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Abstract. Since the late 1990s when speech companies began providing their
customer-service software in the market, people have gotten used to speaking to
machines. As people interact more often with voice and gesture controlled
machines, they expect the machines to recognize different emotions, and under-
stand other high level communication features such as humor, sarcasm and
intention. In order to make such communication possible, the machines need an
empathy module in them, which is a software system that can extract emotions
from human speech and behavior and can decide the correct response of the robot.
Although research on empathetic robots is still in the primary stage, current
methods involve using signal processing techniques, sentiment analysis and
machine learning algorithms to make robots that can ‘understand’ human emotion.
Other aspects of human-robot interaction include facial expression and gesture
recognition, as well as robot movement to convey emotion and intent. We propose
Zara the Supergirl as a prototype system of empathetic robots. It is a
software-based virtual android, with an animated cartoon character to present itself
on the screen. She will get ‘smarter’ and more empathetic, by having machine
learning algorithms, and gathering more data and learning from it. In this paper,
we present our work so far in the areas of deep learning of emotion and sentiment
recognition, as well as humor recognition. We hope to explore the future direction
of android development and how it can help improve people’s lives.

1 Introduction

From science fiction films to novels, humans have always fantasized – or needed – to
have an emotional relationship with intelligent machines.

Many people in the society seem to think that the objective of creating intelligent
machines is to “imitate humans” or create a new species of “humans”. This misun-
derstanding has led to the irrational fear of “machines taking over humans” by some
people. Their reasoning is obvious – if intelligent machines are supposed to imitate
humans then as they become more and more human-like they are bound to have
humanly desire for power and dominance. It is obvious if one believes in the premises
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that we are creating machines to “imitate humans”. However, this is far from the reality
of artificial intelligence research.

Rather than trying to build some Frankenstein surrogate of the human race, the
objective of intelligent machine research and development has always been to help
humans. As such, even when we build robot “companions” we are working to create
health benefits for the elderly or educational benefits for the young.

In the past couple of decades, interactive dialog systems have been designed as
software programs either for the desktop, embedded in an enterprise solution, as cloud
services, or as mobile applications. They would have a synthesized voice. Since the
1990s, voice interactive designers have tried to make the dialog prompts more natural,
and speech synthesis has made great progress to enable computer voice to sound
human like. However, such systems remain invisible and virtual. Even after giving
these applications names like Siri or Cortana, users remain emotionally indifferent to
such systems as if they are merely using an ATM machine for transactions.

One reason behind this might be something that has been studied by human-robot
interaction researchers [39]. It is known that physical embodiment of an intelligent
system, whether in virtual simulation or in a robotic form, is important for users to feel
related and empathize with the system [34].

More importantly though, physical robots, even extremely humanlike androids,
seem cold and distant to humans because while they can sometimes be built to look and
even sound emotional, they do not recognize or respond to human emotions and intent.
Roboticists make great efforts to build robots in anthropomorphic form so that humans
can empathize with them [22], and to have embodied cognition [10], only to find
human users disappointed by the lack of reciprocal empathy from these robots.

It follows that we shall embody interactive dialog systems in simulated or robotic
forms. It is also important that we give such systems the ability to both recognize human
emotions and intent, as well as expressing its own. Before we share our lives with robots,
they need to be able to recognize human emotion and intent, through natural language
communications, through facial expression and gesture communications.

In this paper, we describe a proposed framework for building a robotic interactive
system with an “empathy module”. In Sect. 2, we describe the design of a prototype
empathetic virtual robot system. In Sect. 3 we describe the personality analysis of our
system and in Sect. 4 the need for the system to handle user challenges to our
empathetic interactive virtual robot. To enable different features described in Sects. 2 to
4, we need speech recognition, emotion and sentiment recognition from audio and text.
We describe our current approaches in these areas in Sects. 5 to 6. In Sect. 5 we first
present a brief over view of different deep learning architectures. Section 6 describes
our current approach of hybrid HMM-DNN speech recognition system for interactive
systems. Section 7 describes our approach of emotion recognition from audio with and
without feature engineering. We then discuss sentiment recognition from speech and
text in Sect. 8 with the special case of humor recognition in conversations in Sect. 9.
We summarize and discuss future work in Sect. 10.
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2 Architecture of an Empathetic Human-Robot
Interactive Platform

To achieve human-machine empathy towards each other, we propose a platform that
will consist of the following features and functionalities:

1. Embodiment of the system on a virtual robot platform for human empathy;
2. Emotion and intent expression by the robot;
3. Facial recognition of user ethnicity, age, etc.;
4. Speech recognition of what the user is saying including humor;
5. Natural language understanding of user intent and sentiment including humor;
6. Emotion recognition from facial expressions, speech, audio and language;

Research has shown that humans prefer interacting with machines that are
anthropomorphous. So the very first step in designing interactive intelligent systems is
to give it a humanlike form.

In recent years, we have seen more efforts to give interactive systems a “face”. For
example, the Microsoft Tay is a chatbot with a human face and personality. “She” is
designed as a teenage female character and exhibits the language model of a typical
American teenage girl. The Boston company Jibo made a social robot of that name
with animated expressions and movement. Jibo has had a huge success online. Pepper
is another social robot that has the capability of recognizing human emotion and
sentiments, available in Japan. Pepper also has an anthropomorphous body with a head
and body movement designed to express emotion and intent.

For a prototype system, we gave our platform a human name and a cartoon figure.
We call it Zara the Supergirl, with a multiracial face and a cartoon body. It was shown
at the World Economic Forum in Dalian in September 2015. Her cartoon facial
expressions and body movements are template-based and programmed to represent her
recognition of user emotion or sentiment. Her lips move when she is talking. Her body
gestures are program to express a combination of friendliness, power, knowledge and
other emotions she might have while interacting with humans (Figs. 1 and 2).

When you begin a conversation with Zara, she says, “Please wait while I analyze
your face”. Zara’s algorithms study images captured by the computer’s webcam to
determine your gender and ethnicity. She will then guess which language you speak
(Zara understands English, Mandarin and is learning French) and ask you a few
questions in your native tongue. What is your earliest memory? Tell me about your
mother. How was your last vacation? Through this process, based on your facial
expressions, the acoustic features of your voice, and the content of your responses, Zara
will respond in ways that mimic empathy. She would frown and express sympathy if
you mentioned a sad childhood story, but would give a thumbs up when you talk about
a great vacation.

Zara’s current task is a conversational MBTI personality assessor and we designed
6 categories of personality-assessing questions, in order to assess the user’s personality
[24]. After five minutes of conversation, Zara will try to guess your personality—You
seem like a easy going and popular person—and ask you about your attitudes toward
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Fig. 1. A prototype interactive system with multicue and emotion recognition

Fig. 2. A deep learning multichannel emotion recognition architecture
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empathetic machines: How do you feel about machines like me? This is a way for us to
gather feedback from people on their interactions with early empathetic robots.

A dialog management system with different states is designed to control the flow of
the conversation, which consists of one-part machine-initiative questions from Zara and
answers from human users and another part of user-initiative questions and challenges
to Zara.

3 Personality Analysis

Empathy is the recognition and sharing of the emotion of the other. In order to
demonstrate machine empathy towards humans within a short duration of interaction,
we gave Zara the task of personality analysis. We designed a set of personal questions
in six different domains in order to classify user personality from among sixteen
different MBTI personality types [24]. The original MBTI test questionnaire contains
about 70 questions about user’s preferences and sentiments, and would require about
half an hour to complete. We asked a group of training users to answer this ques-
tionnaire but also answer questions from Zara. The personality type generated by the
MBTI questionnaire is used as the gold standard label for training the Zara system.
Based on user answers to Zara’s questions, scores are calculated in four dimensions
(namely Introversion - Extroversion, Intuitive - Sensing, Thinking - Feeling, Judging -
Perceiving).

Fig. 3. Summary of identified language cues for extraversion and various production levels [21]
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We use the output of the sentiment analysis from language and emotion recognition
from speech as linguistic and speech cues to calculate the score for each personality
dimension based on previous research [21]. For each response, the individual score for
each of the four dimensions is calculated and updated, and the final score in each
dimension is the group average of all the responses (Fig. 3).

4 Handling User Challenge

The personality test consists mostly of machine-initiative questions from Zara and
human answers. However, as described in the user analysis section below, there are
scenarios where the user does not respond to questions from Zara directly. 24.62% of
the users who tried Zara exhibited some form of verbal challenge in their responses
during the dialogue conversation, of which 37.5% of users evade the questions with an
irrelevant answer. 12.5% of users challenged Zara’s ability more directly with ques-
tions unrelated to the personality test.

From September to December 2015, a total of 184 responses were recorded in total,
24.61% of the data showed some form of challenge during the extent of the conver-
sation. Challenge here refers to user responses that were difficult to handle and impeded
the flow of conversation with Zara. They include the following 6 types:

1. Seeking disclosure reciprocity
2. Asking for clarification
3. Avoidance of topic
4. Deliberate challenge of system ability
5. Abusive language
6. Garbage.

Several of the above categories can be observed in human-human interactions. For
instance, seeking disclosure reciprocity is not uncommon in human conversations [41].

Responses that revealed some form of avoidance of topic were the most frequent.
Avoidance in psychology is viewed as a coping mechanism in response to stress, fear,
discomfort, or anxiety [30]. In the dataset collected, two types of avoidance were
observed. Users who actively avoid the topic specifically reveal their unwillingness to
continue the conversation (“I don’t want to talk about it”, “I am in no mood to tell you a
story Zara”), while users who adopts a more passive strategy had the intent to dis-
continue the conversation implied (“Let’s continue.”, “Make it a quick one”, “You
know…”).

Abusive language includes foul, obscene, culturally and socially inappropriate
remarks and the like. Currently collected data revealed surprisingly few inappropriate
comments such as “get lost now” and “None of your business”. These challenges are
comparatively mild. Owing to the context of Zara’s role as a personality assessor, the
reasons here for abuse could be the need to trust the robotic assessor and response to
discomfort.

Asking for clarification examples included “Can you repeat?” and “Can you say it
again?” Clarification questions observed in this dataset are primarily non- reprise
questions as a request to repeat a previous utterance [26].

178 P. Fung et al.



Deliberate challenge of system ability was also observed. This took the form of
direct requests (“Can I change a topic?”, “Why can’t you speak English?” in the Chinese
mode), or statements un-related to the questions asked (“Which one is 72.1%?”).

Zara is programmed with a gentle but witty personality to handle different user
challenges. For example, when abusive language is repeatedly used against her, she asks
for an apology after expressing concern for the user’s level of stress. If the user asks a
general domain question unrelated to the personality test, Zara will try to entertain the
question with an answer from a general knowledge database using a search engine API,
much like Siri or Cortana. However, unlike these other systems, Zara will not chat
indefinitely with the user but will remind the user of their task at hand, namely the
personality test. In addition, Zara is also designed to have a sense of humor.

In the following sections, we will describe our current approaches for different
modules of the Zara system, namely speech recognition, emotion and mood recognition
from audio, and sentiment analysis from speech and text. We will also describe a first
ever approach in humor recognition from conversations.

5 DNN, CNN and LSTM

In this section we give a general description of the Deep Neural Network architectures
we use in the task described. The real power of any DNN is to reduce a set of low level
features into a single low-dimensional feature vector, performing the appropriate
feature-selection [40].

The first model we use is the Convolutional Neural Network [9], which is useful to
obtain a fixed-length vector representation of an utterance, an audio signal or an image.
The basic structure of a CNN takes as input one or more low level input vectors x0::N.
In case of an utterance each word is encoded as a vector, in case of an audio signal each
frame, or in alternative the raw audio sample. The input feature vectors are first fed into
a first embedding layer to obtain a low dimensional dense vector, given by:

xEi ¼ f WExi þ bEð Þ

where f is a non-linear function (sigmoid, hyperbolic tangent or rectified linear), and W
the parameters to be trained.

A sliding window then moves over the output vectors of the embedding layer (or
the raw audio input itself), and another layer is applied to each group of token or audio
frame vectors:

xCi ¼ fðWC½xEh �h2 x�c
2;xþ c

2½ � þ bCÞ

where c is the size of the convolution window, and [] denotes the concatenation. This
operation allows to capture the local context and extract features from it.
A max-pooling operation is then applied to extract the most salient features of all the
tokens or frames into a single vector for the whole utterance. The max-pooling takes,
for each vector element, the maximum value among all output vectors from the
convolution:
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xMP
i ¼ max

t
xCt;i

� �

where t represents the token, and i the vector element.
The Long Short Term Memory (LSTM) [15] is instead useful to model time

sequences where it is important to remember the past context. It is an improvement
over the Recurrent Neural Network aimed to enhance its memory capabilities. In a
standard RNN the hidden memory layer is updated through a function of the input and
the hidden layer at the previous time instant:

ht ¼ tanh Wxxt þWhht�1 þ bð Þ

Where x is the network input and b the bias term.
This kind of connection is not very effective to maintain the information stored for

long time instants, and it does not allow to forget unneeded information between two
time steps.

The LSTM enhances the RNN with a series of three multiplicative gates. The
structure is the following:

it ¼ r W ixxt þW ihht�1 þ bið Þ
f t ¼ r W fxxt þW fhht�1 þ bf

� �
ot ¼ r Woxxt þWohht�1 þ boð Þ
st ¼ tanh Wsxxt þWshht�1 þ bsð Þ

ct ¼ f t � ct�1 þ it � stÞ
ht ¼ tanh ctð Þ � otÞ

where � is the element-wise product. The gate factors i, f, o are able to let through or
suppress a specific update contribution, thus allowing a selective information retaining.
In this way a cell value can be retained for multiple time steps when i = 0, ignored in
the output when o = 0, and forgotten when f = 0.

6 Speech Recognition

We experiment with an automatic speech recognition system implemented in house.
ASR systems consist of both an acoustic model and a language model in a Bayesian
framework.

Ŵ ¼ argmax
W

P A Wjð ÞP Wð Þ

For training acoustic models, we train a GMM-HMM for predicting the hidden
states and use a Deep Neural Network (DNN) to predict the emission probabilities of
the HMM states. We train maximum likelihood (ML) Gaussian mixture Hidden
Markov Model (GMM-HMM) with 8000 tied triphone states and 240K Gaussians,
using linear discriminant analysis (LDA) and maximum likelihood linear transform
(MLLT) feature transformations. We apply boosted maximum mutual information
(bMMI) discriminative training on ML trained HMMs.
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We train DNN for the emission probabilities of the HMMs with 6 hidden layers, and
each hidden layer has 1024 neurons. The DNN is initialized with stacked restricted
Boltzmann machines (RBMs) which are pre-trained in a greedy layerwise fashion.
Cross-entropy (CE) criterion DNN training is first applied on the state alignments
produced by the GMM-HMMs. State alignment is then reproduced with the DNN-
HMMs, and DNN training with CE criterion is done again. Sequence-discriminative
training of DNN with state level minimum Bayes risk (sMBR) criterion is applied by
lattice-based approach on the CE trained DNN-HMMs. We train our acoustic models
with the Kaldi speech recognition toolkit [25].

Our text data to train the language model contains 88.6M sentences. It comprises the
acoustic model training English transcriptions, web crawled news data, web crawled
book data, Cantab filtering sentences on Google 1 billion word language modeling
benchmark, weather domain and music domain queries expanded from manually
designed templates, and common chat queries. We train Wittenbell smoothing inter-
polated trigram language model (LM) and CE based recurrent neural network
(RNN) LM using the SRI-LM toolkit and CUED-RNNLM toolkit respectively.

The ASR decoder performs search on weighted finite state transducer (WFST)
graph for trigram LM and generates lattice, and then performs lattice rescoring with
RNN LM. The decoder is designed for input audio data that is streamed from TCP/IP
or HTTP network protocol, and also performs decoding in real time. The decoder
supports simultaneous users by multiple threads and user queue. The English ASR
achieves 7.6% word error rate on the combined test set of wsj11 “si_dt_05” and
“si_dt_20”.

Our system is a hybrid DNN-HMM system. In recent years, there has been work on
end-to-end models for speech recognition where feature vectors are the input and word
sequences are predicted one by one, without an HMM framework. One such model is
called End-to-End Attention-based Large Vocabulary Speech Recognition [3].
Recurrent Neural Nets (RNNs) are used to replace the HMMs. Language models are
incorporated directly into the RNN decoder. Other approach includes using Deep
Convolutional Neural Nets instead of DNNs or GMMs [32]. CNNs have the advantage
of being able to model the spectral correlations that exist in speech signals.

In summary, speech recognition has improved in leaps and bounds thanks to deep
learning and is able to give us most of what we want to hear from any spoken input.
The decoded word sequence is then used for later stage semantic processing, such as
emotion, sentiment and intent recognition.

7 Real-Time Emotion Recognition from Time-Domain
Raw Audio Input

In recent years, we have seen successful systems that gave high classification accu-
racies on benchmark datasets of emotional speech [21] or music genres and moods
[34]. Most of such work consists of two main steps, namely feature extraction and

1 https://catalog.ldc.upenn.edu/LDC94S13A.
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classifier learning. One challenge for most emotion recognition systems from speech is
the time needed to extract features from the speech file. Both high and low level
features, as described in the following section, are needed so far for emotion and mood
recognition from audio. There are close to a 1000 features, a much larger set than the
feature set used for speech recognition, that need to be extracted and computed over
windows of audio signals. This typically takes a few dozen seconds to do for each
utterance, making the response time less than real-time instantaneous, which users have
come to expect from interactive systems.

Feature engineering is tedious and time-consuming. It also requires a lot of hand
tuning. In order to bypass feature engineering, the current direction is to explore
methods that can recognize emotion or mood directly from time-domain audio signals.
One approach that has shown great potential is using Convolutional Neural Networks.
In the following sections, we compare an approach of using CNN without feature
engineering to a method that uses audio features with a SVM classifier.

7.1 Dataset

For our experiments on emotion recognition with raw audio, we built a dataset form the
TED-LIUM corpus release 2 [31]. It includes 207 h of speech extracted from 1495
TED talks. We annotated the data with an existing commercial API followed by
manual correction. We obtained a total of 90041 segments, divided into the following
11 categories: creative/passionate, criticism/cynicism, defensiveness/anxiety, friendly/
warm, hostility/anger, leadership/charisma, loneliness/unfulfillment, love/happiness,
sadness/sorrow, self-control/practicality and supremacy/arrogance.

In our experiments we only use the following 6 categories: criticism, anxiety,
anger, loneliness, happiness, sadness. We obtained a total of 2389 segments for the
criticism category, 3855 for anxiety, 12708 for anger, 3618 for loneliness, 8070 for
happy and 1824 for sadness. The segments have an average length slightly above 13 s.
As on-going work, we continue to re-label audio data with our CNN-based emotion
decoder followed by manual correction.

7.2 Real-Time Speech Emotion Recognition with CNN

The CNN model using raw audio as input is shown in Fig. 4. The raw audio samples
are first down-sampled at 8 kHz, in order to optimize between the sampling rate and
representation memory efficiency in case of longer segments. The CNN is designed
with one filter for real-time processing. We set a convolution window of size 200,
which corresponds to 25 ms, and an overlapping step size of 50, equal to around 6 ms.
The convolution layer perform the feature extraction in each layer, and models the
variations among neighboring frames due to the overlapping.

The network is trained using the standard back-propagation algorithm, performing
gradient descent over each parameter. At evaluation time the time complexity is linear
over the length of the audio input segment due to the convolution. Thus the largest time
contribution is due to the computations inside the network [14], which with one
convolution only can be performed in negligible time for single utterances.
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7.3 Experimental Setup

We setup our experiments as binary classification tasks, in which each segment is
classified as either part of a particular emotion category or not part of that particular
category. For each category the negative samples are chosen randomly from the music
clips that do not belong to the positive genre.

We implement our CNN with the Theano framework [4]. Theano’s automatic
differentiation capabilities are used to implement the backpropagation. Our models are
trained with GPU Tesla K20 on the CUDA platform.

We choose rectified linear as the non-linear function for the hidden layers, as it
generally provides better performance over other functions. We use standard back-
propagation training, with momentum set to 0.9 and initial learning rate to 10�5. We
used the validation set to determine the early stopping condition when the error on it
began to increase. We normalize the input data of each experiment with zero mean and
unit standard deviation.

As a baseline we use a linear-kernel SVM model from the LibSVM [8] library with
the INTERSPEECH 2009 emotion feature set [35], extracted with openSMILE [12].
These features are computed from a series of input frames and output a single static
summary vector, e.g., the smooth methods, maximum and minimum value, mean value
of the features from the frames [20]. The model of each binary classification is trained
through 500 iterations.

All results are shown in Table 1, while Fig. 5 shows the learning curves of our
binary classification using raw audio data as input. The lower results for some cate-
gories, even on the SVM baseline, may be a sign of inaccuracy in manual labeling. We
plan to work to improve both the dataset, with hand-labeled samples, and retrain the
model as on going work.

Fig. 4. Convolutional neural network for emotion classification of raw audio.
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8 Sentiment Inference from Speech and Text

In the first version of Zara, sentiment analysis was based on lexical features. We look
for keyword matches from a pool of positive and negative emotion lexicons from
LIWC2 dictionary and use an N-gram model to classify the sentiment. In the current
approach, we use a CNN-based classifier on Word2Vec. Convolutional Neural Net-
works (CNNs) have recently achieved remarkably strong performance on the practi-
cally important task of sentence classification [16–18].

In this work, we train a CNN with one layer of convolution and max pooling on top
of word vectors obtained from an unsupervised neural language model. We begin with
a sentence that we then convert to a matrix. The rows are word vector representations

Table 1. Real-time CNN outperforms SVM with features

% Accuracy (CNN) % Accuracy (SVM)

Criticism, cynicism 61.2 55.0
Defensiveness, anxiety 62.0 56.3
Hostility, anger 72.9 72.8
Loneliness, unfulfillment 66.6 61.1
Love, happiness 60.1 50.9
Sadness, sorrow 71.4 71.1
Average 65.7 61.2

Fig. 5. Learning curve for binary classification: raw audio data (CNN) over six emotion
categories.

2 http://liwc.wpengine.com.
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of each word in that sentence. There are several publicly available word vectors sets,
such as Google word2vec, WordNet or GloVe. Due to the instinctive sequential
structure of a sentence, we use filters that slide over full rows of the matrix, which
scrolls word by word specifically. The width of the filter is fixed to the dimensionality
of the word vector, and the height varies with different filters. Our model uses multiple
filters (with different window heights 3, 4 and 5) to represent multiple features. The
convolution matrix Wcnv

i is the parameters to be learned for the i-th filter and its size is a
hyper-parameter to be chosen for development. In our model, we choose 100. We then
apply a max-over-time pooling operation over each feature, which means the model
will always pick up the most valuable information wherever it happens in the input
sentence. Also, the pooling technique can fix the feature length for further classifica-
tion. Our work is implemented as a multi-channel model, which has two channels of
word vectors—one that is kept static throughout training as word2vec and another is
fine-tuned via back propagation. At last, we concatenate the feature outputs of each
channel and pass it to a fully connected softmax layer whose output is the probability
distribution over a binary classification for sentiment analysis of text transcribed from
speech by our speech recognizer (Tables 2 and 3).

It is also possible to combine audio input and transcribed text into the CNNs with
two channels, as illustrated in the Fig. 6 below. Each channel process either the speech
or the text features, through the max-pooling layer, the largest number of each feature is
recorded into the next layer. The output of each channel are concatenated to forma a
feature vector for the penultimate layer, which will be further encoded for the final
layer. The final softmax will be performed for the final layer.

9 Humor Recognition in Conversations

In this section, we will describe a fully machine-learning approach for learning a
particular sentiment – humor from spoken conversations. The methodology is appli-
cable to recognizing other sentiments as well.

Humor can be classified depending on the way they are intended to trigger laughter:
common forms include irony, sarcasm, puns and nonsense [1]. Humor in a conver-
sation serves to lighten the mood and build rapport between the speaker and the
audience. It is also very helpful for human-robot interactions. Humans are more

Table 2. Corpus statistics for text emotion experiments with CNN

Corpus Average length Size Vocabulary size Words in Word2vec

Movie review training data 20 10662 18765 16448

Table 3. CNN sentiment analysis on 388 sentences from human interacting with Zara

Accuracy Precision Recall F-score

CNN 67.8% 91.2% 63.5% 74.8%
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forgiving of machine mistakes when the latter has a sense of humor. Yell at Siri, you
will get a “Hey! I am doing my best!”. Ask a challenging question like “Siri, do you
love me?” the answer is likely to be “I am not at capable of love”.

Humor in a spoken dialog is characterized both by what is said and how it is said.
Therefore prosody is an important component that must be taken into account together
with the semantic content of an utterance. A long-term goal of humor research, or
language understanding in general, is how to effectively integrate language features
with audio features.

We analyze funny dialogues extracted from humorous TV-sitcoms. A sitcom is a
scripted oral dialog where at regular intervals canned laughter are embedded. Such
laughter indicates where the audience is supposed to laugh, and solicit its active par-
ticipation. We are interested to predict when this occurs.

Spontaneous conversational humor typically follows a defined recurrent structure
[2, 38]. The first moment is the “setup”, which outlines the context for the subsequent
jokes and prepare the audience to receive their stimuli. A specific utterance called
“punchline” has then the effect to release the tension with a peculiar reaction, typically
laughter. Assuming the punchlines are the utterances followed by a canned laughter,
our task is to detect them. To keep the show interesting and the audience engaged,
sitcom punchlines are equally distributed throughout the show duration. This makes
them a rich source of funny humorous dialogues.

Fig. 6. Bi-channel CNN for sentiment analysis from speech and text.
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An example of a sitcom dialog is shown below:
PENNY: Okay, Sheldon, what can I get you?
SHELDON: Alcohol.
PENNY: Could you be a little more specific?
SHELDON: Ethyl alcohol. LAUGH Forty milliliters. LAUGH
PENNY: I’m sorry, honey, I don’t know milliliters.
SHELDON: Ah. Blame President James Jimmy Carter. LAUGH
He started America on a path to the metric system but then just gave
up. LAUGH

In the example the punchlines are highlighted in bold.
Before each punchline the other utterances build the setup. In a dialog setting,

without a proper context the punchlines may lose their effect of triggering laughters. If
we take the last utterance of the example above out of context it may be perceived as a
political complaint. Some people may still laugh if exposed to this utterance alone, but
setting the dialog in a bar makes the humorous intent stronger.

We employ a supervised classification method to detect when punchlines occur. We
use a Deep Neural Network framework divided into two levels. The first level is made
of two Convolutional Neural Networks [9] to encode each individual utterance from
word embedding vectors, and the audio track associated from a set of frame-level
features. The language CNN is followed by a Long Short-Term Memory [15] to model
the sequential context of the dialog. Before the output softmax layer we concatenate the
output of the LSTM with the acoustic feature vector of the audio CNN, and a few
sentence-based extra features. A framework diagram is shown in Fig. 7.

Fig. 7. Humor inference network: w are the word embedding vectors, f the audio frames feature
vectors, and l the other language feature vectors.
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Convolutional Neural Network
Astraightforward way to model a dialog is to retrieve language and acoustic features
from each utterance, and to apply a memory-based classifier (such as a Recurrent
Neural Network or a Long Short-Term Memory) to model the discourse context.
Previous work showed that acoustic utterance-level features (such as the INTER-
SPEECH 2010 paralinguistic challenge feature set [36]) are quite effective with simple
classifiers such as logistic regression and conditional random fields, but yield subop-
timal performance with DNN systems [5, 13]. We apply two parallel Convolutional
Neural Networks to model each utterance from lower-level features.

The first CNN we use is dedicated to language features. Word2Vec word vectors
are used as token-level features. Our Word2Vec model is trained on the text9 Wiki-
pedia corpus3 using gensim implementation [28]. Word2Vec is an improvement over
bag-of-ngram or similar representations that ignore out-of-vocabulary words, that often
occur in the cross-domain tasks, for example in the case of different sitcoms with
different domain vocabulary.

The second CNN is used to encode the audio track of each utterance. We split each
utterance into overlapping 25 ms frames shifted 10 ms from each other. We then
extract for each frame a vector of low level acoustic and prosodic features with
openSMILE [12]. The features we extract are MFCC, D MFCC, DD MFCC, pitch,
energy and zero crossing mean. A CNN then combines together all the frames into a
single vector for each utterance, selecting the features from the most salient frames and
discarding those that carry no information. This CNN is similar to that used for lan-
guage, but it uses two embedding layers at the input, and rectified linear units instead of
tanh. Both past attempts in the literature [13] and our experiments on our development
sets showed the use of frame-level features over a shifting-window, and of rectified
linear units to be more effective.

Long Short-Term Memory for the Utterance Sequence
As dialog utterances are sequential, we feed the utterance vectors in sequence into a
LSTM block to incorporate contextual information. The memory unit keeps track of the
context of previous utterances, and mimics human memory to accumulate the setup that
may trigger a punchline.

Before the final softmax layer we incorporate some extra features not modeled by
our neural network but which still add important contribution [6, 7, 27, 29].

These features are average word length, sentence length and difference in sentence
length with the previous utterances of the context window, speaker identity as well as
the speaking rate (time duration of the utterance divided by the sentence length).

All these features are concatenated to the LSTM output together with the audio
CNN output, and a softmax layer is applied to get the final output probabilities.

9.1 Experiments

We built a corpus from three popular TV-sitcoms: “The Big Bang Theory” seasons 1 to
6, “Friends” seasons 6 to 9, and “Seinfeld” seasons 5 to 9. We downloaded the subtitle

3 Extension of the text8 corpus, obtained from http://mattmahoney.net/dc/textdata.
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files associated to each episode and the scripts4. We extracted and segmented the audio
track of each episode for the acoustic features. The audio tracks were also used to
retrieve the canned laughter timestamps, applying a vocal removal tool followed by a
silence/sound detector. We then annotated each utterance as a punch line in case it was
followed by laughter within 1s, assuming that utterances not followed by a laughter
would be the setup for the punch line. Other than for annotation, we used the times-
tamps to cut from each utterance audio track the overlapping parts with a canned
laughter, in order to avoid crosstalk bias.

For each show we built a training set of 80% of the overall episodes, and a
development and test set of 10% each. The episodes were drawn from all the seasons
with the same proportion. Our three corpora are structured as follows:

We set the size to 100 for all the hidden layers of the language CNN and the LSTM
and the convolution window to 5. In the audio CNN we set the size to 50 and we used a
convolution window of size 3. We concatenated the audio CNN output with the other
features at the end instead of feeding it through the LSTM, as it gave us better per-
formance. We applied a dropout regularization layer [37] after the output of the LSTM
and the audio CNN, the dropout coefficient was set to 0.7. The network was trained
with standard back propagation, with a momentum coefficient set to 0.9. The devel-
opment set was used to tune the hyperparameters, and to determine the early stopping
condition. The neural network was implemented with the Theano toolkit [4].

In the first set of experiments we trained and tested the classifiers on the same
sitcom. As a first baseline for comparison we chose a Conditional Random Field [19]
trained over a set of features [6] including the same features added at the end of our
neural network, bag-of-ngrams, part of speech proportion, sentiment from Senti-
WordNet [11], antonyms, and a prosodic feature vector from the INTERSPEECH 2010
paralinguistic challenge [36]. We used the implementation from CRFSuite [23], with
L2 regularization. The second baseline system is made of the CNNs encoding blocks
only, where the role of the LSTM is replaced with the language CNN output vectors at
previous times, concatenated together before the softmax layer. We evaluated context
window length of 1 (no LSTM), 2, 3 and 5; as in all the sitcoms over 80% of
punchlines occur within five utterances from the previous. All the results are shown in
Table 4.

In Table 5 we also compare the results of our best system on the Big Bang corpus
with the system proposed in [7], where a LSTM is applied to a larger set of
language-only features, which includes one-hot word vectors and character-trigram
input vectors in addition to Word2Vec. This comparison evaluates the role of acoustic
features in our neural network framework.

The second series of experiments is a cross-domain evaluation. Each classifier is
trained over all the data from two of the corpus shuffled together, and tested over the
third corpus. In these experiments we ignore the speaker identity feature. Our baseline
system is again the CRF described above, trained and tested over the same
cross-domain data. We evaluated context window lengths of size 3 and 5. The results of
this experiments are shown in Table 6.

4 From bigbangtrans.wordpress.com and http://www.livesinabox.com/friends/scripts.shtml.
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10 Summary and Discussion

In this paper, we have described a prototype system of an empathetic virtual robot that
can recognize user emotions and thereby bring about a new level of human-robot
interactions. We described the design of the architecture, the task of personality analysis,
and user analysis of Zara the Supergirl. From there, we extended our description to
include more details of the recognition and inference of emotion and sentiment from
speech and language. Zara also has a facial recognition component which we have not
described in detail as it acts as a supplement to the speech and language part.

We have shown how Deep Learning can be used for various modules in this
architecture, ranging from speech recognition, emotion recognition to humor recog-
nition from dialogs. More importantly, we have shown that by using a CNN with one

Table 4. CNN + LSTM gives superior performance on humor recognition

CNN + shifted
context

CNN + LSTM

Context window size A P R F1 A P R F1

The big bang theory
CRF baseline 73.4 72.1 61.8 66.5 73.4 72.1 61.8 66.5
1 utterance 73.7 70.3 66.7 68.5 73.7 70.3 66.7 68.5
2 utterances 73.0 70.3 63.8 66.9 72.8 68.0 68.7 68.4
3 utterances 72.2 64.9 76.2 70.1 71.6 63.6 78.7 70.3
5 utterances 71.2 66.7 65.4 66.0 72.9 72.6 59.1 65.2
Friends
CRF baseline 71.6 62.7 45.7 52.9 71.6 62.7 45.7 52.9
1 utterance 70.6 61.1 42.8 50.3 70.6 61.1 42.8 50.3
2 utterances 70.6 60.2 45.9 52.1 68.3 54.6 54.0 54.3
3 utterances 69.1 58.9 37.4 45.8 69.2 56.6 50.0 53.1
5 utterances 70.8 62.3 40.9 49.4 70.7 62.7 41.4 49.9
Seinfeld
CRF baseline 76.5 59.4 36.5 45.2 76.5 59.4 36.5 45.2
1 utterance 71.1 44.4 35.4 39.4 71.1 44.4 35.4 39.4
2 utterances 72.2 46.4 30.0 36.5 76.6 65.8 25.1 36.4
3 utterances 70.5 43.6 38.0 40.6 75.3 54.4 44.7 49.1
5 utterances 74.3 56.3 14.9 23.6 76.6 67.8 22.6 33.9

Table 5. Bichannel LSTM performs the best

Method A P R F1

CRF baseline 65.9 61.2 55.3 58.1
LSTM language-only 70.0 66.7 59.4 62.9
LSTM language + audio 71.6 63.6 78.7 70.3
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filter, it is possible to obtain real-time performance on speech emotion recognition
directly from time-domain audio input, bypassing feature engineering. We have so far
developed only the most primary tools that future emotionally intelligent robots would
need. Empathetic robots including Zara that are there currently, and the ones that will
be there in the near future, might not be completely perfect. However, the most sig-
nificant step is to make robots to be more human like in their interactions. This means it
will have flaws, just like humans do. If this is done right, then future machines and
robots will be empathetic and less likely to commit harm in their interactions with
humans. They will be able to get us, understand our emotions, and more than anything,
they will be our teachers, our caregivers, and our friends.
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