print*,is_contiguous(p)

would print ‘f’.

IS_IOSTAT_END(i) : Test iostat value for end-of-file.

argument: i type: i
result: l class: e

Example(s): is_iostat_end(i) returns value true if i is an i/o status value that
corresponds to an end-of-file condition, and false otherwise.

read(unit=1,fmt=*, iostat=ist)y(i)

if (is_iostat_end(ist)) then

print*,’end of file!’

endif

IS_IOSTAT_EOR(i) : Test iostat value for end-of-record.

argument: i type: i
result: l class: e

Example(s): is_iostat_eor(i) returns the value true if i is an i/o status value
that corresponds to an end-of-record condition, and false otherwise.

KIND(x) : Returns the kind type parameter of the argument.
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argument: x type: any
result: i class: i

Example(s): i=kind(x)

LBOUND(array, dim, kind) : Lower bound(s) of an array.

argument: array type: any
result: i class: i

Note(s):
1. dim optional. 1 <= dim <= n where n is the rank of array. The result is scalar

if dim is present otherwise the result is an array of rank 1 and size n. The result is
scalar if dim is present, otherwise a rank 1 array and size n.

2. If array is a whole array and either array is an assumed-size array of rank
dim or dimension dim of array has nonzero extent, lbound (array, dim) has
a value equal to the lower bound for subscript dim of array. Otherwise the result
value is 1.
Example(s): i=lbound(array)

LCOBOUND(coarray, dim, kind]) : Lower cobound(s) of a coarray.

argument: coarray type: co
argument: dim (optional) type: i
argument: kind(optional) type: i
result: i class: i

Example(s):

integer, codimension[:,:], allocatable::a

allocate(a[2:3,7:*])

lcbound(a) is [2,7] and lcobound(a,dim=2) is 7

LEADZ(i) : Number of leading zero bits.

argument: i type: i
result: i class: e

Example(s): leadz(1) has the value 31 if bit size(1) has the value 32.

LEN(string) : Length of a character entity.
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argument: string type: s
result: i class: i

Example(s): i=len(string)

LEN_TRIM(string) : Length of character argument less the number of trailing
blanks.

argument: string type: s
result: i class: e

Example(s): i=len_trim(string)

LGE(string_1, string_2) :
Lexically greater than or equal to and this is default character or ASCII.

argument: string_ 1 type: s,ASCII
result: l class: e

string_2 is of type s.
Example(s): l=lge(s1,s2)

LGT(string_1, string_2) : Lexically greater than and this is based on the ASCII
collating sequence.

argument: string_ 1 type: s

Example(s): l=lgt(s1,s2)

LLE(string_1, string_2) : Lexically less than or equal to and this is based on the
ASCII collating sequence.

argument: string_ 1 type: s
result: l class: e

string_2 is of type s.
Example(s): l=lle(s1,s2)

LLT(string_1, string_2) : Lexically less than and this is based on theASCII collating
sequence.
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argument: string_ 1 type: s
result: l class: e

Example(s): l=llt(s1,s2)

LOG(x) : Natural logarithm.

argument: x type: r, c
result: as argument class: e

Example(s): y=log(x)

LOG_GAMMA(x) : Logarithm of the absolute value of the gamma function.

argument: x type: r
result: r class: e

Example(s): log_gamma(3.0) has the value 0.693 (approximately).

LOG10(x) : Common logarithm, log10

argument: x type: r
result: as argument class: e

Example(s): y=log10(x)

LOGICAL(l, kind) : Converts between different logical kind types, i.e., performs a
type cast.

argument: l type: l
result: l class: e

Example(s): l=logical(k,kind)

MASKL(i, kind) : Left justified mask.

argument : i type : i
result: i class: e
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Example(s): maskl(4) has the value shiftl(15, bit_size(0) - 4)

MASKR(i, kind) : Right justified mask.

argument: i type: i
result: i class: e

Example(s): maskr(4) has the value 15.

MATMUL(matrix_1, matrix_2) : Performs mathematical matrix multiplication of
the array arguments.

argument:matrix_ 1 type: n,l
argument:matrix_ 2 type: n,l
result: as arguments class: t

matrix_2 is as matrix_1.
Note(s):

matrix_a shall be a rank-one or rank-two array of numeric type or logical type.
matrix_b shall be of numeric type if matrix_a is of numeric type and of

logical type if matrix_a is of logical type. It shall be an array of rank one or two.
matrix_a and matrix_b shall not both have rank one.
The size of the first (or only) dimension of matrix_b shall equal the size of the

last (or only) dimension of matrix_a.
The shape of the result depends on the shapes of the arguments as follows:

If matrix_a has shape [n,m] and matrix_b has shape [m, k], the result has shape
[n, k].
If matrix_a has shape [m] and matrix_b has shape [m, k], the result has shape
[k].
If matrix_a has shape [n,m] and matrix_b has shape [m], the result has shape
[n].
Example(s): r=matmul(m_1,m_2)

MAX(a1, a2, a3,...) : Returns the largest value.

argument: a1 type: i,r,s
result: as arguments class: e

a2, a3,.. are as a1.
Example(s): a=max(a1,a2,a3,a4)

MAXEXPONENT(x) : Returns the maximum exponent. See Chap. 5 and numeric
models.

https://doi.org/10.1007/978-3-319-75502-1_5
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argument: x type: r
result: i class: i

Example(s): i=maxexponent(x)

MAXLOC(array, mask, kind, back) or
MAXLOC(array, dim, mask, kind, back) : Location(s) of maximum value.

argument: array type: i,r,s
argument: dim type: i
argument:mask type: l
argument: kind type: i
argument: back type: l
result: i class: t

Note(s):
1.dim shall be an integer scalar with a value in the range 1 <= dim <= n, where

n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask shall be of type logical and shall be conformable with array.
3. kind shall be a scalar integer constant expression.
4. back shall be scalar and of type logical.

Example(s):

a=(/5,6,7,8/)

i=maxloc(a)

is (4), which is the subscript of the location of the first occurrence of themaximum
value in the rank 1 array.

If

A =
⎛

⎝
1 8 5
9 3 6
4 2 7

⎞

⎠

i = maxloc(a, dim=1)
is (2,1,3) returning the position of the largest in each column.
i = maxloc(a, dim=2)
is (2,1,3) returning the position of the largest in each row.

MAXVAL(array, mask) or
MAXVAL(array, dim, mask) : Maximum value(s) of array.
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argument: array type: i,r,s
argument:mask type: l
argument: dim type: i
result: as argument class: t

Note(s):
1.dim shall be an integer scalar with a value in the range 1 <= dim <= n, where

n is the rank of array.
2. mask (optional) shall be of type logical and shall be conformable with array.

Example(s): maxval((/1,2,3/)) returns the value 3.

maxval( c , mask = c < 0.0)

returns the maximum of the negative elements of c.
For

B =
(
1 3 5
2 4 6

)

maxval(b, dim=1) returns(2,4,6)
maxval(b, dim=2) returns(5,6)

MERGE(true, false, mask) : Chooses alternative values according to the value of
a mask.

argument: true type: any
result: as true class: e

Example(s): For

true =
(
2 6 10
4 8 12

)
, f alse =

(
1 5 9
3 7 11

)
, and mask =

(
T F T
F T F

)

result =
(
2 5 10
3 8 11

)

MERGE_BITS(i, j, mask) : Merge of bits under mask.

argument: i type: i or boz
argument: j i or boz
argument:mask i or boz
result: same as i if integer, otherwise same as j.
class: e
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Example(s): merge_bits(14,18,22) has the value 6.

MIN(a1, a2, a3,...) : Chooses the smallest value.

argument: a1 type: i, r, s
result: as arguments class: e

Example(s): y=min(x1,x2,x3,x4,x5)

MINEXPONENT(x) : Returns the minimum exponent. See Chap. 5 and numeric
models.

argument: x type: r
result: i class: i

Example(s): i=minexponent(x)

MINLOC(array,mask,kind,back ) or
MINLOC(array,dim,mask,kind,back ) : Location of minimum value.

argument: array type: i,r,s
argument: dim type: i
argument:mask type: l
argument: kind type: i
argument: back type: l
result: i class: t

Note(s):
1.dim shall be an integer scalar with a value in the range 1 <= dim <= n, where

n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask shall be of type logical and shall be conformable with array.
3. kind shall be a scalar integer constant expression.
4. back shall be scalar and of type logical.

Example(s): i=minloc(array)
In the above example if array is a rank 2 array of shape(5,10) and the smallest

value is in position(2,1) then the result is the rank 1 array i with shape(2) and i(1) =
2 and i(2) = 1.

MINVAL(array, mask or
MINVAL(array, dim, mask) : Minimum value(s) of array.

https://doi.org/10.1007/978-3-319-75502-1_5
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argument: array type: i,r,s
argument:mask type: l
argument: dim type: i
result: as array class: t

Note(s):
1.dim shall be an integer scalar with a value in the range 1 <= dim <= n, where

n is the rank of array. The corresponding actual argument shall not be an optional
dummy argument.

2. mask shall be of type logical and shall be conformable with array.
Example(s):

minval((/1,2,3/)) returns the value 1.
minval(c,mask=c>0.0) returns the minimum of the positive elements of c.
For

B =
(
1 3 5
2 4 6

)

minval(b,dim=1) returns(1,3,5).
minval(b,dim=2) returns(1,2).

MOD(a, b) : Returns the remainder when first argument divided by second.

argument: a type: i, r
argument: b type: as a
result: as arguments class: e

Note(s):
b shall not be zero.
The result is a − int (a/b) ∗ b.

Example(s): r=mod(a,b)

a b r

8 5 3

-8 5 -3

8 -5 3

-8 -5 -3

MODULO(a, b) : Returns the modulo of the arguments.

argument: a type: i,r
argument: b type: as a
result: as a class: e
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Note(s):
b shall not be zero.
If a is of typr integer, modulo (a, b) has the value r such that a = qb + r ,

where q is an integer, the inequalities 0 <= r < b hold if b > 0, and b < r <= 0
hold if b < 0.

If a is a type real modulo (a,b) has the result a − f loor(a/b) ∗ b.
Example(s): r=modulo(a,b)

a b r

8 5 3

-8 5 2

8 -5 -2

-8 -5 -3

MOVE_ALLOC (from, to [, stat, errmsg]) : Move an allocation.
Note(s):

1. Subroutine, pure if and only if from is not a coarray.
2. from may be of any type, rank, and corank. It shall be allocatable and shall

not be a coindexed object. It is an intent (inout) argument.
3. to shall be type compatible with from and have the same rank and corank. It

shall be allocatable and shall not be a coindexed object. It shall be polymorphic if
from is polymorphic. It is an intent (out) argument.

4. stat shall be a noncoindexed integer scalar with a decimal exponent range of
at least four. It is an intent (out) argument.

5. errmsg shall be a noncoindexed default character scalar. It is an intent
(inout) argument.

6. It is expected that the implementation of allocatable objects will typically
involve descriptors to locate the allocated storage; move_alloc could then be
implemented by transferring the the contents of the descriptor for from to the descrip-
tor for to and clearing the descriptor for from.
Example(s):

real,allocatable :: grid(:),tempgrid(:)

...

allocate(grid(-n:n))

! initial allocation of grid

...

allocate(tempgrid(-2*n:2*n))

! allocate bigger grid

tempgrid(::2)=grid

! distribute values to new locations

call move_alloc(to=grid,from=tempgrid)

The old grid is deallocated because to is intent (out), and grid then takes
over the new grid allocation.
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MVBITS(from, frompos, len, to, topos) : Copies a sequence of bits from one data
object to another.

argument: from type: i
argument: frompos type: i
argument: len type: i
argument: to type: i
argument: topos type: i
result: n/a class: s

All arguments are of integer type.
Note(s):

from It is an intent(in) argument.
frompos shall be nonnegative. It is an intent(in) argument. f rompos +

len <= bit_si ze( f rom).
len shall be nonnegative. It is an intent(in) argument.
to shall be a variable of the same type and kind type parameter value as from

and may be associated with from. It is an intent(inout) argument.
to is defined by copying the sequence of bits of length len, starting at position

frompos of from to position topos of to. No other bits of to are altered. On
return, the len bits of to starting at topos are equal to the value that the len bits
of from starting at frompos had on entry.

topos shall be nonnegative. It is an intent(in) argument. topos + len <=
bit_si ze(to).
Example(s): If to has the initial value 6, the value of to after the statement call
mvbits (7, 2, 2, to, 0) is 5.
Example(s): call mvbits(f,fp,l,t,tp)

NEAREST(x,next) : Returns the nearest different number. See Chap.5 and the real
numeric model.

argument: x type: r
argument: next type: r
result: as x class: e

Note(s):
next Not equal to zero.
The result has a value equal to the machine-representable number distinct from

x and nearest to it in the direction of infinity with the same sign as next.
Unlike other floating point manipulation functions, nearest operates on

machine representable numbers rather than model numbers. On many systems there
are machine representable numbers that lie between adjacent model numbers.

https://doi.org/10.1007/978-3-319-75502-1_5
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Example(s): n=nearest(x,next)

NEW_LINE(a) : Returns newline character used for formatted stream output.

argument: a type: char
result: char class: i

Note(s):
If a is default character and the character in position 10 of the ASCII collating

sequence is representable in the default character set, then the result isachar (10).
If a is ASCII character or ISO 10646 character, then the result is char (10,

kind (a)).
Otherwise, the result is a processor-dependent character that represents a newline

in output to files connected for formatted stream output if there is such a character.
Otherwise, the result is the blank character.

Example(s):

open(2,file=’nline.txt’, access=’stream’, form=’formatted’)

write(2,’(a)’)’hola’//new_line(’a’)//’mundo’

This will write 2 lines to the file nline.txt.

NINT(a, kind) : Yields nearest integer.

argument: a type: r
result: i class: e

Note(s):
1. a > 0, the result is int(a+0.5).
2. a <= 0, the result is int(a-0.5).

Example(s): i=nint(x)

NORM2(x ) or
NORM2(x, dim) : Norm of an array.

argument: x type:r
argument: dim type: i
result: r class: t

Note(s):
1. dim shall be an integer scalar with a value in the range 1 <= dim <= n,

where n is the rank of x. The corresponding actual argument shall not be an optional
dummy argument.
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2. The result of norm2(x) has a value equal to a processor-dependent approx-
imation to the generalized l2 norm of x, which is the square root of the sum of the
squares of the elements of x.

3. If dim is present the array is reduced as for sum(x,dim) except that norm2
is applied to the reduced vectors.
Example(s): See below.

norm2([3.0, 4.0]) is 5.0.

If x has the value

1.0 2.0

3.0 4.0

norm2(x,dim=1) is [3.162, 4.472]

norm2(x,dim=2) is [2.236,5.0]

approximately.

NOT(i) : Returns the logical complement of the argument.

argument: i type: i
result: as i class: e

Example(s): i=not(i)
NULL(mold) : Returns a disassociated pointer.

argument:mold type: p
result: as argument class: t

Note(s):
If the argument mold is present the result is the same as mold. Otherwise it is

determined by context.
Example(s): real, pointer :: p=>null()

NUM_IMAGES( ) or
NUM_IMAGES(team ) or
NUM_IMAGES(team_number) : Number of images.

argument: none
argument: team type: te
argument: team_ number type: i
result: i class: t

Notes(s):
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team shall be a scalar of type team_type from the intrinsic module
iso_fortran_env, with a value that identifies the current or an ancestor team.

team_number shall be an integer scalar. It shall identify the initial team or a
team whose parent is the same as that of the current team.

The result is the number of images in the specified team, or in the current team if
no team is specified.
Example(s): print*,’ number of images = ’,num_images( )

The following code uses image 1 to read data and broadcast it to other images.

REAL :: P[*]

IF (THIS_IMAGE()==1) THEN

READ (6,*) P

DO I = 2, NUM_IMAGES()

P[I] = P

END DO

END IF

SYNC ALL

OUT_OF_RANGE (x,mold [, round])Whether a value cannot be converted safely.

argument: x type: i,r
argument:mold type: i,r scalar
argument: round type: l scalar
result: l class: e

Note(s):
1. mold If it is a variable, it need not be defined.
2. round shall be present only if x is of type real and mold is of type integer.

Example(s): If INT8 is the kind value for an 8-bit binary integer type,
OUT_OF_RANGE (-128.5, 0_INT8) will have the value false and
OUT_OF_RANGE (-128.5, 0_INT8, .TRUE.) will have the value true.

PACK(array,mask, vector) : Packs an array into an array of rank 1, under the control
of a mask.

argument: array type: any
argument:mask type: l
argument: vector type: same type as array
result: as array class: t

Note(s):
1. array must be an array.
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2. mask be conformable with array.
3. vectormust have rank 1 and have at least as many elements as there are true

elements in mask.
4. If mask is scalar with the value true vector must have at least as many

elements as there are in array.
5. The result is an array of rank 1.
6. If vector is present the result size is that of vector.
7. If vector is not present the result size is t, the number of true elements in

mask, unless mask is scalar with a value true in which case the result size is the
size of array.
Example(s): r=pack(a,m)

The nonzero elements of an array m with the value

0 0 0

9 0 0

0 0 7

can be gathered by the function pack. The result of
pack (m, mask = m/= 0) is [9, 7] and the result of
pack (m, m /= 0, vector = [2, 4, 6, 8, 10, 12])
is [9, 7, 6, 8, 10, 12].
PARITY(mask, dim) : Reduce array with .neqv. operation.

argument:mask type: l array
argument:dim shall be an
integer scalar in the range
1 <= dim <= nwhere n
is rank ofmask.

Example(s): If t has the value true and f has the value false
parity([t,t,t,f]) is true.

POPCNT(i) : Number of one bits in the sequence of bits of i.

argument: i type: i
result: i class: e

Example(s): popcnt([1, 2, 3, 4, 5, 6, 7])
has the value [1, 1, 2, 1, 2, 2, 3].

POPPAR(i) : Returns the parity of the bit count of an integer expressed as 0 or 1.
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argument: i type: i
result: i type: e

Example(s): poppar([1, 2, 3, 4, 5, 6, 7])
has the value [1, 1, 0, 1, 0, 0, 1]

PRECISION(x) : Returns the decimal precision of the argument. See Chap.5 and
numeric models.

argument: x type: r, c
result: i class: i

Example(s): i=precision(x)

PRESENT(a) : Returns whether an optional argument is present.

argument: a type: any
result: l class: i

Note(s):
amust be an optional argument of the procedure in which the present function

reference appears.
Example(s): if(present(a)) then

PRODUCT(array, mask) or
PRODUCT(array, dim, mask)

The product of all of the elements of array along the dimension dim corre-
sponding to the true elements of mask.

argument: array type: n
argument: dim type: i
argument:mask type: l
result: as array class: t

Note(s):
1. array must be an array.
2. 1 <= dim <= n where n is the rank of array.
3. mask must be conformable with array.

Example(s):
product((/1,2,3/)) the result is 6.
product( c , mask = c > 0.0) forms the product of the positive ele-

ments of c.

https://doi.org/10.1007/978-3-319-75502-1_5
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If

B =
(
1 3 5
2 4 6

)

product(b,dim=1)
is (2,12,30)
product(b,dim=2)
is (15,48)

RADIX(x) : Returns the base of the numeric argument. See Chap. 5 and numeric
models.

argument: x type: i,r
result: i class: i

Example(s): base=radix(x)

RANDOM_INIT (repeatable, image_distinct) Initialize the pseudorandom num-
ber generator.

argument: repeatable type: l
argument: image_ distinct type: l
result: n/a class: e

Note(s):
1. repeatable shall be a logical scalar. It is an intent (in) argument. If

it has the value true, the seed accessed by the pseudorandom number generator
is set to a processor-dependent value that is the same each time random_init is
called from the same image. If it has the value false, the seed is set to a processor-
dependent, unpredictably different value on each call.

2.image_distinct shall be a logical scalar. It is anintent (in) argument.
If it has the value true, the seed accessed by the pseudorandom number generator
is set to a processor-dependent value that is distinct from the value that would be set
by a call to random_init by another image. If it has the value false, the value
to which the seed is set does not depend on which image calls random_init.
Example(s):

call random_init (repeatable=.false.,

image_distinct=.false.)

Initializes the pseudorandom number generator so that the seed is different on each
call and that the sequence generated will differ from that of another image:

https://doi.org/10.1007/978-3-319-75502-1_5
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RANDOM_NUMBER(harvest) : Returns one pseudorandom number or an array
of pseudorandom numbers from the uniform distribution over the range 0 <= x < 1

argument: harvest type: r
result: n/a class: s

Note(s):
harvest is intent(out).

Example(s): call random_number(harvest=x)
call random_number(y)
x and y contain uniformly distributed random numbers.

RANDOM_SEED(size,put,get) : Restarts(seeds) or queries the pseudorandom gen-
erator used by random_number.

argument: size type: i
result: n/a class: s

All arguments are of integer type.
Note(s):

1. size is intent(out). It is set to the number n of integers that the processor
uses to hold the value of the seed.

2. put is intent(in). It is an array of rank 1 and si ze >= n It is used by the
processor to set the seed value.

3. get is intent(out). It is an array of rank 1 and si ze >= n It is set by the
processor to the current value of the seed.
Example(s): call random_seed

RANGE(x) : Returns the decimal exponent range of the real argument. See Chap.5
and the numeric model representing the argument.

argument: x type: n
result: i class: i

Example(s): i=range(n)

RANK (a) : Rank of a data object.

argument: a type: n
result: i class: e

https://doi.org/10.1007/978-3-319-75502-1_5
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Note(s):
1. a shall be a data object of any type.
2. Result Characteristics. Default integer scalar.

Example(s): If X is an assumed-rank dummy argument and its associated effective
argument is an array of rank 3, RANK(X) has the value 3.

REAL(a,kind) : Converts to real from integer, real or complex.

argument: a type: n
result: r class: e

Example(s): x=real(a)

REDUCE (array, operation [, mask, identity, ordered]) or
REDUCE (array, operation , dim [, mask, identity, ordered]) : General reduction
of array.

argument: array type:ANY
argument: operation type: See notes
argument:mask type: l
argument: identity type: n
argument: ordered type: n
argument: dim type: n
result: ? class: t

Notes(s):
operation shall be a pure function with exactly two arguments; each argument

shall be a scalar, nonallocatable, nonpointer, nonpolymorphic, nonoptional dummy
data object with the same type and type parameters as array. If one argument
has the asynchronous, target, value attribute, the other shall have that
attribute. Its result shall be a nonpolymorphic scalar and have the same type and type
parameters as array. operation should implement a mathematically associative
operation. It need not be commutative.

dim shall be an integer scalar with a value in the range 1 <= dim <= n, where
n is the rank of ARRAY.

mask shall be of type logical and shall be conformable with array.
identity shall be scalar with the same type and type parameters as array.
ordered shall be a logical scalar.
If operation is not computationally associative, reduce without

ordered=.true. with the same argument values might not always produce the
same result, as the processor can apply the associative law to the evaluation.
Example(s):
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The following examples all use the function my_mult, which returns the product
of its two integer arguments.

The value of

reduce ([1, 2, 3], my_mult)

is 6.

reduce (c, my_mult, mask= c > 0, identity=1)

forms the product of the positive elements of c.
If B is the array

1 3 5

2 4 6

reduce (b, my_mult, dim = 1)

is [2, 12, 30] and

reduce (b,my_mult, dim = 2)

is [15, 48].

REPEAT(string, n_copies) : Concatenate several copies of a string.

argument: string type: s
result: s class: t

Example(s): new_s=repeat(s,10)

RESHAPE(source,shape,pad,order) : Constructs an array of a specified shape
from the elements of a given array.

argument: source type: any
result: as source class: t

Note(s):
1. sourcemust be an array. If pad is absent or of size zero the size of source

must be product(shape).
2. shape must be a rank 1 array and 0 <= si ze < 16
3. pad must be an array.
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4.ordermust have the same shape asshape and its valuemust be a permutation
of (1,2,... ,n) where n is the size of shape. If absent it is as if it were present with
the value (1,2,...,n).

5. the result is an array of shape shape
Example(s):

reshape((/1,2,3,4,5,6/),(/2,3/))
has the value

(
1 3 5
2 4 6

)

reshape((/1,2,3,4,5,6/) ,(/2,4/) ,(/0,0/) ,(/2,1/) )
has the value

(
1 2 3 4
5 6 0 0

)

RRSPACING(x) : Returns the reciprocal of the relative spacing of model numbers
near the argument value. See Chap.5 and the real numeric model.

argument: x type: r
result: as x class: e

Example(s): z=rrspacing(x)

SAME_TYPE_AS(a, b) : Query dynamic types for equality. If the dynamic type of
a or b is extensible, the result is true if and only if the dynamic type of a is the same
as the dynamic type of b. If neither a nor b has extensible dynamic type, the result
is processor dependent.
Note(s):

a an object of extensible declared type or unlimited polymorphic. If it is a pointer,
it shall not have an undefined association status.

b an object of extensible declared type or unlimited polymorphic. If it is a pointer,
it shall not have an undefined association status.

The dynamic type of a disassociated pointer or unallocated allocatable variable
is its declared type. An unlimited polymorphic entity has no declared type.

result: l
type: i

SCALE(x, i) : Returns xbi where b is the base in the model representation of x. See
Chap.5 and the real numeric model.

https://doi.org/10.1007/978-3-319-75502-1_5
https://doi.org/10.1007/978-3-319-75502-1_5
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argument: x type: r
argument: i type: i
result: as x class: e

Example(s): z=scale(x,i)

SCAN(string, set, back) : Scans a string for any one of the characters in a set of
characters.

argument: string type: s
result: i class: e

Note(s):
1. The default is to scan from the left, and will only be from the right when back

is present and has the value true.
2. Zero is returned if the scan fails.

Example(s): w=scan(string,set)

SELECTED_CHAR_KIND(name) : Returns the kind value for the character set
whose name is given by the character string name or -1 if not supported.

argument: name type: char
result: i class: t

Note(s):
If name has the value default, then the result has a value equal to that of the

kind type parameter of default character.
If name has the value ASCII, then the result has a value equal to that of the kind

type parameter of ASCII character if the processor supports such a kind; otherwise
the result has the value 1.

If name has the value ISO_10646, then the result has a value equal to that of
the kind type parameter of the ISO 10646 character kind (corresponding to UCS-4
as specified in ISO/IEC 10646) if the processor supports such a kind; otherwise the
result has the value 1.

If name is a processor-defined name of some other character kind supported by
the processor, then the result has a value equal to that kind type parameter value.

If name is not the name of a supported character type, then the result has the
value 1. The name is interpreted without respect to case or trailing blanks.

SELECTED_INT_KIND(r) : Returns a value of the kind type parameter of an
integer data type that represents all integer values n with −10r < n < 10r
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argument: r type: i
result: i class: t

Note(s):
r must be scalar.
If a kind type parameter is not available then the value -1 is returned.

Example(s): i=selected_int_kind(2)

SELECTED_REAL_KIND(p,r,radix) : Returns a value of the kind type parameter
of a real data type with decimal precision of at least p digits and a decimal exponent
range of at least r.

argument: p and r type: i
result: i class: t

Note(s):
0. at least one argument must be present.
1. p, r and radix must be integer scalars.
2. The result is -1 if the processor supports a real type with radix radix and

exponent range of at least r but not with precision of at least p; -2 if the processor
supports a real typewith radixradix andprecisionof at least pbut notwith exponent
range of at least r; -3 if the processor supports a real type with radix radix but with
neither precision of at least p nor exponent range of at least r; -4 if the processor
supports a real type with radix radix and either precision of at least p or exponent
range of at least r but not both together; -5 if the processor supports no real type
with radix radix.
Example(s): i=selected_real_kind(p,r)

SET_EXPONENT(x,i) : Returns the model number whose fractional part is the
fractional part of the model representation of x and whose exponent part is i.

argument: x type: r
argument: i type: i
result: as x class: e

Example(s): exp_part=set_exponent(x,i)

SHAPE(source, kind) : Returns the shape of the array argument or scalar.

argument: source type: any
result: i class: i
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Note(s):
1. source may be array valued or scalar. It must not be a pointer that is disas-

sociated or an allocatable array that is not allocated. It must not be an assumed-size
array.

2. the result is an array of rank 1 whose size is equal to the rank of source.
Example(s): s=shape(a(2:5,-1:1)) yields s=(4,3)

SHIFTA(i, shift) : Right shift with fill.

argument: i type: i
argument: shift type: i
result: same as i class: e

Note(s):
1. shift shall be nonnegative and less than or equal to bit_size(i)
2. If shift is zero the result is i. Bits shifted out from the right are lost. The

model for the interpretation of an integer value as a sequence of bits is in 16.3 of the
standard.
Example(s): shifta (ibset (0, bit_size (0)), 2)
is equal to shiftl (7, bit_size (0) 3).

SHIFTL(i, shift) : Shift left.

argument: i type: i
argument: shift type: i
result: same as i class: e

Note(s):
1. shift shall be nonnegative and less than or equal to bit_size(i)

Example(s): shiftl(4, 1) is 8

SHIFTR(i, shift) : Shift right.

argument: i type: i
argument: shift type: i
result: same as i class: e
class: e

Note(s):
1. shift shall be nonnegative and less than or equal to bit_size(i)

Example(s): shiftr(4, 1) is 2.

SIGN(a, b) : Absolute value of a times the sign of b.
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argument: a type: i, r
result: as a class: e

Note(s):
1. If b > 0, the value of the result is |a|.
2. If b < 0, the value of the result is −|a|.
3. If b is of type integer and b = 0, the value of the result is |a|.
4. If b is of type real and is zero, then:

if the processor cannot distinguish between positive and negative real zero, or if b
is positive real zero, the value of the result is |a|;
if b is negative real zero, the value of the result is −|a|.
Example(s): a=sign(a,b)

SIN(x) : Sine.

argument: x type: r, c
result: as argument class: e

Note(s):
The argument is in radians.

Example(s): z=sin(x)

SINH(x) : Hyperbolic sine.

argument: x type: r,c
result: as argument class: e

Example(s): z=sinh(x)

SIZE(array, dim, kind) : Extent of an array along a specified dimension or the total
number of elements in the array.

argument: array type: any
result: i class: i

Note(s):
1. array shall be a scalar or array of any type. It shall not be an unallocated

allocatable variable or a pointer that is not associated. If array is an assumed-size
array, dim shall be present with a value less than the rank of array.

2.dim (optional) shall be an integer scalarwith avalue in the range1 <= dim <=
n, where n is the rank of array.



896 Appendix D: Intrinsic Functions and Procedures

3. kind shall be a scalar integer constant expression.
4. result is equal to the extent of dimension dim of array, or if dim is absent, the

total number of elements of array.
Example(s): a=size(array)

SPACING(x) : Returns the absolute spacing of model numbers near the argument
value. See Chap.5 and the real numeric model.

argument: x type: r
result: as x class: e

Example(s): s=spacing(x)

SPREAD(source, dim, n_copies) : Creates an array with an additional dimension,
replicating the values in the original array.

argument: source type: any
result: as source class: t

Note(s):
1. source may be array valued or scalar, with rank less than 15.
2. dim must be scalar and in the range 1 <= dim <= n + 1 where n is the rank

of source.
3. n_copies must be scalar.
4. the result is an array of rank n + 1.

Example(s):
If a is the array(2,3,4) then spread(a,dim=1,ncopies=3) then the result

is the array
⎛

⎝
2 3 4
2 3 4
2 3 4

⎞

⎠

SQRT(x) : Square root.

argument: x type: r, c
result: as argument class: e

Example(s): a=sqrt(b)

STORAGE_SIZE(a, kind) : Storage size in bits.

https://doi.org/10.1007/978-3-319-75502-1_5
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argument: a type: any type.
argument: kind(optional) result: i
class: i

Note(s):
If a is polymorphic it shall not be an undefined pointer. If it is unlimited polymor-

phic or has any deferred type parameters, it shall not be an unallocated allocatable
variable or a disassociated or undefined pointer.

If kind is present, the kind type parameter is that specified by the value of kind;
otherwise, the kind type parameter is that of default integer type.

The result value is the size expressed in bits for an element of an array that has the
dynamic type and type parameters of a. If the type and type parameters are such that
storage association applies, the result is consistent with the named constants defined
in the intrinsic module ISO_FORTRAN_ENV.

An array element might take more bits to store than an isolated scalar, since any
hardware-imposed alignment requirements for array elements might not apply to a
simple scalar variable.

This is intended to be the size in memory that an object takes when it is stored; this
might differ from the size it takes during expression handling (which might be the
native register size) or when stored in a file. If an object is never stored in memory
but only in a register, this function nonetheless returns the size it would take if it
were stored in memory.
Example(s): storage_size(1.0) has the same value as the named constant
numeric_storage_size in the intrinsic module iso_fortran_env.

SUM(array, dim, mask) or
SUM(array, mask) : Returns the sum of all elements of array along the dimension
dim corresponding to the true elements of mask.

argument: array type: n
argument: dim type: i
argument:mask type: l
result: as array class: t

Note(s):
1. array must be an array.
2. 1 <= dim <= n where n is the rank of array.
3. mask must be conformable with array.
4. result is scalar if dim is absent, or array has rank 1, otherwise the result is

an array of rank n − 1.
Example(s):

sum((/1,2,3/))
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the result is 6.
sum(c,mask=c> 0.0)
forms the arithmetic sum of the positive elements of c.
If

B =
(
1 3 5
2 4 6

)

sum(b,dim=1)
is (3,7,11)
sum(b,dim=2)
is (9,12)

SYSTEM_CLOCK(count,count_rate,count_max) : Returns integer data from a
real time clock.

argument: count type: i
result: n/a class: s

Note(s):
1. count is intent(out) and is set to a processor dependent value based on

the current value of the processor clock or to -huge(0) if there is no clock. It lies
in the range 0 to count_max if there is a clock.

2. count_rate is intent(out) and it is set to the number of processor clock
counts per second, or zero if there is no clock.

3. count_max is intent(out) and is set to the maximum value that count
can have or to zero if there is no clock.

call system_clock(c,r,m)

TAN(x) : Tangent.

argument: x type: r,c
result: as argument class: e

Note(s):
x must be in radians.

Example(s): y=tan(x)

TANH(x) : Hyperbolic tangent.

argument: x type: r,c
result: as argument class: e
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y=tanh(x)

THIS_IMAGE( team ) or
THIS_IMAGE( coarray [,team]) or
THIS_IMAGE( coarray, dim [,team]) : Index of the invoking image, a single
cosubscript, or a list of cosubscripts.

argument: team type: te
argument: coarray type: a
argument: dim type: i
result: as argument class: e

Note(s):
1. coarray shall be a coarray of any type. If it is allocatable it shall be allocated.

If its designator has more than one part-ref , the rightmost part-ref shall have nonzero
corank. If it is of typeteam_type from the intrinsicmoduleISO_FORTRAN_ENV,
the team argument shall appear.

2. dim shall be an integer scalar. Its value shall be in the range 1 <= dim <= n,
where n is the corank of coarray.

3. team shall be a scalar of type team_type from the intrinsic module
ISO_FORTRAN_ENV, whose value identifies the current or an ancestor team. If
coarray appears, it shall be established in that team.
Example(s):

integer, dimension(10,20), &

codimension[10,0:9,0:*] :: a

then on image 5, this_image() has the value 5 and this_image(a) has the
value [3,1,2].

TINY(x) : Returns the smallest positive number in the model representing numbers
of the same type and kind type parameter as the argument.

argument: x type: r
result: as x class: i

Example(s): t=tiny(x)

TRAILZ(i) : Number of trailing zero bits. If all of the bits of i are zero, the result
value is bit_size(i). Otherwise, the result value is the position of the rightmost
1 bit in i.
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argument: i type: i
result: i class: e

Example(s):

trailz(4)

has the value 2.

TRANSFER(source, mold, size) : Returns a result with a physical representation
identical to that of source, but interpreted with the type and type parameters of
mold.

argument: source type: any
result: as mold class: t

Warning: A thorough understanding of the implementation specific internal rep-
resentation of the data types involved is necessary for successful use of this function.
Consult the documentation that accompanies the compiler that you work with before
using this function.

TRANSPOSE(matrix) : Transposes an array of rank 2.

argument:matrix type: any
result: as argument class: t

Note(s):
matrix must be of rank 2. If its shape is (n,m) then the resultant matrix has

shape (m, n)
Example(s):

transpose(a)

a =
⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ yields

⎛

⎝
1 4 7
2 5 8
3 6 9

⎞

⎠

TRIM(string) : Returns the argument with trailing blanks removed.

argument: string type: s
result: as string class: t

Note(s):
string must be a scalar.
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Example(s): t_s=trim(s)

UBOUND(array, dim, kind) : Upper bound(s).

argument: array type: any
result: i class: i

Note(s):
1.dim optional. Shall be an integer scalarwith a value in the range 1 <= dim <=

n, where n is the rank of array. The corresponding actual argument shall not be an
optional dummy argument.

2. For an array section or for an array expression, other than a whole array,
ubound(array, dim) has a value equal to the number of elements in the given
dimension; otherwise, it has a value equal to the upper bound for subscript dim of
array if dimension dim of array does not have size zero and has the value zero
if dimension dim has size zero.
Example(s): z=ubound(a)

UCOBOUND(coarray, dim, kind) : Upper cobound(s) of a coarray.

argument: coarray type: co
argument: dim (optional) type: i
argument: kind(optional) type: i
result: i class: i

UNPACK(vector, mask, field) : Unpacks an array of rank 1 into an array under the
control of a mask.

argument: vector type: any
result: as vector class: t

Note(s):
1. vector must have rank 1. Its size must be at least t, where t is the number of

true elements in mask.
2. mask must be array valued.
3. field must be conformable with mask. Result is an array with the same

shape as mask.
Example(s):

With vector=(1,2,3)
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and mask =
⎛

⎝
f t f
t f f
f f t

⎞

⎠ and f ield

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ the result is

⎛

⎝
1 2 0
1 1 0
0 0 3

⎞

⎠

VERIFY(string,set,back,kind) : Verify that a set of characters contains all the char-
acters in a string by identifying the position of the first character in a string of
characters that does not appear in a given set of characters.

argument: string type: s
argument: set type: s
argument: back type: l
result: kind class: i
result: i class: e

Note(s):
1. The default is to scan from the left, and will only be from the right when back

is present and has the value true.
2. The value of the result is zero if each character in string is in set, or if

string has zero length.
Example(s) i=verify(string,set)

D.10 Fortran Intrinsics by Standard

We use a + character in the table to indicate that the name of the intrinsic continues
on the next line. The intrinsics by standard year are in TableD.5.
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Table D.5 Intrinsic functions by standard - Fortran 90 to Fortran 2018
Fortran 90 Fortran 95 Fortran 2003 Fortran 2008 Fortran 2018

ABS ABS ABS ABS ABS

ACHAR ACHAR ACHAR ACHAR ACHAR

ACOS ACOS ACOS ACOS ACOS

ACOSH ACOSH

ADJUSTL ADJUSTL ADJUSTL ADJUSTL ADJUSTL
ADJUSTR ADJUSTR ADJUSTR ADJUSTR ADJUSTR

AIMAG AIMAG AIMAG AIMAG AIMAG
AINT AINT AINT AINT AINT

ALL ALL ALL ALL ALL
ALLOCATED ALLOCATED ALLOCATED ALLOCATED ALLOCATED
ANINT ANINT ANINT ANINT ANINT

ANY ANY ANY ANY ANY
ASIN ASIN ASIN ASIN ASIN

ASINH ASINH
ASSOCIATED ASSOCIATED ASSOCIATED ASSOCIATED ASSOCIATED
ATAN ATAN ATAN ATAN ATAN

ATAN2 ATAN2 ATAN2 ATAN2 ATAN2
ATANH ATANH

ATOMIC_ADD
ATOMIC_AND
ATOMIC_CAS

ATOMIC_DEFINE
ATOMIC_FETCH+

_ADD
ATOMIC_FETCH+
_AND

ATOMIC_FETCH+
_OR
ATOMIC_FETCH+

_XOR
ATOMIC_OR

ATOMIC_REF
ATOMIC_XOR

BESSEL_J0 BESSEL_J0

BESSEL_J1 BESSEL_J1
BESSEL_JN BESSEL_JN

BESSEL_Y0 BESSEL_Y0
BESSEL_Y1 BESSEL_Y1
BESSEL_YN BESSEL_YN

BGE BGE
BGT BGT

BIT_SIZE BIT_SIZE BIT_SIZE BIT_SIZE BIT_SIZE
BLE BLE
BLT BLT

BTEST BTEST BTEST BTEST BTEST
CEILING CEILING CEILING CEILING CEILING

CHAR CHAR CHAR CHAR CHAR
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Table D.5 (continued)
Fortran 90 Fortran 95 Fortran 2003 Fortran 2008 Fortran 2018

CMPLX CMPLX CMPLX CMPLX CMPLX
CO_BROADCAST

CO_LBOUND CO_LBOUND
CO_MAX

CO_MIN
CO_REDUCE
CO_SUM

CO_UBOUND CO_UBOUND
COMMAND+ COMMAND+ COMMAND+

_ARGUMENT+ _ARGUMENT+ _ARGUMENT+
_COUNT _COUNT _COUNT

CONJG CONJG CONJG CONJG CONJG

COS COS COS COS COS
COSH COSH COSH COSH COSH

COSHAPE
COUNT COUNT COUNT COUNT COUNT

CPU_TIME CPU_TIME CPU_TIME CPU_TIME

CSHIFT CSHIFT CSHIFT CSHIFT CSHIFT
DATE_AND_TIME DATE_AND_TIME DATE_AND_TIME DATE_AND_TIME DATE_AND_TIME

DBLE DBLE DBLE DBLE DBLE
DIGITS DIGITS DIGITS DIGITS DIGITS
DIM DIM DIM DIM DIM

DOT_PRODUCT DOT_PRODUCT DOT_PRODUCT DOT_PRODUCT DOT_PRODUCT
DPROD DPROD DPROD DPROD DPROD

DSHIFTL DSHIFTL
DSHIFTR DSHIFTR

EOSHIFT EOSHIFT EOSHIFT EOSHIFT EOSHIFT

EPSILON EPSILON EPSILON EPSILON EPSILON
ERF ERF
ERFC ERFC

ERFC_SCALED ERFC_SCALED
EVENT_QUERY

EXECUTE+ EXECUTE+
_COMMAND+ _COMMAND+
_LINE _LINE

EXP EXP EXP EXP EXP
EXPONENT EXPONENT EXPONENT EXPONENT EXPONENT

EXTENDS+ EXTENDS+ EXTENDS+
_TYPE_OF _TYPE_OF _TYPE_OF

FAILED_IMAGES

FINDLOC
FLOOR FLOOR FLOOR FLOOR FLOOR

FRACTION FRACTION FRACTION FRACTION FRACTION
GAMMA GAMMA

GET_COMMAND GET_COMMAND GET_COMMAND

GET_COMMAND+ GET_COMMAND+ GET_COMMAND+
_ARGUMENT _ARGUMENT _ARGUMENT

GET+ GET+ GET+
_ENVIRONMENT+ _ENVIRONMENT+ _ENVIRONMENT+
_VARIABLE _VARIABLE _VARIABLE

GET_TEAM
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Table D.5 (continued)
Fortran 90 Fortran 95 Fortran 2003 Fortran 2008 Fortran 2018

HUGE HUGE HUGE HUGE HUGE
HYPOT HYPOT

IACHAR IACHAR IACHAR IACHAR IACHAR
IAND IAND IAND IAND IALL

IBCLR IBCLR IBCLR IBCLR IAND
IBITS IBITS IBITS IBITS IANY
IBSET IBSET IBSET IBSET IBCLR

IBITS
IBSET

ICHAR ICHAR ICHAR ICHAR ICHAR
IEOR IEOR IEOR IEOR IEOR

IMAGE_INDEX IMAGE_INDEX

IMAGE_STATUS
INDEX INDEX INDEX INDEX INDEX

INT INT INT INT INT
IOR IOR IOR IOR IOR

IPARITY

IS_CONTIGUOUS IS_CONTIGUOUS
IS_IOSTAT_END IS_IOSTAT_END IS_IOSTAT_END

IS_IOSTAT_EOR IS_IOSTAT_EOR IS_IOSTAT_EOR
ISHFT ISHFT ISHFT ISHFT ISHFT
ISHFTC ISHFTC ISHFTC ISHFTC ISHFTC

KIND KIND KIND KIND KIND
LBOUND LBOUND LBOUND LBOUND LBOUND

LCOBOUND
LEADZ LEADZ

LEN LEN LEN LEN LEN

LEN_TRIM LEN_TRIM LEN_TRIM LEN_TRIM LEN_TRIM
LGE LGE LGE LGE LGE
LGT LGT LGT LGT LGT

LLE LLE LLE LLE LLE
LLT LLT LLT LLT LLT

LOG LOG LOG LOG LOG
LOG_GAMMA LOG_GAMMA

LOG10 LOG10 LOG10 LOG10 LOG10

LOGICAL LOGICAL LOGICAL LOGICAL LOGICAL
MASKL MASKL

MASKR MASKR
MATMUL MATMUL MATMUL MATMUL MATMUL
MAX MAX MAX MAX MAX

MAXEXPONENT MAXEXPONENT MAXEXPONENT MAXEXPONENT MAXEXPONENT
MAXLOC MAXLOC MAXLOC MAXLOC MAXLOC

MAXVAL MAXVAL MAXVAL MAXVAL MAXVAL
MERGE MERGE MERGE MERGE MERGE

MERGE_BITS MERGE_BITS

MIN MIN MIN MIN MIN
MINEXPONENT MINEXPONENT MINEXPONENT MINEXPONENT MINEXPONENT

MINLOC MINLOC MINLOC MINLOC MINLOC
MINVAL MINVAL MINVAL MINVAL MINVAL
MOD MOD MOD MOD MOD

MODULO MODULO MODULO MODULO MODULO
MOVE_ALLOC MOVE_ALLOC MOVE_ALLOC
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Table D.5 (continued)
Fortran 90 Fortran 95 Fortran 2003 Fortran 2008 Fortran 2018

MVBITS MVBITS MVBITS MVBITS MVBITS
NEAREST NEAREST NEAREST NEAREST NEAREST

NEW_LINE NEW_LINE NEW_LINE
NINT NINT NINT NINT NINT

NORM2 NORM2
NOT NOT NOT NOT NOT

NULL NULL NULL NULL

NUM_IMAGES NUM_IMAGES
OUT_OF_RANGE

PACK PACK PACK PACK PACK
PARITY PARITY
POPCNT POPCNT

POPPAR POPPAR
PRECISION PRECISION PRECISION PRECISION PRECISION

PRESENT PRESENT PRESENT PRESENT PRESENT
PRODUCT PRODUCT PRODUCT PRODUCT PRODUCT
RADIX RADIX RADIX RADIX RADIX

RANDOM_INIT
RANDOM+ RANDOM+ RANDOM+ RANDOM+ RANDOM+

_NUMBER _NUMBER _NUMBER _NUMBER _NUMBER
RANDOM_SEED RANDOM_SEED RANDOM_SEED RANDOM_SEED RANDOM_SEED
RANGE RANGE RANGE RANGE RANGE

RANK
REAL REAL REAL REAL REAL

REDUCE
REPEAT REPEAT REPEAT REPEAT REPEAT
RESHAPE RESHAPE RESHAPE RESHAPE RESHAPE

RRSPACING RRSPACING RRSPACING RRSPACING RRSPACING
SAME_TYPE_AS SAME_TYPE_AS SAME_TYPE_AS

SCALE SCALE SCALE SCALE SCALE

SCAN SCAN SCAN SCAN SCAN
SELECTED+ SELECTED+ SELECTED+

_CHAR+ _CHAR+ _CHAR+
_KIND _KIND _KIND

SELECTED_INT+ SELECTED_INT+ SELECTED_INT+ SELECTED_INT+ SELECTED_INT+

_KIND _KIND _KIND _KIND _KIND
SELECTED+ SELECTED+ SELECTED+ SELECTED+ SELECTED+

_REAL+ _REAL+ _REAL+ _REAL+ _REAL+
_KIND _KIND _KIND _KIND _KIND
SET_EXPONENT SET_EXPONENT SET_EXPONENT SET_EXPONENT SET_EXPONENT

SHAPE SHAPE SHAPE SHAPE SHAPE
SHIFTA SHIFTA

SHIFTL SHIFTL
SHIFTR SHIFTR

SIGN SIGN SIGN SIGN SIGN

SIN SIN SIN SIN SIN
SINH SINH SINH SINH SINH

SIZE SIZE SIZE SIZE SIZE
SPACING SPACING SPACING SPACING SPACING
SPREAD SPREAD SPREAD SPREAD SPREAD

SQRT SQRT SQRT SQRT SQRT
STOPPED_IMAGES

STORAGE_SIZE STORAGE_SIZE
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Table D.5 (continued)
Fortran 90 Fortran 95 Fortran 2003 Fortran 2008 Fortran 2018

SUM SUM SUM SUM SUM
SYSTEM_CLOCK SYSTEM_CLOCK SYSTEM_CLOCK SYSTEM_CLOCK SYSTEM_CLOCK

TAN TAN TAN TAN TAN
TANH TANH TANH TANH TANH

TEAM_NUMBER
THIS_IMAGE

TINY TINY TINY TINY TINY

TRAILZ TRAILZ
TRANSFER TRANSFER TRANSFER TRANSFER TRANSFER

TRANSPOSE TRANSPOSE TRANSPOSE TRANSPOSE TRANSPOSE
TRIM TRIM TRIM TRIM TRIM
UBOUND UBOUND UBOUND UBOUND UBOUND

UCOBOUND
UNPACK UNPACK UNPACK UNPACK UNPACK

VERIFY VERIFY VERIFY VERIFY VERIFY
N = 113 N = 115 N = 126 N = 166 N = 200
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D.11 Standard Intrinsic Modules

The standard defines five standard intrinsic modules:

• a Fortran environment module
• a set of three modules to support floating-point exceptions and IEEE arithmetic
• a module to support interoperability with the C programming language

The intrinsic modules

• IEEE_EXCEPTIONS
• IEEE_ARITHMETIC
• IEEE_FEATURES are described in Clause 17 of the standard.

The intrinsicmoduleISO_C_BINDING is described inClause 18 of the standard.
The intrinsic module ISO_FORTRAN_ENV provides public entities relating to

the Fortran environment.
The processor shall provide the named constants, derived types, and procedures

described in subclause 16.10.2. of the standard.
Here is a complete list of the public entities in this module.

• ATOMIC_INT_KIND
• ATOMIC_LOGICAL_KIND
• CHARACTER_KINDS
• CHARACTER_STORAGE_SIZE
• COMPILER_OPTIONS ( )
• COMPILER_VERSION ( )
• CURRENT_TEAM
• ERROR_UNIT
• EVENT_TYPE
• FILE_STORAGE_SIZE
• INITIAL_TEAM
• INPUT_UNIT
• INT8, INT16, INT32, and INT64
• INTEGER_KINDS
• IOSTAT_END
• IOSTAT_EOR
• IOSTAT_INQUIRE_INTERNAL_UNIT
• LOCK_TYPE
• LOGICAL_KINDS
• NUMERIC_STORAGE_SIZE
• OUTPUT_UNIT
• PARENT_TEAM
• REAL_KINDS
• REAL32, REAL64, and REAL128
• STAT_FAILED_IMAGE
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• STAT_LOCKED
• STAT_LOCKED_OTHER_IMAGE
• STAT_STOPPED_IMAGE
• STAT_UNLOCKED
• STAT_UNLOCKED_FAILED_IMAGE
• TEAM_TYPE

Consult the standard for more information.
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Text extracts, English, Latin and coded

English and Latin

YET IF HE SHOULD GIVE UP WHAT

HE HAS BEGUN, AND AGREE TO MAKE US OR

OUR KINGDOM SUBJECT TO THE KING OF ENGLAND

OR THE ENGLISH, WE SHOULD

EXERT OURSELVES AT ONCE TO DRIVE HIM OUT AS

OUR ENEMY AND A SUBVERTER

OF HIS OWN RIGHTS AND OURS, AND MAKE SOME

OTHER MAN WHO WAS ABLE TO

DEFEND US OUR KING; FOR, AS LONG AS BUT A

HUNDRED OF US REMAIN ALIVE,

NEVER WILL WE ON ANY CONDITIONS BE BROUGHT

UNDER ENGLISH RULE. IT

IS IN TRUTH NOT FOR GLORY, NOR RICHES, NOR

HONOURS THAT WE ARE FIGHTING,

BUT FOR FREEDOM - FOR THAT ALONE, WHICH NO

HONEST MAN GIVES UP BUT

WITH LIFE ITSELF.

QUEM SI AB INCEPTIS

DIESISTERET, REGI ANGLORUM AUT ANGLICIS NOS

AUT

REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM

INIMICUM NOSTRUM ET SUI NOSTRIQUE

JURIS SUBUERSOREM STATIM EXPELLERE NITEREMUR

ET ALIUM REGEM NOSTRUM

QUI AD DEFENSIONEM NOSTRAM SUFFICERET

FACEREMUS. QUIA QUANDIU CENTUM

EX NOBIS VIUI REMANSERINT, NUCQUAM ANGLORUM

© Springer Nature Switzerland AG 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1
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DOMINIO ALIQUATENUS VOLUMUS

SUBIUGARI. NON ENIM PROPTER GLORIAM,

DIUICIAS AUT HONORES PUGNAMUS

SET PROPTER LIBERATEM SOLUMMODO QUAM NEMO

BONUS NISI SIMUL CUM VITA

AMITTIT.

from‘The Declaration of Arbroath’

c.1320. The English translation is by

Sir James Fergusson.

Coded

OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ

BYYBOHNX GPDA FNUZNDYOLH

YABY YAN SBF LZ B GOHTMN FULWOHDN DLWNUNX

YAN GFBDN LZ BH NHYOUN DOYJ,

BHX YAN SBF LZ YAN NSFOUN OYGNMZ BH NHYOUN

FULWOHDN. OH YAN DLPUGN

LZ YOSN, YANGN NKYNHGOWN SBFG VNUN ZLPHX

GLSNALV VBHYOHT, BHX GL YAN

DLMMNTN LZ DBUYLTUBFANUG NWLMWNX B SBF LZ

YAN NSFOUN YABY VBG YAN

GBSN GDBMN BG YAN NSFOUN BHX YABY DLOHDOXNX

VOYA OY FLOHY ZLU FLOHY.

MNGG BYYNHYOWN YL YAN GYPXJ LZ DBUYLTUBFAJ,

GPDDNNXOHT TNHNUBYOLHG

DBSN YL RPXTN B SBF LZ GPDA SBTHOYPXN

DPSENUGLSN, BHX, HLY VOYALPY

OUUNWNUNHDN, YANJ BEBHXLHNX OY YL YAN

UOTLPUG LZ GPH BHX UBOH. OH

YAN VNGYNUH XNGNUYG, YBYYNUNX ZUBTSNHYG LZ

YAN SBF BUN GYOMM YL EN

ZLPHX, GANMYNUOHT BH LDDBGOLHBM ENBGY LU

ENTTBU; OH YAN VALMN HBYOLH,

HL LYANU UNMOD OG MNZY LZ YAN XOGDOFMOHN LZ

TNLTUBFAJ.



Appendix F
Formal syntax

Statement Ordering
Format statements may appear anywhere between the use statement and the contains
statement.

The following table summarises the usage of the various statements within indi-
vidual scoping units.

Kind of scoping unit Main Module External Module Internal Interface
program sub sub sub body

program program program
use Y Y Y Y Y Y
format Y N Y Y Y N
misc dec. Y Y Y Y Y Y
derived type definition Y Y Y Y Y Y
interface block Y Y Y Y Y Y
executable statement Y N Y Y Y N
contains Y Y Y Y N N

misc dec. (miscellaneous declaration) are parameter statements, implicit statements,
type declaration statements and specification statements.

Syntax Summary of Some Frequently Used Fortran Constructs
The following provides simple syntactical definitions of some of the more frequently
used parts of Fortran.
Main Program

program [ program-name ]
[ specification-construct ] ...
[ executable-construct ] ...
[contains
[ internal procedure ] ... ]
end [ program [ program-name ] ]

© Springer Nature Switzerland AG 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1
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Subprogram
procedure heading
[ specification-construct ] ...
[ executable-construct ] ...
[contains
[ internal procedure ] ... ]
procedure ending

Module
module name
[ specification-construct ] ...
[contains
subprogram
[ subprogram ] ... ]
end [ module [ module-name ]

Internal Procedure
procedure heading
[ specification construct ] ...
[ executable construct ] ...
procedure ending

Procedure Heading
[ recursive ] [ type specification ] function function-name
( [ dummy argument list ] ) [ result ( result name ) ]
[ recursive ] subroutine subroutine name
[ ( [ dummy argument list ] ) ]

Procedure Ending
end [ function [ function name ] ]
end [ subroutine [ subroutine name ] ]

Specification Construct
derived type definition
interface block
specification statement

Derived Type Definition
type [[ , access specification ] :: ] type name
[ private ]
[ sequence ]
[ type specification [[ , pointer ] :: ] component specification list ]
...
end type [ type name ]

Interface Block
interface [ generic specification ]
[ procedure heading
[ specification construct ] ...
procedure ending ] ...
[ module procedure module procedure name list ] ...
end interface
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Specification Statement
allocatable [ :: ] allocatable array list
dimension array dimension list
external external name list
format ( [ format specification list ] )
implicit implicit specification
intent ( intent specification ) :: dummy argument name list
intrinsic intrinsic procedure name list
optional [ :: ] optional object list
parameter ( named constant definition list )
pointer [ :: ] pointer name list
public [ [ :: ] module entity name list ]
private[ [ :: ] module entity name list ]
save[ [ :: ] saved object list ]
target [ :: ] target name list
use module name [ , rename list ]
use module name , only : [ access list ]
type specification [ [ , attribute specification ] ... :: object declaration list

Type Specification
integer [ ( [ kind= ] kind parameter ) ]
real[ ( [ kind= ] kind parameter ) ]
complex[ ( [ kind= ] kind parameter ) ]
character[ ( [ kind= ] kind parameter ) ]
character[ ( [ kind= ] kind parameter ) ]
[ len= ] length parameter )
logical[ ( [ kind= ] kind parameter ) ]
type ( type name )

Attribute Specification
allocatable
dimension ( array specification )
external
intent ( intent specification )
intrinsic
optional
parameter
pointer
private
public
save
target

Executable Construct
action statement
case construct
do construct
if construct
where construct
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Action Statement
allocate ( allocation list ) [ ,stat= scalar integer variable ] )
call subroutinename [ ( [ actual argument specification list] ) ]
close ( close specification list )
cycle [ do construct name ]
deallocate( name list ) [ , stat= scalar integer variable ] )
endfile external file unit
exit [ do construct name ]
goto label
if ( scalar logical expression ) action statement
inquire ( inquire specification list ) [ output item list ]
nullify ( pointer object list )
open [and close] ( connect specification list )
print format [ , output item list ]
read (i/o control specification list ) [ input item list ]
read format [ , output item list ]
return [ scalar integer expression ]
rewind ( position specification list )
stop [ access code ]
where ( array logical expression ) array assignment expression
write ( i/o control specification list ) [ output item list ]
pointer variable => target expression
variable = expression



Appendix G
Compiler Options

In this appendix we look at some of compiler options we have used during the
development of the programs in the book.

Simplistically there are two kinds of compile or build.

• A debug build - used when developing code
• A production build - used when executing or running code

We provide debug and production build options for each compiler.
There are also extracts from the help files on what the various options mean.

G.1 Cray

G.1.1 Debug

-G Debug level

-R run time checks

G.1.2 Production

We used the default compiler options.

© Springer Nature Switzerland AG 2018
I. Chivers and J. Sleightholme, Introduction to Programming with Fortran,
https://doi.org/10.1007/978-3-319-75502-1
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G.2 gfortran

G.2.1 Debug

gfortran

-fbacktrace

-fcheck=all

-ffpe-trap=zero,overflow,underflow

-g

-O

-pedantic-errors

-std=f2008

-Wall

-Wunderflow

G.2.2 Production

gfortran

-ffast-math

-funroll-loops

-O3

Here are some extracts from the help files.

debug

-fbacktrace

trace back in the event of a run time

error, i.e. the Fortran runtime library

tries to output a backtrace of the error

-fcheck

Enable the generation of run-time checks;

the argument shall be a comma-delimited

list of the following keywords.

all Enable all run-time test of -fcheck

-ffpe-trap=list

Specify a list of floating point exception

traps to enable
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-pedantic

Issue warnings for uses of extensions to

Fortran 95

-std

standard conformance

-Wall

Enables commonly used warning options

pertaining to usage that we

recommend avoiding and that we believe

are easy to avoid. This

currently includes -Waliasing,

-Wampersand, -Wconversion,

-Wsurprising, -Wc-binding-type,

-Wintrinsics-std, -Wtabs,

-Wintrinsic-shadow, -Wline-truncation,

-Wtarget-lifetime,

-Wreal-q-constant and -Wunused.

-Wunderflow

Produce a warning when numerical constant

expressions are encountered, which

yield an UNDERFLOW during compilation.

Enabled by default

-Wrealloc-lhs

Warn when the compiler might insert code

to for allocation or reallocation of

an allocatable array variable of intrinsic

type in intrinsic assignments

production

-fcoarray

none

Disable coarray support; using coarray

declarations and image-

control statements will produce a

compile-time error. (Default)

single

Single-image mode, i.e. "num_images()"

is always one.

lib Library-based coarray parallelization; a

suitable GNU Fortran
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coarray library needs to be linked

-fopenmp

Enable the OpenMP extensions

G.3 Intel

G.3.1 Debug

ifort

/check:all

/debug:all

/fpe:0

/gen-interfaces

/standard-semantics

/traceback

/warn:all

You will also need

/Qcoarray

/Qopenmp

when compiling the coarray and openmp examples.
Here is an extract from the help files.

/check:all

enables the following

check arg_temp_created

Enables run-time checking on whether actual arguments are

copied into temporary storage before routine calls. If a

copy is made at run-time, an informative message is

displayed.

check assume

Enables run-time checking on whether the

scalar-Boolean-expression in the ASSUME directive is true

and that the addresses in the ASSUME_ALIGNED directive are
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aligned on the specified byte boundaries. If the test is

.FALSE., a run-time error is reported and the execution

terminates.

check bounds

Enables compile-time and run-time checking for array

subscript and character substring expressions. An error is

reported if the expression is outside the dimension of the

array or the length of the string.

For array bounds, each individual dimension is checked. For

arrays that are dummy arguments, only the lower bound is

checked for a dimension whose upper bound is specified as *

or where the upper and lower bounds are both 1.

For some intrinsics that specify a DIM= dimension argument,

such as LBOUND, an error is reported if the specified

dimension is outside the declared rank of the array being

operated upon.

Once the program is debugged, omit this option to reduce

executable program size and slightly improve run-time

performance.

It is recommended that you do bounds checking on

unoptimized code. If you use option check bounds on

optimized code, it may produce misleading messages because

registers (not memory locations) are used for bounds values.

check contiguous

Tells the compiler to check pointer contiguity at

pointer-assignment time. This will help prevent programming

errors such as assigning contiguous pointers to

non-contiguous objects.

check format

Issues the run-time FORVARMIS fatal error when the data

type of an item being formatted for output does not match

the format descriptor being used (for example, a REAL*4

item formatted with an I edit descriptor).

With check noformat, the data item is formatted using the

specified descriptor unless the length of the item cannot

accommodate the descriptor (for example, it is still an

error to pass an INTEGER*2 item to an E edit descriptor).

check output_conversion
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Issues the run-time OUTCONERR continuable error message

when a data item is too large to fit in a designated format

descriptor field without loss of significant digits. Format

truncation occurs, the field is filled with asterisks (*),

and execution continues.

check pointers

Enables run-time checking for disassociated or

uninitialized Fortran pointers, unallocated allocatable

objects, and integer pointers that are uninitialized.

check stack

Enables checking on the stack frame. The stack is checked

for buffer overruns and buffer underruns. This option also

enforces local variables initialization and stack pointer

verification.

This option disables optimization and overrides any

optimization level set by option O.

check uninit

Enables run-time checking for uninitialized variables. If a

variable is read before it is written, a run-time error

routine will be called. Only local scalar variables of

intrinsic type INTEGER, REAL, COMPLEX, and LOGICAL without

the SAVE attribute are checked.

To detect uninitialized arrays or array elements, please

see option [Q]init or see the article titled: Detection of

Uninitialized Floating-point Variables in Intel Fortran,

which is located in

https://software.intel.com/articles/detection-of-uninitializ

ed-floating-point-variables-in-intel-fortran

/debug:all

Generates complete debugging information. It produces

symbol table information needed for full symbolic debugging

of unoptimized code and global symbol information needed

for linking. It is the same as specifying /debug with no

keyword. If you specify /debug:full for an application that

makes calls to C library routines and you need to debug

calls into the C library, you should also specify /dbglibs
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to request that the appropriate C debug library be linked

against.

/fpe:0

Floating-point invalid, divide-by-zero, and

overflow exceptions are enabled throughout the application

when the main program is compiled with this value.

If any such exceptions occur, execution is aborted.

This option causes denormalized floating-point

results to be set to zero.

/gen_interfaces

Tells the compiler to generate an interface block for each

routine in a source file.

/standard_semantics

Determines whether the current Fortran Standard behaviour of

the compiler is fully implemented.

/traceback

Tells the compiler to generate extra information in the

object file to provide source file traceback information

when a severe error occurs at run time.

/warn:all

alignments

Warnings are issued about data that is not naturally

aligned.

general

All information-level and warning-level messages are

enabled.

nodeclarations

No warnings are issued for undeclared names.

noerrors
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Warning-level messages are not changed to error-level

messages.

noignore_loc

No warnings are issued when %LOC is stripped from an

argument.

nointerfaces

The compiler does not check interfaces of SUBROUTINEs

called and FUNCTIONs invoked in your compilation against an

external set of interface blocks.

nostderrors

Warning-level messages about Fortran standards violations

are not changed to error-level messages.

notruncated_source

No warnings are issued when source exceeds the maximum

column width in fixed-format files.

nouncalled

No warnings are issued when a statement function is not

called.

nounused

No warnings are issued for variables that are declared but

never used.

usage

Warnings are issued for questionable programming practices.

G.3.2 Production

Intel (autoparallel)
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ifort

/fast

enables

/QxHOST /O3 /Qipo /Qprec-div

/fp:fast=2

/heap-arrays

/Qopenmp

/Qparallel

Here are some extracts from the compiler documentation.

/QxHost generate instructions for the

highest instruction set and

processor available on the

compilation host machine

/O3 optimize for maximum speed and

enable more aggressive

optimizations that may not

improve performance on

some programs

/Qipo Interprocedural Optimization

(IPO) enable multi-file IP

between files

/Qprec-div improve precision of FP divides

(some speed impact) /Qprec-div-

goes for speed over precision

/fp:<name> enable <name> floating point

model variation

except[-] - enable/disable floating point

exception semantics

fast[=1|2] - enables more aggressive floating

point optimizations

precise - allows value-safe optimizations

source - enables intermediates in

source precision sets

/assume:protect_parens

for Fortran

strict - enables /fp:precise /fp:except,

disables contractions and

enables pragma stdc fenv_access

consistent - enables consistent,

reproducible

results for different

optimization levels or between
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different processors of the

same architecture

/heap-arrays temporary arrays are allocated

in heap memory rather than on the

stack.

/Qparallel enable the auto-parallelizer to

generate multi-threaded code for

loops that can be safely executed

in parallel

G.4 Nag

G.4.1 Debug

nagfor

-C=all

-C=undefined

-f2008

-g

-gline

-ieee=stop

-info

-mtrace=verbose

-thread_safe

Here are extracts from the compiler documentation.

-C=check

Compile checking code according to

the value of check, which must be one of:

all (perform all checks except for

-C=undefined),

array (check array bounds),

bits (check bit intrinsic arguments),

calls (check procedure references),

dangling (check for dangling pointers),

do (check DO loops for zero step values),

intovf (check for integer overflow),

none (do no checking: this is the default),

present (check OPTIONAL references),
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pointer (check POINTER references),

recursion (check for invalid recursion) or

undefined (check for undefined variables).

-f2008

Specify that the base language is Fortran 2008.

This is the default.

-g

Produce information for interactive debugging

by the host system debugger.

-gline

Compile code to produce a traceback when a

runtime error message is generated.

-ieee=mode

Set the mode of IEEE arithmetic operation

according to mode, which must be one of

full, nonstd or stop.

full

enables all IEEE arithmetic

facilities including

non-stop arithmetic.

nonstd

Disables non-stop arithmetic, terminating

execution on floating overflow, division

by zero or invalid operand. If the

hardware supports it, this also disables

IEEE gradual underflow, producing

zero instead of a denormalised number;

this can improve performance on some systems.

stop

enables all IEEE arithmetic facilities
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except for non-stop arithmetic;

execution will be terminated on

floating overflow, division by zero

or invalid

operand.

The -ieee option must be specified when

compiling the main program unit, and its

effect is global.

The default mode is -ieee=stop. For more

details see the

IEEE 754 Arithmetic Support section.

-info

Request output of information messages. The

default is to suppress these messages.

-mtrace=trace_opt_list

Trace memory allocation and deallocation

according to the value of trace_opt_list,

which must be a comma separated

list of one or more of:

address (display addresses),

all (all options except for off),

line (display file/line info if known),

off (disable tracing output),

on (enable tracing output),

paranoia (protect memory allocator data structures

against the user program),

size (display size in bytes) or

verbose (all options except for off and paranoia ).

-thread_safe

Compile code for safe execution in a

multi-threaded environment.
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This must be specified when compiling

and also during the link phase.

It is incompatible with the -gc and -gline

options.

G.4.2 Production

nagfor

-O4

-openmp

-thread_safe

Here are some extracts from the compiler documentation.

-ON

Set the optimisation level to N. The

optimisation

levels are:

-O0

No optimisation. This is the default, and

is recommended when debugging.

-O1

Minimal quick optimisation.

-O2

Normal optimisation.

-O3

Further optimisation.

-O4

Maximal optimisation.
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G.4.3 Nag Polish

The Nag compiler has a polish option. Here are some of the options used in the
reformatting of the examples in the book. The examples in the book were set with a
line length of 48 to fit the printed page. The examples on the web site were set with
a line length of 132.

nagfor =polish -alter_comments

-noblank_cmt_to_blank_line

-blank_line_after_decls -break_long_comment_word

-format_start=100 -format_step=10 -idcase=L

-indent=2 -indent_continuation=2 -indent_max=16

-keep_blank_lines -keep_comments -kwcase=L

-leave_formats_in_place -margin=0

-noindent_comment_marker

-noseparate_format_numbering -relational=F90+

-renumber -renumber_start=100 -renumber_step=10

-separate_format_numbering

-terminate_do_with_enddo -width=48

G.5 Oracle

G.5.1 Debug

sunf90

-ansi

-w4

-xcheck=all

-C

-ftrap=common,overflow,underflow

G.5.2 Production

sunf90 -fast ch2502.f90 -V -v

maps into

-xO5

-xtarget=native
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-xchip=pentium

-xcache=generic

-xarch=sse3

-xdepend=yes

-aligncommon=dalign

-fma=fused

-fsimple=2

-fns=yes

-ftrap=division,invalid,overflow

-xlibmil

-xlibmopt

-nofstore

-xregs=frameptr

-y-fsimple=2

-a dalign

-m3

-ev

-xall

-xivdep=loop

-H

Here are some extracts from the help files.

-C

Enable runtime subscript range checking

-O

Use default optimization level (-xO3)

-O<n>

Same as -xO<n>

-aligncommon[=<a>]

Align common block elements to the

specified boundary requirement;

<a>={1|2|4|8|16|dalign}

-ansi

Report non-ANSI extensions

-autopar

Enable automatic loop parallelization

-dalign

Expands to -aligncommon=dalign

-fma=<a>

Enable floating-point multiply-add

instruction; <a>={none|fused}

-fns[={yes|no}]

Select non-standard floating point mode

-fopenmp
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Equivalent to -xopenmp=parallel

-fprecision=<a>

Set FP rounding precision mode;

<a>={single|double|extended}

-fstore

Force floating pt. values to target

precision on assignment

-ftrap=<t>

Select floating-point trapping mode in

effect at startup

-g

Compile for debugging

-xO<n>

Generate optimized code; <n>={1|2|3|4|5}

-xarch=<a>

Specify target architecture instruction set

-xcache=<t>

Define cache properties for use by optimizer

-xchip=<a>

Specify the target processor for use by the

optimizer

-xdepend[={yes|no}]

Analyze loops for data dependencies

-xivdep[=<a>]

Ignore loop-carried dependences on array

references in a loop;

<a>={loop|loop_any|back|back_any|none}

-xlibmil

Inline selected libm math routines for

optimization

-xlibmopt

Link with optimized math library

-xregs=<a>[,<a>]

Specify the usage of optional registers;

<a>={frameptr}

-xtarget=<a>

Specify target system for optimization
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/ arithmetic division operator, 72
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* arithmetic multiplication operator, 72
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array element ordering, 144, 159
assignment, 144
attribute

dimension, 122
bounds, 143, 144
by column, 144
conformable, 143, 144
control structure

do loop, 116
dimension, 116
expressions, 145
extent, 144
higher dimension arrays, 129
implied do loops, 132
index, 116
initialisation, 147
rank, 143
rank 2 array sections, 149
reshape, 153

order, 153
pad, 153

reshape example, 153
reshape function, 152
sections, 143, 148, 150
setting the size with a parameter, 121
shape, 143, 144
size, 143, 144
sum

two d arrays, 156
sum intrinsic, 156
two dimensional arrays, 129
varying the size at run time, 127
whole array manipulation, 143, 144
whole arrays, 143

Array and linked list performance, 395
Array arguments, 224, 239, 328, 759
Array constructor, 143, 146, 150, 152, 161
Array element, 143, 144, 148, 153, 160, 184,

224, 269, 437, 607
Array element order, 143, 144, 148, 153,

160, 184, 437
Array element ordering, 144, 159
Array element ordering in more detail, 159
Array initialisation, 143, 147
Array pointer, 322
Array section, 143, 148–150, 155, 182, 183,

201, 437, 602, 607
Arrays in Fortran, 116
Array size, 121, 127, 128, 601
Artificial language, 8
Artificial or stylised language, 8
Asin function, 223
Assemblers, 20

Assignment, 144, 466
Assignment statement, 60, 61, 72, 74, 107,

108, 110, 117, 230, 302, 303, 466,
491

Associate construct, 244, 467
Associated intrinsic function, 304
Association status, 39, 302
Assumed character length functions, 757
Assumed-shape array, 321, 325, 328, 356,

759
Assumed shape parameter passing, 323
Assumed-size, 759
* asterisks on output, 167
Atan function, 81, 223
Atan2 function, 223
Attribute, 464

allocatable, 161
asynchronous, 161
bind, 161
dimension, 161
external, 161
intent, 161
intrinsic, 161
optional, 161
parameter, 161
pointer, 161
private, 161
protected, 161
public, 161
save, 161
target, 161
value, 161
volatile, 161

Attribute specification, 464
Automatic array, 322, 329, 332, 434, 435
Automatic arrays and median calculation,

329

B
Background technical material, 462
Backward substitution, 439
Bandwidth, 571, 572
Bandwidth and latency, 572
Base class, 470, 473, 475, 480, 485, 494
Base class with private data, 473
Base shape class, 478, 485
Base type, 281, 294, 462, 494
Basic, 25
Basic array and linked list performance, 395
Basic background, 392
Basic coarray terminology, 622
Basic module syntax, 344
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Better alternatives, 758
Bibliography, 107, 162, 241, 263, 342, 388,

395, 420, 450, 580, 684, 814
Big O notation

constant , 392
double logarithmic , 392
exponential , 392
factorial , 392
fractional power , 392
linear , 392
linearithmic, loglinear, quasilinear , 392
logarithmic , 392
n log-star n , 392
polynomial or algebraic , 392
quadratic , 392

Binary device, 20, 71, 87
Binary representation of a real number, 101
Binary representation of different integer

kind type numbers, 99
Binding labels for common blocks and vari-

ables, 637
Bit data type, 87
Bit data type and representational model, 87
Bit integers, 703
Bit model, 87
Bit reals, 703
Bit representational model, 87
Block construct, 244
Block do statements, 260
Block if construct, 246
Block if statement, 245, 260
Blocks of statements, 244
Block structure, 23
BNF, 23
Book catalogue, 114
Bottom up, 10, 13, 15
Bounds, 144
Brackets, 75
Brief explanation, 392
Brief review of the history of object oriented

programming, 461
Brief technical background, 544
By column, 144

C
C, 26, 27

ANSI C, 26
C11, 26
C89, 26
C99, 26
K&R C, 26
structs, 27

C Interop
binding labels for common blocks and
variables, 637

C calling a Fortran function, 641
C++ calling a Fortran function, 642
c_loc description, 662
c_loc examples, 662
derived types, 633
Fortran calling a C function, 640
interoperability of intrinsic types, 635
interoperability of procedures and proce-
dure interfaces, 636

interoperability of scalar variables, 636
interoperabilitywithC pointer types, 636
interoperation with C functions, 637
interoperation with C global variables,
636

iso_c_binding module, 633
module procedures, 633
named constants and derived types in the
module, 634

other aspects of interoperability, 636
passing an array from C to Fortran, 644
passing an array from C++ to Fortran,
645

passing an array from Fortran to C, 643
passing a rank 2 array from C to Fortran,
647

passing a rank 2 array from Fortran to C,
646

passing a rank 2 array from C to Fortran
and taking care of array storage, 654

passing a rank 2 array from C++ to For-
tran, 649

passing a rank 2 array from C++ to For-
tran and taking care of array storage,
651

C++, 34, 420
C++03, 34
C++11, 34
C++14, 35
C++17, 35
C++98, 34
C++TR1, 34

C++03, 34
C++11, 34
C++14, 35
C++17, 35
C++98, 34
C++TR1, 34
C11, 26
C99, 26
C#, 36, 420
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Cache, 572
Calendars, 533
Calling the dislin library to display tsunami

events, 804
Calling the Nag m01caf sorting routine, 715
Call statement, 316, 319
Call statement for subroutines, 313
Cardinal numbers, 87
Case construct, 260
Case statement, 249, 250, 759
Character arguments and assumed-length

dummy arguments, 325
Character data, 265
Character data type, 74, 265
Character functions, 270
Character input, 59, 266
Character interoperability, 635
// character operator, 218
Character operators, 268
Character output and the a edit descriptor,

175
Characters

* edit descriptor, 267
// character operator, 268
a edit descriptors, 267
ASCII character set, 266
character functions, 270
character input, 266
character operators, 268
character variables, 266
collating sequence, 272
delimiters, 266
len function, 271
len_trim function, 271
scan function, 275
substrings, 269

Characters—a format or edit descriptor, 175
Characters and the a format or edit descrip-

tor, 175
Character string, 100, 175, 241, 266, 268,

271, 273, 276
Character string arguments, 273
Character substrings, 269
Character variables, 58, 175, 187, 266, 268–

270, 273
CHARACTER* form of CHARACTER

declaration, 757
Chomsky and program language develop-

ment, 23
Choosing the decimal symbol, 184
Circle - derived type 1, 478, 487
Class, 463
Class keyword, 485

C_loc examples on our web site, 662
C_loc(x) description, 662
Close a file, 195
Close statement, 165, 178, 206, 215
Cmplx function, 282
Coarray

broadcasting data, 624
parallel solution for pi calculation, 627
work sharing, 628

Coarray allocate-object, 622
Coarray Fortran, 578
Coarray intrinsics, 622
Coarray programming, 632
Cobol, 22
Codimension, 622
Coindexed named objects, 622
Collating sequence, 272
Column information, 194
Commercial numerical and statistical sub-

routine libraries, 342
COMMON and EQUIVALENCE state-

ments and the block data program
unit, 758

Common mistakes, 177
Common programming error, 231
Compare function, 719
Compilation when using modules, 435
Compiler documentation, 66
Compiler options, 67, 305, 753
Compilers used, 64
Compilers used in the examples, 637
Compiler switches, 653, 656
Complex and kind type, 284
Complex arithmetic, 281
Complex data type, 281
Complex numbers, 281
Component modelling, 14
Computed GO TO statement, 756
Computer arithmetic, 72
Computer programming, 401, 714
Computer systems, 87, 422
Concrete data type, 27
Concurrency, 33
Conformable, 144
Conjg function, 282
Consistency models, 573
Contains statement, 231, 236
Control statements, 27, 260
Control structure, 28, 38, 57, 113, 116, 123,

127, 137, 228, 244, 260
associate construct, 244
block construct, 244
block if statement, 244
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blocks of statements, 244
case statement, 249
cycle and exit, 254
do concurrent, 257
do construct, 244
do statement, 252
executable constructs containing blocks,
244

execution control, 244
if construct, 244
Logical expressions, 244
logical operators, 244
select case construct, 244
select rank construct, 244
select type construct, 244

Control structure formal syntax, 260
Conversion tools, 759
Convert, 760
Cos function, 223
Counting vowels, consonants, etc., 251
Cray Archer system, 583
Critical, 622
Cycle and exit, 254
Cycle control statement, 217
Cycle statement, 218, 254, 260

D
Data dependencies, 574
Data description statements, 57
Data entity, 663
Data file, 141, 197–200, 207, 340, 811
Data object, 578, 607
Data-processing statements, 57
DATA statements among executables, 756
Data structures, 113, 359, 389, 402, 451, 462
Data structuring, 27, 359

date data type or class, 372
perfectly balanced tree, 369
ragged arrays, 359, 365
singly linked list, 359

Data structuring and procedural program-
ming, 27

Data transfer statements, 211
Data type, 25–27
Date calculation, 248
Date class, 372
Date data type, 295, 359
Date data type with USA and ISO support,

383
Date formats, 534
Date module, 500, 719
Dates, date validity and calendars, 533

Date wrapper module, 531
Day and month name module, 500
DC edit descriptor, 184
Debugging, 290
DEC Alpha, 160
DEC Alpha hardware, 162
Decimal point, 74, 166, 168, 169, 173
Declaring variables to be of a user defined

type, 293
Decremented features, 754
Default kind, 97, 107
Deferred-shape array, 322, 328, 443
Defined assignment statement, 466
Defined types, 293, 298, 397
Defined variable, 318
Defining our own types, 293
Deleted features from Fortran 2008, 755
Deleted features from Fortran 90, 754
Denormal, 665
Derived data types, 343, 349, 356
Derived type definition, 344, 477
Derived types, 293, 294, 472, 485, 634
Derived types and constants defined in the

modules, 673
Derived types and structure constructors,

465
Design, 13
Detailed design, 13
Diagonal extract of a matrix, 421
Diff output between original module and

new oo module, 507
Diff output between original program and

new oo test program, 518
Dimension attribute, 116, 127, 134, 135
Direct access, 210
Disassociated pointer, 302
Dislin graphics library, 797
Display subroutine, 488
Do and end do statements, 218
Do concurrent, 257
Do construct, 138, 139, 244
Do loop, 101, 113, 118, 119, 123, 125, 127,

131, 132, 134–139, 147, 150, 182,
183, 228, 252, 597, 601, 608, 629

implied do loop, 151
Do loops and straight repetition, 136
Do statement, 113, 119, 125, 127, 135, 137,

251, 254
Dot product, 145, 152
Dot_product function, 152, 225
Dot_product intrinsic, 152
Double precision, 95, 443
Do while end do statement, 231
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Dp - double precision, 345
DP edit descriptor, 184
DST in the USA, 383
DTR 19767 enhanced module facilities, 41
Dummy argument, 231, 238, 317, 318, 321–

326, 349, 355, 356, 434, 436, 464,
622, 759

Dummy arguments or parameters and actual
arguments, 317

Dummy procedure argument, 435, 759
Dynamic binding, 462, 485, 488, 489, 491,

492
Dynamic data structures, 451
Dynamic type, 467

E
Easter calculation, 226
Edit descriptor, 165–168, 173, 183, 188, 207,

267, 290
a, 186
b, 186
d, 186
dt, 186
e, 186
en, 186
es, 186
f, 186
g, 186
l, 186
o, 186
z, 186

* edit descriptor, 267
‘(a)’ edit descriptor, 267
E edit descriptor, 165, 183
E formats, 207
Eiffel, 33
Elemental e**x function , 445
Elemental function, 221, 224, 238, 239, 339,

421, 445
Elemental function use, 224
Elemental procedure, 39, 340
Elemental subroutine, 339
Element by element, 156
Elements of a programming language, 56
Else block, 233
Elsewhere block, 158
End critical, 622
End do statement, 251
End-of-file, 214, 215
End-of-file condition, 214
End-of-file condition and the end= specifier,

214

End of file record, 210
End-of-record condition and the eor= speci-

fier, 214
End= specifier, 214
End statement, 622
End type, 470
Enhanced module facilities, 41
Entity relationship diagrams, 14
ENTRY statements, 757
Environment variables, 67, 577
Eor= specifier, 214
Error analysis, 108
Error analysis and summation methods, 108
Error condition, 214, 215
Error conditions and the err= specifier, 214
Error, end of record and end of file, 213
Error message, 69, 271, 290, 305, 311, 474
Error number, 585
Err= specifier, 214
Evaluation and testing, 14
Evaluation of arithmetic expressions, 71
Examination marks or results, 115
Examples

Chapter 4
Example 1: Simple text i/o, 58
Example 2: Simple numeric i/o and

arithmetic, 60
Chapter 5

Example 1: Simple arithmetic
expressions in Fortran, 73
Example 2: Type conversion and

assignment, 77
Example 3: Integer division and real

assignment, 78
Example 4: Time taken for light to

travel from the Sun to Earth, 79
Example 5: Relative and absolute

error, 83
Example 6: Overflow, 85
Example 7: Underflow, 86
Example 8: Testing what kind types

are available, 89
Example 9: Using the numeric

inquiry functions with integer types, 91
Example 10: Using the numeric

inquiry functions with real types, 93
Example 11: Literal real constants in

a calculation, 97
Example 12: Rounding problem, 98
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constants, version 2, 104
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Example 3: Rank 1 array sections,

148
Example 4: Rank 2 array sections,
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153
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Example 10: Rank 1 array and the
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Example 11: Rank 2 arrays and the

sum intrinsic function, 156
Example 12: Masked array assign-

ment and the where statement, 157
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159
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Example 2: Integer overflow and the
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Example 3: Imperial pints and US

pints, 168
Example 5: Narrow field widths and

the f edit descriptor, 170
Example 6: Overflow and the f edit

descriptor, 171
Example 7: Simple e edit descriptor
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Example 8: Simple g edit descriptor
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Example 9: Three ways of generating

spaces, 174
Example 10:Character output and the

a edit descriptor, 175
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Example 12: Open and close usage,

178
Example 13: Timing of writing for-

matted files, 179
Example 14: Timing ofwriting unfor-

matted files, 181
Example 15: Implied do loops and
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Example 16: Repetition and whole

array output, 184
Example 17: Choosing the decimal

symbol, 184
Example 18:Alternative format spec-

ification using a string, 185
Example 19:Alternative format spec-

ification using a character variable, 186
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169
Chapter 10

Example 1: Reading integer data, 192
Example 2: Reading real data, 194
Example 3: Reading one column of

data from a file, 196
Example 4: Skipping lines in a file,

198
Example 5: Reading from several

files consecutively, 199
Example 6: Reading using array sec-

tions, 201
Example 7: Reading using internal

files, 203
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matted files, 205
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errors, 216
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lentrim, 217
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223
Example 2: The abs generic function,

224
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224
Example 4: Simple transformational

use, 225
Example 5: Intrinsic dot_product use,

225
Example 6: Easter, 226
Example 7: Simple user defined func-

tion, 229
Example 8: Recursive factorial eval-

uation, 232
Example 9: Recursive version of gcd,

234
Example 10: gcd After removing

recursion, 235
Example 11: Stirling’s approxima-

tion, 236
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Example 1: Quadratic roots, 247
Example 2: Date calculation, 248
Example 3: Simple calculator, 250
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nants, etc., 251
Example 5: Sentinel usage, 253
Example 6: The evaluation of e**x,

254
Example 7: Wave breaking on an off-

shore reef, 256
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Example 2: The a edit descriptor, 267
Example 3: Stripping blanks from a

string, 270
Example 4: The index character func-

tion, 270
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271
Example 6: Finding out about the
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Example 7: Using the scan function,

276
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conjg, 282
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ple, 283
Chapter 17

Example 1: Dates, 295
Example 2: Variant of example 1
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function, 304
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Example 4: Pointer allocation and

assignment, 306
Example 5: Simplememory leak, 307
Example 6: More memory leaks, 308
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309
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Chapter 20
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325
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Example 4: Automatic arrays and
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Example 5: Recursive subroutines –

Quicksort, 332
Example 6: Allocatable dummy

arrays, 336
Example 7: Elemental subroutines,

339
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Example 2: Modules for globally
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Example 3: Person data type, 350
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an unknown amount of text, 359
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Example 3: Ragged arrays, 365
Example 4: Ragged arrays and vari-

able sized data sets, 366
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369
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Example 7: Date data type with USA

and ISO support, 383
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Chapter 24
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(+) operator, 398

Chapter 25
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gers, 402
Example 2: Generic statistics mod-

ule, 413
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sparse matrix problems, 422
Example 2: Solving a system of first-

order ordinary differential equations
using Runge–Kutta–Merson, 427
Example 3: A subroutine to extract

the diagonal elements of a matrix, 437
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438
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results, 444
Example 6: Elemental e**x function

, 445
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errors involved in subtraction using 32
bit reals, 447
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errors involved in subtraction using 64
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Example 2: Ragged array parame-

terised by real kind type, 456
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457
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Example 1: The basic shape class,
468
Example 2: Base class with private

data, 473
Example 3: Using an interface to use

the class name for the structure con-
structor, 475
Example 4: Simple inheritance, 478
Example 5: Polymorphism and

dynamic binding, 485
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Example 1: The base date class, 498
Example 2: simple inheritance based

on an ISO date format, 523
Example 3: using the two date for-

mats and showing polymorphism and
dynamic binding, 531
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Example 1: rewrite of the date class

using submodules, 546
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RKM ODE solver using modules, 560
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Example 2: Hello World using send
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Example 3: Serial solution for pi cal-
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Example 4: Parallel solution for pi

calculation, 594
Example 5: Work sharing between

processes, 600
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Example 1: Hello world, 607
Example 2: Hello world using default
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Example 3: Hello world with private

thread_number variable , 612
Example 4: Parallel solution for pi

calculation, 612
Example5: comparing the timing of

whole array syntax, simple do loops, do
concurrent and an OpenMP solution,
616

Chapter 34
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Example 1: Hello world, 623
Example 2: Broadcasting data, 624
Example 3: Parallel solution for pi

calculation, 627
Example 4: Work sharing, 628
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Example 1: Kind type support, 638
Example 2: Fortran calling a C func-

tion, 640
Example 3: C calling a Fortran func-

tion, 641
Example 4: C++ calling a Fortran

function, 642
Example 5: Passing an array from

Fortran to C, 643
Example 6: Passing an array from C

to Fortran, 644
Example 7: Passing an array from

C++ to Fortran, 645
Example 8: Passing a rank 2 array

from Fortran to C, 646
Example 9: Passing a rank 2 array
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acter variable to C, 657
Example 14: Passing a Fortran char-

acter variable to C++, 660
Chapter 36

Example 1: Testing IEEE support,
675
Example 2: Testing what flags are

supported, 676
Example 3: Overflow, 679
Example 4: Underflow, 679
Example 5: Inexact summation, 680
Example 6: NAN and other specials,

683
Chapter 37

Example 1: basic syntax, no parame-
ters in call, 691
Example 2: extended syntax, passing

parameters, 694
Example 3: basic syntax with timing,

699

Example 4: extended syntaxwith tim-
ing, 701

Chapter 38
Example 1: Generic recursive quick-

sort example with timing details, 703
Example 2: Non recursive Quicksort

example with timing details, 708
Example 3: Calling the Nag m01caf

sorting routine, 715
Example 4: sorting an array of a

derived type, 718
Example 5: Binary search example,

728
Chapter 39

Example 1: Downloading and saving
the files, 733
Example 3: The program to do the

statistics calculations, 737
Example 4: Met Office Utility pro-

gram, 746
Chapter 40

Example 1: using the plusFORT tool
suite from Polyhedron Software, 761
Example 2: leaving as Fortran 77, 763
Example 3: Simple conversion toFor-

tran 90, 764
Example 4: Simple syntax conversion

to modern Fortran, 769
Example 5: date case study, 775
Example 6: creating 64bit integer and

128 bit real sorting subroutines from
the Netlib sorting routines, 784

Chapter 41
Example 1: using dislin to plot

Amdahl’s Law graph 1 - 8 processors
or cores, 798
Example 2: using dislin to plot

Amdahl’s Law graph 2 - 64 processors
or cores, 800
Example 3: using dislin to plot

Gustafson’s Law graph 1 - 64 proces-
sors or cores, 804
Example 4: using dislin to plot

tsunami events, 804
Example 5: using dislin to plot the

Met Office data, 811
Chapter 42

Example 1: Abstract interfaces and
procedure pointers, 817

Exception handling, 34, 36, 685
Executable constructs containing blocks,

244, 467
Execution control, 244
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Execution sequence, 622
Execution time, 160, 235
Exit statement, 251, 254, 260
Exp function, 223
Explicit-coshape coarray, 622
Explicit interface, 232, 239, 319, 356, 435,

446, 759
Explicit-shape array, 322
Exponent, 87
Expression equivalence, 76
Expressions, 145
Extent, 144
External, 157, 181
Extracting the diagonal elements of amatrix,

437

F
Feasibility study and fact finding, 13
F edit descriptor, 165, 168
F format, 187
File access, 210

direct, 210
sequential, 210
stream, 210

File inquiry, 209
File name, 217, 326
File=, 177
File= options on the open statement, 215
File positioning, 209
Files in Fortran, 177
Files, records, streams, 209
Finite precision, 72
First-order ordinary differential equations,

427, 432
Fixed format reading, 207
Fixed form source, 757
Floating point, 26, 74, 85, 98, 101, 107, 108,

182, 248, 347, 443, 684, 685
Floating point arithmetic, 107, 108, 685
Floating point formats, 669
Flynn’s taxonomy, 573
Fmt=, 178
FORALL construct and statement, 758
Forall statement, 143
Forcheck, 760
Formal syntax, 239, 355
Format, 372
Format specification using a character vari-

able, 186
Format specification using a string, 185
Format statement, 166, 167, 174, 176, 183,

188, 198, 201, 207

Formatted read timings, 207
Formatted records, 210
Formula translation, 21
Fortran 2003, 39

data manipulation enhancements, 40
allocatable components, 40
deferred-type parameters, 40
enhanced complex constants, 40
explicit type specification in array

constructors, 40
extended initialisation expressions,

40
intent specification of pointer argu-

ments, 40
max and min intrinsics for character

type, 40
specified lower bounds of pointer

assignment, and pointer rank remap-
ping, 40
volatile attribute, 40

derived type enhancements, 39
finalisers, 39
improved structure constructors, 39
mixed component accessibility

(allows different components to have
different accessibility), 39
parameterised derived types, 39
public entities of private type, 39

enhanced integration with the host oper-
ating system, 41

enhanced integration with the operating
system
access to command line arguments

and environment variables environ-
ment variables, 41
access to the processor’s error mes-

sages (improves the ability to handle
exceptional conditions), 41

host association, 40
input/output enhancements, 40

access to input/output error mes-
sages, 40
asynchronous transfer operations

(allow a program to continue to pro-
cess data while an input/output transfer
occurs), 40
named constants for preconnected

units, 40
regularisation of input/output key-

words, 40
stream access (allows access to a file

without reference to any record struc-
ture), 40
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the flush statement, 40
user specified control of rounding

during format conversions, 40
user specified transfer operations for

derived types, 40
interoperability with the C programming
language, 40

object oriented programming support, 40
object oriented support

dynamic type allocation, 40
enhanced data abstraction (allows

one type to extend the definition of
another type), 40
polymorphism (allows the type of a

variable to vary at run time), 40
select type construct (allows a choice

of execution flow depending upon the
type a polymorphic object currently
has), 40
type bound procedures, 40

procedure pointers, 40
scoping enhancements, 40

control of host association into inter-
face bodies, 40
the ability to rename defined opera-

tors (supports greater data abstraction),
40

support for IEC60559 (IEEE754) excep-
tions and arithmetic (to the extent a
processor’s arithmetic supports the IEC
standard), 40

support for international usage, 40
choice of decimal or comma in

numeric formatted input/output, 41
ISO 10646, 41

the associate construct (allows a complex
expression or object to be denoted by a
simple symbol), 40

Fortran 2008, 41
coarrays, 41
data declaration, 41

allocatable components of recursive
type, 41
data statement restrictions lifted, 41
declaring type-bound procedures, 41
extensions to value attribute, 42
implied-shape array, 41
kind of a forall index, 41
long integers, 41
maximum rank, 41
pointer initialization, 41
type statement for intrinsic types, 41

data usage, 42

accessing real and imaginary parts,
42
copying the properties of an object in

an allocate statement, 42
elemental dummy argument restric-

tions lifted, 42
multiple allocations with source=, 42
omitting an allocatable component in

a structure constructor, 42
pointer functions, 42
polymorphic assignment, 42

execution control, 42
exit statement, 42
stop code, 42
the block construct, 42

input/output, 42
finding a unit when opening a file, 42
g0 edit descriptor, 42
recursive input/output, 42
unlimited format item, 42

intrinsic procedures and modules, 42
additional optional argument for

ieee_selected_real_kind, 42
Bessel functions, 42
bit processsing, 42
compiler information, 42
constants, 42
error and gamma functions, 42
Euclidean vector norms, 42
execute command line, 42
extensions to trigonometric and

hyperbolic intrinsic functions, 42
find location in an array, 42
Function for C sizeof, 42
optional argument back added to

maxloc and minloc, 42
optional argument radix added to

selected real kind, 42
parity, 42
storage size, 42
string comparison, 42

performance enhancements, 41
contiguous attribute, 41
do concurrent, 41
simply contiguous arrays, 41

programs and procedures, 42
elemental procedures that are not

pure, 43
empty contains part, 42
entry statement becomes obsoles-

cent, 43
form of the end statement for an inter-

nal or module procedure, 42
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generic resolutionbypointer/allocatable
or data/procedure, 43
internal procedure as an actual argu-

ment or pointer target, 42
non-pointer actual for pointer dummy

argument, 43
null pointer or unallocated allocat-

able as an absent dummy argument, 43
save attribute for module and sub-

module data, 42
source form, 43

semicolon at line start, 43
submodules, 41

Fortran 2008 and polymorphic intrinsic
assignment, 492

Fortran 2018, 43
additional parallel features

change team construct, 43
coarrays allocated in teams, 43
collective subroutines, 44
critical construct, 43
detecting failed and stopped images,

44
events, 44
failed images and stat= specifiers, 44
fail image statement, 44
form team statement, 43
image failure, 43
image selectors, 43
intrinsic function image index, 43
intrinsic function move alloc, 43
intrinsic function num images, 43
intrinsic function this image, 43
intrinsic functions get team and team

number, 43
lock and unlock statements, 43
new and enhanced atomic subrou-

tines, 44
sync team statement, 43
teams, 43

additional parallel features in Fortran, 43
arithmetic if, 45
conformance with ISO/IEC/IEEE
60559:2011, 44

IEEE 60559:2011 conformance
adjacent machine numbers, 44
comparisons, 44
conversion to integer type, 44
decimal rounding mode, 44
fused multiply-add, 44
maximum and minimum values, 44
remainder function, 44
round away from zero, 44

rounded conversions, 44
subnormal values, 44
test sign, 44
type for floating-point modes, 44

new obsolescences, 45
common and equivalence, 45
labelled do statements, 45
specific names for intrinsic functions,

45
the forall construct and statement, 45

nonblock do construct, 45
removal of deficiencies and discrepan-
cies, 44
advancing input with size=, 44
connect a file to more than one unit,

44
control of host association, 44
d0.d, e0.d, es0.d, en0.d, g0.d and ew.d

e0 edit descriptors, 44
default accessibility for entities

accessed from a module, 44
deletions, 45
enhancements to inquire, 44
enhancements to stop and error stop,

44
extension to the generic statement, 44
formatted input error conditions, 44
hexadecimal input/output, 45
implicit none enhancement, 44
intrinsic function coshape, 44
intrinsic function sign, 44
intrinsic functions extends type of

and same type as, 44
intrinsic subroutine random init, 44
intrinsics that access the computing

environment, 44
kind of the do variable in implied do,

44
kinds of arguments of intrinsic and

IEEE procedures, 45
locality clauses in do concurrent, 44
new elemental intrinsic function out

of range, 44
new reduction intrinsic reduce, 44
nonstandard procedure from a stan-

dard intrinsic module, 44
recursive and non-recursive proce-

dures, 44
removal of anomalies regarding pure

procedures, 44
removal of the restriction on argu-

ment dim of many intrinsic functions,
45
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rules for generic procedures, 44
simplification of calls of the intrinsic

cmplx, 45
Fortran 77, 21
Fortran 77 Version, 762
Fortran 90, 38

array processing, 38
better control structures, 38
control of numeric precision, 38
dynamic storage allocation, 38
implicit none, 38
modules, 38
new source form, 38
pointers, 38
procedures, 38
pure and elemental procedures, 39
recursion, 38
user defined types and operators, 38

Fortran 90 Version, 762
Fortran 95, 38

automatic deallocation of allocatable
arrays, 39

forall construct, 39
implicit initialisation of derived-type
objects, 39

initial association status for pointers, 39
intrinsic function cpu_time returns the
processor time, 39

intrinsic function null returns discon-
nected pointer, 39

nested elsewhere constructs, 39
nested where constructs, 39
references to some pure functions are
allowed in specification statements, 39

sign function distinguishes between –0
and +0, 39

small changes to ceiling, floor, maxloc,
minloc functions, 39

Fortran and Parallel Programming, 575
Fortran and the IEEE 754 standard, 106
Fortran arithmetic expressions

optimisation, 74
semantics, 74
syntax, 74

Fortran character set, 62
Fortran discussion lists, 46
Fortran expressions

mathematically equivalent expressions,
74

Fortran intrinsic functions, 91, 93
atan, 81
abs, 83, 223, 448
abs function, 224

achar, 277
acos, 223
adjustl, 277
adjustr, 277
aimag, 282
asin, 223
associated, 304
atan, 223
atan2, 223
btest, 102
char, 273, 277
cmplx, 281, 282
conjg, 282
cos, 223, 281
cpu_time, 181, 206
dble, 394
digits, 91, 93
dot_product, 145, 152
elemental, 221
epsilon, 91, 93
exp, 223, 256
generic, 221
huge, 91, 93
iachar, 277
index, 203, 270, 277
int, 223
kind, 90, 93, 101
kind query functions, 90
len, 271, 277
len_trim, 217, 218, 271, 277
lge, 273, 277
lgt, 273, 277
lle, 273, 277
llt, 273, 277
log, 223, 281, 394
log10, 223
matmul, 146
maxexponent, 91, 93
maxloc, 443
maxval, 443
minexponent, 91, 93
mod, 223, 226
null, 302, 361, 364, 371, 422
numeric query functions, 90
pack, 437
precision, 91, 93
present, 436
radix, 91, 93
range, 91, 93
real, 223, 394
repeat, 277
reshape, 152, 183
scan, 275, 277
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selected_char_kind, 90
selected_int_kind, 90, 101, 403, 413,
422, 427

selected_real_kind, 90, 93, 284, 345,
394, 403, 413, 422, 427, 438, 448, 454,
456, 457, 590, 594, 612, 616, 627

sin, 223, 224, 281
sqrt, 223, 248
sum, 155, 156, 162, 183, 198–200, 202,
218, 331

tan, 223
tiny, 91, 93
transfer, 102
transformational, 221
trim, 277
verify, 277

Fortran kind intrinsics, 93
Fortran nonnumeric types

character and logical, 89
Fortran numeric types

integer, real, complex, 89
Fortran operator hierarchy, 289
Fortran operators, 72
Fortran representational model

bit, 87
integer, 87
real, 87

Fortran representational models, 87
Fortran’s origins, 21
Fortran sources, 719
Fortran support for IEEE arithmetic, 672
Free and commercial conversion tools, 759
Function argument, 222, 230, 239
Function argument name and type, 228
Function definition, 229
Function formal syntax, 239
Function header, 232, 233, 240
Function name, 228, 230, 239, 240
Function parameters, 222, 230
Function reference or use, 229
Function results, 444
Function return type, 228
Function return values, 222
Functions, 313, 343
Function side effect, 230
Function statement, 344
Further information, 675
Further reading, 495

G
Gaussian elimination, 439
Gaussian elimination with partial pivoting,

439

G edit descriptor, 165
General comments about the standard, 671
Generic function, 221, 224, 228, 401
Generic interface, 466
Generic name, 465
Generic programming, 401, 402, 420

Ada, 401
C++, 401
C#, 401
Eiffel, 402
Java, 402

Generic programming and other languages,
401

Generic quicksort in C++, 410
Generic quicksort in C#, 411
Generic recursive quicksort with timing

details, 703
Generic statistics module, 413, 417
Gfortran, 66, 305
Gfortran support for Intel extended (80 bit)

precision, 97
Global data, 344, 356
Good programming guidelines, 63
Goto statement, 244, 263
Granularity and types of parallelism, 575
Graphics library, 569, 797
Gustafson’s law, 571
Gustafson’s Law graph 1 - 64 processors or

cores, 571, 804

H
Hardware

AMD, 162
AMD64 64 bit mode, 160
AMD64 legacy mode, 160
DEC Alpha, 160, 162
Intel, 163
Intel 64 and IA-32, 160
Intel 80x86, 160
Sun UltraSparc, 160

Hardware sources, 686
Health warning: optional reading, beginners

are advised to leave until later, 87
Hierarchy of operations, 287
Higher-dimension arrays, 129
High-level languages, 21, 24, 26
History, 665
HOPL, 48
HPF, 579

I
IBM, 66
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ICON, 31
I edit descriptor, 165
IEEE

denormal, 665
derived types and constants defined in the
modules, 673

divide by zero, 665
floating point formats, 665
inexact, 665
inexact summation example, 680
infinity, 665
integer formats, 665
invalid, 665
NAN, 665
NAN and other specials example, 683
overflow, 665
subnormals, 672
testing IEEE support, 675
testing what flags are supported, 676
underflow, 665, 672

IEEE 754, 26
IEEE 754 floating point support, 26
IEEE specifications, 667
Ieee_arithmetic, 674
Ieee_exceptions, 673
Ieee_features, 674
If construct, 244
If statement, 288
If then else if, 260
Image control statements, 622
Image index, 622, 623
Image numbers, 625
Image selectors, 622
Imaginary part of complex number, 281
Implementation, 13
Implicit and explicit interfaces, 356
Implicit none, 74
Implicit none statement, 62
Implied do loop, 132
Index, 116
Index function, 203
Inheritance, 32
Initialisation of physical constants, version

1, 102
Initialisation of physical constants, version

2, 104
Initialisation of physical constants, version

3, 104
Initialising a rank 2 array, 153
Initialising rank 2 arrays, 152
Initial value problems, 428
Initial values, 61, 150, 151, 295, 472, 473,

480

Inner product, 422, 423
Inner product of two sparse vectors, 422
Input and output (I/O) statements, 57
Input-item-list, 62
Inquire statement, 212, 214
Integer argument, 102, 241, 272
Integer arrays, 419
Integer data, 105, 372, 419
Integer data type, 74, 88, 372, 419
Integer data type and representation model,

88
Integer declaration, 230
Integer division, 78, 79, 107, 248
Integer division and real assignment, 78
Integer formats, 665
Integer function return type, 230
Integer kind type, 71, 92, 93, 105
Integer number system model, 87
Integer overflowand the i edit descriptor, 167
Integer representation, 117
Integer representational model, 88
Integers and the i format or edit descriptor,

166
Integer scalar, 95
Integer variable, 102, 107, 187, 303, 470
Intel, 67, 163, 305
Intel 64 and IA-32, 160
Intel 80x86, 160
Intel Pentium III, 160
Intent, 317
Intent attribute for parameters, 313
Intent in, 317
Intent(in), 230
Intent inout, 317
Intent out, 317
Interface, 355
Interface block, 323, 403, 408, 759
Interface blocks andmodule procedures, 403
Interface checking, 231
Internal file, 203, 204, 207, 209, 213, 214
Internal function, 236, 239, 759
Internal procedure, 344, 356
Internal subroutines and scope, 332
Internal user defined functions, 221
Interoperability of array variables, 636
Interoperability of intrinsic types, 635
Interoperability of procedures and procedure

interfaces, 636
Interoperability of scalar variables, 636
Interoperability with C pointer types, 636
Interoperation with C functions, 637
Interoperation with C global variables, 636
Int function, 223
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Intrinsic assignment, 486
Intrinsic assignment statement, 466
Intrinsic data type, 55, 372
Intrinsic function, 81, 107, 152, 155, 156,

221–224, 228, 238, 239, 281, 282,
322, 342

Intrinsic functions maxval and maxloc, 443
Intrinsic module, 214
Intrinsic procedure, 67, 145, 146, 222, 228,

356
Intrinsic subroutine, 222, 336
Intrinsic types, 89, 293, 635
Introduction, 55, 166, 221, 244, 265, 281,

287, 293, 301, 359, 391, 397, 401,
422, 453, 461, 497, 543, 567, 581,
605, 621, 633, 665, 689, 733, 753,
797, 817

I/O concepts, 209
I/O concepts and statements, 209
Iomsg= specifier, 215
Iostat= options on the open statement, 215
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