Chapter 9 M)
Removal of Arsenic from Water Using e
Graphene Oxide Nano-hybrids

Sharf Ilahi Siddiqui, Rangnath Ravi and Saif Ali Chaudhry

Abstract In 21st century, providing the fresh and affordable water through protects
and purifying the water source from pollutants is biggest and most concern envi-
ronmental challenges. Toxic element particularly arsenic in water is serious matter
of threat for human from many developing countries, and long exposure of arsenic
is generally associated with skin lesions and hyperkeratosis like adverse effects.
Graphene oxide (GO) and its composites have attracted widespread attentions as
novel adsorbents for the adsorption of various water pollutants due to their unique
physicochemical characteristics. This chapter presents advances made in the syn-
thesis of graphene oxides and their composites, and summarizes the application of
these materials as a superior adsorbent for the removal of arsenic from water. The
adsorption affinity in terms of contact time, pH, and temperature has been dis-
cussed. Competitive ion effect and regeneration are included within the text.
Moreover, the challenges for the commercial uses are discussed.
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1 Introduction

Human life and lives of other animals depend on water; therefore, it is a vital
concern for mankind. 71% of the earth’s surface is covered up with water but only
2.5% water is fresh. Fresh water in the form of glacial is unusable, thus only ground
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Table 1 Some heavy metals and their toxic effect

S. L. Siddiqui et al.

Heavy Major activities Effect References

metal

Lead Auto mobile, coal Mental retardation in children, | Kumar et al. (2014),
burning, smoking, liver and kidney failure and Dikilitas et al. (2016)
paint and pesticides cancer

Mercury | Pesticides, batteries, | Neurological effect Ha et al. (2017), Li et al.
paper industries (2015)

Cadmium | Welding, pesticides, | Cancer, kidney damages and | Fristachi and Chaudhry
nuclear fusion plant, | gastrointestinal disorder (2017), Rodriguez and
electroplating Mandalunis (2016)

Arsenic Mining, smelting and | Renal, dermal, mutagenic, Siddiqui and Chaudhry

fertilizers

carcinogenic, cardiovascular,
and neurological effect

(2017a, b, ¢), Rasheed
et al. (2017)

and surface water is available for civilization. Major population developed over the
river line systems due to rapid availability of sufficient and fresh amount of water
but reliable and sustainable supply of fresh water in this era is a challenge due to
rapid industrialization and human activities (Abdul et al. 2015; Carolin et al. 2017).
The human population and their activities are increasing dramatically; consequently
a large amount of fresh water would be required for the newly added people
(Siddiqui and Chaudhry 2017a). In addition, contaminant released in water due to
rapid industrialization, agricultural activities, geological activities and other human
activities are deteriorating the water quality continuously. WHO, environmental
agencies, government authorities, scientists, and academicians all over the world are
worried and serious over the issue of water contamination. Thousands of organic,
inorganic and biological species have been reported as water contaminants (Gao
and Zhou 2000; Naushad 2014; Sang et al. 2003; Siddiqui et al. 2018). Heavy
metals are among them which show serious adverse effects and toxicities; with
lethal and carcinogenic effect, and cause the large damage to ecosystem and human
health (Al-Othman et al. 2012; Carolin et al. 2017; Chaudhry et al. 2017a, b, c;
Robinson 2017). Heavy metals having high specific gravity are found in earth crust
and are non-biodegradable. They accumulate in food chain and soft and hard tissues
of human body and get stored for long term, and affect the growth and development
of the target organisms (Carolin et al. 2017; Robinson 2017; Siddiqui et al. 2017).
The toxicities of various heavy metals are given in Table 1.

2 Arsenic Contamination and Toxicity

Arsenic contamination in water is becoming a severe problem for many countries
particularly Asian countries such as Bangladesh, China, India, Pakistan, and
Taiwan. The people of these countries are living in threat of arsenic (Bowell et al.
2014; Chaudhry et al. 2017b, c¢; Kao et al. 2013; Ng et al. 2003). Bangladesh and
West Bengal province of India is the most affected zone of arsenic.
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Arsenic inhalation through water is generally associated with skin lesions and
hyperkeratosis like adverse effects (Matschullat 2000). Long-term exposure of
arsenic contamination through water, affects the functioning of nervous and cardio-
vascular systems, and also causes cancers of many types (Abdul et al. 2015; Biswas
et al. 2008; Siddiqui and Chaudhry 2017a, b, c, d; Watanabe et al. 2017). Moreover,
arsenic alters the cell calcium signals; induce the oxidative stress, affect the cell
mitochondrial function, and cell cycle progression (Abdul et al. 2015; Flora 2011;
Kulshrestha et al. 2014).

Arsenic is found frequently in soil and rocks in the minerals form, which gets
mobilized into ground water by natural weathering, geochemical reactions, bio-
logical activities, volcanic emissions and anthropogenic activities like mineraliza-
tion, mining and smelting (Chaudhry et al. 2016a; Siddiqui and Chaudhry 2017a,
b). Therefore, to control the arsenic effect, removal of arsenic from wastewater or
drinking water is the best option to safe millions of people across the world.
Various treatment techniques such as oxidation-coagulation, electro-coagulation
and co-precipitation, oxidation-precipitation, reverse osmosis, electro dialysis, and
ion exchange are being utilized. However, these techniques are inconvenient,
require large space and are very costly (Anastopoulos et al. 2017; Chaudhry et al.
2016b; Devi and Saroha 2017; Mohan and Pittman 2007).

Adsorption being inexpensive; does not involve sophisticated instrumentation
and do not require long procedure (Alqadami et al. 2016; Khan et al. 2015; Sharma
et al. 2017). The process is simple, safe to handle and effectively work at low and
high arsenic concentration in water (Gupta et al. 2009; Han et al. 2013; Mondal
et al. 2007; Maliyekkal et al. 2009). Therefore, adsorption can be the better option
to clean the arsenic contaminated water at different scales ranging from household
module to community plants.

3 Adsorption Technology

Adsorption is a well-known water purification technology which involves the
chemical or physical interaction between pollutant and solid surface, where solid
surface is known as adsorbent and should have low particle size, high surface area,
high active sites for higher removal capacity for pollutants (Bai et al. 2010; Fendorf
etal. 1997; Johnston et al. 2016; Khan et al. 2013; Mohan and Pittman 2007; Sansone
et al. 2013; Sherman and Randall 2003; Su et al. 2017). Large number of adsorbents
have been utilized for removal of arsenic species (arsenite, As>* and arsenate, As5+)
but the arsenite, As** removal requires pre-oxidation of As** to As* using oxidizing
agents, which makes the process costly and sometimes produce unhealthy
by-products (Siddiqui and Chaudhry 2017a; Zhang et al. 2007). Therefore, to avoid
the pre-oxidation step using costly oxidizing agents, various solid materials with
oxidative properties have been developed (Siddiqui and Chaudhry 2017a, c).
Among the various materials graphene oxide provides high surface area and
porosity, and strong active sites which can easily trap arsenic from water
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(Peng et al. 2017; Platero et al. 2017; Kumar et al. 2014; Sheshmani et al. 2015).
Graphene contains hydrophobic surface while large acidic groups are attached on
the graphene oxide surface which results greater attraction for cations (Zhou et al.
2014). Abundant oxygenic groups such as epoxy, hydroxyl, and carboxyl are
attached on the graphitic backbone of GO which protrude from its surface and can
easily interact with the pollutants via coordination, electrostatic, and covalent
interactions (Ray et al. 2017; Peng et al. 2017; Machida et al. 2006). Therefore, GO
based adsorbents can be the best choice for researchers for arsenic removal. To ease
the further study we have incorporated valuable literature here in this chapter. The
objective of this chapter is to discuss the latest status of GO and its modified forms.
Further, to inspire the environmental community, various GO based adsorbents,
their adsorption capacity for arsenic, and comparative study has been incorporated.
This chapter will help scientist community for the commercial application of the
GO.

4 Graphene Oxide

Graphite oxide, also known as graphitic oxide or graphitic acid, is the compound of
carbon, oxygen, and hydrogen. Graphite on oxidation with strong oxidizing agents
like KMnO, gives the Graphite oxide (GrO). GrO is normally yellow colour bulk
solid having layer structure of graphite. GrO dispersed in alkaline solutions and
produce the monolayer sheets which are known as graphene oxide (Wang et al.
2013; Bian et al. 2015; Gao et al. 2011).

Three approaches have been made for the preparation of GrO, such as Brodie,
Staudenmaier and Hummers process. Brodie (1859) suggested that GrO can be
prepared by oxidation of graphite powder with mixture of potassium per chlorate
and concentrated nitric acid in water. Staudenmaier (1898) reported the preparation
of GrO through the oxidation of graphite with mixture of sulfuric acid, nitric acid
and potassium per chlorate. A similar approach was attempt by the Hummers and
Offeman (1958) using solution of concentrated sulfuric acid, sodium nitrate and
potassium permanganate. Obtained layer structure of GrO can easily be converted
into the GO through mechanical stirring or ultrasonic process.

Actually, distance between the graphitic layers of GrO increases with increase in
the oxygenous functional groups, and therefore, the interaction between the layers
decreases which enhances the probability of formation of monolayer GO (Brodie
1859; Hummers and Offeman 1958; McAllister et al. 2007; Schniepp et al. 2006;
Staudenmaier 1898).
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4.1 Preparation of GO and It’s Composite

Recently, Hummers method have been modified which is frequently being used for
the preparation of GO. In brief, certain amount of graphite flaks was dissolved into
the solution of concentrated H,SO,4:H3PO,4 (360:40 mL) under continuous stirring.
Further, KMnO,4 was added slowly to the suspension under vigorous stirring for
36 h at 50 °C, thus reddish suspension was obtained, cooled to room temperature,
and added ~400 mL ice water containing 3.0 mL of 30% H,0, into the suspen-
sion under continues stirring until uniform mixture was obtained. Afterward, sus-
pension was centrifuged, washed and dried (Kumar et al. 2014).

Due to the presence of oxygenous groups onto the surface, GO shows high
adsorption capacity for water pollutants, but recovery of exhausted GO is not easy
and require costly process such as centrifugation and filtration. This problem can be
resolved by the modification of GO with magnetic particles. Large number mag-
netic GO have been utilized, that permit the use of bare GO in large-scale water
treatment. Large numbers of magnetic GO have been developed by the simple
co-precipitation method (Kumar et al. 2014).

Kumar et al. (2014) reported the preparation of magnetic GO-MnFe,O,
nano-hybrid. In brief, 3.0 g GO was ultrasonically dispersed in 400 mL of water,
then certain amount of ferric chloride (FeCl;-6H,0) and manganese sulfate
(MnSO4-H,0) were added to the GO solution and stirred for 0.5 h. Afterwards, the
temperature of the reaction was increased up to 80 °C and pH of solution was
adjusted to 10.5 by addition of 8 M NaOH solution, under continuous stirring. The
reaction was continued for 5 min, and then cooled to room temperature and
resulting precipitate was magnetically separated, washed and dried. Similarly,
approaches were adopted for FeO,-GO (Su et al. 2017) and a-FeOOH@GCA (Fu
et al. 2017). One more attempt was made to improve the adsorption capacity of GO
by the functionalization of GO. The functionalized GO surface have large number
of oxygen atoms on the graphitic backbone, which provide the large number of
active sites for charged ions (Fig. 1) (License No. 4147561017088) (Kumar and
Jiang 2016).

In brief, 1.0 g of GO was dispersed in 50 mL thionyl chloride (SOCI,)-dime-
thylformamide (DMF) solutions and then refluxed for 24 h at 60 °C. The obtained
precipitate of GO-COCI was centrifuged, washed with tetrahydrofuran (THF) and

Hydrogen bonding interaction
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Fig. 1 Hydrogen-bonding interaction between GO and chitosan. Reprinted with permission from
Kumar and Jiang (2016) Copyright (2016) Elsevier (License No. 4147561017088)
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dried under the vacuum. Afterwards, 1.0 g of GO-COCI was slowly added into the
chitosan solutions (0.5 g of chitosan in 10 mL of 1% (v/v) acetic acid solutions)
under the continues stirring for 10 min to get uniform mixture. The obtained
mixture was slowly heated up to 50 °C and stirred for 3 h, and the resulting mixture
was washed with acetone several times, filtered, and dried under vacuum (Kumar
and Jiang 2016).

4.2 Characterization of GO

Preparation of GO and its composites was confirmed by FT-IR, Raman, and XRD
techniques. Characteristic absorption peak of FT-IR spectrum of GO has shown in
Table 2, which is clearly indicating the formation of GO and presence of oxy-
genated groups on a graphene matrix which grown for further modification.

Kumar et al. (2014) reported the characteristic absorption peaks at 1729, 1620,
1415, 1046, and 1236 cm ! for FTIR spectrum of GO (Fig. 2) (License
No. 4147600394062). The C=0 group is confirmed by the appearance of peak at
1729 cm™! in IR spectrum and C=C stretching was assigned by the appearance of
peak at 1620 cm™.

The absorption frequency at 1415 cm™' confirms C—H deformation bond. A band
at 1046 and 1236 cm™ ' was appeared due to C—O stretching vibration for epoxy and
alkoxy groups, respectively. Similar result was observed by (Khatamian et al. 2017,
Kumar and Jiang 2016; Peng et al. 2017). Su et al. (2017) confirmed the distribution
of iron oxide species onto GO matrix by assigning the absorption peaks for Fe-O,
between the 750-400 cm ™. The formation of FeO,-GO nano-composite was con-
firmed by the two bands at 552 and 442 cm ™" for Fe—O and one band at 1578 cm ™
for C=C stretch in GO. FTIR spectrum of GO-MnFe,Oy (Fig. 2) exhibited absorption
peaks at 490 and 577 cm™ ' due to M-O stretching vibrations of manganese ferrite
(Kumar et al. 2014). Similar result was observed for (Huang et al. 2011; Kumar et al.
2014; Marcano et al. 2010) studies. The XRD spectrum of GO gives the characteristic
peak at 26 = 9.4-10.50° corresponding to (001) plane of GO.

Table 2 Characteristics absorption peaks for GO

Stretching Information (Khatamian et al. 2017; Kumar et al. 2014; Kumar and Jiang
frequency 2016; Peng et al. 2017)

3420-3200 V (O-H) stretching

2850-2950 Hydrogen bonding with oxygenous groups

1710-1730 V (C=0) stretching

1620-1640 V (C=C) in-plane stretching

1415-1550 V (O-H) deformation

1230-1400 V (C-0) Alkoxy stretching

1020-1070 V (C-0) Epoxy stretching
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Fig. 2 FTIR spectrum of GO and its composites. Reprinted with permission from a Kumar et al.
(2014) Copyright (2014) American Chemical Society, b Su et al. (2017) Copyright (2017) Elsevier
(License No. 4147600394062)

12 (@) G
. ' : ' ‘NP
S
S
= GONH
% g
8‘0

Scattering Angle 26 (degrees)

Fig. 3 XRD spectra of GO, MnFe,O, and its composites (GO-MnFe,0,). Reprinted with
permission from a Kumar et al. (2014) Copyright (2014) American Chemical Society

After treatment of GO with metal, the diffraction intensity decreased which
indicates the decline in crystalline structure. This was due to the bonding between
the metal and GO. The similar result was also obtained for intramolecular or
intermolecular hydrogen bonding interaction between the polymers and GO (Huang
et al. 2011; Kumar et al. 2014; Kumar and Jiang 2016; Marcano et al. 2010). XRD
pattern of GO and its composite is given in Fig. 3.
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Fig. 4 Atomic force microscopy (AFM) of a GO and b its composites (GO-MnFe,O,). Reprinted
with permission from a Kumar et al. (2014) Copyright (2014) American Chemical Society

The average flake size and average thickness of GO flake was measured ~2 pm
and ~ 1-2 nm, respectively, using AFM (Fig. 4) (Huang et al. 2011; Kumar et al.
2014; Marcano et al. 2010).

Raman spectra has been widely used to characterize GO and GO based mate-
rials. Raman spectrum of GOs showed two prominent peaks at 1580-1620 and
13401365 cm ™' corresponding to the first order E,g mode from sp2 carbon
domains (G-band) and disorder mode (D-band), respectively. Kumar and Jiang
(2016) of GO which showed strong peaks at 1610 and 2445 cm ™" related to G band
and D’ band, and one broad peak at 1360 cm™' corresponding to D band.

The functionalization of GO with chitosan shows two new peaks which emerged
at 718 and 1047 cm™ ! due to the interaction of COOH of the GO and OH group of
chitosan (Fig. 5) (License No. 4147561017088). Similar results were reported by
Chen et al. (2013), Kumar et al. (2014), Yang et al. (2013). The morphology of GO
and their composites has been characterized from the SEM and TEM images by
Chen et al. (2013), Kumar et al. (2014), Su et al. (2017), Yang et al. (2013).

5 GO as Adsorbent for Arsenic

Iron oxide loaded graphene oxide, magnetite (Fe;O,4)-graphene oxide, magnetite
(Fe;04)-reduced graphene oxide, magnetite (Fe;O4)-reduced graphite oxide-MnO,,
graphene-FeMnOy, and hydrous cerium oxide-graphene nano-composite are well
known graphene based nano-composites that have been used for arsenic remedia-
tion (Kumar et al. 2014; Yu et al. 2015). These composites are magnetic in nature,
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show large sorption capacity towards arsenic and highly effective at various pHs,
low concentration, and in the presence of competitive ions.

In comparison to virgin MnFe,O, nanoparticles, graphene oxide-MnFe,O4
nano-composite removed much higher As(Ill) and As(V). The maximum sorption
capacity of graphene oxide-MnFe,O, for As(IIl) and As(V) was recorded as 146 and
207 mg/g, respectively (Kumar et al. 2014). In addition, magnetite (Fe;0,4)-reduced
graphene oxide-MnQO, nano-composite removed 14 mg/g of As(IIl) and 12 mg/g of
As(V) (Xubiao et al. 2012), and graphene-FeMnO, removed 10.20 mg/g of As(IIl)
and 11.50 mg/g of As(V) due to electrostatic interaction and pre-oxidation step (Jin
et al. 2015). Yoon et al. (2016) reported the preparation of Fe;O4-graphene oxide
composite (M-GO) and Fe;04-reduced graphene oxide composite (M-rGO) (Fig. 6),
investigated its arsenic removal capacity, and reached to the result that M-GO
showed higher removal capacity for both As(Ill) and As(V) than M-rGO.

B-FeOOH incorporated carboxylic graphene oxide nano-composite
B-FeOOH@GO-COOH nanocomposite has removed 100% arsenic ions from
water. The composite has shown tremendous adsorption efficiency even after 20
successive adsorption-desorption cycles, and removed >80% of both As(IIT) and As
(V) from given initial concentration (Chen et al. 2015). The bonding between the
B-FeEOOH@GO-COOH and As(Ill), and As(V) has shown in Fig. 7.
B-FeOOH@GO-COOH was also effective in the presence of 2000-fold of SO,
NO;~, CI” and Mg>* ions, and provided 90% removal efficiency for 5 successive
cycles. Maximum adsorption capacity for B-FeOOH@GO-COOH was found to be
77.5 and 45.7 mg/g for As(Ill) and As(V) ions, respectively (Chen et al. 2015).

Khatamian et al. (2017) reported the preparation of different composites of GO and
RGO viz magnetite (Fe;04)/RGO, magnetite (Fe;0,4)/RGO/Cu-ZEA, GO/Cu-ZEA,
and magnetite (Fe30,4)/GO/Cu-ZEA using solvothermal method with Cu-exchanged
zeolite A (Cu-ZEA) and magnetite nanoparticles (Fe;0,4). This work was done for the



230 S. L. Siddiqui et al.

Negls hene flak
Graphite b i

Fig. 6 Preparative steps of magnetite-GO and magnetite-rGO nano-composite and their
adsorption activity for As(Ill) and As(V). Reprinted with permission from Yoon et al. (2016)
Copyright (2016) Elsevier (License No. 4147590561897)

improvement in the adsorption capacity of GO, RGO, magnetite (Fe;04) nanopar-
ticles and Cu-ZEA. Among them magnetite (Fe;04)/RGO/Cu-ZEA had the high
specific surface area thus they have shown the highest removal capacity for arsenic.
The adsorption kinetics data followed the pseudo-second-order kinetic model.
Similarly, Su et al. (2017) reported the synthesis FeOx-GO nano-composites with
different wt% (36-80 wt%) iron oxide content and further utilized for arsenic
removal. GO sheets were prepared by an improved Hummers method and then iron
oxide was incorporated on the GO through Co-precipitation reaction. With increased
in the wt% of FeOx on GO, the surface area for FeO,-GO also increased, and iron
oxide content of 80 wt% (FeO,-GO-80) having predominant mesopore structures has
highest surface area and consequently higher adsorption sites. Therefore, FeO,-
GO-80 showed maximum adsorption capacity of 147 and 113 mg/g for As(IIl) and
As(V), respectively, which was highest among all the reported iron oxide-GO/
reduced GO composite adsorbents. FeO,-GO-80 removed ~ 100% of arsenic from
initial concentration of 118 and 108 pg/L, of As(IIT) and As(V).

The mass production of non-oxidative graphene and magnetite/non-oxidative
graphene (M-nOG) composite has been reported by Yoon et al. (2017) for arsenic
removal. The M-nOG showed greater adsorption capacity for arsenic. The batch
experiment was performed to evaluate the adsorption capacity of M-nOG for arsenic
in terms of pH, temperature, competing anions, and humic acid. As(IIl) was largely
influenced by the surface complexation while As(V) showed intraparticle diffusion
mechanism. The repetitive reuse and regeneration of M-nOG were performed.

Further, three dimension (3D)-magnetite (Fe;O,4)-graphene macroscopic com-
posites have been utilized as adsorbents for the removal of arsenic from low level
(Guo et al. 2015). 3D-graphene macroscopic composite was synthesized through
the self-assembly of GO nanosheets with polydopamine and magnetite (Fez0,4)
nanoparticles under the basic conditions at low temperature. Polydopamine
strengthen the 3 Dimension-graphene based macroscopic architect as well as
enhanced the load and binding ability of magnetite (Fe;O,) nanoparticles.
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Fig. 7 The bonding between B-FeEOOH@GO-COOH and As(Ill), and As(V). Reprinted with
permission from Chen et al. (2015) Copyright (2015) Elsevier (License No. 4147590927555)

Graphene based metal and metal oxide composites such as single metal
Ag-RGO, Cu,0-RGO, and magnetite (Fe30,4)-RGO and bimetallic Ag-Cu,0O-RGO,
Ag-magnetite (Fe;04)-RGO, and Cu,0-magnetite (Fe;04)-RGO have been utilized
for the adsorptive removal of As(V) (Dubey et al. 2015). These adsorbents were
synthesized hydrothermally using sodium borohydride as a reducing agent and
sodium sorbate as a stabilizer. Similarly, Al and Fe-doped graphene was used for
the removal of methylated As(Ill) and As(V) and their adsorption capacity was
studied by quantum chemistry computations (Arriagada and Labbe 2016).

Kumar and Jiang (2016) reported the preparation of chitosan functionalized GOs
which act as interactive sites due to the presence of one amino group and two
hydroxyl groups on each glucosamine monomer of chitosan. The formation of
chitosan functionalized GO was due to the electrostatic affinity between the amino
group (NH,), primary and secondary hydroxyl groups (CH,OH, CHOH) of the
chitosan and surface of carboxyl (COOH) and hydroxyl groups (OH) on the GO.
The chitosan functionalized GO worked as good host for incoming arsenic
oxy-anion. Various interaction mechanism such as cation—r interaction (RNH;—
aromatic T moiety), electrostatic interaction (H,AsO, , HAsO42_—+NH3R), and
inter and intermolecular hydrogen bonding as well as anion—m interaction (R—
COO™ —aromatic © moiety), (R—-O —aromatic m moiety) defined the interaction
between arsenic and GO moieties. Mishra and Ramaprabhu (2011) prepared the
graphene sheets by hydrogen induced exfoliation of graphitic oxide followed by
functionalization and used for the removal of high concentration of inorganic
species of arsenic As(III) and As(V) from aqueous solution using super capacitor
based water filter. The maximum monolayer adsorption capacities for As(Ill) and
As(V) were 142, and 139 mg/g, respectively, which were higher than other,
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reported adsorbents. Graphene based super capacitor provides a solution for com-
mercially feasible water filter.

Similarly, B-Cyclodextrins (CDs) functionalized GO (B-CDs@GO hybrid),
magnetite (Fe;04) nanoparticles decorated with B-CDs-functionalized GO (Fe3zO,4-
B-CDs@GO hybrid), B-CDs-GO@ magnetite (Fe;0,4) nanoparticles and polyelec-
trolyte of poly (diallyldimethylammonium chloride) (pDADMAC) with paramag-
netic anions based on FeCly-GO (Fe-polyDADMAC @GO) have been synthesized
for the removal of arsenic from water. Kumar and Jiang (2017) reported the
magnetically separable and recyclable magnetic nanoparticles decorated with
B-cyclodextrin functionalized graphene oxide for As(Ill) and As(V) cleanup from
water. Due to hydroxyl and carboxyl groups present on the surface of B-CDs-GO@
magnetite (Fe;O4) nanoparticles and their superior magnetic property, this adsor-
bent showed excellent adsorption capacity for As(Ill) and As(V). Batch adsorption
experiments were performed to demonstrate the maximum adsorption capacity of
prepared adsorbent in terms of various parameters such as pH, temperature, and
contact time. Adsorption isotherms and kinetics data were well described by
Freundlich isotherm and the pseudo-second order kinetic models, respectively.
Thermodynamics studies suggested that the reaction was feasible, spontaneous and
endothermic. Adsorbent was regenerated using sodium hydroxide (NaOH) and was
reutilized for two adsorption/desorption cycles.

Graphene-doped titanium nano tube coated to super paramagnetic nanoparticles
(GN-MNP-TNT) was used to remove As(III) from their solutions (Lin et al. 2017).
GO layers served as precursor and stabilizer for GN-MNP-TNT due to their
excellent electron transfer capacities. TNT-doped graphene (GN-TNT) was pre-
pared by hydrothermal method. GN-MNP-TNT could be tested for 4 consecutive
adsorption/desorption cycle without major loss. After 4 cycle of regeneration
adsorbent efficiency remained 83% which was much higher than other reported
value in literature.

5.1 GO Coated Carbon Nanotubes

In addition to this, carbons nanotubes have also been incorporated with GO but
limited number of literature is available. Goethite impregnated graphene oxide
(GO)-carbon nanotubes (CNTs) aerogel (a-FeEOOH@GCA) was prepared for
adsorptive removal of arsenic from water (Fu et al. 2017). a-FeOOH@GCA was
prepared by a facile self-assembly of GO-CNTs by in situ Fe** reduction method.
Batch experiment was performed to investigate the adsorption capacity of prepared
a-FeOOH@GCA for different arsenic species like As(V), DMA, and p-ASA. The
maximum adsorption capacities for As(V), DMA and p-ASA was obtained as
56.43, 24.43 and 102.11 mg/g which was much higher than (25.71, 8.03 and
14.52 mg/g) pristine o-FeOOH, respectively. This was due to the incorporation of
GO-CNTs, which not only hindered the aggregation of GO-CNTs but also inhibited
the growth of a-FeOOH nanoparticles and facilitated the diffusion and adsorption.
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a-FeOOH@GCA showed excellent reusability with adsorption capacity, however,
adsorption rate was affected by the presence of phosphate and silicate anions due to
the similar anionic structure. The complex prepared between the arsenic species and
the surface of a-FeEOOH@GCA was inner sphere complex.

Park et al. (2016) developed a feasible water flow filter with facilely function-
alized magnetite (Fe;O4)-non-oxidative graphene/CNT composites for arsenic re-
moval in household use for continuous purification of water. Feasible water flow
filter filled with magnetite (Fe;O,4)-functionalized non-oxidative graphene/CNT was
fabricated through facile functionalization in a Couette-Taylor flow reactor.
Couette-Taylor flow method allows the fast production of filters. magnetite (Fe;0,4)-
functionalized non-oxidative graphene/CNT composites as flow filter showed
higher arsenic removal efficiency than when it was used in the batch experiment.
This is due to its 3D-structure which enhanced the water flow pathway and the
contact area with magnetite (Fe;0,). Similarly, Roy et al. (2016) reported a
Europium doped magnetic graphene oxide-MWOCNT nanohybrid adsorbent for
effective and rapid removal of As(Ill) and As(V) from real water samples. This
adsorbent could be prepared by a combination of Eu-doped magnetic graphene
oxide and gold nanoparticle functionalized multiwalled carbon nanotubes. Prepared
nano-hybrid adsorbent having magnetic property (15,000 emu/g) showed extraor-
dinary adsorption capacity as 320.0 and 298.0 mg/g for As(Ill) and As(V),
respectively, and also showed excellent photo catalytic activity for oxidation of As
(IIT) to As(V). Therefore, this adsorbent could be utilized for the conversion of
highly toxic As(III) to less toxic As(V) as well as adsorptive removal of As(V).
These were recently utilized GO based adsorbents, which could be effective for
arsenic removal, however, more study is needed to make the process more
convenient.

6 Conclusion and Future Prospects

The excellent adsorption performance, along with their low cost and convenient
synthesis, makes GO and it composites highly promising for commercial applica-
tions in drinking water purification and wastewater treatment. Reusability, ease of
magnetic separation, high removal efficiency, and fast kinetics make them very
attractive and smart materials for the effective removal of heavy metals particularly
arsenic from contaminated water. The experimental conditions and results for GO
for arsenic remediation provide a way for further research and development of GO
based adsorbent for others charged pollutants.
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