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Preface

More than four decades ago the groups of Purnell Choppin in the United States and 
of Morio Homma in Japan identified a glycoprotein in paramyxoviruses that induces 
membrane fusion and initiates infection, and they discovered that its activity 
depends on posttranslational cleavage by host proteases. At about the same time 
similar observations were made with the influenza virus hemagglutinin, and proteo-
lytic glycoprotein activation proved to be an important determinant for organ tro-
pism and spread of infection of paramyxoviruses as well as influenza viruses. Thus, 
proteases were among the first host factors recognized to play a prominent regula-
tory role in virus infection. Moreover, these studies provided for the first time insight 
into the molecular mechanisms underlying viral pathogenicity. These early discov-
eries have been described in detail in previous reviews (Webster RG and Rott R, 
Cell 50, 665-666, 1987; Nagai Y, Trends Microbiol 1, 81-87, 1993; Klenk HD and 
Garten G, in: Cellular Receptors for Animal Viruses, Wimmer E, ed, pp241-280, 
Cold Spring Harbor Press, 1994). Today we know that proteolytic activation of 
envelope proteins is a characteristic feature of many important viral pathogens 
including not only influenza virus but also respiratory syncytial virus, Nipah and 
Hendra viruses, Lassa virus, Marburg and Ebola viruses, SARS and MERS corona-
viruses, yellow fever virus, Dengue virus, Zika virus, and tick-borne encephalitis 
virus, just to name a few. A large number of new activating proteases have also been 
identified that differ in substrate specificity and expression patterns in tissues and 
cell compartments, and the concept has been strengthened that these variations have 
a high impact on the outcome of infection. Of particular interest are activation 
mutants of viruses that have been used for vaccine design. These and other recent 
developments will be discussed in this book. Activation by host proteases observed 
with non-enveloped viruses, such as rotaviruses, will not be addressed.

The first chapters of the book will focus on envelope proteins undergoing proteo-
lytic activation. Most of them induce membrane fusion involving a conformational 
change that is primed by cleavage of the fusion protein itself or by cleavage of an 
accessory protein and then triggered by exposure to low pH or interaction with a 
receptor-binding protein. Based on structural differences, three classes of fusion 
proteins can be discriminated. Class I fusion proteins will be addressed in contribu-
tions by Summer Galloway, Bo Liang, and David Steinhauer on the influenza virus 
hemagglutinin, by Everett Smith and Rebecca Dutch on the F protein of paramyxo-
viruses and pneumoviruses, by Antonella Pasquato, Laura Cendron, and Stefan 
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Kunz on the glycoprotein of arenaviruses, and by Markus Hoffmann, Heike 
Hofmann-Winkler, and Stefan Pöhlmann on the S protein of SARS and MERS 
coronaviruses. Activation of the coronavirus S protein is particularly interesting, 
because it depends on the action of different proteases in concert. As discussed in 
Chap. 5 the GP protein of filoviruses is also a class I fusion protein undergoing 
sequential cleavage by two proteases that removes a large carbohydrate-rich seg-
ment of GP, thereby exposing the receptor binding region and the fusion loop. The 
chapter by Franz Heinz and Karin Stiasny illustrates that activation of the class II 
fusion protein of a flavivirus depends on cleavage of the tightly associated accessory 
prM protein. Processing by host proteases has also been observed with a few viral 
proteins that do not induce membrane fusion. Thus, in the chapter on paramyxovi-
ruses the authors will report that, with some strains of Newcastle disease virus, the 
HN glycoprotein mediating binding to and release from receptors is also activated 
by proteolytic cleavage.

The section on viral proteins will be followed by reviews of the activating prote-
ases. Obviously, endoproteolytic cleavage is not only necessary for the activation of 
viruses, but it is also an essential step in the maturation of many cellular proteins 
with important biological functions, such as peptide hormones, neuropeptides, 
growth and coagulation factors, cell surface receptors, adhesion molecules, and 
transcription factors involved in lipid metabolism. Of the large number of vertebrate 
endoproteases, so far only a fraction has been found to activate viruses. They fall 
into four major groups, each of which will be reviewed in a separate chapter. The 
first enzymes identified were soluble trypsin-like serine proteases. As described in 
the contribution of Hiroshi Kido, these enzymes have several functions in influenza 
virus pathogenesis of which hemagglutinin activation is only one. In recent years a 
still increasing number of membrane-anchored serine proteases (MASPs) have been 
discovered that form the second group (Chap. 8). Proprotein convertases that have 
the widest spectrum of viral glycoprotein substrates form the third group (Chap. 9). 
The fourth group of host proteases processing envelope proteins are cathepsins as 
described in the contribution of Klaudia Brix.

The book will close with a comprehensive overview by Torsten Steinmetzer and 
Kornelia Hardes on protease inhibitors. Elucidation of the structural details of an 
increasing number of proteases provides a solid basis for rational inhibitor design. 
Since host proteases are stable targets, their inhibition should prevent the rapid 
development of resistance that is observed when viral proteins are addressed. There 
is experimental evidence for the antiviral potential of such compounds, and there is 
hope that they may find their way to therapeutic application.

Marburg, Germany� Eva Böttcher-Friebertshäuser
Marburg, Germany� Wolfgang Garten
Marburg, Germany� Hans Dieter Klenk

Preface
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1Activation of the Hemagglutinin 
of Influenza Viruses

Summer E. Galloway, Bo Liang, and David A. Steinhauer

Abstract
The hemagglutinin (HA) glycoprotein of influenza viruses is posttranslationally 
cleaved into the disulfide-linked subunits HA1 and HA2, and this proteolytic pro-
cessing event is critical to the virus life cycle as it is required to activate mem-
brane fusion potential and virus infectivity. High-resolution structures are 
available for the HA precursor (HA0), the cleaved neutral pH conformation of 
HA, and the low pH conformation that the HA assumes when triggered by acidi-
fication of endosomes to mediate fusion of viral and cellular membrane during 
virus entry. These structures have provided clues regarding the mechanisms by 
which proteolytic cleavage activates membrane fusion potential and how subse-
quent acidification drives the fusion process. It has been known for decades that 
influenza strains and subtypes can vary with regard to HA cleavage properties 
and that cleavage site sequences and the proteases that recognize them can rep-
resent a major determinant for virus pathogenicity. However, a number of ques-
tions remain with respect to the identity and characteristics of the proteases that 
activate HAs in the various natural hosts and complex ecosystems that constitute 
the realm of influenza viruses. The continuing study of HA cleavage properties 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75474-1_1&domain=pdf
mailto:nmd3@cdc.gov
mailto:bo.liang@emory.edu
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and the proteases involved should illuminate our understanding not only of 
pathogenicity but other aspects of influenza biology including host range, trans-
mission, and interplay with other microorganisms such as bacteria.

There are three genera of influenza viruses in the Orthomyxoviridae family: the 
influenza A, influenza B, and influenza C. All are human pathogens; however, influ-
enza A viruses are generally of greatest concern as they are responsible for most of 
the annual seasonal epidemics, and their vast natural reservoir in aquatic avian spe-
cies provides a fertile source for the unpredictable emergence of novel pandemic 
strains. For the influenza A and B viruses, the initial stage of entry into host cells is 
mediated by receptor-binding and membrane fusion functions provided by the hem-
agglutinin (HA) glycoprotein. A separate viral surface protein, the neuraminidase 
(NA), is responsible for the receptor-destroying sialidase activity that allows for 
progeny virus dissemination at the end of the replication cycle. For influenza C 
viruses, both the receptor-binding function and receptor-destroying esterase func-
tions are provided by a single glycoprotein, termed HEF, for hemagglutinin/ester-
ase/fusion. The HA and HEF proteins of all influenza viruses share a common 
requirement for protease activation in order to potentiate membrane fusion and acti-
vate virus infectivity. This chapter will focus on the proteolytic activation of the HA 
glycoproteins of influenza A viruses, but many of the concepts outlined herein are 
equally relevant for the HA and HEF proteins of influenza B and C viruses.

The influenza A viruses are distinguished by their complex ecology and dynamic 
transmission cycles involving more than 100 avian species and a range of mamma-
lian hosts (Munster et al. 2007; Slusher et al. 2014; Webster et al. 1992). In aquatic 
birds belonging to the order Anseriformes (ducks, geese, and swans) and 
Charadriiformes (gulls, terns, and shorebirds) that serve as the “natural” hosts of 
influenza A virus, 16 antigenically distinct HA subtypes and 9 NA subtypes are 
known to circulate, though they rarely cause symptomatic disease in these species. 
Under conducive conditions, viruses maintained within the natural reservoir may 
transmit to Galliformes (chickens, turkeys, and quail) and passerine birds or mam-
malian species such as swine, horses, dogs, and humans, causing a range of morbid-
ity and mortality. The outbreaks resulting from cross-species transmission are often 
limited, but when influenza A virus strains become established in a new host, they 
can perpetuate for varying lengths of time and have devastating consequences to 
human health and global economies. Cross-species transmission events of influenza 
A virus are often characterized by the relatively rapid evolution of the virus to facili-
tate adaptation to the new host. These adaptive changes may be influenced by a 
variety of selective pressures, including, but not limited to, the immune response of 
the host; the availability and structure of host cell receptors; variations in host cell 
replication machinery; differences in the site of replication, which may involve pH 
and temperature; and environmental persistence to enable continued transmission. 
While these concepts are generally understood, we are only at the inception of 
understanding the complex interplay of viral and host factors involved in host range, 

S. E. Galloway et al.
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transmission, and pathogenicity of these viruses. What we do know is that HA 
cleavage properties constitute one of the most critical determinants of pathogenicity 
and the environments and biological niches where activating proteases can be found 
in nature may play an important role in the complex ecology of influenza A viruses.

Proteolytic cleavage is a fundamental biochemical process that activates a mul-
titude of functions for viruses as well as their hosts. A requirement for proteolytic 
activation of influenza virus infectivity was first discovered in studies examining 
influenza virus replication in cell culture. For many years after influenza viruses 
were first isolated in the 1930s (Shope 1931; Smith et  al. 1933), embryonated 
chicken eggs were the substrate of choice for influenza virus propagation, and 
even as cell culture systems were developed, only a few strains such as A/WSN/33 
(H1N1) were able to replicate and form plaques on cell monolayers. Decades 
passed before it was reported that virus replication and plaquing efficiency could 
be enhanced appreciably by the addition of proteases such as trypsin or pancreatin 
to the cell monolayers (Appleyard and Maber 1974; Came et al. 1968; Tobita and 
Kilbourne 1974) and that the extent of HA cleavage correlated with cytopathology 
following infection (Lazarowitz et  al. 1973a). These studies were extended to 
show that HA cleavage activation was required for an early stage in the infection 
process, but was not required for virion assembly, hemagglutination, or virus 
adsorption functions (Klenk et  al. 1975; Lazarowitz and Choppin 1975). 
Polyacrylamide gel electrophoresis (PAGE) analyses revealed that cleavage acti-
vation resulted in the digestion of the HA precursor protein (HA0) into faster 
migrating polypeptides known as the HA1 and HA2 subunits. N-terminal sequenc-
ing of the HA2 polypeptides derived from various infectious viruses revealed a 
highly conserved sequence, GLFGAIAGFIE (Skehel and Waterfield 1975), which 
is the N-terminal portion of the domain now universally referred to as the fusion 
peptide. Subsequent studies clearly demonstrated that the critical function acti-
vated by proteolytic cleavage is HA-mediated membrane fusion of the viral and 
endosomal membranes, facilitating transfer of the viral genome into host cells 
during virus entry for replication (Huang et al. 1980, 1981; Maeda and Ohnishi 
1980; White and Helenius 1980).

1.1	 �Structural Basis for Activation of HA Fusion Potential

From a structural perspective, the mechanisms by which influenza HA becomes 
fusogenic upon protease cleavage and the subsequent acid-induced conformational 
rearrangements that drive the membrane fusion process in endosomes are quite well 
developed. For the HA of H3N2 subtype viruses that have circulated in humans 
since 1968, there is high-resolution structural information for the uncleaved HA0 
precursor, the cleaved pre-fusion neutral pH HA present on the surface of infectious 
virions, and the low pH conformation adopted by HA following the acid-induced 
structural rearrangements required for fusion (Bizebard et al. 1995; Bullough et al. 
1994; Chen et al. 1998; Wilson et al. 1981). Therefore, we base most of our struc-
tural discussions on the HA of the 1968 human virus A/Aichi/2/68 (H3N2).

1  Activation of the Hemagglutinin of Influenza Viruses
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For discussion purposes, we generally assume that infection of a new host is 
initiated by virions that contain cleaved HAs on their surfaces and are therefore 
fully activated to facilitate membrane fusion; however, infectious virions can also 
contain mixed ratios of cleaved and uncleaved HAs on their surfaces, and there may 
be examples for which cleavage can also occur in endosomes during the early stages 
of entry. In any case, influenza viruses initiate infection by attaching to sialic acid-
containing glycan receptors on host cell surfaces, followed by entry via the endo-
cytic pathway. The trigger for fusion of the viral and endosomal membranes is the 
acidification of the vesicular compartments by cellular proton pumps. When the 
endosomal pH reaches a critical threshold, usually between pH 6.0 and 5.0 depend-
ing on the viral strain, a number of HA structural rearrangements are triggered that 
coordinately function to drive the fusion process (Bizebard et al. 1995; Bullough 
et al. 1994; Chen et al. 1999). The pre- and post-fusion structures of HA are shown 
in Fig. 1.1, and the conformational changes that take place include detrimerization 
of the membrane-distal head domains, extrusion of the HA2 N-terminal fusion pep-
tide domains from the trimer interior, extension of the long HA2 coiled coil by 
recruitment of the short HA2 α-helix and connecting polypeptide to the N-terminal 
end of the long α-helix of each monomer, and 180° reorientation of the C-terminal 
domain of the long α-helices to “jackknife,” this domain against the central coiled 
coil. The extension of the central coiled coil directs the fusion peptides to the end of 
the low pH structure (the top, as shown in Fig.  1.1, right panel), and residues 
C-terminal to the “jackknifed” helices trace along a groove on the outside of the 
coiled coil, as can be viewed for the polypeptide chain of one monomer to the left 
of the coiled coil in Fig. 1.1, and this places the HA2 C-terminal transmembrane 
domains at the same end of the rod-shaped structure as the fusion peptides (Fig. 1.1, 
right panel). Based on these structural changes, a mechanism for initiating the mem-
brane fusion process can be envisaged, in which hydrophobic fusion peptides are 
“harpooned” into the endosomal membrane to link the viral and cellular membranes 
via the HA2 subunit for influenza A virus, and the 180° “jackknife” of the long heli-
ces bring the viral and endosomal membranes into proximity as a prerequisite for 
the fusion process.

Collectively, the acid-induced HA conformational changes that initiate mem-
brane fusion are irreversible, and the observation that the rodlike low pH HA struc-
ture is considerably more stable than cleaved neutral pH HA (Carr et al. 1997; Chen 
et al. 1995, 1999; Ruigrok et al. 1988) indicates that the cleaved neutral pH HA is a 
metastable molecule that transitions to a more energetically stable form during the 
fusion process. In contrast, the uncleaved HA is relatively unresponsive to acidifica-
tion with respect to structural rearrangements, suggesting that proteolytic cleavage 
primes the HA for fusion by allowing it to adopt the metastable conformation that 
can be triggered by acidification to induce membrane fusion. A comparison of the 
structures of the HA0 and cleaved neutral pH HA reveals that only 19 residues relo-
cate upon protease cleavage (Chen et al. 1998; Wilson et al. 1981); however, two 
critical prerequisites for fusion transpire upon cleavage. First, protease cleavage 
liberates the hydrophobic fusion peptide from its internal position within the HA0 
polypeptide chain, becoming the N-terminal domain of the newly generated HA2 

S. E. Galloway et al.
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Fusion
peptide

Linker
region

Low pH

Relocation of the
fusion peptide

c c c

Fig. 1.1  Structures of the neutral pH cleaved HA (left) and the low pH conformation (right) 
assumed when membrane fusion is triggered by acidification of endosomes. In the neutral pH 
structure (left), the HA1 subunit is shown in blue, the HA2 subunit is in gray, and the C-terminal 
residues of HA1 are highlighted in green, and HA2 N-terminal fusion peptide residues highlighted 
in red. Keep in mind that the neutral pH structure is derived from HA ectodomains solubilized by 
proteolytic treatment of virions, which removes the HA transmembrane domains located near the 
C-terminus of each HA2 subunit (the viral membrane would be at the bottom of the figure). The 
low pH rodlike structure (right) is composed entirely of HA2 residues (gray). Hatched lines indi-
cate regions for which the structure is unknown as they are disordered in the crystal structure 
(linker region) or were removed by proteolysis to solubilize the protein for crystal preparation 
(fusion peptide). The rodlike structure illustrates that fusion peptide residues are relocated to the 
same end of the helical rod as the C-terminal end of the polypeptide chains (labeled C) that are 
proximal to the membrane anchor domains (removed by protease treatment); therefore, the viral 
and endosomal membranes are pulled into close proximity with one another by acid-induced con-
formational changes

1  Activation of the Hemagglutinin of Influenza Viruses
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subunit. Second, the N-terminal 10 residues of the HA2 fusion peptide relocate into 
a “cavity” present in the interior of the trimeric HA0 structure and form new con-
tacts with a number of ionizable residues that line the cavity. These structural 
changes are depicted in Fig. 1.2, which shows a side view of the HA0 and cleaved 
HA ectodomains as well as a view down the threefold axes of symmetry. In the 
uncleaved HA0 structures (panels a and c), the cleavage loop extends out into solu-
tion; the conserved arginine residue that serves as the cleavage site of each mono-
mer is indicated by the arrows. The residues colored in green and red are the ones 
that relocate upon protease cleavage; the relocation of HA2 N-terminal residues 
(indicated in red) into the trimer interior is best illustrated when viewed down the 
threefold axis of cleaved HA (panel d).

A preponderance of evidence suggests that the new contacts formed when the 
HA2 N-terminal fusion peptide inserts into the interior of the HA trimer are critical 
for priming the metastable HA structure for subsequent acid-induced conforma-
tional changes. First, let us consider the fusion peptide itself. The N-terminal 11 
residues of HA2 constitute the most highly conserved region of the HA, completely 
conserved in nearly all strains of the 16 influenza A HA subtype viruses and differ-
ing by only one residue in most influenza B strains (Cross et al. 2009; Nobusawa 
et al. 1991) (Table 1.1). Surprisingly, HAs having mutations in the fusion peptide 
domain that retain membrane fusion functionality can be selected for in the labora-
tory and generated easily by reverse genetics and have been documented at nearly 
every position (Cross et al. 2001, 2009; Daniels et al. 1985; Gething et al. 1986; 
Korte et al. 2001; Lin et al. 1997; Nobusawa et al. 1995; Orlich and Rott 1994; Qiao 
et al. 1999; Steinhauer et al. 1995; Yewdell et al. 1993). However, nearly all HA 
fusion peptide mutants with substitutions in the N-terminal 10 residues mediate 
membrane fusion at elevated pH relative to wild-type (WT) HA (Cross et al. 2009). 
Furthermore, when infectious viruses containing such mutants are generated by 
reverse genetics, minimal passage frequently results in either reversion to the WT 
HA residue or pseudoreversion at the position that was altered (Cross et al. 2001). 
These observations suggest an evolutionary pressure on the HA beyond that which 
operates on functional interactions with target membranes and suggest that fusion 
peptide contacts in the metastable cleaved neutral pH HA serve as pH “sensors” that 
are reactive to acidification. As mentioned previously, in the HA0 structure, the 
cleavage loop is proximal to a cavity lined with ionizable residues, which are sub-
sequently buried by the fusion peptide upon proteolytic cleavage (Chen et al. 1998). 
Since the relocation of fusion peptide residues constitutes the only structural change 
that takes place following cleavage, the newly formed contacts are likely to play a 
role in potentiating fusion activity. An analysis of this region of cleaved HA shows 
that HA2 ionizable residues Asp109 and Asp112 are invariantly conserved and form 
numerous hydrogen bonds with the fusion peptide. Other residues of interest in this 
region include conserved histidine residues that may serve as potential “trigger” 
residues for initiating acid-induced conformational changes. The pKa of the histi-
dine side chain is around pH 6.0 in aqueous solution, and therefore, protonation of 
such residues would occur within the biologically relevant range during endosomal 
acidification, if accessible to solvent. Of particular interest are HA1 position 17 and 

S. E. Galloway et al.
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a b

c d

Fig. 1.2  Structures of the HA ectodomains of A/Aichi/2/68 virus (H3N2 subtype). Panels a and c 
represent uncleaved HA0 viewed side-on (a) or side-down the threefold axis of symmetry (c), and 
panels b and d represent cleaved neutral pH HA from the same orientations. The residues that 
constitute the HA1 subunits are shown in blue and HA2 in gray, and these residues do not relocate 
following cleavage (they are superimposable in the two structures). The cleavage loops of HA0 are 
shown in red and green in panels a and c with arrows indicating the site of cleavage at residue Arg 
329. These are the only residues that relocate following cleavage, with residues that constitute the 
N-terminus of HA2 (red) inserting into the trimer interior, as illustrated most clearly in panel d

1  Activation of the Hemagglutinin of Influenza Viruses
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HA2 positions 106 and 111. The 16 HA subtypes that circulate in aquatic birds can 
be phylogenetically and structurally segregated into two groups (Air 1981; 
Nobusawa et al. 1991; Russell et al. 2004), Group-1 (H1, H2, H5, H6, H8, H9, H11, 
H12, H13, H16) and Group-2 (H3, H4, H7, H10, H14, H15), and these three posi-
tions (HA1 17 and HA2 106 and 111) segregate along evolutionary lines and are well 
conserved within groups. In Group-1, HA1 17 is a tyrosine, HA2 106 is an arginine, 
and HA2 111 is a histidine; in Group-2, HA1 17 is a histidine, HA2 106 is a histidine, 
and HA2 111 is a threonine. Extensive mutagenesis studies on these residues of an 
H3 subtype (Group-2) HA reveals that HA1 His17 may play a role in triggering 
structural changes upon acidification (Thoennes et al. 2008). In Group-1 HAs, HA1 
17 is a tyrosine, but nearby HA2 residue His111 is invariantly conserved and may 
serve an equivalent role to Group-2 HA1 His17, and indeed, mutagenesis studies on 
a number of Group-1 HAs suggest that changes to His111 result in the inactivation 
of fusion activity (J. Trost, D.A.S., unpublished).

A number of additional studies support the idea that the contacts made between 
the fusion peptide and the cavity region may be critical in triggering acid-induced 
structural rearrangements. HA mutants that mediate membrane fusion at elevated 
pH relative to WT can be found throughout the HA trimer at domain interfaces 
that rearrange upon acidification (Byrd-Leotis et  al. 2015; Cross et  al. 2001; 
Daniels et al. 1985; Doms et al. 1986; Gething et al. 1986; Lin et al. 1997; Qiao 
et al. 1999; Steinhauer et al. 1995; Thoennes et al. 2008; Zaraket et al. 2013b), 
whereas stabilizing mutations, or those resulting in an HA that mediates mem-
brane fusion at a lower pH compared to WT, have been identified at fewer posi-
tions to date (Byrd-Leotis et  al. 2015; Steinhauer et  al. 1991; Thoennes et  al. 
2008; Xu and Wilson 2011; Zaraket et al. 2013a). The identification of mutants 
that mediate membrane fusion at higher or lower pH relative to WT provided for 
the rational design of double mutant HAs, in which mutations known to confer 
high- and low-pH phenotypes were generated in various combinations to examine 
the cumulative effects. These studies revealed that when the structural locations of 
the mutations were proximal, the pH phenotype was additive, whereas when the 
mutations were distal to one another, the phenotype of one mutation was domi-
nant, with changes in the fusion peptide region being most critical in determining 
the overall fusion phenotype (Steinhauer et al. 1996). These results supported data 
on the kinetics of conformational changes, as determined using a panel of confor-
mation-specific monoclonal antibodies, which showed that structural alterations 
in the stem region preceded changes in the HA head domains (White and Wilson 
1987). These interpretations were further supported by experiments on the fusion 
kinetics of single virions with planar lipid bilayers, which indicated that the 
“withdrawal” of the fusion peptide from the trimer interior is the rate-limiting step 
(Ivanovic et al. 2013). In addition, another study involving hydrogen-deuterium 
exchange and mass spectrometry approaches revealed that release of the fusion 
peptide occurs prior to the structural changes involving coiled-coil rearrange-
ments (Garcia et  al. 2015), and studies on the membrane fusion process by 
Cryo-EM indicate that extrusion of the fusion peptide and insertion into the target 
membrane as extended intermediates precedes the foldback into helical rods at 
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fusion “dimples” where membrane merger occurs (Calder and Rosenthal 2016). 
Overall, the data strongly support a mechanism by which HA0 cleavage and coin-
cident conformational changes prime the cleaved neutral pH structure for fusion 
by generating functional fusion peptides and critically relocating them to struc-
tural regions that can respond to acidification.

1.2	 �Structure of HA0 Cleavage Sites

Not only is cleavage activation required for infectivity, but the available evidence 
indicates that the sequence and structure of the HA cleavage loop may reveal clues 
about the ability of HAs to serve as substrates for specific activating proteases and 
dictate traits such as the pathogenicity of influenza strains and the ecology and host 
range of influenza viruses. To date, the HA0 precursor structure of three HA sub-
types has been determined: the H3 subtype described above from a human 1968 
pandemic H3N2 virus (Chen et al. 1998), the H1 subtype representing 1918 human 
pandemic H1N1 strains (Stevens et al. 2004), and the H16 subtype from an H16N3 
avian virus isolated from a black-headed gull (Lu et al. 2012). Figure 1.3 depicts 
these three structures as a single monomer of the trimer, viewed from equivalent 
orientation. A visual comparison of these structures reveals major differences in 
the structural elements of the cleavage loop, including the location of the Arg329 
cleavage site (green). Shown in yellow are the conserved electronegative residues 
discussed above, HA2 D109 and D112, HA2 His 17 for H3, and HA2 His 111 for 
H1 and H16. The H3 Arg329 cleavage site is located within a relatively standard 
loop structure that orients away from the trimer surface, leaving it easily accessible 
at a distal position in the loop. Unlike the H3 HA0, the loop structure of the H1 
HA0 packs against the surface of the trimer, and the Arg329 residue is positioned 
such that it covers the electronegative cavity, though it orients out into solution. 
The H16 cleavage loop is somewhat similar to the H1 loop in that it packs against 
the trimer surface, but unlike the other two, it contains a five-residue α-helix that 
includes positions 325 through the Arg329 that is cleaved by activating proteases. 
Remarkably, this helix covers the electronegative cavity and orients the side chain 
of Arg329 into the cavity where it forms a salt bridge with highly conserved HA2 
residue D112. The orientation of Arg329 in H16 HA0 is likely a factor in limiting 
its accessibility to proteases that can activate other subtypes, but not H16 (see 
below). It is possible that the differences in cleavage loop structures may exist, in 
part, due to the location of proximal glycosylation sites, which for H1 and H16 is 
at HA1 N20 (H3 numbering), whereas for H3 the glycosylation site is slightly far-
ther away at HA1 N22 (Chen et al. 1998; Lu et al. 2012; Stevens et al. 2004). It 
should also be noted that the H3 HA0 structure was derived from protein expressed 
in mammalian cells, and the H1 and H16 structures were based on proteins 
expressed using baculovirus expression systems. It will be very interesting to 
extend our knowledge of HA0 precursor structures to additional subtypes and 
relate these to data that is accumulating on the range of proteases capable of acti-
vating individual HA subtypes.

S. E. Galloway et al.
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1.3	 �Activating Proteases

Whereas the residues of the cleavage loop that constitute the N-terminal portion of 
the fusion peptide are highly conserved, the upstream residues between the highly 
conserved Pro324 (H3 numbering) and Arg329 cleavage site are quite variable 
among subtypes and provide important clues regarding cleavage activation and the 
proteases involved (Tables 1.1 and 1.2). In particular, variations in the number and 
sequence of arginine and lysine residues at the cleavage site account for major differ-
ences in proteolytic activation and proved to be critical determinants of pathogenicity 
(Bosch et  al. 1981; Garten and Klenk 1999; Klenk and Garten 1994; Steinhauer 
1999) and host range (Galloway et al. 2013). Other factors that can influence the 
capacity for particular proteases to activate HAs include the presence or absence of 
nearby carbohydrates that can alter the accessibility of an activating protease 
(Deshpande et al. 1987; Kawaoka et al. 1984; Kawaoka and Webster 1989; Ohuchi 
et al. 1991). Studies on a wide range of influenza strains and subtypes have addressed 

a

D2 109

D2 112

H3 H1 H16

D2 109

D2 112

D2 109

D2 112
R329

b c

Fig. 1.3  Cleavage site structures showing a single monomer of the HA0 trimer for H3 subtype (a), 
H1 subtype (b), and H16 subtype (c). (a) The cleavage domain of H3 (red) forms a loop structure 
with R329 (green) oriented out into solution. Shown in yellow are residues that line the electro-
negative cavity, residues HA2 D109, HA2 D112 (subscript denotes the HA2 subunit in the figure), 
and HA1 His 17 (between D2112 and R329). (b) The cleavage domain of H1 (magenta) packs more 
closely against the trimer, but R329 (green) remains oriented out into solution. HA2 D109, HA2 
D112, and HA2 H111 are shown in yellow, though H111 is on the opposite face of the long helix 
and largely hidden in the depicted orientation. (c) The cleavage domain of H16 (orange) contains 
a small helical domain that orients the side chain of R329 (green) into the electronegative cavity, 
where it forms a salt bridge with HA2 D112 (again, ionizable residues shown in yellow). In all 
panels, residues that will constitute the HA1 and HA2 subunits following cleavage are shown in 
blue and gray, respectively
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functional activation of infectivity or fusion potential, and a variety of candidate 
proteases have been identified that activate low pathogenic avian influenza (LPAI) 
viruses and mammalian strains at monobasic cleavage sites. They include mem-
brane-anchored serine proteases (MASP) (see Chap. 8) such as human airway trypt-
ase (HAT) (Bottcher et  al. 2006; Bertram et  al. 2012), transmembrane protease, 
serine S1 member 2 (TMPRSS2) (Bottcher et al. 2006; Chaipan et al. 2009; Hatesuer 
et al. 2013; Sakai et al. 2014; Tarnow et al. 2014), TMPRSS4 (Bertram et al. 2010a; 
Kuhn et al. 2016), and matriptase (Baron et al. 2013; Hamilton et al. 2012), as well 
as soluble serine proteases (see Chap. 9) such as tryptase Clara (Kido et al. 1992), 
plasmin (Lazarowitz et al. 1973b), and kallikrein-related peptidases (Hamilton and 
Whittaker 2013). In considering the numerous studies published to date on an 
extended panel of proteases, it is apparent that no single universal protease is involved 
in activating the membrane fusion potential of the HA, as most of the proteases 
examined activate subsets of viruses in nonoverlapping fashion and with extensive 
variation in cleavage efficiency. For example, Galloway et al. (2013) characterized 
cleavage activation from representatives of all 16 avian HA subtypes and several 
human strains for activation by trypsin, HAT, and TMPRSS2 and observed a variety 
of phenotypes. Trypsin displayed fairly broad cleavage activation, but showed low or 
no activity for H12, H13, and H16 subtype HAs, whereas HAT was more limited in 
its ability to cleave various subtypes, but was able to cleave H9, H11, and H12 HAs. 
On the other hand, TMPRSS2 was broadly effective but demonstrated no activity 
against H8 and H12 and was the only one of the three proteases examined in this 
study that showed specificity for the H13 and H16 HAs. Interestingly, H13 and H16 
appear to have a limited host range, generally being isolated only from Charadriiformes, 
such as gulls and shorebirds, suggesting perhaps that cleavage activation can serve as 
a host range determinant for particular viruses. Furthermore, a study documenting a 
repository of Eurasian-lineage reverse genetics vectors and recombinant viruses 
found that the H13 and H16 recombinant viruses were only able to be recovered 
when transfected 293T cells were injected into embryonated chicken eggs for further 
propagation; embryonated chicken eggs are known to express a factor Xa-like serine 
protease that is capable of cleaving HA0, which may provide the rationale for this 
observation (Keawcharoen et al. 2010). As mentioned previously, the cleavage loop 
of the H16 HA appears to be rather structured with the critical Arg329 less exposed 
than observed in the loop structure of the H3 subtype HA. This may be indicative of 
host-specific proteases found in Charadriiformes that have greater activity against 
H13 and H16 HA substrates, but this remains to be determined. Additionally, it was 
shown that human TMPRSS2 homologues in chicken and swine were capable of 
activating an influenza virus having a monobasic cleavage site in vitro (Bertram et al. 
2012). In another example, studies using matriptase have shown that it can efficiently 
activate H1 and H9 subtype viruses, but is much less effective against H2 and H3 
subtypes. Furthermore, while matriptase was able to cleave H1 subtype HAs, in gen-
eral, it displayed selective activity against certain H1 subtype strains (Baron et al. 
2013; Hamilton et al. 2012). Similarly, studies examining the cleavage activity of the 
thrombolytic proteases kallikrein (KLK) 5 and 12 with various HA strains belonging 
to H1, H2, and H3 subtypes found that KLK5 and KLK12 displayed differential 
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activity against HAs within and across subtypes. For example, KLK12, but not 
KLK5, was able to cleave H2 HA; the opposite was observed with the H3 HAs 
examined. For the H1 HAs, KLK5 and KLK12 were able to efficiently cleave the HA 
from A/California/04/2009 (H1N1), but have substantially reduced activity against 
other H1 strains, such as A/New Caledonia/99, A/South Carolina/18, and the lab-
adapted strains A/Puerto Rico/8/34 and A/WSN/33 (Hamilton and Whittaker 2013

Inextricably linked to the recognition of HA as a substrate by activating prote-
ases is the requirement for the protease to generate specific cleavage products con-
taining fusion-competent sequences at the HA2 N-terminus. As mentioned 
previously, the HA2 N-terminal fusion peptide domain that results from cleavage is 
the most conserved region in HA, with the sequence GLFGAIAGFIE being virtu-
ally invariant in natural isolates. Studies have shown that HA digestion by proteases 
such as thermolysin, which cleaves between the Gly1 and Leu2 of authentic HA2, 
renders the HA inactive for fusion and results in noninfectious virus (Garten et al. 
1981; Lazarowitz and Choppin 1975; Orlich and Rott 1994; Steinhauer et al. 1995). 
Interestingly, the selection of influenza viruses capable of replicating in the pres-
ence of thermolysin revealed HA mutants having a single amino acid insertion just 
downstream of the Leu2, effectively restoring the length and spacing of critical resi-
dues of the fusion peptide (Orlich and Rott 1994), and fusion peptide length as well 
as composition has been demonstrated as a requirement for fusion function (Langley 
et al. 2009; Steinhauer et al. 1995). As mentioned previously, the HAT protease was 
able to generate HA1 and HA2 cleavage products with similar mobility as HAs 
digested with trypsin, but the HAT-cleaved H12 HA was not capable of mediating 
membrane fusion (Galloway et al. 2013). It was also shown that a recombinant virus 
expressing the H12 HA replicated poorly in MDCK cells, but replicated quite well 
in embryonated chicken eggs (Keawcharoen et  al. 2010), which express a factor 
Xa-like serine protease that is capable of activating HA0 (Gotoh et al. 1990).

An influenza HA cleavage anomaly is observed from studies on the H1N1 strain 
A/WSN/33. This is a lab-adapted neurovirulent strain selected by passage of the 
first human influenza A isolate A/WS/33 (Smith et al. 1933) in mouse brain (Francis 
and Moore 1940) and is efficiently cleaved by the fibrinolytic protease plasmin 
(Lazarowitz et al. 1973b). The mechanism by which plasmin-mediated HA cleav-
age occurs was shown to be moderated by the ability of the NA of A/WSN/33 
(H1N1) to sequester plasminogen, the zymogen precursor to plasmin, until it is 
converted to plasmin and able to cleave HA0 into HA1 and HA2. The ability of the 
NA to sequester plasminogen was shown to be dependent on the absence of a car-
bohydrate at position 146 (N2 numbering) and the presence of a carboxy-terminal 
lysine (Lys453) (Goto and Kawaoka 1998; Li et al. 1993). This feature has only 
been observed for the A/WSN/33 NA, but shows specificity for multiple HA sub-
types (Goto and Kawaoka 1998). The HA cleavage site sequence of the A/WSN/33 
H1 HA contains a serine to tyrosine substitution at the P2 position, resulting in the 
cleavage site IQY↓R rather than IQS↓R, as is found in most H1 HAs (Table 1.1) 
(Sun et al. 2010). In addition to the A/WSN/33 H1 HA, a subsequent study reported 
on the acquisition of a similar cleavage site sequence in a more contemporary sea-
sonal H1N1 strain, A/Beijing/718/2009, that is preferentially cleaved by plasmin 
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(Tse et al. 2013). These data are consistent with other studies showing that bulky 
hydrophobic amino acids, such as tyrosine, in the P2 position promote HA cleavage 
by plasmin. Unlike the A/WSN/33 HA, the ability of the HA to be cleaved by plas-
min was found to be independent of the NA. Proteolytic conversion of plasminogen 
into plasmin is mediated by plasminogen activators. It has recently been shown that 
interferon stimulates the expression of the plasminogen activator inhibitor PAI-1 
which prevents not only activation of plasmin but inhibits also other HA-activating 
proteases, such as TMPRSS2 and HAT. Inhibition of proteolytic activation of HA 
may therefore be an important mechanism in innate immunity (Dittmann et  al. 
2015).

Most studies evaluating the proteolytic activation of HA have been cell-based or 
in vitro studies; however, following the discovery of the ability of TMPRSS2 to 
cleave influenza A virus HA (Bottcher et al. 2006), several groups investigated this 
further in knockout and mutant mice by examining the ability of several different 
influenza A viruses to replicate and cause disease in Tmprss2-deficient mice. These 
studies showed that H1N1-, H3N2-, and H7N9-infected Tmprss2-deficient mice 
were generally protected from influenza-associated morbidity and mortality 
(Hatesuer et al. 2013; Sakai et al. 2014; Tarnow et al. 2014). TMPRSS2-mediated 
influenza virus replication in vivo appears to be limited to influenza A viruses, as a 
recent study showed that influenza B viruses were able to efficiently replicate and 
cause disease in Tmprss2-deficient mice (Sakai et al. 2016).

Many of the proteases that have been implicated in activating cleavage are 
secreted and activate HA extracellularly; however, proteases such as TMPRSS2, 
TMPRSS4, and HAT have membrane-bound forms that may be active during HA 
transport or at the plasma membrane (Bottcher et al. 2009). In addition, a descrip-
tion of A/WSN/33 HA cleavage in endosomes during virus entry, distinct from the 
plasmin-directed cleavage described above, has been reported (Boycott et al. 1994). 
Though this was unique for MDBK cells and the protease involved was not identi-
fied, cell-associated proteases have the potential for HA activation during entry as 
well as during transport following de novo synthesis (Zhirnov et  al. 2002). 
Cumulatively, it appears that among influenza strains, a broad range of proteases 
have the potential to activate infectivity and that activation can occur in cell-
associated fashion at early or late stages of the replication cycle or extracellularly 
during virus spread in a host or during transmission (see Fig. 1.2 of Bertram et al. 
(2010b) and Fig. 1.1 of Bottcher-Friebertshauser et al. (2014) for useful illustra-
tions). Proteolytic activation of HA is also an important pathogenic mechanism in 
viral-bacterial coinfection. It has long been known that various bacteria, including 
Staphylococcus aureus, secrete proteases that cleave HA and promote the develop-
ment of pneumonia in virus-infected mice (Tashiro et  al. 1987; Maeda 1996). 
Moreover, bacterial proteases may activate host proteases that cleave HA 
(Scheiblauer et al. 1992).

Perhaps less complicated are the HAs having cleavage site sequences that consist 
of a stretch of polybasic amino acids, with the general sequence motifs of R-X-(K/
R)-R, which can be cleaved in the trans-Golgi by subtilisin-like proteases (see Chap. 
10) such as furin and proprotein convertase 5/6 (PC5/6) (Horimoto et  al. 1994; 
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Klenk et al. 1984; Stieneke-Grober et al. 1992). The polybasic motif K-K-K-R that 
has only been observed on rare occasions with highly pathogenic avian influenza 
(HPAI) viruses (Kawaoka et al. 1984) is cleaved by TMPRSS13 belonging to the 
MASP group (Okumura et al. 2010). Notably, furin has been shown to proteolyti-
cally activate several other viral glycoproteins, including the respiratory syncytial 
virus fusion (F) protein, human immunodeficiency virus envelope glycoprotein 
GP120, Crimean-Congo hemorrhagic fever virus Gn protein, and the Ebola virus 
GP, among others (Klenk and Garten 1994; Chaps. 2, 5, 9 this volume). Polybasic 
cleavage sites are only observed with avian influenza viruses of subtypes H5 and H7 
(Tables 1.1 and 1.2). Due to the ubiquitous expression of the proteases activating at 
polybasic cleavage sites, the viruses cause systemic infection with high lethality in 
poultry. The HPAI viruses evolve from LPAI variants by insertion of the polybasic 
motif (Garten and Klenk 1999; Klenk and Garten 1994; Steinhauer 1999). As a 
result of the insertion, the cleavage site loop is extended (Table 1.2), and this exten-
sion appears to be essential for high cleavability, since HAs that have acquired the 
polybasic motif by amino acid substitution are not cleaved by furin (Bottcher-
Friebertshauser et al. 2014). However, sensitivity to furin is not always sufficient to 
confer a HP phenotype. Veits et al. (2012) assessed the capability of multiple HA 
subtypes to support a HP phenotype by genetically modifying the HA of H1, H2, 
H3, H4, H6, H8, H10, H11, H14, and H15 subtypes to contain a polybasic cleavage 
site, followed by the rescue of reassortants after co-transfection with the genes of 
either a low pathogenic H9N2 or a high pathogenic H5N1. Their results showed that 
only the reassortants consisting of the polybasic H2, H4, H8, or H14 HA and the 
remaining genes from the HP H5N1 were capable of supporting the HP phenotype 
of lethality in chickens. While this study does not rule out the capability of other 
subtype HAs supporting the HP phenotype, potentially with a different reassorting 
virus, it does highlight the fact that the polybasic cleavage site alone is not suffi-
cient, and while H5 and H7 subtypes may be predisposed to acquiring a HP pheno-
type, other HA subtypes are also capable of supporting a HP phenotype.

There is no clear pathway for the emergence of highly pathogenic viruses. 
Aquatic birds generally display asymptomatic infection with both LPAI and HPAI 
viruses, despite the fact that they replicate equally well in aquatic birds and poultry, 
which makes surveillance for HPAI viruses difficult until they present in poultry. In 
some cases, the emergence of HPAI viruses is through direct transmission from 
aquatic birds, such as ducks and geese, to poultry, but there have been instances of 
transmission of HPAI viruses to poultry via aquatic or passerine birds, such as spar-
rows and starlings, which may display less severe pathogenicity than poultry to 
infection with HPAI viruses. In other cases, HPAI viruses have evolved from LPAI 
virus progenitors after introduction to poultry (Steinhauer 1999; Xu et al. 2017).

There are currently two primary mechanisms postulated to be responsible for 
the insertion of additional nucleotides that encode for basic amino acids. The first 
is believed to arise through accumulation of point mutations from polymerase slip-
page of the RNA-dependent RNA polymerase (RdRp) on purine-rich sequences, 
which are characteristic of the HA cleavage site coding sequences of many H5 and 
H7 viruses (Perdue et al. 1997). Notably, RdRp slippage on purine-rich or poly(A) 
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sequences is a common feature of many RNA viruses. Briefly, during RNA synthe-
sis of the (+)-sense template, the RdRp may encounter a region of secondary struc-
ture near the cleavage site sequence that causes the RdRp to pause and “slip,” or 
release and reprime, on these purine-rich or poly(A) sequences, resulting in the 
insertion of nucleotides. When these inserted nucleotides maintain the reading 
frame of the HA and display relative fitness in a given environment, these viruses 
may be selected for during replication, resulting in the emergence of a novel HPAI 
virus. The second mechanism is based on RNA recombination of viral or host RNA 
with that of the influenza A virus HA gene segment. To date, this has only been 
reported for H7 HPAI viruses. For example, sequence analysis of the viruses 
responsible for an outbreak of H7 HPAI in Mexico in 2012 revealed the presence 
of an eight-amino acid insertion (DRKSRHRRTR↓GLF) that resulted from RNA 
recombination with a host 28S rRNA (Maurer-Stroh et al. 2013); however, the first 
report of RNA recombination with a eukaryotic 28S rRNA was by Khatchikian 
et al. (1989) when the authors described the adaptation of A/turkey/Oregon/1971 
(H7N3) to chicken embryo cells, which are not permissive for HA cleavage with-
out the addition of exogenous trypsin. Upon sequencing, the authors discovered a 
54-nucleotide (18 amino acids) insertion (SLSPLYPGRTTDLQVPTAR↓G) that 
resulted in an HA that could be cleaved in chicken embryo cells in the absence of 
exogenous trypsin as well as in MDCK, BHK, MDBK, and Vero cells. The recom-
bination event was postulated to occur by polymerase jumping using the rRNA as 
a template during (+)-sense RNA synthesis of the (−)-sense RNA template. 
Notably, the (+)-sense sequence upstream of the insertion site, AAAGACUA, is 
identical to the 3′ border of the inserted 28S rRNA sequence, yielding a palin-
dromic sequence (AAAGACU) in the adapted HA gene. Evidence for nonhomolo-
gous recombination in the laboratory has also been observed between viral HA and 
NP sequences with A/seal/Mass/1/80 virus (H7N7), resulting in cleavage loop 
insertions and accompanied by increased pathogenicity (Orlich et al. 1994). Similar 
recombination events between viral RNA sequences were subsequently observed 
in two separate outbreaks of H7 HPAI viruses reported in British Columbia in 2004 
and Chile in 2002, both of which were the result of H7 LPAI acquiring insertions 
from an influenza gene segment that yielded a highly pathogenic variant (Pasick 
et  al. 2005; Suarez et  al. 2004). The strains isolated in British Columbia had a 
seven-amino acid insertion (QAYQKR/QMTR↓G) derived through RNA recombi-
nation with the M gene segment (M1), and the strains isolated in Chile had a ten-
amino acid insertion (CSPLSRCRETR↓G) derived through RNA recombination 
with the NP gene segment. Analysis of several HPAI H7 HAs revealed the presence 
of palindromic sequences surrounding the insertions at the HA cleavage site 
(Maurer-Stroh et al. 2013). More recently, an outbreak of LPAI H7N9 in China is 
currently in its sixth epidemic wave and has been responsible for more than 1500 
laboratory-confirmed human infections since its emergence in 2013 (WHO 2018). 
In December 2016, the emergence of an HPAI variant of the H7N9 virus was 
detected in two human patients as well as poultry that has a four-amino acid inser-
tion (KRKRTAR↓G) in the HA cleavage site postulated to have originated from a 
nonhomologous recombination event (Zhang et al. 2017; Zhu et al. 2017). These 
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observations highlight the need to continue rigorous surveillance to monitor emerg-
ing strains for the presence of HA cleavage site characteristics that could lead to 
HP phenotypes.

�Concluding Remarks

The link between HA cleavage properties and pathogenicity has been recog-
nized for decades, beginning with early studies elucidating the effect of exog-
enous trypsin on influenza A virus replication in cell culture to the continual 
threat of emerging viruses with modified cleavage site sequences that confer a 
high pathogenic phenotype. Clearly, a variety of both cell-associated and 
secreted proteases are capable of cleavage activation of influenza A virus HA, 
in strain-specific fashion. Despite our existing body of knowledge, many gaps 
remain that relate to the identity and characteristics of proteases that activate 
most influenza viruses during replication and transmission in nature, to why 
certain subtypes are more prone to cleavage site modifications that yield high 
pathogenic phenotypes, and to what extent host-specific proteases restrict the 
transmission dynamics of certain influenza A virus HA subtypes. Continued 
investigation to endeavor to fill these gaps is important to our understanding 
of influenza virus biology and ecology and has critical implications for the 
development of novel cleavage-specific therapeutics to decrease influenza 
morbidity and mortality as well as a better understanding of the parameters 
contributing the emergence of novel pandemic and/or highly pathogenic influ-
enza viruses. For influenza viruses that infect humans, further identification of 
candidate proteases as well as more detailed examination of those currently 
identified could lead to the development of antiviral strategies designed to 
inhibit cleavage activation. The inhibition of HA-activating proteases would 
present a novel therapeutic strategy for influenza A virus infection; however, 
as with any therapy that targets a host protein, there are substantial safety 
concerns. Interestingly, knockout mice generated for the TMPRSS2 studies 
discussed in this chapter were found to lack a discernable phenotype (Kim 
et  al. 2006; Sales et  al. 2011), providing conservative optimism for further 
pursuing this overall strategy. For all influenza strains, the virus must encoun-
ter an HA-activating protease at some stage of the replication or transmission 
cycle, be it during transport of newly synthesized HAs, at infected cell sur-
faces or during spread within infected hosts, or even at appropriate sites of 
infection in a new host, and this simple biochemical process can potentially 
have profound implications for a broad range of phenotypes related to virus 
stability, pathogenicity, host range, and natural ecology.
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Abstract
Viruses in the families Paramyxoviridae and Pneumoviridae infect multiple ani-
mal species, and infection can result in varying disease severity. Membrane 
fusion is an obligate early step during infection and is driven primarily by viral 
fusion (F) proteins present on the viral envelope. F-mediated membrane fusion 
begins with insertion of a hydrophobic fusion peptide into the cell membrane 
and, through a series of conformational changes, culminates in the merger of 
both the viral and cellular membranes. Proteolytic processing N-terminal to the 
fusion peptide enables insertion into the cellular membrane, making this cleav-
age event an essential step in F-promoted membrane fusion. While all F proteins 
are cleaved by host proteases, the protease utilized and location of F cleavage 
vary widely among paramyxo- and pneumoviruses. With some paramyxoviruses, 
proteolytic activation of the hemagglutinin-neuraminidase (HN) glycoprotein 
has also been observed involving removal of a C-terminal extension from a pre-
cursor that blocks the attachment function of this protein. The availability of 
protein structures and extensive studies on the spatial and temporal processing 
details have illuminated many important aspects of proteolytic activation of these 
proteins. However, why such disparate proteolytic cleavage pathways evolved 
and to what extent they affect pathogenesis are less well understood.
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2.1	 �Paramyxoviruses and Pneumoviruses

The Paramyxovirus and Pneumovirus families include significant human and ani-
mal pathogens, along with model viruses which have been used for decades to dis-
sect viral infection processes in laboratory studies (Lamb and Parks 2013). The 
paramyxoviruses include measles virus (MeV) and mumps virus (MuV), both 
pathogens which are effectively targeted by vaccines but which have seen a world-
wide resurgence, primarily due to low vaccination rates (Phadke et al. 2016). This 
family also contains the human parainfluenza viruses (HPIV 1–4), which are signifi-
cant causes of respiratory tract infection, and the zoonotic Hendra and Nipah 
viruses, categorized as BSL-4 agents due to their high mortality rates and lack of 
available vaccines or approved antivirals. Paramyxoviruses such as parainfluenza 
virus 5 (PIV5) and Sendai virus (SeV), while not causing disease in humans, have 
been extensively used in research. The pneumoviruses, which until 2016 were clas-
sified as a subfamily within the paramyxovirus family, include human respiratory 
syncytial virus (HRSV), a leading cause of hospitalization due to respiratory infec-
tion for young children, and human metapneumovirus (HMPV), a respiratory 
pathogen identified in 2001 (van den Hoogen et al. 2001) that is a major cause of 
respiratory tract disease worldwide.

The family Paramyxoviridae includes seven genera: Aquaparamyxovirus, 
Avulavirus, Ferlavirus, Henipavirus, Morbillivirus, Respirovirus, and Rubulavirus. 
All members of the family have non-segmented negative-sense RNA genomes 
which encode six to ten genes critical for virus infection. Despite this variation, a 
common set of proteins is expressed by every paramyxovirus. These include the 
fusion (F) protein, responsible for promoting membrane fusion between the viral 
envelope and a cellular target membrane; the attachment (HN/H/G) protein, required 
for binding to the host cell receptor; the matrix (M) protein, which is critical for 
virus assembly; the polymerase (L) protein, which carries out RNA-dependent 
RNA polymerization to generate mRNA, anti-genomic RNA, and genomic RNA; 
the nucleocapsid (N) protein, which coats the viral genome; and the phosphoprotein 
(P), which serves as a polymerase cofactor. The paramyxovirus P gene can also 
express additional proteins through RNA editing or initiation of translation at alter-
native sites, though the number of additional proteins expressed varies between 
viruses (Lamb and Parks 2013). Several paramyxoviruses or pneumoviruses also 
encode a third glycoprotein, the small hydrophobic (SH) protein, which is dispens-
able for viral replication but could function as a viroporin (Masante et al. 2014) and 
is important for pathogenesis in vivo for some viruses (Bukreyev et al. 1997; Li 
et al. 2011; Ling et al. 2008; Whitehead et al. 1999).

Viruses in the family Pneumoviridae were previously classified within the 
Paramyxoviridae. However, a new family was created in 2016, due to the significant 
differences in nucleocapsid structure, the separation indicated by phylogenetic rela-
tionships, and the presence of a unique M2 gene in viruses within the Pneumoviridae 
(Afonso et al. 2016). There are two genera within this family, the Metapneumovirus 
and the Orthopneumovirus. Many proteins show significant conservation in 
sequence and function between the paramyxoviruses and pneumoviruses, including 
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the F protein, which will be the focus of this chapter. However, less homology is 
seen in proteins such as SH and G across the families, and the unique M2 gene 
encodes several proteins critical for pneumovirus replication that are not found in 
the paramyxoviruses.

2.2	 �The Role of Protease Cleavage in Fusion Protein 
Activation

Paramyxovirus and pneumovirus particles contain a lipid envelope derived from the 
host cell membranes where virus assembly occurred. In order for viral infection to 
initiate, the viral particle must bind to the host cell, and then membrane fusion must 
occur between the lipid bilayer of the virus and a target membrane of the host cell. 
This fusion event can occur on the plasma membrane or after internalization via 
endocytosis, depending on the virus, and fusion is essential for release of the viral 
genome into the cellular cytosol (Chang and Dutch 2012). The process of mem-
brane fusion for both virus families is promoted by the viral F protein, with the 
attachment protein involved in triggering F protein function for all paramyxoviruses 
and some pneumoviruses. In all cases, the function of the F protein is completely 
dependent on proteolytic processing by host proteases, generating a disulfide-linked 
F1 + F2 heterodimer from the uncleaved F0 precursor.

Membrane fusion is an energetically unfavorable process. Paramyxovirus and 
pneumovirus F proteins, in a similar manner to other viral fusion proteins such as 
the influenza HA protein, do not utilize high-energy cofactors to drive this process. 
Instead, fusion involves a set of dramatic conformational changes in the F protein, 
and the energetic difference between the metastable pre-fusion state of the F protein 
and the post-fusion state is thought to provide the energy needed for fusion (Fig. 2.1). 
F proteins are initially synthesized in the endoplasmic reticulum, where they are 
co-translationally N-link glycosylated and rapidly folded into trimers. F trimers are 
then trafficked through the secretory pathway to the plasma membrane, with some 
F proteins then undergoing endocytic recycling. This pre-fusion F protein trimer is 
incapable of promoting membrane fusion, however, until it is proteolytically pro-
cessed by a host protease into a trimer of disulfide-linked heterodimers. Proteolytic 
cleavage occurs immediately N-terminal to the fusion peptide region of the F pro-
tein, a highly hydrophobic region which is capable of inserting into membranes 
(Fig. 2.1, step c). Cleavage therefore frees the N-terminus of the fusion peptide, and 
this free domain is crucial for the F protein-promoted fusion process.

For most F proteins, interaction with the attachment protein is sufficient to trig-
ger the conformational changes needed for membrane fusion (Bose et  al. 2015; 
Chang and Dutch 2012). However, a subset of HMPV F proteins are triggered by low 
pH (Herfst et al. 2008; Schowalter et al. 2006b), while the factors driving the non-
low pH triggered HMPV F proteins are still unknown. Early in the cascade of con-
formational changes, the heptad repeat A regions in the globular head region refold 
into an extended helical coiled coil (Fig. 2.1, step c). This refolding event propels 
the fusion peptide toward the target membrane. Insertion of the fusion peptide into 
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the target membrane results in an intermediate where the F protein connects the two 
membranes, a structure that has been visualized using electron microscopy (Kim 
et al. 2011). Further refolding leads to the formation of a six-helix bundle structure 
formed by the heptad repeat A coiled coil interacting with the three heptad repeat B 
helices (Fig. 2.1, step e). Formation of this highly stable bundle structure occurs 
coincident with the initiation of membrane merger.

Structural studies over the last decade have defined the ectodomain conformation 
of several F protein forms. The uncleaved pre-fusion structure has been solved for 
PIV5 F (Yin et al. 2006), Hendra F (Wong et al. 2016; Xu et al. 2015), and RSV F 
(McLellan et al. 2013) and consists of a globular head domain with a helical stalk, 
with both the head and stalk regions containing extensive contacts between the three 

Cell

Virus

e

Fusion
pore

a b c d

Fig. 2.1  Paramyxovirus and pneumovirus F-promoted membrane fusion. F proteins exist in a 
metastable, pre-fusion state (step a). Triggering of F results in transmembrane dissociation (TM; 
step b) followed by refolding of heptad repeat A (HRA; blue) and insertion of the fusion peptide 
(FP; yellow) into the target cell membrane (step c). Refolding of F brings both the viral and target 
cell membrane into proximity (step d), and formation of a fusion pore is linked to the presence of 
a stable six-helix bundle composed of HRA and heptad repeat B (HRB; red; step e)
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monomers that make up the F protein trimer (Fig. 2.2, left). The site for proteolytic 
processing is present on an exposed loop N-terminal to the fusion peptide. The 
structure of the cleaved, pre-fusion form of PIV5 F has also been solved (Welch 

a
Cleavage site

Uncleaved
pre-fusion

PIV5 F

Cleavage site
alignment

Cleaved
pre-fusion

PIV5 F

Uncleaved
post-fusion
HPIV3 F

DI DI DII HRBDIII DIIIFP HRA/DIII

b

Fig. 2.2  Pre- and post-fusion structures of paramyxovirus F proteins. (a) A linear schematic of a 
general paramyxovirus F without the transmembrane domain (TM) or cytoplasmic tail is shown. 
The single cleavage site (black triangle) is N-terminal to the FP. Regions in gray do not correspond 
to specific structural domains. (b) The pre-fusion structure of PIV5 F (Yin et al. 2006) is relatively 
compact (PDB ID: 2B9B), enabling the fusion peptide (FP; yellow) to be partially buried within 
the globular head domain. Proteolytic cleavage of the PIV5 F0 form into F1 + F2 ((Welch et al. 
2012); PDB ID: 4GIP) does not result in significant structural rearrangement, except near the 
cleavage site (see inset; blue is cleaved F1 + F2 and orange is uncleaved F0). Following membrane 
fusion, the post-fusion structure of uncleaved HPIV3 ((Yin et al. 2005); PDB ID: 1ZTM) is elon-
gated and stabilized by the formation of a six-helix bundle composed of heptad repeats A and B 
(HRA and HRB). Both the pre- and post-fusion structures are membrane-anchored by transmem-
brane domains (TM; not shown) and contain cytoplasmic tails. Colors: HRA, blue; HRB, red; FP, 
yellow; domain I, orange; domain II, cyan; domain III, green. Molecular graphics images were 
produced using the UCSF Chimera package from the Computer Graphics Laboratory, University 
of California, San Francisco (Pettersen et al. 2004)
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et al. 2012). Interestingly, the structures of the uncleaved and cleaved PIV5 F pro-
teins are superimposable, with changes observed only in the region near the cleav-
age site (Fig. 2.2, inset). These results suggest that proteolytic processing itself does 
not result in significant conformational changes in the F proteins. Previous work 
analyzing PIV5 F recognition by anti-peptide polyclonal antibodies (Dutch et al. 
2001) and a monoclonal antibody (Dutch et al. 2001; Paterson et al. 2000) had indi-
cated more dramatic changes following proteolytic processing, but the differences 
in antibody recognition may instead reflect the high propensity for cleaved F to 
trigger to the post-fusion form in the presence of detergents or on biological mem-
branes. Post-fusion forms of a number of F proteins have been determined (McLellan 
et al. 2011; Swanson et al. 2010; Yin et al. 2005; Zhao et al. 2000) (Fig. 2.2, right). 
Dramatic rearrangements between the pre- and post-fusion forms are clearly evi-
dent, including the formation of a six-helix bundle formed from the heptad repeat A 
(HRA, blue) and heptad repeat B (HRB, red) regions of the protein. Interestingly, 
post-fusion F structures were obtained in the absence of proteolytic processing, sug-
gesting that the conformational changes needed to form a six-helix bundle can occur 
without proteolytic processing when the transmembrane domain and cytoplasmic 
tail region of the protein are absent. Indeed, studies of a soluble form of the PIV5 F 
protein confirmed that uncleaved F protein lacking its transmembrane domain 
region, when exposed to heat, was capable of undergoing conformational changes 
comparable to those of the full-length cleaved membrane-bound form, though sub-
tle differences between the two were observed (Connolly et al. 2006). However, the 
uncleaved form was unable to stably associate with liposomes after heat-induced 
conformational changes, supporting a requirement for cleavage for fusion peptide 
insertion into a target membrane (Connolly et al. 2006). These studies also demon-
strated that cleavage alone was not sufficient to induce conformational changes, as 
no changes were observed in the uncleaved soluble F protein unless it was exposed 
to heat (Connolly et al. 2006).

2.3	 �Proteases Involved in Paramyxovirus F Protein 
Proteolytic Cleavage

2.3.1	 �Furin and Its Role in F Protein Cleavage

Many paramyxovirus F proteins contain an R-X-K/R-R sequence immediately 
N-terminal to their cleavage site, a sequence efficiently recognized by the host cell 
protease furin. Furin is a ubiquitous secretory pathway protease that belongs to the 
mammalian subtilisin-like pro-protein convertase family (Klenk and Garten 1994). 
Furin is a calcium-dependent protease that functions at a wide range of pH values 
and is known to cleave a large number of precursor proteins within the exocytic or 
endocytic pathways. Paramyxovirus F proteins containing the furin consensus 
sequence include those from measles virus (Richardson et al. 1986), mumps virus 
(Waxham et al. 1987), HPIV3 (Spriggs et al. 1986), PIV5 (Paterson et al. 1984), 
canine distemper virus (Barrett et al. 1987), reptilian paramyxoviruses (Franke et al. 
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2006), and some strains of Newcastle disease virus (NDV) (Toyoda et al. 1987). 
Furin cleavage occurs in the trans-Golgi network as the F protein is trafficked 
through the secretory pathway (Fig. 2.3, pathway A). The highly efficient cleavage 
process and the intracellular localization of furin mean that the great majority of F 
proteins that are processed by furin reach the cell surface in the mature, cleaved 
F1 + F2 form. This results in the budding of viral particles containing F proteins 
predominantly in the fusion-active cleaved form. The presence of fusogenically 
active F proteins on the cell surface can also lead to efficient cell-cell fusion, termed 
syncytia formation, between infected cells and neighboring cells.

B

A

trans-Golgi

Golgi

V

ER

Intra- and extracellular proteases

Uncleaved F0

Cleaved F1+F2

Nucleus

Fig. 2.3  Cleavage of F 
proteins by intra- and 
extracellular proteases. 
(a) Most paramyxovirus F 
proteins are cleaved 
within the trans-Golgi 
network by the subtilisin-
like protease, furin. In this 
case, the cleaved F1 + F2 
form is incorporated 
directly into newly 
formed virus particles. (b) 
Following translation of F 
into the endoplasmic 
reticulum (ER), uncleaved 
(F0; red) HMPV, HPIV1, 
or Sendai virus F is 
incorporated into newly 
formed virus particles. 
Extracellular proteases, 
such as TMPRSS2 and 
mini-plasmin, then cleave 
F0 into the metastable, 
fusion-competent F1 + F2 
form (blue)
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2.3.2	 �Extracellular Cleavage of Paramyxovirus F Proteins 
with Monobasic Cleavage Sites

A small number of paramyxoviruses have F proteins containing only a monobasic 
residue at their cleavage site, and these F proteins are not processed in the exocytic 
pathway by furin. The F proteins of these viruses therefore arrive at the plasma 
membrane uncleaved and fusion inactive. F proteins from viruses such as Sendai 
(Hidaka et al. 1984), HPIV1 (Ambrose et al. 1995), and some strains of Newcastle 
disease virus (Toyoda et al. 1987) are not processed by any intracellular protease but 
instead are cleaved by extracellular enzymes present in the respiratory tract (Fig. 2.3, 
pathway B). Consequently, the infectivity of these viruses is dependent on efficient 
processing by these extracellular proteases. Several enzymes have been identified 
that can cleave the F proteins of these viruses, including a secreted trypsin-like pro-
tease from Clara cells (Kido et  al. 1992), an endoprotease homologous to blood 
clotting factor X from chick embryo (Gotoh et al. 1990, 1992), and mini-plasmin 
(Murakami et al. 2001). However, the role of each of these proteases during infec-
tion is unclear, and the identification of additional proteases involved in activation 
of these viruses is likely to occur as our understanding of respiratory tract proteases 
increases.

2.3.3	 �The Henipavirus F proteins: Intracellular Cleavage by 
Endosomal Proteases

The Henipavirus genus of the paramyxovirus family was established after identifi-
cation of the zoonotic Hendra virus in 1994 (Murray et al. 1995) and Nipah virus in 
1999 (Chua et al. 2000), both of which give high mortality rates in animals and 
humans. Several additional viruses in this genus have been identified by analysis of 
bat populations, including Cedar virus, which does not cause clinical disease (Marsh 
et al. 2012). Amino acid sequence alignments and N-terminal sequencing of the F1 
subunit of the Hendra and Nipah F proteins (Michalski et al. 2000; Moll et al. 2004) 
demonstrated that cleavage occurs after a single basic residue. However, in contrast 
to the previously characterized extracellular cleavage of Sendai F and HPIV1 F, the 
Hendra and Nipah F proteins were found to be efficiently intracellularly processed 
in a variety of cell types (Michalski et al. 2000; Moll et al. 2004), suggesting cleav-
age by a ubiquitous cellular protease. Unlike all previously examined viral fusion 
proteins, proteolytic processing of both Hendra (Meulendyke et al. 2005) and Nipah 
(Diederich et al. 2005) was found to require endocytosis of the protein following 
initial trafficking to the cell surface (Fig. 2.4), and the activating protease was shown 
to be the endosomal/lysosomal protease cathepsin L (Pager et al. 2006; Pager and 
Dutch 2005), with cathepsin B also capable of cleaving the F protein in some cell 
types (Diederich et al. 2012). Cathepsin proteases are involved in the degradation of 
proteins in the endosome/lysosome, digest a wide variety of substrates, and do not 
have defined consensus cleavage sequences (Turk and Guncar 2003). Fitting with 
this, mutation of the cleavage site residues of Hendra F (Craft and Dutch 2005) and 
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Nipah F (Moll et al. 2004) did not ablate proteolytic processing unless the residues 
corresponding to the cleavage loop were deleted (Moll et al. 2004).

The intriguing question of how a degradative protease can facilitate a specific 
cleavage event may be partially explained by the finding that Hendra F and Nipah F 
protein cleavage appears to occur in the recycling endosomal compartments 
(Diederich et al. 2012; Popa et al. 2012) rather than in the late endosomes/lyso-
somes which contain the majority of active cathepsins. Proteolysis by cathepsins 
has been proposed to be affected by both protease concentration and pH (Authier 
et al. 1996; Pillay et al. 2002), and cathepsin L activity has been shown to be more 
specific within the higher pH conditions of the early endosomal pathway (Jordans 
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Fig. 2.4  Cleavage of 
Henipavirus F. Following 
translation of F into the 
endoplasmic reticulum 
(ER), uncleaved F (F0; 
red) is trafficked to the 
cell surface. The F0 form 
is then endocytosed and 
cleaved in an endosomal 
compartment by 
cathepsin L or B (*). The 
cleaved, metastable 
F1 + F2 form (blue) is 
then trafficked back to the 
cell surface and 
incorporated into newly 
formed virions along with 
uncleaved F0 (red)
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et  al. 2009). Thus, the novel mechanism of proteolytic processing for these 
Henipavirus F proteins involves synthesis and transport of the uncleaved F protein 
to the plasma membrane, endocytosis to bring the F protein into contact with cathep-
sin L (or B) in the recycling endosomes, and cleavage of the F protein followed by 
recycling of the fusogenically active cleaved F protein back to the plasma mem-
brane (Fig.  2.4). Unlike paramyxoviruses with furin-processed F proteins, 
Henipavirus particles contain a much higher percentage of uncleaved F protein 
(Michalski et al. 2000), suggesting that either cleavage is not completely efficient or 
that uncleaved F proteins can be incorporated into a particle prior to endocytic 
recycling.

The biological reasons for this unique pathway remain to be clarified. Studies 
have verified that cathepsin cleavage must occur prior to virus assembly rather than 
during virus entry (Diederich et al. 2008), indicating that the utilization of cathepsin 
cleavage is not a mechanism to allow entry of particles with uncleaved F protein. 
Analysis of proteolytic enzymes from the bat reservoir hosts of these viruses indi-
cates that both cathepsin and furin enzymes are present, though some differences in 
the cellular localization of furin were suggested, which may impact protease usage 
for F protein processing (El Najjar et  al. 2015). Recent studies indicate a link 
between endosomal recycling of the F protein and efficient incorporation of F into 
virus-like particles (Cifuentes-Munoz et al. 2017; Johnston et al. 2017), and this tie 
between assembly and recycling may be a factor in the evolution of this novel mech-
anism of fusion protein activation.

2.4	 �Proteases Involved in Pneumovirus F Protein 
Proteolytic Cleavage

2.4.1	 �Respiratory Syncytial Virus F Proteins: A Novel Case of Two 
Proteolytic Processing Events

The F proteins from HRSV and bovine respiratory syncytial virus (BRSV) are 
unique among the paramyxo- and pneumovirus family members in their require-
ment for two proteolytic cleavage events to become fusogenically active (Gonzalez-
Reyes et al. 2001; Zimmer et al. 2001). One of the two cleavage sites (site II; after 
residue 136) is immediately upstream of the fusion peptide region, similar to the 
cleavage sites observed for all other F proteins from these families (Fig. 2.5a). The 
second site (site I, after residue 109) is located 26 amino acids closer to the 
N-terminus of the protein, such that cleavage of both sites results in a disulfide-
linked heterodimer plus an additional 27 amino acid peptide, termed p27 (Collins 
and Crowe 2007). Both cleavage sites have consensus sequences for furin process-
ing (Gonzalez-Reyes et al. 2001; Zimmer et al. 2001), and studies with a soluble 
form of HRSV suggest that cleavage at site I may facilitate cleavage at site II 
(Begona Ruiz-Arguello et al. 2002). Structural analysis of the pre-fusion HRSV F 
bound to a neutralizing antibody (McLellan et al. 2013) shows that the fusion pep-
tide C-terminal to cleavage site II lies buried in the center of the trimer cavity, at 
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least 40 Å away from the last residue of the F2 subunit (Fig. 2.5b), with p27 no 
longer present. The buried nature of site II after cleavage suggests a conformational 
change occurring upon cleavage for HRSV F, in contrast to what is observed for the 
paramyxovirus F proteins.

The biological advantage for two cleavage sites has been unclear, as studies with 
BRSV demonstrated that deletion of cleavage site I and the p27 region did not decrease 
replication in a cell culture model (Zimmer et al. 2002). However, recent work sug-
gests that sequential cleavage at the two sites may play a role in macropinocytosis 
mediated viral entry (Krzyzaniak et al. 2013). Mass spectrometry analysis of viral 
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...KKRKRR136 FLGF....

Fig. 2.5  Trimeric and monomeric HRSV F. (a) A linear schematic of HRSV F without the trans-
membrane domain (TM) or cytoplasmic tail is shown. Two cleavage events (black triangles) facili-
tate the release of a P27 fragment. (b) Similar to PIV5 F, the pre-fusion, cleaved structure of HRSV 
F ((McLellan et  al. 2013), PDB ID: 4JHW) is compact, but the fusion peptide (FP; yellow) is 
buried within the globular head domain. Both cleavage sites are denoted within the monomeric 
HRSV F structure. Cleavage occurs following R109 and R136. Colors denote the same structural 
regions as in the PIV5 and HPIV3 structures in Fig. 2.2. Molecular graphic images were produced 
using the UCSF Chimera package from the Computer Graphics Laboratory, University of 
California, San Francisco (Pettersen et al. 2004)
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particles identified a predominant species corresponding to the F1 subunit with the p27 
still attached, consistent with only site I cleavage occurring prior to virus assembly. 
However, analysis of the F protein following entry was consistent with cleavage of F1 
at site II occurring during endocytic entry (Krzyzaniak et  al. 2013). Infection was 
blocked when a cell-permeable furin inhibitor was added, but not a cell-impermeable 
inhibitor. These results support a model where the second cleavage event for HRSV F 
is promoted by a furin-like protease in an endocytic compartment, and this cleavage is 
required for fusogenic activity and infection (Fig. 2.6). Interestingly, insertion of the 
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translated into the 
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red) form. Unlike other F 
proteins, HRSV F is 
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HRSV F is first cleaved in 
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furin and incorporated into 
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HRSV endocytosis, the 
second HRSV F cleavage 
occurs in endosomal 
compartments, resulting in 
formation of the cleaved, 
metastable F1 + F2 form 
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two HRSV F cleavage sites into the Sendai virus F protein resulted in a protein that 
was no longer dependent on the Sendai attachment protein for fusion (Rawling et al. 
2008, 2011), suggesting that sequential cleavage at the two sites may provide a mech-
anism of F protein triggering for fusion (Bose et al. 2015).

2.4.2	 �Extracellular Cleavage of F Proteins 
from the Metapneumoviruses

HMPV F proteins contain a minimal furin consensus sequence at their cleavage site 
(R-X-X-R), but the lack of a basic residue at the P2 position (second amino acid 
upstream of the cleavage site) makes these F proteins poor substrates for furin. 
Additionally, viral growth and F protein cleavage in cell culture models have been 
shown to be dependent on addition of exogenous proteases such as trypsin (Biacchesi 
et al. 2004). The host cell protease TMPRSS2 (Shirogane et al. 2008) and proteases 
from P. gingivalis (Pyrc et al. 2011) have been shown to activate HMPV F, but the role 
of these and other proteases in infection remains to be defined. Some laboratory 
strains of HMPV have been identified that do not require exogenous proteases for 
viral growth, and a specific serine to proline change at the P2 residue of the cleavage 
site was associated with these changes (Schickli et al. 2005). However, a similar muta-
tion in the context of a different strain did not result in trypsin-independent F protein 
cleavage (Schowalter et al. 2006a), suggesting that more complex factors are involved. 
A recent study suggests that protease-activated receptor 1-induced increases of cellu-
lar furin levels can lead to some intracellular HMPV F cleavage (Aerts et al. 2013).

F proteins from avian metapneumovirus (aMPV) subtypes A and B do not require 
exogenous trypsin for cleavage or function, indicating that they are cleaved by an 
endogenous protease (Yun et  al. 2015). F proteins from aMPV subtype C show 
enhanced cleavage when trypsin is added, suggesting that they are less efficiently 
processed by endogenous proteases. A recent report indicates that TMPRSS12 can 
cleave the aMPV subtype B F protein (Yun et al. 2016), and this is the first report of 
this protease cleaving a viral glycoprotein substrate.

2.5	 �F protein Proteolytic Processing, Pathogenesis, 
and Antiviral Approaches

F protein proteolytic cleavage is required for promotion of membrane fusion and 
infection; thus, alterations to the utilized proteases or changes in the efficiency of 
processing can greatly affect viral pathogenesis. This was first detailed in studies of 
NDV, where alterations in protease susceptibility were observed between virulent and 
avirulent strains (Nagai et al. 1976, 1989; Nagai and Klenk 1977). NDV strains with 
furin-cleaved F proteins were more virulent than those with monobasic cleavage sites, 
presumably because the ubiquitous nature of furin enables efficient formation of fuso-
genically active F proteins in any infected cell or organ. In contrast, replication of 
strains with monobasic cleavage sites is limited to locations where the required 
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extracellular protease is present. However, mutation to create a furin cleavage site did 
not alter tissue tropism or virulence of other avian paramyxoviruses (Kim et al. 2013; 
Subbiah et al. 2011; Xiao et al. 2012), supporting the view that, besides proteolytic 
cleavage, there are additional factors contributing to the pathogenicity of a virus (see 
Chap. 1). Important questions remain about the role of protease cleavage in pathogen-
esis for viruses such as HMPV where multiple proteases can promote F cleavage.

As F protein proteolytic processing is essential for viral infectivity, the host cell 
proteases involved have been examined as antiviral targets. Early work demonstrated 
that an alpha 1-antitrypsin variant engineered to inhibit furin significantly reduced 
measles virus titers (Watanabe et al. 1995). Subsequent work has identified a series of 
potent inhibitors of furin and other pro-protein convertases (Klein-Szanto and Bassi 
2017), and a number of these have been shown to have antiviral activity (Shiryaev 
et  al. 2007), including activity against paramyxoviruses (Hardes et  al. 2015). 
Chloroquine, an inhibitor of cathepsin L, has been shown to have antiviral effects on 
Hendra or Nipah virus in cell culture models (Porotto et al. 2009) but failed to protect 
in ferret (Pallister et al. 2009) or hamster (Freiberg et al. 2010) models of infection. 
Natural inhibitors of the airway proteases involved in extracellular activation of F 
proteins are an attractive potential antiviral, and early studies demonstrated that pul-
monary surfactant was a potent inhibitor of Sendai virus activation (Kido et al. 1993), 
though additional research on natural protease inhibitors targeting paramyxovirus or 
pneumovirus infections remains to be done. Thus, the experimental results to date 
provide proof of principle that targeting proteases can inhibit infection, but the chal-
lenges of developing an inhibitor that works effectively in animal systems remain.

2.6	 �Proteolytic Activation of the Hemagglutinin-
Neuraminidase Glycoprotein

With two avirulent NDV strains, a precursor HN0 of the HN glycoprotein, a type II 
membrane protein, has been observed that is converted by proteolytic removal of a 
C-terminal extension into the biologically active form (Nagai et  al. 1976, 1989; 
Nagai and Klenk 1977). Crystallographic analysis revealed that the C-terminal 
extension extends along the outside of the neuraminidase (NA) β-propeller domain 
and inserts C-terminal residues into the NA domain active site. The C-terminal 
extension also engages a secondary sialic acid-binding site present in NDV HN 
proteins, which is located at the NA domain dimer interphase that most likely blocks 
its attachment function. These results demonstrate that the C-terminal residues lead 
to an auto-inhibited state of HN, and they explain the requirement for proteolytic 
activation of HN0 and associated reduced virulence (Yuan et al. 2011).

�Conclusions

Much research has focused on the biophysical and structural aspects of 
F-mediated membrane fusion, and this process is largely conserved between 
phylogenetically distinct viruses. However, the widely varying mechanisms uti-
lized for proteolytic activation of paramyxovirus and pneumovirus F proteins 
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suggests that cleavage is not merely a structural requisite but potentially a deter-
minant of viral tropism and pathogenesis. Understanding the temporal and spa-
tial requirements for F cleavage and how they affect pathogenesis could illuminate 
novel aspects of paramyxo- and pneumovirus biology and be important for the 
development of efficacious antiviral therapeutics.
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Abstract
The arenaviruses are a large family of emerging negative-stranded RNA viruses 
that include several severe human pathogens causing hemorrhagic fevers with 
high mortality. During the arenavirus life cycle, processing of the viral envelope 
glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme-1 (SKI-1)/
site-1 protease (S1P) is crucial for productive infection. The ability of newly 
emerging arenaviruses to hijack human SKI-1/S1P is a key factor for zoonotic 
transmission and human disease potential. Apart from being an essential host 
factor for arenavirus infection, SKI-1/S1P is involved in the regulation of impor-
tant physiological processes and linked to major human diseases. This chapter 
provides an overview of the mechanisms of arenavirus GPC processing by 
SKI-1/S1P including recent findings. We will highlight to what extent the molec-
ular mechanisms of SKI-1/S1P cleavage of viral GPC differ from processing of 
SKI-1/S1P’s cellular substrates and discuss the implications for virus-host inter-
action and coevolution. Moreover, we will show how the use of the viral GPC as 
a “molecular probe” uncovered novel and unusual aspects of SKI-1/S1P biosyn-
thesis and maturation. The crucial role of SKI-1/S1P in arenavirus infection and 
other major human diseases combined with its nature as an enzyme makes SKI-1/
S1P further an attractive target for therapeutic intervention. In the last part, we 
will therefore cover past and present efforts to identify specific SKI-1/S1P 
inhibitors.
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3.1	 �Arenavirus Structure, Genome Organization, and Basic 
Virology

The arenaviruses are a large and diverse family of emerging enveloped negative-
stranded viruses that include several severe human pathogens (Buchmeier et  al. 
2007). The Arenaviridae family has been recently separated by the International 
Committee on Taxonomy of Viruses into the genus Mammarenavirus and the genus 
Reptarenavirus (Radoshitzky et al. 2015). Based on phylogenetic and serological 
data, the mammarenaviruses are divided into two major groups: the Old World and 
the New World complex. For simplicity, we will henceforth use the term “arenavi-
ruses” synonymous for the entire family and members of the Mammarenavirus 
genus, whereas viruses of the Reptarenavirus genus will be specifically referred to. 
The Old World arenavirus lineage contains the prototypic arenavirus lymphocytic 
choriomeningitis virus (LCMV) with worldwide distribution. The infection of 
LCMV in the mouse represents one of the most powerful models in experimental 
virology and immunology (Oldstone 2002). LCMV is further a relevant human 
pathogen in pediatric and transplantation medicine (Bonthius 2009; Palacios et al. 
2008). The highly pathogenic Lassa virus (LASV) is endemic in Western Africa 
(McCormick and Fisher-Hoch 2002), and Lujo virus (LUJV) recently emerged in 
Southern Africa associated with a cluster of fatal infections (Briese et al. 2009). The 
African arenaviruses Mopeia, Mobala, and Ippy virus have so far not been associ-
ated with human disease. The New World arenaviruses are divided into Clades, A, 
B, C, and D, the latter corresponding to former Clade A/B or A/rec (Radoshitzky 
et  al. 2015). Clade B contains the human pathogenic Junin (JUNV), Machupo 
(MACV), Guanarito (GTOV), Sabia (SABV), and Chapare (CHAV) virus, together 
with the nonpathogenic Tacaribe (TCRV), Amapari, and Cupixi virus. In nature 
each arenavirus species has one or a limited number of closely related rodent spe-
cies as reservoirs that are persistently infected, with the exception of TCRV that was 
isolated from bats (Buchmeier et al. 2007) and recently detected in host-seeking 
Amblyomma americanum ticks (Sayler et al. 2014). The current phylogenetic diver-
sity of arenaviruses is likely the result of long-term coevolution between viruses and 
their host species, involving vertical and horizontal transfer of viruses within and 
between populations (Emonet et al. 2009).

Arenaviruses are enveloped negative-stranded RNA viruses, whose non-lytic life 
cycle is confined to the cytoplasm (De La Torre 2009). In electron microscopy, viral 
particles appear spherical to pleomorphic, with diameters of 50–300 nm. The arena-
virus genome is comprised of two RNA segments, L (c. 7.3 kb) and S (c. 3.5 kb), 
containing two open reading frames in opposite orientation, separated by a noncod-
ing intergenic region with a predicted hairpin structure. The viral S RNA encodes 
the nucleoprotein (NP) and the envelope glycoprotein precursor (GPC), whereas the 
L RNA encodes the viral RNA-dependent RNA polymerase L and the viral matrix 
protein Z. Synthesized as a single polypeptide chain, the viral GPC is posttransla-
tionally cleaved by the cellular protease subtilisin kexin isozyme-1/site-1 protease 
(SKI-1/S1P) to yield the mature virion glycoproteins GP1 and GP2 (Fig. 3.1).
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Several excellent reviews cover different steps of the arenavirus life cycle 
(Fehling et al. 2012; Grant et al. 2012; Urata and de la Torre 2011; Emonet et al. 
2011; Torriani et al. 2017; Nunberg and York 2012; Wolff et al. 2013; Loureiro et al. 
2012), and only a short summary will be given here. The first step of arenavirus 
infection requires attachment of the viral particle to cellular receptor(s). Most Old 
World and Clade C New World arenaviruses use dystroglycan, a ubiquitously 
expressed receptor for proteins of the extracellular matrix (ECM) as a high-affinity 
receptor (Cao et al. 1998; Oldstone and Campbell 2011). The cellular receptor for 
the pathogenic Clade B New World arenaviruses was identified as human transferrin 
receptor 1 (TfR1) (Radoshitzky et  al. 2007), a highly conserved cargo receptor 
involved in iron metabolism. The ability of a Clade B New World arenavirus to use 
human TfR1 is crucial for its potential to cause zoonotic infection and hemorrhagic 
fever in man, whereas nonpathogenic viruses use TfR1 orthologues from other spe-
cies (Helguera et al. 2012; Radoshitzky et al. 2011). More recently, the Tyro3/Axl/
Mer (TAM) receptor tyrosine kinases Axl and Tyro3/Dtk, T cell immunoglobulin 
mucin (TIM) proteins 1 and 4, as well as the C-type lectins DC-specific ICAM-3-
grabbing nonintegrin (DC-SIGN) and LSECtin have been identified as novel candi-
date receptors for arenaviruses (Shimojima and Kawaoka 2012; Shimojima et al. 
2012; Jemielity et al. 2013; Goncalves et al. 2013; Martinez et al. 2013). Upon ini-
tial attachment to the target cell, arenavirus particles are taken up by 
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Fig. 3.1  Processing of arenavirus GPC by SKI-1/S1P. (a) The arenavirus GPC precursor is com-
prised of the stable signal peptide (SSP), GP1, and GP2. The transmembrane domain and the site 
of SKI-1/S1P cleavage are indicated (scissors). (b) Sequential processing of arenavirus GPC in the 
secretory pathway by signal peptidase (SPase) and SKI-1/S1P. The mature tripartite complex SSP/
GP1/GP2 forms the mature trimeric GP spike. (c) The mature GP trimer decorates the virion sur-
face and engages cellular receptors. Under acidic pH, GP1 dissociates and liberates the fusion 
peptide of GP2, triggering fusion between the viral and the cellular membrane
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receptor-mediated endocytosis. Consistent with the use of TfR1 as a receptor, Clade 
B New World viruses enter via clathrin-mediated endocytosis (Martinez et al. 2007), 
whereas Old World arenaviruses use a pathway resembling macropinocytosis 
(Iwasaki et al. 2014; Oppliger et al. 2016; Torriani et al. 2017). The virus passes 
through the multivesicular endosome and reaches the late endosome (Pasqual et al. 
2011b), where low pH triggers fusion of the viral membrane with the limiting mem-
brane of the late endosome by the fusion-active GP2, creating a “fusion pore.” At 
the late endosome, LASV GP1 undergoes a unique “receptor switch” and engages 
the late endosomal/lysosomal resident protein LAMP1 for efficient fusion (Jae et al. 
2014). The dependence of LASV, but not other arenaviruses including the closely 
related LCMV, on LAMP1 as a late endosomal entry factor represents an interesting 
analogy to the filoviruses Ebola virus, whose fusion depends on the late endosomal 
protein Niemann-Pick C1 (Jae and Brummelkamp 2015).

By an unknown mechanism of “uncoating,” the arenavirus ribonucleoprotein 
(RNP) comprised of viral RNA, NP, and L is released into the cytosol. Viral tran-
scription is initiated at the incoming polymerase complex, resulting in expression of 
NP and L.  As NP accumulates, the viral polymerase shifts to a replicase mode, 
generating full-length antigenomic RNAs serving as templates for the transcription 
of GPC and Z as well as synthesis of genomic RNA. Newly synthesized NP assem-
bles the viral replication-transcription complexes that are membrane-associated 
structures that contain cellular lipids and proteins (Baird et al. 2012; Knopp et al. 
2015). In the final stages of the arenavirus life cycle, progeny particles assemble and 
are released by budding from the plasma membrane. The key factor in the budding 
process is the small RING finger Z protein that functions as a bona fide matrix pro-
tein in arenavirus particle assembly (Urata and De La Torre 2011; Perez et al. 2003). 
As with other matrix proteins of enveloped viruses, arenavirus Z interacts with the 
cytosolic tail of GP2 (Capul et al. 2007) and specific cellular factors of the endo-
somal/multiple vesicle body pathway to drive the budding of viral particles from 
“budding zones” (Wolff et  al. 2013; Urata and De La Torre 2011; Fehling et  al. 
2012; Perez et al. 2003).

Recent studies isolated, identified, and characterized novel and highly divergent 
arenaviruses from snakes associated with boid inclusion body disease (Bodewes 
et al. 2013; Hetzel et al. 2013; Stenglein et al. 2012). The genome organization of 
these viruses corresponds to arenaviruses, and they show a high degree of diver-
gence. Notably, the GPC of the viral envelope seems more related to filoviruses. No 
cases of infections in other species have been reported so far, though reptarenavi-
ruses are capable of infecting mammalian and arthropod cells in vitro (Hepojoki 
et  al. 2015). Interestingly, reptarenavirus infection of mammalian cells occurred 
efficiently at 30  °C but was markedly reduced at mammalian body temperature, 
likely highlighting adaptation to their reptile hosts (Hepojoki et al. 2015).

The most prevalent human pathogen among the arenaviruses is the Old World 
arenavirus LASV that causes a severe viral hemorrhagic fever with high mortality 
in humans. Every year LASV causes over 300,000 infections in Western Africa 
(Mccormick and Fisher-Hoch 2002) and has been declared one of the eight top 
emerging pathogens by WHO in 2015 (Sweileh 2017). There is currently neither an 
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efficient cure nor a licensed vaccine, resulting in case fatality rates of 15–30% (Yun 
and Walker 2012). In the USA, JUNV, MACV, GTOV, and SABV have emerged as 
causative agents of hemorrhagic fevers with high case-fatality rates with JUNV 
representing the most important public health problem (Grant et al. 2012). Novel 
arenaviruses emerge on the average every 2 years and can be associated with severe 
diseases (Briese et al. 2009; Delgado et al. 2008). Highly pathogenic arenaviruses 
have been included in the list of Category A pathogens by the Centers for Disease 
Control and Prevention. Global climate changes may influence population dynam-
ics of natural rodent host populations, likely increasing exposure of humans to these 
pathogens.

The pathophysiology of fatal arenavirus infection is not well understood and 
involves viral and host immune factors (Yun and Walker 2012; Prescott et al. 2017). 
A highly predictive parameter for disease outcome is the viral load, indicating a 
close competition between viral spread and replication and the patient’s immune 
system (Prescott et al. 2017). Drugs targeting specific steps of the viral life cycle can 
reduce multiplication and spread of the virus. This may provide the patient’s 
immune system a window of opportunity to develop an antiviral immune response. 
An in-depth understanding of the molecular mechanisms underlying arenavirus 
multiplication and virus-host cell interaction is therefore of great importance to 
develop novel and efficacious strategies for antiviral therapeutic intervention.

3.2	 �Arenavirus GP Structure and Function

The arenavirus GPC is synthesized initially as a single polypeptide precursor that is 
sequentially cleaved by cellular signal peptidases and then by SKI-1/S1P (Lenz 
et al. 2001; Rojek et al. 2008; Beyer et al. 2003) (Fig. 3.1a, b). Processing of GPC 
by SKI-1/S1P yields the N-terminal GP1, which is implicated in binding to the cel-
lular receptors (Borrow and Oldstone 1992) and the transmembrane GP2 that medi-
ates fusion and resembles class I viral fusion proteins (Eschli et al. 2006; Igonet 
et al. 2011; Parsy et al. 2013). Arenavirus GPC contains a remarkably stable signal 
peptide (SSP) of 58 amino acids that contains two hydrophobic domains and under-
goes myristoylation at its N-terminus (Eichler et  al. 2003a, b; York et  al. 2004; 
Froeschke et al. 2003). The SSP becomes part of a mature tripartite complex SSP/
GP1/GP2 where it interacts with the GP2 subunit (Fig. 3.1b). Recent electron cryo-
microscopy combined with tomography revealed that SSP/GP1/GP2 complexes of 
LASV assemble into a trimeric spike that is 9 nm high and 10 nm wide and under-
goes significant changes when exposed to low pH (Li et al. 2016). Structural studies 
on the GP1 of LASV, MACV, and JUNV revealed a similar compact α/β fold, 
despite significant sequence deviation (Bowden et  al. 2009; Cohen-Dvashi et  al. 
2015; Mahmutovic et al. 2015). Structural studies on the complex of MACV GP1 
with its cellular receptor hTfR1 revealed that the GP1 monomer represents the func-
tional unit of receptor recognition and that trimerization is not required for receptor 
binding (Abraham et al. 2010; Radoshitzky et al. 2011). Notably, MACV GP1 binds 
to the apical surface of hTfR1 without competing with transferrin binding. 
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More recent crystallographic studies resolved the structure of the pre-fusion confor-
mation of the mature envelope GP of the prototypic Old World arenavirus LCMV 
(Hastie et al. 2016). Within the pre-fusion trimer, LCMV GP1 and GP2 undergo 
extensive interactions, involving ionic bonds. In contrast to the New World arenavi-
ruses, monomeric LCMV GP1 is unable to bind the receptor dystroglycan with high 
affinity, suggesting that either avidity or the quaternary structure of the pre-fusion 
trimer is required. Once delivered to the late endosome, low pH sets off a series of 
conformational changes leading to shedding of GP1 and triggering of fusion of the 
viral and cellular membrane mediated by GP2 (Fig. 3.1c). The post-fusion confor-
mation of arenavirus GP2 is similar to the six-helix bundle conformation common 
to a number of class I fusion proteins of enveloped viruses (Igonet et al. 2011; Parsy 
et  al. 2013). The SSP is crucial for transport and processing of arenavirus GPC 
(Messina et al. 2012; York and Nunberg 2007; York et al. 2004; Eichler et al. 2003a, 
b). Both N- and C-termini of SSP are located in the cytosol (Agnihothram et al. 
2007), and SSP associates non-covalently with a zinc-binding domain within the 
cytoplasmic tail of GP2 (Agnihothram et  al. 2006; Briknarova et  al. 2011). The 
SSP-GP2 interactions critically modulate pH-induced activation of membrane 
fusion (York and Nunberg 2006, 2009) and are targeted by a range of potent arena-
virus fusion inhibitors (Shankar et  al. 2016; York et  al. 2008), pinpointing this 
unique feature of arenavirus fusion as a target for the development of antiviral 
therapeutics.

3.3	 �The Proprotein Convertase SKI-1/S1P Cleaves 
Arenavirus GPC

A crucial step of arenavirus infection is the maturation of the envelope glycopro-
tein precursor GPC. With the exception of the Crimean-Congo hemorrhagic fever 
virus which belongs to the Bunyavirus family, mammarenaviridae are the only 
viral pathogens known to hijack the proprotein convertase SKI-1/S1P to process 
their envelope GP. Proprotein convertases (PC) are a family of nine conserved 
calcium-dependent serine endoproteases and include the basic PCs PC1/3, PC2, 
furin, PC4, PACE4, PC5/6, and PC7, as well as the nonbasic PCs SKI-1/S1P and 
PCSK9 (Seidah and Prat 2007, 2012). The PCs share homology to the kexin sub-
family of subtilases with a distinctive “Ser/His/Asp” catalytic triad that mediates 
peptide bond scission (Seidah and Prat 2002). Furin, PC5/6B, PC7, and SKI-1/
S1P are membrane-anchored, while the remaining enzymes are secreted (PC4, 
PC5/6A, PACE4, and PCSK9) or retained in granules (PC1/3, PC2) (Seidah 
2011). Basic PCs have similar but not identical consensus sequences K/RXnR↓ 
that may result in overlapping patterns of substrate cleavage. In contrast, SKI-1/
S1P and PCSK9 cleave after hydrophobic or small residues, BX(hydrophobic)X↓ 
(Pasquato et al. 2006) and VFAQ↓, respectively (Benjannet et al. 2004). Processing 
by PC is essential for the proper function of a plethora of cellular proteins, includ-
ing prohormones, growth factor precursors, transcription factors, proteases, and 
adhesion molecules.
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The convertase SKI-1/S1P has been co-discovered by the laboratory of Nabil 
Seidah, working on the biosynthesis of brain-derived neurotrophic factor (Seidah 
et al. 1999), and the group of Brown and Goldstein, investigating the regulation of 
cholesterol metabolism (Sakai et al. 1998). SKI-1/S1P is a type I membrane protein 
synthesized as an inactive precursor of 1052 amino acids, comprised of a signal 
peptide, an N-terminal prodomain, and a catalytic domain (Fig. 3.2a). The trans-
membrane domain of SKI-1/S1P is followed by a basic cytosolic tail (amino acids 
1023–1052). As all PCs, SKI-1/S1P activation requires removal of an N-terminal 
prodomain that assists the correct folding of the protease (Fig. 3.2a). Upon translo-
cation into the ER, SKI-1/S1P undergoes autocatalytic maturation by sequential 
cleavages of the N-terminal prodomain first at sites B′/B (RKVF↓RSLK137↓), fol-
lowed by site C (RRLL186↓) and the newly described site C′ (RRAS166↓) (Da Palma 
et al. 2014). The end product, the C form of SKI-1/S1P, represents the fully mature 
enzyme (Toure et al. 2000; Elagoz et al. 2002). In contrast to basic PCs, maturation 
of SKI-1/S1P is unique because fragments of the truncated prodomain remain 
attached to the catalytic subunit of the protease (Fig. 3.2b). While retention of the 
prodomain prevents catalytic activation of basic PCs, the complexes of SKI-1/S1P 
with the attached prodomain fragments are enzymatically active and may differ-
ently interact with cellular and viral substrates, as detailed below (Da Palma et al. 
2014) (Fig.  3.2b). Using the GPC of arenaviruses as “molecular probes,” recent 
studies revealed that the prodomain of SKI-1/S1P has a modular structure. 
Specifically, the N-terminal AB fragment represents an autonomous structural and 
functional unit that is necessary and sufficient for SKI-1/S1P folding and partial 
activation (Da Palma et al. 2016). In contrast, the C-terminal BC fragment of the 
prodomain lacks a defined structure but seems crucial for autoprocessing and full 
activation. The AB sequence of the prodomain is evolutionary highly conserved, 
whereas the BC fragment shows considerable variation and is even missing in some 
species. Phylogenetic and functional studies suggest that primordial SKI-1/S1P 
may have contained a simpler prodomain consisting of the conserved AB fragment, 
whereas the BC region appears as a later evolutionary acquisition possibly allowing 
subtle regulation of the maturation process (Da Palma et al. 2016).

SKI-1/S1P plays a key role in regulation of lipid metabolism and other physio-
logical processes and is linked to a wide range of human disorders, including hyper-
cholesterolemia, vascular diseases, cancer, and viral infections (Fig.  3.3a). Its 
proven role in human diseases and the nature as an enzyme make SKI-1/S1P an 
interesting target for therapeutic intervention. The activity of SKI-1/S1P was first 
linked to cholesterol and fatty acid biosynthesis, where it was implicated in the 
activation of the sterol regulating protein factors (SREBP) (Sakai et al. 1998). Other 
transcription factors were then shown to be activated in a SKI-1/S1P-dependent 
manner, including activating transcription factor (ATF) 6 that senses ER stress (Ye 
et al. 2000) and members of the cAMP response element-binding proteins (CREB) 
family (Kondo et al. 2005). All these substrates share a similar mechanism of activa-
tion which involves processing by SKI-1/S1P followed by cleavage by site-2 prote-
ase (S2P). The initial, rate-limiting SKI-1/S1P processing occurs in the lumen of the 
Golgi compartment of the secretory pathway. The SKI-1/S1P cleavage unmasks a 
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Fig. 3.2  The unusual mechanism of SKI-1/S1P maturation. (a) SKI-1/S1P is synthesized as an 
inactive zymogen precursor that undergoes autocatalytic cleavage to remove the prodomain. The 
signal peptide (SP), prodomain, catalytic domain, shedding site, and transmembrane domain, as 
well as autoprocessing sites A, B′/B, and C′/C and their corresponding amino acid sequences, are 
indicated. Autoprocessing at site C generates the mature enzyme. (b) Schematic representation of 
the maturation of the prototypic basic PC furin (left) and SKI-1/S1P (right). Initial autoprocessing 
of the furin prodomain results in a catalytically inactive latent complex between prodomain and 
enzyme. Complete removal of the prodomain is required to liberate the active enzyme late in the 
secretory pathway. In contrast, immature forms of SKI-1/S1P containing prodomain fragments of 
different lengths present all along the secretory pathway are catalytically active. (c) The GP1/GP2 
SKI-1/S1P processing sites resemble sites B and C of autoprocessing. For details, please see text
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second site of processing located close to the cytosolic face of the membrane, which 
is subsequently cleaved by the metalloprotease S2P. Processing by S2P releases a 
soluble fragment into the cytosol that subsequently enters the nucleus and acts in 
transcriptional regulation. In addition to transcription factors, SKI-1/S1P is impli-
cated in processing of pro-brain-derived neurotrophic factor (Seidah et al. 1999); 
N-acetylglucosamine-1-phosphotransferase (GNPTAB), which is responsible for 
the correct sorting of lysosomal proteins (Marschner et  al. 2011); and the renin 
receptor (Nakagawa et al. 2016). SKI-1/S1P further plays a role in bone and muscle 
formation (Gorski et  al. 2011, 2016), ECM signaling, and axial development 
(Achilleos et  al. 2015), as well as fur pigmentation (Rutschmann et  al. 2012). 
However, the exact SKI-1/S1P substrates involved in these latter processes have not 
yet been clearly identified.

3.4	 �The Mechanism of SKI-1/S1P Processing of Arenavirus 
GPC Differs from Cellular Substrates

Alignment of the putative GP1/GP2 cleavage sites in arenavirus GPC reveals exten-
sive sequence variation (Table 3.1). Due to this unusual residue pattern at the pro-
cessing site, the protease responsible for GPC cleavage was found long after the 
identification of a consensus motif. So far, SKI-1/S1P has been implicated in pro-
cessing of all mammarenavirus GPCs tested, including the Old World viruses LASV 
(Lenz et al. 2000, 2001), LCMV (Pinschewer et al. 2003; Beyer et al. 2003), the 
distantly related LUJV (Oppliger et al. 2015; Urata et al. 2015), as well as New 
World arenaviruses of different Clades (Rojek et  al. 2008; Pasquato et  al. 2011; 
Oppliger et al. 2015). Alignment of the sequences surrounding the putative cleavage 
site (P10-P10′ positions) reveals the presence of a highly conserved Arg and hydro-
phobic residue at P4 and P2 positions, respectively (Table 3.1). Interestingly, for the 
Old World and Clade C New World viruses, the sequences upstream from the scis-
sile bond are of hydrophobic character.
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Fig. 3.3  Cellular substrates of SKI-1/S1P. (a) Cellular substrates of SKI-1/S1P are linked to 
major human disorders. (b) Subcellular location of SKI-1/S1P autocatalytic activation and SKI-1/
S1P-mediated processing of the major cellular substrates. For details, please see text
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Table 3.1  Amino acid sequences at the GP1/GP2 cleavage sites of arenavirus GPC

The GenBank ID, name of virus species, and amino acids at the GP1/GP2 cleavage site are dis-
played. The conserved R residues in position 4 and hydrophobic residues in P2 position are 
highlighted
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Maturation of GPC by SKI-1/S1P is strictly required for the production of infec-
tious particles and viral cell-to-cell spread (Beyer et  al. 2003; Lenz et  al. 2001; 
Rojek et al. 2008). A crucial role for SKI-1/S1P for arenavirus dissemination in vivo 
is further suggested by the observation that mice bearing the “wood rat” mutation 
Y496C in SKI-1/S1P show enhanced resistance to infection with LCMV due to 
impairment of GPC processing (Popkin et al. 2011). Accordingly, proof-of-concept 
studies with protein- and peptide-based SKI-1/S1P inhibitors revealed that targeting 
GPC maturation represents a novel and promising antiviral strategy (Maisa et al. 
2009; Rojek et al. 2010) as will be further developed below. Inhibition of SKI-1/S1P 
in infected cells results in the formation of noninfectious “naked” particles that 
contain viral RNP but lack GP (Lenz et al. 2001; Kunz et al. 2003; Rojek et al. 
2008), indicating specific incorporation of fully mature, processed GP.  How the 
arenavirus budding machinery is capable to achieve this specificity is currently 
unknown. Notably, SKI-1/S1P processing is not required for cell-surface transport 
of arenavirus GPC (Kunz et al. 2003; Schlie et al. 2010a), and small amounts of 
uncleaved GPC can be detected at the surface of infected cells (Kunz et al. 2003). 
However, in contrast to trimeric mature SSP/GP1/GP2 complexes, the uncleaved 
GPC forms monomers and oligomers spanning a wide size range, indicating that 
SKI-1/S1P processing is critical for the correct oligomeric state (Schlie et al. 2010a). 
Moreover, mutations in the cytosolic tail of LCMV and LASV GP2 affect SKI-1/
S1P processing of the ectodomain (Schlie et al. 2010b; Kunz et al. 2003), suggest-
ing some sort of transmission of structural information through the membrane. 
Since viral budding requires interactions of the cytosolic domain of GP2 with the 
matrix protein Z (Capul et al. 2007), processing by SKI-1/S1P may be required for 
targeting mature GP to putative “budding domains” and/or unmasking GP2 binding 
domains to Z.

The cleavage sites of arenavirus GPC differ from cellular substrates and resem-
ble the B and C autoprocessing motifs of SKI-1/S1P (Fig. 3.2c). The GPC of JUNV 
contains the sequence RSLK↓ (B site), whereas LASV and LCMV GPCs are 
cleaved at the motifs RRLL↓ and RRLA↓ (C site). LASV GPC with the recognition 
sequence RRLL undergoes SKI-1/S1P processing early in the secretory pathway 
(Lenz et  al. 2001), whereas LCMV GPC containing RRLA is processed in late 
Golgi or post-Golgi compartments (Wright et  al. 1990; Beyer et  al. 2003). 
Membrane-associated SKI-1/S1P is found predominantly in the early Golgi where 
cellular SKI-1/S1P substrates are cleaved (Pullikotil et al. 2007). Thus, the data at 
hand indicate that SKI-1/S1P is active in at least three different sub-compartments 
of the secretory pathway, ER/cis-Golgi (LASV GPC), median Golgi (SREBPs, 
ATF6, CREBs, GNPTAB), and late Golgi (LCMV GPC) (Fig. 3.3b). How arenavi-
ruses selected specific subcellular compartments for SKI-1/S1P-mediated GPC 
maturation is still not fully understood, but recent studies gave some hints. Subtle 
changes of the sequence at the cleavage site can have drastic effects on the location 
and efficiency of GPC maturation, despite maintaining the RXLX↓ consensus 
motif. As an example, processing of an LCMV GPC mutant containing the cleavage 
site RRLL derived from LASV GPC is redirected from late Golgi to the ER/cis-
Golgi. In contrast, introduction of the LCMV GPC cleavage motif RRLA into the 
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LASV GPC backbone results in an uncleavable protein (Burri et  al. 2012). The 
unusual mechanism of zymogen activation and maturation of SKI-1/S1P described 
above (Fig. 3.2b) may contribute to this phenomenon. As mentioned above, auto-
catalytic processing is necessary but not sufficient to remove the SKI-1/S1P proseg-
ment, resulting in different already active forms of the enzyme still bearing 
prodomain fragments of distinct lengths (Fig.  3.2b). It is conceivable that such 
enzyme/prodomain complexes located in defined sub-compartments of the secre-
tory pathway may show differential specificity for viral and cellular substrates. 
Further evidence for differential recognition of viral and cellular substrates by 
SKI-1/S1P comes from the observation that the mutations R130E and R134E within 
the B′/B autoprocessing site result in selective impairment of viral GPC processing, 
but not cleavage of cellular substrates (Burri et al. 2012).

Due to their non-lytic strategy of replication, arenaviruses can establish persis-
tent infections in  vitro and in  vivo without causing overt signs of pathology. 
Considering the multiple roles of SKI-1/S1P in maintaining cellular functions, the 
largely nonoverlapping subcellular localization of viral vs. cellular substrates 
(Fig. 3.3b) may be a consequence of the extensive coevolution of the viruses with 
their reservoir hosts. Accordingly, high expression levels of GPC during acute are-
navirus infection do not interfere with the SKI-1/S1P-mediated processing of ATF6 
involved in the host cell’s ER stress response (Pasqual et al. 2011a). As a conse-
quence, arenavirus infection results in specific and transient activation of the ATF6-
regulated branch of the cellular ER stress response that includes upregulation of 
chaperones, adjusting the folding capacity to the increased demand. The differential 
subcellular location of SKI-1/S1P processing of viral and cellular substrates may 
therefore allow extensive viral replication and gene expression without causing 
overt cytopathic effects (Oldstone 2002).

3.5	 �Optimized Recognition of Arenavirus GPC by SKI-1/S1P: 
Viral Advantage and Achilles’ Heel

Comparison of the currently known sequences of arenavirus GPCs revealed the 
presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/
S1P recognition sites in Old World and Clade C New World arenaviruses, but not in 
New World viruses of Clades A and B or cellular substrates (Burri et  al. 2013) 
(Table 3.1). Early experimental evidence already supported the notion that an aro-
matic amino acid at P7 somehow promotes SKI-1/S1P cleavage of both LASV 
(Pasquato et al. 2006) and LCMV GPC (Beyer et al. 2003). Subsequent molecular 
modeling allowed docking of the LASV GPC-derived peptides into the putative 
catalytic pocket of SKI-1/S1P (Burri et al. 2013). These studies revealed that the 
aromatic “signature residue” in position P7 of some viral GPC recognition sequences 
interacts with residue Y285 located in the extended substrate-binding pocket of 
SKI-1/S1P (Burri et  al. 2013). Indeed, introduction of the mutation Y285A into 
SKI-1/S1P gives an enzyme that is markedly impaired in processing of LASV GPC, 
but not GPC of New World arenaviruses or cellular substrates. During coevolution 

A. Pasquato et al.



59

with their mammalian hosts, the GPCs of Old World and Clade C New World 
viruses apparently expanded the molecular contacts with SKI-1/S1P beyond the 
classical four amino acid recognition sequences, resulting in an enlarged binding 
surface. The concept that critical residues flanking the classical recognition sites can 
modulate PC processing is also supported by findings with basic PCs and their cel-
lular substrates. A comparative study showed the influence of surrounding amino 
acids on the relative PC cleavage efficiency (Remacle et al. 2008). The presence of 
an N at position P1′ after the scissile bond in the substrate growth differentiation 
factor-11 markedly reduces cleavage by PACE4, furin, and PC7 while being selec-
tively permissive to PC5/6 (Essalmani et al. 2008). Moreover, Constam and col-
leagues demonstrated that L and G at P2′ and P3′ positions in nodal, a regulator of 
the fate of pluripotent cells, dramatically enhance basic PC processing, further sup-
porting this concept (Constam and Robertson 1999). The specificity of the interac-
tion between Y285 of SKI-1/S1P and aromatic P7 residues for LASV GPC 
processing, but not cleavage of cellular substrates, makes this interaction a promis-
ing target for the development of specific antiviral drugs against this important 
human pathogen. Perturbation of the interaction of the highly conserved aromatic 
side chain in position P7 of LASV GPC with the contact residue Y285 of SKI-1/
S1P, e.g., by a small molecule, is not expected to affect the SKI-1/S1P catalytic 
triad, limiting unwanted side effects. The markedly reduced processing of LASV 
GPC bearing a Y to A mutation in position P7 (Burri et al. 2013) suggests that viral 
escape variants lacking the aromatic signature residue at P7 may have impaired fit-
ness, making the P7/Y285 interaction a true “Achilles’ heel” of the virus.

3.6	 �The Processing of Reptarenavirus GPC Is Largely 
Unknown

For the mammarenaviridae, several lines of evidence suggest that the maturation of 
the viral GPC by SKI-1/S1P is a crucial step in the virus life cycle. In contrast, little is 
known about the biosynthesis, maturation, and processing of reptarenavirus GPC. The 
sequences of reptarenavirus GPC seem to deviate from the canonical SSP/GP1/GP2 
composition of mammarenaviruses and bear some resemblance to filovirus GP (Li 
et al. 2016; Stenglein et al. 2012). In contrast to arenavirus GPC, whose processing 
critically depends on SKI-1/S1P, the GP of the filovirus Ebola undergoes processing 
by furin, the prototypic member of the basic PC family, although this cleavage seems 
dispensable for virus infection and propagation (Neumann et al. 2002) (see also Chap. 5). 
Further studies are required to identify the specific cellular protease(s) involved in 
reptarenavirus GPC processing and to see if this step is crucial for functional matura-
tion. A very different mechanism cannot be ruled out, including the use of another 
class of host-derived proteases that may function in the secretory pathway during 
biosynthesis, at the cell surface, or during the entry process, as illustrated by the use 
of endosomal cathepsins by filoviruses (Hunt et al. 2012) or coronaviruses that use 
multiple proteases, including cathepsins, cell surface transmembrane protease/serine 
proteases, furin, and trypsin (Millet and Whittaker 2015, see also Chap. 4).
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3.7	 �Targeting SKI-1/S1P-Mediated GPC Processing 
as an Anti-arenaviral Strategy

A major challenge for the development of drugs against human pathogenic arenavi-
ruses is the limited structural information available on the pathogens. As all viruses, 
arenaviruses critically depend on the molecular machinery of the host cell for their 
multiplication. This is particularly true for the biosynthesis of the envelope GP that 
involves a complex interplay with cellular factors, including SKI-1/S1P. So far, all 
human pathogenic arenaviruses seem to be SKI-1/S1P-dependent, and SKI-1/S1P 
activity is crucial for productive infection. In the absence of SKI-1/S1P activity, 
infected cells produce noninfectious naked particles devoid of GP, due to a yet-
unknown mechanism of selective incorporation of cleaved GP. Studies have been 
carried out to investigate the ability of arenaviruses to escape SKI-1/S1P. Recombinant 
LCMV containing the furin cleavage site RRRR↓ instead of RRLA↓ was found to 
be replication competent and behaved similarly to the wild-type virus in cell culture 
(Rojek et al. 2010). Although this suggested that arenaviruses may, at least in prin-
ciple, use other proteases than SKI-1/S1P for GPC processing, persistent virus 
infection of SKI-1/S1P null cells or inhibitor treatment so far never resulted in the 
emergence of SKI-1/S1P-independent viral escape variants (Rojek et  al. 2008, 
2010; Pasquato et al. 2012b). Moreover, complete inhibition of SKI-1/S1P seems 
not required to restrict arenavirus infection in vivo, since the partially active “wood 
rat” variant of the enzyme conferred significant protection and prevented persistent 
viral infection with LCMV (Popkin et al. 2011). In sum, inhibition of SKI-1/S1P 
appears as a promising therapeutic approach to combat arenavirus infection 
(Pasquato et al. 2012a).

Direct inhibition of the mature protease is a widely used approach to interfere 
with the normal enzymatic activity. Although this approach often gives excellent 
results, a catalytically dead enzyme results in a general loss of activity toward all 
substrates, cellular and viral alike. Unwanted side effects must be carefully taken 
into consideration. Considering the crucial role of SKI-1/S1P in major physiologi-
cal processes and disorders, including infection with highly pathogenic arena- and 
bunyaviruses, efforts have been made to develop a panel of protein-based and small 
molecule inhibitors that will be covered below.

3.7.1	 �Protein-Based Strategies

The naturally occurring serpin α1-antitrypsin (AT) had been long known as a potent 
suicide inhibitor for trypsin-like proteases, entrapping the enzyme in a stable com-
plex following cleavage at the reactive site loop. Subsequently, mutations have been 
inserted into the reactive site loop of α1-AT to introduce the B(X)nB↓ motif of basic 
PCs, yielding a potent protein-based furin inhibitor (α1-PDX) (Anderson et  al. 
1993). Based on the homology of the catalytic sites of basic and nonbasic PCs, the 
reactive site loop of α1-AT was further mutated to introduce the SKI-1/S1P 
BX(hydrophobic)X↓ motif RRVL.  In cell culture experiments, α1-AT RRVL 
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efficiently blocked SKI-1/S1P-mediated processing of SREBPs. Overexpression of 
α1-AT RRVL inhibited LASV GPC maturation and had a strong antiviral effect by 
markedly reducing cell-to-cell spread and infectious viral particle production 
(Maisa et al. 2009), providing proof of concept.

3.7.2	 �Peptide-Based Compounds and Small Molecules

Analogous to peptide chloromethyl ketones (CMK) developed to inhibit furin-like 
proteases, two CMK peptides were designed, containing the IYISRRLL and RRLL 
motifs derived from LASV GPC. Both CMK peptides act as irreversible inhibitors 
of SKI-1/S1P at the level of substrate maturation (Pasquato et al. 2006). Proof-of-
principle studies showed that these small molecules potently block infection of 
LCMV (Rojek et al. 2010). However, due to their toxicity, CMK inhibitors are not 
suitable as therapeutic agents.

The aminopyrrolidine amide compound PF-429242 is a reversible, competitive 
inhibitor of SKI-1/S1P discovered by Pfizer Inc. that efficiently blocks processing 
of endogenous cellular substrates (Hay et al. 2007). Following PF-429242 adminis-
tration in vivo, SREBP-2 activation in mice is dramatically reduced resulting in a 
marked drop of plasma cholesterol levels (Hawkins et al. 2008). Pharmacological 
inhibition of SKI-1/S1P activity by PF-429242 also blocks LASV and LCMV GPC 
maturation reducing cell-to-cell propagation with only mild off-target effects (Urata 
et  al. 2011; Pasquato et al. 2012b). Cells persistently infected with LCMV were 
efficiently cleared by treatment with PF-429242 without emergence of drug-
resistant viral escape variants (Pasquato et al. 2012b). Initial evaluation of PF-429242 
in vivo in a murine model raised concerns about applications against chronic dis-
eases, such as familial hypercholesterolemia (Hawkins et  al. 2008). However, 
human pathogenic arenaviruses cause acute diseases, limiting antiviral treatment to 
a time window of a few weeks. Considering these relatively short periods of treat-
ment, the toxicological and pharmacokinetic profile of PF-429242 makes it still an 
interesting experimental drug candidate (Hawkins et al. 2008).

The current standard of care for treatment of human arenavirus infection is an 
off-label use of the nucleoside analogue ribavirin (1-β-d-ribofuranosyl-1,2,4-
triazole-3-carboxamide) (Parker 2005). Early administration of ribavirin reduces 
the fatality in human Lassa fever (Mccormick et al. 1986) and experimental infec-
tions with MACV (Kilgore et al. 1995) and JUNV (Weissenbacher et al. 1987) in 
animals. However, to achieve high efficacy, ribavirin needs to be administered 
early during infection intravenously and is often associated with side effects. 
Novel anti-arenaviral drugs may be used individually or in combination with ther-
apy and ribavirin to combat human pathogenic arenaviruses, allowing lower doses 
of ribavirin. Indeed, the combination of PF-429242 with ribavirin revealed stron-
ger than additive effect of the two drugs (Pasquato et al. 2012b). The basis for this 
apparent synergism may lie in the distinct underlying antiviral mechanisms of the 
two drugs. Depending on the concentration used, ribavirin inhibits arenavirus 
infection at the level of replication (Ruiz-Jarabo et  al. 2003) and shows drug 
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action as a mutagen (Moreno et al. 2011). In contrast, PF-429242 affects the bio-
synthesis of the viral GP, blocking the formation of infectious progeny virus from 
infected cells.

3.7.3	 �A Novel Cell-Based Sensor for SKI-1/S1P as a Platform 
for High-Throughput Drug Screening

As outlined above, the currently available SKI-1/S1P inhibitors are potent and spe-
cific and represent invaluable experimental drugs for proof-of-concept studies. 
However, they face considerable restrictions regarding therapeutic use in clinical 
medicine. The protein nature of α1-AT RRVL makes cell permeability and in vivo 
drug delivery challenging. The smaller SKI-1/S1P-specific decanoylated CMK pep-
tides show good cell permeability, but due to their toxicity profile and short half-life, 
their use is restricted. PF-429242 has low cytotoxicity and shows in vitro IC50 in the 
low micromolar range. However, the compound has an unfavorable pharmacoki-
netic profile in vivo and has to the best of our knowledge not yet entered the clinical 
test phase. Considering the promise of SKI-1/S1P as a drug target and the limita-
tions of the candidate inhibitors at hand, the identification of novel small molecule 
inhibitors for SKI-1/S1P is of high priority.

Conventional approaches to study substrate processing by SKI-1/S1P use homo-
geneous biochemical assays including synthetic chromogenic peptides and purified 
soluble enzyme (Pasquato et al. 2006). These systems have greatly contributed to our 
current understanding of the biochemistry of SKI-1/S1P and lead to the discovery of 
candidate drugs like PF-429242. However, as mentioned above, evidence is accumu-
lating that the interaction of SKI-1/S1P with its substrates is more complex and may 
also be regulated at the level of subcellular location. Robust and quantifiable cell-
based assays are therefore needed to screen for inhibitors of SKI-1/S1P processing of 
specific substrates in the authentic cellular context. To close this gap, a novel reliable 
cell-based assay allowing the quantitative detection of the enzymatic activity of 
endogenous SKI-1/S1P has been developed, exploiting key findings on the process-
ing of viral GPC (Da Palma et al. 2014). The assay is based on a chimeric protein 
composed of a Gaussia luciferase (GLuc) reporter anchored to the membrane by the 
stump region of SKI-1/S1P through a virus-derived cleavable peptide sequence 
(Fig. 3.4). The SKI-1/S1P-cleavable 9mer sequence IYISRRLL↓G used in the pro-
totypic sensor is derived from LASV GPC, which is one of the best substrates cur-
rently known (Pasquato et al. 2006, Lenz et al. 2001), assuring optimal sensitivity 
and specificity of the sensor. The membrane anchor of the sensor mimics that of 
SKI-1/S1P, allowing correct cellular targeting and favoring optimal substrate-enzyme 
recognition. Upon processing, this sensor releases the soluble reporter GLuc to the 
medium, where it can be easily detected using a sensitive and cost-efficient luciferase 
assay. The sensor recapitulates the key features of the viral substrate from which the 
processing site has been derived, both in terms of subcellular localization and effi-
ciency of cleavage. The robust and reliable nature of this novel cell-based sensor 
assay allows implementation in high-throughput screening (HTS).
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PCs are essential for normal cell functions during development and in adults 
(Seidah and Prat 2012); nonetheless several studies showed that specific inhibition 
of a definite PC is not detrimental in case of in vivo short-term treatment (Hay et al. 
2007; Shiryaev et al. 2007). Thus, targeting viral GP cleavage is a novel promising 
therapeutic approach to fight against virulent pathogens such as hemorrhagic arena-
viruses. Our modern globalized world increasingly faces the threat of emerging 
viruses due to human migration, rapidly progressing urbanization, almost free 
global trade, exposure to animals, and climatic changes. The development of novel 
broadly specific antivirals is therefore important to help meeting these unmatched 
medical problems.

3.7.4	 �Use of the SKI-1/S1P Sensor to Predict Protease Use 
of Newly Emerging Arenaviruses

New arenaviruses are rapidly emerging and are in some cases associated with severe 
human diseases. With the advent of powerful next-generation sequencing 
approaches, we expect to see accelerated discovery of many new arenavirus species, 
pathogenic or not, in the years to come. However, in many cases viruses may not be 
isolated, and only genetic information will become available. Considering the 
extensive variation at the known and putative SKI-1/S1P recognition sequences in 
known arenavirus GPC, defined consensus sequences cannot easily be found (Burri 
et  al. 2013; Pasquato et  al. 2011). Data at hand indicate that knowledge of the 
sequence P1–8 and residue P1′ of the putative GP1/GP2 cleavage site of a novel 
arenavirus GPC would be necessary and sufficient to test if the new virus can hijack 
human SKI-1/S1P, which is a prerequisite for productive infection and hence dis-
ease potential in man. In a recent study, the cell-based SKI-1/S1P sensor was applied 
to make a first prediction if the recently emerged LUJV GPC is processed by human 

N SP Prodomain Ectodomain

Shedding
Sensor SKI-1/S1P

Lumen

Nucleus

Secreted luciferase

TM C

CN SP GLuc TM

Stump

Virus-derived
substrate sequence

SKI-1/S1P

Fig. 3.4  A cell-based sensor for the detection of endogenous SKI-1/S1P activity. Schematic of the 
SKI-1/S1P sensor. The SKI-1/S1P-derived stump region and the GLuc reporter, as well as the 
virus-derived peptide comprising the cleavage motif, are indicated. Processing of the sensor by 
endogenous SKI-1/S1P releases the GLuc reporter (sphere) that is secreted into the tissue culture 
supernatant, where it can be detected via luminescence assay. For details, please see text
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SKI-1/S1P.  Phylogenetic analysis identified LUJV as an outlier within the Old 
World arenaviruses as the sequence RKLM↓K at the putative GP1/GP2 border dif-
fered significantly from the known consensus (Burri et  al. 2013). Despite these 
important differences, a sensor containing a 9mer peptide derived from LUJV GPC 
underwent efficient processing by human SKI-1/S1P, which was then validated with 
authentic full-length GPC (Oppliger et al. 2015).

Considering the promise of SKI-1/S1P as therapeutic target for novel antiviral 
drugs to combat human pathogenic arenaviruses, SKI-1/S1P dependence of a newly 
emerging pathogenic arenavirus assessed by this new sensor may open the possibil-
ity for rapid intervention. The SKI-1/S1P sensor can further be used to assess the 
processing of arenavirus GPCs by SKI-1/S1P orthologues derived from other spe-
cies, shedding light on the complex ecology of arenaviruses. Conceptually, the sen-
sor platform developed for SKI-1/S1P based on lessons learned from arenavirus 
GPC cleavage may be applicable for other human proteases that are responsible for 
processing of a plethora of viral envelope GPs in a wide range of species. For the 
virology research community such a platform may serve as a rapid and cost-effective 
evaluation of viral GP processing by human proteases that may contribute to our 
preparedness against the threat of emerging viruses.
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Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. 
Infection of humans with globally circulating human coronaviruses is associated 
with the common cold. In contrast, transmission of animal coronaviruses to 
humans can result in severe disease: The severe acute respiratory syndrome 
(SARS) and the Middle East respiratory syndrome (MERS) are responsible for 
hundreds of deaths in Asia and the Middle East, respectively, and are both caused 
by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that 
were zoonotically transmitted from an animal host to humans. At present, neither 
vaccines nor specific treatment is available to combat coronavirus infection in 
humans, and novel antiviral strategies are urgently sought. The viral spike pro-
tein (S) mediates the first essential step in coronavirus infection, viral entry into 
target cells. For this, the S protein critically depends on priming by host cell 
proteases, and the responsible enzymes are potential targets for antiviral inter-
vention. Recent studies revealed that the endosomal cysteine protease cathepsin 
L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-
CoV and MERS-CoV and provided evidence that successive S protein cleavage 
at two sites is required for S protein priming. Moreover, mechanisms that control 
protease choice were unraveled, and insights were obtained into which enzyme 
promotes viral spread in the host. Here, we will provide basic information on S 
protein function and proteolytic priming, and we will then discuss recent prog-
ress in our understanding of the priming of the S proteins of SARS-CoV and 
MERS-CoV.
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4.1	 �Introduction

Coronaviruses (CoV) belong to the Coronavirinae subfamily that forms along with the 
subfamily Torovirinae the virus family Coronaviridae within the order Nidovirales. 
The Coronavirinae subfamily harbors four genera (Fig. 4.1): Alpha-, Beta-, Gamma-, 
and Deltacoronavirus (Adams and Carstens 2012; Woo et al. 2012). Coronaviruses are 
enveloped viruses that contain a single-stranded RNA genome of positive polarity 
comprising roughly 30 kilobases. The virus particles are spherical and with a diameter 
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Fig. 4.1  Phylogenetic relationship among coronaviruses based on their spike glycoproteins. The 
amino acid sequences of coronavirus spike glycoproteins representing all four genera (Alpha-, α; 
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utilized to generate a phylogenetic tree (neighbor-joining method). Italicized numbers at the nodes 
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of 80–120 nm (Belouzard et al. 2012). They contain the genome, which is associated 
with the nucleoprotein (NP), forming a ribonucleoprotein complex (RNP) (Belouzard 
et al. 2012). Depending on the virus, three or four viral proteins are embedded in the 
viral envelope: Membrane protein (M), envelope protein (E), and spike glycoprotein 
(S)  are present in all coronaviruses, while some members of the genus Betacoronavirus 
additionally contain a hemagglutinin-esterase protein (HE). M and E are required for 
viral assembly (Belouzard et al. 2012), HE promotes release of viruses from infected 
cells (Vlasak et al. 1988), and the S protein, which is in the focus of this review, facili-
tates viral entry into target cells. The S protein is also responsible for the corona-like 
shape of these viruses in electron micrographs, on the basis of which the name corona-
virus was coined (Berry and Almeida 1968; Du et al. 2009).

Coronaviruses infect a broad range of vertebrate hosts with alpha- and betacoronavi-
ruses targeting different mammals, while gamma- and deltacoronaviruses mainly infect 
birds (Breslin et al. 1999; Cavanagh et al. 2001; Jonassen et al. 2005). It is believed that 
coronaviruses of the genera Alpha- and Betacoronavirus have emerged from bats, while 
gamma- and deltacoronaviruses seem to originate from birds (Graham and Baric 2010; 
Woo et al. 2012). Coronavirus infection is mainly associated with respiratory and enteric 
diseases but, depending on the virus, can also lead to hepatic (Lane and Hosking 2010) 
and neurologic manifestations (Foley and Leutenegger 2001).

Human coronaviruses (HCoVs) are known since 1965 when they were identified 
in patients suffering from the common cold (Tyrrell and Bynoe 1965). Most of 
HCoVs known today (HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1) 
infect ciliated epithelia cells of the nasopharynx (Afzelius 1994; Weiss and Navas-
Martin 2005) and cause self-limiting upper respiratory tract diseases in immuno-
competent individuals, with symptoms like headache, sore throat, and malaise being 
frequently observed. In rare events, infection can spread to the lower respiratory 
tract, causing bronchiolitis, bronchitis, and pneumonia, particularly in infants, the 
elderly, and immunocompromised individuals (Masters and Perlman 2013).

Within the last 20 years, two novel HCoVs emerged that cause severe and fre-
quently fatal infections in humans (Drosten et al. 2003; Lu et al. 2015; Reusken 
et al. 2016; Zaki et al. 2012). In 2002, the outbreak of severe acute respiratory syn-
drome coronavirus (SARS-CoV) in Southern China and its subsequent worldwide 
spread was associated with roughly 8100 infections of which 10% took a fatal 
course, with the elderly being mainly affected (Peiris et al. 2003). In the aftermath 
of the SARS pandemic, it has been revealed that bats harbor numerous SARS-CoV-
related viruses as well as other coronaviruses that may be zoonotically transmitted 
to humans via intermediate hosts (Hu et  al. 2015; Lu et  al. 2015). In 2012, the 
Middle East respiratory syndrome coronavirus (MERS-CoV), another novel, highly 
pathogenic coronavirus emerged in Saudi Arabia, causing a SARS-like disease 
(Zaki et al. 2012). MERS-CoV infection is associated with a case-fatality rate of 
35% (WHO Health Organisation 2017), and comorbidities like diabetes mellitus, 
chronic renal disease, and hypertension constitute major risk factors for a lethal 
outcome of the disease (Assiri et al. 2013). Like SARS-CoV, MERS-CoV is a zoo-
notic virus originating from an animal reservoir, dromedary camels (Mohd et al. 
2016). As the MERS epidemic is still ongoing, there are concerns that 
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human-to-human transmission, which is very infrequent at present (Alsolamy and 
Arabi 2015), might become more efficient due to adaptive mutations in the viral 
genome (Dudas and Rambaut 2016; Reusken et al. 2016).

Coronaviruses also constitute a severe threat to animal health. For instance, por-
cine epidemic diarrhea coronavirus (PEDV) infects the epithelia of the small intes-
tine and causes villous atrophy, resulting in diarrhea and severe dehydration 
(Debouck and Pensaert 1980; Jung et  al. 2006). The virus was first described in 
Europe in the 1970s and was originally not perceived as a major threat to animal 
health (Debouck and Pensaert 1980; Pensaert and de 1978). Recently, however, 
highly virulent PEDV strains emerged that cause lethal infection in 80–100% of 
piglets and weight loss in adult pigs (Debouck and Pensaert 1980; Lee 2015). PEDV 
spread can have severe consequences: The introduction of PEDV in the USA 
resulted in major economic losses among pig farmers and a 10% decline in the 
American pig population (Lee 2015; Li et al. 2012; Liu et al. 2016; Stevenson et al. 
2013). As there are no effective vaccines or specific treatments available, current 
containment strategies are mainly limited to rigorous disinfection routines.

Coronaviruses constitute a severe threat to animal and human health, as discussed 
above, and the development of antivirals is an important task. Host cell factors required 
for coronavirus spread but dispensable for cellular survival are attractive targets, since 
their blockade might suppress infection by several coronaviruses and might be associ-
ated with a high barrier against resistance development. The viral S protein mediates 
the first step in coronavirus spread, viral entry into target cells. However, the S protein 
is synthesized as an inactive precursor and requires cleavage by host cell proteases for 
conversion into an active form. The cellular enzymes responsible constitute targets for 
antiviral intervention, and recent studies provided important insights into their identity, 
expression, and target sites in the viral S protein. Moreover, novel mechanisms govern-
ing protease choice by coronaviruses have been uncovered. The present manuscript 
will review and discuss these findings, focusing on SARS-CoV and MERS-CoV.

4.2	 �The Coronavirus Spike Protein: Viral Key for Entry into 
the Target Cell

Domain organization. The S protein of coronaviruses contains an N-terminal signal 
peptide which primes the nascent polyprotein for import into the ER. In the ER, the 
S protein is extensively modified with N-linked glycans, which may provide protec-
tion against neutralizing antibodies (Walls et al. 2016b). After passing the quality 
control mechanisms of the ER, the S protein is transported to the site of viral bud-
ding, the endoplasmic reticulum/Golgi intermediate compartment (ERGIC). 
Homotrimers of the S protein, for which atomic structures have recently been 
reported (Kirchdoerfer et  al. 2016; Walls et  al. 2016a), are incorporated into the 
viral membrane and mediate viral entry into target cells. For this, the S protein com-
bines two biological functions: First, its surface unit, S1, binds to a specific receptor 
located at the surface of host cells and thereby determines cellular tropism and, as a 
consequence, viral pathogenesis. Second, the transmembrane unit, S2, mediates 
fusion between the viral envelope and a target cell membrane (Fig. 4.2).
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Fig. 4.2  Domain organization and structure of the coronavirus spike glycoprotein. (a) Schematic 
illustration of a coronavirus spike (S) glycoprotein consisting of the subdomains S1 and S2. At the 
N-terminus of the S1 subdomain resides the signal peptide that allows for introduction of nascent 
S proteins into the host cells’ secretory pathway. Additionally, this subdomain harbors amino acid 
residues responsible for virus attachment to target cells (receptor-binding domain, RBD). The S2 
subdomain contains the structural components of the membrane fusion machinery (fusion peptide, 
heptad repeats (HR) 1 and 2), anchors the S protein in the lipid envelope via the transmembrane 
domain, and interacts with the viral ribonucleoprotein complex through its endodomain. Location 
of the S1/S2 border and the S2′ position is indicated by black triangles. (b) 3D-model of trimeric 
SARS-CoV S protein (amino acid residues 261–1058) schematically positioned on the outside of 
the viral envelope. The protein structure ID, 5WRG, (Gui et al. 2017) was downloaded from the 
RCSB Protein Data Bank and analyzed using the YASARA software (www.yasara.org, Krieger 
and Vriend 2014). Each S protein monomer is colored individually, and the position of the RBD is 
indicated. Further, the locations of the arginines at the S1/S2 border (R667) and S2′ position 
(R797) are highlighted
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Cellular receptors. Coronaviruses use a broad range of receptors for entry into 
target cells (Table 4.1). Alphacoronaviruses like HCoV-229E, transmissible gastro-
enteritis coronavirus (TGEV), and porcine respiratory coronavirus (PRCV) engage 
the zinc metalloproteinase CD13 from their natural host as well as feline CD13 
(feCD13) as entry receptor (Tresnan and Holmes 1998), with different residues in 
feCD13 being required for recognition by the respective coronaviral S proteins 
(Tusell et al. 2007). Despite high amino acid sequence similarity within the S1 sub-
unit, the S proteins of HCoV-229E and -NL63 interact with different host cell recep-
tors, namely, CD13 (Yeager et  al. 1992) and angiotensin-converting enzyme 2 
(ACE2) (Hofmann et al. 2005). Notably, ACE2 is also employed by SARS-CoV for 
entry (Li et al. 2003; Wang et al. 2004), although the S protein of this betacoronavi-
rus and NL63-S share little sequence similarity. Other members of the betacorona-
viruses use different entry receptors: MERS-CoV uses human dipeptidyl peptidase 
4 (DPP4), mouse hepatitis virus (MHV) interacts with carcinoembryonic antigen-
related cell adhesion molecule 1 (CEACAM1) (Dveksler et al. 1991; Williams et al. 
1991), and neuraminic acid is used by bovine CoV and HCoV-OC43 for attachment 
to cells (Kunkel and Herrler 1993; Schultze et  al. 1991). Similarly, sialic acid-
containing surface molecules serve as attachment factors or receptors for TGEV, 
PEDV, and avian infectious bronchitis virus (IBV) (Cavanagh and Davis 1986; 
Deng et al. 2016; Krempl et al. 1997; Liu et al. 2015; Schultze et al. 1992).

Structural insights into receptor choice. The proteolytic priming of the viral S 
proteins is in the center of this review. However, priming and receptor binding can 
be intimately connected, and structural analyses provide valuable explanations for 
coronavirus receptor specificity. Therefore, structural aspects of S protein binding 
to its receptor will be briefly discussed. Binding to a receptor is mediated by a 
receptor-binding domain (RBD), which is located in the surface unit S1. The S1 
subunit generally consists of an N-terminal (NTD) and a C-terminal domain (CTD) 
(Li 2012), which can serve as RBD either alone or in combination. For most coro-
navirus analyzed, the S1-NTD is responsible for binding to host cell glycans 
(Krempl et al. 1997; Liu et al. 2015; Peng et al. 2012; Promkuntod et al. 2014), 
whereas the S1-CTD targets the a proteinaceous receptor (Du et al. 2013; Godet 
et al. 1994; Hofmann et al. 2006; Lin et al. 2008; Liu et al. 2015; Mou et al. 2013; 
Wong et  al. 2004). All S1-CTD investigated so far are characterized by a core 

Table 4.1  Host cell receptors of selected alpha- and betacoronaviruses

Genus Virus Receptor
Alphacoronavirus FIPV CD13

TGEV CD13
HCoV-NL63 Angiotensin-converting enzyme 2 (ACE2)
HCoV-229E CD13

Betacoronavirus SARS-CoV Angiotensin-converting enzyme 2 (ACE2)
MERS-CoV Dipeptidyl peptidase 4 (DPP4)
HCoV-OC43 N-Acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2)
MHV Carcinoembryonic antigen-related cell adhesion 

molecule 1a (CEACAM1a)
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domain overlaid by an external region, which directly contacts the receptor (Li 
2016). The S1-CTD of SARS-S comprises a core of five ß-sheets in antiparallel ori-
entation, headed by a rather globular external region (Li et al. 2005a) in which amino 
acids N479 and T487 mediate high affinity binding to ACE2 (Li et al. 2005b). The S 
protein of SARS-CoV from palm civets, a potential intermediate host (Guan et al. 
2003; Ksiazek et al. 2003; Rota et al. 2003; Song et al. 2005; Wu et al. 2005), harbors 
amino acids at positions 479 and 487 which preclude efficient binding to human 
ACE2 (Li 2008), and acquisition of mutations at these positions was sufficient for 
cross-species transmission during the SARS epidemic (Li 2008; Li et al. 2005b; Qu 
et al. 2005; Song et al. 2005; Wu et al. 2011, 2012). Within human ACE2, two lysine 
residues (K31 and K353) are critical for SARS-S binding (Li 2008; Wu et al. 2011, 
2012), and an exchange to histidine at position 353 present in murine ACE2 renders 
this protein unsuitable for efficient SARS-S binding (Li et al. 2004, 2005b). Similarly, 
the rat homologue of ACE2 contains a glycosylated asparagine at position 82 which 
sterically blocks S protein interaction (Frieman et al. 2012; Li et al. 2004). These find-
ings show that subtle variations within the S protein and its receptor can dramatically 
impact cross-species transmission of coronaviruses.

The core domain of the S1-CTD in MERS-S structurally resembles that of 
SARS-S (Chen et al. 2013; Lu et al. 2013; Wang et al. 2013; Yuan et al. 2017), but 
the extended core domains are different, with the MERS-S extended core consisting 
of antiparallel ß-sheets forming a flat surface which targets DPP4 (Raj et al. 2013). 
The MERS-S binding site on DPP4 is located within a propeller-like structure con-
served in bat, camel, and human DPP4 (Barlan et al. 2014; van et al. 2014), and 
MERS-related CoV have been isolated from both bats and camels (Alagaili et al. 
2014; Annan et al. 2013; Haagmans et al. 2014; Lau et al. 2013). In contrast, rodent 
DPP4 homologues are nonfunctional as MERS-CoV receptors (Cockrell et al. 2014; 
Coleman et al. 2014; Fukuma et al. 2015; Peck et al. 2015; Raj et al. 2014), proba-
bly due to steric hindrance due to a glycosylation in rodent DPP4 (Peck et al. 2015).

In a recent publication, Yuan and colleagues analyzed trimeric MERS- and 
SARS-S proteins in their pre-fusion conformation using single-particle cryo-
electron microscopy (Yuan et al. 2017). Their results revealed an unexpected flexi-
bility of the respective RBDs: in the “lying state,” the RBDs are buried inside the 
trimer, whereas in the “standing state” the RBDs are exposed for receptor interac-
tion (Yuan et al. 2017). Hereby, MERS-S1/S2 trimers appeared with one or two of 
the RBDs in the standing conformation, thus being able to contact DPP4, whereas 
SARS-S trimers showed two or all three RBDs in the lying state, thus being inca-
pable of receptor binding without further conformational change. The flexibility of 
the RBDs might therefore alleviate receptor interaction for subsequent virus entry 
(Yuan et al. 2017).

Finally, it should be noted that the RBD constitutes the most important target for 
neutralizing antibodies (Bonavia et al. 2003; Breslin et al. 2003; Godet et al. 1994; 
He et al. 2004; Kubo et al. 1994). Additionally, sequence comparison of six HCoV 
S2 domains suggests that also the fusion peptide, the HR1 domain, and the central 
helix, which are exposed at the surface of the stem region of S protein trimers, can 
be targeted by neutralizing antibodies (Yuan et al. 2017). Therefore, the structural 
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information discussed above not only provides insights into S protein receptor inter-
actions but also helps to understand how they can be inhibited by antibodies (Du 
et al. 2008; Lan et al. 2015; Oh et al. 2014; Tai et al. 2017; Walls et al. 2016a).

Membrane fusion. The transmembrane unit S2 harbors domains required for fusion 
between viral and host cell membrane, including a fusion peptide and two heptad 
repeats (HR1 and HR2). These elements are followed by a transmembrane (TM) 
domain and a C-terminal intracytoplasmic tail (Fig. 4.2), which plays a role in S pro-
tein sorting. The HR domains consist of α-helices, and their position and amino acid 
sequences are conserved among all groups within the coronavirus family (de Groot 
et al. 1987). Membrane fusion commences with the insertion of the fusion peptide 
into the target cell membrane. Subsequently, the HR regions fold back onto each 
other, resulting in the formation of a thermostable six-helix bundle structure (Bosch 
et al. 2003; Duquerroy et al. 2005; Lu et al. 2014; White and Whittaker 2016). As a 
consequence, the membranes are pulled into close contact and ultimately fuse. Several 
unrelated viral glycoproteins exhibit the same domain organization and membrane 
fusion mechanism as CoV S proteins (Dimitrov 2004; White and Whittaker 2016). 
These proteins are collectively termed class I membrane fusion proteins and contain 
α-helices as the predominant structural element (Belouzard et al. 2012; Bosch et al. 
2003; Tripet et al. 2004; White and Whittaker 2016). All viral class I membrane fusion 
proteins require a trigger to overcome the energy barrier associated with membrane 
fusion reaction, low pH, and/or potentially receptor binding. Moreover, viral class I 
membrane fusion proteins are invariably synthesized as inactive precursors and 
depend on priming by host cell proteases to transit into an active form, and the general 
aspects of CoV S protein priming will be discussed in the next section.

4.3	 �Proteolytic Priming of Coronavirus Spike Proteins: Basic 
Concepts

The proteolytic separation of the S1 and S2 subunits, termed priming, provides the 
CoV S protein with the structural flexibility required for the membrane fusion reac-
tion. Initial studies, conducted with the envelope protein of human immunodefi-
ciency virus (HIV) and the hemagglutinin of highly pathogenic avian influenza A 
viruses (FLUAV), indicated that cleavage occurs in the constitutive secretory path-
way of infected cells and is carried out by furin or related subtilisin-like proteases 
(Hallenberger et  al. 1992; Stieneke-Gröber et  al. 1992). Moreover, cleavage was 
shown to occur at the border between the surface and transmembrane units of these 
glycoproteins (Hallenberger et al. 1992; Stieneke-Gröber et al. 1992). However, sub-
sequent studies, many of which were conducted in recent years, showed that priming 
of CoV S proteins is substantially more complex and can impact the cellular localiza-
tion of membrane fusion. The major advances of our understanding of S protein 
priming relative to early studies will be briefly outlined below and will then be dis-
cussed in detail in the context of SARS-CoV and MERS-CoV infection.

Two cleavage sites. Initial studies reported cleavage of viral glycoproteins at the 
border between surface and transmembrane unit, but more than one cleavage event 
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might be required for S protein activation (Belouzard et  al. 2009; Millet and 
Whittaker 2014). Thus, it is now appreciated that several S proteins are cleaved at 
the interface between the S1 and S2 subunits, termed S1/S2 site, and at a site located 
near the N-terminus of the fusion peptide, termed S2′ site (Fig.  4.3). The latter 
cleavage might be of particular importance since it generates the mature N-terminus 
of the fusion peptide, which is required for insertion into the target cell membrane 
and thus the successful execution of the membrane fusion reaction (Belouzard et al. 
2009; Millet and Whittaker 2014).

Multiple priming enzymes, multiple cellular locations for priming. Several 
enzymes, pertaining to different protease families, can be hijacked by CoV S pro-
teins for priming. The pH-dependent cysteine protease cathepsin L, TMPRSS2, and 
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Fig. 4.3  Amino acid residues at the S1/S2 interphase and S2′ position among different coronavi-
rus spike proteins. Partial sequence alignment of amino acid residues of coronavirus spike glyco-
proteins from all four genera located at sites used for S protein activation, S1/S2 border, and the 
S2′ position (numbers indicate the respective regions of the respective full length S proteins). Basic 
amino acid residues upstream of the S1/S2 border and the S2′ position are written in bold letters. 
Moreover, mono- and multibasic motifs suitable for host cell protease-mediated S protein activa-
tion are highlighted (gray boxes)
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other members of the type II transmembrane serine protease (TTSP) family as well 
as the serine protease furin can prime S proteins during viral entry into target cells 
(Bertram et al. 2012, 2013; Gierer et al. 2013; Glowacka et al. 2011; Matsuyama 
et al. 2010; Millet and Whittaker 2014; Shirato et al. 2013; Simmons et al. 2005). In 
addition, furin can cleave CoV S proteins in infected cells (Bergeron et al. 2005; 
Millet and Whittaker 2015; Yamada and Liu 2009). These proteases are expressed at 
different sites in cells, and their intracellular localization determines the cellular 
location of S protein-driven membrane fusion. For instance, cathepsin L is expressed 
in endosomes and cleaves S proteins upon viral uptake into these vesicles (Burkard 
et al. 2014; Huang et al. 2006; Qiu et al. 2006; Simmons et al. 2005; White and 
Whittaker 2016), while TTSPs process their ligands at the cell surface and are 
believed to cleave S proteins at this site (Glowacka et al. 2011; Matsuyama et al. 
2010; Shulla et al. 2011). Finally, S protein processing in infected cells can deter-
mine which proteases can be engaged for priming during viral entry into target cells, 
suggesting an intricate connection between proteolysis events (Park et al. 2016).

Link between receptor binding and priming. Receptor binding and priming are 
frequently viewed as separate events. For instance, the FLUAV hemagglutinin is 
primed by proteases in infected cells and uses sialic acid modified proteins or lipids 
on the surface of target cells as entry receptor (Hamilton et al. 2012). In contrast, 
receptor engagement and priming can be intimately connected for CoV S proteins. 
Thus, SARS-S on cell-free virions is inactivated by trypsin cleavage, while trypsin 
cleavage of virion-associated SARS-S bound to its receptor ACE2 primes the S 
protein for membrane fusion (Belouzard et  al. 2009; Matsuyama et  al. 2005; 
Simmons et al. 2004, 2005). Similarly, DPP4 binding of MERS-S, precleaved at the 
S1/S2 site, is believed to be required for subsequent priming by TMPRSS2, as dis-
cussed above (Millet and Whittaker 2014; Park et al. 2016). On the basis of these 
findings, it has been postulated that receptor binding can induce conformational 
changes in S proteins that expose cleavage sites for priming proteases.

Priming and triggering of S proteins: Distinction without a difference? Viral gly-
coproteins are usually triggered by protonation and/or receptor binding, which 
allow the proteins to overcome the energy barrier associated with membrane fusion. 
However, neither binding to receptor nor exposure to low pH is sufficient to trigger 
the S proteins of MERS-CoV and SARS-CoV (Li et  al. 2006; Sha et  al. 2006; 
Simmons et  al. 2004). Therefore, it is conceivable that proteolytic processing of 
these S proteins may suffice for triggering. In order to reflect this finding, we will 
replace “priming” by “activating” in the remainder of this discussion.

4.4	 �Proteolytic Activation of the Spike Proteins of SARS-
CoV and MERS-CoV

4.4.1	 �Cathepsin L: Endosomal Activator of the Spike Protein

The role of cathepsin L in coronavirus entry has been discovered in the context of 
SARS-CoV infection. Initial studies showed that SARS-S-driven entry is pH-
dependent (Hofmann et al. 2004; Huang et al. 2006; Simmons et al. 2004, 2005) but 
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also discovered that exposure to low pH fails to trigger the membrane fusion activity 
of the S protein (Simmons et al. 2004), arguing that protons might indirectly pro-
mote SARS-CoV entry. Simmons and coworkers provided an explanation for this at 
first sight paradoxical finding: They showed that inhibitors of cathepsin L activity 
block SARS-S-driven entry into host cells, while recombinant cathepsin L can acti-
vate S protein-driven membrane fusion (Simmons et al. 2005), indicating that the 
pH-dependency of SARS-S-driven entry stems from protons being required for 
cathepsin L activity rather than from protonation of SARS-S triggering the mem-
brane fusion activity. Moreover, they demonstrated that trypsin treatment of cell-
bound viruses allows SARS-S-driven entry into cells pretreated with a cathepsin L 
inhibitor while trypsin treatment of cell-free particles abrogated infectivity 
(Simmons et al. 2005). Thus, activation of the S protein at the cell surface can over-
ride the need for endosomal cathepsin L activity for SARS-S-driven entry and is 
likely promoted by S protein interactions with ACE2. These findings established 
cathepsin L as CoV-activating protease and are in keeping with previous reports 
demonstrating a role of cathepsin L in reovirus uncoating (Ebert et al. 2002) and 
Ebola virus glycoprotein (EBOV-GP) activation (Chandran et al. 2005).

What is known about cathepsin L expression and physiological functions? The 
cathepsin family encompasses serine (cathepsins A and E), aspartic (cathepsins D 
and E), and cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, X, and W in 
humans) (Turk et al. 2012). The cysteine cathepsins are localized to lysosomes and 
cleave a variety of extra- and intracellular substrates, preferentially after basic or 
hydrophobic residues. The cathepsins B, H, L, C, X, F, O, and V are ubiquitously 
expressed and seem to be required for protein degradation and turnover in a cell 
type-independent fashion. In contrast, expression of cathepsins K, W, and S is cell 
type- or tissue-specific, suggesting more specialized functions (Lecaille et al. 2002). 
Although a slightly acidic pH is required for activity of cysteine cathepsins and 
exposure to neutral pH may irreversibly abrogate enzymatic activity (Turk et  al. 
1995), these enzymes may also be localized and active in compartments other than 
lysosomes. For instance, cleavage of histones by cathepsin L in the nucleus has been 
reported and may regulate the cell cycle (Goulet et  al. 2004), while activity of 
cathepsins in the extracellular space may contribute to degradation of the extracel-
lular matrix and the resulting pathologies (Fonovic and Turk 2014; Obermajer et al. 
2008). Cysteine cathepsins are generated as preproenzymes: An N-terminal signal 
peptide facilitates ER import and is removed cotranslationally; the remaining pro-
peptide is required for proper folding of the protein and for transport into endo- and 
lysosomes in a mannose-6-phosphate receptor (M6PR)-dependent fashion (Hasilik 
et al. 2009; Saftig and Klumperman 2009; Turk et al. 2012). Moreover, the propep-
tide blocks the substrate binding site and thereby prevents premature activity of the 
enzyme. Finally, the propeptide is removed either by autocatalytic cleavage or by 
other proteases, resulting in the generation of mature, proteolytically active enzymes, 
which may be present as single-chain or double-chain (attached by a disulfide bond) 
forms (Turk et al. 2012).

The demonstration that cathepsin L can activate SARS-S, at least in cell lines 
(Huang et al. 2006; Simmons et al. 2005), raises the question at which site the S 
protein is processed by this protease. Bosch and colleagues have demonstrated with 
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recombinant proteins that cathepsin L cleaves SARS-S at T678 (Bosch et al. 2008), 
which represents a region in which furin cleavage occurs in other CoV S proteins. 
However, it remains to be investigated whether this residue is indeed required for 
SARS-S activation by cathepsin L during viral entry. The S1/S2 cleavage site, 
defined by R667 (Belouzard et al. 2009; Follis et al. 2006; Simmons et al. 2011), 
and the S2′ site, defined by R797 (Belouzard et al. 2009), are required for SARS-S 
activation by trypsin. However, both sites are dispensable for cathepsin L-dependent, 
SARS-S-driven host cell entry (Belouzard et  al. 2009; Simmons et  al. 2011). It 
remains to be determined whether both sites are indeed not recognized by this pro-
tease or whether cathepsin L can activate SARS-S at surrogate sites, in case R667 
and R797 are not available. The latter possibility would be in keeping with the low 
substrate specificity of cathepsin L.

Several CoVs other than SARS-CoV can use cathepsin L for S protein activation, 
including PEDV (Liu et  al. 2016), MHV (Burkard et  al. 2014; Qiu et  al. 2006), 
HCoV-229E (Kawase et al. 2009), and MERS-CoV (Gierer et al. 2013; Qian et al. 
2013; Shirato et al. 2013; Yang et al. 2015). Although MERS-S activation by cathep-
sin L has not been observed by all studies (Burkard et al. 2014), these results indi-
cate that inhibitors targeting this protease might display broad anti-CoV activity. A 
notable exception is HCoV-NL63, which was reported to enter target cells in a pH-
dependent but cathepsin L-independent fashion (Huang et al. 2006). Although these 
results are not undisputed (Hofmann et al. 2006), they suggest that NL63-S might 
exploit endosomal proteases other than cathepsin L for entry and cysteine cathep-
sins with substrate specificity and expression similar to cathepsin L are potential 
candidates. In sum, cathepsin L can activate diverse CoV upon endosomal entry 
(Fig. 4.4). The mechanisms controlling choice of cathepsin L versus other CoV-
activating proteases as well as their role in CoV spread in vivo have only recently 
been discovered and will be discussed in the next section.

4.4.2	 �Activation of the Spike Protein by Type II Transmembrane 
Serine Proteases at the Cell Surface

Type II transmembrane serine proteases (TTSPs) have been identified as activators 
of viral infection by Böttcher and coworkers, who showed that the TTSPs TMPRSS2 
and HAT cleaved and thereby activated FLUAV-HA, at least upon directed expres-
sion in cell lines (Böttcher et al. 2006). Subsequent studies showed that TMPRSS2 
can also activate HA upon endogenous expression in cell lines (Bertram et  al. 
2010b; Böttcher-Friebertshäuser et al. 2011) and provided evidence that this prote-
ase is expressed in FLUAV target cell in the human respiratory tract (Bertram et al. 
2012), suggesting that TMPRSS2 could promote FLUAV spread in the infected 
host. Indeed, Hatesuer and colleagues (Hatesuer et al. 2013) as well as subsequent 
studies (Sakai et  al. 2014; Tarnow et  al. 2014) demonstrated that mice lacking 
tmprss2 are largely resistant to spread and pathogenesis of several FLUAV subtypes 
and could link this finding to absence of HA activation. Moreover, polymorphisms 
in the TMPRSS2 gene in humans which increase TMPRSS2 expression were shown 
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to be associated with severe influenza, suggesting that this protease might also pro-
mote FLUAV spread in humans (Cheng et al. 2015). Finally, it is noteworthy that 
several other TTSPs can activate HA upon directed expression in cell culture, 
including TMPRSS4, DESC1, MSPL, and matriptase (Baron et al. 2013; Beaulieu 
et al. 2013; Bertram et al. 2010b; Chaipan et al. 2009; Hamilton et al. 2012; Zmora 
et al. 2014) and that TMPRSS4 has recently been shown to promote spread of a 
H3N2 FLUAV in mice that showed partial TMPRSS2-independence (Kuhn et al. 
2016).

TTSP are membrane-anchored serine proteases that play an important role in 
several physiological processes, including maintenance of homeostasis (Antalis 
et al. 2010, 2011; Szabo and Bugge 2011). They exhibit a characteristic domain 
organization: An N-terminal cytoplasmic tail is followed by transmembrane domain, 
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Fig. 4.4  Activation of coronavirus spike proteins by host cell proteases occurs at different stages 
in the viral life cycle. Binding of the viral spike (S) protein to a cellular receptor can induce endo-
cytosis of virions. In the endosome, the pH-dependent cysteine protease cathepsin L (CatL) can 
activate the S protein for fusion within the endosomal membrane. Alternatively, receptor binding 
may expose a protease cleavage site and may thus promote S protein activation at the plasma mem-
brane by type II transmembrane serine proteases (TTSPs) or furin. Membrane fusion allows the 
release of the viral genome into the cytoplasm, the site of viral genome replication and protein 
translation. The S protein is synthesized in the constitutive secretory pathway, where some S pro-
teins can be cleaved by furin or other pro-protein convertases during passage through the trans-
Golgi network (TGN). Finally, nascent virions are assembled at the endoplasmic reticulum/Golgi 
intermediate compartment and are released from infected cells through exocytosis
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a stem region, and a C-terminal protease domain (Bugge et al. 2009; Hooper et al. 
2001). The cytoplasmic tail might be involved in targeting the protease to the cel-
lular membrane, while the transmembrane domain anchors the proteins in the 
plasma membrane (Bugge et al. 2009). The stem region has a strictly modular orga-
nization and may be composed of up to 11 different protein domains (Antalis et al. 
2011; Hooper et al. 2001). The number and configuration of these domains is char-
acteristic for specific TTSPs, and the stem region is known to function in protein-
protein interactions or protein-ligand interactions (Hooper et al. 2001). Finally, the 
protease domain harbors a conserved catalytic triad of histidine, aspartate, and ser-
ine, which is essential for enzymatic activity. TTSPs are synthesized as inactive 
pro-proteins, zymogens, and are either autoactivated or activated by another prote-
ase. Activation requires cleavage at a site located at the interface between stem 
region and protease domain and may result in shedding of the enzymatically active 
protease domain into the extracellular space (Antalis et al. 2010; Bugge et al. 2009; 
Hooper et al. 2001).

Three studies independently demonstrated that TMPRSS2 does not only activate 
FLUAV-HA but also cleaves and activates SARS-S (Glowacka et  al. 2011; 
Matsuyama et al. 2010; Shulla et al. 2011). They found that directed expression of 
TMPRSS2 in target cells allowed SARS-S-driven entry, despite previous treatment 
of cells with lysosomotropic agents (i.e., elevated endosomal pH) or cathepsin L 
inhibitors. These results indicate that TMPRSS2 activates virion-associated SARS-S 
early during viral entry and thereby renders entry independent of cathepsin L activ-
ity (Fig. 4.4). Activation is believed to occur at the plasma membrane, likely after S 
protein binding to ACE2. Notably, ACE2 and TMPRSS2 interact (Shulla et  al. 
2011), and it is conceivable that conformational changes in SARS-S that are induced 
upon SARS-S binding might expose the TMPRSS2 cleavage site in the S protein. 
SARS-S activation by TMPRSS2 was only observed when S protein and protease 
were located in different membranes (i.e., viral and cellular membranes, respec-
tively) and thus depends on SARS-S cleavage in trans (Glowacka et  al. 2011; 
Matsuyama et al. 2010). However, TMPRSS2 can also cleave SARS-S when both 
proteins are localized in the same membrane (cis-cleavage), at least upon directed 
expression, and this may result in shedding of soluble SARS-S into the extracellular 
space, where the S protein can serve as decoy for neutralizing antibodies (Glowacka 
et al. 2011).

The cleavage site of TMPRSS2 in SARS-S is largely unclear, although one can 
speculate that R797 might be involved. One report suggested that R667 might be 
dispensable for SARS-S cleavage by TMPRSS2, but a quantitative analysis was not 
provided (Bertram et  al. 2011). In contrast, R667 was found to be essential for 
SARS-S processing by HAT (Bertram et al. 2011), although it was not determined 
if this residue is also required for SARS-S activation by this protease. In this con-
text, differences in SARS-S activation by TMPRSS2 and HAT should be noted: 
TMPRSS2 can activate SARS-S for cell-cell and virus-cell fusion in trans (Bertram 
et al. 2011; Matsuyama et al. 2010). In contrast, HAT can only activate SARS-S for 
cell-cell but not virus-cell fusion, and activation is observed in both the cis and the 
trans setting (Bertram et  al. 2011). Whether these observations reflect general 
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differences in the activation reaction or simply mirror the somewhat less efficient 
expression of HAT as compared to TMPRSS2  in transfected cells remains to be 
investigated. Finally, it is noteworthy that besides TMPRSS2 and HAT, several other 
TTSPs can cleave and activate SARS-S. Thus, DESC1 and MSPL can cleave and 
activate SARS-S in trans (Zmora et al. 2014), at least upon directed expression, and 
thus seem to function in a TMPRSS2-like fashion. Cleavage of SARS-S by recom-
binant TMPRSS11A has also been demonstrated, and both R667 and R797 were 
identified as cleavage sites (Kam et  al. 2009). Moreover, exposure of SARS-S-
bearing particles to recombinant TMPRSS11A augmented entry into cultured respi-
ratory epithelium, and mutation of R797 reduced entry into these cells to background 
levels. In contrast, mutation of R667 had only a modest effect (Kam et al. 2009). 
Finally, it should be highlighted that the exploitation of TTSPs for S protein activa-
tion is not limited to SARS-CoV: TMPRSS2 expression facilitates cathepsin 
L-independent 229E-S- and MERS-S-driven entry into target cells (Bertram et al. 
2013; Gierer et al. 2013; Kawase et al. 2012; Shirato et al. 2013, 2017). Moreover, 
acquisition of use of human proteases, including TMPRSS2, for S protein activation 
has been suggested to be a determinant of zoonotic transmission of MERS-CoV-
related viruses from bats to humans (Yang et al. 2014, 2015). TMPRSS2 has also 
been reported to play a role in PEDV infection. In this context, protease activity 
seems to be required for efficient release of progeny virions from infected cells 
(Shirato et al. 2011). The underlying mechanism is unknown, but one can speculate 
that either modulation of S protein glycosylation (Bertram et al. 2010a) or, more 
plausible, TMPRSS2-mediated inactivation of an antiviral host cell factor might be 
responsible.

The findings discussed above indicate that S protein activation by TTSPs is a 
complex process and is governed, among other factors, by the localization of the S 
protein in joint or in opposite membranes. Another layer of complexity is added by 
the observation that TMPRSS2 cannot only cleave the SARS-S protein but can also 
process its entry receptor ACE2 (Heurich et  al. 2014). Thus, TMPRSS2 and the 
metalloprotease a disintegrin and metalloproteinase domain 17 (ADAM17) cleave 
ACE2 close to its transmembrane domain, and cleavage may result in ACE2 shed-
ding (Haga et al. 2008; Heurich et al. 2014). Moreover, it has been proposed that 
ACE2 cleavage by ADAM17 is required for efficient SARS-S-driven entry (Haga 
et al. 2008), while ACE2 processing by TMPRSS2 seems to account for the aug-
mentation of viral infectivity observed upon directed expression of TMPRSS2 in 
target cells (Heurich et al. 2014). These findings suggest that TTSPs and other pro-
teases can impact S protein-driven entry by ways other than S protein activation, but 
the underlying mechanism remains to be investigated.

What is the evidence that TMPRSS2 and potentially other TTSPs promote coro-
navirus spread in the infected host? For HAT, DESC1, MSPL, and TMPRSS11A, 
the evidence is limited to the demonstration of mRNA and/or protein expression in 
the lung and to S protein activation upon directed expression of protease or addition 
of recombinant protease (Bertram et al. 2012; Kam et al. 2009; Zmora et al. 2014). 
In contrast, a constantly accumulating body of evidence suggests an important con-
tribution of TMPRSS2 to SARS-CoV spread in the host: TMPRSS2 is coexpressed 
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with ACE2 in the human lung (Bertram et al. 2012), and TMPRSS2-positive cells 
were found to harbor SARS-CoV antigen in experimentally infected cynomolgus 
macaques (Matsuyama et  al. 2010). Moreover, blockade of TMPRSS2 activity 
reduced SARS-CoV infection of respiratory epithelium (Kawase et  al. 2012). 
Finally, a serine protease inhibitor active against TMPRSS2 reduced viral spread 
and pathogenesis in a rodent mode of SARS-CoV infection, while blockade of 
cathepsin L activity had no appreciable effect (Zhou et al. 2015). These findings 
suggest that SARS-CoV, like FLUAV, might depend on TMPRSS2 for spread within 
hosts. Such a scenario would be in keeping with the findings that cathepsin L is not 
expressed in respiratory epithelium at levels sufficient for MERS-S activation (Park 
et al. 2016) and that HCoV-229E isolated from patients uses TMPRSS2 while viral 
variants adapted to growth in cell culture employ cathepsin L (Kawase et al. 2009; 
Shirato et al. 2017), suggesting that S protein activation by cathepsin L might be the 
result of cell culture adaptation. In sum, several lines of evidence suggest that 
TMPRSS2 but not cathepsin L activity is important for CoV spread in the infected 
host. This raises the question which determinants control whether cathepsin L or 
TMPRSS2 is used for S protein activation. Recent insights obtained for MERS-S 
activation provide interesting answers and will be discussed below.

4.4.3	 �Furin Can Activate Coronavirus Spike Proteins 
in the Constitutive Secretory Pathway of Infected Cells 
and During Viral Entry into Target Cells

Furin, a subtilisin-like serine protease, belongs to the family of pro-protein conver-
tases (PPCs), which comprises nine members (Seidah and Prat 2012). Seven of 
these enzymes process substrates at basic residues and are required for activation of 
various cellular proteins, including hormones, growth factors, and adhesion mole-
cules. Cleavage occurs at single or paired basic residues, which fit the following 
rule: (R/K)Xn(R/K)↓ (Nakayama 1997; Seidah et al. 2013; Seidah and Prat 2012), 
with the arrow indicating the cleavage site, X indicating any amino acid, and n cor-
responding to a 0, 2, 4, or 6, respectively. Furin is ubiquitously expressed and found 
in the trans-Golgi-network (TGN) from where it can be transported to the cell sur-
face and back again via the endosomal compartment (Bosshart et al. 1994; Molloy 
et al. 1994). Two PPCs, SKI-1 and PCSK9, play a role in cholesterol/lipid homeo-
stasis and cleave substrates at nonbasic residues (Seidah et al. 2013; Seidah and Prat 
2012). Like cathepsin L and TTSPs, PCCs are synthesized as zymogens and the 
presence of a prosegment, which is removed by autocatalytic activation but remains 
non-covalently associated with the protease, prevents premature activity.

Many CoV S proteins harbor a furin motif at the S1/S2 site, and processing of, 
for example, the S protein of MHV, strain A59 (de Haan et  al. 2004), and IBV 
(Yamada and Liu 2009) by furin has been demonstrated. Moreover, the insertion of 
a furin motif in the S protein of PEDV allows for trypsin-independent viral spread 
in cell culture (Li et al. 2015). The contribution of furin to SARS-S activation is less 
clear. It has been documented that a pro-protein convertase inhibitor blocks 
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SARS-CoV spread in cell culture, but mutational analysis failed to demonstrate 
robust processing of the S protein by this protease (Bergeron et al. 2005). Moreover, 
insertion of a furin motif at the S1/S2 site augmented SARS-S-driven cell-cell but 
not virus-cell fusion (Follis et al. 2006). In contrast, a prominent role of furin in 
MERS-S activation has been documented. Thus, it has been shown that furin can 
cleave MERS-S at the S1/S2 site during S protein biogenesis in the constitutive 
secretory pathway of infected cells and at the S2′ site during S protein-driven entry 
into target cells (Millet and Whittaker 2014). Blockade of furin expression or activ-
ity reduced MERS-S-driven entry (Burkard et al. 2014; Millet and Whittaker 2014), 
indicating that furin is an activator of MERS-S (Fig. 4.4), although the requirement 
of furin activity for MERS-S-driven entry has not been observed by a separate study 
(Gierer et al. 2015) and thus might be cell type specific to some extent (Millet and 
Whittaker 2014).

The observation that furin is an activator of certain CoV S proteins raises the 
question which determinants control whether S proteins are activated by furin, 
cathepsin L, or TMPRSS2. An intriguing answer has been provided by a recent 
study by Park and colleagues. They showed that cleavage of MERS-S at the S1/S2 
site in infected cells determines whether MERS-S is activated by cathepsin L or 
TMPRSS2 during viral entry into target cells (Park et al. 2016). Thus, only pre-
cleaved MERS-S seems to be able to undergo the conformational changes upon 
receptor binding that are required for activation by TMPRSS2. If the S protein is 
uncleaved and thus conformationally rigid, binding to receptor results in viral 
uptake into endosomes, where the S protein is activated by cathepsin L (Park et al. 
2016). However,  this activation pathway seems to be less robust as compared to 
activation by TMPRSS2 and does not allow efficient entry into cells within respira-
tory epithelium, due to expression of insufficient amounts of cathepsin L (Park et al. 
2016). In sum, cleavage at the S1/S2 site in infected cells can determine protease 
choice during entry into target cells, with only cleaved S proteins exhibiting suffi-
cient conformational flexibility for activation at the cell surface by TMPRSS2.

�Conclusions

The cleavage activation of the S protein of coronaviruses by host cell proteases 
is required for viral infectivity, and the responsible enzymes constitute potential 
targets for antiviral intervention. Studies within the recent years provided inter-
esting insights regarding the nature of the S protein-activating proteases, the 
mechanisms that control protease choice, and the contribution of specific 
enzymes to viral spread in the infected host (Fig. 4.4). The pH-dependent cyste-
ine protease cathepsin L can activate the S proteins of SARS-CoV, MERS-CoV, 
PEDV, and other pathogenic coronaviruses upon viral uptake into endosomes. 
However, cathepsin L might not be sufficiently expressed in respiratory epithe-
lium to support viral spread in this important target tissue, and, at least for some 
CoVs, efficient S protein activation by cathepsin L might be the result of viral 
passaging in cell lines. Such a scenario would be compatible with the finding that 
EBOV-GP is activated by cathepsin B and L for entry into cell lines (Chandran 
et al. 2005), while expression of these proteases is dispensable for efficient viral 
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spread in mice (Marzi et al. 2012). The type II transmembrane serine protease 
TMPRSS2 activates FLUAV-HA and is essential for spread of diverse FLUAV in 
rodent and likely also human hosts. Similarly, TMPRSS2 activates the S proteins 
of SARS-CoV and MERS-CoV and is expressed in cells in the human respira-
tory epithelium that also express the SARS-CoV receptor, ACE2. Moreover, 
TMPRSS2 activity is required for efficient SARS-S- and MERS-S-driven entry 
into cultured respiratory epithelium, and a protease inhibitor active against 
TMPRSS2 suppresses SARS-CoV spread and pathogenesis in a rodent model. 
Finally, pre-cleavage of MERS-S by furin in infected cells is essential for subse-
quent S protein activation by TMPRSS2 for entry into target cells, potentially by 
providing the S protein with increased conformational flexibility. Thus, 
TMPRSS2 is an attractive antiviral target, and specific inhibitors of this enzyme 
might exert activity against a broad spectrum of respiratory viruses. Initial efforts 
to generate such inhibitors have been documented (Meyer et al. 2013), and com-
pounds with high specificity for TMPRSS2 can be expected to suppress viral 
spread without inducing unwanted side effects, since tmprss2 is dispensable for 
normal development and homeostasis in mice (Kim et al. 2006).
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Proteolytic Processing of Filovirus 
Glycoproteins

Viktor Volchkov and Hans Dieter Klenk

Abstract
Filoviruses (Marburg virus and Ebola virus) have a single envelope glycoprotein 
(GP) that initiates infection. GP is a class I fusion protein that forms trimeric 
spikes composed of heterodimers of the subunits GP1 and GP2. GP1 and GP2 
are derived from the precursor pre-GP by furin cleavage during exocytosis. GP1 
contains a receptor-binding core topped by a glycan cap and a heavily glycosyl-
ated mucin-like domain, while GP2 contains a fusion loop and a membrane 
anchor. After entering cells by macropinocytosis, the glycan cap and the mucin-
like domain are removed from GP1 by endosomal cathepsins B and L exposing 
the binding site for the Niemann-Pick C1 receptor. It appears that there is no 
strict requirement for specific proteases involved in GP processing. Thus, furin is 
not indispensible for GP1-2 cleavage, and GP1 may be trimmed not only by 
cathepsins B and L but also by other endosomal proteases.

Two soluble glycoproteins of Ebola virus are also processed by host prote-
ases. A significant amount of GP1,2 is cleaved by the metalloprotease TACE and 
shed from the surface of infected cells (GP1,2 delta). The secreted protein sGP is 
derived from the precursor pre-sGP by furin cleavage.
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5.1	 �Introduction

Filoviruses comprising Marburg virus (MARV) and 5 Ebola virus (EBOV) species 
(Zaire, Sudan, Reston, Bundibugyo, and Tai Forest virus) cause fulminant hemor-
rhagic fevers in man and nonhuman primates. MARV and EBOV have a zoonotic 
background and, except for Reston virus, are endemic in sub-Saharan Africa. Since 
the discovery of MARV in 1967 and EBOV in 1976, the viruses re-emerged with 
increasing frequency. Most of the outbreaks were dramatic but confined to relatively 
short time periods and small geographic areas. Between 2013 and 2015, however, 
an unprecedented EBOV outbreak occurred in West Africa with almost 30,000 
human infections and more than 11,000 deaths.

The non-segmented negative-stranded RNA genome of filoviruses contains 
seven genes: NP, VP35, VP40, GP, VP30, VP24, and L. The GP gene of EBOV has 
two overlapping reading frames from which three glycoproteins are expressed by 
transcriptional editing: the envelope glycoprotein GP and two nonstructural glyco-
proteins, sGP and ssGP. In contrast, the envelope glycoprotein of MARV is expressed 
as the only gene product from a single open reading frame (Volchkov et al. 1995, 
2005; Sanchez et al. 1996).

5.2	 �Biosynthesis and Maturation of Filovirus Glycoproteins

GP is a type I membrane glycoprotein that matures during export through the exo-
cytotic transport route to the cell surface. ER-associated GP, designated pre-GPer, 
contains oligomannosidic N-glycans and shows sensitivity to endoglycosidase H 
treatment. Oligomerization of GP occurs already within the ER early after pre-GPer 
synthesis (V.  Volchkov, unpublished results). Pre-GPer lacks the signal peptide 
sequence which is co-translationally cleaved by cellular signal peptidase. The sec-
ond precursor identified, designated pre-GP, represents the Golgi-associated form 
of GP. This precursor contains mature N-glycans and is O-glycosylated. Still within 
the Golgi apparatus, pre-GP is processed by proteolytic cleavage into GP1,2 con-
sisting of the amino-terminal fragment GP1 and the carboxy-terminal fragment GP2 
linked by a disulfide bond (Volchkov et al. 1998a; Sanchez et al. 1998) (Fig. 5.1). 
GP1,2 complexes are present at the surface of EBOV-infected cells and build up 
trimeric spikes on virions. Proteolytic processing of the envelope glycoprotein of 
filoviruses has been unnoticed for a rather long period of time, largely due to the fact 
that pre-GP, mature GP1,2, and the GP1 subunit have similar migration rates on 
polyacrylamide gels and that GP2 tends to escape detection because it partly co-
migrates with the VP24 protein. We know now, however, that cleavage of GP is 
remarkably efficient and that unprocessed GP is not present on Ebola virions in any 
significant amount.

EBOV GP is cleaved into subunits GP1 and GP2 by furin at the motif  
R-T-R-R501 (Volchkov et al. 1998a). Furin cleavage was assessed by the observa-
tion that cleavage efficiency was dramatically reduced when GP was expressed in 
the furin-deficient LoVo cell line but was fully restored in these cells by 
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vector-expressed furin. The finding that cleavage was effectively inhibited by 
peptidyl-chloromethylketone containing a furin motif or by site-directed muta-
genesis of the furin site further supported this concept.

The surface glycoprotein of MARV is proteolytically processed in a similar way 
as that of EBOV; two precursor molecules and mature GP1,2 consisting of the 
disulfide-linked cleavage products GP1 and GP2 were identified in cells expressing 
MARV GP and in Marburg virions (Volchkov et  al. 1998a, 2000). Interestingly, 
MARV GP contains two sites suitable for furin cleavage: R-R-K-R435 and R-L-
R-R561. It appears that the second site is not used for protein processing, possibly 
due to conformational constraints. Site-directed mutagenesis revealed that MARV 
GP is indeed proteolytically processed at the first furin site (Volchkov et al. 2000). 
Mutations introduced at the multibasic site revealed the consensus sequence recog-
nized by furin or the related proprotein convertase PC5/6 which contains Arg at 
positions −1 and −4 as a minimal requirement and Arg/Lys at position −2 for cleav-
age optimization (see Chap. 9). Thus, substitution R435L at position −1 resulted in 
a dramatic loss of cleavage, whereas mutation K434M at position −2 showed a 
reduction in cleavage efficiency (Volchkov et al. 2000).

A fraction of EBOV GP1,2 that is not incorporated into virions is released from 
the cell surface after removal of the membrane anchor by the metalloprotease 

pre-GP SP RBR

RBR

RBR

GlycCap Mucin F HR1 HR2 TM

GlycCap Mucin F HR1 HR2 TM

Furin

501 676

Signal peptidase

33

33

501 502 676637

TACE

GP1,2

GP1 GP2

Cathepsins
190___213

GPcl (primed GP)

= 19 kDa GP1
S-S

S-S

F HR1 HR2 TM
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Fig. 5.1  Processing of EBOV GP. GP is a type I membrane protein that matures on the exocytotic 
transport route. After co-translational removal of the amino-terminal signal by the signal pepti-
dase, pre-GP is cleaved by furin into GP1 and GP2. GP1 contains the receptor-binding region 
(RBR), the glycan cap (GlycCap), and the mucin-like domain (Mucin). GP2 contains the fusion 
loop (F), two heptad repeats (HR1, HR2), and the transmembrane anchor. GP1,2 forms trimeric 
spikes that are incorporated into virions or shed from the cell surface by the metalloprotease 
TACE. After cell entry by macropinocytosis, glycan cap and mucin-like domain are removed in 
endosomes by cathepsins yielding GPcl. GPcl contains GP2 linked by a disulfide bond to a 19 kDa 
fragment of GP1 with the receptor-binding region
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TACE (tumor necrosis factor-alpha-converting enzyme) (Dolnik et  al. 2004) 
(Fig. 5.1). Released GP1,2, designated GP1,2 delta, is present in the trimeric form 
which, however, is more labile than GP1,2 trimers, indicating that the membrane 
anchor has a stabilizing function. GP1,2 delta released from virus-infected cells 
activates non-infected dendritic cells and macrophages causing the massive secre-
tion of pro- and anti-inflammatory cytokines and increased vascular permeability. 
These activities may be instrumental for the excessive and dysregulated inflamma-
tory host reactions to infection and, thus, contribute to the high pathogenicity of the 
virus (Escudero-Pérez et al. 2014). There is also evidence that fine-tuning of the 
levels of EBOV GP expressed at the surface of infected cells via GP shedding plays 
an important role in EBOV replication by orchestrating the balance between opti-
mal virion GP content and cytotoxicity caused by GP (Dolnik et al. 2015). TACE, 
also designated ADAM17, is a member of the ADAM (a disintegrin and metallo-
protease) family, a large group of zinc-dependent cell surface proteases. TACE 
mediates shedding of many membrane proteins and has therefore been proposed to 
have the function of a common sheddase. Most, but not all, substrates are cleaved 
between two hydrophobic residues, but neither a specific recognition sequence nor 
a specific secondary structure at the cleavage site appears to be required (Althoff 
et al. 2001).

The secreted glycoprotein (sGP) of EBOV is derived from a precursor (pre-sGP) 
that has a length of 364 amino acids and shares the amino-terminal 295 amino acids 
with the membrane glycoprotein GP. Like pre-GP, pre-sGP undergoes several co- 
and posttranslational processing events, such as signal peptide cleavage, N- and 
O-glycosylation, oligomerization, and proteolytic cleavage by furin to sGP and a 
small peptide, designated delta-peptide (Volchkova et  al. 1998, 1999). sGP, like 
GP1,2 delta (Dolnik et al. 2004), may have a decoy function by binding EBOV-
specific neutralizing antibodies (Sanchez et al. 1996; Volchkov et al. 1998b). There 
is also evidence that the cytotoxicity caused by GP is down-regulated through the 
expression of sGP (Volchkov et al. 2001).

5.3	 �The Role of GP in Host Cell Entry

The mature envelope glycoprotein of filoviruses is a class I fusion protein that forms 
trimeric spikes composed of disulfide-linked GP1,2 heterodimers. The structure of 
the EBOV glycoprotein has been analyzed in detail. Early studies gave insight into 
the post-fusion structure of GP2 (Gallaher 1996; Malashkevich et  al. 1999; 
Weissenhorn et al. 1998a, b; Volchkov et al. 1992). More recently, the structure of 
GP1,2 trimers in the pre-fusion state has been elucidated (Lee et al. 2008; Lee and 
Saphire 2009). According to these studies, the trimeric spike is shaped like a chal-
ice. The bowl of the chalice is assembled by the three GP1 subunits, and the base is 
formed by the GP2 subunits that cradle and encircle the GP1 trimer (Fig. 5.2). The 
bowl which is formed by discontinuous sections of the amino-terminal region of 
GP1 (residues 33–226) contains residues required for binding to an endosomal 
receptor and is covered by a glycan cap with a cluster of N-linked oligosaccharides 
(residues 227–310). Between the glycan cap and the carboxy-terminal end of GP1 
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stretches a mucin-like domain that is about 150 amino acids long and heavily loaded 
with O-glycans. The GP2 subunit contains the hydrophobic fusion loop, two heptad 
repeats typical for class I fusion proteins, and the membrane anchor (Fig. 5.1).

GP presumably initiates infection by binding to the cell surface. A number of 
cell surface receptors have been implicated, but none of them proved to be neces-
sary and sufficient for viral entry. It is widely accepted, however, that filoviruses 
are internalized after surface attachment by macropinocytosis and transported to 
endosomes (Saeed et  al. 2010; Nanbo et  al. 2010; Aleksandrowicz et  al. 2011). 
Within endosomes, EBOV GP1,2 is cleaved by cathepsins B and/or L which is an 
important step in the infection process (Chandran et al. 2005; Kaletsky et al. 2007; 
Sanchez 2007; Schornberg et al. 2006). Cathepsin trims EBOV GP1 from its origi-
nal size (ca. 130 kDa) to an initial 50-kDa fragment, followed by further cleavage 
to an approximately 19-kDa species of GP1 bound to GP2 by non-covalent link-
ages and a disulfide bridge between C53 and C609 (Jeffers et al. 2002; Volchkova 
et al. 1998) (Fig. 5.1). The crystal structure suggests that the site of the final cathep-
sin cleavage is a loop reaching from residues 189 to 214 (Lee and Saphire 2009). 
This concept is supported by biochemical studies indicating that the cleavage site 
is located at amino acid 190 (Dube et al. 2009). Thus, the entire glycan cap and the 
mucin-like domain are removed yielding a glycoprotein called GPcl that contains 
the receptor-binding site exposed on the truncated GP1 subunit and the fusion loop 
on GP2 (Fig. 5.2). The endosomal receptor has been identified as the cholesterol 
transporter Niemann-Pick C1 (NPC1) (Carette et al. 2011; Côté et al. 2011). NPC1 
is a ubiquitously expressed endosomal membrane protein involved in the fusion 
and fission of endosomes and lysosomes (Goldman and Krise 2010). After cathep-
sin cleavage and receptor binding, the GP2 subunit unwinds from its GP1 clamp 
and rearranges irreversibly into a six-helix bundle to drive fusion of viral and 

Fig. 5.2  The structure of the EBOV spike. The structure of the trimeric spike before and after 
removal of glycan caps and mucin-like domains exposing the receptor binding regions (RBR) is 
shown. GP1 and GP2 are colored in teal and light blue, respectively. Glycan cap (magenta) and fusion 
loop (yellow) are also indicated. The mucin-like domains were deleted for crystallization and have 
been modeled here as not-to-scale circles. For crystallization of GPcl, glycan caps have been removed 
from mucin-deleted GP1,2 by thermolysin treatment (modified from Bornholdt et al. 2016)
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endosomal membrane (Bornholdt et al. 2016;Wang et al. 2016). It has also been 
suggested that cathepsins are required for a step in genome delivery following 
fusion triggering (Spence et al. 2016).

Like EBOV, MARV enters cells by macropinocytosis and endosomal fusion, but 
there are some differences in the structure and in endosomal processing of the gly-
coproteins. Structural analysis by crystallography and small angle X-ray scattering 
in solution indicated that the mucin-like domains of EBOV GP project upward, 
whereas with MARV GP they have a more equatorial orientation. Furthermore, the 
glycan cap is more flexible with MARV GP than with EBOV GP. Thus, the receptor-
binding site appears to be tightly masked on the surface of EBOV spikes but more 
exposed on the surface of MARV spikes prior to endosomal cleavage (Hashiguchi 
et al. 2015). This study showed also other structural differences, particularly at the 
putative cleavage site, which may explain previous observations indicating that, 
unlike EBOV, MARV does not depend on cathepsin B for endosomal GP processing 
(Gnirss et al. 2012; Misasi et al. 2012).

5.4	 �Proteases Responsible for GP Processing

The data presented so far strongly support the concept that removal of the glycan 
cap and the mucin-like domain which is essential for filovirus infectivity depends 
on cleavage of GP at the GP1-GP2 interphase followed by endosomal processing of 
GP1,2 to GPcl. The nature of the proteases responsible for cleavage, however, has 
been and still is a matter of debate.

The finding that EBOV GP is cleaved into GP1 and GP2 by furin (Volchkov et al. 
1998a) did not come as a surprise, since this protease is responsible for the activa-
tion of many viral glycoproteins. The role of furin in the EBOV life cycle became a 
mystery, however, when several groups reported that substitution of all basic amino 
acids at the furin cleavage site did not significantly affect virus infectivity. Initially, 
these unexpected data were obtained, when pseudotype systems based on murine 
leukemia virus (Wool-Lewis and Bates 1999) and vesicular stomatitis virus (Ito 
et  al. 2001) were used which allowed generation of surrogate virions carrying 
mutated EBOV GP. The mutated glycoprotein was shown to be transported to the 
plasma membrane and to be incorporated into virions, predominantly in the 
uncleaved form, and the pseudotyped viruses infected a wide range of cell types 
from diverse origins. Subsequently, it was reported that recombinant EBOV carry-
ing GP in which the multibasic cleavage site was replaced by nonbasic amino acids 
was able to replicate in Vero E6 cells (Neumann et al. 2002) and to cause lethal 
infection in nonhuman primates (Neumann et  al. 2007). These findings are fre-
quently used as arguments against an essential function of furin cleavage in EBOV 
replication. There is evidence, however, that does not fully support this conclusion. 
Close inspection of the data obtained with the pseudotypes reveals that small 
amounts of GP1,2 were present. Likewise, a minor, but clearly detectable, fraction 
of GP was present in the cleaved form in the recombinant EBOV (Volchkov et al. 
2005). Furthermore, recombinant EBOV replicated with significantly reduced 

V. Volchkov and H. D. Klenk



105

growth kinetics, when the furin cleavage site was replaced by nonbasic amino acids 
(Neumann et al. 2002). It therefore appears that cleavage of GP into subunits GP1 
and GP2 is accomplished not only by furin but also, yet with lower efficiency, by 
other proteases that still have to be identified. It is also conceivable that only a frac-
tion of GP has to be present in cleaved form to allow infection as has been observed 
with other viruses (see Chap. 6). In any case, there appears to be a preference for 
furin cleavage, since this is the most efficient processing form. This concept is 
underlined by the high conservation of the multibasic cleavage site with filoviruses. 
The only exception is Reston EBOV. Here, the consensus sequence of a typical furin 
cleavage site is missing which has been suspected to account, at least in part, for the 
low human pathogenicity of this virus (Volchkov et al. 1998a).

As has been pointed out above, endosomal processing of EBOV GP1,2 is mediated 
by the cysteine proteases cathepsin B and L. There is evidence, however, that, again, 
both enzymes are not indispensible for this process. It could be shown that Zaire 
EBOV entry was reduced in cell culture upon selective inhibition of cathepsin B, but 
not cathepsin L.  Interestingly, all other EBOV species entered the cells efficiently 
when cathepsin B and/or L activity was blocked. Moreover, cathepsin B and cathepsin 
L knockout mice were equally susceptible to a lethal dose of mouse-adapted Zaire 
EBOV as wild-type animals, with no difference in virus replication and time of death 
(Marzi et al. 2012). Thus, it appears that, like cleavage of GP into subunits GP1 and 
GP2, endosomal trimming to GPcl is mediated by an array of proteases. This concept 
is also supported by the observation that cathepsin can be replaced by thermolysin to 
convert GP1,2 into structurally and functionally competent GPcl (Brecher et al. 2012). 
EBOV may therefore not be a very suitable target for therapeutic approaches based on 
protease inhibitors (Marzi et al. 2012), quite in contrast to other viruses, such as influ-
enza virus, where this strategy is more promising because of the high specificity of the 
proteases required for activation (see Chaps. 8, 9, 11).

�Conclusions

Proteolytic processing of the envelope glycoprotein of filoviruses is complex involv-
ing a sequence of cleavage steps at different stages of the viral life cycle. In this 
respect it resembles proteolytic activation of other envelope proteins, such as the F 
protein of Respiratory Syncytial Virus (see Chap. 2) and presumably the S protein 
of coronaviruses (see Chap. 4), that are also cleaved first during exocytosis by one 
and subsequently upon virus entry by another enzyme. Although cleavage of pre-
GP to GP1,2 and triming of GP1,2 to GPcl play essential roles in the processing of 
the filovirus envelope protein, it is not clear whether there is a strict requirement for 
furin and cathepsins, respectively. The specificity of the cleavage reactions and the 
proteases involved will have to be analysed in more detail in future studies. It is well 
known that cleavage primes a viral fusion protein for the conformational change 
required for activity, but it has never been shown before that fusion activity depends 
on removal of a large carbohydrate shield from the top of the spike as is the case 
with filoviruses. Another unique feature is the high amount of virus-encoded glyco-
proteins that are secreted or shed by proteolytic cleavage from EBOV-infected cells 
and may play important roles in the course of infection and in pathogenesis.
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Abstract
Flaviviruses comprise a number of important human vector-borne pathogens, 
including yellow fever, dengue, Zika, West Nile, Japanese encephalitis, and tick-
borne encephalitis viruses. New technologies for determining high-resolution 
structures of viral particles have provided unprecedented insights into the molec-
ular organization of this group of enveloped, icosahedral viruses in different 
stages of assembly and maturation. The viral fusion protein E forms a metastable 
herringbone-like array at the surface of mature viruses, spring-loaded to mediate 
membrane fusion upon encountering the acidic pH in endosomes. The E protein 
does not require proteolytic cleavage for activation, but an accessory protein 
(prM), associated tightly with E in the initially assembled noninfectious imma-
ture viruses, has to be cleaved by furin in the trans-Golgi network during virus 
release, thus priming E for fusion. A complex interplay of pH sensors in E and 
prM trigger sequential conformational changes at different steps of the viral life 
cycle to control virus maturation and membrane fusion. There is increasing evi-
dence that incomplete proteolytic cleavage of prM, leading to mosaic particles 
with patches of envelope proteins in both their immature as well as mature con-
formations, may be an important factor for certain biological properties of flavi-
viruses. Dynamic motions of the envelope proteins (“virus breathing”) further 
increase deviations from a picture of static icosahedral structures. The resulting 
particle heterogeneity causes the presentation of otherwise inaccessible sites for 
interactions at the surface of infectious virions that can modulate viral attach-
ment to cells and influence the induction of antibodies as well as virus 
neutralization.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75474-1_6&domain=pdf
mailto:franz.x.heinz@meduniwien.ac.at
mailto:karin.stiasny@meduniwien.ac.at


110

6.1	 �Introduction

The genus Flavivirus in the family Flaviviridae comprises about 70 different viruses, 
most of which are arthropod-borne (ARBO) and transmitted to their vertebrate hosts 
by invertebrate vectors such as mosquitos or ticks (Pierson and Diamond 2013). The 
capacity to replicate efficiently in such phylogenetically divergent hosts is essential 
for these viruses to be maintained in their different natural cycles. However, two sub-
sets of flaviviruses do not have a dual host requirement for their maintenance in nature, 
and these are classified as “no-known vector” and “insect-only” flaviviruses (Moureau 
et al. 2015; Blitvich and Firth 2015). All of the important human-pathogenic flavivi-
ruses are vector-borne, with the most prominent representatives being yellow fever 
(YF), dengue (Den), Zika, West Nile (WN), Japanese encephalitis (JE), and tick-borne 
encephalitis (TBE) viruses (Pierson and Diamond 2013; Wilder-Smith et al. 2017). 
Concerning their ecological cycles, YF, dengue, and Zika viruses are outstanding, 
because they can be transmitted by highly domesticated mosquitoes (Aedes aegypti) 
and can use humans as their only vertebrate hosts (Wilder-Smith et al. 2017). This 
combination carries the potential of urban outbreaks in tropical and subtropical coun-
tries and can lead to the expansion of regions of endemicity, as most recently exempli-
fied by the explosive spread of Zika virus from Southeast Asia to Pacific Islands and 
finally to the Americas (Kindhauser et al. 2016).

Structurally, flaviviruses are among the best-studied membrane-containing 
viruses because of their relatively simple composition and the icosahedral organiza-
tion of the viral envelope (Pierson and Diamond 2013). High-resolution structures 
are now available for both immature and mature virions, providing insight into the 
molecular details of proteolytic activation of noninfectious immature precursor par-
ticles to yield infectious viruses that are endowed with a highly efficient membrane 
fusion machinery (Zhang et al. 2013b; Kostyuchenko et al. 2013, 2016; Sirohi et al. 
2016; Prasad et al. 2017). There is increasing evidence that the proteolytic matura-
tion of flaviviruses is incomplete in many instances (Pierson and Diamond 2012), 
and the formation of partially mature particles may vary among hosts and different 
tissues in these hosts. Structural heterogeneity is further increased by the dynamics 
of the viral envelope, often referred to as “virus breathing” (Kuhn et al. 2015). It has 
been hypothesized that the generation of partially mature virions may expand the 
capacity of flaviviruses to infect widely divergent hosts and tissues by increasing 
potential interaction sites with cellular attachment factors (Rey et  al. 2017). The 
heterogeneity of flaviviruses can therefore be a regulator of specific pathogenic 
properties and is known to have a strong influence on the human antibody response. 
In this chapter, we review the characteristics of mature and immature flaviviruses, 
the structural details of proteolytic cleavage activation to generate infectious viri-
ons, and how incomplete maturation can impact the biology of flaviviruses.

6.2	 �Mature Flaviviruses and Virus Entry

Mature flaviviruses contain only three structural proteins, designated C (capsid), E 
(envelope), and M (membrane) (Fig. 6.1a). Molecular details of protein and particle 
organizations have been elucidated by X-ray crystallography combined with 
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Fig. 6.1  Structural organization of mature flavivirus particles and fusion mechanism. (a) Schematic of 
a mature flavivirus particle composed of a spherical core with the capsid protein C and a viral envelope 
with two membrane-associated proteins, E (envelope) and M (membrane). (b) Surface representation 
of a mature dengue virus serotype 2 particle, revealing the herringbone-like arrangement of 30 rafts, 
each consisting of three E homodimers. One of these rafts is highlighted. (c) Ribbon diagram of the 
dengue virus serotype 2 E protein dimer in its side view. The viral membrane is shown in light orange. 
(d) Ribbon diagram of the dengue virus serotype 2 E protein dimer in its top view. (e) Schematic 
representation of the flavivirus fusion mechanism. Viral membrane, light orange. Endosomal target 
membrane, gray. Color codes of E and M proteins: E: domain I, red; domain II, yellow; domain III, 
blue; fusion loop, orange; stem, green; transmembrane domains, gray; M: cyan. Panels b–d were 
generated using the structures of dengue virus serotype 2 [PDB: 3J27, (Zhang et al. 2013b)]
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electron cryo-microscopy. Little structural information is available for the nucleo-
capsid core, which is a spherical assembly of the positive stranded RNA genome 
and an undefined number of C proteins. In contrast, high-resolution structures exist 
for the envelopes of several flaviviruses [including dengue and Zika viruses, (Zhang 
et al. 2013b; Kostyuchenko et al. 2013, 2014, 2016; Sirohi et al. 2016)] that can be 
summarized as follows (Fig. 6.1). The E protein forms a head-to-tail homodimer 
that is oriented parallel to the viral membrane and gently curved to accommodate 
the surface curvature of the viral particle (Fig.  6.1c, d). Each of the monomeric 
subunits contains three domains (DI, DII, DIII) (Fig. 6.1d) that are connected by 
flexible regions, allowing variations of the hinge angles and the relative orientation 
of domains to each other in different phases of the life cycle. Importantly, the fusion 
loop (FL) at the tip of domain II is buried in the E homodimer by interdigitation 
with a hydrophobic pocket provided by the second monomeric subunit (Fig. 6.1d). 
The carboxy terminus of DIII is linked to a double-membrane anchor by a sequence 
element called “stem” (Fig. 6.1c). As revealed by electron cryo-microscopy struc-
tures of dengue virus at 3.5 Å resolution, the stem consists of three helices that lie 
horizontally to the envelope (Fig. 6.1c) (Zhang et al. 2013b). Two of these helices 
are amphipathic and interact with the outer leaflet of the viral membrane.

The surface of mature virions is formed by a herringbone-like arrangement of E 
dimers that cover the viral membrane completely (Fig. 6.1b). The E proteins in this 
icosahedral lattice have different interactions with surrounding subunits, and three 
E molecules form an icosahedral asymmetric unit (Kuhn et al. 2002). The M protein 
lies under the E protein shell and interacts with the side of E facing the membrane, 
primarily through hydrophobic contacts [Fig. 6.1a, c, (Zhang et al. 2013b)]. Similar 
to E, M has a double-membrane anchor and a horizontally oriented perimembrane 
helix (Fig. 6.1c).

6.2.1	 �Viral Attachment and Receptors

A large body of evidence indicates that flaviviruses enter cells by receptor-mediated 
endocytosis [reviewed in (Acosta et  al. 2014; Perera-Lecoin et  al. 2014; Cruz-
Oliveira et al. 2015)]. Since E is the only component at the surface of fully mature 
virions (Fig. 6.1b), it was generally believed that interactions of this protein with 
molecules at the plasma membrane would lead to endocytosis. The search for true 
entry receptors proved to be difficult and led to the identification of a number of 
various cellular attachment factors for different flaviviruses, including lectins (such 
as DC-SIGN), carbohydrates, as well as lipids [reviewed in (Acosta et  al. 2014; 
Perera-Lecoin et  al. 2014; Cruz-Oliveira et  al. 2015)]. Recent studies, however, 
have shown that the entry of flaviviruses (including dengue and Zika viruses) can 
also be mediated through the recognition of the viral lipid membrane by proteins of 
the TIM (T-cell immunoglobulin mucin domain) and TAM (Tyro3, Axl, and Mer) 
receptor families (Perera-Lecoin et al. 2014; Amara and Mercer 2015; Miner and 
Diamond 2017). The normal function of these plasma membrane proteins is to trig-
ger the phagocytosis of apoptotic cells. Hijacking of this process by viruses was 
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therefore termed “apoptotic mimicry” (Amara and Mercer 2015). As an additional 
mode of entry, flaviviruses can be internalized by Fcγ receptor-positive cells in the 
form of virus-antibody complexes (Acosta et al. 2014; Cruz-Oliveira et al. 2015). 
Such infections can be facilitated not only by antibodies to E but also to the precur-
sor of M (prM), a component of immature virions (see below).

It is an important conclusion of these virus entry studies that the closed E protein 
shell of fully mature viral particles as depicted in Fig. 6.1b is a structurally idealized 
version of infectious flaviviruses that cannot explain a number of in vivo data, both 
with respect to cellular infection and to the interaction with antibodies. It becomes 
more and more apparent that flaviviruses constitute inhomogeneous populations of 
virus particles that can display different molecular surfaces, thus probably expand-
ing the capacity of these viruses to enter cells of phylogenetically distant species 
and different tissues in their hosts (Pierson and Diamond 2012; Rey et al. 2017). 
The heterogeneity of flavivirus particles is a result of incomplete proteolytic matu-
ration as well as of viral envelope dynamics (“virus breathing”), and these aspects 
are discussed in more detail below.

6.2.2	 �The Viral Fusion Machinery

The flavivirus E protein is a class II viral fusion protein that is structurally not only 
closely related to the fusion proteins of alpha- and bunyaviruses [which, like flavi-
viruses, form icosahedral symmetric arrays on the mature virion; reviewed in 
Harrison (2015)] but also to cellular proteins like Eff-1 and HAP2 that mediate cell-
cell and gamete fusion, respectively (Pérez-Vargas et al. 2014; Fédry et al. 2017; 
Doms 2017). Similar to other viruses that enter cells through receptor-mediated 
endocytosis, the E protein can sense the low pH in endosomes by a set of conserved 
histidines, which orchestrate structural changes that initiate and drive membrane 
fusion, leading to the release of the nucleocapsid into the cytoplasm (Figs. 6.1e and 
6.3). It has been proposed that E is held in place in its metastable conformation at 
the surface of mature virions by hydrophobic contacts with the underlying M and 
that protonation of histidines in both M and E would lead to a repulsion of the two 
proteins to allow the initiation of the multistep membrane fusion process (Zhang 
et al. 2013b).

In this mechanism (depicted in Fig. 6.1e), the E dimers dissociate into monomers 
and rise from the viral membrane, making use of the “stem” that links the ectodo-
main to the transmembrane (TM) domains (Fig. 6.1c). In the monomers, the fusion 
loop (FL) at the tip of DII is exposed, allowing its interaction with the endosomal 
membrane (Fig. 6.1e, panel II). Recent data suggest that trimer formation from a 
pool of monomers leads to essentially irreversible target membrane engagement, 
and at least two of the E trimers are required for progression to hemifusion (Chao 
et al. 2014) (Fig. 6.1e, panel III). Full merger of the two membranes and fusion pore 
formation are finally driven by a “jackknifing” rearrangement of E that requires the 
relocation of DIII from its position at the end of the rodlike pre-fusion structure to 
the side of the E trimer, yielding the post-fusion conformation (Fig. 6.1e, panel IV) 
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(Harrison 2015; White and Whittaker 2016). The movement of DIII is facilitated by 
the flexible DI-DIII linker and requires the dissolution of contacts between the two 
domains in their pre-fusion arrangement. It appears that the release of DIII from its 
molecular clamp in the E dimer is controlled by the protonation of one or two histi-
dines at the DI-DIII interface (Fritz et al. 2008). Reorganization of the domains into 
a hairpin-like trimeric and energetically stable post-fusion structure, in which the 
FL and the TM anchors are juxtaposed, is assumed to provide the energy for mem-
brane fusion (Fig. 6.1e) and is reminiscent of the fusion-related structural reorgani-
zations characteristic of class I and III viral fusion proteins (Harrison 2015; White 
and Whittaker 2016). Overall, flavivirus membrane fusion is extremely fast and 
efficient and does not require any interactions with cellular proteins, as revealed by 
fusion experiments with pure liposomes (Smit et al. 2011; Stiasny and Heinz 2006). 
There is evidence from studies with dengue viruses (Zaitseva et al. 2010), however, 
that their fusion may depend on the presence of acidic lipids in the target membrane 
and therefore is delayed until the virus reaches late endosomes, which are enriched 
in these lipids.

6.3	 �Structure of Immature Particles

Flaviviruses are not assembled in their infectious forms but as immature particles 
with a radically different surface structure compared to mature virions (Fig. 6.2a, b). 
Assembly of these particles occurs at the endoplasmic reticulum (ER) membrane by 
a process that involves the formation of a complex between the precursor of M 
(prM) and E, lateral interactions between prM-E heterodimers, and a poorly defined 
mechanism that leads to the formation and incorporation of the viral core [Fig. 6.3; 
(Lindenbach et  al. 2013)]. The latter step appears to be inefficient to a certain 
degree, resulting in the formation of capsid-less subviral particles (SPs) as natural 
by-products of flavivirus infections (Fig. 6.3) (Apte-Sengupta et al. 2014). At least 
in certain cells, prM appears to have a chaperone-like function for the correct fold-
ing of E (Lorenz et al. 2002).

The structures of several immature flaviviruses were determined by electron 
cryo-microscopy (Zhang et al. 2003, 2013a; Kostyuchenko et al. 2013; Prasad et al. 
2017). The surfaces of these particles display 60 spikes of trimers of prM-E het-
erodimers that are organized in an icosahedral lattice (Fig. 6.2b). The three heterodi-
mers in a spike, however, are not related by threefold symmetry (Zhang et al. 2003), 
because the interactions of any one of the prM-E complexes with the two others in 
the spike are different (Fig. 6.2c). This lack of equivalence apparently stems from 
the mechanism underlying the assembly process, suggesting a sequential pathway 
for the generation of immature virions. As revealed by recent studies with Zika virus 
(Prasad et al. 2017), the spike is held together at its external tips by interactions of 
the pr part of prM with the FL of E proteins and stabilized at its base by contacts 
between DIII of E in one spike and DII of E from another spike.
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Fig. 6.2  Structural 
organization of immature 
flavivirus particles. (a) 
Schematic of an immature 
flavivirus particle 
composed of a spherical 
core with the capsid protein 
C and a viral envelope with 
two membrane-associated 
proteins, E (envelope) and 
prM (precursor of M). (b) 
Surface representation of 
an immature dengue virus 
serotype 1 particle with the 
underlying viral membrane 
shown in light orange. The 
particles are studded with 
60 spikes, each consisting 
of trimers of prM-E 
heterodimers. The three E 
proteins in each spike are 
colored in different shades 
of gray, the prM proteins in 
different shades of blue. 
The fusion loop in E is 
highlighted in orange.  
(c) Ribbon diagram of a 
single trimeric prM-E 
spike. Same color code as 
in b. The first two residues 
upstream of the furin 
cleavage site (P1, P2, see 
also Fig. 6.5) are shown in 
red. Panels b and c were 
generated using the 
structures of dengue virus 
serotype 1 [PDB: 4B03, 
(Kostyuchenko et al. 
2013)]
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The crystal structure of a dengue prM-E heterodimer was determined to a resolu-
tion of 2.2 Å using a recombinant protein in which the transmembrane region of 
prM was replaced with an 8-amino acid linker (Li et al. 2008). The structure of E in 
this complex is similar to that in the dimeric pre-fusion form, with some differences 
of the hinge angles between the domains, consistent with flexibility of these struc-
tures to accommodate changes in the oligomeric state of E and other structural 
changes in the viral life cycle. Importantly, in this heterodimer, the pr peptide is 
positioned on top of the FL and thus shields the FL from possible premature interac-
tions with cellular membranes after particle assembly and during intracellular trans-
port (see below) (Fig. 6.3). The polypeptide chain of pr extends linearly from the 
globular head (consisting of seven mostly antiparallel β-strands) along the E protein 
in the spike [Fig. 6.2c, (Li et  al. 2008; Kostyuchenko et  al. 2013; Prasad et  al. 
2017)]. This sequence element of prM contains a furin cleavage site (Fig. 6.2c), and 
its proteolytic cleavage is essential for generating infectious virions. The trans-
Golgi network (TGN) is the key intracellular organelle, where virus maturation 
takes place during exocytic transport of immature virus particles (Fig. 6.3). In these 
vesicles, structural rearrangements and proteolytic cleavage of prM occur that 
finally lead to the release of infectious virions by exocytosis. Flaviviruses are thus 
members of enveloped viruses that require the cleavage of an accessory protein and 
not the fusion protein itself to generate an assembly of proteins, primed to undergo 
triggered membrane fusion during virus entry (White and Whittaker 2016).

6.4	 �Priming of Fusion by Proteolytic Cleavage 
and Structural Changes During Maturation

Exposure of immature viruses to slightly acidic pH in the TGN (Fig. 6.3) leads to a 
dramatic change in the arrangement of prM and E in the envelope of immature par-
ticles that precedes proteolytic cleavage activation (Fig. 6.4). A structural compari-
son of the low-pH-treated immature virus and fully mature viruses (see above) 
shows that E acquires the herringbone-like organization, typical of mature virions, 
at this stage in the life cycle [Figs. 6.3 and 6.4; (Yu et al. 2008)]. In order to make 
such a restructuring happen, E has to be released from its heterodimeric complex 
with prM and must find a homologous partner to form the final E homodimer. As 

Fig. 6.3  Flavivirus life cycle. Flaviviruses enter cells by receptor-mediated endocytosis. 
Membrane fusion is triggered by the acidic pH in endosomes and leads to the release of the viral 
genome into the cytoplasm. Viral genomes are replicated at virus-induced intracellular membranes 
and incorporated into newly formed immature particles by an incompletely understood budding 
mechanism at the ER membrane. As a by-product of this assembly process, capsid-less subviral 
particles (SPs) are formed that consist only of a membrane associated with prM and E. The imma-
ture particles are transported through the exocytic pathway. The acidic pH in the trans-Golgi net-
work (TGN) induces a structural rearrangement that is required for the cleavage of prM by furin. 
The cleavage product pr remains associated with the particles at acidic pH but falls off at neutral 
pH when the particles are released from the cells
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Fig. 6.4  Structural metamorphoses of flavivirus particles from assembly to release. (a) Immature 
particles assembled in the endoplasmic reticulum (ER). (b) Formation of the herringbone-like 
arrangement of E induced by the low pH in the TGN before cleavage of prM. (c) Like b, but after 
cleavage of prM by furin. The cleavage product pr is still associated with the particles. (d) 
Extracellular fully mature virus with the E proteins in a metastable conformation, primed for 
fusion. The cleaved pr has dissociated from the particles. The E proteins are shown in gray, the pr 
parts of prM in blue. Panels a–d were generated using the structures of dengue virus serotype 2 
[PDB: 3C6D, 3C6R, (Yu et al. 2008)]
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revealed by studies with dengue viruses, this pH-dependent switch appears to be 
controlled by a conserved histidine at position 98 of prM, which upon protonation 
(possibly in combination with protonation of His 244 in E) produces electrostatic 
repulsion resulting in the dissociation of prM and E (Zheng et al. 2014). The required 
rotation of E during the transition from the neutral pH to the low-pH immature form 
has been proposed to be effected by the linear part of prM, following its globular 
head (Fig. 6.2c), that acts like a drawstring and tightens upon encountering the low 
pH in the TGN (Zhang et al. 2013b).

A combination of three-dimensional electron cryo-tomography and two-
dimensional image analysis with dengue virus serotype 2 indicated that the 
maturation-related conformational changes start from a single nucleation center 
formed by a small area of a few prM and E molecules in the herringbone-like 
arrangement (Plevka et al. 2011). Afterward, the mature patch spreads around the 
particle whenever the envelope proteins at the boundary of this region have a suit-
able conformation and orientation to become integrated in the evolving E herring-
bone structure (Plevka et al. 2014). Under certain conditions, binding of antibodies 
to the trimeric spike in immature particles can be strong enough to hold the prM and 
E proteins together even at acidic pH and thus inhibit the conformational change 
that would be required for virus maturation (Wang et al. 2013).

Docking studies with the known structure of furin showed that its binding would 
be hindered in the original spiky form of immature particles (Li et  al. 2008) 
(Fig. 6.2c). The reorganization of the immature envelope is thus necessary to make 
the furin recognition site accessible and to allow the cleavage of prM into pr and 
M. Released by this cleavage, the amino-terminal 20 amino acids of M can slip 
through the holes in the E dimer (Fig. 6.1d) to the same membrane-proximal side of 
E as the rest of M, which is inserted in the viral membrane by a hairpin of two rela-
tively short helices (Fig. 6.1c) (Zhang et al. 2013b).

6.4.1	 �The Protective Role of prM During Exocytosis

Since the metastable E herringbone lattice characteristic of mature and fusion-
competent flaviviruses is formed already in the presence of prM, one would assume 
that fusion activity would be activated immediately after the cleavage of prM in the 
acidic environment of the TGN (Figs. 6.3 and 6.4c). It was therefore unclear why 
the maturation-cleaved viral particles would not undergo premature fusion already 
at this stage of their life cycle. The conundrum was resolved by an elegant series of 
electron cryo-microscopy and biochemical experiments using dengue virus sero-
type 2 (Yu et al. 2008, 2009), which revealed that the structure of the low-pH imma-
ture viruses remained essentially the same after furin cleavage of prM (Fig. 6.4b, c). 
Thus, the furin cleavage itself does not cause any conformational changes in addi-
tion to those induced by low pH. The pr part of prM remains bound at acidic pH to 
the original position in E, making extensive contacts with DII of one monomer and 
DI of a neighboring E monomer, burying the FL at the interface between pr and the 
E dimer. As shown by liposome coflotation experiments, the retention of pr prevents 
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the insertion of the FL into target membranes, as it would occur at acidic pH in the 
absence of pr. It is therefore concluded that flaviviruses use this intricate mechanism 
for avoiding premature fusion and inactivation during the process of maturation in 
the TGN.

Upon release, the virus encounters neutral pH in the extracellular fluid, which 
leads to the deprotonation of histidines. It has been proposed that the shift in pH 
disrupts the binding between His 244 in E and Asp 63 of pr (Zhang et al. 2013b) 
and allows the dissociation of pr from the particles (Fig. 6.4c, d). These are now 
again poised for a low-pH-induced conformational switch that drives membrane 
fusion when the virus infects a new cell. The conformational metamorphoses 
accompanying the maturation of flaviviruses are depicted and summarized in 
Fig. 6.4.

Overall, acidic pH and a complex network of pH sensors in both prM and E (with 
histidines playing a major role) orchestrate the maturation as well as the entry of 
these viruses into their host cells (Fritz et al. 2008; Zheng et al. 2014). Both of these 
stages can be inhibited by the addition of acidotropic agents or inhibitors of the 
ATPases required for the acidification of intracellular organelles (Randolph et al. 
1990; Guirakhoo et al. 1992; Heinz et al. 1994). In vitro cleavage of immature viri-
ons generated in the presence of such agents resulted in a strong increase in infectiv-
ity (Stadler et al. 1997; Yu et al. 2008; Junjhon et al. 2008). The proof for an absolute 
requirement of prM cleavage for acquiring infectivity came from genetic experi-
ments in which the cleavage site in prM was inactivated by a single amino acid 
deletion in an infectious clone of TBE virus (Elshuber et al. 2003). Changing the 
furin cleavage site R-T-R-R to R-T-R resulted in the production of immature virions 
that were completely noninfectious for BHK-21 cells. Since LoVo cells, which lack 
furin, produce only immature virions, it can be concluded that this cellular protease 
is indeed responsible for flavivirus maturation (Stadler et  al. 1997; Zybert et  al. 
2008; Zicari et al. 2016).

The fine-tuning of the maturation and entry pathways may vary slightly for 
different flaviviruses to accommodate specific requirements of the respective life 
cycles that involve different vectors and vertebrate hosts as well as different tis-
sues in these hosts. Such variations are exemplified by the fact that the low-pH-
induced rearrangement of immature viruses and the exposure of the furin cleavage 
site are reversible in the case of dengue viruses [(Yu et al. 2008), Fig. 6.4a, b], 
whereas they are irreversible in TBE virus [(Stadler et al. 1997) and unpublished 
observations]. Furthermore, the patterns of conserved histidines in E vary among 
phylogenetically distinct groups of flaviviruses, like those transmitted by mosqui-
tos or ticks. Only a subset of the histidine residues is completely conserved among 
flaviviruses (Nelson et al. 2009) providing further evidence for modulations of the 
networks of pH sensors that control virus maturation and fusion. Because of their 
importance for viral infectivity, the structural reorganizations in both the matura-
tion and entry stages of the viral life cycle have been proposed to be potential 
targets for antiviral agents (Martín et al. 2009; Schmidt et al. 2010; Costin et al. 
2010; Ge and Zhou 2014).
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C-terminusN-terminus

DEN1 75 RDKR ↓ SVALAP 
5 4321

97
DEN2 75 REKR ↓ SVALVP 97
DEN3 75 RDKR ↓ SVALAP 97
DEN4 75 REKR ↓ SVALTP 97
ZIKA 76 RSRR ↓ AVTLPS 99
WN 76 RSRR ↓ SLTVQT 98
YF 73 RSRR ↓ AIDLPT 96
TBE 74 RTRR ↓ SVLIPS 96

P

VTYGTC-SQTGEHR
VTYGTC-TTMGEHR
VTYGTC-NQAGEHR
VMYGTC-TQNGERR
VVYGTCHHKKGEAR
VRYGRC-TKTRHSR
VAYGKC-DSAGRSR
LEYGRC--GKQEGS

Fig. 6.5  Alignment of prM amino acid sequences from different flaviviruses. The furin cleavage 
site is indicated by an arrow. The positions upstream of the cleavage site are indicated by P and the 
respective number. Conserved residues are shown in red; the acidic residues at P3 characteristic for 
dengue viruses are shown in blue. The furin cleavage motifs are highlighted in yellow. The follow-
ing sequences were used for the alignment with MAFFT (http://www.ebi.ac.uk/Tools/msa/mafft/): 
Dengue virus serotype 1 strain SG/07K3640DK1/2008 (DEN1, Genbank accession no: 
GQ398255), dengue virus serotype 2 strain 16681 (DEN2, U87411), dengue virus serotype 3 
strain SG/05K863DK1/2005 (DEN3, EU081190), dengue virus serotype 4 strain 
SG/06K2270DK1/2005 (DEN4, GQ398256), Zika virus strain H/PF/2013 (ZIKA, KJ776791), 
West Nile virus strain NY99 (WN, KC407666), yellow fever virus strain Asibi (YF, AY640589), 
tick-borne encephalitis virus strain Neudoerfl (TBE, U27495)

6.5	 �The Furin Cleavage Site and Partially Mature Virions

Consistent with furin cleavage sites in other substrates (Thomas 2002), the flavivi-
rus prM protein contains basic residues at positions 1, 2, and 4 upstream of the 
cleavage site (P1, P2, P4) (Fig. 6.5). In addition, there are several other charged resi-
dues up to residue 13 that are conserved to varying degrees among flavivirus sero-
complexes and appear to affect the efficiency of cleavage (Keelapang et al. 2004; 
Junjhon et al. 2010) (Fig. 6.5). Specifically, dengue viruses and some insect-only 
flaviviruses have conserved acidic residues at P3, whereas tick-borne viruses lack 
the otherwise conserved basic residue at P5 (Fig.  6.5). The sequence variations 
likely reflect differences in the adaptation of these viruses to their hosts, and several 
experimental data indicate that they can affect the efficiency of prM cleavage 
(Junjhon et al. 2008, 2010; Keelapang et al. 2004).

Especially dengue viruses appear to produce a high degree of immature or par-
tially mature viruses, both in infected mosquito and mammalian cells [(Junjhon 
et al. 2008) and references therein], although their relative proportions may vary. 
The existence of partially mature viral particles was most directly shown by elec-
tron cryo-microscopy (Cherrier et al. 2009; Junjhon et al. 2010) as well as immuno-
precipitation analyses of dengue viruses from infected C6/36 mosquito cells after 
concentration and purification by ultracentrifugation (Junjhon et  al. 2010). 
Quantitative analyses indicated that smooth-surfaced mature virions and partially 
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mature virions were quite abundant, constituting approximately 55% and 42% of 
the total particles, respectively. In contrast, completely immature particles repre-
sented only a minor subpopulation (about 3%).

It can be assumed that the infectivity of partially mature viruses (Mukherjee 
et al. 2011; Davis et al. 2006) is due to the presence of sufficient E dimers in their 
unprotected spring-loaded conformation at the mature side of the mosaic particles 
that can readily mediate membrane fusion, when taken up by cells. As discussed 
below, partial maturation endows flaviviruses with more options of viral entry than 
they would have with completely mature particles only.

Dengue viruses and some members from the group of insect-only flaviviruses 
(Blitvich and Firth 2015) are unique in the conservation of a cleavage-suppressive 
acidic residue (Asp or Glu) at P3 of the furin cleavage site (Fig. 6.5), which is prob-
ably responsible for the abundance of partially mature dengue viruses secreted from 
infected cells. The negative impact of an acidic amino acid at P3 was revealed by 
mutational analyses of the sequence upstream of the cleavage site (Junjhon et al. 
2008). However, cleavage-augmenting effects were also observed (at P5 Arg and P6 
His residues), suggesting an interplay of sequence-specific effects that modulate the 
efficiency of prM cleavage and thus the proportions of mature and partially mature 
virions released from infected cells. Interestingly, mutants with reduced cleavage 
secreted a higher proportion of capsid-less subviral particles, but the mechanisms 
underlying this effect on virus assembly remained unclear (Junjhon et al. 2008).

It is unknown at present whether exogenous proteases can also contribute to fla-
vivirus maturation at a stage after release from infected cells, similar to what is 
known to occur in the proteolytic activation of several other enveloped viruses 
(Böttcher-Friebertshäuser et  al. 2013; Smith et  al. 2009; Simmons et  al. 2013). 
Using a noninfectious TBE virus mutant with a disabled furin cleavage site (the 
original cleavage site R-T-R-R was changed to R-T-R), Elshuber et al. (2003) dem-
onstrated that infectivity could be restored by the addition of trypsin, which is able 
to cleave the mutated site in prM. Interestingly, the lethal mutation could also be 
overcome by two different resuscitating mutations that occurred during passaging 
of the mutated virus in  vitro (BHK-21 cells) and in  vivo in mice (Elshuber and 
Mandl 2005). In BHK-21 cells, cleavability by furin was reestablished in the dis-
abled mutant by a spontaneous codon duplication that led to a minimal furin cleav-
age motif (R-R-T-R). Passaging in mouse brains, however, yielded a different 
pattern of mutations that restored infectivity in mice but not in BHK-21 cells. In this 
case, the evolving viruses displayed substitutions near the furin cleavage site that 
changed the original number of six cysteine residues in the wild-type prM either to 
five or to seven. It was therefore suggested that structural perturbations of prM 
caused by the cysteine mutations allowed replication under certain conditions (in 
mouse brains but not in BHK-21 cells) without the need for furin cleavage, probably 
through the cleavage by extracellular proteases present in mouse brain tissues. 
Alternatively, structural changes in prM may have affected the balanced network of 
low-pH-regulated structural interactions between prM and E that control maturation 
as well as membrane fusion in such a way that infectivity was restored at least at a 
low level. In a continuation of this work, Fischl et  al. were able to adapt the 
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furin-disabled TBE virus mutant to cleavage by chymotrypsin through passaging in 
the presence of this enzyme (Fischl et al. 2008). Two specific mutations (Ser85Phe 
and Arg89His) were identified to confer the chymotrypsin-dependent phenotype 
and were shown to be stable during at least six cell culture passages. These mutants 
were not neurovirulent, in contrast to the wild-type or trypsin-dependent mutants, 
presumably because of the lack of chymotrypsin in brain tissues (Fischl et al. 2008).

6.6	 �Biological Impact of Incomplete prM Cleavage 
and Particle Heterogeneity

Differences in the extent of prM cleavage can result in the secretion of mosaic par-
ticles from infected cells, displaying patches of envelope proteins arranged in their 
“mature” and “immature” configuration (Fig. 6.6b) (Cherrier et  al. 2009; Plevka 
et  al. 2011). Incomplete maturation cleavage can thus result in a substantial 

a

b

Fig. 6.6  Particle heterogeneities resulting from virus breathing and incomplete prM cleavage. 
Possible dynamics of the viral envelope (virus breathing) of a fully mature virion (a) and a partially 
mature virion (b). The E proteins are shown in gray, the prM proteins in blue, the underlying viral 
membrane in yellow. The figure was generated using the structures of dengue virus serotypes 1 and 
2 [PDB: 4CCT, 4B03, 3ZKO; (Fibriansah et al. 2013; Kostyuchenko et al. 2013)]
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heterogeneity of viral particles with more or less prM cleaved, dependent on 
sequence properties of the virus and the type of cells infected (Pierson and Diamond 
2012). Particle heterogeneity is further increased by the dynamics of flavivirus 
envelopes. This phenomenon, termed “virus breathing,” can result in substantial 
protein movements and the exposure of otherwise cryptic protein surfaces [Fig. 
6.6a; (Kuhn et  al. 2015)]. Both of these factors, incomplete maturation cleavage 
(Fig. 6.6b) and virus breathing (Fig. 6.6a, b, right panels), have potential implica-
tions for interactions with cellular receptors, the induction of antibodies, the effect 
of antibody binding on infectivity, pathogenesis, and possibly the maintenance of 
flaviviruses in their natural ecological cycles (Rey et al. 2017).

A number of experimental data support the concept that particle heterogeneity 
plays an important role in the biology of flaviviruses. Dengue viruses have played a 
leading role in these analyses because they appear to be especially prone to incom-
plete cleavage of prM and breathing of their envelopes (Pierson and Diamond 2012; 
Kuhn et al. 2015). All of the available structure-related data are derived from viruses 
produced in cell cultures, and corresponding studies of viruses circulating in natural 
settings have been elusive to experimental analysis so far. Considering the heteroge-
neity observed in vitro, it appears however, likely, that this property is also typical 
for flaviviruses in their natural ecological cycles and may contribute to the charac-
teristics of their host range and pathogenesis. In vitro data have shown that both the 
efficiency of the maturation cleavage and virus breathing can be affected by single 
amino acid mutations (Keelapang et al. 2004; Junjhon et al. 2008; Zheng et al. 2014; 
Dowd et al. 2015; Goo et al. 2017), and particle heterogeneity may therefore even 
vary between different strains of the same virus.

6.6.1	 �Effects on Cell Attachment and Entry

Although it has been widely assumed that E mediates receptor binding, because of 
its prominent position at the surface of mature virions, it becomes increasingly clear 
that particle heterogeneity offers opportunities to flaviviruses for additional mecha-
nisms of cell attachment. Interaction of the single N-linked glycan attached to the 
prM protein of partially mature West Nile virus and the lectin DC-SIGNR was 
shown to be alone sufficient for mediating infection of human cells in vitro (Davis 
et al. 2006). It has also been proposed that the cluster of positive charges upstream 
of the furin cleavage site in prM may be involved in binding to heparan sulfate or 
other glycosaminoglycans at the cell surface (Keelapang et  al. 2004). Of special 
importance are the recently discovered mechanisms of flavivirus entry that are 
mediated by interactions of the TIM and TAM receptor families with the viral lipid 
membrane (Amara and Mercer 2015). Such interactions would be impossible with 
fully mature static virions displaying a closed shell of E proteins at their surface 
(Fig.  6.1b). However, the viral membrane is accessible in immature virions to a 
certain degree and can be a target for lipid receptors (Fig. 6.2b).

Immature patches at the surface of partially mature virions (Fig. 6.6b) thus offer 
an opportunity for TIM- and TAM-mediated infection of cells. Membrane 
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accessibility is probably further increased by irregularities at the interface between 
mature and immature arrays of envelope proteins as well as by breathing of the fully 
mature lattice of E proteins (Fig. 6.6a) (Rey et al. 2017). The importance of apop-
totic mimicry in flavivirus infections was first shown for dengue viruses (Meertens 
et al. 2012) but recently also demonstrated to be an important mechanism of Zika 
virus entry into cells involved in transplacental infections (Richard et  al. 2017; 
Miner and Diamond 2017). In this context, it is important to note that the prM pro-
tein was affected by a disproportionately high number of mutations in the evolution 
of Zika virus from its African-Asian ancestral strains to the currently circulating 
strains in the Americas (Wang et al. 2016). It can therefore be speculated that some 
of these mutations may have contributed to the explosive spread and possibly to an 
altered tissue tropism allowing congenital infections, as observed in the current out-
break (Coyne and Lazear 2016; Miner and Diamond 2017). Studies to assess the 
effects of these mutations on biological properties of the virus using infectious 
clones and appropriate animal models (Morrison and Diamond 2017) are ongoing.

6.6.2	 �Effects on Human Antibody Responses and Antibody-
Mediated Neutralization

The heterogeneity of flavivirus particles circulating in infected humans can have a 
strong influence on the antibody patterns induced by these infections. The formation 
of prM-specific B cells and antibodies can be regarded as an indirect indicator of cir-
culating particles with incomplete prM cleavage. In dengue virus infections, studies of 
polyclonal and monoclonal antibody responses have provided evidence that a sub-
stantial proportion of antibodies induced is directed against the prM protein 
(Dejnirattisai et al. 2010; Beltramello et al. 2010; Smith et al. 2012, 2016; Luo et al. 
2013). Much less prM-specific antibodies appear to be produced in the course of other 
flavivirus infections, such as TBE virus infections or YF 17D vaccination (Jarmer 
et al. 2014; Vratskikh et al. 2013), suggesting that the extent of prM cleavage varies 
among different flaviviruses under conditions of natural infection or live vaccination. 
The dominance of antibodies to the FL in E, as shown in dengue and Zika virus infec-
tions (Lai et al. 2008; Dejnirattisai et al. 2010; Beltramello et al. 2010; Smith et al. 
2012, 2014; de Alwis et al. 2014; Sapparapu et al. 2016), may also be related to par-
ticle heterogeneity, since this structural element is more exposed in the trimeric spikes 
of immature envelopes than in the mature herringbone arrangement (Cherrier et al. 
2009), and its accessibility can be subject to further variation by virus- and even 
strain-specific breathing dynamics (Dowd et al. 2014).

The degree of maturity can also have a strong influence on the neutralizing activ-
ity of E protein-specific antibodies (Nelson et al. 2008; Dowd et al. 2014; Mukherjee 
et al. 2014), because it can modulate the accessibility of epitopes on virus particles, 
one of the key parameters of virus neutralization (Dowd and Pierson 2011). Structural 
differences between the immature and mature side of partially mature particles as 
well as the disordered part between these two sides can be assumed to have divergent 
effects on antibodies specific for different epitopes. As an example, antibody E53 
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that recognizes the FL in E bound efficiently to the immature prM-E spike of WN 
and dengue viruses but not to the mature E dimer (Cherrier et al. 2009; Nelson et al. 
2008). Such maturation-dependent variation of antibody binding imposes an addi-
tional problem to in  vitro virus neutralization assays, because the extent of prM 
cleavage may differ between different cells (e.g., mammalian or mosquito cells). 
Thus, the selection of cells for producing the virus to be incubated with the antibod-
ies as well as the cells inoculated with the virus-antibody mixtures can affect the 
outcome of neutralization assays. Standardization can be improved by the use of 
furin-overexpressing cells, because they yield homogeneous populations of mature 
viruses (Mukherjee et al. 2016). It remains to be shown, however, whether the results 
of these assays will provide the best in vitro correlate of in vivo protection.

6.6.3	 �Effects on Antibody-Dependent Enhancement of Infection

Antibodies that fail to reach an occupancy sufficient for virus neutralization can 
even enhance the infection of FcγR-positive cells (Pierson et  al. 2007), such as 
monocytes, macrophages, or dendritic cells (Halstead et  al. 2010), by mediating 
endocytic or phagocytic uptake of infectious virus-antibody complexes. This mech-
anism can be demonstrated both in in vitro and in vivo using animal models and is 
implicated in the pathogenesis of severe forms of dengue disease, like hemorrhagic 
dengue fever and dengue shock syndrome (Halstead 2014; Katzelnick et al. 2017). 
Antibodies to prM and the FL of E are abundantly produced in dengue virus infec-
tions (Lai et al. 2008; Dejnirattisai et al. 2010; Beltramello et al. 2010; Smith et al. 
2012, 2014, 2016; de Alwis et al. 2014), especially in the course of secondary infec-
tions. Both types of antibodies have no or only low neutralizing activity but can 
efficiently mediate ADE of infection (Dejnirattisai et al. 2010; Beltramello et al. 
2010; Smith et al. 2012, 2014, 2016; de Alwis et al. 2014). Partially mature parti-
cles, presenting prM and exposing the FL better than mature particles (Cherrier 
et  al. 2009), may be the predominant viral forms involved in this phenomenon. 
Because of the possible detrimental effects of prM antibodies, it has been proposed 
that their induction should be avoided in the context of dengue and possibly other 
flavivirus vaccines (Dejnirattisai et al. 2010; Smith et al. 2016).

As a special case, completely immature, noninfectious dengue viruses produced 
in furin-deficient LoVo cells were shown to become highly infectious upon ADE-
mediated entry into FcγR-positive cells (Rodenhuis-Zybert et al. 2010). Experiments 
with specific inhibitors of furin provided convincing evidence that this enzyme, 
which is not only enriched in the TGN but also cycled to the plasma membrane and 
endosomes, was responsible for rendering completely immature particles infectious 
after their endocytic uptake. Such mechanisms can thus potentially contribute to the 
infection processes of flaviviruses in different hosts and tissues.

�Conclusions

Assembly and maturation of flaviviruses are controlled by complex structural 
interactions of the envelope proteins prM and E. Low-pH-triggered conforma-
tional changes in the TGN expose a furin cleavage site in prM and lead to the 
cleavage of this accessory protein into pr and M. The viral fusion protein (E) itself 
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does not undergo proteolytic cleavage. Priming of the fusion activity of E is also 
triggered by low pH and caused by structural rearrangements upon entry into 
cells. This priming requires the loss of the protective and fusion-inhibiting inter-
action of E with the pr part of prM, which occurs upon virus release from infected 
cells by exocytosis. Advances in the determination of high-resolution structures of 
viral particles by electron cryo-microscopy have dramatically increased our 
understanding of the molecular processes involved in virus assembly, maturation, 
and entry. One of the key findings gained from these studies, when combined with 
biochemical and functional analyses, is the recognition of flaviviruses as hetero-
geneous populations of mature and only partially mature particles, resulting from 
an incomplete proteolytic maturation cleavage of prM. Many biological proper-
ties can be modulated by varying degrees of maturity, and we are only at the 
beginning of understanding of how flavivirus particle heterogeneity can affect 
biological properties including pathogenesis. It is quite possible that the capacity 
of fine-tuning the process of virus maturation and the generation of heterogeneous 
virus populations is an important asset for flaviviruses to adapt to divergent hosts 
in their natural cycles. Many aspects in this context are unresolved, such as the 
composition of virus populations circulating in infected invertebrate and verte-
brate hosts as well as their contribution to the maintenance of these viruses in 
nature, and will likely become topics of intensive future research.
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7The Role of Secreted Serine Proteases 
of the Host in Influenza Viral 
Pathogenesis

Hiroshi Kido

Abstract
Influenza A virus (IAV) is one of the most common pathogens causing acute respi-
ratory infections in humans of all age group. IAV infectivity depends on activation 
of the viral hemagglutinin by proteolytic enzymes of the host, among which 
secreted trypsin-type serine proteases play a prominent role. Proinflammatory 
cytokines induced in influenza virus infections upregulate production of the prote-
ases and, thus, enhance virus replication, tissue damage, and metabolic disorders. 
Application of protease inhibitors counteracting these effects is therefore a promis-
ing therapeutic regimen against influenza.

7.1	 �Introduction

Influenza A virus (IAV), of the Orthomyxoviridae family, is the most common 
infective pathogen in humans, causing significant morbidity and mortality in infants 
and the elderly (Kim et al. 1979; Lipatov et al. 2004). IAV entry into cells involves 
membrane fusion mediated by the hemagglutinin (HA), the major glycoprotein of 
the viral envelope. The fusion activity of HA depends on cleavage by trypsin-type 
serine proteases that have to be provided by the host, because the viral genome does 
not encode processing enzymes (Klenk et al. 1975; Klenk and Garten 1994; Kido 
et al. 2007; Kido 2015). The proteases are not only crucial for IAV entry, but they 
are also important determinants for infection spread, host tropism, and multiple 
organ failure (MOF). Once IAV infection ensues, IAV upregulates the HA-processing 
proteases through induction of proinflammatory cytokines in various organs, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75474-1_7&domain=pdf
mailto:kido@tokushima-u.ac.jp


136

particularly in vascular endothelial cells (Pan et al. 2011; Kido et al. 2012; Kido 
2015). Upregulated trypsin-type enzymes potentiate viral multiplication by conver-
sion of the precursor HA0 into the cleavage products HA1 and HA2 and also cause 
damage through proteinase-activated receptor-2 (PAR-2) in various tissues 
(Kunzelmann et al. 2002). Therefore, in the initial as well as in the advanced stages 
of viral infection, trypsin-type HA-processing proteases are important determinants 
of pathogenesis and play major roles in IAV-induced pneumonia, acute myocarditis, 
myocardial infarction (Pan et  al. 2011), influenza-associated encephalopathy in 
infants, and MOF (Ichiyama et  al. 2007; Wang et  al. 2010; Kido 2015). Sendai 
virus, Newcastle disease virus, and other paramyxoviruses also require trypsin-like 
processing proteases for entry into cells and multiplication (Tashiro et  al. 1992; 
Klenk and Garten 1994; Kido et al. 1999; Le et al. 2006).

The so-called cytokine storm, marked by increased levels of proinflammatory 
cytokines, comprising, among others, tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, and IL-1β, has positive and negative effects on host survival in IAV infection 
(Wang et al. 2010; Pan et al. 2011; Kido 2015; Indalao et al. 2016). The inflamma-
tory response also affects cell adhesion, vascular permeability, apoptosis, and mito-
chondrial reactive oxygen that may lead to vascular dysfunction and MOF (Spraque 
and Khalil 2009; Hiyoshi et al. 2015). For the close interaction of cytokines and 
cellular ectopic trypsin in IAV infection, we have coined the term “influenza virus−
cytokine−trypsin cycle” (Kido et al. 2012; Kido 2015).

This chapter reviews trypsin-type HA-processing secreted serine proteases and 
their interplay with IAV and cytokines that induce vascular hyperpermeability and 
MOF in severe influenza. Protease-inhibition-based therapeutic options for IAV-
induced MOF are also discussed.

7.2	 �IAV-Activating Host Proteases

An overview on the secreted trypsin-type proteases responsible for activation of 
IAV HA is presented in Table 7.1. A fair number of enzymes activating mammalian 
IAV and low pathogenic avian influenza (LPAI) viruses have been originally char-
acterized as functional entities. They include the secreted trypsin-type serine prote-
ases plasmin (Lazarowitz et  al. 1973), factor Xa (Gotoh et  al. 1990), urokinase, 
plasma kallikrein (Scheiblauer et al. 1992), tryptase Clara (Kido et al. 1992), mini-
plasmin and micro-plasmin that are truncated derivatives of plasmin (Murakami 
et al. 2001; Yao et al. 2004), ectopic anionic trypsin (Towatari et al. 2002; Le et al. 
2006), porcine lung tryptase (Chen et  al. 2000), TC30 (Sato et  al. 2003), and 
kallikrein-related peptidases 5 and 12 (Hamilton and Whittaker 2013). As described 
in detail in Chap. 8, several type II membrane-bound proteases have been identified 
more recently at the genetic level, such as human airway trypsin-like protease 
(HAT) (Yasuoka et al. 1997), transmembrane serine protease (TMPRSS)2 (Böttcher 
et al. 2006), and TMPRSS4 (Chaipan et al. 2009). All of these endoproteases recog-
nize the carboxyl moiety of a single R residue within the cleavage motif Q/E-X-R 
(where X is any amino acid except C and basic amino acids) present in HA of sea-
sonal and pandemic human IAV.
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Figure 7.1a shows that tryptase Clara purified from rat lung and trypsin from 
bovine pancreas cleave [3H]glucosamine-labeled influenza virus HA0 into subunits 
HA1 and HA2 (Kido et  al. 1992). Direct amino acid sequencing of the amino-
terminus of the HA2 subunit of IAV Aichi/2/68 (H3N2) revealed residues G-L-F-G-
A-I-A-G-, indicating that the cleavage site used by tryptase Clara and trypsin was 
between R325 and G326. Figure 7.1b shows that tryptase Clara and trypsin potentiated 
IAV multiplication in a dose-dependent manner. Figure 7.1c shows proteolytic pro-
cessing of [3H]glucosamine-labeled Sendai virus F0 by ectopic trypsin purified from 
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Fig. 7.1  Proteolytic activation of human IAV and Sendai virus and immunohistochemical local-
ization of tryptase Clara, trypsin, and mini-plasmin in rat airway. (a) Proteolytic activation of IAV 
Aichi/2/68 (H3N2) in  vitro by tryptase Clara and trypsin followed by SDS-PAGE. [3H]
Glucosamine-labeled nonactivated virus isolated from culture media of Madin–Darby canine kid-
ney (MDCK) cells (lane 1) was treated with trypsin (10 μg/ml) for 15 min (lane 2), tryptase Clara 
(10 μg/ml) for 15 min (lane 3), tryptase Clara (50 μg/ml) for 15 min (lane 4), or tryptase Clara 
(50 μg/ml) for 30 min (lane 5) at 37 °C. SDS-PAGE was done on a 13% acrylamide gel under 
reducing conditions. (b) Proteolytic activation monitored by viral infectivity. Nonactivated virus 
propagated in MDCK cells was digested with trypsin or tryptase Clara for 15 min at 37 °C. The 
infectivity of the activated virus was assayed by the immunofluorescent cell-counting method 
(Kido et al. 1992). (c) [3H]Glucosamine-labeled nonactivated Sendai virus isolated from culture 
media of LLC-MK2 cells (lane 1) was treated with purified trypsin from rat brain, 0.15 μg (lane 2) 
and 0.3 μg (lane 3), for 60 min at 37 °C, and then analyzed by SDS-PAGE. (d) Immunohistochemical 
localization of tryptase Clara, ×410 (Kido et al. 1992); trypsin, ×410 (Towatari et al. 2002); and 
mini-plasmin, ×140 (Murakami et al. 2001), in rat lungs
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rat brain in a similar manner as reported for tryptase Clara (Tashiro et  al. 1992; 
Towatari et  al. 2002; Le et  al. 2006). Although almost all trypsin-type proteases 
known to date cleave the synthetic short peptide substrates Q/E-X-R at the 
C-terminal R residue, not all of them are able to activate HA, probably because of a 
restricted accessibility of the cleavage site. Therefore, [3H]glucosamine-labeled 
viruses, rather than small peptides, are the best substrates for screening of the pro-
teases responsible for virus activation.

The proteases activating at monobasic cleavage sites show different tissue distri-
bution in rat airway (Fig. 7.1d). Tryptase Clara is located in Clara cells of the bron-
chioles in the lower respiratory tract (Kido et  al. 1992), ectopic lung trypsin is 
present in stromal cells of peribronchiolar regions (Towatari et al. 2002), and mini-
plasmin is found in folded epithelial cells in bronchiolar divisions (Murakami et al. 
2001). IAV infection of mice markedly upregulated HA-processing ectopic trypsin 
in the lung, heart, brain, and vascular endothelial cells (Le et al. 2006; Wang et al. 
2010; Pan et al. 2011), and the enzymes played a critical role in the spread of IAV 
causing vascular hyperpermeability and tissue damage. Mast cell tryptase and trypt-
ase TC30 have also been reported as HA-processing enzymes in porcine lung, but 
human mast cell tryptase does not activate HA0 (Chen et al. 2000; Sato et al. 2003). 
Besides trypsin-type proteases provided by the host, microbial proteases can also 
activate influenza virus HA in bacterial coinfections of the airways and play impor-
tant roles in the spread of the virus (Tashiro et al. 1987; Kido et al. 2009).

A large difference in proteolytic potentiation of various virus strains was 
observed among the HA-processing proteases (Murakami et al. 2001). This is illus-
trated by a comparative analysis of three strains shown in Fig. 7.2. Trypsin effi-
ciently activated the infectivity of all strains analyzed, as well as mini- and 
micro-plasmin, though less efficiently than trypsin. In contrast, the proteolytic 
activity of plasmin was high only with IAV WSN/33 (H1N1), weak with IAV 
Aichi/2/68 (H3N2), and nonexistent with IAV seal/Massachusetts/1/81 (H7N7). 
Thus, differences in the tissue distribution of the processing proteases may affect 
organ tropism and pathogenicity of the viruses.

The concept that proteolytic activation of HA is an important determinant of 
pathogenicity has been established long ago when it became clear that there are 
distinct differences at the HA cleavage site of LPAI viruses and highly pathogenic 
avian influenza (HPAI) viruses. As described in detail in Chap. 1 of this book with 
HPAI viruses, cleavage of HA0 occurs intracellularly at the C-terminal R residue of 
multibasic motifs, mostly R/K-X-K/R-R. The trypsin-type serine proteases activat-
ing LPAI viruses and human IAV described above are not responsible for intracel-
lular proteolytic cleavage of HA0 of HPAI viruses.

The effects of inhibitory compounds of HA-processing proteases have been stud-
ied as candidates for therapeutic options against IAV. Among the various trypsin 
inhibitors, the natural airway inhibitor secretory leukoprotease inhibitor (SLPI), 
which is secreted from non-ciliated secretory airway Clara and goblet cells (Mooren 
et al. 1983; Puchelle et al. 1985) and found in bronchoalveolar lavage fluid as well 
as nasal and salivary secretions, efficiently suppressed proteolytic activation of  
HA and viral multiplication in cell cultures and experimentally infected rats  

H. Kido
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(Beppu et al. 1997; Kido et al. 2007). Aprotinin, a trypsin and plasmin inhibitor 
purified from bovine lungs, also efficiently inhibited HA cleavage and viral multi-
plication in embryonated chicken eggs and in mice (Zhirnov et  al. 1994, 2011; 
Beppu et al. 1997; Kido et al. 2007).

7.3	 �The Influenza Virus–Cytokine–Trypsin Cycle and Its Role 
in the Pathogenesis of Vascular Hyperpermeability 
and Multiple Organ Failure

A scheme of the influenza virus–cytokine–trypsin cycle is shown in Fig. 7.3. As 
mentioned above, nasal IAV infection increases the levels of proinflammatory cyto-
kines, such as TNF-α, IL-6, and IL-1β, in the lung and blood of mice. Immediately 
after the cytokine storm, there is a marked upregulation of ectopic trypsin in vascu-
lar endothelial cells of various organs through activation of nuclear factor kappa B 
(NF-κB) and activator protein 1 (AP-1) (Wang et al. 2010). Upregulation of trypsin 
leads, on the one hand, to increased virus titers in the airways and, on the other 
hand, to activation of matrix metallopeptidase 9 (MMP-9) and protease-activated 
receptor-2 (PAR-2), resulting in vascular hyperpermeability, edema, and MOF. Some 
of the observations that provided the basis for this concept are presented in the 
following.
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Fig. 7.2  Activation of infectivity by plasmin, mini-plasmin, micro-plasmin, and trypsin of IAV 
WSN (H1N1) (a), IAV seal/Massachusetts/1/81 (H7N7) (b), and IAV Aichi/2/68 (H3N2) (c). 
MDCK cell-grown nonactivated IAV strains were treated for 30 min at 37 °C with pancreatic tryp-
sin, plasmin, mini-plasmin, and micro-plasmin at the indicated concentrations. The enzyme reac-
tion was stopped by the addition of 100 μM aprotinin. Infectivity in MDCK cells is shown as 
cell-infecting units (CIU)
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Figure 7.4 illustrates the upregulation of cytokines and ectopic trypsin in the 
lungs of mice after IAV/Puerto Rico/8/34 (H1N1) (PR8) infection. The levels of 
IL-1β, TNF-α, and IL-6 rapidly increased at day 3 post-infection, sustained until 
day 6, and then decreased at day 8. Ectopic trypsin also increased markedly at day 
3, but the level stayed high until day 8 (Indalao et  al. 2016). Since the cytokine 
responses are associated with activation of transcription factors NF-κB and AP-1 
(Mori et al. 2003; Santoro et al. 2003; Nimmerjahn et al. 2004), we treated mice 
once daily for 4 days with the NF-κB inhibitors pyrrolidine dithiocarbamate (PDTC) 
and N-acetyl-l-cysteine (NAC) and the AP-1 inhibitor nordihydroguaiaretic acid 
(NDGA). PDTC and NDGA significantly suppressed the upregulation of TNF-α 
and IL-1β, and NAC suppressed TNF-α and IL-6 at day 4 post-infection  

Influenza A virus

Proinflammatory
cytokines upregulation

Stimulation of cytokine release

MMP-9 activation PAR-2 activation

Hyper-permeability and edema

Multiple organ failure

Breakdown of basement
membranes

and extracelluar matrix

Activation of HA processing
and viral multiplication

Trypsin
upregulation

IL-1b

IL-6

TNF-a

Fig. 7.3  Diagram illustrating the role of the influenza virus–cytokine–trypsin cycle in vascular 
hyperpermeability, tissue destruction, and MOF in severe influenza. HA hemagglutinin, PAR-2 
proteinase-activated receptor-2, IL-1β interleukin-1β, IL-6 interleukin-6, TNF-α tumor necrosis 
factor-α, MMP matrix metalloproteinase
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(Wang et al. 2010). Trypsin induction was inhibited also by treatment with PDTC, 
NAC, and NDGA, probably via blockade of NF-κB and AP-1 binding in the pro-
moter region of the gene. These results suggest a close interplay between IAV, cyto-
kines, and ectopic trypsin in the pathogenesis of influenza.

Trypsin in mice has three major isoforms (T1–3). T2 is the predominant isoform 
induced after IAV infection, while the level of T1 is lower than that of T2, and T3 is 
barely detected (Pan et al. 2011). Since trypsin facilitates IAV entry and replication 
in target cells, we analyzed the effects of silencing the major trypsin genes T1 and T2 
on viral replication and cytokine levels in murine H9c2 cardiomyoblasts. Viral  
replication monitored by NS1 and NP expression was significantly suppressed in  
T1- and T2-knockdown cells; the magnitude of suppression in T2-knockdown cells 
was significantly higher than in T1-knockdown cells (Fig. 7.5). Secretion of proin-
flammatory cytokines IL-6, IL-1β, and TNF-α into culture media was also sup-
pressed under T1- and T2-knockdown conditions (Pan et al. 2011). Based on these 
results, we proposed the influenza virus–cytokine–trypsin cycle hypothesis as one of 
the mechanisms underlying MOF in severe influenza (Kido et al. 2012; Kido 2015).

We recently observed that IL-1β is a key cytokine in trypsin upregulation and 
has a pathological role in MOF (Fig. 7.3) (Indalao et al. 2016). IL-1β treatment 
upregulated trypsin and increased proinflammatory cytokine secretion in a time-
dependent manner in human alveolar A549 cells (Fig. 7.6). The earliest response 
was IL-1β secretion detected at 2 h in the media, followed by secretion of IL-6, 
TNF-α, and T1 at 4, 6, and 8 h, respectively. The levels of these cytokines and T1 
increased continuously in a time-dependent manner during the 8-h experiment. 
The other major isoforms of trypsin mRNAs, T2 and T3, were also upregulated 
after IL-1β treatment in a similar manner (Indalao et al. 2016). Suppression of the 
effects of IL-1β by neutralizing monoclonal antibody treatment almost completely 
suppressed upregulation of trypsin, IL-1β, IL-6, and TNF-α mRNAs in A549 cells 
(Indalao et al. 2016).
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7.4	 �Linkage of the Influenza Virus−Cytokine−Trypsin 
and Metabolic Disorder−Cytokine Cycles and Options 
for the Treatment of Multiple Organ Failure

MOF with severe pulmonary edema occurs in the progressive stage of seasonal 
influenza virus pneumonia, particularly in patients with underlying risk factors 
(Dolorme and Middleton 1979; Khoufache et al. 2009), and is common in human 
HPAI virus infection (Fujimoto et  al. 1998). In the course of progression of the 
influenza virus−cytokine−trypsin cycle, increased levels of cytokines induce the 
metabolic disorder–cytokine cycle in mitochondria mediated by the peroxisome 
proliferation-activated receptor (PPAR)-γ and pyruvate dehydrogenase kinase 4 
(PDK4), as shown in Fig. 7.7 (Yamane et al. 2014; Kido 2015). The cytokine storm 
suppresses mitochondrial pyruvate dehydrogenase (PDH) activity and glucose oxi-
dation through upregulation of PDK4, resulting in reduced ATP levels in skeletal 
muscle, liver, lung, and heart, but not brain (Yamane et al. 2014) (Fig. 7.8). The 
results suggest that PDK4 is a suitable target molecule for the treatment of the meta-
bolic energy disorder induced by severe IAV infection. Among the known PDK 
inhibitors dichloroacetate (DCA), AZD7545, and radicicol, the pyruvate analog 
DCA is the classic inhibitor of all PDK isoforms (Bersin and Stacpoole 1997; Kato 
et al. 2007), although it has side effects, such as peripheral neuropathy. We recently 
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found that diisopropylamine dichloroacetate (DADA) is a selective and safe inhibi-
tor of PDK4. DADA inhibition of PDK4 resulted in significant restoration of PDH 
activity as well as increased ATP levels in various organs and also improved blood 
glucose, lactate, and β-hydroxybutyric acid levels (Yamane et al. 2014). Abrogation 
of PDH suppression in infected mice by DADA led not only to a restoration of the 
energy metabolism, but it was also associated with a suppression of the cytokine 
storm. As a consequence, trypsin expression in various organs and IAV replication 
in the lung were reduced, and all animals recovered from the infection. Figure 7.9 
shows a typical example of the effects of DADA on survival rate, body weight, and 
food and water intake of mice infected with a semilethal dose of IAV PR8 (Yamane 
et al. 2014). Untreated mice showed progressive avoidance of food and water uptake 
during days 2–7 post-infection, and the animals started to die after day 7 post-
infection. However, infected mice treated with DADA showed no significant 
decrease in food and water intake as well as no significant reduction in body weight 

Influenza–Cytokine–Trypsin cycle
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Trypsin

PAR-2

KCNN4
KCNQ1

Vascular hyperpermeability MOF

TCA cycle

Acetyl-CoA

PDH

Pyruvate

GlucoseFatty acids

β-Oxidation

CFTR

CI-

CI-

Ca2+

Ca2+

Z0 -1

ATP
ATP

PDK4

K+

K+

Metabolic disorder

Metabolic Disorder–Cytokine cycle

CPT I/II

DADA

Fig. 7.7  Diagram illustrating the pathogenic role of ATP depletion resulting from the link of the 
metabolic disorder–cytokine cycle to the influenza virus–cytokine–trypsin cycle. The linked cycles 
(top) and two overlapping pathways involving cell membrane and cytoplasm (bottom, left) and 
mitochondria (bottom, right) that lead to vascular hyperpermeability and MOF are shown. PPARs 
peroxisome proliferator-activated receptors, PDH pyruvate dehydrogenase, PDK4 pyruvate dehy-
drogenase kinase 4, PAR-2 protease-activated receptor-2, CPT carnitine palmitoyltransferase, 
CFTR cystic fibrosis transmembrane conductance regulator, KCNN4 potassium intermediate/small 
conductance calcium-activated channel, subfamily N, member 4, KCNQ1 potassium channel, volt-
age dependent, KCNQ1(IPR005827), ZO-1 zonular occludens-1 (for further explanation, see text)
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during the 14-day experimental period. While untreated mice showed a continuous 
decrease in the survival, none of the DADA-treated mice died during the experimen-
tal period.

Upregulation of trypsin in the course of the influenza virus−cytokine−trypsin 
cycle stimulates PAR-2. PAR-2 stimulation increases cytokine release (Niu et al. 
2008) and leads to lung edema through the activation of chloride and potassium 
secretion at apical and basolateral membrane channels, respectively, and to increased 
vascular permeability and relaxation with a rise in intracellular Ca2+ concentrations 
(Palmer et al. 2006; Wang et al. 2010) (Fig. 7.7). Trypsin inhibitors, such as apro-
tinin, and PAR-2 antagonists suppress these pathological changes induced by IAV 
(Nakayama et al. 2001; Zhirnov et al. 2011).

�Conclusions

It has been known for decades that infectivity, organ tropism, and pathogenicity 
of IAV and several other viruses, notably Sendai virus and Newcastle disease 
virus (NDV), are primarily determined by trypsin-type host serine proteases. 
Although there is a large variety of proteases with trypsin-type substrate speci-
ficities, only some of them recognize the tertiary structure of the cleavage site of 
the viral membrane proteins, thus allowing virus multiplication in the organs and 
tissues in which they are expressed. As outlined in this review, from the knowl-
edge gained over the past decades on the role of trypsin-type secreted host cel-
lular serine proteases (Table  7.1) in the pathogenesis of IAV infection, the 
following conclusions can be drawn: (1) Several trypsin-type HA-processing 
serine proteases in the airway fluids, such as tryptase Clara, ectopic trypsin, and 
mini-plasmin, are responsible for activation of LPAI viruses and mammalian 
IAV. In recent years, cell surface-anchored trypsin-like HA-processing proteases 
have been added to this list. (2) IAV infection is characterized by a marked 
upregulation of cellular trypsin in various organs and cells induced by proinflam-
matory cytokines, particularly IL-1β. IAV infection also leads to metabolic dis-
orders with ATP depletion in various cells. Upregulated trypsin in endothelial 
cells destroys tight junctions through PAR-2 expression on the cell surface. 
Based on these studies, we propose the influenza virus–cytokine–trypsin cycle 
hypothesis as one of the main mechanisms underlying MOF. Similar to trypsin 
knockdown, administration of aprotinin, a trypsin inhibitor, suppresses viral rep-
lication and upregulation of trypsin and cytokines as well as ATP depletion, 
resulting in significant improvement of cellular functions. (3) As viral infection 
progresses, the influenza virus–cytokine–trypsin cycle interconnects with the 
metabolic disorder–cytokine cycle. Conjugation of both cycles enhances the 
severity of IAV infection and MOF. Treatment of disordered glucose oxidation 
by the PDK4 inhibitor DADA normalizes glucose and lipid metabolism and 
enhances ATP levels in mitochondria. Normalization of the metabolic disorders 
further suppresses cytokine production, upregulation of trypsin, and viral repli-
cation in the lung and, thus, significantly improves the survival rate of infected 
mice. (4) These findings support the concept that application of protease inhibi-
tors is a promising therapeutic regimen against influenza virus infection.  
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These inhibitors will not only interfere with the formation of infectious virus, 
but, in combination with other compounds, they may also prevent cellular dys-
functions contributing to the development of IAV-induced MOF.
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Membrane-Anchored Serine Proteases: 
Host Cell Factors in Proteolytic 
Activation of Viral Glycoproteins

Eva Böttcher-Friebertshäuser

Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among 
these, the trypsin-like serine proteases comprise one of the best characterized 
subfamilies due to their essential roles in blood coagulation, food digestion, fibri-
nolysis, or immunity. Trypsin-like serine proteases possess primary substrate 
specificity for basic amino acids. Most of the well-characterized trypsin-like pro-
teases such as trypsin, plasmin, or urokinase are soluble proteases that are 
secreted into the extracellular environment. At the turn of the millennium, a num-
ber of novel trypsin-like serine proteases have been identified that are anchored 
in the cell membrane, either by a transmembrane domain at the N- or C-terminus 
or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 
membrane-anchored serine proteases (MASPs) have been identified in human 
and mouse, and some of them have emerged as key regulators of mammalian 
development and homeostasis. Thus, the MASP corin and TMPRSS6/matrip-
tase-2 have been demonstrated to be the activators of the atrial natriuretic peptide 
(ANP) and key regulator of hepcidin expression, respectively. Furthermore, 
MASPs have been recognized as host cell factors activating respiratory viruses 
including influenza virus as well as severe acute respiratory syndrome (SARS) 
and Middle East respiratory syndrome (MERS) coronaviruses. In particular, 
transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be 
essential for proteolytic activation and consequently spread and pathogenesis of 
a number of influenza A viruses in mice and as a factor associated with severe 
influenza virus infection in humans.

This review gives an overview on the physiological functions of the fascinat-
ing and rapidly evolving group of MASPs and a summary of the current knowl-
edge on their role in proteolytic activation of viral fusion proteins.
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8.1	 �Introduction

The designation trypsin-like serine proteases has originally been used for a large 
group of soluble proteolytic enzymes, which are involved in digestion, blood coagu-
lation, fibrinolysis, and immunity. Analyses of vertebrate genomes at the turn of the 
millennium have identified a novel subfamily of trypsin-like serine proteases that 
are anchored in the cell membrane, either by a carboxy-terminal transmembrane 
domain (type I), an amino-terminal transmembrane domain (type II), or via a glyco-
sylphosphatidylinositol (GPI) linkage at the carboxy terminus. Over the past two 
decades, these membrane-anchored serine proteases (MASPs) have emerged as key 
regulators of mammalian development and homeostasis in processes such as epithe-
lial tight junction formation, skin development, epithelial sodium channel activa-
tion, cellular iron homeostasis, blood pressure, inner ear development, placental 
morphogenesis, neural tube closure, and male fertility. Moreover, dysregulated 
expression and/or activity of a number of MASPs is observed in many cancer tis-
sues. Within the past decade, MASPs expressed in the human airways have further-
more been identified as host cell factors that may support proteolytic activation and 
spread of respiratory viruses including influenza virus, human metapneumovirus, 
severe acute respiratory syndrome (SARS) , and Middle East respiratory syndrome  
(MERS) coronavirus (CoV).

The largest group of the MASPs is the family of type II transmembrane serine 
proteases (TTSPs) (Hooper et  al. 2001). To date, the TTSP family comprises 18 
known members in humans and 20 in mice. All members of the TTSP family share 
a common domain structure possessing a short N-terminal cytoplasmic domain, a 
transmembrane domain, a C-terminal serine protease domain, and a variable stem 
region that may contain 1–11 protein domains of 6 different types (Fig. 8.1). The 
most prominent member of the TTSP, enteropeptidase, has been identified over a 
century ago by Pavlov and coworkers due to its essential role in food digestion; 
however, only the cloning of the enteropeptidase cDNA in 1994 revealed the pres-
ence of a membrane anchor and explained its localization to the plasma membrane 
of duodenal cells. The modular structure of the enteropeptidase protein was found 
to be similar to that of a previously cloned protease, hepsin (Leytus et al. 1988).

The first of the GPI-anchored serine proteases identified was prostasin (Yu et al. 
1994; Chen et al. 2001a, b). A second human GPI-anchored serine protease, testisin, 
was identified in 1998/1999 (Inoue et al. 1998, Hooper et al. 1999). Tryptase gamma 
1 is the only type I transmembrane serine protease identified to date. Prostasin, tes-
tisin, and tryptase gamma 1 are composed of a single protease domain linked to a 
GPI anchor or a transmembrane domain at the C-terminus (Fig. 8.1).

MASPs belong to the chymotrypsin (S1)-like serine protease family (reviewed in 
Perona and Craik 1995 and Hooper et al. 2001). They are synthesized as inactive 
single-chain zymogens that are activated by cleavage following an arginine or lysine 
residue within a highly conserved activation motif preceding the catalytic domain. 
After activation, the catalytic domain remains linked to the membrane-anchored 
domains by a disulfide bond but can also be released as a soluble protease (Hooper 
et al. 2001). All MASPs have a highly conserved S1 serine protease domain that 
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Fig. 8.1  Domain structures of membrane-anchored serine proteases. HAT human airway trypsin-
like protease; HATL HAT-like protease; AsP adrenal secretory serine protease; DESC1, differen-
tially expressed in squamous cell carcinoma; TMPRSS, transmembrane serine protease S1; MSPL/
MSPS mosaic serine protease large/short-form; GPI glycosylphosphatidylinositol; CUB Cls/Clr, 
urchin embryonic growth factor and bone morphogenetic protein-1; SEA sea urchin sperm protein, 
enterokinase, and agrin; LDLA low-density lipoprotein receptor A; MAM meprin, A5 antigen, and 
receptor protein phosphatase μ. Amino and carboxy termini are indicated by N and C, respectively. 
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contains the histidine, aspartate, and serine residues (catalytic triad) necessary for 
the catalytic activity (Fig. 8.2). In addition, all MASPs show a strong preference for 
cleavage of substrates after a basic residue (arginine or lysine) due to a negatively 
charged aspartate located at the bottom of the S1 pocket that is highly conserved in 
enzymes with trypsin-like activity (reviewed in Perona and Craik 1995 and Hooper 
et  al. 2001). Accordingly, autocatalytic activation of several TTSPs has been 
observed in vitro, suggesting that some of the TTSPs could function as initiators of 
proteolytic cascades (Hooper et al. 2001).

This review aims to give an overview on the physiological functions of this fas-
cinating and rapidly evolving group of enzymes and a summary of the current 
knowledge on their role in proteolytic activation of viral fusion proteins.

8.2	 �Type II Transmembrane Serine Proteases (TTSPs)

Based on the arrangements of their extracellular protein domain, the phylogenetic 
analysis of the serine protease domain, and the chromosomal arrangement of the 
cognate genes, human TTSPs are divided into four subfamilies: the HAT/DESC 
(human airway trypsin-like protease/differentially expressed in squamous cell car-
cinoma) family, the hepsin/TMPRSS (transmembrane protease/serine S1) family, 
the matriptase family, and the corin family (Szabo et  al. 2003) (Fig.  8.1). TTSP 
genes are found in all vertebrate genomes. There also exist two nonmammalian 
TTSPs in Drosophila, stubble-stubbloid (st-sb), and corin, indicating that the TTSP 
family may have originated from two ancestral genes, one giving rise to the HAT/
DESC family and one to the corin family (Appel et al. 1993; Bugge et al. 2009).

a b

Fig. 8.2  Crystal structure of the catalytic domain of human DESC1. (a) DESC1 (PDB: 2OQ5, 
Kyrieleis et  al. 2007) is shown in cartoon style. The residues of the catalytic triad (carbons in 
orange, nitrogen in blue, and oxygen in red) and of Asp189 (carbons in yellow) are shown as sticks. 
N-terminus and C-terminus are labeled. (b) DESC1 (ribbon style, orange) superimposed with the 
catalytic domains of human matriptase (blue, PDB: 1EAX, Friedrich et al. 2002), human entero-
peptidase (red, PDB: 1EKB, Lu et al. 1999), and human hepsin (green, PDB: 1P57, Somoza et al. 
2003). The residues of the active site of DESC1 and Asp189 are shown as sticks (carbons in 
orange, nitrogen in blue, and oxygen in red)
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8.2.1	 �HAT/DESC Family

The HAT/DESC family contains five human members: HAT, DESC1, HAT-like 1 
protease (HATL1), HATL4, and HATL5. In addition, HATL2 and HATL3 have 
been described in rodents (Table 8.1). The stem region of all HAT/DESC members 
is composed of a single SEA (sea urchin sperm protein, enterokinase, and agrin) 
domain. The genes encoding the HAT/DESC family members are all located in 
tandem on human chromosome 4 and mouse chromosome 5, respectively (Hobson 
et al. 2004). To date, the functional significance of the HAT/DESC1 family is largely 
unknown with HAT being the best studied exemption.

8.2.1.1	 �HAT: A Trypsin-Like Protease Associated  
with Airway Diseases

Human airway trypsin-like protease (HAT) was originally isolated from sputum of 
patients with chronic airway diseases as a soluble active protease with an apparent 
molecular mass of 27 kDa (Yoshinaga et  al. 1998). Subsequent cloning of HAT 
cDNA from human trachea cDNA revealed that it encodes for a protease of 417 
amino acids with a predicted molecular mass of 47 kDa that contains a transmem-
brane region near the N-terminus (Yamaoka et al. 1998). The HAT zymogen under-
goes autocatalytic activation in vitro (Kato et al. 2012). HAT has been shown to be 
expressed as an active protease on the cell surface of HAT-expressing Madin-Darby 
canine kidney (MDCK) cells (Böttcher-Friebertshäuser et al. 2010). Surface bioti-
nylation analysis showed that both the zymogen and the mature form of HAT are 
present on the cell surface, indicating that autoactivation might take place at the cell 
surface.

HAT is encoded by the TMPRSS11D gene, located on human chromosome 
4q13.2. The TMPRSS11D gene is the human ortholog of long splice variants of the 
airway trypsin-like protease from mouse (MAT1) and rat (RAT1) (Hansen et  al. 
2004). An alternatively spliced isoform of MAT1 and RAT1 has been identified in 
rat (RAT2) and mouse (MAT2), respectively. It is also known as adrenal secretory 
serine protease (AsP) and contains an N-terminal signal peptide instead of a trans-
membrane domain and a SEA domain (Fig. 8.1). There have been no reports of a 
short isoform of HAT in humans.

Within human tissues, HAT expression is prominent in the trachea and bronchi 
and was also detected in the gastrointestinal tract, the skin, and the brain (Sales et al. 
2011; Bertram et al. 2012). In the airway epithelium, HAT has been shown to be 
expressed at the apical membrane of ciliated cells, but not in goblet cells, submuco-
sal glands, and mast cells (Takahashi et al. 2001). A number of studies suggest a 
potential role for HAT in the pathophysiology of bronchial asthma and chronic 
bronchitis (Chokki et  al. 2004; Matsushima et  al. 2006; Yasuoka et  al. 1997; 
Yoshinaga et  al. 1998). Among other functions HAT has been shown to cleave 
fibrinogen, to modulate structure and functions of the urokinase-type plasminogen 
activator receptor (uPAR, CD87), and to activate the protease-activated receptor 2 
(PAR-2).  Protease-activated receptors (PARs) are a family of seven transmembrane 
domain G-protein-coupled receptors that are activated by serine proteases through 
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specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. 
Activated PAR-2 plays a pivotal role in cell adhesion and early inflammatory pro-
cesses and has been reported to mediate allergic airway inflammation of the mouse 
airways in vivo (Schmidlin et al. 2002). HAT has been described to increase mucin 
gene expression and to stimulate bronchial fibroblast proliferation in airway epithe-
lial cells through PAR-2-mediated signaling pathways (Yoshinaga et  al. 1998; 
Matsushima et al. 2006).

HAT expression has been shown to be deregulated in skin diseases such as pso-
riasis vulgaris. Higher expression of HAT was found in psoriatic epidermal lesions 
(Iwakiri et al. 2004). It has been reported that HAT might promote PAR-2-mediated 
interleukin 8 (IL-8) production to accumulate inflammatory cells in the epidermal 
layer of psoriasis vulgaris.

The physiological function of HAT in the airways and in the skin, however, 
remains unknown. Knockout of HAT/TMPRSS11D expression in mice does not 
affect development, postnatal growth, or long-term health (Sales et al. 2011), indicat-
ing that HAT/TMPRSS11D activity is dispensable or can be compensated by other 
proteases. A recent study found that HAT expression is lost during the dedifferentia-
tion of epithelial cells in high-grade tumors, a hallmark of squamous cell carcinogen-
esis (Duhaime et al. 2016). Therefore, HAT might act as an activator and initiator of 
a proteolytic cascade during terminal differentiation of squamous epithelia.

HAT and TMPRSS2 (see later chapter) were the first human proteases identified 
to cleave and activate the influenza A virus surface glycoprotein hemagglutinin 
(HA) with a monobasic cleavage site and to support multicycle replication and 
spread of the virus in cell culture (Böttcher et al. 2006). The role of HAT and other 
MASPs in activation of viral glycoproteins will be described in more detail at the 
end of this review and is summarized in Table 8.2.

Table 8.2  Proteolytic activation of viral glycoproteins by MASPs

Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

HAT/
TMPRSS11D

Avian and 
mammalian 
IAV (R/K↓) 
(subtypes H1, 
H2, H3, H9, 
H11, H12)
IBV

SARS-CoV
MERS-CoV

n.d. Böttcher et al. (2006), 
Chaipan et al. (2009), 
Bertram et al. (2011), 
Böttcher-
Friebertshäuser et al. 
(2012) and Galloway 
et al. (2013)

DESC1 IAV (subtypes 
H1, H2, H3, 
H17)

SARS-CoV
MERS-CoV

n.d. Zmora et al. (2014) 
and Hoffmann et al. 
(2016)

HATL1 n.d. SARS-CoV n.d. Kam et al. (2009)
HATL5 No No n.d. Bertram et al. (2010)
HATL4 No No n.d. Bertram et al. (2010)
Hepsin No n.d. Fusion protein F of 

subtype B avian 
metapneumovirus 
(RKKR↓)

Bertram et al. (2010) 
and Yun et al. (2016)

E. Böttcher-Friebertshäuser
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Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

TMPRSS2 Avian and 
mammalian 
IAV (R/K↓) 
(subtypes 
H1–H7, 
H9–H11, 
H11–H18)
IBV
Essential for 
proteolytic 
activation of 
H7N9 and 
H1N1 IAV in 
mice

SARS-CoV
MERS-CoV
Human 
CoV-229E
Porcine 
epidemic 
diarrhea 
virus

Fusion protein F of 
paramyxoviruses: 
human 
metapneumovirus; 
human 
parainfluenza 
viruses 1, 3, 4a, and 
4b; and Sendai virus

Böttcher et al. (2006), 
Shirogane et al. 
(2008), Matsuyama 
et al. (2010), 
Glowacka et al. 
(2011), Shirato et al. 
(2013), Shulla et al. 
(2011), Böttcher-
Friebertshäuser et al. 
(2012), Abe et al. 
(2013), Bertram et al. 
(2013), Ferrara et al. 
(2013), Galloway 
et al. (2013), Gierer 
et al. (2013), Hatesuer 
et al. (2013), Tarnow 
et al. (2014) Sakai 
et al. (2014), 
Hoffmann et al. 
(2016) and Fan et al. 
(2017)

TMPRSS3 No No n.d. Bertram et al. (2010) 
and Zmora et al. 
(2014)

TMPRSS4 IAV (H1, H3) No: 
SARS-CoV

n.d. Chaipan et al. (2009) 
and Glowacka et al. 
(2011)

TMPRSS12 n.d. n.d. Fusion protein F of 
subtype B avian 
metapneumovirus 
(RKKR↓), no 
activation of F with 
RQSR↓ motif

Yun et al. (2016)

MSPL/
TMPRSS13

Highly 
pathogenic 
avian IAV of 
subtype H5N2  
(KKKR↓)
IAV (subtypes 
H1, H2, H3, 
H17 monobasic 
motifs)

SARS-CoV
MERS-CoV
Porcine 
epidemic 
diarrhea 
virus

n.d. Okumura et al. (2010), 
Zmora et al. (2014), 
Hoffmann et al. 
(2016) and Fan et al. 
(2017)

Matriptase IAV (subtype 
H9 with RSS/
RR↓ motif but 
not VSSR↓ 
motif, some 
H1N1 strains 
(IQSR↓))

n.d. n.d. Hamilton et al. (2012), 
Baron et al. (2013) 
and Beaulieu et al. 
(2013)

Matriptase-2 No n.d. n.d. Bertram et al. (2010)

(continued)

Table 8.2  (continued)
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8.2.1.2	 �DESC1 and TMPRSS11A/HATL1: Tumor Suppressors 
in Esophagus Cancer

DESC1 (differentially expressed in squamous cell carcinoma, also designated as 
transmembrane protease serine S1 family member 11E (TMPRSS11E)) is expressed 
in the human head, neck, skin, prostate, and testis. DESC1 was first identified as a 
gene downregulated in squamous cell carcinoma of the head and neck (Lang and 
Schuller 2001). Moreover, induction of normal keratinocyte differentiation by cal-
cium challenge was accompanied by an increase in DESC1 expression in  vitro 
(Sedghizadeh et  al. 2006). A recent study found that DESC1 sensitizes cells to 
apoptosis by downregulating the epidermal growth factor receptor (EGFR)/AKT 
pathway in esophageal squamous cell carcinoma (Ng et al. 2016). Protease activity 
was required for this function, suggesting that DESC1 cleaves EGFR, which subse-
quently leads to the downregulation of the AKT pathway. Moreover, DESC1 has 
been demonstrated to reduce tumor growth kinetics in an orthotopic nude mouse 
model for study of esophageal squamous cell carcinoma. Taken together, there is 
accumulating evidence suggesting the association of DESC1 downregulation with 
cancer development. However, its tumor suppressive role remains to be character-
ized in more detail in future studies. The crystal structure of the catalytic domain of 
DESC1 has been solved (Kyrieleis et al. 2007) and is shown in Fig. 8.2.

TMPRSS11A, also designated as HAT-like 1 protease (HATL1) and esopha-
geal carcinoma-related gene 1 (ECRG1), has been identified as a gene downregu-
lated in esophagus cancers (Li et  al. 2006). TMPRSS11A-specific mRNA is 
present in the eye, testis, glandular stomach, tongue, trachea, bladder, forestom-
ach, and skin of mice (Sales et al. 2011). Knockout of TMPRSS11A expression 

Table 8.2  (continued)

Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

Matriptase-3 No No: 
SARS-CoV

n.d. Chaipan et al. (2009) 
and Glowacka et al. 
(2011)

Polyserase-1 No No n.d. Zmora et al. (2014)
Corin No No n.d. Bertram et al. (2010)
Prostasin No No n.d. Bertram et al. (2010), 

Böttcher-
Friebertshäuser et al. 
(2010) and Zmora 
et al. (2014)

Testisin IAV (subtype 
H1, H3, H9)

n.d. n.d. E. Böttcher-
Friebertshäuser, 
A. Arendt, 
unpublished data

IAV influenza A virus; IBV influenza B virus; HA hemagglutinin; S spike protein; F fusion protein; 
SARS severe acute respiratory syndrome; MERS Middle East respiratory syndrome; CoV corona-
virus; n.d. not determined. Amino acids are indicated as single-letter code. The cleavage site is 
indicated by an arrow

E. Böttcher-Friebertshäuser
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does not affect development, postnatal growth, or long-term health in mice (Sales 
et al. 2011). TMPRSS11A/ECRG1 is one among many tumor suppressor genes 
that may play a role in the initiation and development of esophageal squamous 
cell carcinoma (Netzel-Arnett et  al. 2003). Overexpression of TMPRSS11A/
ECRG1 has been shown to inhibit cell growth and to induce G1/S cell cycle 
arrest through upregulation of p15INK4b expression in esophageal cells in vitro 
(Zhao et al. 2004).

8.2.1.3	 �TMPRSS11F/HATL4 and TMPRSS11B/HATL5
There is little known about TMPRSS11F/HATL4 and TMPRSS11B/HATL5. 
TMPRSS11B/HATL5 expression has been detected in the cervix, esophagus, and 
oral cavity. It was found to be significantly decreased in squamous cell carcinomas 
of these tissues as compared to normal and tumor adjacent samples (Miller et al. 
2014), and thus it might have a similar physiological function like DESC1 and 
TMPRSS11A. TMPRSS11F/HATL4-specific mRNA was found to be present in the 
skin, esophagus, trachea, tongue, eye, bladder, testis, uterus, and stomach (Sales 
et al. 2011). Recently, TMPRSS11F-knockout mice were shown to be viable and 
fertile (Zhang et  al. 2017). Compared with wild-type controls, TMPRSS11F-
deficient newborn mice had greater body fluid loss and higher mortality in a trans-
epidermal body fluid loss test, indicating that TMPRSS11F/HATL4 is involved in 
epidermal barrier function to prevent body fluid loss.

8.2.2	 �Hepsin/TMPRSS Family

The hepsin/TMPRSS family comprises eight members: hepsin/TMPRSS1, 
TMPRSS2, TMPRSS3, TMPRSS4, spinesin/TMPRSS5, TMPRSS12, TMPRSS13/
MSPL (mosaic serine protease large-form), and enteropeptidase. All members of 
this family have a group A scavenger receptor domain in their stem region linked to 
the serine protease domain, preceded by a single LDLA (low-density lipoprotein 
receptor A) domain in TMPRSS2, TMPRSS3, TMPRSS4, and MSPL. Enteropeptidase 
is unique for this family, having multiple protein domains between the transmem-
brane domain and the catalytic domain, including a SEA domain, two CUB (C1s/
C1r, urchin epidermal growth factor and bone morphogenetic protein 1) domains, 
two LDLA domains, a MAM (meprin, A5 protein, tyrosine phosphatase μ) domain, 
and a group A scavenger receptor domain (Fig. 8.1).

8.2.2.1	 �Enteropeptidase: Activation of Pancreatic Hydrolases  
by Converting Trypsinogen to Trypsin

As already mentioned enteropeptidase, originally named enterokinase, has been 
discovered in 1899  in the laboratory of Ivan Pavlov as an activity of extracts of 
small intestinal mucosa that was able to activate hydrolytic enzymes in pancreatic 
fluid. In 1939, Moses Kunitz demonstrated that purified porcine enteropeptidase 
converts crystalline trypsinogen to trypsin (Kunitz 1939). In the 1970s, purification 
of enteropeptidase from porcine, bovine, and human intestine revealed that it 
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consists of a heavy chain (82–140 kDa) and a light chain (35–62 kDa) connected by 
a disulfide bond. Edman degradation of the amino-terminal sequence of the light 
chain of bovine enteropeptidase revealed its homology to other trypsin-like prote-
ases. However, only cloning of the enteropeptidase cDNA in 1994 revealed the pres-
ence of a membrane anchor near the amino-terminus and indicated that the active 
two-chain form is derived from a single-chain precursor (Kitamoto et al. 1994).

Enteropeptidase activity is almost exclusively localized to the duodenum. The 
enzyme is localized in the brush border of enterocytes and some goblet cells of the 
human duodenal mucosa and, at lower levels, in the mucosa of the proximal jeju-
num (Hermon-Taylor et  al. 1977; Yuan et  al. 1998). Enteropeptidase specifically 
cleaves trypsinogen at the activation site DDDDK↓I that is highly conserved among 
vertebrates (Zheng et al. 2009). Trypsin,  in turn, activates a number of pancreatic 
zymogens such as chymotrypsinogen, proelastase, procarboxypeptidases, and pro-
lipases in the lumen of the gut. Such unique sequence specificity is thought to pro-
vide an important mechanism to ensure that trypsinogen is activated only by 
enteropeptidase, but not by other proteases in pancreas, avoiding damage of the 
pancreas due to excess protease activities.

The cDNA sequences of enteropeptidase have been determined for several verte-
brate species including cattle, swine, mouse, Japanese rice fish (medaka), and man 
(Zheng et al. 2009). The amino acid sequences of the human and bovine protease 
are 82% identical. In humans, enteropeptidase is encoded by the PRSS7 gene local-
ized on chromosome 21q21 (Kitamoto et al. 1994, 1995). Enteropeptidase is syn-
thesized as a zymogen of 1019 amino acids, which requires activation by another 
protease at K784 within the activation site sequence ITPK↓IVGG. Trypsin and the 
protease duodenase that is secreted by Brunner’s glands of the proximal segment of 
duodenum have been shown to activate enteropeptidase (Zamolodchikova et  al. 
1997, 2000). However, duodenase is synthesized as a zymogen, too, and requires 
activation by another protease. Moreover, the measured rate of activation of purified 
bovine recombinant proenteropeptidase by duodenase was about 70-fold lower than 
that by trypsin (Zamolodchikova et al. 2000). Thus, the role for duodenase as pri-
mary activator of proenteropeptidase remains to be established.

The molecular basis of human enteropeptidase localization to the apical mem-
brane is not yet completely understood. The transmembrane domain anchors entero-
peptidase in the brush border of duodenal enterocytes. In addition, mucin-like 
repeats in the SEA domain and N-linked glycosylation of the catalytic domain have 
been found necessary for apical delivery in MDCK cells (Zheng and Sadler 2002; 
Zheng et al. 2009). In addition, enteropeptidase is present as a soluble form in the 
small intestinal lumen. Shedding may be due to the action of biliary or pancreatic 
proteases and possibly to local effects of gastrointestinal hormones (Götze et  al. 
1972). However, it remains unknown whether shedding of enteropeptidase plays a 
role in regulating its activity in the gut.

The enteropeptidase serine protease domain contains a basic tetrapeptide seg-
ment consisting of R/K96-R-R-K99, which is not conserved in other serine prote-
ases (Matsushima et al. 1994; Kitamoto et al. 1994; Yuan et al. 1998). Computer 
modeling suggested that this basic segment is located on the protein surface where 
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it might bind the acidic P2–P5 residues of trypsinogen activation sites. The crystal 
structure of the bovine enteropeptidase catalytic domain in complex with the inhibi-
tor V-(D)4-K-chloromethane confirmed this extended substrate binding exosite (Lu 
et al. 1999). The K99 residue was identified as major determinant for recognition of 
the P2 and P4 aspartate residues. It is conserved among enteropeptidases of many 
species. Substitution of the lysine by alanine prevented enteropeptidase from cleav-
ing trypsinogen (Lu et al. 1999). However, two-chain enteropeptidase cleaves tryp-
sinogen about 500-fold more rapidly than does the isolated light chain (Lu et al. 
1997), indicating that the heavy chain is necessary for optimal cleavage of 
trypsinogen.

The physiological importance of enteropeptidase is indicated by severe intestinal 
malabsorption in congenital deficiency of this enzyme. A number of cases of pri-
mary enterokinase deficiency have been reported since it was first described in 1969 
(Hadorn et al. 1969). Patients suffer from severe intestinal malabsorption with diar-
rhea, vomiting, and growth failure in early infancy. Nonsense or frameshift muta-
tions in the PRSS7 gene have been shown in patients (Holzinger et  al. 2002). 
Congenital enteropeptidase deficiency can be treated successfully by administration 
of pancreatic extract in early infancy (Zheng et al. 2009).

Because of its unique substrate specificity and protein stability, enteropeptidase 
is also of biotechnological interest. Introduction of the DDDDK↓I enterokinase rec-
ognition sequence is widely used as a tool to specifically cleave and activate recom-
binant proproteins or fusion proteins. More recently, enteropeptidase from the 
Japanese rice fish medaka has been cloned and characterized (Ogiwara and 
Takahashi 2007). The E173A mutant of medaka enteropeptidase showed an even 
stricter specificity for the DDDDK sequence compared to bovine enteropeptidase 
and may therefore provide the most appropriate protease to cleave recombinant pro-
teins containing the DDDDK motif.

8.2.2.2	 �TMPRSS2: Prostate Cancer Progression and Proteolytic 
Activation of Influenza A Viruses

TMPRSS2 cDNA was originally cloned by exon trapping when the transcription 
map of human chromosome 21 was developed (Paoloni-Giacobino et al. 1997). The 
human gene is mapped to 21q22.3 and encodes for a protein of 492 amino acids. 
Murine TMPRSS2 is also designated as epitheliasin and is encoded on chromosome 
16. The modular structure of TMPRSS2 is illustrated in Fig. 8.1.

TMPRSS2 is widely expressed in epithelial cells of the respiratory, gastrointes-
tinal, and urogenital tract with high expression levels in the prostate and colon 
(Bugge et  al. 2009; Bertram et  al. 2012). Immunohistochemical studies revealed 
that TMPRSS2 is also expressed in cardiac myocytes (Bertram et  al. 2012). 
TMPRSS2 is associated with prostate cancer. The protease has been shown to be 
overexpressed in prostate cancer tissue, and the TMPRSS2 level has been shown to 
be correlated with prostate cancer progression (Lucas et al. 2008, 2014; Chen et al. 
2010). Moreover, fusion of the androgen-regulated TMPRSS2 promoter to E26 
transformation-specific (ETS) transcription factor genes, particularly the ETS-
regulated gene (ERG), resulting in overexpression of ERG is seen in nearly 50% of 
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patients and is used as a prognostic marker of prostate carcinogenesis (Tomlins 
et al. 2005; Gasi Tandefelt et al. 2014). The TMPRSS2 gene and the ERG gene are 
located approximately 3 Mb apart in the same relative orientation on chromosome 
21. However, the role of these gene fusions in the development and progression of 
prostate cancer is not understood in detail. The TMPRSS2 gene is furthermore 
flanked by the Mx1 (myxovirus resistance 1) gene, encoding a GTPase that is part 
of the antiviral response induced by type I and type III interferons (Paoloni-
Giacobino et al. 1997; Verhelst et al. 2013).

TMPRSS2 promoted prostate cancer cell invasion and metastasis to distant 
organs in a mouse model of prostate carcinogenesis (Lucas et al. 2014). TMPRSS2 
has been shown to activate PAR-2 and hepatocyte growth factor (HGF)/c-Met sig-
naling pathways and to downregulate E-cadherin expression in prostate cancer cells 
(Wilson et al. 2005; Lucas et al. 2014; Leshem et al. 2011). More recently, TMPRSS2 
has been described to promote prostate cancer tumor growth and metastasis, via 
activation of the TTSP matriptase and degradation of extracellular matrix (ECM) 
laminin β1 and nidogen-1 in vitro and in a xenograft mouse model of prostate can-
cer (Ko et al. 2015). TMPRSS2 protein level was shown to correlate with increased 
levels of active matriptase as well as increased metastases (Ko et al. 2015).

The physiological role of TMPRSS2 is unknown so far. TMPRSS2-deficient 
mice lack a discernible phenotype (Kim et al. 2006). The protease has been shown 
to cleave the epithelial sodium channel (ENaC) in Xenopus oocytes in vitro and sug-
gested to be involved in regulation of the airway surface liquid (ASL) volume by 
proteolytic cleavage of ENaC (Donaldson et  al. 2002). Interestingly,  by using 
TMPRSS2-deficient mice, three recent studies identified TMPRSS2 as a host cell 
factor essential for activation and spread of H1N1 and H7N9 influenza A viruses in 
mice (see below). Intriguingly, knockout of TMPRSS2 expression protected mice 
from an otherwise lethal infection due to inhibition of activation of progeny virus 
and, thus, spread along the respiratory tract (Hatesuer et  al. 2013; Tarnow et  al. 
2014; Sakai et al. 2014).

TTSPs are believed to be situated at the cell surface, and shedding of TMPRSS2 
has been described from prostate and prostate cancer cells and from human nasal 
epithelial cells exposed to ozone in vitro (Afar et al. 2001; Kesic et al. 2012). Studies 
on the subcellular localization of influenza A virus HA cleavage by TMPRSS2 upon 
co-expression in MDCK cells, however, indicate that TMPRSS2 cleaves HA in the 
trans-Golgi network (TGN) or during its transport to the plasma membrane, where 
virus assembly and budding take place (Böttcher et al. 2009; Böttcher-Friebertshäuser 
et al. 2010, 2013) (see Sect. 8.5). In contrast, TMPRSS2 present on the cell surface 
and soluble TMPRSS2 shed from MDCK cells showed poor if any enzymatic activ-
ity and were not able to cleave HA (Böttcher-Friebertshäuser et al. 2010). The rea-
son for the lack of TMPRSS2 activity on the cell surface and in cell supernatants is 
unknown and might be related to the expression of protease inhibitors or missing 
cofactors. However, intracellular activation of HA by TMPRSS2 revealed that 
TTSPs may not only act as proteolytic enzymes on the cell surface but can process 
their substrates also (or already) in intracellular compartments.
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8.2.2.3	 �Dysregulation of TMPRSS3, TMPRSS5/Spinesin,  
and Hepsin Is Associated with Deafness

TMPRSS3 was first identified as a novel multi-domain serine protease overexpressed 
in ovarian cancers and therefore originally named tumor-associated differentially 
expressed gene 12 (TADG-12) (Underwood et al. 2000). Independently, mutations 
in the TMPRSS3 gene were associated with congenital and childhood onset autoso-
mal recessive deafness (Scott et al. 2001). This was the first description of a prote-
ase involved in hearing loss. The TMPRSS3 gene maps on chromosome 21 at q22 
and encodes for a protein of 454 amino acids with an overall domain structure simi-
lar to TMPRSS2 and TMPRSS4. TMPRSS3 is synthesized as a zymogen and 
undergoes autoactivation (Guipponi et al. 2002). RT-PCR analysis and RNA in situ 
hybridization experiments revealed expression of TMPRSS3 in the thymus, stom-
ach, testis, ovary, kidney, and eye and in a variety of inner ear tissues, including 
inner hair cells, stria vascularis, spiral ganglion neurons, modiolus, and organ of 
Corti (Scott et al. 2001; Guipponi et al. 2002, 2008).

A number of different mutations in the TMPRSS3 gene have been identified in 
patients with non-syndromic autosomal recessive deafness (DFNB8/10) (Scott et al. 
2001; Ben-Yosef et al. 2001; Masmoudi et al. 2001, Guipponi et al. 2008). Mutations 
occur in all functional domains and have been shown to disrupt the proteolytic 
activity of TMPRSS3, indicating that TMPRSS3 protease activity is critical during 
inner ear development (Guipponi et al. 2002; Wattenhofer et al. 2005). It remains to 
be elucidated how missense mutations in the LDLA and SRCR domains affect the 
proteolytic activity of TMPRSS3. Studies in a mouse model carrying a protein-
truncating nonsense mutation in TMPRSS3, Y260X (X = stop codon), revealed that 
TMPRSS3 is essential for mouse cochlear hair cell survival at the onset of hearing 
(Fasquelle et  al. 2011). Mice expressing TMPRSS3-Y260X are completely deaf 
due to rapid and massive degeneration of hair cells. Moreover, loss of spiral gan-
glion neurons was observed in TMPRSS3-Y260X mice at the age of 4 months 
(Fasquelle et  al. 2011). Proteomic analyses revealed that TMPRSS3 deficiency 
leads to a decrease in the expression of Kcnma1 potassium channels in inner hair 
cells (Molina et al. 2013). However, it remains to be investigated in more detail how 
TMPRSS3 regulates the abundance of functional Kcnma1 channels expression in 
hair cells. A recent study by Li et al. demonstrated that knockdown of TMPRSS3 
inhibited cell viability of spiral ganglion neurons in vitro (Li et al. 2014). Moreover,  
they observed that microRNA miR-204 suppressed spiral ganglion neuron survival 
in vitro by targeting TMPRSS3 (Li et al. 2014). TMPRSS3 mRNA was found to 
have a putative miR-204 binding site within its 3′-UTR that is highly conserved 
among the vertebrates.

In addition to its role in hearing, TMPRSS3 was found to be overexpressed in 
pancreatic and ovarian cancer and to promote proliferation, invasion, and migration 
of ovarian cancer cells via activation of the ERK1/2 pathway in vitro (Wallrapp 
et al. 2000, Zhang et al. 2016).

Hepsin was identified in cDNA clones obtained from human liver and was the 
first serine protease characterized to contain a transmembrane domain 
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(Leytus et al. 1988). Hepsin is abundant in the liver. Other tissues such as kidney, 
pancreas, lung, stomach, prostate, and thyroid express low levels of hepsin mRNA 
(Tsuji et  al. 1991). The human hepsin gene has been localized to chromosome 
19q11-13.2. Hepsin consists of an N-terminal cytoplasmic domain, a transmem-
brane domain, and an extracellular portion composed of a SRCR domain and a 
C-terminal protease domain. The crystal structure of a soluble human hepsin that 
included the SRCR and protease domains has been solved (Somoza et al. 2003).

A number of potential hepsin substrates have been identified in vitro including 
blood clotting factors VII, IX, and XII, prourokinase, promatriptase, proprostasin, 
macrophage-stimulating protein (MSP), and laminin-332 (reviewed in Antalis et al. 
2011), suggesting that hepsin may play a role in blood coagulation and embryonic 
development. The evidence for these functions, however, remains inconclusive 
since hepsin-deficient mice are viable and fertile, and do not exhibit obvious defects 
in growth and blood coagulation (Wu et al. 1998; Brunati et al. 2015). Unexpectedly, 
a study by Guipponi et al. found that hepsin-deficient mice exhibited profound hear-
ing loss (Guipponi et al. 2007). Hepsin knockout mice have abnormal cochlea and 
reduced myelin protein expression in the auditory nerve (Guipponi et  al. 2007). 
Furthermore, low levels of plasma thyroxine, a thyroid secreted hormone important 
for cochlear development, have been found in hepsin-deficient mice (Hanifa et al. 
2010). The molecular mechanisms by which hepsin regulates normal hearing are 
not understood, and so far it is unknown if hearing loss in hepsin-knockout mice is 
a result of thyroid hormone deficiency.

Further studies of knockout mouse models of hepsin demonstrated that the pro-
tease activates pro-hepatocyte growth factor (pro-HGF) in the liver and is respon-
sible for cleavage and urinary secretion of uromodulin (Tamm-Horsfall protein) 
(Hsu et al. 2012; Brunati et al. 2015). It was proposed that HGF/c-Met signaling 
may regulate expression of connexins, gap junction proteins, in hepatocytes in mice. 
Loss of hepsin was found to increase expression of connexins, resulting in an expan-
sion of hepatocyte size and a concomitant narrowing of sinusoids. Interestingly, 
systemic delivery of tumor cells by tail-vein injection showed preferential coloniza-
tion of tumor cells in the liver of hepsin-deficient mice compared to wild-type mice. 
These data suggest that loss of hepsin enhances the colonization of liver by tumor 
cells, probably through increased retention of tumor cells because of narrower sinu-
soids related to enlarged hepatocytes.

Hepsin has been identified as one of the most upregulated genes in prostate can-
cer. Hepsin increases early in prostate cancer initiation, and its high levels are main-
tained throughout progression and metastasis and are indicative of poor outcome 
(Dhanasekaran et al. 2001; Stephan et al. 2004). Overexpression of hepsin has also 
been shown in many other cancers including breast, ovarian, and endometrial can-
cer (Murray et al. 2016).

Although a number of studies demonstrated that hepsin is involved in prostate 
cancer progression, little is known about the basis of its functions. Overexpression 
of hepsin in a mouse model of non-metastasizing prostate cancer caused disorgani-
zation and disruption of basement membrane and promoted primary prostate cancer 
progression and metastasis to the liver, lung, and bone (Klezovitch et  al. 2004). 
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Overexpression of hepsin also promoted ovarian tumor growth in a mouse model, 
and proteolytic activity of hepsin was shown to be necessary for promoting tumor 
progression (Miao et  al. 2008). Hepsin and HGF are present in desmosomes. 
Desmosome dissociation is known to be one of the first steps during HGF-induced 
epithelial-mesenchymal transition, indicating that increased levels of hepsin and its 
substrate HGF may play a role in ovarian cancer progression through their interac-
tion with desmosomes (Miao et al. 2008). At present, the mechanism of this interac-
tion and the functional importance of hepsin localization in the desmosomes warrant 
further investigation.

TMPRSS5/spinesin was cloned from a human spinal cord cDNA library 
(Yamaguchi et al. 2002). The human TMPRSS5 gene is located on chromosome 
11q23 and encodes a simple TTSP of 457 amino acids consisting of a short cyto-
plasmic domain, a transmembrane domain, a stem region containing a SRCR 
domain, and a C-terminal serine protease domain (Yamaguchi et al. 2002). Northern 
blot analyses and immunohistochemical staining revealed that TMPRSS5 is pre-
dominantly expressed in the brain and the spinal cord. Guipponi et al. demonstrated 
that TMPRSS5-specific mRNA is furthermore present in inner ear tissues and the 
testis of rats (Guipponi et al. 2008). A mutation screen in a cohort of ca. 360 spo-
radic deafness cases revealed three mutations in the TMPRSS5 gene (A317L, 
F369L, and Y438X). These TMPRSS5 mutants showed reduced (F369L) or no 
(A317S, Y438X) proteolytic activity in yeast-based protease assays, suggesting that 
impaired TMPRSS5 activity might cause hearing impairment. However, 
TMPRSS5/spinesin has not been characterized in more detail, and it remains to be 
investigated how it affects hearing and which role it may play in the central nervous 
system.

8.2.2.4	 �TMPRSS4: An Emerging Potential Therapeutic Target 
in Cancer

TMPRSS4 (also known as channel-activating protease 2 (CAP2)) was originally 
identified as a gene expressed in most pancreatic tumors but not in the healthy pan-
creas (Wallrapp et al. 2000). Meanwhile, TMPRSS4 has been shown to be highly 
expressed also in many other cancers including thyroid, colon, gastric, and lung 
cancers; association with poor prognosis has been consistently described (reviewed 
in Kim and Lee 2014; Tanabe and List 2017).

The TMPRSS4 gene is located on chromosome 11 at q23.3 and encodes a pro-
tein of ~437 amino acids. The domain structure of TMPRSS4 is similar to TMPRSS2 
and TMPRSS3. TMPRSS4 undergoes autoactivation in vitro (Antalis et al. 2011). 
The catalytic domain of TMPRSS4 can be released as an active form in cell culture 
(Min et al. 2014a). TMPRSS4 mRNA was detected in the bladder, esophagus, stom-
ach, small intestine, colon, kidney, larynx, trachea, bronchi, and lung (Wallrapp 
et al. 2000; Jung et al. 2008; Böttcher-Friebertshäuser unpublished data). In murine 
lung TMPRSS4 is expressed in type II pneumocytes (Kühn et al. 2016).

Overexpression of TMPRSS4 has been shown to promote invasion and metastasis 
of human tumor cells by facilitating epithelial-mesenchymal transition (EMT) (Kim 
et  al. 2010; Jung et  al. 2008; Cheng et  al. 2009). Knockdown of TMPRSS4 

8  Membrane-Anchored Serine Proteases



172

expression in lung and colon cancer cells by using siRNA reduced cell proliferation 
and invasion (Jung et al. 2008). A number of mechanisms, by which TMPRSS4 may 
modulate tumor cell proliferation and invasion, have been described in vitro. 
Overexpression of TMPRSS4  in colon cancer cells promoted EMT through the 
upregulation of integrin α5, thereby enhancing motility and invasiveness (Kim et al. 
2010). In addition, TMPRSS4 was shown to induce invasion through upregulation of 
both expression and activity of urokinase plasminogen activator (uPA) via activation 
of the transcription factors AP-1, Sp1, and Sp3 and via processing of pro-uPA precur-
sor into its active form in vitro (Min et al. 2014a, b). The serine protease uPA con-
verts inactive plasminogen to active plasmin, which in turn can degrade most 
extracellular proteins and activate MMPs. Moreover, uPA and its receptor, uPAR 
(CD87), interact with integrin coreceptors to activate intracellular signaling path-
ways for cell migration, invasion, proliferation, and survival (reviewed in Hildenbrand 
et al. 2008). It has been shown that TMPRSS4 can interact with uPAR (Min et al. 
2014b). Furthermore, TMPRSS4 has been shown to induce downregulation of 
E-cadherin, a well-known hallmark of EMT, via activation of transcriptional repres-
sors Sip1/Zeb2 (Jung et al. 2008). Increased TMPRSS4 expression in cancer could 
be partially due to epigenetic dysregulation. The TMPRSS4 promoter has been 
shown to be hypomethylated in hepatocellular carcinoma and non-small cell lung 
cancer (Stefanska et al. 2011; Villalba et al. 2016). Hypomethylation of TMPRSS4 
promoter was associated with worse prognosis in non-small cell lung cancer patients. 
Taken together, TMPRSS4 may be an important upstream regulator of the EMT and 
the invasiveness of cancer cells and a useful biomarker for the prognosis of certain 
types of cancers and could be employed for diagnostics and therapeutics.

Mice deficient in TMPRSS4 are viable, fertile, and do not show any obvious 
abnormalities (Keppner et al. 2015; Kühn et al. 2016). However, so far no cancer 
studies have been performed in TMPRSS4-deficient mice.  Like TMPRSS2, 
TMPRSS4 has been shown to be able to activate the epithelial sodium channel 
(ENaC) when co-expressed in Xenopus oocytes (Vuagniaux et al. 2002). TMPRSS4 
cleaves the gamma subunit of ENaC at a site distinct from the site that is processed 
by the GPI-anchored protease prostasin (cf. prostasin chapter). However, a recent 
study demonstrated that regulation of the ENaC-mediated sodium balance is not 
affected in TMPRSS4-deficient mice (Keppner et  al. 2015), indicating that 
TMPRSS4 is not crucial for processing of ENaC in vivo.

8.2.2.5	 �TMPRSS13/MSPL: Preferential Recognition of Paired Basic 
Residues at the Cleavage Site

TMPRSS13 (transmembrane protease, serine 13, also known as mosaic serine prote-
ase large-form (MSPL)) was isolated in 2001 from a human lung cDNA library. The 
human TMPRSS13 is located on chromosome 11q23.2. Alternatively spliced forms 
from this gene have been identified, one encoding a type II transmembrane protease 
(MSPL) and a second form encoding a protease without a transmembrane domain 
(mosaic serine protease short-form (MSPS) that comprises 581 and 537 amino acids, 
respectively (Kim et al. 2001). RT-PCR analysis revealed that TMPRSS13-specific 
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mRNA is present in various human tissues including lung, liver, kidney, spleen, pan-
creas, small intestine, prostate, and placenta (Kido et al. 2008).

The biological functions of TMPRSS13 are not well understood. TMPRSS13-
deficient mice display abnormal skin development, leading to a compromised bar-
rier function (Madsen et  al. 2014). Interestingly, tight junction formation and 
profilaggrin processing were not affected in TMPRSS13-deficient mice. Thus, 
TMPRSS13 supports stratum corneum formation and epidermal barrier formation 
by a mechanism that is independent of both profilaggrin processing and tight junc-
tion formation (see below).

TMPRSS13 shows unique substrate specificity among TTSPs, with preferential 
recognition of paired basic residues (R/K at P1 and P2 positions) (Kido et al. 2008). 
TMPRSS13 also efficiently cleaved peptide substrates with K at position P4 that 
were not cleaved by furin and has been shown to activate the HA of highly patho-
genic avian influenza viruses of subtype H5N2 possessing this motif at the cleavage 
site (Okumura et al. 2010). TMPRSS13-specific mRNA was detected in the blood 
vessels, lungs, trachea, colon, small intestine, and kidney of chickens.

8.2.3	 �Matriptase Family

The matriptase family has four members: matriptase, matriptase-2, matriptase-3, 
and polyserase-1. The matriptases have a SEA domain, two CUB domains, and 
three or four LDLA domains in their stem region. Polyserase-1 is unique among 
serine proteases, having one enzymatically inactive and two active serine protease 
domains (Fig. 8.1).

8.2.3.1	 �Matriptase: Crucial Roles in Epidermal Differentiation 
and Tight Junction Formation

Matriptase (also known as membrane-type serine protease 1 (MT-SP1), epithin, sup-
pressor of tumorigenicity 14 (ST14), channel-activating protease 3 (CAP3)) was orig-
inally identified in 1993 as a new gelatinolytic activity in conditioned medium from 
cultured breast cancer cells (Shi et al. 1993). Matriptase is encoded by the ST14 gene 
located on human chromosome 11q24–25 and encodes a polypeptide of 855 amino 
acids with a molecular weight of 95 kDa (Lin et al. 1999). Orthologs of matriptase are 
present in all vertebrate genomes examined to date (review Miller and List 2013).

Matriptase shows the most ubiquitous expression pattern of TTSPs being 
expressed in epithelial cells of most embryonic and adult tissues (Miller and List 
2013). Matriptase has been shown to be required for postnatal survival in mice and 
has essential physiological functions in terminal differentiation of the oral and 
intestinal epithelium and the epidermis (List et al. 2002, 2003; Buzza et al. 2010). 
Mice deficient in matriptase die within 48 h after birth due to a severe dehydration 
resulting from an impaired epidermal barrier function. Matriptase is also critical for 
hair follicle growth and thymic development (List et al. 2002, 2003). Interestingly, 
it was observed that matriptase-deficient mice and mice deficient in expression of 
the GPI-anchored serine protease prostasin display identical epidermal phenotypes 
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and that prostasin zymogen activation by matriptase is a key function in epidermal 
development (List et al. 2002, 2003; Netzel-Arnett et al. 2006; Leyvraz et al. 2005; 
also see prostasin chapter). These observations led to the hypothesis that matriptase 
may be part of a matriptase-prostasin proteolytic cascade in the epidermis (Netzel-
Arnett et  al. 2006). Moreover, this cascade has been shown to regulate different 
steps in terminal epidermal differentiation: tight junction formation, profilaggrin 
processing, epidermal lipid synthesis, and induction of desquamation through pro-
moting expression or activation of kallikrein-related peptidases (KLKs) (for review 
see Szabo and Bugge 2011). It remains to be analyzed in more detail which target 
substrates of the matriptase-prostasin proteolytic cascade are involved in the differ-
ent steps of epidermal differentiation. A number of studies during the last years, 
however, revealed that the matriptase-prostasin cascade is much more complex. 
While matriptase activates prostasin zymogen in the epidermis, prostasin is crucial 
for matriptase zymogen activation in the intestine and the placenta (Buzza et  al. 
2013; Szabo et al. 2016; cf. prostasin chapter).

Activity of matriptase during development is controlled by the transmembrane inhib-
itors hepatocyte growth factor activator inhibitor 1 (HAI-1) and HAI-2. Loss of HAI-1 
or HAI-2 in mice results in embryonic lethality (Szabo et al. 2009; Tanaka et al. 2005). 
HAI-1 is essential for placental differentiation and overall embryonic and postnatal sur-
vival in mice (Nagaike et al. 2008; Szabo et al. 2007; Tanaka et al. 2005). Loss of HAI-2 
is associated with defects in neural tube closure in mice (Szabo et  al. 2009, 2012). 
Remarkably, all developmental defects in HAI-1- or HAI-2-deficient mice are rescued 
in whole or in part by reducing or eliminating the expression of matriptase (Szabo et al. 
2009, 2012). These observations indicate that matriptase is not essential for placental 
development in mice but that its activity in the placenta needs to be regulated.

Activation of the single-chain matriptase zymogen is very complex requiring two 
sequential proteolytic processing events and the transient interaction with its cog-
nate inhibitors HAI-1 and HAI-2 (Oberst et al. 2003, 2005; Nonboe et al. 2017). 
The first cleavage occurs after G149 in the SEA domain, releasing the enzyme from 
its transmembrane anchor. However, matriptase remains membrane-bound due to 
interactions with the cleaved domain and/or with HAI-1 and HAI-2. The second 
cleavage, which appears to be autocatalytic, occurs after R614 within the highly 
conserved R↓VVGG activation motif, converting the single-chain form into the 
active two-chain form. Co-expression of HAI-1 and HAI-2 has been shown to be 
necessary for matriptase expression, stability, and intracellular trafficking in vitro 
(Oberst et al. 2005; Larsen et al. 2013; Nonboe et al. 2017). Matriptase can be shed 
from the cell surface. Shed matriptase was identified originally in complex with an 
inhibitor HAI-I in human milk, and additional shed forms have been reported in 
conditioned media of cultured epithelial cell lines  (reviewed in List et al. 2006a).

Apart from its physiological roles, matriptase has been extensively studied in the 
context of tumor progression. Expression of matriptase is upregulated in a variety of 
epithelial cancers including breast, prostate, ovarian, cervical, gastric, colon, renal 
cell, esophageal, and oral squamous cell carcinoma (reviewed in Tanabe and List 
2017). List et al. demonstrated that matriptase causes strong proliferation of kerati-
nocytes and formation of squamous cell carcinomas when only modestly 
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overexpressed in the epidermis of transgenic mice (List et al. 2006b). Matriptase 
may promote tumor growth, invasion, and metastasis by converting pro-HGF and 
pro-uPA into its active forms, by degrading ECM components, or by activating 
PAR-2. Activation of matriptase by androgen-induced TMPRSS2 has been shown 
to promote prostate cancer tumor growth and metastasis in vitro and in a xenograft 
mouse model of prostate cancer (Ko et al. 2015).

Matriptase has furthermore been linked to other pathological processes. Impaired 
matriptase proteolytic activity due to mutations in the ST14 gene was linked to a 
rare form of skin disease named autosomal recessive ichthyosis syndrome with 
hypotrichosis (ARIH) (condition of sparse hair) (List et al. 2007; reviewed in Antalis 
et al. 2011). Hypomorphic mice with 100-fold reduced expression levels of matrip-
tase mRNA have been shown to phenocopy the key features of ARIH (List et al. 
2007). Moreover, expression of matriptase is elevated in osteoarthritis, and the pro-
tease was identified as initiator of cartilage matrix degradation in osteoarthritis 
(Milner et al. 2010). In contrast, matriptase expression is significantly downregu-
lated in intestinal tissues of patients with Crohn disease and ulcerative colitis 
(Netzel-Arnett et al. 2012).

8.2.3.2	 �TMPRSS6/Matriptase-2: Maintenance  
of Systemic Iron Homeostasis

TMPRSS6/matriptase-2 is composed of a transmembrane domain, followed by a 
SEA domain, two CUB domains, three LDLR, and a C-terminal trypsin-like serine 
protease domain (Wang et al. 2014). Matriptase-2 shares high structural and enzy-
matic similarities with matriptase, which contains four LDLR repeats instead of 
three. The matriptase-2 zymogen (90  kDa) undergoes autocatalytic cleavage at 
R567 within the R↓IVGG activation motif and remains membrane-anchored 
through a disulfide bond linking the pro- and catalytic domains (Stirnberg et  al. 
2010). Soluble forms of matriptase-2 were detected in the conditioned medium of 
transfected cells. Interestingly, shedding of matriptase-2 has been found to be due to 
cleavage at R404 and/or R437 within the second CUB domain and seems to be 
required for converting matriptase-2 into the active form via cleavage at R567. 
Activation of matriptase-2 was prevented in cells expressing matriptase-2 mutant 
R404E/R437E, which cannot be shed (Stirnberg et al. 2010).

TMPRSS6/matriptase-2 is expressed predominantly in the liver. TMPRSS6/
matriptase-2-specific mRNA has been also detected to a lower extent in the kidney, 
spleen, lung, brain, mammary gland, testis, and uterus (reviewed in Ramsay et al. 
2009; Wang et al. 2014).

TMPRSS6/matriptase-2 plays a key role in the maintenance of systemic iron 
homeostasis. Systemic iron homeostasis is maintained by regulating the iron absorp-
tion in the duodenum, by recycling of iron from senescent erythrocytes in macro-
phages, and by mobilizing stored iron in the liver. Increases in iron levels stimulate 
the production of the hepatic hormone hepcidin, which blocks iron export into the 
circulation by binding to and targeting the iron exporter ferroportin on the plasma 
membrane of duodenal enterocytes, macrophages, and hepatocytes for degradation. 
Hepcidin production is suppressed in the case of iron deficiency (reviewed in Ganz 
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and Nemeth 2012 and Wang et al. 2014). Therefore, hepcidin is a key regulator of 
intestinal iron absorption, plasma iron concentrations, and tissue iron distribution. 
Lack of hepcidin causes juvenile hemochromatosis, a particularly severe form of 
iron overload disorder. In contrast, inappropriately high levels of hepcidin cause 
chronic inhibition of iron absorption and consequent anemia (Ganz and Nemeth 
2012; Wang et al. 2014).

Mutations in the TMPRSS6 gene were found to cause increased hepcidin expres-
sion, which leads to iron-refractory iron-deficiency anemia (IRIDA) (Finberg et al. 
2008). Similar phenotypes were also observed in mouse models deficient in 
TMPRSS6/matriptase-2 expression or with expression of a truncated protease form 
that lacks the catalytic domain (Du et al. 2008). Thus, results in mice and humans 
indicated that TMPRSS6/matriptase-2 is required to sense iron deficiency in mam-
mals. Silvestri et al. demonstrated that TMPRSS6/matriptase-2 negatively regulates 
expression of hepcidin by cleaving the GPI-anchored protein hemojuvelin from the 
plasma membrane (Silvestri et al. 2008). Hemojuvelin is a coreceptor in the bone 
morphogenetic protein (BMP)/SMAD signaling pathway that upregulates hepcidin 
in response to increased iron (Babitt et al. 2006; Finberg et al. 2010). Cleavage of 
hemojuvelin by TMPRSS6/matriptase-2 downregulates BMP/SMAD signaling and 
inhibits hepcidin expression.

Studies have shown that TMPRSS6/matriptase-2 expression can be modulated 
by iron status. The underlying mechanism, however, is not fully understood. 
Beliveau et  al. found that TMPRSS6/matriptase-2 is constitutively internalized 
from the plasma membrane in cell culture due to motifs within its cytoplasmic tail 
(Béliveau et al. 2011). Internalized TMPRSS6/matriptase-2 was detected in LAMP-
2-labeled vesicles, suggesting that the protease transits to lysosomes, where it is 
degraded. However, it is still not clear whether this mechanism of protein degrada-
tion regulates TMPRSS6/matriptase-2 expression depending on the iron status.

8.2.3.3	 �Matriptase-3
Matriptase-3 was identified by bioinformatic analysis in 2005 (Szabo et al. 2005). 
The TMPRSS7 gene encoding matriptase-3 is located on human chromosome 
3q13.2 and encodes a N-glycosylated TTSP of ca. 90 kDa expressed on the cell 
surface in vitro. Orthologs of the matriptase-3 gene are present in all vertebrates 
analyzed to date, including chimpanzee, dog, rodents, chicken, and fish (Szabo et al. 
2005). In human tissues, matriptase-3 mRNA has been detected in the testis, ovary, 
brain, salivary gland, lung, and trachea (Bugge et  al. 2009). The generation of 
matriptase-3-deficient mice has not been reported so far, and the physiological sub-
strates and function of matriptase-3 are unknown.

8.2.3.4	 �Polyserase-1
Polyserase-1 (polyserine protease 1, also named TMPRSS9) is a unique TTSP with 
three tandem serine protease domains, of which two display catalytic activity (Cal 
et al. 2003). Polyserase-1 was originally cloned from human liver cDNA. The pro-
tease is widely expressed in mouse and human tissues. In addition, a shorter splice 
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variant, termed serase-1B, which contains only the first of the three serine protease 
domains of polyserase-1, has been described in mice and humans, with its highest 
expression detected in liver, small intestine, pancreas, testes, and peripheral blood 
CD14+ and CD8+ cells (Okumura et al. 2006). The putative functional advantages 
derived from the complex structural organization of polyserase-1 and its functional 
significance remain unknown in both normal and pathological conditions.

8.2.4	 �Corin Family

8.2.4.1	 �Corin: The Pro-Atrial Natriuretic Peptide (pro-ANP)  
Activating Enzyme

Corin is the only member of the corin family and has a complex stem region 
(Fig. 8.1). At the turn of the millennium, corin was identified as a serine protease in 
the heart and as the physiological activator of atrial natriuretic peptide (ANP), also 
called ANF (atrial natriuretic factor) (Yan et al. 1999, 2000). ANP is an important 
hormone that regulates blood pressure and cardiac function by promoting natriure-
sis, diuresis, and vasodilation (Li et al. 2017, review). In cardiomyocytes, ANP is 
synthesized as a precursor protein pro-ANP that is stored in intracellular granules 
and converted to active ANP by corin upon secretion in response to high blood vol-
ume or pressure.

The human corin gene (TMPRSS10) located on chromosome 4p12–13 consists 
of 22 exons and spans ca. 200 kb, making it one of the largest protease genes in the 
human genome. Human corin consists of 1042 amino acids and includes an 
N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region 
that contains two frizzled domains, eight LDLA repeats, a SRCR domain, and a 
C-terminal serine protease domain (Li et al. 2017). Corin is the only serine protease 
containing frizzled-like domains. Corin zymogen is activated by cleavage at a con-
served site between Arg801 and Ile802. In 2015, Chen et al. identified the propro-
tein convertase paired basic amino acid-cleaving enzyme 4 (PACE4), also designated 
as proprotein convertase subtilisin/kexin 6 (PCSK6), as the long-sought physiologi-
cal activator of corin (Chen et  al. 2015). Co-expression of PACE4 and corin 
enhanced corin activation in HEK293 cells. Moreover, knockout of PACE4 expres-
sion in mice led to impaired corin activation, decreased pro-ANP processing, and 
development of salt-sensitive hypertension.

Corin is extensively N-glycosylated (Liao et al. 2007; Gladysheva et al. 2008; 
Wang et al. 2015). Human corin has a predicted molecular mass of 116 kDa; how-
ever, native and recombinant corin appears as a protein of 200 kDa. Human and 
mouse corin have 19 and 16 predicted N-glycosylation sites in its extracellular 
domains, respectively. It has been shown that N-glycosylation at Asn697  in the 
SRCR domain and Asn1022 in the protease domain are required for corin cell sur-
face expression and zymogen activation.

Corin is primarily expressed in cardiomyocytes. Furthermore, corin has been 
detected in the kidney, blood, and urine. The protease is shed from the cell surface 
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of transient corin expressing HEK293 cells and from the surface of cardiomyocytes 
as three distinct soluble fragments of 180, 160, and 100 kDa, respectively, which 
represent activated two-chain forms linked by a disulfide bond containing the 
40 kDa catalytic domain (Jiang et al. 2011). The metalloproteinase ADAM10 was 
shown to cleave corin in its juxtamembrane region to release the 180-kDa fragment, 
corresponding to the nearly entire extracellular region. In contrast, the 160- and 
100-kDa fragments were generated by corin autocleavage at Arg164  in frizzled 
domain 1 and Arg427 in LDLA domain 5, respectively. Further studies revealed that 
the 180-kDa fragment exhibited the biological activity in processing pro-ANP, 
whereas the two other fragments had little activity (Li et al. 2017).

The presence of soluble corin in human blood indicates that shed corin can enter 
the circulation. Remarkably, corin remains active in the presence of human plasma, 
indicating that circulating protease inhibitors do not block corin activity. To date, no 
physiological corin inhibitors have been identified.

The importance of corin in regulating blood pressure has been shown in corin-
deficient mice, which exhibited reduced sodium excretion and salt-sensitive hyperten-
sion due to impaired pro-ANP processing (Chan et al. 2005). Reduced corin expression 
has been detected in animal models of cardiomyopathies. Furthermore, decreased 
levels of circulating corin have been reported in patients with hypertension, pre-
eclampsia, and cardiovascular diseases including acute myocardial infarction, heart 
failure, and stroke. Mutations in the corin gene that result in defects in intracellular 
trafficking of the protease, cell surface expression, and zymogen activation have been 
found in these patients (reviewed in Li et al. 2017). Moreover, a PCSK6 mutation with 
impaired corin activation has been identified in a hypertensive patient (Chen et al. 
2015). Latest studies show that plasma corin concentrations provide a valuable prog-
nostic marker for risk stratification of patients with acute myocardial infarction (AMI) 
and low levels of circulating corin are related with poor clinical outcomes (Zhou et al. 
2016).

In addition to ANP, the mammalian natriuretic peptide family comprises two 
additional members: BNP (B-type or brain natriuretic peptide) and CNP (C-type 
natriuretic peptide). ANP and BNP are primarily expressed in the heart, while CNP 
is of endothelial origin and present in various tissues. pro-CNP is converted to active 
CNP by furin (Wu et al. 2003). It has been shown that both corin and furin cleave 
pro-BNP in vitro (Semenov et  al. 2010). However, pro-BNP processing was not 
abolished in corin-deficient mice, indicating that corin is not essential for pro-BNP 
cleavage in vivo (Chen et al. 2015).

Corin expression has also been detected in noncardiac tissues including kid-
ney and in human urine (Fang et  al. 2013). In rat models of kidney disease, 
reduced renal corin expression was associated with sodium retention (Polzin 
et  al. 2010). Latest studies show reduced urinary and renal corin levels in 
patients with chronic kidney disease (Fang et al. 2013). Further studies are nec-
essary to fully understand the role of corin in regulating renal function and 
sodium homeostasis.

Curiously, corin-deficient mice appear to have a lighter coat color (dirty blond), 
and this phenotype depends on the agouti gene (Enshell-Seijffers et al. 2008).

E. Böttcher-Friebertshäuser



179

In summary, corin is a key enzyme in the natriuretic peptide system, and corin 
defects may contribute to major diseases such as hypertension, heart failure, pre-
eclampsia, and kidney disease.

8.3	 �Type I Transmembrane Serine Proteases

8.3.1	 �Tryptase Gamma 1

Tryptase gamma 1 (also known as transmembrane tryptase (TMT) and protease 
serine member S31 (PRSS31)) was identified in 1999 as a tryptase present in human 
and mouse mast cells that differs from all other known tryptases, which are soluble 
proteases, by containing a C-terminal transmembrane domain (type I transmem-
brane serine protease) (Wong et  al. 1999). The physiological role(s) of tryptase 
gamma 1 are unknown. PRSS31-deficient mice exhibit no obvious developmental 
abnormalities but show markedly reduced experimental chronic obstructive pulmo-
nary disease (COPD) and colitis compared to wild-type littermates, indicating a role 
of tryptase gamma 1 in mast cell-dependent inflammatory diseases (Hansbro et al. 
2014).

8.4	 �GPI-Anchored Serine Proteases

8.4.1	 �Prostasin: Proteolytic and Non-Proteolytic Functions 
in Epithelial Development and Tissue Homeostasis

Prostasin was purified and characterized as an active soluble protease from human 
seminal fluid in 1994 (Yu et al. 1994). The protease is expressed in a variety of epi-
thelial tissues with high expression in the prostate, bronchus, lung, and kidney in 
mouse and human. Prostasin is also known as channel-activating protease (CAP)-1 
and was the first membrane serine protease found to activate the epithelial sodium 
channel (ENaC) (Vallet et al. 1997).

The PRSS8 gene encoding prostasin is conserved in all vertebrate species exam-
ined. In humans, the PRSS8 gene is located on chromosome 16p11.2 and encodes 
a protein of 343 amino acids. Prostasin is GPI-anchored in the cell surface and 
associates with lipid rafts (Chen et al. 2001b; Verghese et al. 2006). In polarized 
cells, prostasin is present on the apical membrane. Using substrate libraries, pros-
tasin was shown to have a preference for polybasic substrates with R/K in P4, 
H/K/R in P3, basic or large hydrophobic amino acids in P2, and R/K in P1 (Shipway 
et  al. 2004). No activity was seen with substrates containing isoleucine in P1′, 
providing an explanation for prostasin being not capable of undergoing autoactiva-
tion (Shipway et al. 2004). Prostasin zymogen conversion in the epidermis requires 
matriptase (Netzel-Arnett et al. 2006; cf. matriptase chapter). The crystal structure 
of the catalytic domain of prostasin has been solved (Rickert et al. 2008). Prostasin 
has been shown to be an essential regulator of the ENaC and thereby regulates the 
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homeostasis of extracellular fluid volume, blood pressure, and intestinal sodium 
and water absorption (Frateschi et al. 2012; Planès et al. 2010). Prostasin cleaves 
the ENaC gamma subunit at K186 within the cleavage motif RKRK↓ distal to a 
furin cleavage site at R144 (RKRR↓) (Bruns et  al. 2007). Dual cleavage of the 
gamma subunit releases a 43-amino acid inhibitory peptide and causes full activa-
tion of the channel, resulting in an increased cellular uptake of Na+. Studies show 
that prostasin is highly expressed in cystic fibrosis airways and is a strong basal 
activator of ENaC in cystic fibrosis airway epithelial cells (Donaldson et al. 2002; 
Tong et al. 2004). Increased levels of soluble prostasin are also found in urine of 
hypertensive patients (Narikiyo et al. 2002). Prostasin may be released from the 
cell surface by an endogenous GPI-specific phospholipase D1 or via cleavage in its 
C-terminal hydrophobic domain (Yu et  al. 1994; Verghese et  al. 2006). Soluble 
prostasin purified from human seminal fluid terminates at R323 (Yu et al. 1994). 
On the other hand, prostasin expression is reduced in a number of cancers includ-
ing prostate, breast, and colorectal cancers, and prostasin has been shown to inhibit 
prostate and breast cancer cell invasion in vitro (Chen et al. 2001a; Chen and Chai 
2002; Bao et al. 2016).

Prostasin-deficient mice display impaired epidermal barrier function, abnormal 
hair follicle maturation, impaired profilaggrin processing, defects in tight junction 
formation, and fatal dehydration (Leyvraz et al. 2005; Netzel-Arnett et al. 2006; 
Szabo et al. 2016). Moreover, constitutive knockout of prostasin leads to embryonic 
lethality due to placental insufficiency (Hummler et al. 2013). The identical pheno-
types of matriptase- and prostasin-deficient mice suggested that both proteases are 
components of one proteolytic cascade (reviewed in Netzel-Arnett et al. 2006; cf. 
matriptase chapter). This hypothesis, however, proved incompatible with studies 
demonstrating that prostasin acts upstream of matriptase in intestinal epithelial cells 
and in the placenta through matriptase zymogen activation (Buzza et  al. 2013; 
Szabo et al. 2016). Thus,  the prostasin-matriptase cascade turned out to be more 
complex than previously thought.

Paradoxically, a number of studies revealed that prostasin requires neither zymo-
gen conversion nor catalytic activity to execute its essential functions in the epider-
mal development (Peters et  al. 2014; Friis et  al. 2016). Already in 2006/2007, 
studies by Andreasen et al. and Bruns et al. reported that catalytically inactive pros-
tasin mutant S238A was able to activate ENaC in Xenopus oocytes in vitro, indicat-
ing that the catalytic activity of prostasin appears to be dispensable for cleavage of 
the ENaC gamma subunit (Andreasen et al. 2006; Bruns et al. 2007). But cell sur-
face expression of prostasin via the GPI anchor was essential for ENaC activation. 
More recent studies in mouse models expressing catalytically inactive prostasin 
mutant S238A or zymogen-locked mutant R44Q revealed that prostasin supports 
both epidermal development and long-term survival in a non-catalytic manner 
(Peters et al. 2014; Friis et al. 2016). In contrast, prostasin proteolytic activity was 
found to be crucial for matriptase zymogen activation in the placenta (Szabo et al. 
2016). In addition, mice expressing catalytically inactive or zymogen-locked pros-
tasin displayed impaired hair follicle development and delayed skin wound healing, 
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indicating that some of the physiological functions of prostasin require its proteo-
lytic activity. The V170D (low enzymatic activity) and the G54-P57 deletion muta-
tions of prostasin have been identified in mouse frizzy (fr) and rat hairless (frCR) 
animals, respectively, and have been proposed to be responsible for their skin phe-
notypes (Spacek et al. 2010; Szabo et al. 2012).

Taken together, prostasin is unique among trypsin-like proteases in that it has 
essential functions as an enzymatically active protease as well as an enzymatically 
inactive zymogen. The specific mechanism(s) by which catalytically inactive pros-
tasin supports epidermal development remain to be established. Matriptase and 
prostasin form a reciprocal zymogen activation complex in vitro that results in the 
formation of both active matriptase and active prostasin (Friis et al. 2013).

8.4.2	 �Testisin: Roles in Sperm Maturation and Motility

Testisin (also referred to as PRSS21, testicular protease 5 (TESP5), or eosinophil 
serine protease 1 (ESP-1)) is aberrantly expressed in male germ cells and sperm and 
is also expressed in microvascular endothelial cells and in eosinophils (Hooper et al. 
1999; Inoue et al. 1998; Aimes et al. 2003). The protease was originally cloned from 
human eosinophils and from HeLa cells (Inoue et al. 1998; Hooper et al. 1998). 
Testisin expression is lost in testicular germ cell tumors (Hooper et al. 1999) and is 
found overexpressed in ovarian tumors (Shigemasa et al. 2000). The testisin gene, 
PRSS21, is located on human chromosome 16p13.3. Several isoforms of human 
testisin have been identified that are generated by alternative pre-mRNA splicing 
(Hooper et al. 2000; Inoue et al. 1998).

Testisin is synthesized as a 43-kDa precursor in the testis, and the zymogen is 
converted into the 42- and 41-kDa active enzymes during sperm transport in the epi-
didymis (Honda et al. 2002). Testisin is anchored to the membrane via a GPI moiety 
at its carboxy terminus and is included into lipid rafts on the sperm membrane 
(Honda et al. 2002). Unlike other membrane-anchored serine proteases, testisin has 
not been found to be naturally shed from the plasma membrane, but the protease can 
be release from cells in vitro using exogenous bacterial phosphatidylinositol-specific 
phospholipase C (Honda et al. 2002).

Mammalian fertilization requires sperm to penetrate the cumulus matrix sur-
rounding the oocyte to reach the zona pellucida (ZP), binding and invasion of the 
ZP, and finally fusion of the sperm and oocyte plasma membranes. The serine 
protease acrosin has been long believed to participate in limited proteolysis of ZP, 
thus enabling sperm to penetrate the egg coat. However, acrosin-deficient mice 
were fully fertile, although they displayed delayed sperm penetration of the ZP at 
the early stage of fertilization in vitro (Baba et al. 1994), indicating that additional 
serine protease(s) play important roles in the regulation of male fertility. Mice 
deficient in testisin expression are fertile, too, but display deformed spermatozoa 
with an increased tendency toward decapitation and reduced motility (Netzel-
Arnett et al. 2009). Testisin was found to direct murine sperm cell maturation and 
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sperm-fertilizing ability during passage of spermatozoa through the epididymis to 
their site of temporary storage in the cauda (Netzel-Arnett et al. 2009). Combined 
knockout of acrosin and testisin in mice impairs fertility in vivo and causes com-
plete loss of fertilization ability in vitro, which suggests that sperm trypsin-like 
activity is indispensable for in vitro fertilization but not particularly for fertiliza-
tion in vivo in mice. Interestingly, these data suggest that the female reproductive 
tract partially compensates for the loss of the sperm function, presumably due to 
the presence of an acrosin-/testisin-like protease (Kawano et al. 2010; reviewed in 
Szabo and Bugge 2011).

Little is known regarding specific physiological substrates of testisin during epi-
didymal sperm maturation and initiation of sperm motility as well as during testicu-
lar and ovarian tumor formation and progression. Recently, testisin was shown to be 
capable of activating PAR-2 in vitro (Driesbaugh et al. 2015). PAR-2 activation has 
been associated with the regulation of sperm motility following trypsin activation 
(Miyata et al. 2012). However, activation of PAR-2 by testisin in vivo and a possible 
role in sperm motility remain to be demonstrated.

8.5	 �MASPs in Viral Infections

The majority of viral fusion proteins is synthesized as precursors and requires pro-
cessing by a host cell protease to trigger fusion of the viral lipid envelope and cel-
lular membranes in order to release the virus genome into the host cell. For a large 
number of viruses, cleavage of the fusion protein occurs either at a single arginine 
(R↓) by trypsin-like proteases or at a multibasic motif of the consensus sequence 
R-X-R/K-R↓ by ubiquitous expressed subtilisin-like proteases such as furin and 
proprotein convertase 5/6 (PC5/6) (see Chap. 9).

The first report of proteolytic activation of viral fusion proteins was published in 
1973 in a study using Sendai virus. It was demonstrated that the viral glycoprotein 
F is synthesized as an inactive precursor that is converted into its biological active 
form due to cleavage by a host cell protease and that F cleavage is a prerequisite for 
infectivity and multicycle virus replication (Homma and Ohuchi 1973; Scheid and 
Choppin 1974). In the following years, striking differences in glycoprotein activa-
tion have been observed with Newcastle disease virus and avian influenza viruses, 
which proved to be important determinants of the pathogenicity of these viruses 
(Nagai et al. 1976; Bosch et al. 1981). In 1992, the proprotein convertase furin was 
identified as protease that activates the hemagglutinin of the highly pathogenic 
avian influenza virus (HPAIV) strains at multibasic motifs (Stieneke-Gröber et al. 
1992; reviewed by W. Garten in another chapter of this book) (Fig. 8.3a, b). Furin 
which is expressed in all tissues is responsible for the systemic infection typical for 
these viruses. However, less was known about the identity of the protease(s) that 
support HA cleavage at a single arginine residue.
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Fig. 8.3  Activation of the envelope glycoprotein hemagglutinin HA of influenza A virus and spike 
protein S of CoV by host cell proteases. (a) Schematic illustration of the precursor proteins HA0 and S 
of influenza A virus and coronaviruses (CoVs), respectively, and cleavage sites (red arrows). HA0 is 
cleaved into HA1 and HA2; both subunits remain linked by a disulfide bond. HA0 of highly pathogenic 
avian influenza A viruses is activated at a multibasic cleavage site, while HA0 of low pathogenic avian 
influenza A viruses and mammalian influenza A viruses is cleaved at a single basic residue. CoV S pro-
tein is cleaved at two distinct sites at monobasic motifs or the minimal furin consensus motif RXXR. The 
S1 and S2 domains are not held by disulfide bonds but remain associated non-covalently (Millet and 
Whittaker 2015). FP, fusion peptide. TM, transmembrane domain. Basic amino acids crucial for cleavage 
by relevant proteases are written in bold letters. (b) Compartmentalization of activation of HA and S by 
host cell proteases. The envelope proteins HA and S mediate virus entry into cells through receptor bind-
ing and fusion of the viral envelope with host cell membranes. Fusion delivers the viral genome into the 
host cell and initiates viral replication and generation of progeny virions. Newly synthesized virions are 
finally released via budding at the plasma membrane (influenza A virus) or at the ER-Golgi intermediate 
compartment (ERGIC) and subsequent exocytosis of new virions at the cell surface (CoV). HA and S 
require cleavage by host cell proteases to gain their fusion capacity. In the case of influenza A virus, newly 
synthesized HA is cleaved during its transport to the plasma membrane by furin (multibasic cleavage site) 
or TMPRSS2 (monobasic cleavage site) in the trans-Golgi network (TGN) or at the cell surface by HAT 
during assembly and budding of progeny virus. Thus, virus containing cleaved HA is released from 
infected cells. HA can also be cleaved by HAT on the cell surface prior to entry into a new cell. In con-
trast, TMPRSS2 present on the cell surface does not support HA cleavage. It remains unclear whether 
HAT is enzymatically active within the cell and thus can cleave HA already during its transit to the 
plasma membrane. Most CoVs, including SARS- and human 229E-CoVs, are released with non-cleaved 
S from the infected cells, indicating that S is not activated during its transit through the exocytic pathway. 
Therefore, the S protein of CoV is activated upon entry into the host cell. Entry can take place via fusion 
at or close to the plasma membrane or in early endosomes (“early entry”) and may be pH-independent or 
via late fusion in late endosomes (“late entry”) in a low pH-dependent manner. Early or late fusion seems 
to be dependent on the protease(s) that cleave S at the S2’ site. Cleavage of S by furin and TTSPs is 
believed to support an early entry (e.g., MERS-CoV), whereas activation of S by cathepsins supports late 
entry via fusion in late endosomes (e.g., mouse hepatitis virus (MHV) A59) (Burkard et al. 2014; Millet 
and Whittaker 2015; Park et al. 2016). Newly synthesized S protein of some CoV, including MERS-CoV, 
has been reported to be cleaved by furin or TTSPs in the exocytic pathway, but the role of S cleavage in 
the secretory pathway for virus-cell and cell-cell fusion remains to be investigated in more detail. It also 
remains unknown whether furin and/or TTSPs such as TMPRSS2 are present as enzymatically active 
enzymes in the ERGIC and might cleave S in this compartment
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8.5.1	 �The Search for Virus-Activating Proteases  
in the Airway Epithelium

Human and mammalian influenza A and B viruses and low pathogenic avian influ-
enza A viruses (LPAIV) are activated at monobasic HA cleavage site motifs by 
trypsin in vitro (Klenk et al. 1975; Lazarowitz and Choppin 1975). A number of 
soluble trypsin-like proteases isolated from rat and swine lung, such as tryptase 
Clara, mini-plasmin, or tryptase TC30, as well as a blood clotting factor 
Xa-homologous protease in embryonated chicken eggs have also been found to acti-
vate HA of these viruses as described in a chapter by H. Kido in this book. However, 
the genetic identity is still unknown for many of these enzymes, and it remains 
unclear whether they play a role in in vivo infection. Relevant HA-activating prote-
ases in the human airways were unknown for a long time. Cleavage of HA by solu-
ble proteases such as trypsin in cell culture takes place outside the cells during 
assembly and budding of new virions when HA is present on the plasma membrane 
or after progeny virus is released from the infected cell. Thus, it was believed for a 
long time that HA with a monobasic cleavage site is activated extracellularly and, 
therefore, differs from HA of HPAIV, which is cleaved in the TGN by furin.
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In 2006, a number of proteases that possess trypsin-like activity were cloned 
from primary human tracheobronchial epithelial (HTBE) cells in search for human 
HA-activating proteases (Böttcher et al. 2006). Among a couple of candidates, the 
TTSPs HAT and TMPRSS2 were demonstrated to activate HA with monobasic 
cleavage site in vitro and thus were identified as the first human influenza virus-
activating proteases in the respiratory tract (Böttcher et al. 2006) (Table 8.2).

Subsequently, HAT and TMPRSS2 were shown to activate also other respiratory 
viruses at monobasic cleavage site motifs in  vitro, such as human coronaviruses 
(CoVs) including SARS-CoV and MERS-CoV, the human metapneumovirus, and 
human parainfluenza viruses (Shirogane et al. 2008; Glowacka et al. 2011; Matsuyama 
et al. 2010; Shulla et al. 2011; Shirato et al. 2013; Millet and Whittaker 2015; Abe 
et al. 2013). In addition, further TTSPs were tested for their ability to activate viral 
fusion proteins, and TMPRSS4, DESC1, TMPRSS11A, MSPL/TMPRSS13, and 
matriptase have been found to activate influenza virus HA as well as SARS-CoV and 
MERS-CoV spike protein S in cell cultures (Table 8.2). Other TTSPs, such as hepsin, 
TMPRSS3, matriptase-2, matriptase-3, or corin, did not support proteolytic activation 
of influenza viruses or CoV in cell culture, demonstrating that only certain trypsin-
like proteases present in the airway epithelium support activation and spread of respi-
ratory viruses. TMPRSS2-homologous proteases have been identified in swine, 
chicken, and mouse and were shown to be capable of activating HA at a single argi-
nine, suggesting that homologous proteases are involved in HA cleavage in different 
host species (Bertram et al. 2012; Peitsch et al. 2014; Tarnow et al. 2014).

It has long been known that HAs with monobasic cleavage site differ in their 
sensitivity to host proteases. For instance, HAs of A/WSN/33 (H1N1), A/PR8/34 
(H1N1), A/Asia/1/57 (H2N2), and A/duck/Ukraine/1/63 (H3N8) are activated by 
trypsin, plasmin, kallikrein, and uPA in vitro, whereas HA of A/chicken/Germany/49 
(H10N7) is activated only by trypsin (Lazarowitz et  al. 1973; Scheiblauer et  al. 
1992). More recent studies on cleavage of human influenza A virus HA by kalli-
krein (KLK) 5 and 12 showed that H1 is cleaved by both KLK5 and KLK12 in vitro, 
whereas H2 and H3 are only cleaved by KLK12 and KLK5 , respectively (Hamilton 
and Whittaker 2013). Furthermore, the sensitivity of 16 HA subtypes to cleavage by 
TMPRSS2, HAT, and pancreatic trypsin was demonstrated to vary significantly 
among the different subtypes (Galloway et al. 2013; see also Chap. 1). Interestingly, 
studies in TMPRSS2-deficient mouse models demonstrated that differences in the 
sensitivity of HA to cleavage by host proteases may affect influenza virus spread 
and pathogenesis (Hatesuer et al. 2013; Tarnow et al. 2014; Sakai et al. 2014) (see 
below). The mechanisms underlying protease specificity of HA with monobasic 
cleavage site, however, are still unknown and may be related to the structure and 
exposure of the cleavage site loop or steric hindrance by adjacent carbohydrate moi-
eties (Kawaoka et al. 1984; Sakai et al. 2015).

8.5.2	 �Subcellular Localization and Time Point of Virus Activation 
by TTSPs

The identification of membrane-bound HA-activating proteases raised the question 
where in the host cell and at which step of the viral replication cycle the viral 
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glycoproteins are cleaved by TTSPs. The subcellular localization and enzymatic 
activity of HAT and TMPRSS2 in airway epithelial cells have not been investigated 
in more detail so far but have been studied in MDCK cells that proved to be a suitable 
model system (Böttcher et al. 2009). Interestingly,  it was demonstrated that activa-
tion of influenza virus HA by HAT and TMPRSS2 differs in subcellular localization 
and can take place at different steps of the viral life cycle (Böttcher et  al. 2009; 
Böttcher-Friebertshäuser et al. 2010, 2013; Fig. 8.3b). Incubation of HAT-expressing 
MDCK cells with fluorogenic peptides to measure the protease activity on the cell 
surface revealed that HAT is present as an enzymatically active protease on the cell 
surface. In addition, it was shown that HAT is capable of cleaving newly synthesized 
HA0, probably during assembly and budding of new virions on the plasma mem-
brane, as well as HA0 of incoming influenza virus at the stage of entry during attach-
ment to a new host cell. In contrast, only poor if any enzymatic activity of TMPRSS2 
was measured on the surface of TMPRSS2-expressing MDCK cells, and the cells 
were not able to support activation of incoming influenza virions containing HA0, 
although TMPRSS2 was present as both zymogen and mature form on the surface of 
MDCK cells (Böttcher-Friebertshäuser et al. 2010). Cleavage of HA was found to 
take place intracellularly during its transport through the secretory pathway to the 
plasma membrane (Fig. 8.3b). Immunofluorescence studies of transient TMPRSS2 
expression in mammalian cells revealed that the protease accumulates in the TGN, 
where it co-localizes with furin, suggesting that HA cleavage by TMPRSS2 and furin 
occurs in the same cellular compartment (Böttcher-Friebertshäuser et  al. 2013). 
These data were in agreement with earlier studies by Zhirnov et al. that showed that 
cleavage of HA in human respiratory or intestinal epithelial cells occurs intracellu-
larly and is performed by cell-associated proteases (Zhirnov et al. 2002; Zhirnov and 
Klenk 2003). These studies provided further evidence that cleavage of influenza 
virus HA can occur at different steps of the viral life cycle: during transport of HA 
along the secretory pathway to the cell surface, on the plasma membrane during 
assembly and budding, and late in infection upon entry into new cells (Boycott et al. 
1994; Zhirnov et al. 2002; Böttcher-Friebertshäuser et al. 2010). However, shedding 
of TTSPs may be enhanced under stress, and soluble forms might contribute to virus 
activation under such conditions. For example, enhanced shedding of TMPRSS2 and 
HAT from human nasal epithelial cells and hence enhanced influenza virus replica-
tion have been observed upon exposure to ozone in vitro (Kesic et al. 2012).

Studies on proteolytic activation of the spike protein S of human CoV including 
SARS-CoV and MERS-CoV by HAT and TMPRSS2 revealed also that viruses 
may have different options to be activated by host cell proteases during the viral 
replication cycle (Fig. 8.3b). CoV S proteins possess two distinct cleavage sites, 
S1/S2 and S2’, and can be cleaved by a number of proteases, including furin, 
cathepsin L, and trypsin, and trypsin-like proteases such as the TTSP HAT, 
TMPRSS2, DESC1, and MSPL (reviewed in Millet and Whittaker 2015, and Chap. 
4 this book; see also Fig. 8.3). Cleavage of S by cathepsins occurs in late endo-
somes or lysosomes and is pH dependent, whereas activation by TTSPs may 
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support cathepsin- and low pH-independent CoV entry via fusion in early endo-
somes in vitro (Burkard et al. 2014; Millet and Whittaker 2015; Park et al. 2016). 
Both HAT and TMPRSS2 are believed to cleave S at or close to the cell surface (for 
review see Chap. 4). It remains to be investigated whether TMPRSS2 and/or HAT 
are present (and active) in endosomes. It further remains to be investigated why 
TMPRSS2 may cleave CoV S but not influenza virus HA at the cell surface. For 
some CoV, receptor binding has been shown to be required for proteolytic activa-
tion of S. Treatment of SARS-CoV particles with trypsin prior to binding to its 
receptor angiotensin I-converting enzyme 2 (ACE2) inactivates the virions in vitro, 
whereas SARS-CoV particles bound to its receptor are activated by trypsin for 
membrane fusion (cf. Chap. 4). Moreover, TMPRSS2 has been shown to cleave 
ACE2 and thereby to increase SARS-CoV S uptake into ACE2-expressing cells 
in  vitro (Heurich et  al. 2014). Thus, receptor binding of S or interactions of 
TMPRSS2 and ACE2 might trigger S cleavage by TMPRSS2 at the plasma mem-
brane. In general, CoV are believed to be proteolytically activated upon entry into 
cells, but newly synthesized S may also be activated prior to virus release from the 
infected cell (Fig. 8.3b). The subcellular compartmentalization of S cleavage dur-
ing its transit through the exocytic pathway and/or virus assembly and budding at 
the ER-Golgi intermediate compartment (ERGIC) (reviewed in Ujike and Taguchi 
2015), however, are not understood in detail.

8.5.3	 �Identification of TMPRSS2 as Host Cell Factor Essential 
for Influenza A Virus Activation and Spread in Mice

In three recent independent studies, TMPRSS2 was identified as the solely 
HA-activating protease and as a host cell factor essential for spread and pneumot-
ropism of human H1N1 and H7N9 influenza A viruses in mice (Hatesuer et al. 
2013; Tarnow et al. 2014; Sakai et al. 2014). Intriguingly, knockout of TMPRSS2 
expression prevented virus activation and consequently spread into the lungs and 
thereby protected the animals from influenza pathogenesis, whereas wild-type lit-
termates succumbed to severe infection. These studies also revealed that other 
TTSPs that activate H1N1 virus in vitro, such as HAT/TMPRSS11D, TMPRSS4, 
DESC1, or MSPL, do not support HA activation in mice in  vivo. For HAT/
TMPRSS11D, this can be explained by the fact that the protease is expressed in 
the upper airways, trachea, and bronchi of mice, but is not present in the lungs 
and, thus, cannot support influenza virus pneumotropism (Sales et  al. 2011; 
Tarnow et al. 2014). The same is probably true for DESC1. However, TMPRSS4 
and MSPL/TMPRSS13 are present in lung tissue (Kühn et al. 2016; Kim et al. 
2001), and it remains unclear why both proteases do not support activation of 
H1N1 and H7N9 influenza virus in the airways of TMPRSS2-deficient mice. 
Noteworthy, replication of human H3N2 influenza A virus and influenza B virus 
(IBV) was almost independent of TMPRSS2 expression in mice, indicating that 
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H3 and IBV HA can be activated by additional host proteases in contrast to H1 
and H7 (Tarnow et al. 2014; Sakai et al. 2016). In a recent study, knockout of both 
TMPRSS4 and TMPRSS2 caused reduced body weight loss and mortality upon 
H3N2 influenza A virus infection in mice in comparison with wild-type animals, 
indicating that both proteases contribute to activation of H3N2 virus in mice 
(Kühn et al. 2016). Nonetheless, H3N2 influenza A virus was still proteolytically 
activated in TMPRSS2-TMPRSS4-knockout mice and caused severe disease with 
30% mortality, indicating that another H3-cleaving protease(s) is present in 
murine airways. MSPL/TMPRSS13 might be a potential candidate.

Taken together, these studies demonstrated for the first time that expression 
of the appropriate HA cleaving protease along the respiratory tract is essential 
for influenza virus pneumotropism and pathogenicity in a mammalian host. In 
addition, TMPRSS2 emerged as a potential drug target for influenza treatment. 
It will be very interesting to analyze the role of TMPRSS2 and further TTSPs in 
activation and pathogenicity of other respiratory viruses including SARS-CoV 
and MERS-CoV and human parainfluenza viruses using suitable mouse models. 
Interestingly, a single nucleotide polymorphism in the TMPRSS2 gene that 
results in higher TMPRSS2 expression has been associated with increased sus-
ceptibility to H1N1 and H7N9 influenza virus and higher risk of severe infec-
tion, suggesting that TMPRSS2 may play a crucial role in influenza virus 
activation also in humans (Cheng et  al. 2015). This view is supported by the 
observation that knockdown of TMPRSS2 expression in the human airway epi-
thelial cell line Calu-3 strongly suppressed activation and multicycle replication 
of human H1N1 influenza A viruses (Böttcher-Friebertshäuser et  al. 2011). 
Interestingly, knockdown of TMPRSS2 also strongly suppressed H3N2 virus 
replication in Calu-3 cells, suggesting that the differences in protease specificity 
of influenza virus HA observed in mice might be less pronounced in humans. 
However, further studies are needed to understand the role of TMPRSS2  in 
influenza virus activation in humans.

8.5.4	 �Activation of Viral Fusion Proteins with Di-/Multibasic 
Cleavage Site Motifs by TTSPs

Other TTSPs have been found to activate viral fusion proteins at di- or multibasic 
amino acid motif. MSPL/TMPRSS13 and the hepsin-related protease TMPRSS12 
were able to activate avian H5N2 influenza virus and avian metapneumovirus, 
respectively, at multibasic cleavage site motifs (Okumura et  al. 2010; Yun et  al. 
2016). This may be relevant particularly for unusual di- or multibasic cleavage site 
motifs that are not cleaved by furin. H9N2 viruses in Asia and the Middle East have 
acquired dibasic cleavage site motif R-S-S/R-R that are not activated by furin. A 
study demonstrated that H9 with R-S-S/R-R at the cleavage site can be activated by 
matriptase in addition to TMPRSS2 and HAT in vitro (Baron et al. 2013). Matriptase 
is widely expressed in multiple epithelial tissues and, therefore, may affect H9N2 
virus spread, tissue tropism, and pathogenicity. Nephrotropism of H9N2 virus has 
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been described in chickens, and matriptase has been suggested to contribute to 
H9N2 virus replication in the kidney of chickens (Baron et al. 2013). Some H9N2 
isolates have been reported to cause lethal infections in mice with virus replication 
in the lung and brain (Guo et al. 2000; Li et al. 2012).

�Concluding Remarks and Key Research Questions
Described for the first time two decades ago, a number of MASPs have already 
been established as important regulators in mammalian physiology. However, for 
many MASPs the physiological functions and/or substrates are not fully charac-
terized or still unknown at all. The TTSP TMPRSS2 was identified as influenza 
A virus-activating protease in human airway cells and in mice and as host cell 
factor essential for pneumotropism and pathogenesis of certain influenza A virus 
strains infecting humans in mice. The role of TMPRSS2 in activation of further 
respiratory viruses in vivo remains to be investigated, and its important role in 
influenza virus activation in humans needs to be demonstrated. As mentioned 
above, a number of TTSPs that have been shown to activate HA in vitro and to 
be present in the respiratory tract, including TMPRSS4 and TMPRSS13, were 
not able to compensate for the lack of TMPRSS2 expression in influenza virus 
activation in mice. Thus, if there is some redundancy among MASPs in process-
ing of physiological substrates, and this is very likely, it is not the case for cleav-
age of HA. The underlying reasons are unclear so far. Detailed information on 
the substrate specificity of TMPRSS2 or TMPRSS4 is missing due to the lack of 
suitable systems for expression and purification of these proteases and available 
structural information of the protease domains. To date, the crystal structure of 
the protease domain has been solved for hepsin, DESC1, enteropeptidase, mat-
riptase, and prostasin. Moreover, differences in (1) subcellular compartmental-
ization and activity, (2) expression levels, and/or (3) distribution in different 
airway cell types of TMPRSS2 in comparison with other TTSPs might account 
for the observed differences in activation of influenza A viruses. In particular, the 
compartmentalization of MASP activity should be investigated in more detail in 
future studies. MASPs are predicted to act as active enzymes on the cell surface, 
but studies on activation of influenza A virus HA by TMPRSS2 showed that 
cleavage takes place intracellularly, probably in the TGN. Thus, some MASPs 
may process their substrates already (or even exclusively) in intracellular com-
partments. Expression and enzymatic activity of MASPs in endosomes and lyso-
somes have not been studied so far but may play a role in processing of both 
physiological substrates and viral fusion proteins. Furthermore, the role of solu-
ble MASP activity due to shedding of the catalytic domain is poorly 
understood.

Dysregulated MASP activities are associated with a number of pathophysio-
logical processes, and specific inhibitors may provide promising pharmaceutical 
tools for the treatment of cancer, iron overload, or respiratory diseases. Potent 
inhibitors for some MASPs have already been developed (for review see 
Steinmetzer and Hardes, this book), but no inhibitor of host proteases has been 
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approved for the treatment of virus infections to date. The development of highly 
selective MASP inhibitors is hampered by the lack of available crystal structures 
of the catalytic domain as well as knowledge on the role of the different domains 
of the stem region in substrate specificity, protease conformation, and protein-
protein interactions. It remains to be analyzed whether some TTSPs are upregu-
lated during virus infection and thereby may support enhanced virus activation 
and/or organ tropism. Moreover, it will be interesting to analyze whether dys-
regulation of MASPs contributes to the susceptibility to virus infection.

The protection of TMPRSS2 knockout mice from influenza A virus pathogen-
esis strikingly demonstrated the crucial role of virus activation for viral spread in 
the host. However, we are just beginning to understand in more detail which 
roles MASPs may play in virus activation, spread, and organ tropism on one 
hand and whether the physiological functions of these enzymes can be sup-
pressed or compensated during an acute virus infection in order to block virus 
multiplication by using protease inhibitors on the other hand.
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Characterization of Proprotein 
Convertases and Their Involvement 
in Virus Propagation

Wolfgang Garten

Abstract
Proprotein convertases (PCs), also known as eukaryotic subtilases, are a group of 
serine proteases comprising furin (PACE), PC1 (PC3), PC2, PC4, PACE4, PC5 
(PC6), and PC7 (LPC, PC8) that generate bioactive proteins and peptides, such 
as hormones, receptors, and growth factors by cleaving precursor proteins at 
multibasic motifs. Two other family members, SKI-1/S1P and PCSK9, cleave 
regulator proteins involved in cholesterol and fatty acid homeostasis at nonbasic 
peptide bonds. Furin is ubiquitous in eukaryotic tissues and cells. PACE4, PC5, 
and PC7 are also widespread, whereas the expression of the other PCs is more 
restricted. PCs are synthesized as multi-segmented zymogens which are auto-
catalytically activated. The prodomains have regulatory and inhibitory functions. 
The catalytic domains are the most conserved domains among the PCs. The 
architecture of the catalytic active furin domain is known in different binding 
states. The C-terminal parts of the PCs differ in length and structure and contain 
encoded peptide signatures guiding the PCs to the subcellular destinations on the 
secretory pathways: SKI-1/S1P to the cis-Golgi, furin, PC5B, and PC7 to the 
TGN region but also to the plasma membrane. PACE4, PC5A, and PCSK9 are 
attached at the cell surface. Truncated, soluble furin and SKI-1/S1P, as well as 
PC1 and PC2, are released into the extracellular matrix. Many enveloped viruses 
are activated by furin and furin-like PCs and arenaviruses and a few bunyaviruses 
by SKI-1/S1P. The PCs cleave the viral fusion glycoprotein to trigger fusion of 
viral envelopes with cellular membranes to deliver the viral genome into host 
cells. Cleavage by PCs, occasionally in concert with other endoproteases, enables 
conformational changes in the viral membrane proteins needed for correct oligo-
merization of glycoprotein spikes and their effective incorporation into virions. 
Mutational alterations of PC cleavage sites can reduce the fusion potential of 
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viral surface proteins and thus facilitate the development of secure live attenu-
ated vaccines. Alternatively, agents preventing cleavage of viral surface (glyco)
proteins block fusion capacity and multicyclic virus replications. PC inhibitors 
are suggested as promising antiviral drugs for quite a number of viruses causing 
severe infections.

9.1	 �Introduction

Many biologically active proteins are synthesized as larger inactive precursors (pro-
proteins). Posttranslational processing by limited proteolysis of the precursors is a 
mechanism generating active proteins and peptides that enables cells to regulate 
many vital processes. In general, processing occurs when the proteins are trans-
ferred in the secretory pathway from the endoplasmic reticulum (ER) to other cell 
compartments and to the cell surface. The precursors are frequently cleaved at 
amino acid motifs containing single or multiple arginine or lysine residues. For a 
long time, little was known about the activation proteases. The situation changed 
when the genomes of a wide variety of organisms were decoded. Roughly 600 dif-
ferent proteases have been identified in each genome allowing expression and func-
tional studies. Differing in mammalian species, roughly 200 are serine proteases 
that can be divided into about 20 subgroups based on structure, enzymatic proper-
ties, and physiological functions. The available evidence indicates that several of 
these are involved in processing at basic cleavage sites (Puente et al. 2003).

Proinsulin was the first identified precursor polypeptide that contains two dibasic 
cleavage motifs, arginine-arginine and lysine-arginine (Steiner et  al. 1967). 
Comparison of mature insulin with its precursor suggested that a dibasic-specific 
endoprotease and a B-type-specific carboxypeptidase are responsible for correct 
processing, and this concept was further substantiated by the observation that insu-
lin was obtained when the activating enzymes were surrogated by trypsin and 
carboxypeptidase B in vitro (Kemmler et al. 1971). Subsequently, the number of 
inactive proproteins with presumed and meanwhile ascertained di- and multibasic 
cleavage motifs continuously increased. The list started with pro-opiomelanocortin 
(POMC), proparathyroid hormone, proalbumin, pro-beta-secretase, pro-nerve 
growth factor, and the proproteins and propeptides of ß-lipotropic hormone, 
ß-melanocyte-stimulating hormone (β-MSH), γ-lipotropin (γ-LPH), β-lipotropin 
(β-LPH), and von Willebrand factor and is steadily upgraded (Barr 1991;  
Seidah 2011). A large number of precursor proteins are cleaved at KK↓, RK↓, 
KR↓, or RR↓, which are frequently combined in the consensus sequences  
(K/R)×n(K/R)↓, where a variable number (n = 0,2,4,6) of basic and nonbasic amino 
acids separates the flanking basic amino acids.

The first authentic proprotein converting enzyme identified was the calcium-
dependent subtilisin-like protease kexin encoded by the kex2 gene of Saccharomyces 
cerevisiae that cleaves yeast and mammalian proteins and peptides at dibasic pep-
tide sites (Achstetter and Wolf 1985; Fuller et  al. 1989a; Julius et  al. 1984;  
Thomas et al. 1988). The first mammalian orthologue that possesses the capacity for 
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such a proprotein cleavage was furin (Fuller et al. 1989b; Bresnahan et al. 1990; 
Wise et al. 1990; Hatsuzawa et al. 1990; Misumi et al. 1990b; van de Ven et al. 
1990). Furin cleaves many precursor proteins at the C-terminal end of the motif 
RX(K/R)R↓ (Barr 1991; Nakayama 1997). Later additional closely related subtili-
sin-/kexin-like serine proteases were identified and designated proprotein conver-
tases (PCs) (Seidah 2011). The PC family now contains nine members: furin, PC1/3, 
PC2, PC4, PACE4, PC5/6 (further on PC5), PC7, SKI-1/S1P, and PCSK9 (Table 9.1). 
The first seven PCs cleave substrates C-terminally at arginine of multibasic recogni-
tion motifs. The last two PCs, SKI-1/S1P and PCSK9, recognize nonbasic scissile 
peptide bonds. The subtilisin-/kexin-like isoenzyme (SKI-1), also known as site-1 
protease (S1P), cleaves proproteins at the motif RX(L/I/V)X↓, where X presents 
any amino acid. The neural apoptosis-regulated convertase 1 (NARC-1), also desig-
nated as proprotein convertase subtilisin/kexin type 9 (PCSK9), is autocatalytically 
cleaved at the amino acid motif VFAQ↓SIP and does not cleave other proproteins in 
trans but has substrate binding and signaling functions (Seidah et al. 2014). The 
main cleavage site specificities of the individual PCs are shown in Table 9.1. There 
are several excellent reviews in which the PC field has been described in detail 
(Artenstein and Opal 2011; Nakayama 1997; Seidah 2011; Seidah et  al. 2013; 
Seidah and Prat 2002, 2012; Steiner 1998; Thomas 2002).

Many cell proproteins, viral envelope glycoproteins, and bacterial toxins exhibit 
multibasic cleavage sites (reviewed by Klenk and Garten 1994; Gordon and Leppla 
1994) (Tables 9.2 and 9.3). Multibasic cleavage was shown first with the hemag-
glutinin of fowl plague virus (FPV), a highly pathogenic avian influenza virus 
(HPAIV), and the fusion protein of virulent Newcastle disease virus (NDV) strains 
(Bosch et  al. 1981; Garten et  al. 1981, 1982; Toyoda et al. 1987; Nagai 1995). 
Cleavage of these glycoproteins in practically all cells allows rapid virus spread in 
the infected host and proved to be a major determinant for the high pathogenicity of 
these viruses. The first hint for the nature of the activating host proteases came from 
the observation that activation of FPV was calcium-dependent, a characteristic fea-
ture of PCs (Klenk et al. 1984). The final proof was provided by the identification of 
furin as the enzyme activating the hemagglutinin of HPAIV and the HIV env glyco-
protein (Stieneke-Gröber et al. 1992; Hallenberger et al. 1992).

This chapter gives an overview on furin and the other members of the PC family 
with a focus on those involved in the life cycle of viruses. The structure and function 
of the proteases and their biosynthesis, subcellular trafficking, and localization in 
cells will be shown, as well as their occurrence in specific cell types, tissues, and 
organisms. PCs have a multifunctional role in virus infection. The main function is 
the proteolytic activation of fusion-competent surface proteins of enveloped viruses 
required for the delivery of the viral genome into host cells. Beyond that, PCs are 
responsible for conformation changes of proteins in virus assembly, for receptor rec-
ognition, and for release of pathogenicity factors. PCs together with other proteases 
are involved in complex cleavage patterns of viral surface proteins. The physiologi-
cal roles of PCs, especially in embryonic development, as revealed by knockdown 
systems and specific inhibitory agents will also be discussed. Finally, light will be 
drawn on the use of protease activation mutants for vaccine design and on the use of 
protease inhibitors for antiviral therapy.

9  Proprotein Convertases
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Table 9.2  Selected cellular proteins and bacterial toxins cleaved by proprotein convertases

Precursor proteins
Proprotein 
convertases

Cleavage sites  
P7 P6 P5 P4 P3 P2 P1 ↓ P1′ P2′ References

Growth factors and hormones
 � Mouse ß-nerve 

growth factor
Furin RTHRSKR↓SS Bresnahan et al. (1990)

 � Human 
neurotrophin-3

Furin, 
PC5B

TSRRKR↓YA Seidah et al. (1996)

 � Human insulin-like 
growth factor-I

PACE4 KPAKSAR↓SVa Duguay et al. (1995)
Khatib et al. (2001)

 � Human parathyroid 
hormone

Furin KSVKKR↓SVa Hendy et al. (1995)
Munzer et al. (1997)

Receptors
 � Human insulin 

receptor
PC5A PSRKRR↓SL Robertson et al. (1993)

  Human αv integrin Furin, PC7 PQRRRR↓QL Stawowy et al. (2005)
Plasma proteins
  Human albumin Furin RGVRR↓DAa Oda et al. (1992)

Mori et al. (1999)
 � Human blood factor X Furin, PC5 LERRKR↓SV Himmelspach et al. 

(2000)
 � Human von 

Willebrand factor
Furin, 
PACE4, 
PC7

SHRSKR↓SL van de Ven et al. (1990)

Matrix metalloproteinases
  Human stromelysin-3 Furin ARNRQKR↓FV Pei and Weiss (1995)
  Human MT-MMP1 Furin, 

PACE4
NVRRKR↓YA Sato et al. (1996)

Other cellular proteins
 � Human furin 

prodomainb

Furin, 
PACE4

AKRRTKR↓DV Anderson et al. (1997)

 � Mouse 7B2 
chaperone

Furin QRRKRR↓SV Paquet et al. (1994)

Bacterial exotoxins
 � Anthrax toxin 

protective antigen
Furin NSRKKR↓ST Molloy et al. (1992)

  Diphtheria toxin Furin GNRVRR↓SV Tsuneoka et al. (1993)
  Shiga toxin Furin, 

PACE4
ASRVAR↓MA Garred et al. (1995)

aUnusual cleavage site for furin
bAutocatalysis
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9.2	 �Structure and Biosynthesis of PCs

All PCs are synthesized as multi-segmented pro-precursors which start with an 
N-terminal signal peptide; continue with a prodomain (prosegment, propeptide), a 
catalytic domain, and a P-domain (middle domain); and complete the PC ectodo-
main with variable C-terminal domains (Fig.  9.1). The convertases PC1/3, PC2, 
PC4, PC5A, PACE4, and PCSK9 are expressed as soluble- or membrane-attached 
PCs. Furin, PC5B, PC7, and SKI-1/S1P possess a transmembrane anchor domain 
and a C-terminal cytoplasmic domain. Furin and SKI-1/S1P can be cleaved at a 
distinct peptide bond in the ectodomain, and thus both convertases exist also as 
soluble furin (sfurin) and soluble SKI-1/S1P (sSKI-1).

The prodomain (~ 80 amino acids) of the precursor PCs acts as an intramolecular 
chaperone that guides the folding and activation of the pro-convertases. 
Simultaneously, the prodomain and/or their autocatalytically split-off fragments 
function as PC inhibitors. The catalytic domain is the most conserved domain and 
covers about 340 amino acids with the reactive amino acids aspartic acid (D), histi-
dine (H), and serine (S) in subtilisin-like arrangement and a specific asparagine (N) 
residue forming an oxyanion hole (Fig. 9.2). The other domains of the convertases 
are quite divergent in size, sequence homology, and function. The adjacent P-domain 
confers structural stability and regulates the enzymatic activity. Furin, PC5, and 
PACE4 contain a conserved cysteine-rich domain (CRD) (Nakayama 1997). CRD 
functions as a cell surface anchor and interacts with the tissue inhibitors of metal-
loproteinases (TIMPs) (Nour et  al. 2005). The transmembrane domain of furin, 
PC5B, PC7, and SKI-1/S1P anchors the cytoplasmic domains in the membrane sys-
tem of the constitutive exocytic pathway. The cytoplasmic domains possess several 
intrinsic signals determining the residence for each PCs in specific compartments of 
the constitutive secretory pathway.

9.2.1	 �Structure of the Catalytic Domain

Furin is the prototype and by now the best-characterized member of the PC fam-
ily. Because of difficulties in purifying the enzyme in sufficient amounts and 
quality, initial studies on the catalytic domain of human furin were based on 
homology modeling using the crystal structures of the related serine proteinase 
subtilisin BPN and thermitase of bacterial origin (Siezen et al. 1994). Than and 
colleagues succeeded in establishing the first crystal structure of a truncated 
form of furin which was expressed in sufficient quantities and purified from 
mammalian cells as enzymatically active molecule by Lindberg and coworkers 
(Henrich et al. 2003; Fig. 9.2). The catalytic pocket carried the covalently bound 
inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK), 
which belongs to the first small peptidyl inhibitors designed for furin (Garten 
et al. 1989, 1994). This approach revealed an arrangement of highly negatively 
charged amino acids, i.e., aspartic and glutamic acids, around the catalytic 
pocket which explains the binding of substrates with the preferential basic 
amino acids in distinct positions.
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D   H  N  S
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Signal peptide
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Seidah & Prat, 2012

Fig. 9.1  Domain structure of proprotein convertases. Individual domains are illustrated by col-
ored bars, and the total lengths of the human PCs are indicated by the number of amino acids. D, 
H, N, and S are catalytic active amino acids of the catalytic triad; N contributes to the oxyanion 
hole. Autocatalytic cleavage sites between and within pro- and catalytic domains of all PCs and the 
cleavage sites generating soluble forms of furin and SKI-1/S1P are indicated by arrows. C-terminal 
gray boxes indicate peptide sequences required for cell membrane attachment. The percentage 
numbers indicate amino acid identity of the catalytic domains relative to furin (Seidah and Prat 
2012; Nakayama 1997)
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Fig. 9.2  Crystal structure of the inhibitor Dec-Arg-Val-Lys-Arg-CMK in complex with mouse 
furin. The inhibitor is shown in sticks with carbon atoms in yellow, nitrogen in blue, and oxygen in 
red; the P1–P4 residues and the N-terminal decanoyl group are labeled. The catalytic domain of 
furin is presented with its surface in green and the P-domain in light blue (Henrich et al. 2003)
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As found with all other members of the PC family, the P-domain of furin sta-
bilizes the catalytic domain (Zhou et al. 1998; Than et al. 2005). Detailed knowl-
edge on enzyme-substrate binding properties was achieved by crystallographic 
analysis of furin loaded with inhibitors or bound to an inhibitory antibody (Dahms 
et al. 2014, 2016a, b). Very recently, the structure of an unliganded form of furin 
was determined (Dahms et al. 2016b), where furin exists in a so-called off state, 
which is incompatible with substrate binding. Moreover, two structures of ethyl-
enediaminetetraacetic acid (EDTA)-treated forms of furin have been determined, 
one unliganded and the second in complex with a substrate analogue inhibitor. 
These studies revealed different affinities of three calcium ions, because only two 
distinct calcium ions have been removed by EDTA treatment. The transition from 
the off to the on state is triggered by ligand binding and appears to be the precon-
dition for the preferential recognition of the four-residue sequence motif of furin 
substrates. Moreover, the comparison with EDTA-treated furin structures revealed 
that the ligation by the presence of calcium influences the active-site geometry 
and thus modulates furin activity (Dahms et al. 2016b). Recently, furin was com-
plexed with a small non-substrate-like non-peptidic inhibitor which induces struc-
tural distortions of the active site of the enzyme (Dahms et al. 2017). Based on 
these observations taken together, the high substrate specificity of furin can be 
explained by conformational changes triggered by binding of substrate and cal-
cium. The detailed structural studies also allowed the rational design of novel 
inhibitors of furin (see Chap. 11).

The only x-ray structure of another PC is that of human PCSK9 which provides 
detailed insight into its exceptional biochemical characteristics and biological func-
tion (Cunningham et al. 2007; Piper et al. 2007). The full-length PCSK9 precursor 
(amino acids 31–692) was used for crystallization, and the architecture of a very 
high portion of the polypeptide chain (amino acids 61–683) was determined at 
2.3  Å resolution (Fig.  9.3). The structure model comprises nearly the complete 
prodomain with only two smaller disorders in both terminal peptide regions remain-
ing unsolved. There is a strong interaction between the prodomain and the catalytic 
domain which explains the inaccessibility of any extern substrate to the catalytic 
cleft of PCSK9. The C-terminal domain (termed V domain) of this enzyme has a 
unique structure that allows binding to the low-density lipoprotein receptor (LDLR), 
which is a target of PCSK9.

Three-dimensional structures of other human PCs are currently not available, but 
their catalytic domains have been modeled based on the crystal structure of furin. 
The catalytic domains of PC4, PACE4, PC5/6, and furin resemble each other, 
whereas those of PC1/3, PC2, and PC7 are less similar (Henrich et al. 2005).

9.2.2	 �Structure and Function of the Prodomain

The three-dimensional prodomain structures were solved with PCSK9 and PC1/3. 
The prodomain of PCSK9 was determined by x-ray crystallography, that of PC1/3 
by NMR spectroscopy. The prodomain shows a well-ordered core consisting of a 
four-stranded antiparallel β-sheet with two α-helices packed against one side of this 
sheet (Tangrea et al. 2002; Cunningham et al. 2007). Both prodomain structures are 

W. Garten



217

similar assuming that all other PC prodomains are structurally closely related. The 
prodomain is an independent separate domain which possesses three functions: (1) 
it masks the catalytic domain, (2) it blocks the enzyme activity a priori, and (3) it 
regulates the dissociation of autocatalytic cleavage fragments at distinct stages on 
the secretory pathway in a pH-dependent manner. The mechanism how the PCs are 
differentially processed in space and time has been elucidated in recent years. The 
concept of pH sensors is based on the histidine content present in the prodomains of 
the PCs traveling along the pH gradient of the secretory pathway. Histidine-69 
(human furin) is conserved in the prodomains of all PCs and functions as the master 
histidine-encoded pH sensor which regulates enzyme activation at distinct pH val-
ues depending on the numbers of the residual histidine residues present in the 
prodomain. The prodomain of furin is activated at pH ~6.5 within the trans-Golgi 
network (TGN), whereas the PC1/3 prodomain is activated at pH ~5.5 within the 
dense-core secretory granules, whereby the prodomain of furin has twice the con-
tent of histidine residues in comparison with the prodomain of PC1/3. The correla-
tion of pH-dependent activation and histidine content was demonstrated by swapping 
the prodomains between both closely related PC family members (Dillon et  al. 
2012; Shinde and Thomas 2011; Williamson et al. 2013).

Fig. 9.3  Structure of PCSK9 in its autocatalytically cleaved form. The prodomain is shown in 
cartoon style (cyan) with its C-terminal heptapeptide segment 146DSSVFAQ152 as sticks with car-
bon atoms in orange, which is bound and inhibits the active site. The catalytic domain is shown 
with a transparent surface in yellow; the residues of the catalytic triad (S386, H226, and D186) are 
labeled and provided as sticks (PDB: 2P4E; Cunningham et al. 2007)
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9.2.3	 �Biosynthesis, Maturation, and Subcellular Localization 
of PCs

Furin, PC7, PC5B, and SKI-1 are synthesized as class I membrane proteins and the 
other PCs as soluble secretory proteins (Figs. 9.1 and 9.4). The preproproteins start 
with the signal peptides which translocate the nascent polypeptide chains from the 
cytoplasm into the lumen of the ER where the signal peptides are cotranslationally 
removed from the adjacent prosegment (prodomain). As mentioned above, the 
newly synthesized prodomains facilitate the folding of the polypeptide chains and 
block the proteolytic activity of the proPCs until the prodomain fragments are split 
off and removed at distinct stages of the secretory pathway in a pH-dependent man-
ner. PC1/3 and PC2 become active in secretory granules, furin, PACE4, and PC5B 
in the TGN region, and PC7 is accumulated in an active form in a separate vesicular 
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Fig. 9.4  Subcellular trafficking and residences of PCs in a virus-infected cell. The scheme shows 
the initial infection steps of an enveloped virus with glycoprotein spikes (blue) and the biosynthetic 
pathway of virus spikes from the endoplasmic reticulum (ER) to the plasma membrane where 
assembly and release of the virus take place. PCs relevant for virus maturation (magenta) are 
shown on the exocytic pathway from ER via the Golgi apparatus, the trans-Golgi network (TGN), 
and the secretory vesicles (SV) to the plasma membrane. PCs recycle via endosomes to their resi-
dences: furin and PC5B and PACE4 accumulate in the TGN. PC7 is enriched and enzymatically 
active in sialyltransferase-deficient vesicles (SDV) and in minor quantities directly exported to the 
plasma membrane circumventing the Golgi/TGN complex. SKI-1/S1P is mainly active in the cis-
Golgi region. The furin ectodomain is cut off by an unknown protease, and SKI1/S1P is probably 
released by autocatalysis. Soluble enzymatically active furin (sfurin) and soluble sSKI-1 are 
released into the extracellular matrix; PACE4, PCSK9, and PC5A interact with tissue inhibitors of 
metalloproteases (TIMPs) and form tertiary complexes with heparan sulfate proteoglycans 
(HSPGs) ready for cleavage of extracellular substrates. PC1/3, PC2, PC5A, and PCSK9 (black) are 
most probably irrelevant for processing of viral proteins
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structure close to the TGN. SKI-1/S1P is functionally active in the endoplasmic 
reticulum/Golgi (ER/Golgi) and in the post-Golgi/TGN area (Brown and Goldstein 
1999; Lenz et al. 2001; Beyer et al. 2003). PC2 requires the neuroendocrine bifunc-
tional chaperone 7B2 for egress of the ER; its N-terminal domain facilitates the 
maturation of proPC2, and its C-terminal peptide simultaneously functions as a 
potent inhibitor (Braks and Martens 1994; Zhu and Lindberg 1995). PC4, PC7, and 
PCSK9 are processed at a single cleavage site at the boundary between the prodo-
main and catalytic domain. The other convertases have a second cleavage site, 
except for SKI-1/S1P which possesses a third cleavage site (Burri et al. 2012a; da 
Palma et  al. 2014; Fig.  9.1). SKI-1/S1P becomes enzymatically active in trans 
before all prodomain fragments are dissociated from the enzyme (Elagoz et  al. 
2002; da Palma et al. 2016).

The furin-like PCs furin, PACE4, PC5B, and PC7 are trafficking along the con-
stitutive secretory pathway from the ER to the plasma membrane. They show the 
highest activity in the TGN region sharing the common route with their substrates 
(Fig. 9.4). PCs recycle to the TGN and to the cis-Golgi. A minor portion of PC7 is 
routed form the ER directly to the plasma membrane. PC5 exists in two forms, 
soluble PC5A and membrane-anchored PC5B, due to different gene splicing. Both 
forms diverge from the TGN in different routes; PC5A migrates via the regulated 
pathway passing the secretory granules to the plasma membrane where the enzy-
matically active convertase is tethered to heparan sulfate proteoglycans like PACE4 
(Nour et al. 2005). PC7 is arrested as an active integral protease in the TGN-derived 
sialyltransferase-deficient vesicles (SDV) (Wouters et  al. 1998; Declercq et  al. 
2017). SKI-1/S1P resides preferentially in the late ER and cis-Golgi region where it 
cleaves the sterol regulatory element-binding protein (SREBP) among other sub-
strates (Brown and Goldstein 1999). PCSK9 is transported via the secretory path-
way and secreted in the medium outside from the cell. PC1/3 and PC2 are transported 
along the regulatory pathway to the dense-core secretory granules, from where they 
are released by neuronal or hormonal stimuli into the cellular environment (Thomas 
2002; Seidah and Prat 2002; Lee and Lindberg 2008).

Subcellular localization of the individual PCs is determined by intrinsic sorting 
signals (Fig. 9.5). Furin was one of the first molecules shown to accumulate in the 
TGN under steady-state conditions governed by a molecular address in the cyto-
plasmic domain (Schäfer et al. 1995; Bosshart et al. 1994; Takahashi et al. 1995). 
The address is necessary and sufficient for TGN localization and for recycling by 
the clathrin endocytosis pathway through endosomes. It consists of several destina-
tion-determining signals in the form of short peptide sections, which together are 
necessary for an efficient accumulation of furin in the TGN. They include (1) the 
acidic signal CPSDSEEDEG783 containing two casein kinase II (CKII) phosphory-
lation sites, (2) the internalization signal YKGL765, (3) a leucine-isoleucine signal 
LI760, and (4) the signal F790 (Vey et al. 1994; Schäfer et al. 1995; Molloy et al. 1999; 
Teuchert et al. 1999a, b; Stroh et al. 1999; Voorhees et al. 1995; Thomas 2002).

The cytoplasmic domain of PC5B contains signal elements homologous to furin: 
the motif YXXL/I, acidic peptide stretches containing serine residues as potential 
casein kinase II phosphorylation sites, and dileucine motives (Fig. 9.5). Therefore, 
the transport pathways of PC5B and furin are similar (De Bie et al. 1996).
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PC7 is also transported on the constitutive secretory pathway via the TGN to the 
plasma membrane, from where it recycles via late endosomes to the TGN region, 
and concentrates SDV, a post-Golgi compartment distinguishable from the TGN 
(Wouters et al. 1998). PC7 shuttling between the plasma membrane and the TGN 
region depends on sequences in the cytoplasmic domain. The sorting signal for 
SDV localization consists of the following motifs: (1) peptide PLC726, (2) the basic 
amino acid sequence HRSRKAK708, and (3) two cysteines, C558 and C563, which are 
iteratively palmitoylated during the shuttle between TGN and plasma membrane 
(van de Loo et al. 2000; Declercq et al. 2012, 2017) (Fig. 9.5). Interestingly, a small 
fraction of PC7 reaches the cell surface through a brefeldin A and coat protein com-
plex II (COPII)-independent unconventional secretory pathway. This may explain 
the rapid (<10 min) transit of PC7 from the ER to the cell surface (Rousselet et al. 
2011), whereas the cleavage of the propeptide of PC7 is a slow process which takes 
hours rather than minutes (Creemers et al. 2000).

PC1/3 targeting to dense-core secretory granules (DCSG) resides in signals of 
the carboxy terminal ectodomain (617–753) which contains two α-helices, helix 1 
(722–728) and helix 2 (738–750), of which the last one is sufficient for targeting a 
constitutively secreted protein to dense-core secretory granules (Dikeakos et  al. 
2009).

SKI-1/S1P cleaves cellular substrates in the ER/cis-Golgi area. There are differ-
ences, however, with arenaviral glycoproteins. The Lassa virus glycoprotein is 
cleaved by SKI-1/S1P before reaching the cis-Golgi, whereas cleavage of the 
LMCV glycoprotein occurs in the late or post-Golgi compartment (Lenz et al. 2001; 
Beyer et al. 2003). The substrate recognition of cleavage site variants is dependent 
on the auto-processing of SKI-1/S1P, suggesting differences in the processing of 
cellular and viral substrates (Burri et al. 2012a).
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Fig. 9.5  Sorting signals of membrane-anchored PCs. Cytoplasmic domains of furin, PC5B, and 
PC7 are shown. Furin accumulates in the TGN. Furin endocytosis signals are a di-leucine signal 
(LI), a YXXL signal (YKGL), and a single phenylalanine signal (F). In concert with an acidic 
peptide containing two phosphorylation sites at serine, they are responsible for TGN localization. 
Similar peptide elements are found in the cytoplasmic domain of PC5B indicating the TGN desti-
nation. PC7 accumulates in TGN-derived sialyltransferase-deficient vesicles (SDV) using a local-
ization signal composed of the peptide segment PLC, the basic peptide HRSRKAK, and two 
palmitoylated cysteine residues
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9.3	 �Proprotein Convertases Activating Viruses

Furin and the furin-like PCs, cleaving peptide bonds after basic residues, as well 
as SKI-1/S1P which cleaves peptide bonds after nonbasic residues, are the PCs 
which cleave viral glycoproteins (Table  9.3). Furin and furin-like PCs (PC5/6, 
PACE4, and PC7) are widely or ubiquitously expressed and are responsible for 
most of the processing events occurring in the constitutive secretory pathway or 
in endosomes. This leads to the activation/inactivation of receptors, ligands, 
enzymes, viral glycoproteins, or growth factors. Although these PCs exhibit a 
certain degree of functional redundancy when overexpressed in cell lines, their 
inactivation in mice or human beings results in specific phenotypes revealing that, 
in  vivo, each PC primarily fulfills unique processing events and/or functions 
(Seidah et al. 2013). Involvement of other proteases with similar specificity can-
not be excluded, but has not been demonstrated so far.

9.3.1	 �Furin

Furin, also named PACE or PCSK3, is the prototype of subtilisin-/kexin-like pro-
protein convertases (PCSKs). Furin is encoded by a transcription unit in the upstream 
region of the c-fes/fps proto-oncogene (Roebroek et al. 1986). Furin is expressed in 
all cells and tissues of eukaryotic organisms. It is synthesized as pro-furin with a 
molecular mass of 100 kDa, which is autocatalytically cleaved into the mature form 
with a molecular mass of 85 kDa. The first cleavage occurs between the prodomain 
and the catalytic domain at the C-terminus of the motif 101AKRRAKR↓ and the 
second one within the prodomain at the amino acid motif 70RGVTKR↓ (Leduc 
et  al. 1992; Anderson et  al. 1997). Endoproteolytic cleavage and removal of the 
propeptide fragments are prerequisite for efficient transport out of the endoplasmic 
reticulum into the TGN where furin acquires full enzymatic activity (Creemers et al. 
1995). Endogenous furin was partially purified from Madin-Darby bovine kidney 
(MDBK) cells and identified by reaction with a furin-specific antiserum (Stieneke-
Gröber et al. 1992; Vey et al. 1994). Furin is partially cleaved at arginine (R683) 
present in the ectodomain by an unknown endoprotease residing at the plasma 
membrane. The truncated soluble furin is catalytically active outside of cells 
(Plaimauer et al. 2001).

Furin is the central proprotein convertase that processes most diverse proproteins 
at multibasic structures on the constitutive secretory pathway. An analysis of the 
human proteome revealed an estimated number of about 500 potential proprotein 
candidates susceptible to furin cleavage (Remacle et al. 2008; Shiryaev et al. 2013). 
The high number of potential substrates together with the ubiquitous expression 
implicates that furin activates a wide variety of membrane-anchored proteins and 
membrane-secreted proteins, including precursors of growth factors, cell receptors, 
adhesion molecules, matrix metalloproteinases, blood plasma proteins, and factors 
for embryonal development which play important roles in the regulation of many 
life processes (Table 9.2). Furin also generates MHC class I antigens (Gil-Torregrosa 
et al. 2000). The majority of the proproteins are cleaved at the multibasic motif 
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RXK/RR and less frequently at the minimal basic motif RXXR. A few precursor 
proteins possess exceptional motifs, e.g., consensus sequences without arginine or 
lysine at position P4 as observed with the prodomain of furin (RGVTKR), proalbu-
min (RGVFRR), proprotein C (RSHLKR), and proparathyroid hormone 
(KSVKKR) (Canaff et al. 1999; Mori et al. 1999; Essalmani et al. 2017). Single 
amino acid positions of the furin motif were extensively studied (Rockwell et al. 
2002). Proteins with lysine at position P4 are poor furin substrates but are readily 
cleaved by TMPRSS13 belonging to the family of transmembrane serine proteases 
(cf. Chap. 8).

The fact that the hemagglutinin precursor (HA0) of FPV containing a multibasic 
cleavage site was correctly cleaved and is biologically active after expression in 
insect cells and in insect larvae indicated that endogenous furin exists in insects 
(Kuroda et al. 1986, 1989). Furin of Spodoptera frugiperda showed the same cleav-
age properties as furin of vertebrates (Cieplik et al. 1998). In Drosophila melano-
gaster, two genes homologous to human furin, called Dfur1 and Dfur2, have been 
identified. The Dfur1 gene undergoes differential splicing to generate several type I 
membrane-bound isoenzymes differing in their C-terminal sequences. They are 
released as soluble dfurin forms which show cleavage specificity like furin of mam-
malian species (De Bie et al. 1995; Roebroek et al. 1991).

Furin is expressed in the mouse embryo at embryonic day e7.5. Inactivation of 
the fur locus by homologous recombination in the mouse causes embryonic death 
shortly after e10.5 due to hemodynamic insufficiency and failure of ventral clo-
sure and axial rotation in embryos. The furin-deficient mouse embryos failed to 
develop large vessels despite the presence of endothelial cell precursors (Roebroek 
et al. 1998). Among numerous proteins which play crucial roles during embryonic 
development are transforming growth factor β1 (TGFβ1), bone morphogenetic 
proteins 5 and 7 (BMP5, BMP7), vascular cell adhesion molecule (VCAM-1), and 
α-integrins (Scamuffa et al. 2006). To overcome the lethality of furin knockout 
mice, conditional knockout mutants were constructed. When furin expression was 
switched off in an interferon-inducible Mx-Cre/loxP knockout mouse model, the 
animals showed no obvious adverse effects. Histological analysis of the liver did 
not reveal any overt deviations from normal morphology. Variable degrees of 
redundancy were observed for the processing of numerous substrates, but none of 
the tested substrates displayed a complete block of processing. The absence of a 
severe phenotype raises the possibility of using furin as a local therapeutic target 
in the treatment of pathologies like cancer and viral infections, although the 
observed redundancy may require combination therapy or the development of a 
more broad-spectrum convertase inhibitor (Roebroek et al. 2004; Creemers and 
Khatib 2008).

Furin plays an important role in virus activation. As mentioned above, the first 
viral protein found to be processed by furin was the hemagglutinin (subtype H7) of 
fowl plague virus (FPV) (Stieneke-Gröber et al. 1992). Studies on the hemaggluti-
nin of FPV and viruses of subtype H5 had indicated the presence of a multibasic 
cleavage site (Bosch et al. 1981; Kawaoka et al. 1987; Kawaoka and Webster 1988), 
and mutational analyses of the H7 cleavage site clearly defined the characteristic 
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RXK/RR motif. Cleavage occurs only when this motif is presented in the correct 
sequence position in loop formation. A shift of the motif by only one amino acid can 
abrogate cleavage (Garten et  al. 1991; Vey et  al. 1992). The importance of con-
served amino acids of the hemagglutinin of HPAIV was corroborated, especially an 
arginine at P1 position proved to be essential (Walker and Kawaoka 1993; Walker 
et al. 1994). The hemagglutinin cleavability of HPAIV is influenced by the amino 
acid immediately downstream of the cleavage site (Horimoto and Kawaoka 1995). 
Similar results were obtained for the cleavage motifs of the highly pathogenic 
Newcastle disease virus (NDV) strains (Pritzer et al. 1990; Gotoh et al. 1992).

Over nearly three decades of research, an increasing number of fusion-competent  
glycoproteins have been identified which are activated by furin or furin-like prote-
ases. Most glycoproteins belong to the enveloped RNA viruses, but also some 
enveloped DNA viruses use furin cleavage for maturation (Table 9.3). Accessory 
proteins forming a complex with fusion proteins, such as the prM protein of flavivi-
ruses, are also activated by furin (cf. Chap. 6). However, furin can be replaced by 
another furin-like protease in certain cell types and tissues. Such examples were 
observed with HPAIV and with HIV-1 (Feldmann et al. 2000; Horimoto et al. 1994; 
Hallenberger et al. 1992; Anderson et al. 1993; Gu et al. 1995; Ohnishi et al. 1994). 
The glycoproteins of influenza viruses and paramyxoviruses are activated by furin 
next to the fusion peptide. Other viral glycoproteins are cleaved by furin at more 
than one site, as is the case with respiratory syncytial virus (RSV) (see below), or 
they are cleaved by furin in concert with other endoproteases as found with corona-
viruses (cf. Chap. 4).

Detailed lists of more furin-cleavable viral membrane proteins are given in 
Table 9.3 and in a previous review (Klenk and Garten 1994). All of these proteins 
have multibasic cleavage sites, but experimental evidence for furin cleavage has not 
been obtained in all cases.

Various inhibitors blocking the catalytic activity have been used to substantiate 
the role of furin as processing enzyme. The first inhibitory agents were acylated 
basic tetrapeptidyl chloromethyl ketones, such as Dec-RVKR-CMK, polyarginines 
(nona-d-arginine amide), and serpin inhibitors, such as furin-adapted α-1-antitrypsin 
Portland (α-1-PDX) (Garten et al. 1989, 1994; Misumi et al. 1990a; Molloy et al. 
1992; Jean et al. 1998; Cameron et al. 2000; Kacprzak et al. 2004; Hardes et al. 
2015, 2017) (cf. Chap. 11). Acylated peptidyl chloromethyl ketones containing the 
RXK/RR motif bind covalently to the catalytic site of furin and prevent cleavage 
activation of HPAIV hemagglutinin and a wide array of other fusion-competent 
viral glycoproteins (Garten et al. 1994). In early years, when furin was still the only 
PC known substrate, homologous inhibitors were thought to be useful for the iden-
tification of furin as the activating protease of a virus. However, this perspective 
changed when other PCs were discovered. Because many of these enzymes have 
similar substrate specificities, the inhibitors were of limited use to discriminate 
them from furin. More convincing approaches for discrimination of PCs with 
closely related substrate specificity are investigations which exploit cells or animals 
with selective deficiency of a single PC or approaches which knock down the mRNA 
of a distinct PC.
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9.3.2	 �PACE4

Paired basic amino acid-cleaving enzyme 4 (PACE4), also known as subtilisin-/
kexin-like proprotein convertase (PCSK6), exists as alternatively spliced transcript 
variants encoding various isoforms which are differently present in tissues and cells. 
PACE4 is mainly expressed in liver, spleen, gut, brain, and neuroendocrine cells 
(Seidah et al. 2008). PACE4 migrates on the constitutive pathway and is secreted 
into the extracellular matrix, where it is attached to heparan sulfate proteoglycans 
(HSPGs) (Tsuji et  al. 2003). PACE4 shares many substrates with furin, such as 
TGFβ-related proteins, proalbumin, pro-von Willebrand factor, zymogens of the a 
disintegrin and metalloprotease with thrombospondin type I motif (ADAMT) fam-
ily, and the precursor of the low-density lipoprotein receptor (pro-LDL receptor). 
However, it has a more stringent substrate specificity and more limited operating 
parameters than furin (Longpré and Leduc 2004; Seidah et al. 2013; Wong et al. 
2015) (Table 9.2). PACE4 processes diphtheria toxin and anthrax toxin protective 
antigen, but not Pseudomonas exotoxin A which is processed by furin (Moehring 
et al. 1993; Sucic et al. 1999). PACE4 cleaves at RXK/RR, RXXR and to a much 
lesser extent at RR and KR motifs (Gordon et al. 1997). In contrast to furin, PACE4 
cannot process pro-factor IX and is not inhibited by the alpha1-antitrypsin Portland 
variant (Rehemtulla et al. 1993; Mains et al. 1997). In the absence of PACE4, mouse 
embryos developed specific deficiencies and survived to 75% compared with 100% 
lethality of furin knockout mice (Table 9.1). This suggests that, although PACE4 
and furin share the ability to process similar substrates, they may also process one 
or more different substrates during the processes of embryonic development 
(Scamuffa et al. 2006). There are only few studies demonstrating cleavage of viral 
glycoproteins by PACE4 (Table 9.3).

9.3.3	 �PC5

PC5 is identical with PC6 and often designated PC5/6 or PCSK5. The proprotein 
convertase 5 gene is transcribed into two mRNAs; consequently two different but 
related enzymes are formed: PC5A and PC5B comprising 913 and 1860 amino 
acids, respectively. The A and B isoforms have identical pro-, catalytic, and 
P-domains. The catalytic domain (amino acids 148–439) contains D171, H212, 
N313, and S386 in the active-site pocket. Both isoforms differ in the cysteine-rich 
domain (CRD) (Fig. 9.1). PC5A has a CRD domain in comparable length with other 
PCs and terminates in the ectodomain as a soluble enzyme. PC5A migrates on the 
regulated secretory route and is packaged into dense-core granules. In contrast, 
PC5B, containing besides an unusually long CRD domain a transmembrane and a 
cytoplasmic domain, is transported on the constitutive branch of the secretory path-
way. PC5B can be shed from the membrane, and the soluble PC5A can be attached 
to the cell surface by interaction of its CRD with proteoglycans. A PC5B transcript 
was found mainly in the intestine and kidney, while PC5A transcripts were detected 
in various tissues indicating different locations and roles for PC5A and PC5B 
(Nakagawa et al. 1993). PC5A is the major isoform in most tissues analyzed, except 

W. Garten



225

in the liver, where the transcripts are expressed in equivalent amounts. The complete 
knockout of PC5 in mice causes death at birth, with the embryos exhibiting multiple 
morphogenic defects (Table 9.1). Conditional knockout mice revealed that growth 
differentiation factor 11 (Gdf11), also known as bone morphogenetic protein 11 
(BMP-11) and BMP-2, is a favorite substrate of PC5; other substrate precursor pro-
teins are vascular endothelial growth factors (Essalmani et al. 2008; Lee et al. 2015). 
PC5 plays also a dominant role in pregnancy establishment by proteolytic activation 
of several important factors such as BMP2, caldesmon 1, calmodulin- and actin-
binding protein (CALD1), and α-integrins.

The deduced cDNA structures of mouse PC5 and rat PC5 showed that the closest 
homologue is PACE4. Furthermore, like furin, Drosophila melanogaster dfurin2, 
and PACE4, PC5 shows the presence of a C-terminal cysteine-rich domain contain-
ing either five (PC5 and PACE4) or ten (dfurin2) repeats of the consensus motif 
Cys-Xaa2-Cys-Xaa3-Cys-Xaa (5-7)-Cys-Xaa2-Cys-Xaa (8-15)-Cys-Xaa3-Cys-
Xaa (9-16). The richest sources of rat PC5 mRNA (3.8 kb) are the adrenal gland and 
gut, but it can also be detected in many other endocrine and nonendocrine tissues 
(Lusson et al. 1993).

PC5 activates the hemagglutinin of HPAIV like furin (Horimoto et  al. 1994; 
Feldmann et al. 2000) (Table 9.3).

The decapeptide 107QQVVKKRTKR116 mimicking a part of the prodomain of 
proPC5 is a nanomolar inhibitor of furin, PACE4, and PC5. A mutation at position 
P6 (K111H) makes the inhibitor more selective for PC5 than for furin indicating 
that a modification around the basic motif may influence the selectivity of PCs 
(Nour et al. 2003).

9.3.4	 �PC7

PC7 is identical with PC8, PCSK7, and lymphoma proprotein convertase (LPC) as 
it was originally discovered in a high-grade lymphoma carrying a translocation 
(Meerabux et al. 1996). PC7 is the most ancient and conserved member of the PC 
family. It is synthesized as proenzyme (101 kDa) and autocatalytically processed 
into mature PC7 (89 kDa) at RRAKR141↓. There is no truncated soluble form of 
PC7 (Declercq et al. 2017). PC7 is invariably expressed as a membrane-anchored 
enzyme in spleen, thymus, prostate, testis, ovary, small intestine, colon, and periph-
eral blood leukocytes. High levels of PC7 mRNA are found in cells of the immune 
system, particularly in CD8+ cells, but also in CD4+, NK cells, and bone marrow 
cells. This may indicate a role in immune functions. The first described PC7-specific 
processing reaction was the activation of epidermal growth factor receptor (EGFR) 
at the cell surface (Rousselet et  al. 2011). PC7 cleaves the unusual peptide 
KSVKKR↓SVSEIQL derived from proparathyroid hormone. Coexpression of PC7 
and human transferrin receptor 1 (hTfR1) indicated that PC7 is the only convertase 
that sheds this receptor from cells into the medium, whereby the cleavage occurs at 
the site 95KTECER↓ LA resembling the cleavage site of parathyroid hormone 
(Guillemot et al. 2013). The cleavage specificity of PC7 is largely similar to that of 
furin with the motifs (K/R)R↓ or (R/K)XnR↓ (n = 2, 4, or 6 amino acids). A 24-mer 

9  Proprotein Convertases



226

peptide fragment of the PC7 prosegment (residues 81–104) is a strong inhibitor, 
K(i) = 7 nM of PC7, comparable to that of the full-length (104 residue) prosegment 
(Bhattacharjya et  al. 2000). Unlike other PC-deficient mice, PC7-null mouse 
embryos did not show an apparent abnormal phenotype supporting the view that 
PC7 expression extensively overlaps with that of furin (Seidah 2011). However, 
PC7 is essential for zebrafish development and bioavailability of TGFβ1a. When the 
PCSK7 function in developing larvae was inhibited, defects in various organs 
including the brain and eye were observed, and the larvae died within 7 days post-
fertilization (Turpeinen et  al. 2013). Expression of PC7 revealed an increased 
ADAM10 maturation resulting in enhanced α-secretase-mediated processing of 
amyloid precursor protein (Anders et  al. 2001; Lopez-Perez et  al. 2001). PC7 
cleaves specifically and in a cell-type-specific manner gp160 of HIV into gp120g/
p41, suggesting that both furin and PC7 are the major convertases in T4 lympho-
cytes (Decroly et al. 1997; Hallenberger et al. 1997).

In summary, the furin-like PCs PACE4, PC5, and PC7 may selectively compen-
sate the activation of viral glycoproteins in furin-deficient cells and tissues with 
different efficiencies. Furin compensation has been demonstrated (1) for virulent 
NDV F protein activated by PC5, but not by PACE4 (Fujii et al. 1999); (2) for pro-
cessing of E3/E2 from Chikungunya virus by PC5A, PC5B, and PACE4, but not by 
PC7 (Ozden et al. 2008); (3) for cleavage of peptides homologous to SARS corona-
virus S glycoprotein by PC5, but not by PC7 (Basak et al. 2007); and (4) for activat-
ing the env of HIV by PC7 (Decroly et al. 1997; Hallenberger et al. 1997).

9.3.5	 �SKI-1/S1P

This enzyme is known under the names subtilisin-/kexin-isozyme-1 (SKI-1), site 
1 protease (S1P) membrane-bound transcription factor peptidase site 1, sterol 
regulatory element-binding protein site 1 (SREBP S1) protease, membrane-bound 
transcription factor protease site 1 (MBTPS1), and PCSK8. The protease plays an 
important role in lipid metabolism. The lipid composition of animal cells is con-
trolled by SREBPs, transcription factors released from membranes by sterol-reg-
ulated proteolysis. By comparing cDNA of protease-competent and protease- 
deficient cells, the group of Goldstein and Brown identified the enzyme, which 
they called S1P, as an intraluminal membrane-bound subtilisin-like protease, 
1052 amino acid long, which cleaves SRBPs at the motif RSVL↓ in the ER lumi-
nal loop between two membrane-spanning regions (Sakai et  al. 1998). Using 
reverse transcriptase (RT)-PCR and degenerated oligonucleotides derived from 
the active-site residues of subtilisin-/kexin-like serine proteinases, Seidah and 
colleagues independently identified a highly conserved and phylogenetically 
ancestral human, rat, and mouse type I membrane-bound proteinase which they 
called subtilisin-/kexin-isozyme-1 (SKI-1) (Seidah et al. 1999). The tissue distri-
bution of SKI-1/S1-P mRNA is ubiquitous. SKI-1/S1P accumulates in the peri-
nuclear region, predominantly in the cis-Golgi, and small punctual SKI-1/S1P 
containing material is seen in the endosomal/lysosomal compartments by immu-
nochemical staining. Studies with brefeldin A indicated that substrates are cleaved 
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in the early Golgi. proSKI-1/S1P is processed into two membrane-bound forms of 
SKI-1 (120 and 106 kDa) differing by the nature of their N-glycosylation (da 
Palma et al. 2014, 2016). At late stages of the secretory pathway, part of the mem-
brane-bound enzyme is shed into the medium in a 98-kDa form. SKI-1/S1P exhib-
its a wide pH optimum for cleavage (Seidah et al. 1999). Recombinant SKI-1/S1P 
was expressed, purified, and characterized (Bodvard et al. 2007).

A physiological SKI-1/S1P substrate different from SREBPs is ATF6, a membrane- 
bound transcription factor that activates genes in ER stress, such as cholesterol 
deprivation. When unfolded proteins accumulate in response to ER stress, ATF6 is 
cleaved at RHLL↓ to release its cytoplasmic domain, which enters the nucleus (Ye 
et al. 2000). Other substrates are (pro)renin receptor and brain-derived neurotrophic 
factor (BDNF) (Nakagawa et  al. 2017). BDNF is a member of the neurotrophin 
family of growth factors found in the brain and the periphery which is cleaved at 
RGLT↓. SKI-1/S1P is required for the transcription of many bone matrix and min-
eralization-related genes, such as fibronectin and fibrillin in bone osteoblasts and 
osteocytes. The irreversible inhibitor Dec-Arg-Arg-Leu-Leu-CMK blocks tran-
scription of the corresponding genes and inhibits mineralization (Gorski et  al. 
2011). These results demonstrated that the differentiated phenotype of osteoblastic 
cells and possibly osteocytes depends upon SKI-1/S1P. Knockdown of SKI-1/S1P 
in zebrafish leads to the zebrafish gonzo mutant showing a defect in chondrocyte 
morphogenesis (Schlombs et al. 2003).

Since SKI-1/S1P plays an essential role in cell physiology, it is evident that gene 
deletion is lethal at an early state of the embryonal development (Table  9.1). 
Conditional SKI-1/S1P knockout mice are viable (Yang et al. 2001; Seidah 2011).

The SKI-1/S1P processing motifs contain basic and hydrophobic residues at P4 and 
P2, respectively, with a relatively relaxed acceptance of amino acids at P1 and P3, i.e., 
R4-X3-X2-X1 ↓, where X1,3 are any amino acids and X2 is often leucine, isoleucine, and 
valine. A favorable motif is RRLL↓ found in the glycoprotein of Lassa virus (Maisa 
et al. 2009). The first viral proteins recognized to be cleaved by SKI-1/S1P were the 
glycoproteins of Lassa virus and lymphocytic choriomeningitis virus (LCMV) (Lenz 
et al. 2000, 2001; Beyer et al. 2003; Kunz et al. 2003). A high variability of cleavage 
motifs is found with glycoproteins of arenaviruses and Crimean-Congo hemorrhagic 
fever virus (CCHFV) (Burri et al. 2012b, 2013; Altamura et al. 2007; Sanchez et al. 
2002, 2006; Vincent et al. 2003) (cf. Chap. 3). SKI-1/S1P inhibition effectively blocks 
hepatitis C virus (HCV) from establishing infection in hepatoma cells (Olmstead et al. 
2012). However, the function of SKI-1/S1P in HCV replication is not known.

9.4	 �PCs Not Known to Activate Viruses

9.4.1	 �PC1/3

PC1/3, also designated neuroendocrine convertase 1 (NEC1), prohormone convertase 3 
(PC3), proprotein convertase 1 (PC1), or PCSK1, occurs in many eukaryotic organisms. 
The human gene of PC1/3 located on chromosome 5 is transcribed from 13 exons and 
translated into the preproprotein of PC1/3 comprising 753 amino acids. The catalytic 
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domain (143–441 aa) contains the triad D167, H208, and S382. N309 contributes to the 
oxyanion hole and stabilizes the transition state of the enzymatic reaction. The catalytic 
domain has 61% sequence homology with human furin. The prodomain contains 83 
amino acids with 30 to 40% sequence identity among the eukaryotic PC1/3s. PC1/3 is 
present in dense-core vesicles of the regulated secretory pathway in neuroendocrine tis-
sues. It cleaves prohormones and other precursor proteins C-terminally at arginine-argi-
nine or lysine-arginine motifs (Table 9.1). Typical substrates are POMC, proinsulin, 
proglucagon, and other precursors of neuro-sensing and regulating hormone peptides, 
such as the hormone-like endopeptidase renin, enkephalin, dynorphin, somatostatin, 
ghrelin, and agouti-related protein (AGRP) (Creemers et al. 2006). Interestingly, PC1/3 
deficiency has quite different phenotypic effects in mice and man, a phenomenon not 
observed with other PCs. PC1/3 knockout mice are viable but exhibit growth retardation 
and multiple defects in hormone precursor processing. In humans, PC1/3 deficiency 
causes obesity, hypogonadism, reactive hypoglycemia, hypoadrenalism, and small-
intestinal absorptive dysfunction due to impaired processing of prohormones (Taylor 
et al. 2003; Farooqi et al. 2007; Seidah 2011) (Table 9.1).

9.4.2	 �PC2

PC2 is also known as neuroendocrine convertase 2, Kex-like endoprotease 2, or 
PCSK2. Maturation of PC2 is unusual since it depends on support by the neuroen-
docrine chaperone 7B2 that prevents auto-aggregation of PC2 (Ramos-Molina and 
Lindberg 2015). After binding of the chaperone to nascent proPC2, the proPC2/7B2 
complex is transported from the ER to the TGN. On the route from the TGN to 
dense secretory granules, the chaperone dissociates from the complex in the acidic 
environment, and the prodomain is removed after autocatalytic cleavage (Seidah 
2011). Embedding of the C-terminal domain of PC2, and likewise of PC5A, in gly-
cosphingolipid- and cholesterol-rich microdomains appears to be necessary for 
sorting into secretory granules (Creemers et al. 1996; De Bie et al. 1996). Evidence 
has also been obtained that an amphipathic α-helix at the C-terminus serves to fix 
PC5A at the cell membrane (Assadi et al. 2004). Like PC1/3, PC2 cleaves at dibasic 
amino acid motifs of neuroendocrine peptide and protein precursors, such as pro-
opiomelanocortin (POMC), proinsulin, and proglucagon, and the precursors of 
chromogranin A, neurotensin, and pro-enkephalin (Pan et al. 2006).

PC2−/− mice appear normal at birth but show retarded growth with chronic fast-
ing, hypoglycemia, and reduced glucagon levels (Seidah 2011).

9.4.3	 �PC4

PC4, also known as proprotein convertase subtilisin/kexin type 4 (PCSK4), is 
expressed from 15 exons which code for the mRNA of a polypeptide containing 655 
amino acids. PC4 is found exclusively in germ cells, suggesting a possible repro-
ductive function of this enzyme (Basak et al. 1999; Nakayama et al. 1992; Seidah 
et al. 1992). The catalytic domain with its enzymatic triad D158, H189, S373 and 
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the oxyanion hole-forming N300 processes various proproteins by cleavage at 
paired basic amino acids of the general motif (R,K)X(R,K,X)R.  PC4 is closely 
related to furin. It is primarily found in testicular germ cells and in sperm but also in 
ovary macrophages. It controls testicular and ovarian physiology.

PC4 is expressed in the human placenta and cleaves the precursor of the insulin-
like growth factor II, an important regulator of fetoplacental growth (Qiu et  al. 
2005). Another specific substrate of PC4 in the testis is pituitary adenylate cyclase-
activating polypeptide (PACAP) which is solely processed by PC4 (Seidah 2011). 
The fertility of PC4−/− mice is significantly reduced (Scamuffa et  al. 2006), and 
there are also defects in embryonic development (Mbikay et al. 1997).

9.4.4	 �PCSK9

PCSK9, also called neural apoptosis-regulated convertase-1 (NARC-1), is a new 
member of the pyrolysin and proteinase K subfamilies of subtilases (Abifadel et al. 
2003). It is highly expressed in the liver as a 74 kDa protein that is autocatalytically 
cleaved. The prodomain remains tightly bound to the enzyme which is catalytically 
inactive but functions as a binding protein that interacts with the low-density lipo-
protein receptor (LDLR) and plays therefore a crucial role in plasma cholesterol 
homeostasis. PSCK9 is not involved in proteolytic protein processing.

Loss-of-function PCSK9 mutations were also identified. Two nonsense muta-
tions found in ∼2% of black Africans were associated with a ∼40% decrease in 
LDL cholesterol and a ∼88% risk reduction of cardiovascular disease (CVD), sug-
gesting that PCSK9 inhibition may be a promising approach to treat hypercholester-
olemia and prevent CVD. Therapeutic monoclonal antibodies have been developed 
to reduce low-density lipoprotein (LDL) cholesterol levels and the risk of coronary 
artery disease (Weider et al. 2016; Le et al. 2015; Seidah et al. 2017).

9.5	 �Functions of PCs in Virus Replication

9.5.1	 �Cleavage Activation of Viral Fusion Proteins

Enveloped viruses induce fusion of viral and cellular membranes to deliver their 
genomes into the cytoplasm. All viral fusion proteins are C-terminally anchored in 
the viral membrane and possess a hydrophobic “fusion peptide” (class I fusion pro-
teins) or “fusion loop” (class II and class III fusion proteins) which interacts with the 
target membrane. Exposure of the hydrophobic domains depends on a conforma-
tional change of the fusion protein triggered by low pH in endosomes or by interac-
tion with the receptor-binding protein at the cell surface (Harrison 2008; White and 
Whittaker 2016; Jardetzky and Lamb 2014). In most cases, the conformational 
change can only be triggered if the proteins are primed by proteolytic cleavage.

For many viruses, like influenza viruses, paramyxoviruses, retroviruses, and are-
naviruses, the cleavage site is a distinct peptide bond next to the “fusion peptide” 
which, after cleavage, leads to a new exposed N-terminus of the membrane-anchored 
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fusogenic subunit of the viral glycoproteins. The fusion peptide is characterized by 
a stretch of non-charged hydrophobic amino acids which are strongly conserved 
within a virus family. In contrast to the conserved fusion peptides, the preceding 
cleavage sites and the activating proteases vary even when the viruses are closely 
related. Multibasic cleavage sites recognized by furin and furin-like proprotein con-
vertases PACE4, PC5/6, and PC7 are present in most enveloped viruses, whereby 
furin is the master key for cleavage of viral glycoproteins.

Furin is also involved in a different fusion mechanism observed with flaviviruses 
including tick-borne encephalitis virus (TBEV), yellow fever virus, West Nile virus, 
dengue virus, and Zika virus. Envelope glycoprotein E of these viruses, a class II 
fusion protein, is not processed by proteolysis. Fusion activity depends, however, on 
furin cleavage of the tightly associated accessory protein prM. During intracellular 
virion assembly, prM prevents premature exposure of the fusion loop located on 
E. After cleavage of prM and release of the prepeptide, mature virions invade cells by 
endocytosis and exposure of the fusion loop at low pH (cf. Chap. 6). Blockage of prM 
cleavage by furin inhibitors prevents multiple replication cycles of TBEV and dengue 
virus in cell cultures (Stadler et al. 1997; Elshuber et al. 2003; Kouretova et al. 2017).

Enveloped DNA viruses utilize the fusion mechanism for host cell invasion, too. 
Membrane fusion during herpesvirus entry into host cells is a complex process. All 
herpesviruses express the gB and gHgL complex as well as various non-conserved 
glycoproteins of individual herpesviruses which interact with selected receptor pro-
teins determining cell tropism (Eisenberg et al. 2012). The gHgL complex acts as an 
“activator” of entry, and the glycoprotein gB acts as the membrane “fusogen.” It has 
been shown that gB of several herpes viruses is cleaved by furin (Table 9.3). gB is a 
class III fusion protein with a “fusion loop” and has structural domain similarities 
with VSV G protein and the baculovirus fusion protein. The cleavage of Epstein-
Barr virus gB is required for cell-cell fusion (Sorem and Longnecker 2009), whereas 
bovine herpesvirus 1 gB and pseudorabies virus gB are not necessarily cleaved 
(Kopp et  al. 1994). Baculovirus nucleopolyhedrovirus (NPV) group II members 
have a fusion protein, which must be cleaved by furin to mediate fusion (Long et al. 
2006; Wang et al. 2017).

9.5.2	 �Cooperation of Proprotein Convertases with Other 
Endoproteases

Virus surface glycoproteins of several viruses are activated by various endoprote-
ases at different sites. The spike protein S of coronaviruses which possesses both 
receptor-binding and fusion functions, is cleaved at several sites (Table 9.3). For 
example, the severe acute respiratory syndrome (SARS) coronavirus glycoprotein S 
is cleaved at two sites, 441RYLR↓ and 758RNTR↓ (S1/S2 site), by furin/furin-like 
proteases, and at the S2´cleavage site 796KR↓ by cathepsin L or transmembrane 
serine protease 2 (TMPRSS2). The proteolytic activation of protein S at amino acid 
position 797 is adjacent to the “fusion peptide” of the S protein, which proved to be 
crucial for fusogenicity. Similarly, the Middle East respiratory syndrome (MERS) 
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coronavirus possesses a glycoprotein S that is cleavable at three distinct sites by 
furin (Table 9.3). Modulations of the spike cleavage S2′ next to the fusion peptide 
have profound effects on tropism and pathogenicity (Belouzard et al. 2009; Millet 
and Whittaker 2015; cf. Chap. 4).

Glycoprotein GP of Ebola virus mediating receptor binding and fusion is first pro-
cessed to GP1/2 at a conserved furin cleavage site 497RRTRR↓ which is remote from 
the fusion loop located on GP2 (amino acids 524 to 540) (Volchkov et al. 1998, 2000). 
Furin processing is followed by cathepsin cleavage at about amino acid 200 resulting 
in the removal of a large C-terminal fragment of GP1 and the exposure of a receptor-
binding site (Chandran et al. 2005). Both processing steps are therefore essential for 
the function of GP in virus entry. There is evidence that furin and cathepsin can be 
replaced in GP processing by other proteases. Furin cleavage of a nonstructural glyco-
protein (sGP) of Ebola virus has also been observed (cf. Chap. 5).

The genome segment M of Crimean-Congo hemorrhagic fever virus (CCHFV) 
polyprotein encodes a polyprotein with four transmembrane anchors separating 
three luminal/extracellular domains from two cytoplasmic domains. Furin and 
SKI-1/S1P are involved in the activation mechanism of this polyprotein (Sanchez 
et al. 2002, 2006; Altamura et al. 2007). Cleavages by SKI-1/S1P and by furin are 
necessary for producing the nonstructural glycoprotein GP38 and the structural gly-
coprotein Gn, an important step for gaining fusion capacity (Bergeron et al. 2015).

The envelope glycoprotein (env) of foamy virus, a spuma retrovirus, shows an 
unusual biosynthesis undergoing cleavage by furin at two different positions. The 
precursor protein has a type III membrane topology with both the N and C termini 
located in the cytoplasm. The processing of env into the particle-associated env 
leader protein (elp) and into the surface (SU) and transmembrane (TM) subunits 
occurs posttranslationally during transport to the cell surface. Furin or a furin-like 
protease is responsible for both, the late signal peptidase-like processing and the 
maturation cleavage needed for fusion (Duda et al. 2004; Geiselhart et al. 2004).

9.5.3	 �Generation of Biologically Active Peptides

The fusion protein of the human and bovine respiratory syncytial viruses (RSV) is 
synthesized as an inactive precursor F0 that is proteolytically processed at two mul-
tibasic sequences, 131KKRKRR↓ and 106RARR↓ (bovine RSV). Both furin consen-
sus sequences must be cleaved to activate the fusion protein (Zimmer et al. 2001; 
González-Reyes et al. 2001). Cleavage of the bovine RSV fusion protein results in 
the release of a small peptide that is converted into the biologically active virokinin 
by additional posttranslational C-terminal modifications, namely, truncation by car-
boxypeptidase of B type and stabilization by enzymatic amidation. The amino acids 
106–139 of the viral fusion protein align with amino acids 45–78 of the human 
tachykinin precursor type 1 that functions as a tissue hormone and produces rapid 
contraction of smooth muscles. Virokinin is secreted by virus-infected cells and was 
found to desensitize tachykinin receptors in the mammalian respiratory tract with 
potent effects on local inflammatory and immune processes (Zimmer et al. 2003).
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9.5.4	 �Glycoprotein Trimerization and Incorporation  
into Virus Particles

Cleavage of the Lassa virus glycoprotein by SKI-1/S1P is necessary not only for 
fusion of the virus envelope with endosomal membranes at cell entry but also for 
efficient incorporation of the viral glycoprotein into virus particles (Lenz et  al. 
2001). Virions contain almost exclusively homotrimeric spikes of the cleaved gly-
coprotein form, whereas at the cell surface of infected cells, monomers and oligo-
mers of the uncleaved form prevail (Schlie et al. 2010a). Glycosylation mutations 
on the ectodomains of Lassa virus glycoprotein showed that 6 of 11 N-glycans are 
necessary for glycoprotein cleavage indicating that N-glycans are needed for cor-
rect conformation of the precursor glycoprotein to be cleaved by SKI-1/
S1P. Interestingly, the glycoprotein precursor is transported to the cell surface in a 
completely endo H-sensitive form suggesting that cleavage is a prerequisite for 
completion of complex N-glycosylation (Eichler et al. 2006). Moreover, a mutation 
in the cytoplasmic domain of Lassa virus glycoprotein abolished the maturation 
cleavage by SKI-1/S1P within the ectodomain indicating conformational changes 
across the membrane (Schlie et  al. 2010b). These data suggest that, with some 
viruses, cleavage by PCs may be important for correct folding, oligomerization, and 
N-glycosylation, which is assumed to be a prerequisite for an effective incorpora-
tion of functional virus spikes into virions. Extensive structural rearrangements in 
the Lassa surface glycoprotein were observed at different pH’s and in the presence 
of the functional secondary intracellular receptor, human LAMP-1, by using high-
resolution electron cryo-microscopy and tomography techniques (Li et al. 2016). 
Such a substantial rearrangement of subdomains of the Lassa viral glycoproteins 
would not be possible in the absence of SKI-1/S1P cleavage.

The glycoproteins of Borna disease virus (BDV) and simian immunodeficiency 
virus (SIV) also need to be cleaved by furin for correct trimerization and effective 
insertion into virus particles (Eickmann et al. 2005; Yamshchikov et al. 1995).

9.5.5	 �PC Cleavage of Non-Envelope Proteins

Viral protein R (Vpr) is a HIV-1 protein 96 amino acid long that plays an important 
role in regulating nuclear import of the HIV-1 pre-integration complex and is 
required for virus replication in nondividing cells such as macrophages. It has been 
detected in soluble form in the sera and cerebrospinal fluids of HIV-1-infected 
patients and contributes to HIV pathogenesis. Vpr was found to undergo proteolytic 
processing at the PC cleavage site, 85RQRR↓ located within the functionally impor-
tant C-terminal arginine-rich domain. Interestingly, Vpr processing occurred extra-
cellularly upon close contact to cells and most likely involved cell surface-associated 
furin or furin-like PC (Xiao et al. 2008).

Hepatitis B virus e-antigen (HBeAg) is a secreted version of hepatitis B virus 
(HBV) core protein raised from the core gene. HBeAg has a cleavable signal pep-
tide and four furin cleavage sites in the C-terminal part. HBeAg promotes immune 
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tolerance and is essential for the development of chronic hepatitis B virus infection. 
Furin plays a key role in processing the HBeAg precursor into mature HBeAg (Ito 
et al. 2009; Pang et al. 2013). The furin inhibitor decanoyl-RVKR-chloromethylke-
tone (CMK) combined with the nucleoside analogue entecavir reduced HBV repli-
cation and HBeAg secretion in Hep cells and was suggested as a therapeutic regimen 
for treatment of chronic hepatitis B (Yang et al. 2014).

Papillomaviruses (PV) are non-enveloped viruses that enter cells by endocytosis. 
Entry involves removal of protein L2 from the surface of the virus particles by furin 
(Day et al. 2008; Richards et al. 2006).

9.5.6	 �Protease Activation Mutants for Vaccine Design

A large number of the viruses activated by furin which are shown in Table 9.3 cause 
important diseases. Highly pathogenic avian H5 and H7 influenza viruses (HPAIV) 
are not only a problem for the poultry industry but are also a threat to human health. 
In 1997, an H5N1 virus caused human infections in Hong Kong during a poultry 
outbreak. Six of eighteen patients succumbed to this virus. Since 2003 the H5N1 
virus spread rapidly killing millions of birds and continued to be transmitted to 
humans. Thus, there is a need for the development of human and animal vaccines 
against these viruses. For safety reasons the viruses used for the production of such 
vaccines should contain an HA that is modified at the furin cleavage site to diminish 
their pathogenic potential. This approach is recommended to meet short-termed 
demand of H5 or H7 vaccines (Neumann et al. 2008; Webby et al. 2004), and a vac-
cine with a monobasic HA cleavage site was licensed for humans in responsiveness 
to the pandemic alert in 2003 (Webby et al. 2004).

When an HA with a monobasic cleavage site is present in live vaccines, virus 
revertants with a furin cleavage site may emerge by spontaneous mutation. 
Therefore, safer vaccines are demanded that are produced from attenuated viruses 
containing a nonbasic cleavage site (Böttcher-Friebertshäuser et al. 2014). This con-
cept is based on insights from early investigations in which attenuated mutants of 
Sendai and influenza viruses activated by elastase or chymotrypsin have been ana-
lyzed (Scheid and Choppin 1976; Orlich et al. 1995). More recently, this strategy 
was pursued to exchange the monobasic HA cleavage site of influenza strain A/
WSN/33 (Stech et  al. 2005) and the multibasic HA cleavage motif of an H7N7 
influenza virus (Gabriel et al. 2008) for amino acids susceptible to elastase cleav-
age. The mutants were strictly elastase-dependent, grew equally well as the wild 
type in cell culture, and were attenuated in mice unlike the lethal wild type. 
Immunization with an H7N7 mutant at 106 pfu dosage protected mice against dis-
ease and induced sterile immunity; vaccination with homosubtypic or heterosub-
typic reassortants led to cross protection. These observations demonstrate that a 
mutated HA requiring elastase cleavage can serve as an attenuating component of a 
safe live vaccine against HPAIV and other influenza viruses.

Flaviviruses with an altered furin cleavage site of prM have been shown to pro-
duce single-round infectious particles (Elshuber et al. 2003). Thus, it appears that 
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protease activation mutants may also be a useful approach for the development of 
safe vaccines against other viruses.

9.5.7	 �Inhibitors of PCs for Host-Directed Antiviral Therapy

The high dependence of many viruses on PCs makes PCs promising targets for 
antiviral therapy. Furin inhibitors comprising substrate homologous peptidomimet-
ics, furin- or SKI-1/SP1-adapted serpines, and blocking antibodies as well as  
peptide-conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs) 
suppressing the expression of individual PCs are described in detail in Chap. 11. 
Combinatorial treatment with protease inhibitors and virus-targeting agents such 
as ribavirin and favipiravir allows a drastic reduction of the drug dosages while 
maintaining full inhibitory efficacy. Moreover, the application of PC inhibitors pre-
vents the development of resistance to virus-targeting drugs (Lu et al. 2015; Garten 
et al. 2015).
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10Host Cell Proteases: Cathepsins

Klaudia Brix

Abstract
Cathepsins are proteolytic enzymes with a broad spectrum of substrates. 
They are known to reside within endo-lysosomes where they acquire optimal 
conditions for proteolytic activity and substrate cleavage. However, cathep-
sins have been detected in locations other than the canonical compartments 
of the endocytotic pathway. They are often secreted from cells in either pro-
teolytically inactive proform or as mature and active enzyme; this may hap-
pen in both physiological and pathological conditions. Moreover, cytosolic 
and nuclear forms of cathepsins have been described and are currently an 
emerging field of research aiming at understanding their functions in such 
unexpected cellular locations. This chapter summarizes the canonical path-
ways of biosynthesis and transport of cathepsins in healthy cells. We further 
describe how cathepsins can reach unexpected locations such as the extracel-
lular space or the cytosol and the nuclear matrix. No matter where viruses 
and cathepsins encounter, several outcomes can be perceived. Thus, scenar-
ios are discussed on how cathepsins may support virus entry into host cells, 
involve in viral fusion factor and polyprotein processing in different host cell 
compartments, or help in packaging of viral particles during maturation. It is 
of note to mention that this review is not meant to comprehensively cover the 
present literature on viruses encountering cathepsins but rather illustrates, on 
some representative examples, the possible roles of cathepsins in replication 
of viruses and in the course of disease.
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10.1	 �Biosynthesis and Default Trafficking Pathway

Cathepsins are synthesized as preproenzymes, whereby the signal peptide targets for 
entry of the nascent chains into the lumen of the rough endoplasmic reticulum (rER). 
The signal peptide (pre) is co-translationally cleaved off by signal peptidase upon 
entry into the ER lumen. The propeptides (pro) keep procathepsins in the zymogen 
form, that is, proteolytically inactive during their transport from the rER via the 
Golgi apparatus and the trans-Golgi network (TGN) to late endosomes (Fig. 10.1) 
(Brix et al. 2008, 2015; Erickson et al. 2013). Procathepsins need to pass the quality 
control of the rER before they become posttranslationally modified while traveling to 
the TGN. Interestingly, proper folding of cathepsins can be conveyed by their pro-
peptides as some of these bear chaperone functions. The most important and best-
studied posttranslational modification of cathepsins is mannose 6-phosphorylation. It 
is believed to occur in the cis-Golgi and to be required for recognition by cation-
dependent mannose 6-phosphate receptors (CD-MPR) of the TGN, which sort the 
zymogens into clathrin-coated transport vesicles (Fig. 10.1) (De Duve and Wattiaux 
1966; Kornfeld and Mellman 1989; von Figura 1991; Kornfeld 1992; Erickson et al. 
2013; Brix et al. 2015). Upon arrival in late endosomes, the pH drops such that pro-
cathepsins dissociate from the sorting CD-MPR, which is recycled back to the TGN 
via retromer-coated vesicles. In late endosomes, procathepsins are proteolytically 
processed to acquire the mature and proteolytically active state (Fig. 10.1). Therefore, 
either asparaginyl endopeptidase (AEP), which is better known as legumain, or 
cathepsins themselves cleave procathepsins in trans such that the propeptides are 
removed and the mature forms are delivered for further functioning as soluble 
enzymes in the compartments of the endocytic pathway. Thus, proteolytic processing 
for maturation and activation of procathepsins takes place in the late endosome.

As indicated above, the molecular architecture of cathepsins features N-terminal 
signal peptides that are typically followed by inhibitory propeptides and the pepti-
dase domains (Tables 10.1, 10.2 and 10.3). However, the mature, single-chain form 
of cathepsin B, in particular, can be processed further, thereby yielding a two-chain 
form that consists of a light and a heavy chain, which remain bound to each other by 
disulfide bonds (Mort and Buttle 1997). Both, single- and two-chain forms of 
cathepsin B are proteolytically active as hydrolases. The molecular architecture of 
procathepsin-activating AEP/legumain differs from that of cathepsins, in that the 
peptidase domain directly follows the signal peptide and the pro-domain is found at 
the C-terminus (Table 10.2). Legumain is further exceptional, because it acts not 
only as a peptidase but features also peptide ligase activity depending on the condi-
tions it is exposed to (Dall and Brandstetter 2016).

10.2	 �Proteolytic Activity and Substrate Cleavage Preferences 
of Aspartic, Cysteine, and Serine Cathepsins

Cathepsins belong to either of three classes of proteolytic enzymes, namely, aspar-
tic, cysteine, or serine proteases (Rawlings 2013; Rawlings et  al. 2016). Hence, 
cathepsins are classified according to the amino acids of their active sites that are 
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responsible for catalytic hydrolysis of peptide bonds. Aspartic acid or cysteine resi-
dues are part of the catalytic dyad of the aspartic and cysteine cathepsins, respec-
tively, while serine is part of a catalytic triad in which an additional residue is 
required to stabilize the oxyanion hole in the acyl intermediate upon interaction 
between the enzyme and its substrate. Aspartic cathepsins are acting as water 
nucleophiles, whereas cysteine and serine cathepsins act as protein nucleophiles 
(Baici et al. 2013). Hence, the nucleophile is provided by a side chain of an amino 
acid in the active site, namely, the sulfhydryl or the hydroxyl group of either cyste-
ine or serine, respectively, in cysteine and serine cathepsins. For example, serine 
bears the nucleophilic hydroxyl group of serine cathepsins, while histidine acts as 
the general base. In addition, aspartate helps to orient the imidazolium ring of histi-
dine such that it activates serine to perform the nucleophilic attack on the peptide 
bond of the substrate, whereby a temporary complex between the enzyme and its 
substrate forms, i.e., the acyl intermediate. This breaks down rapidly, resulting in 
protonation of the general base histidine. Subsequent hydrolysis of the scissile bond 
occurs when a water molecule enters. The reaction mechanism of peptide bond 
hydrolysis catalyzed by cathepsins therefore involves two substrates, the protein or 
peptide substrate and a water molecule, and two products are generated, namely, an 
N- and a C-terminal peptide product.

Most of the cathepsins act as endopeptidases (Fig. 10.2). However, the cysteine 
cathepsins B and X, the serine cathepsin A, and legumain are also acting as car-
boxypeptidases, whereas cysteine cathepsin H acts as an aminopeptidase and cyste-
ine cathepsin C forms dimers acting as dipeptidyl peptidase (Fig.  10.2). Thus, 
cathepsins are mostly acting on their peptide or protein substrates as monomers, but 
some can dimerize or even multimerize, thereby eventually altering substrate speci-
ficity (see also below).

Fig. 10.2  Schematic drawing depicting distinct cathepsins acting as endo- and exopeptidases on 
a hypothetical peptide substrate. Amino acids are represented as beads on a string from N- to 
C-terminus in the top panel. Cathepsins are listed according to their mechanism of substrate cleav-
age. Bottom panel denotes naming of amino acids on both sides of the scissile bond according to 
the Schechter and Berger nomenclature

N -

Cysteine
cathepsin H

Cysteine
cathepsin C

Cysteine
cathepsins B and X
serine cathepsin A

Carboxy-
peptidase

Dipeptidyl-
peptidase Endopeptidase

Aspartic cathepsins D and E
cysteine cathepsins B, C, F, H, K, L, V, O, S, W, and X

serine cathepsins A and G

Amino-
peptidase

N - P4 P3 P2 P1 P1′ P2′ P3′ P4′

- C

- C

Schechter and Berger
nomenclature:

Scissile bond
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Proteolytic activity and substrate specificity are typically determined with 
recombinant enzyme preparations in well-defined in vitro assays. According to the 
Schechter and Berger nomenclature (Schechter and Berger 1968), the amino acids 
next to the scissile bond toward the N-terminus of the substrate are named P1, P2, 
P3, and P4, while the C-terminal amino acid next to the scissile bond is named P1′, 
and the following amino acids of the substrate are referred to as P2′, P3′, and P4′, 
respectively. The substrate-binding pockets in the cathepsins are named accord-
ingly as S1–S4 and S1′–S4′, respectively, as for every other peptidase. Standard 
assays to determine the activity of cathepsins are available, as are synthetic sub-
strates, which are preferentially or specifically cleaved by the enzymes. Standard 
cathepsin activity assays mainly consider peptide cleavage at optimal conditions, 
whereby a reducing environment of acidic to slightly acidic pH—mimicking the 
conditions in the endo-lysosomal compartments—is considered as the main deter-
minant. The reader is referred to the Handbook of Proteolytic Enzymes (Barrett 
2004) and to the “MEROPS database” (www.merops.sanger.ac.uk) (Rawlings 
et al. 2016), which provides a comprehensive and excellent compendium of prote-
ases, their substrates, and inhibitors, for further up-to-date information.

It should be noted that cathepsins vary in their substrate specificities, but many 
exhibit overlapping substrate cleavage preferences, making it sometimes difficult to 
distinguish cathepsin activities. This ambiguity in substrate specificity often compli-
cates their specific inhibition. In addition, cathepsins are redundantly expressed (Brix 
et al. 2008; Reiser et al. 2010; Gansz et al. 2013; Sloane et al. 2013). Thus, a cathep-
sin can be upregulated to take over the function of a related enzyme, when the latter 
is eliminated by gene knockout or inhibited by pharmacological interventions. This 
phenomenon of redundant regulation of cathepsin expression is observed especially 
when covalent and irreversible instead of transient reversible inhibition is applied.

10.3	 �Endogenous Inhibitors of Cathepsins

Cathepsin activities are counterbalanced by endogenous inhibitors (Tables 10.1, 
10.2 and 10.3). The aspartic cathepsins D and E, which are mostly detected in 
lysosomes, are inhibited by pepstatin (Dean 1979) or by a natural product isolated 
from the sea anemone Actinia equina, equistatin. This latter inhibitor interestingly 
also interacts with cysteine peptidases (Lenarcic et al. 1997; Lenarcic and Turk 
1999) including the cysteine cathepsins that are found preferentially in endo-lyso-
somes but also frequently in extra- and pericellular locations. Furthermore, aber-
rant or alternative forms of cysteine cathepsins are detected in the cytosol, as well 
as the nuclear and mitochondrial matrices (Brix et al. 2015). Cytosolic cystatins 
A and B, also known as stefins A and B (Machleidt et al. 1983; Brzin et al. 1983), 
as well as secreted cystatins C, D, E/M, F, and SN (Barrett 1986; Sloane et al. 
1990; Turk and Bode 1991; Alvarez-Fernandez et  al. 1999; Abrahamson et  al. 
2003; Turk et al. 2008; Zeeuwen et al. 2009) serve as endogenous inhibitors of the 
cysteine cathepsins. In addition, alpha-2-macroglobulin has been identified as an 
inhibitor of cysteine cathepsins (Fritz 1979; Travis 1988). Cysteine cathepsins, in 
principle, can also be inhibited by serpins, which are cross-class inhibitors of 
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serine proteases (Silverman et al. 2001). Like the cystatins, serpins are present 
intra- and extracellularly. Serpins have a reactive center loop that serves as a bait 
for the attacking serine protease and, upon cleavage, remains bound by covalent 
linkage to the enzyme (Huntington 2006; Whisstock et al. 2010).

10.4	 �Tools to Study Expression, Trafficking, and Activities 
of Cathepsins

Numerous tools are available to study the cathepsins. Specific antibodies are used in 
immunostaining experiments for subsequent inspection by light and electron 
microscopy. Such strategies in using antibodies for the detection of cathepsins often 
bear specificity problems (Weber et al. 2015), because cathepsins are evolutionary 
conserved and show extensive sequence homologies.

Synthetic substrates, like chromogenic or fluorogenic peptides, are available for 
in vitro activity assays (see, MEROPS database for further details). Likewise, cyto- 
or histochemical approaches have been described, which employ synthetic cathep-
sin substrates that are converted into products less diffusible and readily detected by 
means of microscopy (Spiess et al. 1994; Brix et al. 1996). Enzymography in poly-
acrylamide gels is another means of determining multiple cathepsin activities at a 
time in cell or tissue lysates (Chen and Platt 2011; Platt et al. 2016).

A number of chimeric proteins consisting of cathepsins and fluorescent proteins 
have been generated which can be expressed in mammalian cells (for reviews, see 
Brix et al. 2008; Arampatzidou et al. 2011). Tagged cathepsins follow the regular 
transport pathways like the endogenous enzymes (Naganawa et  al. 1999; Linke 
et al. 2002a, b; Arampatzidou et al. 2011; Frizler et al. 2013; Tamhane et al. 2015; 
Tamhane et al. 2016). Trafficking studies in living cells have been combined with 
co-localization experiments in which compartment-specific markers have been used 
to spot full-length or N-terminally truncated specific forms of cathepsins (see 
below) while they are on the move through the cell (Linke et al. 2002a; Zwicky et al. 
2003; Müntener et al. 2004; Mayer et al. 2008). Intervention by either permanently 
blocking or transiently interfering with specific transport routes has been applied in 
order to investigate distinct enzyme trafficking in a variety of eukaryotic cells.

The most elegant way to visualize cathepsin activities “on the spot” and in a quan-
titative manner is by using so-called activity-based probes (ABPs) (Greenbaum et al. 
2002; Jessani et al. 2004; Blum et al. 2005; Blum 2008; Edgington et al. 2011; Blais 
et al. 2012; Zou et al. 2012; Grzywa and Sieńczyk 2013; Sanman and Bogyo 2014). 
ABPs consist of a reactive functional group (so-called warhead) that binds to the 
target protease, a linker region that resembles a peptide substrate, and additional tag-
ging groups. The tagging groups are typically fluorogenic, but biotin or iodinatable 
moieties have also been chemically engineered onto ABPs. Hence, a family or sub-
families of cathepsins are functionally addressed and become covalently tagged upon 
cleavage of the ABP’s linker. ABPs are available as broad-spectrum probes used in 
approaching the proteolytic activities of aspartic, cysteine, and serine cathepsins. In 
addition, specific ABPs have been synthesized that can be cleaved by one or only few 
cathepsins. Moreover, ABPs with propeptide-mimicking features in the peptide 
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backbone have been used (Schaschke et al. 1998; Diederich et al. 2012). Such highly 
specific ABPs are, in principle, able to distinguish even closely related cathepsins.

The one-to-one binding principle of ABPs renders them powerful tools to quan-
tify cathepsin activities. This is to say that most ABPs act as inhibitors that are 
attacked and cleaved in a substrate-like fashion, but remain bound to the targeted 
enzyme, thus forming an irreversible, covalent complex with the target protease. 
The concept of ABP labeling of cathepsins can be compared with the suicidal inhi-
bition mechanism of the serpins on their target proteases (see above). The principle 
of specific and irreversible binding bears the advantage of rendering ABPs into 
quantitative probes that allow to detect only mature, proteolytically active cathep-
sins. However, the disadvantage of many ABPs is equally intrinsic, namely, they act 
as protease inhibitors and may eventually lead to pharmacological knockdown of 
proteolytic activities when applied to living cells.

The above sketched labeling options to visualize, localize, and quantify cathep-
sins can be and have been combined in all possible variations (Baruch et al. 2004; 
Blum et al. 2005, 2007; Brix and Jordans 2005; Blum 2008; Sadaghiani et al. 2007; 
Brix et al. 2008; Arampatzidou et al. 2011; Salpeter and Blum 2013). Such experi-
ments have helped to uncover the transport pathways that are followed by pro- and 
mature cathepsins in different eukaryotic cells. Importantly, it is now state of the art 
to distinguish proteolytically active from inactive cathepsins. Moreover, it became 
clear that each and every cell type may use cathepsins strategically in its own, dis-
tinct way in support of the specific cell’s function (Brix et al. 2008, 2015; Mohamed 
and Sloane 2006; Sloane et al. 2013; Weiss-Sadan et al. 2017). Hence, subcellular 
locations of cathepsin activities have been detected that encompass the expected 
canonical endo-lysosomal compartments. However, quite often locations of cathep-
sin activities were detected which were, by all means, unexpected. Thus, cathepsins 
exhibit an astonishing variety of transport pathways to reach numerous intra- and 
extracellular locations where the proteases may function in a spatially confined and 
temporally regulated manner (Mohamed and Sloane 2006; Gocheva and Joyce 
2007; Brix et al. 2013, 2015; Akkari et al. 2016).

10.5	 �Unexpected Locations Reached by Cathepsins  
Are Explained by Noncanonical Trafficking

10.5.1	 �Alternative Pathways of Activation upon Secretion 
of Procathepsins

Procathepsins may skip recognition by the CD-MPR at the TGN and become further 
sorted and transported along the secretory pathway with destination to the cell surface 
for subsequent secretion into the extracellular space (Fig. 10.1, left transport route). 
Pericellularly, the procathepsins may become activated by soluble endopeptidases or 
through the action of plasma membrane-bound ectoenzymes. Yet another pathway is 
used in particular in cells of the innate immune system, like macrophages, that express 
the cation-independent mannose 6-phosphate receptor (CI-MPR, also referred to as 
IGFII/M6PR) (Mason et al. 1987; Pohlmann et al. 1995; Collette et al. 2004). This 
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cell surface receptor acts as a scavenger receptor and functions in rescuing faulty or 
excessively secreted procathepsins for subsequent internalization by endocytosis and 
sorting along the endocytic pathway. Hence, during their transport from the extracel-
lular space via early endosomes to late endosomes (Fig. 10.1, right transport route), 
such secreted forms of cathepsins eventually are activated in the same compartment as 
those following the default transport pathway but delayed in time.

10.5.2	 �Secretory Lysosomes

Distinct cell types feature so-called secretory lysosomes (Andrews 2000; Brix et al. 
2008). These are endocytic compartments, which resemble late endosomes and 
lysosomes in their characteristic biochemical composition. Hence, secretory lyso-
somes or cathepsins recruited from within late endosomes and lysosomes are trans-
ported in a retrograde fashion, such that the vesicles fuse with the plasma membrane, 
typically upon signaling. This alternative route of cathepsin transport (Fig. 10.1, 
bottom right transport route) is observed in a number of specific cell types and 
allows for secretion of proteolytically active cathepsins into the extracellular space 
(Linke et al. 2002a, b; Büth et al. 2004).

10.5.3	 �Cathepsins in Extracellular Locations and Bound 
to the Cell Surface

Cathepsins are present in the extracellular space as mature and active enzymes or as 
inactive proforms. While procathepsins that underwent mannose 6-phosphorylation 
bind to the CI-MPR (see above) (von Figura 1991; Erickson et al. 2013; Brix et al. 
2015), mature cathepsins and procathepsins can also become bound by alpha-2-
macroglobulin (Arkona and Wiederanders 1996; Peloille et al. 1997). Moreover, this 
protein serves as a regulator of a number of proteases, namely, it is an inhibitor of matrix 
metalloproteinases and cysteine cathepsins alike. Other receptors known to interact with 
secreted cathepsins are those of the diverse low-density lipoprotein (LDL) receptor-like 
protein (LRP) family of transmembrane proteins present at the cell surface of almost all 
cell types (Poller et al. 1995; Willnow et al. 1996; Herz and Strickland 2001). Megalin/
gp330 is one of the LRPs that is supposed to mediate internalization and endo-lyso-
somal delivery of cathepsins, if previously secreted by mistake (Nielsen et al. 2007). 
Thus, LRPs function in a way similar to the CI-MPR but interact also with pro- and 
mature cathepsins lacking mannose 6-phosphorylation (Fig. 10.1, right transport route).

10.5.4	 �Regulation of Cathepsin Activities  
in the Extracellular Space

Pericellular and extracellular localization of procathepsins and mature cathepsins 
has been observed under both physiological and pathological conditions. For 
instance, cathepsin-mediated extracellular proteolysis has been shown to promote 
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cancer cell invasion and tumor progression through extracellular matrix (ECM) 
degradation (Rochefort et  al. 2000; Joyce and Hanahan 2004; Liaudet-Coopman 
et  al. 2006; Mohamed and Sloane 2006; Gocheva and Joyce 2007; Sloane et  al. 
2013). It remains to be seen, however, if the enhanced cathepsin secretion respon-
sible for excessive ECM degradation is triggered by the acidic environment in tumor 
tissue or by other mechanisms (Cavallo-Medved and Sloane 2003).

Depending on the extracellular conditions, cathepsins may acquire altered or 
additional substrate preferences. For example, the cysteine cathepsin K is secreted 
under physiological conditions as an active enzyme and acts in the acidic resorption 
lacuna formed by osteoclasts during bone turnover (Gelb et al. 1996; Saftig et al. 
1998; Rachner et al. 2011; Fonović and Turk 2014; Brömme et al. 2016). However, 
cathepsin K is also responsible for degradation of thyroglobulin in the extracellular 
thyroid follicle lumen, namely, at neutral pH and in oxidizing conditions (Tepel 
et al. 2000; Friedrichs et al. 2003; Jordans et al. 2009). Moreover, secreted cathepsin 
K monomers can interact with each other, thereby forming polymeric ringlike struc-
tures, depending on the molecular composition of the extracellular space (Li et al. 
2002). It has been shown that ECM components like glycosaminoglycans and other 
constituents are essential as scaffolding factors supporting extracellular interactions 
of cathepsin K molecules (Li et al. 2004). Moreover, cathepsin K can be stabilized 
extracellularly by binding to cell surface molecules like clusterin (Novinec et al. 
2012), which also interacts with protease receptors of the LRP family, e.g., megalin/
gp330 (Lemansky et al. 1999). Importantly, the activity of this particular enzyme—
cysteine cathepsin K—differs in monomeric and dimeric as well as in soluble and 
ECM- or membrane-bound form (Aguda et al. 2014). Hence, different substrates 
can be cleaved by the same cathepsin, and a given substrate can be processed differ-
ently by that enzyme, depending on whether the cathepsin is secreted as an active 
monomer or dimer, scaffolded by ECM constituents, or bound by cell surface recep-
tors complexed with allosteric cofactors. It is important to note that cysteine cathep-
sin K is well-studied, in particular, because of its significance as an anti-osteoporotic 
drug target.

These examples highlight that more research is required to understand how the 
enzymatic activities of cathepsins are regulated, in particular, in unexpected loca-
tions. Thus, the well-accepted concept that cathepsins optimally cleave protein and 
peptide substrates at acidic pH in reducing environments, as found in endo-
lysosomes, must be broadened. This is all the more important when cathepsin activ-
ities are investigated under conditions of cellular stress as is the case with viral 
infection.

10.5.5	 �Cytosolic and Nuclear Cathepsins

As detailed above, cathepsins belong to the obligate constituencies of the compart-
ments of the endocytic pathway where they exert their functions most optimally. 
However, the phenomenon of leaky lysosomes has also been known for long. 
Cellular stress as is the case with cancer cells under prolonged drug treatment or UV 
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irradiation can cause leakiness of endo-lysosomal membranes. Mature cathepsins 
may then be released into the cytosol, where proteolytic activity is controlled by 
different means, such as endogenous inhibitors that specifically bind to the enzymes 
or other biochemical properties of the cytosol that are not optimal for cathepsin-
mediated cleavage. However, when escaping these safeguarding measures by, for 
instance, inhibitor downregulation, proteolytically active cathepsins may be present 
in the cytosol for prolonged time intervals and induce apoptotic, necrotic, or pyrop-
totic cascades resulting in cell death (Turk et al. 2000; Luke et al. 2007; Turk and 
Turk 2009; Aits and Jäättelä 2013; Flütsch and Grütter 2013). Furthermore, cyto-
solic and nuclear cathepsins may modulate cell cycle progression (Goulet and 
Nepveu 2004; Brix et al. 2015; Tamhane et al. 2016).

10.5.6	 �Alternative Cathepsin Forms

N-terminally truncated forms of the canonical preprocathepsins translated from, 
e.g., alternative transcripts are believed to lack the signal peptide and parts of the 
propeptide (Mehtani et al. 1998; Zwicky et al. 2003; Müntener et al. 2004; Baici 
et al. 2006; Schilling et al. 2009; Tholen et al. 2014; Brix et al. 2015). They are 
therefore not targeted for entry into the ER lumen and will not follow the secretory 
pathway. Instead, N-terminally truncated cathepsins are retained in the cytosol and 
can even fold properly as they acquire a proteolytically active state in this unex-
pected location (Goulet and Nepveu 2004; Luke et  al. 2007; Reiser et  al. 2010; 
Tedelind et al. 2010). Some of these alternative and aberrant forms of the cathepsins 
occur even in the nuclear matrix (Fig. 10.1, center at bottom). The mechanism by 
which they are transported through the nuclear pore complexes is not known, 
because most endo-lysosomal enzymes (except AEP/legumain) lack a nuclear local-
ization sequence (NLS). It is reasonable to assume, however, that such nuclear 
cathepsins, as well as the cytosolic forms, are involved in processing of transcrip-
tion factors, core, and/or linker histones. In vitro experiments further revealed an 
important role of DNA as a potential scaffolding factor that interferes with serpin-
mediated control of cathepsin activities in environments that mimic unexpected cel-
lular locations like the nuclear matrix (Ong et al. 2007).

10.6	 �Cathepsins Meeting Viruses, Viruses  
Meeting Cathepsins

10.6.1	 �Transient Encounters when Traveling  
Along the Endocytic Pathway

Cathepsins are well known to process the spike proteins of SARS and MERS coro-
naviruses, thereby activating viral fusogens and enabling host cell entry from within 
endosomes (Millet and Whittaker 2015; Simmons et al. 2013; Heald-Sargent and 
Gallagher 2012). Thus, treatment options of preventing host cell infection with 
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SARS-CoV have been proposed that involve cysteine cathepsin L inhibitors (Tong 
2006).

A very complex mechanism of proteolytic activation of the fusion proteins of 
henipaviruses (HNV) has been described as an essential prerequisite for infectivity 
and pathogenicity of these highly pathogenic paramyxoviruses (Weis and Maisner 
2015). The non-fusogenic F0 protein of HNV is translated in host cells and is sub-
sequently transported along the secretory pathway in its inactive form to the plasma 
membrane. Upon re-internalization and processing in recycling endosomes by 
cathepsins B and L (Pager and Dutch 2005; Meulendyke et al. 2005; Vogt et al. 
2005; Pager et al. 2006; Diederich et al. 2005, 2012), activated F1/F2 complex trav-
els back to the plasma membrane, where it is incorporated into budding virus par-
ticles, or mediates fusion of an infected cell with a neighboring cell. Hence, 
endosomal cysteine cathepsins B and L play an essential role in promoting spread 
of infection and formation of syncytia.

Thus, there are significant differences in cathepsin-mediated activation of viral 
fusion proteins: with HNV it occurs at a late stage of replication, whereas SARS and 
MERS coronaviruses are activated upon virus entry into host cells. Endosomal cys-
teine cathepsins B and L are also involved in the processing of the envelope glyco-
proteins of Marburg and Ebola viruses. Cathepsin cleavage enables the glycoprotein 
to interact with the Niemann-Pick disease type C1 (NDC-1) protein of the host cell, 
which is an essential step in filovirus entry (Hunt et al. 2012). Likewise, endosomal 
cathepsins are utilized by non-enveloped reoviruses for host cell entry. After removal 
of the outer capsid protein σ3 by cathepsins, the viral protein μ1 is exposed, which 
is a fusion protein, promoting endosomal membrane rupture (Danthi et al. 2010).

10.6.2	 �Altered Cathepsin Expression in Virus-Infected Cells

Virus infection may affect transcriptional regulation of cathepsin genes leading to 
disbalanced cell functions. In addition to the N-terminally truncated forms of 
cathepsins and those reaching the cytosol as full-length enzymes due to release from 
endo-lysosomes, it is conceivable that alternate cathepsin forms may derive from 
altered genes. These may result from gene mutations or chromosomal aberrations, 
as occurring in cancer cells, or due to upregulated translation of alternative tran-
scripts. Viral oncogenes may affect amplification of cathepsin genes (Mohamed and 
Sloane 2006), and it was proposed that endogenous retroviruses or elements thereof 
may activate placenta-specific genes encoding cysteine cathepsins of mice (Rawn 
and Cross 2008).

Moreover, HIV-infected macrophages have been reported to upregulate both 
cytosolic cysteine protease inhibitor cystatin B (stefin B) and cysteine cathepsin B, 
believed to trigger neuronal cell death in HIV-1-associated neurocognitive disorder 
(HAND) (Rivera et  al. 2014). Similarly, virus transformation of cultured cells 
in vitro is known to cause upregulation and secretion of the so-called major excreted 
protein (MEP), which was found in the secretion media of transformed fibroblasts 
and identified as proteolytically active cathepsin L (Mason et al. 1987; Rubin 2005). 
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Thus, viruses may not only affect transcriptional regulation of cathepsin genes but 
may thereby also cause mis-trafficking of the proteases. In hepatocellular carci-
noma, caused by infection with hepatitis B and C viruses, altered cathepsin traffick-
ing also results in their secretion. In this particular case of virus-induced liver 
cancer, the over-secretion of cathepsins is further complicated by the defective func-
tioning of the IGFII/M6P receptor (CI-MPR) pathway, normally acting as a recap-
ture mechanism for internalization of faulty and excessively secreted cathepsins 
(see above) (Scharf and Braulke 2003). Thus, in the absence of re-internalization 
cues, the cathepsins may be present in enhanced amounts at the cell surface of hepa-
tocellular carcinoma cells.

The findings summarized above show that another, so far only rarely considered 
scenario may be likely. Namely, viruses may interact with cathepsins present in the 
extracellular space of, e.g., cancer cells, even before entering the host cell’s endo-
cytic compartments. In acknowledging that cathepsins may well act as proteolytic 
enzymes already in the pericellular space (see above), it becomes clear at this point 
that some viruses and their constituents can be processed, in principle, by extracel-
lular cathepsins, that is, before actually entering the host cell by endocytosis 
(Fig. 10.1, top, center).

It has also to be mentioned in this context that extracellular cathepsin B-mediated 
shedding of constituents of the glycocalyx of endothelial cells was proposed as a 
process in support of infection with viruses causing hemorrhagic fevers (Becker 
et  al. 2015). Likewise, cysteine cathepsins B-, L-, and S-mediated shedding of 
E-cadherin, an important cell-cell adhesion molecule, was suggested to cause epi-
thelial cell damage, thereby promoting disease progression in patients with viral 
infections (Grabowska and Day 2012).

Taken together, these observations illustrate different mechanisms by which 
viruses may upregulate expression and stimulate secretion of cathepsins. They also 
suggest that cathepsins activate viruses not only in endocytotic compartments but 
also at the cell surface. Finally, these findings support the concept that cathepsins 
contribute to pathogenesis not only by activating the fusion capacity of viruses but 
also by other mechanisms promoting cell and tissue damage.

10.6.3	 �Endo-Lysosomal Cathepsins and the Immune  
Response to Viral Infections

Viruses entering host cells by endocytosis are known to trigger a Toll-like receptor 
(TLR)-mediated immune response which eventually leads to interferon-alpha pro-
duction (Sun et  al. 2010). Hence, viral nucleic acids are recognized as PAMPs 
(pathogen-associated molecular patterns) by proteolytically processed transmem-
brane pattern recognition receptors like TLR9. Proteolytic activation of TLR9 is 
catalyzed by endosomal AEP/legumain and cathepsins (Bauer 2013). Thus, cathep-
sins are also involved in the immune response to viral infection.

Cathepsin-mediated processing of viral proteins—typically protein fusogens—
happens in early and recycling endosomes (see above), which are connected with 
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other compartments of the endocytic pathway, namely, also with late endosomes or 
multivesicular bodies (MVBs). MVBs are believed to serve as a place for generation 
of exosomes (Cocucci and Meldolesi 2015; Hurley 2015). In this regard, it is inter-
esting to note that infection with the filoviruses EBOV and MARV involves the 
molecular machinery of the ESCRT pathway, which is required for MVB formation 
and which is important for virus replication, nucleocapsid formation, and matura-
tion in a compartment positive for late endosomal markers (Dolnik et al. 2015).

Another vicious cycle is working in cross-presentation, which follows from ini-
tial phagocytosis of portions or entire virus-infected cells by dendritic cells (Rock 
and Shen 2005). These professional antigen-presenting cells depend on cysteine 
cathepsin S-mediated endosomal processing of internalized proteins, which then 
results in antigen presentation in the context of MHC class II. In the unfortunate 
case of endosomal processing of viral proteins, the resulting viral antigens may 
therefore be presented on the surface of dendritic cells via MHC class II, instead of 
MHC class I. When antigen presentation happens in the context of MHC class I, 
alerted cytotoxic T cells eliminate the virus-infected cells. Upon cross-presentation, 
however, tolerance may be a nonproductive outcome.

�Concluding Remarks

Finally, a chapter on cathepsins in a book on viruses cannot end without placing 
a special note in the context of therapeutic approaches aiming at eliminating 
viruses from the host. In particular, the retroviral HIV protease is important for 
maturation of the virus particles and, hence, targeted therapeutically (Moyle and 
Gazzard 1996; Cooper 2002). HIV proteinase structurally resembles the ubiqui-
tously expressed aspartic cathepsin D, denoting the similarities between host 
cell’s aspartic cathepsins and retroviral aspartic proteases, which are—in the 
case of HIV—successfully inhibited when approached by transition-state inhibi-
tors. Therefore, and in conclusion, basic science researchers, virologists, and 
clinicians have learned a lot from the structural similarities of host cell cathep-
sins and viral proteases. We deduce that interactions between cell biologists and 
virologists bear more interesting facts to be gathered in the future. Moreover, 
many more potential therapeutic answers are to be developed from the encoun-
ters of cathepsins and the various viruses utilizing the proteases in their own 
favor. Hence, some of the comments in this chapter are meant in support of 
stimulating future discussions in the spirit of thinking “out of the box,” and, like 
the cathepsins, following paths beyond the canonical pathways. In our opinion, 
this is an endeavor worth to be undertaken and continued in the future.
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Abstract
The replication of numerous pathogenic viruses depends on host proteases, which 
therefore emerged as potential antiviral drug targets. In some cases, e.g., for influ-
enza viruses, their function during the viral propagation cycle is relatively well 
understood, where they cleave and activate viral surface glycoproteins. For other 
viruses, e.g., Ebola virus, the function of host proteases during replication is still 
not clear. Host proteases may also contribute to the pathogenicity of virus infec-
tion by activating proinflammatory cytokines. For some coronaviruses, human 
proteases can also serve in a nonproteolytical fashion simply as receptors for virus 
entry. However, blocking of such protein-protein contacts is challenging, because 
receptor surfaces are often flat and difficult to address with small molecules. In 
contrast, many proteases possess well-defined binding pockets. Therefore, they 
can be considered as well-druggable targets, especially, if they are extracellularly 
active. The number of their experimental crystal structures is steadily increasing, 
which is an important prerequisite for a rational structure-based inhibitor design 
using computational chemistry tools in combination with classical medicinal 
chemistry approaches. Moreover, host proteases can be considered as stable tar-
gets, and their inhibition should prevent rapid resistance developments, which is 
often observed when addressing viral proteins. Otherwise, the inhibition of host 
proteases can also affect normal physiological processes leading to a higher prob-
ability of side effects and a narrow therapeutic window. Therefore, they should be 
preferably used in combination therapies with additional antiviral drugs. This 
strategy should provide a stronger antiviral efficacy, allow to use lower drug 
doses, and minimize side effects. Despite numerous experimental findings on 
their antiviral activity, no small-molecule inhibitors of host proteases have been 
approved for the treatment of virus infections, so far.
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Abbreviations

Agm	 Agmatine
BBI	 Bowman-Birk inhibitor
CCHFV	 Crimean-Congo hemorrhagic fever virus
CMK	 Chloromethyl ketone
Dec	 Decanoyl
EboV	 Ebola virus
GP	 Glycoprotein
HA	 Hemagglutinin
HAT	 Human airway trypsin-like peptidase
HIV	 Human immunodeficiency virus
HPAIV	 Highly pathogenic avian influenza virus
HPIV	 Human parainfluenza virus
hTyr	 Homotyrosin
IAV	 Influenza A virus
IBV	 Influenza B virus
LASV	 Lassa virus
LBS	 Lysine binding site
LCMV	 Lymphocytic choriomeningitis virus
LPAIV	 Low pathogenic avian influenza virus
MERS-CoV	 Middle East respiratory syndrome coronavirus
PAR-2	 Protease-activated receptor 2
PC	 Proprotein convertase
Phac	 Phenylacetyl
PPI	 Protein-protein interaction
SARS-CoV	 Severe acute respiratory syndrome coronavirus
S-protein	 Spike protein
TLSP	 Trypsin-like serine protease
TTSP	 Type II transmembrane serine protease

11.1	 �Introduction

At present, 588 human proteases are listed in the degradome database (Quesada 
et al. 2009), which can be further divided into five classes based on their catalytic 
mechanism. The majority belongs to the family of metallo (192 members), serine 
(184 enzymes), and cysteine proteases (164 members); in addition, 27 threonine 
and 21 aspartyl proteases are known, so far. Proteases are well-druggable targets 
and numerous small-molecule protease inhibitors have been approved in the past. 
The more than ten inhibitors of the angiotensin-converting enzyme (ACE) (Turk 
2006), as well as the neprilysin (enkephalinase) inhibitor prodrugs sacubitril 
(Howell and Cameron 2016) and racecadotril (acetorphan) target Zn2+-dependent 
metalloproteases. The ACE blockers and sacubitril are suitable for long-term usage 
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as antihypertensive drugs, whereas racecadotril is approved as an antidiarrheal 
drug. Despite limited use, treatment of high blood pressure is also possible with 
aliskiren, a small-molecule inhibitor of the aspartate protease renin (Wood et al. 
2003). Numerous synthetic inhibitors of the trypsin-like serine proteases (TLSP) 
thrombin (argatroban, dabigatran etexilate, bivalirudin) and factor Xa (rivaroxa-
ban, apixaban, edoxaban, betrixaban) can be used as anticoagulants (Straub et al. 
2011). Except argatroban and bivalirudin, all of these clotting protease inhibitors 
are orally available and suited for long-term use in the prevention of stroke, e.g., in 
patients suffering from atrial fibrillation. Meanwhile, more than ten gliptins have 
been approved in various countries. The gliptins are a class of oral hypoglycemic 
drugs for the treatment of diabetes mellitus type 2 targeting the serine protease 
dipeptidyl peptidase 4, thereby reducing the degradation of incretin hormones 
leading to an enhanced insulin secretion (Scheen 2015). The proteasome inhibitors 
bortezomib (Adams 2004) and carfilzomib (Kortuem and Stewart 2013) are used in 
patients with multiple myeloma and the first approved drugs targeting threonine 
proteases. Meanwhile, two additional proteasome inhibitors, ixazomib and opro-
zomib, obtained orphan drug status (Manasanch and Orlowski 2017). Besides 
addressing human proteases, numerous inhibitors of the aspartyl protease of HIV 
(Ghosh et  al. 2016) and the NS3/4A serine protease of the hepatitis C virus 
(McCauley and Rudd 2016) are on the market. With few exceptions, most of these 
inhibitors are routinely used in combination with other drugs and not as single 
agents. Despite large efforts, no cysteine protease inhibitor has been approved, so 
far. One of the most advanced inhibitors of the papain-like bone-degrading prote-
ase cathepsin K is the nitrile derivative odanacatib, which was developed for the 
treatment of osteoporosis. Based on a clinical phase III trial, a high efficacy with 
increasing bone mineral density and reduced risk of fractures was initially reported, 
as well as a good safety profile (Chapurlat 2015). However, its further development 
was stopped at the end of 2016 due to a slightly increased risk of stroke (Mullard 
2016). Other cathepsin K inhibitors, like the nitrile balicatib, failed in phase II due 
to complications with skin fibrosis (Brömme et  al. 2016; Runger et  al. 2012). 
Despite the lack of approved cysteine protease inhibitors, many other examples 
confirm the suitability of at least some proteases as excellent drug targets.

This should also apply to numerous host proteases, which are involved at various 
steps during the propagation cycle of certain viruses. The inhibition of host enzymes 
could be advantageous compared to the classical addressing of viral targets due to a 
low risk for rapid drug resistances. However, side effects may occur by targeting 
host enzymes, which are required for normal physiological processes. Moreover, 
most host proteases belong to families of structurally closely related enzymes, and 
therefore it might be challenging to address a single target without affecting other 
family members. In order to avoid side effects and a narrow therapeutic window, it 
is therefore advisable to develop such host protease inhibitors mainly for combina-
tion therapies, which should enable the use of lower drug doses.

In the following sections, numerous examples for the antiviral activity of inhibi-
tors mainly addressing human serine proteases will be provided. In addition, struc-
tural aspects of the protease-inhibitor complexes will be discussed. Although first 
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approved inhibitors of ACE and thrombin have been discovered long before the 
target structures have been determined, all subsequent successful developments in 
the field of protease inhibitors were strongly supported by the availability of crystal 
structures, which is an important prerequisite for a rational structure-based drug 
design.

11.2	 �Serine Proteases as Antiviral Targets

11.2.1	 �Trypsin-Like Serine Proteases

The majority of the human serine proteases belongs to the subfamily S1A, possess-
ing a chymotrypsin-like folding pattern, and to the family S8 with the two subfami-
lies S8A and S8B exhibiting a subtilisin- or kexin-like folding (Rawlings et  al. 
2014). First studies on the limited proteolysis and essential maturation of viral gly-
coproteins by host proteases were performed on influenza viruses. It could be dem-
onstrated that the cleavage of the hemagglutinin (HA) precursor could be blocked 
by the broad-spectrum serine protease inhibitor diisopropylfluorophosphate (DFP) 
(Klenk and Rott 1973). It was found that the poor infectivity of influenza A viruses 
(IAV) grown in cultures of chick embryo cells could be strongly increased after 
treatment with exogenous trypsin, which cleaves substrates after basic residues like 
arginine or lysine (Klenk et al. 1975). At the same time, comparable results were 
described for the trypsin-catalyzed activation of HA from influenza B viruses 
(Lazarowitz and Choppin 1975). Although the digestive protease trypsin is not 
found in the respiratory tract, these initial studies suggested that other trypsin-like 
airway proteases should be involved in HA maturation. For instance, plasmin effi-
ciently activated the HA of the A/WSN virions but failed to cleave the influenza B 
HA (Lazarowitz and Choppin 1975). A detailed analysis of the substrate sequences 
revealed that HAs of human and other mammalian influenza viruses as well as HAs 
of low pathogenic avian influenza viruses (LPAIV) are cleaved after a single argi-
nine residue before a constant P1′-P3′ Gly-Leu-Phe segment by trypsin-like serine 
proteases. In contrast, HAs of high pathogenic avian influenza viruses (HPAIV) are 
activated by furin-like proprotein convertases (PCs) at inserted multibasic sequences 
containing additional arginine or lysine residues in the adjacent non-primed posi-
tions (Garten and Klenk 2008). In addition to the HA activation of HPAIV, many 
other viruses depend on the correct cleavage of their surface glycoproteins by furin-
like PCs (basic PCs) or by the neutral PC SKI-1 (Klenk and Garten 1994; Pasquato 
et al. 2013). Consequently, different inhibitor structures depending on the specific 
virus strains are required to target the appropriate activating protease.

The human genome encodes for approximately 70 different trypsin-like serine 
proteases, which cleave after a single basic residue, preferably after arginine in P1 
position (Schechter and Berger 1967). Few of them, like matriptase or TMPSS13 
(MSPL), strongly prefer substrates with additional basic residues in the non-primed 
region close to the cleavage site, e.g., in P4 and/or P3 position. The full-length 
enzymes can strongly differ in their molecular weights due to the presence of spe-
cific protein domains. However, all of them possess a relatively similar catalytic 
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domain of approximately 225–230 amino acids with a strong structural homology 
to chymotrypsin of the subfamily S1A of serine proteases. This facilitates a com-
mon numbering of the residues within the catalytic domain with respect to 
chymotrypsin(ogen) used throughout this chapter. So far, crystal structures are 
available for ~25 different trypsin-like serine proteases. In most cases, the structures 
have only been determined for their catalytic domains, and their knowledge is 
normally sufficient for a rational structure-based design of active-site-directed 
inhibitors. The protease domain of the trypsin-like serine proteases consists of two 
six-stranded barrel domains, held together by several transdomain straps. The resi-
dues Ser195, His57, and Asp102 of the catalytic triad are located at the junction 
between these two barrels. All trypsin-like serine proteases contain a negatively 
charged aspartate residue at the bottom of their S1 pocket responsible for accepting 
substrates and inhibitors with basic P1 residues.

Data from virus-infected cell cultures suggested that different secreted trypsin-
like serine proteases are involved in the HA activation of human IAV and LPAIV 
depending on the host and specific virus strain. A protease named tryptase Clara was 
isolated from Clara cells of rat airway epithelium (Kido et al. 1992). Furthermore, 
miniplasmin purified from rat lungs was described as potential HA activator 
(Murakami et al. 2001). Miniplasmin is a degraded version of plasmin, only compris-
ing the kringle 5 and protease domain and lacking the N-terminal kringle domains 
1–4 (Al-Horani and Desai 2014). However, plasmin cannot efficiently activate the 
HAs with monobasic cleavage sites found in the presently circulating influenza 
strains, because it prefers substrates with bulky P2 residues like Phe, Tyr, and Trp 
(Swedberg and Harris 2011). In embryonated chicken eggs, a blood clotting factor 
Xa-like protease was found to activate HA (Gotoh et  al. 1990). Again, it seems 
unlikely that human factor Xa could be involved, which is a very specific protease 
with a strong preference for substrates with glycine in P2 position due to the presence 
of a bulky Tyr99 on top of its S2 binding pocket. This special structural feature limits 
the access of substrates with larger P2 side chains. So far, only prothrombin and 
eventually the protease-activated receptor 2 (PAR-2) are known as well-cleavable 
natural factor Xa substrates (Oe et al. 2016); both possess a glycine in P2 position. 
Moreover, in rats and mice, cellular ectopic trypsins due to severe influenza infec-
tions and cytokine storms were detected as HA-activating proteases (Kido et  al. 
2012; Pan et al. 2011; Wang et al. 2010). An unusual extrapancreatic trypsin expres-
sion was also found in some human tumors (Paju et al. 2001; Sorsa et al. 1997), rais-
ing speculations that this could also happen as a consequence of excessive 
inflammation during viral infections. Porcine tryptases are additional candidates 
(Chen et al. 2000; Sato et al. 2003), although human lung tryptase has failed to acti-
vate the HA of the 1918 IAV (Stevens et al. 2004). Among the 15 kallikrein-related 
peptidases (KLKs) (Goettig et al. 2010), 12 of them possess a trypsin-like substrate 
specificity, and a potential HA activation of seasonal IAV was observed for KLK5 
and KLK12 (Hamilton and Whittaker 2013).

Additional candidates have been found among the type II transmembrane serine 
proteases (TTSPs), which comprise 17 different enzymes (Antalis et  al. 2011; 
Garten et al. 2015). Most of them show a restricted tissue-specific expression pat-
tern; an exception is matriptase, which is ubiquitously found in epithelial layers of 
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most tissues. In 2006, the TTSPs TMPRSS2 (epitheliasin) and human airway trypsin- 
like peptidase (HAT or TMPRSS11D) were identified as activating enzymes of 
monobasic HAs of seasonal IAV when overexpressed in MDCK cells (Böttcher-
Friebertshäuser et al. 2010; Böttcher et al. 2006). A potential HA cleavage of the 
1918 IAV was also described by TMPRSS4 (Bertram et al. 2010; Chaipan et al. 
2009). The virus spread is eventually promoted by additional TTSPs, like DESC1 
(Zmora et al. 2014) or hepsin, whereas no HA processing was found for TMPRSS3 
and TMPRSS6 (also named as matriptase-2) (Bertram et al. 2010). In contrast to 
these TTSPs involved in the HA activation of LPAIV, a strong substrate preference 
for HAs from HPAIV with Lys as P4 residue has been identified for TMPRSS13 
(MSPL) (Okumura et al. 2010). This is a striking difference to the substrate profile 
of the PC furin, which strongly prefers arginine in P4 position (Rockwell et  al. 
2002). Independent studies with knockout mice revealed that the HA of the seasonal 
H1N1 virions including the 2009 pandemic virus is dominantly activated by 
TMPRSS2 (Hatesuer et al. 2013; Sakai et al. 2014; Tarnow et al. 2014), whereas 
TMPRSS2 alone is not sufficient for the maturation of the HA from H3N2 subtypes. 
A recent study showed that only the combined TMPRSS2-/- and TMPRSS4-/- knock-
out mice reduced H3N2 spread and signs of infection in lung, suggesting that both 
proteases are involved (Kuhn et al. 2016).

11.2.1.1	 �Inhibitors for the Treatment of Human Influenza  
Virus Infections

Proteinaceous Inhibitors
The concept of HA cleavage inhibition as realistic antiviral strategy was supported 
by studies with the broad-spectrum inhibitor aprotinin (1) in mice (Ovcharenko and 
Zhirnov 1994; Zhirnov et al. 1982a). The 58-mer Kunitz-type inhibitor, also known 
as BPTI or Trasylol®, is isolated from bovine lungs and relatively well tolerated in 
animals and humans. It inhibits numerous trypsin-like serine proteases such as tryp-
sin, plasmin, matriptase, and plasma kallikrein (Ascenzi et al. 2003); its complex 
with trypsin is shown in Fig. 11.1.

Trasylol was intravenously used for many years to reduce perioperative bleeding 
during open heart surgery but was withdrawn from market in 2008 when it became 
clear that it was associated with increased numbers of deaths as compared to treat-
ment with standard antifibrinolytics (Fergusson et al. 2008). As nonhuman protein, it 
may cause hypersensitive reactions during cardiac surgery, although the risk for ana-
phylactic reactions at first-time exposure is very low (<0.1%) but might increase to 
~2.7% after reexposure (Levy and Adkinson 2008). However, the application of 
aprotinin against influenza in form of an aerosol at significantly lower doses should 
minimize side effects (Zhirnov et al. 2011). In addition, an aprotinin variant with 
stronger kallikrein and similar plasmin inhibition has been developed, which exhibits 
a reduced immunogenicity in chimpanzees (Apeler et al. 2004). Antiviral potency 
against influenza was recently also demonstrated with the endogenous proteinaceous 
inhibitor hepatocyte growth factor activator inhibitor 2 (HAI-2) (Hamilton et  al. 
2014). HAI-2 and HAI-1 are type 1 transmembrane proteins both containing two 
Kunitz domains, which inhibit numerous trypsin-like serine proteases including 
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hepatocyte growth factor activator, matriptase (Szabo et al. 2008), hepsin, trypsin, 
and prostasin (Liu et al. 2017). Sunflower trypsin inhibitor SFTI-1 (2), a bicyclic 
14-mer, provides also an excellent scaffold for the design of serine protease inhibi-
tors (Luckett et al. 1999) (Fig. 11.2).

Fig. 11.1  Structure of aprotinin (1) in complex with trypsin (PDB, 3FP6). Trypsin is shown with 
its surface in beige, aprotinin as cartoon in green. Only the aprotinin residues in direct contact to 
the trypsin surface (Pro13-Cys-Lys-Ala-Arg17 and Cys38-Arg39) are shown as sticks with carbon 
atoms in yellow, as well as the three disulfide bridges. The P1 residue Lys15 binds into the S1 
pocket of trypsin

Fig. 11.2  Structure of the bicyclic 14-mer SFTI-1 (2) and of its optimized truncated monocyclic 
(3) and bicyclic (4) analogues

-Gly1-Arg-Cys-Thr-Lys5-Ser-Ile-Pro-Pro-Ile-Cys-Phe-Pro-Asp14

SFTI-1 (2)

H-Lys1-Arg-Cys-Thr-Lys5-Ser-Ile-Pro-Pro-Arg-Cys-His12

(4)

H-Gly1-Arg-Cys-Thr-Lys5-Ser-Ile-Pro-Pro-Arg-Cys-His12-NH2

(3)
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It is one of the smallest naturally occurring peptidic protease inhibitors and com-
prises a typical Bowman-Birk motif of serine protease inhibitors (BBIs) with its 
characteristic 9-mer disulfide-bridged loop containing Lys5 as P1 residue (Li et al. 
2007; McBride et al. 2002). The inhibitor is further stabilized by an additional head-
to-tail backbone cyclization between the N-terminal Gly1 and C-terminal Asp14 
residues. SFTI-1 inhibits trypsin and matriptase with Ki values of 100 pM (Luckett 
et al. 1999) and 100 nM (Long et al. 2001), respectively. After initial crystallization 
in complex with trypsin (Luckett et al. 1999), its binding mode has been determined 
also in the active site of matriptase (Fig. 11.3) (Yuan et al. 2011).

In contrast to the trypsin complex, the Lys5 amino group makes only a water-
bridged interaction to Asp189 at the bottom of the S1 pocket of matriptase but forms 
no direct contact to its carboxyl group. It also interacts with the side chain and car-
bonyl oxygens of the adjacent Ser190 and with a second water molecule (Fig. 11.3). 
Numerous analogues of SFTI-1 have been made. For instance, its conversion to the 
more simple truncated monocyclic analogue 3 provided a Ki value of 6.2 nM against 
matriptase (Fittler et al. 2013). The bicyclic analogue 4, containing a side-chain-to-
tail cyclization, is even more potent with an inhibition constant of 2.6 nM (Fittler 
et al. 2014). However, despite this excellent potency, none of the SFTI analogues 
has been tested for antiviral activity.

Because of their high molecular weight aprotinin, HAI-1, HAI-2, or SFTI ana-
logues should mainly inhibit extracellular HA processing, and it is rather unlikely 
that substantial amounts of these compounds can enter the cell and block the TTSPs 
in the secretory pathway. Despite this limitation, an aerosol formulation of aprotinin 
has been developed and approved in Russia for the treatment of mild-to-moderate 
influenza infections (Zhirnov et al. 2011). It was described that in case of mammalian 
IAV and LPAIV with monobasic HAs, progeny particles are assembled, which still 

Fig. 11.3  Crystal structure of SFTI-1 (2) in complex with matriptase (PDB, 3P8F). Matriptase is 
shown with its transparent surface in cyan; important residues involved in H-bonds are shown as 
sticks with carbon atoms in green. SFTI-1 is presented as sticks with carbons in white, water mol-
ecules as red balls, and polar contacts as dashed lines in black. For better differentiation, matriptase 
residues are labeled in black and selected inhibitor residues in blue
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contain some uncleaved HAs and therefore require further activation by extracellular 
enzymes sensitive to aprotinin. In contrast to these previous reports, more recent 
findings reveal that the monobasic HAs are processed in intracellular compartments 
without a further need for extracellular processing (Böttcher-Friebertshäuser et al. 
2010, 2013). This suggests that small amounts of aprotinin can reach intracellular 
targets and achieve an antiviral efficacy (Zhirnov et al. 2011).

S1 Binders
Although the therapeutic use of peptide drugs (Vlieghe et al. 2010) and biologics 
including recombinant enzymes, hormones, and antibodies is steadily increasing 
and meanwhile well established, a treatment with synthetic, small-molecule drugs 
offers significant advantages. They can be produced at low costs in large quantities 
and offer the possibility for oral administration with a negligible risk of allergic 
reactions. In initial studies a weak antiviral effect after treatment with ECA (5, 
ε-aminocaproic acid, Fig. 11.4) was observed in mice infected by IAV including the 
plasmin-dependent WSN strain (Zhirnov et al. 1982a, b). Due to its small size, ECA 
(5) cannot bind efficiently to the active site of trypsin-like proteases and reduces 
mainly the activation of plasminogen by blocking the lysine binding site on the 
kringle domains of plasminogen (Al-Horani and Desai 2014). A pronounced protec-
tive effect was also observed, when IAV-infected mice were treated with a cocktail 
of 4-(2-aminoethyl)benzenesulfonylfluoride (6, AEBSF or Pefabloc®SC) and 
p-aminobenzamidine (7, p-AB) prior to infection. Both compounds are relatively 
unspecific protease inhibitors and can only occupy the S1 pocket of trypsin-like 
serine proteases. AEBSF 6 leads to a covalent sulfonylation of the active-site Ser195 
side chain (second-order inactivation constant k2/Ki for trypsin 30 M−1 s−1), while 
p-AB acts as a reversible competitive inhibitor with Ki values in the two- and three-
digit micromolar range depending on the specific target (Stürzebecher et al. 2001). 
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Although AEBSF 6 is more stable in buffer than the related phenylmethane sulfo-
nylfluoride (PMSF), it is also susceptible to hydrolysis in aqueous media (Powers 
et al. 2002) and not suitable for further development. Derivatives of the classical 
active-site titrant p-nitrophenyl-p-guanidinobenzoate (Chase and Shaw 1967) 
including compounds like camostat 8 (FOY-305) and nafamostat 9 (FUT-175) (Fujii 
and Hitomi 1981) inhibit numerous trypsin-like serine proteases by covalent acyla-
tion of their active-site Ser195, providing relatively stable acyl-enzyme complexes. 
These compounds are active against numerous monobasic IAV and IBV strains 
(Hosoya et al. 1993; Lee et al. 1996; Someya et al. 1990) but suffer from instability 
of their ester bond in aqueous media and the circulation (t½ <1 min after intravenous 
application of camostat in man (Midgley et al. 1994)). A very short half-life is also 
reported for nafamostat, although this could be an advantage for certain applica-
tions. Notably, nafamostat has been widely used as anticoagulant for hemodialysis 
patients with a tendency to bleed (Han et al. 2011).

Substrate Analogue Inhibitors
Although an antiviral efficacy was demonstrated for ECA 5 and the S1 ligands 6–9, 
a stronger potency can be achieved with compounds also addressing adjacent bind-
ing sites. Trypsin-like host proteases possess relatively well-defined S2 and S3/S4 
regions, often named proximal and distal binding pockets, respectively. Therefore, 
substrate analogue S3/S4-S2-segments were coupled with C-terminal decarboxyl-
ated P1 arginine mimetics or with stabilized non-cleavable P1-P1′ scaffolds, e.g., 
arginyl-ketone moieties or other warheads targeting the active-site serine.

A well-suited P1 mimetic to target trypsin- and furin-like PCs is the  
4-amidinobenzylamide group (4-Amba). The 4-Amba anchor makes numerous 
polar interactions to residues at the bottom and exit of the S1 pocket (Fig. 11.5) but 
exhibits no preference for special trypsin-like serine proteases. Within this inhibitor 
type, an improved selectivity for individual family members can partially achieved 
only via their P2, P3, and/or P4 residues. All substrate analogue structures strictly 
require a P2 amino acid in l-configuration, whereas a d-configured P3-residue is 
often preferred. Its side chain can address the characteristic distal S3/4 binding 
pocket above Trp215, which is found and mostly well-defined in all trypsin-like 
serine proteases. In contrast, the side chain of a natural l-configured P3 residue is 
directed toward the solvent and makes fewer binding contributions. Interestingly, 
the backbone of the P3 residue is involved in a short antiparallel β-sheet interaction 
with a highly conserved glycine in position 216 of the protease domain, irrespective 
of an l- or d-configuration of the P3 amino acid. So far, no crystal structures of 
TTSPs involved in HA cleavage, like TMPRSS2, TMPRSS4, or HAT, are available. 
However, countless crystal structures of this inhibitor type in complex with numer-
ous other trypsin-like serine proteases have been elucidated. As an example, 
Fig. 11.5 shows the binding mode of the substrate analogue inhibitor H-d-hTyr-Ala-
4-Amba (10) (Fig. 11.6) in complex with trypsin, indicating the characteristic bind-
ing pockets (Maiwald et  al. 2016). This inhibitor type could be refined following  
a well-established prodrug strategy that has been used for the development of  
the orally available thrombin inhibitor ximelagatran (Gustafsson et  al. 2004).  
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Fig. 11.5  Crystal structure of the substrate analogue inhibitor H-d-homoTyr-Ala-4-Amba (10) in 
complex with trypsin (PDB, 4MTB) (Maiwald et al. 2016). (a) Overall structure of the complex 
indicating the characteristic binding pockets similarly found in all trypsin-like serine proteases (S1 
pocket with Asp189 at the bottom in yellow, S2 pocket below His57 and Leu99 in light blue, distal 
S3/4 pocket above Trp215  in light green). The trypsin residues of the catalytic triad (Ser195, 
His57, and Asp102) and some additional residues within the active site are labeled; water mole-
cules are omitted. (b) Polar interactions of the 4-Amba residue in the S1 pocket of trypsin, a con-
served water molecule found in nearly all crystal structures with arginine or benzamidines in P1 
position, is shown as red ball. Most family members contain a Ser190 as shown for trypsin or an 
Ala190 (e.g., in HAT, thrombin, factor Xa) that makes an H-bond less
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The conversion of the P1-amidine (pKa = 11.5) into a hydroxyamidine (pKa = 5.2) 
reduces the strongly basic character of the 4-Amba group and improves the bio-
availability of the inhibitors. An enzyme system found in the liver and other organs 
(kidney, lung, brain, and intestine) consisting of cytochrome b5, a NADH-dependent 
cytochrome b5 reductase, and a P450 enzyme is involved in the reduction of the 
N-hydroxylated compounds (Clement 2002).

Due to a similar architecture of the S1 pocket in most trypsin-like serine prote-
ases, it is challenging to achieve a pronounced selectivity for individual proteases 
within this inhibitor scaffold, although compound 10 is a relatively selective matrip-
tase inhibitor (Ki = 26 nM) and shows reduced affinity against the clotting proteases 
thrombin (Ki = 300 nM) and factor Xa (Ki = 570 nM) (Maiwald et al. 2016). The 
potency of this inhibitor type can be further enhanced by elongation with a suitable 
P4 residue, preferably a sulfonyl group, whereas one of its oxygen atoms interacts 
with the amide NH of Gly219. For inhibitors containing a d-configured P3 residue, 
the N-terminal coupling of a benzylsulfonyl group induces a turn-like inhibitor back-
bone conformation when bound to the target, in which the N-terminal benzyl group 
binds in a shallow subpocket adjacent to the S1 site and comes in close van der Waals 
contact to the P1 phenyl ring (Fig. 11.7) above the Cys191-Cys220 disulfide bridge. 
Inhibitor 11 is a somewhat selective fXa inhibitor (Ki = 3.5 nM (Schweinitz et al. 
2006)) due to the presence of glycine in P2 position but inhibits also trypsin and 
matriptase with inhibition constants of 10 nM and 130 nM, respectively.

H2N (R)

H
N

N
H

O

NHO

OH

(10)

N
H

N
N
H

O

NHO

NH

HN

S
OO

(12)
BAPA

N
H

H
N

N
H

O

NHO

NH

HN

S
OO

(11)

N
H

N
N
H

O

O

NH

HN

S
OO

(13)

Cl

(S)

NH2NH2

NH2

NH2

NH2

NH2

NH2

Fig. 11.6  Structures of substrate analogue inhibitors against trypsin-like serine proteases containing 
decarboxylated arginine mimetics like 4-amidinobenzylamide or 2-aminomethyl-5-chlorobenzylamide 
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The replacement of glycine by proline in P2 position leads to the relatively non-
selective inhibitor BAPA (12), which possesses one- or two-digit nanomolar poten-
cies against the clotting proteases thrombin, fXa, plasma kallikrein (PK), fibrinolytic 
plasmin, and the TTSPs HAT, TMPRSS2, and matriptase (Hellstern et  al. 2007; 
Maiwald et al. 2016; Sielaff et al. 2011a). A significant antiviral effect was found in 
BAPA-treated cell cultures infected with numerous monobasic IAV strains 
(Böttcher-Friebertshäuser et  al. 2010, 2012; Böttcher et  al. 2009; Sielaff et  al. 
2011a). Many analogues of this inhibitor scaffold with different P2 and/or P3 resi-
dues have been tested but were less effective than BAPA (data not published). It 
seems that compounds with a broader target spectrum exhibit an advantageous anti-
viral profile. This tendency confirms the promising results obtained for the rela-
tively nonselective inhibitor aprotinin. Otherwise, less selective inhibitors that also 
target numerous clotting proteases might suffer from a narrow safety profile due to 
potential bleeding complications after i.v. treatment. Such side effects might be 
reduced, when the compounds will be inhaled, as described for aprotinin. Notably, 
BAPA (12) was well tolerated in a bleomycin-induced fibrosis model in mice when 
it was applied as aerosol via a microsprayer (data not published).

In principle, it should be possible to replace the C-terminal 4-Amba residue in 
these substrate analogue inhibitors. Numerous alternative P1 groups are known 

Fig. 11.7  Crystal structure of the substrate analogue inhibitor Bzls-d-Arg-Gly-4-Amba (11) in 
complex with a trypsin variant containing Leu99Tyr and Gly174Phe mutations (PDB, 3PMJ) 
(Tziridis et al. 2014). Only few side chains of characteristic residues within the active site of this 
trypsin mutant are shown and labeled. The inhibitor adopts a turn-like backbone conformation; the 
P3 d-Arg side chain binds into the distal S3/4 pocket above Trp215 and is probably involved in 
cation-π interactions to the aromatic residues Tyr99, Phe174, and Trp215
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from the field of thrombin and fXa inhibitors (Straub et al. 2011). Besides basic 
groups, many chloro-substituted aromatic P1 residues as used, for example, in 
inhibitor 13 have been developed (Sisay et  al. 2010). The chlorine addresses a 
highly conserved Tyr228 side chain found at the back of the S1 pocket, whereas the 
aminomethyl group comes out of the S1 pocket and does not bind to Asp189. It 
provides an enhanced inhibitory potency against thrombin and fXa but leads to a 
reduced inhibition of HAT, matriptase, plasmin, and of several other trypsin-like 
serine proteases. However, only weak anti-influenza activity was found for com-
pound 13 suggesting that the relevant HA-cleaving host proteases are not suscepti-
ble to such chloro-substituted aromatic P1 structures.

Covalent Substrate Analogue Inhibitors
Another strategy is the design of covalent inhibitors (Singh et  al. 2011). Covalent 
bonds can be irreversibly formed, e.g., when serine proteases are inactivated by chlo-
romethyl ketones (CMK) (Powers et al. 2002). Although such CMKs are useful tools 
for initial biochemical experiments and structure analysis, they are not suitable for 
drug development due to stability and selectivity problems. A more eligible approach 
is the incorporation of electrophilic warheads, which also form covalent but reversible 
bonds to their targets. This can be achieved by coupling of substrate-analogue P3-P2 
or P4-P2 segments with P1 boroarginine and arginal groups or with P1-P1′-arginyl 
ketones. These electrophilic groups can be attacked by the active-site serine providing 
covalent boronate ester-, hemiacetal-, or hemiketal-like complexes. The formed cova-
lent bond significantly improves the affinity of the inhibitors. In the 1990s, a few 
arginal and arginyl-ketone-derived thrombin inhibitors reached preclinical and early 
clinical development (Steinmetzer et al. 2001), which was stopped due to the discov-
ery of more suited non-covalent inhibitors, like melagatran containing the 4-Amba 
residue. The arginal derivative 14 acylated with the N-terminal Abz-fluorophore 
(Fig. 11.8) was described as an inhibitor of HAT (Ki = 54 nM) (Wysocka et al. 2010). 
CVS-3983 (15), a second aldehyde derivative containing an unusual dialkylated P3 
residue, inhibits matriptase with an inhibition constant of 3.3 nM and reduced prostate 
cancer growth in a xenograft mice model (Galkin et al. 2004). However, none of these 
aldehydes was tested for antiviral potential. The reuse of reversible arginyl ketone 
inhibitors against TTSPs has started in 2012 with compound 16 (IN-1) (Fig. 11.8). 
Although it is a much stronger matriptase inhibitor (Ki = 11 pM), it potently inhibits 
additional trypsin-like serine proteases like matriptase-2, hepsin, HAT, and trypsin 
with Ki values <10 nM (Colombo et al. 2012). Compound 16 reduces breast cancer 
progression in mice (Zoratti et al. 2015) and inhibits H1N1 IAV propagation in human 
Calu-3 cells with an EC50 of 5.6 μM (Beaulieu et al. 2013). It was postulated that the 
antiviral efficacy is due to matriptase inhibition. However, since the inhibitor concen-
trations used were well above the Ki values against related proteases, it is conceivable 
that the inhibition of additional targets contributes to the observed antiviral effects. 
Numerous analogues with modified P4-P2 peptide segments like compound 17 (Ki 
value for matriptase 0.92  nM) targeting also matriptase-2, hepsin, and hepatocyte 
growth factor activator (HGFA) have been prepared for tumor treatment or regulation 
of iron overload but were not further tested with influenza viruses, so far (Duchene 
et al. 2014; Han et al. 2014, 2016).
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Sulfonylated 3-Amidinophenylalanine Derivatives
Suitable scaffolds for non-covalent inhibitors of trypsin-like serine proteases are the 
tertiary amides of sulfonylated 3-amidinophenylalanines, which were originally 
developed for the inhibition of trypsin, thrombin, or uPA and further used for the 
design of matriptase inhibitors (Steinmetzer et al. 2006; Stürzebecher et al. 1997). 
With some exception, this class of compounds provides relatively broad-spectrum 
inhibitors targeting numerous trypsin-like serine proteases. The uPA inhibitor 18 
(Stürzebecher et al. 1999) (WX-UK1, Fig. 11.9) in combination with the 5-fluoro-
uracil prodrug capecitabine reached clinical development for tumor therapy 
(Setyono-Han et al. 2005). Moreover, an orally available formulation in form of its 
hydroxyamidino prodrug mesupron (19) has also reached clinical phase II studies 
(indication pancreas and breast cancer). This suggests that this 3-amidinophenylalanine 
inhibitor type is suitable for drug development. Otherwise, compound 18 is only a 
moderate inhibitor of numerous trypsin-like serine proteases including matriptase 
with Ki values close to 0.5 μM.  Its sterically demanding and rigid triisopropyl- 
phenylsulfonyl (Tips) group cannot fully occupy the distal binding pocket above 
Trp215  in the usual way (Setyono-Han et  al. 2005; Stürzebecher et  al. 1999). A 
significantly improved and selective matriptase inhibition (Ki = 3.8 nM) was 
achieved with inhibitor 20. Its N-terminal β-alanyl-amide targets the distal S3/4 
pocket and is most likely involved in cation-π interactions to Trp215 and Phe99 of 
matriptase (Steinmetzer et  al. 2006). However, the tribasic and strongly polar 
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character limits the membrane permeability and bioavailability of this compound. 
Therefore, the number of basic groups was stepwise reduced and provided com-
pound 21 (MI-432) containing an N-terminal substituted biphenyl-3-sulfonyl group. 
This analogue inhibits matriptase and TMPRSS2 with similar inhibition constants 
of 2 nM and 0.9 nM, respectively (Hammami et al. 2012; Meyer et al. 2013). It is 
also a relatively potent thrombin inhibitor (Ki = 20 nM) but poor inhibitor of HAT 
(Ki = 1.7 μM). Replacement of its C-terminal amino group by an urea portion pro-
vided the monobasic analogue 22 (MI-462) (Hammami et al. 2012) (Ki = 5.1 nM for 
matriptase and 630 nM for thrombin). Compounds 20–22 (Fig. 11.9) reduced the 
propagation of various LPAIV strains with monobasic HA cleavage sites in infected 
cells (Baron et al. 2013; Meyer et al. 2013). For instance, treatment with 50 μM of 
compound 21 inhibited the multiple cycle replication of IAV H3N2 and H1N1 
strains in Calu-3 cells (Meyer et al. 2013), in which TMPRSS2 was identified as the 
major HA-cleaving protease (Böttcher-Friebertshäuser et al. 2011).

So far, no crystal structure of TMPRSS2 is available in the protein data bank. 
Therefore, we have generated a homology model of TMPRSS2  in complex with 
inhibitor 21 using SWISS-MODEL (http://swissmodel.expasy.org/) (Biasini et al. 
2014). The model was superimposed with the crystal structure of inhibitor 21 in 
complex with thrombin (PDB, 4E7R (Hammami et al. 2012)) and subsequent dele-
tion of the thrombin structure. The inhibitor was energy minimized in the active site 
of TMPRSS2 using the software Molecular Operating Environment (MOE) (2016). 
The model shows the expected polar contacts known from numerous crystal struc-
tures of sulfonylated 3-amidinophenylalanines in complex with trypsin (Renatus 
et al. 1998), uPA (Zeslawska et al. 2000), and matriptase (Steinmetzer et al. 2006) 
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(Fig. 11.10). The benzamidine binds to Asp189, Ser190, and Gly219 at the bottom 
of the S1 pocket, whereas the backbone amide NH and carbonyl oxygen of the P1 
3-amidinophenylalanine make a short antiparallel β-sheet-like interaction with 
Gly216, and one sulfonyl oxygen binds to the NH of Gly219. It should be noted that 

a

b

Fig. 11.10  Model of TMPRSS2 in complex with inhibitor 21. (a) Structure of inhibitor 21 (stick 
model with yellow carbon atoms, nitrogen in blue, oxygen in red, chlorine in green) bound into the 
active site of TMPRSS2, shown with its surface in gray. The 2,4-dichloro-biphenyl-3-sulfonyl resi-
due is directed toward the distal S3/4 pocket above Trp215 indicated by a yellow surface. (b) Polar 
interactions of inhibitor 21 in the active site of TMPRSS2 are shown as dashed lines in black; 
important TMPRSS2 residues are shown with carbon atoms in green
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in complexes with the substrate analogue inhibitors 10–17, this Gly216 is addressed 
by the backbone NH and carbonyl of the P3 residue, which indicates a completely 
different binding mode of this inhibitor type.

Nonpeptidic Small-Molecule Inhibitors
Drug development is strongly focused on the design of nonpeptidic, small-molecule 
inhibitors. Usually, they are more stable than peptidic inhibitors, possess longer 
half-lives, and offer better chances to be orally bioavailable. Hundreds of highly 
potent nonpeptidic inhibitors targeting the clotting proteases are available, whereas 
only few TTSP inhibitors of this type have been described, so far. Most of the work 
was done in the field of matriptase inhibitors (Fig. 11.11). The bis-benzamidine 23 
has a Ki value of 208 nM (Enyedy et al. 2001); and an enhanced potency (Ki = 40 nM) 
was described for analogue 24 (Goswami et al. 2013). The tribasic compounds 25 
and 26 show improved matriptase inhibition with Ki values of 10 nM and 3 nM, 
respectively (Goswami et  al. 2014). A less rigid core segment was used for the 
design of the tribasic inhibitor 27, which inhibits matriptase and matriptase-2 with 
Ki values of 38 nM and 3.6 μM (Furtmann et al. 2016). A group from Korea reported 
the discovery of the 2-hydroxydiarylamide derivatives 28 and 29 as TMPRSS4 
inhibitors with IC50 values of 12 μM and 6 μM (Kang et  al. 2013), respectively. 
Surprisingly, also the mucolytic cough suppressant bromhexine 30 was described as 
TMPRSS2 inhibitor (IC50 = 0.75 μM).
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The binding mode of a few bis-benzamidine and several tribasic analogues in 
complex with matriptase was determined by crystal structure analysis. The complex 
with inhibitor 26 is shown in Fig. 11.12. One benzamidine occupies the S1 site, and 
the second targets the distal S3/4 pocket above Trp215, whereas the aminocyclo-
hexyl group is directed toward the 60-loop of matriptase but not involved in direct 
polar contacts. Due to the lack of experimental structures of TMPRSS2 and 
TMPRSS4, the binding mode of compounds 28–30 cannot be trustfully predicted. 
Most of these nonpeptidic inhibitors were developed to address the TTSPs as targets 
for tumor treatment (Goswami et al. 2015; Kang et al. 2013; Lucas et al. 2014), 
although they might be also suitable for other indications.

Besides influenza viruses, other viral pathogens are also suitable targets for 
inhibitors of trypsin-like serine proteases (TLSPs). A few examples will be pre-
sented in the following paragraph.

11.2.1.2	 �TLSP Inhibitors for Treatment of Paramyxo- 
and Coronavirus Infections

Paramyxoviridae contain two surface glycoproteins, the receptor-binding protein 
(HN, H, G) and the fusion protein F. In contrast to the Orthomyxoviridae, where 
fusion of the viral membrane with host cell membrane occurs in the endosome, the 
activated F protein of many paramyxoviruses induces fusion of the virus envelope 

Fig. 11.12  Crystal structure of inhibitor 26 shown as sticks with carbon atoms in yellow (oxygen 
in red, nitrogen in blue) in complex with matriptase, presented with a transparent surface in green 
(PDB, 4O97) (Goswami et  al. 2014). Important matriptase residues within the active site are 
shown with carbon atoms in green and are labeled. Water molecules in direct contact to the inhibi-
tor are provided as red spheres, polar contacts as dashed lines in black
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and the plasma membrane. The F0 precursor of human parainfluenza virus 1 (HPIV-
1) is cleaved at a monobasic sequence typical for TLSPs (DNPQTR↓FFGAV) 
(Diederich and Maisner 2007). HPIV-1 causes respiratory infections, such as croup, 
especially among young children. In principle, some of the above-described inhibi-
tors could also be suitable for the treatment of HPIV infections. With other para-
myxoviruses, such as measles virus and mumps virus, F0 is activated by furin, 
whereas F0 of Nipah virus is cleaved by cathepsin L. Consequently, furin or cathep-
sin L inhibitors should be suitable for the treatment of these virus infections.

The spike (S) surface protein of respiratory coronaviruses (CoV) is also synthe-
sized as inactive precursor protein that has to be activated by host proteases. The 
N-terminal S1 unit of the cleaved protein binds to receptors on host cells, and the 
C-terminal S2 unit enables the fusion of the viral membrane with host cell mem-
branes. Both functions are essential for CoV propagation. Original studies suggested 
that the endosomal cysteine protease cathepsin L is solely required for spike activa-
tion and subsequent SARS-CoV infectivity (Simmons et al. 2005). Notably, a cathep-
sin dependency was also found for the enveloped Ebola virus of the Filoviridae 
family (Chandran et  al. 2005) and Nipah virus (Diederich and Maisner 2007), as 
described above. Later, numerous groups have found that in the presence of cathep-
sin L inhibitors, the S-protein of SARS-CoV and MERS-CoV is activated by 
TMPRSS2 (Gierer et al. 2013; Matsuyama et al. 2010; Shulla et al. 2011; Zmora 
et al. 2014). Consequently, inhibition of SARS-CoV growth in Calu-3 airway epithe-
lial cells was achieved by a combination treatment with the broad-spectrum serine 
protease inhibitor camostat (8) (Fig. 11.4) and the cathepsin inhibitor (23,25) trans-
epoxysuccinyl-l-leucylamido-3-methyl-butane ethyl ester (EST) (Kawase et  al. 
2012). Based on these observations, it is suggested that SARS-CoV enters the host 
cells via two distinct pathways, one using TTSPs like TMPRSS2 and a second using 
the endosomal cathepsins L and/or B for spike activation. Interestingly, a recent 
study with a fresh clinical isolate of the human CoV 229E revealed a clear preference 
for host cell entry via TMPRSS2, whereas after 20 passages in HeLa cells the cathep-
sin L pathway became more important (Shirato et al. 2017). However, the cell culture 
virus showed a reduced ability for replication suggesting that the endosomal pathway 
is disadvantageous for HCoV-229E infection in humans. Based on these results, the 
authors suggested to target TMPRSS2 rather than endosomal cathepsins in CoV 
infections (Shirato et al. 2017). A similar tendency was previously found in an ani-
mal model of SARS-CoV infection, where viral spread and pathogenesis were only 
prevented by the TLSP inhibitor camostat and not by broad-spectrum vinylsulfone-
type cysteine protease inhibitors targeting cathepsins L and B (Zhou et al. 2015). 
However, the authors argue that their new vinylsulfone inhibitors might be excellent 
lead structures for the development of inhibitors of Ebola virus entry. 

11.2.2	 �Proprotein Convertases

The family of proprotein convertases comprises nine calcium-dependent serine 
endoproteases (furin, PC1, PC2, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9). 
These enzymes play an important role in the maintenance of cell homeostasis by 
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activation or deactivation of proteins including prohormones as well as proforms of 
transcription factors, membrane receptors, and extracellular membrane proteins 
(Seidah and Prat 2012; Thomas 2002). Besides their physiological role, PCs are also 
involved in the activation of viral proteins and bacterial toxins. For example, several 
enveloped viruses depend on the cleavage of their surface glycoproteins by PCs to 
gain fusion capacity, which is required for virus propagation (Pasquato et al. 2013; 
Thomas 2002). All PCs possess a multidomain structure comprising a signal pep-
tide, an N-terminal prodomain, followed by a catalytic domain, where the catalytic 
triad Ser-His-Asp is located, and a P-domain (Fig. 11.13) (Henrich et al. 2005).

Four PCs (furin, PC5B, PC7, and SKI-1/S1P) possess a transmembrane and 
C-terminal cytoplasmatic domain, which anchors them to cellular membranes. 
Furthermore, furin, PC5B, and SKI-1/S1P can be shed and released in a soluble 
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form into the extracellular space. PC1 and PC2 are maintained in dense-core gran-
ules, whereas the remaining PC4, PC5A, PACE4, and PCSK9 are secreted. Furin 
and the related six PCs PC1, PC2, PC4, PC5, PACE4, and PC7 recognize multibasic 
cleavage sequences and, therefore, are also known as basic PCs or furin-like PCs. 
The catalytic domains of these enzymes show more than 50% identity (Thomas 
2002). Due to the similar cleavage sites, a redundant behavior of these enzymes was 
found in overexpression experiments as well as in vitro studies. Despite overlapping 
consensus sequences and a high sequence homology, minor modifications in the 
recognition sequence as well as in their cellular localization lead to specific cleav-
ages by the different PCs. In contrast, SKI-1/S1P cleaves after the consensus cleav-
age site (K/R)-X-(V/L/I)-Z↓, where Z is any amino acid except Val, Pro, Cys, Glu, 
or Asp and the spacer X is preferably a basic residue (Seidah 2013). After an auto-
catalytic cleavage at VFAQ↓S, PCSK9 forms a proteolytically inactive complex 
with its prosegment. So far, no other PCSK9 substrates are known.

Knockout of PCs in mice reveals their physiological significance especially dur-
ing embryogenesis and contributes to the identification of specific PC substrates 
(Creemers and Khatib 2008; Seidah and Prat 2012; Taylor et  al. 2003). Due to 
severe malformations, knockout of furin or SKI-1/S1P in mice leads to embryonic 
death, whereas PC5-deficient mice die at birth. For PACE4, a lethality of 25% was 
observed in knockout mice at embryonic day 14. In contrast, PC1- and PC2-deficient 
mice are viable but have several neuroendocrine peptide processing defects, and 
PC7 knockout mice show a loss of anxiety. The knockout of PC4 leads to infertility 
especially in male mice, whereas PCSK9 deficiency leads to lower plasma choles-
terol levels.

The maturation of the PCs requires an autoproteolytic cleavage (Seidah and Prat 
2012; Thomas 2002). In case of furin and furin-like PCs, two cleavages are needed 
to gain full enzymatic activity. After the removal of the signal peptide in the endo-
plasmic reticulum, a first cleavage leads to a conformational change of the enzyme, 
which is then the latent form. Enzymatic activity is obtained after a second cleavage 
in the prosegment, which leads to a release of the prosegment. The cleavages depend 
on the pH in the respective organelles. With exception of PC2 and SKI-1/S1P, the 
prosegments act as inhibitors of their respective enzyme. In case of SKI-1/S1P, 
three cleavages are required for full enzymatic activity. The subcellular localization 
of the PCs differs. Furin, PC5B, and PC7 have sorting signals in their cytosolic tails, 
which mediate recycling between the TGN and the cell surface. SKI-1/S1P shows 
also a broad distribution and is found in the ER, Golgi apparatus, endosomes, and 
lysosomes. In contrast, PC1 and PC2 are primarily found in dense-core vesicles of 
the secretory pathway, and PC4 is localized only in the plasma membrane of male 
and female germ cells. Furin, PC7, and SKI-1/S1P are ubiquitously distributed, and 
PC5 and PACE4 are widely distributed. In contrast, the expression of PC1 and PC2 
is limited to neural and endocrine cells. PCSK9 can be found predominantly in the 
liver, intestine, and kidney.

The reported inhibitors against PCs can be categorized into various groups 
including macromolecular compounds, pure peptides, peptidomimetics, as well as 
nonpeptidic compounds, which will be described in the following sections.
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11.2.2.1	 �Inhibitors of Basic Proprotein Convertases

Protein-Based Inhibitors
A common approach for protease inhibitor development is the optimization of natu-
ral inhibitors by mutation of their inhibitory recognition loops. The α1-antitrypsin 
Portland (α1-PDX) is a bioengineered serpin-type inhibitor containing the furin-
adapted sequence R355-I-P-R358 instead of A355-I-P-M358 in its inhibitory loop. 
α1-PDX inhibits furin with a Ki value of 0.6 nM in a slow tight-binding manner and 
is supposed to act as suicide substrate, yielding an inactive enzyme (Jean et  al. 
1998). It also inhibits PC1 (Ki = 260 nM) and PC5 (Ki = 2.3 nM) but has reduced 
potency against PC2, PC7, and PACE4 (Ki >1000  nM). Its expression in cells 
blocked the processing of HIV gp160 as well as measles virus fusion protein and, 
thus, inhibited virus spread (Anderson et al. 1993; Watanabe et al. 1995). Based on 
the reactive loop of α1-PDX, numerous mini-PDX peptides have been prepared. 
These acyclic- or disulfide-bridged cyclic 30-mers inhibit furin with IC50 values of 
731 nM and 569 nM, respectively (Basak and Lotfipour 2005).

Turkey ovomucoid third domain (OMTKY3) belongs to the family of Kazal-type 
inhibitors and normally inactivates serine proteases of the S1A fold that prefer a 
neutral P1 residue. Exchange of A15-C-T-L18 to R15-C-L-R18 in its reactive site 
loop leads to a moderate furin inhibitor with an association constant Ka of 
1.1 × 107 M−1 (Lu et al. 1993), which roughly corresponds to a reciprocal dissocia-
tion equilibrium constant of ~90 nM.

Like OMTKY3, inter-alpha-inhibitor protein (IαIp) is known to be a potent ser-
ine protease inhibitor, e.g., against trypsin, chymotrypsin, or acrosin. IαIp was first 
isolated from human plasma and is a multicomponent complex, consisting of two 
heavy and one light chain, called bikunin, which are linked via a chondroitin linker. 
Bikunin possesses two protease domains of the Kunitz-type that are likely to inhibit 
furin, because treatment with IαIp provided a significant protection against anthrax 
toxin in cell culture studies and in mice (Opal et al. 2005). Eglin C was originally 
isolated from the leech Hirudo medicinalis and belongs to the potato I inhibitor 
family. It inhibits several serine proteases, e.g., subtilisin, human leukocyte elastase, 
or cathepsin G.  Insertion of a multibasic recognition site by mutation of P42-V-
T-L45 to R42-V-K-R45 resulted in a strong furin inhibitor with a Ki value of 1.6 nM 
(Komiyama and Fuller 2000; Liu et al. 2004).

Additional furin inhibitors were designed by mutation of the homotetrameric 
glycoprotein α2-macroglobulin (α2-M), which is found in high concentrations in 
human blood. It is a potent broad-spectrum protease inhibitor with a unique inhibi-
tion mechanism. After protease mediated cleavage in the so-called bait region, the 
internal S-esters hydrolyze and trigger a conformational change of α2-M. The pro-
tease is enclosed by α2-M and sterically shielded from its substrates (Barrett and 
Starkey 1973). Replacement of its original G683-F-Y-E-S-D688 sequence by R683-
S-K-R-S-L688 yielded a potent furin inhibitor, which blocked the processing of von 
Willebrand factor, TGF-β1, and HIV-1 gp160 (Van Rompaey et al. 1997).

The 45-kDa proteinase inhibitor 8 (PI8) was the first reported furin inhibitor, which 
is not a serpin reactive-site mutant. PI8 belongs to the group of ovalbumin-type 
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serpins, containing two furin recognition sequences within its R336-N-S-R-C-S-R342 
segment. The inhibition of furin by PI8 consists of two steps, starting with the rapid 
formation of a loose complex and followed by the slow isomerization to a stable com-
plex. The overall Ki value for recombinant and soluble furin in  vitro is 53.8  pM 
(Dahlen et al. 1998).

Recently, several specific nanobodies against furin have been described (Zhu 
et  al. 2012). These nanobodies are dromedary-derived single-domain antigen- 
binding fragments. A crystal structure of one of these nanobodies in complex with 
furin and an additional active-site inhibitor reveals that they do not directly bind to 
the active site (Fig. 11.14) (Dahms et al. 2016b). Nevertheless, some of these nano-
bodies inhibit furin-mediated cleavage of diphtheria toxin by a noncompetitive 
mechanism (Ki values of approximately 25 μM) and the activation of anthrax toxin 
(Zhu et al. 2012). Obviously, they block the cleavage of larger proteinaceous sub-
strates by steric hindrance.

Peptide-Based Inhibitors
The second group of inhibitors comprises various peptides and peptidomimetics. 
Due to their relatively high molecular weight, negligible oral bioavailability, and 
stability problems, these compounds are not the first choice for drug development. 
Nevertheless, numerous injectable peptides are used in therapeutic applications 
(Vlieghe et al. 2010). The first potent PC inhibitors were the irreversible substrate 
analogue chloromethyl ketones (CMK), which covalently bind to the enzyme 
(Garten et  al. 1989; Hallenberger et  al. 1992). The most widely used basic PC 

Fig. 11.14  Structure of human furin (shown with its surface in beige) in complex with the irre-
versible active-site inhibitor Dec-Arg-Val-Lys-Arg-CMK (stick model with carbons in green, 
nitrogen in blue, and oxygen in red) and with the furin inhibitory nanobody Nb14, shown in car-
toon style in orange (PDB, 5JMO) (Dahms et al. 2016b). Although the nanobody binds far away 
from the active site, it blocks the binding of larger proteinaceous substrates

T. Steinmetzer and K. Hardes



303

inhibitor is the commercially available derivative Dec-Arg-Val-Lys-Arg-CMK (31, 
Fig. 11.15), which targets all of the known furin-like PCs in the nanomolar range 
(Garten et al. 1994; Jean et al. 1998). In cell culture, it blocks the furin-catalyzed 
cleavage of HIV gp160 into gp120 and gp41. Furthermore, the first crystal structure 
of furin was obtained when it was complexed with this inhibitor (Henrich et  al. 
2003). However, CMKs are not suited for further development. In vivo studies with 
the thrombin inhibitor d-Phe-Pro-Arg-CMK revealed a very short half-life <5 min 
(Hanson and Harker 1988). The same P4-P1 segment of the CMK 31 served for the 
design of analogues containing pseudo peptide bonds, like the ketomethylene inhib-
itor 32 (Ki value of 3.4 nM against furin, Fig. 11.15) (Angliker 1995).

So far, only few endogenous PC inhibitors are known. A prominent role plays 
autoinhibition by prodomains (Zhong et al. 1999). Furin-like PCs are synthesized as 
zymogen and are activated by autocatalytic cleavage within the prodomain. The 
prosegment acts as an intramolecular chaperon, needed for the correct folding, regu-
lation of enzymatic activity, and transport within the secretory pathway. A moderate 
Ki value of 156 nM was determined for the complete 83-mer prodomain of furin. 
Furthermore, this inhibitor reduced the proliferation, migration, and invasion of 
cancer cells (Basak et  al. 2010). Several truncated derivatives have been synthe-
sized. The most potent one, the 24-mer DYYHFWHRGVTKRSLSPHRPRHSR, 
inhibits furin with an inhibition constant of 0.9  μM.  Moreover, some peptides 
derived from the prodomain of PC1 inhibit furin in the same range (Basak and 
Lazure 2003).

A combinatorial peptide library containing approximately 52 million hexapep-
tides was scanned to identify PC1 and PC2 inhibitors. For instance, Ac-Leu-Leu-
Arg-Val-Lys-Arg-NH2 inhibits PC1 and PC2 with Ki values of 3.2 and 360  nM, 
respectively, whereas it is only a moderate furin inhibitor with an inhibition constant 
of 1.4 μM. On the other hand, the unprotected analogue H-Leu-Leu-Arg-Val-Lys-
Arg-OH has a stronger furin affinity (0.42 μM) but reduced potency against PC2 
(3.4 μM) (Cameron et al. 2000).

We have developed a new peptidomimetic lead structure for basic PCs by incor-
poration of decarboxylated arginine derivatives in P1 position. Starting from the 
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agmatine compound Phac-Arg-Val-Arg-4-Agm (33, Ki = 78 nM, Fig. 11.16) or the 
equipotent noragmatine analogue, the approximately 100-fold more potent 4-Amba 
inhibitor 34 has been prepared (Fig.  11.16). It inhibits furin with a Ki value of 
0.81 nM and PC1, PACE4, and PC5 with similar efficacy but has reduced potency 
against PC2 and PC7 (Becker et al. 2010) and negligible affinity against the trypsin-
like serine proteases thrombin, factor Xa, and plasmin. Further modification of the 
P3 position by tert-leucine or penicillamine provided inhibitors with enhanced 
potencies (Becker et al. 2011; Hardes et al. 2015). A considerably improved affinity 
was achieved by incorporation of basic P5 residues (Becker et al. 2012). The most 
potent analogue 36 (MI-1148, Fig. 11.17) contains a para-guanidinomethyl substi-
tution at the P5 phenyl ring and inhibits furin with a Ki value of 5.5 pM (Hardes 
et al. 2015). These inhibitors have a similar selectivity profile, as described for ana-
logue 34, and also inhibit PC4 in the low picomolar range. To the best of our knowl-
edge, these compounds are the most potent synthetic inhibitors of furin-like PCs. 
Some of these compounds enabled the determination of crystal structures in com-
plex with human furin (Fig. 11.17) (Dahms et al. 2014, 2016a; Hardes et al. 2015). 
A nearly identical binding mode was found for an analogous inhibitor containing 
the P5 guanidinomethyl substitution in meta-position (Dahms et al. 2014). The anti-
viral efficacy of inhibitor 36 and/or of its P3 Val analogue MI-701 (Becker et al. 
2012; Hardes et  al. 2015) was extensively studied in cell culture infected with 
numerous furin-dependent viruses. A significant antiviral effect was found with 
HPAIV H5N1 and H7N1 strains (Hardes et al. 2015; Lu et al. 2015) and with canine 
distemper virus (CDV), which belongs to the Paramyxoviridae and is closely related 
to measles virus (Hardes et al. 2015). Moreover, both inhibitors reduced the replica-
tion of Semliki Forest and chikungunya virus, both belonging to the alphaviruses, 
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where furin cleaves the precursor protein p62 in the TGN (Hardes et al. 2017). An 
antiviral effect was also found against flaviviruses like West Nile and dengue-2 
virus (Kouretova et  al. 2017) and, for MI-701, also against Borna disease virus 
(Lennartz et  al. 2016). Furthermore, both compounds strongly protected cells 
against anthrax, Shiga, and diphtheria toxin (Becker et al. 2012; Hardes et al. 2015).

Furthermore, inhibitor 35 (Fig. 11.16) containing a β-turn inducing enediynyl 
amino acid moiety was prepared. The amino and carboxyl groups of this unusual 
amino acid were coupled to peptide sequences around the cleavage sites within the 
prodomain of furin. This compound inhibits furin with a Ki value of 40 nM and 
blocks the cleavage of a fluorogenic peptide derived from the spike protein of human 
SARS coronavirus with an IC50 value of 193 nM (Basak et al. 2009).

In addition, the HA cleavage site of a H5 influenza virus was used as scaffold for 
the development of peptidic inhibitors (Shiryaev et al. 2007). The best compound 
TPRARRRKKRT-NH2 (37, Table  11.1) inhibits furin with a Ki value of 23 nM, 
whereas other PCs are less affected. Further optimization was achieved with peptide 
(38), which inhibits furin, PC5, and PACE4 in the low nanomolar range, but has 
reduced potency against PC7 (Ki = 490 nM) (Remacle et al. 2010).

The inhibitory potency against furin could be further enhanced with poly- 
arginine derivatives, found by a positional scanning of combinatorial l- and d-hexa-
peptide libraries (Cameron et al. 2000). Hexa-d-arginine (39, Table 11.1) inhibits 
furin and PC5 with Ki values around 200 nM in the same range, whereas it is less 
active against PC1 and PC7. The elongated analogue nona-d-arginine-amide (D9R-
amide, compound 40, Table 11.1) possesses a significantly improved inhibition con-
stant of 1.3 nM. In contrast to the analogous l-peptide, which was cleaved by furin, 
the d-configured D9R-amide was found to be fully stable (Cameron et al. 2000; 
Kacprzak et al. 2004).

Another attempt to synthesize potent PC inhibitors is based on the monocyclic 
sunflower trypsin inhibitor SFTI-1 (Fig. 11.2) (Fittler et al. 2015). Therefore, the 
SFTI-1 backbone was used as a starting point for several modifications like the 
implementation of a furin cleavage motif and truncation of the inhibitor. The most 
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potent compound (41) (Table 11.1) of this series inhibits furin in the low nanomolar 
range (Ki = 0.49 nM), whereas matriptase-1 is only poorly (Ki = 560 nM) and tryp-
sin not affected.

Moreover, peptidomimetic compounds containing a multi-Leu motif have 
been described (Levesque et  al. 2012). The aim of this modification was the 
discrimination between furin and PACE4. The most selective derivative of this 
series (42) inhibits PACE4 with a Ki value of 18 nM, whereas furin was 22-fold 
less affected. Further modification with polyethylene glycols of different length 
could improve the selectivity profile, whereas incorporation of 4-amidinoben-
zylamide or 2,3-dehydroagmatine as P1 residue resulted in less selective PACE4 
inhibitors compared to furin (Kwiatkowska et al. 2016).

Small-Molecule Inhibitors
Small molecules are the most promising candidates for drug development, because 
they have a better chance for oral bioavailability and should be better suited to 
address intracellular targets. Nevertheless, only a few nonpeptidic PC inhibitors 
have been reported; most of them possess moderate potency. The only efficacious 
derivatives were obtained within a series of guanidinylated 2,5-dideoxystrep-
tamine derivatives; the most potent analogue 43 (Fig. 11.19) inhibits furin and 
PC5 with inhibition constants of 6 and 4 nM, respectively, whereas its affinity 
against PACE4 and PC7 is reduced (Jiao et al. 2006). Derivative 44 (1n) enabled 
the determination of a crystal structure in complex with human furin (Fig. 11.18) 
(Dahms et  al. 2017). Surprisingly, two inhibitor molecules bind close to the 
active-site cleft. The first molecule (with carbon atoms in green) binds to the S4 
and S2 sites of furin, without addressing its S1 pocket. The binding of the second 
molecule (shown with carbon atoms in yellow), which does not form strong polar 
contacts to furin, could be an artifact caused by the unusually high inhibitor con-
centrations used during crystallization.
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Reduction of peptide bonds by treatment of their amide precursors with borane-
tetrahydrofuran provided a series of multibasic piperazine and pyrrolidine contain-
ing derivatives, like 45 (Fig. 11.19) with submicromolar affinity against PC2 and 
weak affinity against PC1 and furin (Kowalska et  al. 2009). Among a series of 
weakly basic guanylhydrazones, several compounds like derivative 46 were pre-
pared, which inhibit furin with inhibition constants close to 0.5 μM (Sielaff et al. 
2011b). Even, the mono-guanylhydrazone derivative (47) still showed a significant 
furin inhibition with a Ki value of 11.8 μM (Komiyama et al. 2009). Compound 47 
also inhibits PC5 and PACE4 in the same range, whereas a reduced potency was 
observed against PC7. Despite the poor in  vitro potency of the cell-permeable 
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naphthofluorescein derivative B3 (48) with a Ki value of 12 μM against furin, it was 
able to inhibit the furin-catalyzed activation of the remodeling protease proMT1-
MMP, leading to decreased MMP-2 activation and cell motility of CHO cells. 
Treatment with B3 also reduced the invasiveness of human fibrosarcoma cells 
(HT1080) (Coppola et al. 2008).

Furthermore, furin-inhibiting dicoumarol derivatives could be identified by 
HTS.  Some of these compounds protected cells against furin-activated anthrax 
toxin and inhibited proMT1-MMP processing. Compound 49 noncompetitively 
binds to furin with an inhibition constant of 1 μM (Komiyama et al. 2009). Recently, 
a series of zinc and copper ion chelate complexes was described to inhibit furin in 
the micromolar range; the structure of the most suitable chelate ligand TTP (50) is 
shown in Fig. 11.19. The authors speculated that the active-site histidine might be 
coordinated by the zinc or copper ions. Interestingly, the solvated Zn2+ was less 
potent than its chelated form, whereby the free chelate ligands did not affect furin 
(Podsiadlo et al. 2004).

One approach to find new nonpeptidic furin inhibitors is the testing of compounds 
from natural sources. An example of this attempt is the screening of the chemical 
constituents of the medicinally used plant Andrographis paniculata. Derived from 
the major component andrographolide 51, several semisynthetic compounds have 
been tested. The most potent derivative is the andrographolide-trisuccinate pyridin-
ium salt 52 (Fig. 11.19) with a Ki value of 2.6 μM (Basak et al. 1999).

11.2.2.2	 �SKI-1/S1P Inhibitors

Peptide-Based Inhibitors
In analogy to the CMK inhibitors against furin-related PCs, irreversible inhibitors for 
SKI-1/S1P were prepared (Pasquato et al. 2006). The substrate analogue backbone was 
derived from the cleavage site of the Lassa virus (LASV) glycoprotein IYISRRLL. Based 
on this sequence, a 4-mer (Dec-RRLL-CMK; 53, Fig. 11.20), a 6-mer (Dec-ISRRLL-
CMK), and a 7-mer (Dec-YISRRLL-CMK) were synthesized. Interestingly, the 4-mer 
shows in vitro a 250-fold higher potency compared to the longer derivatives, whereas 
in cell culture experiments, all inhibitors are almost equipotent. The CMK derivatives 
were able to block the infection of lymphocytic choriomeningitis virus (LCMV) and 
chimeras of LCMV containing the LASV glycoprotein.
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Furthermore, enediynyl peptides were synthesized based on the amino acid 
sequence of cleavage sites of known substrate sequences like the LASV glycopro-
tein and the prodomain of SKI-1/S1P (Basak et al. 2015). The most potent com-
pound (54, Fig. 11.20) inhibits SKI-1/S1P with a Ki value of 0.82 μM.

Protein-Based Inhibitors
The concept of mutation and thereby optimization of natural serine protease inhibi-
tors for a new target was also applied for the development of SKI-1/S1P inhibitors 
(Maisa et al. 2009; Pullikotil et al. 2004). Instead of the multibasic furin cleavage 
site, the SKI-1/S1P-specific motif (R/K)-X-X-(L/T)↓ (Seidah and Chretien 1999) 
was introduced. The overexpression of the α1-AT RRVL variant was found to 
inhibit both CCHFV (Crimean-Congo hemorrhagic fever virus) and LASV glyco-
protein maturation. Blocking of arenavirus GPC processing had a strong antiviral 
effect in suppressing cell-to-cell spread and formation of viral particles. Micromolar 
concentrations of the wild-type prosegment of SKI-1/S1P were needed to inhibit the 
enzyme in vitro. A prosegment with the amino acid exchange R134E was the most 
potent mutant inhibiting the cleavage of CCHFV preGC (Pullikotil et al. 2004).

Small-Molecule Inhibitors
With the role of SKI-1/S1P in the cholesterol and fatty acid synthesis in mind, a 
high-throughput screen was conducted to identify lead structures lowering plasma 
cholesterol and triglycerides (Hay et al. 2007). Based on screening results, improved 
derivatives were prepared. The most potent compound from this study (55, 
Fig. 11.21) inhibits SKI-1/S1P with an IC50 value of 8 nM. However, the less potent 
analogue PF-429242 (56) was used for further evaluation because of its lower 
molecular weight and lipophilicity. PF-429242 is a reversible, competitive inhibitor 
of SKI-1/S1P with an IC50 value of 170 nM. Furthermore, it is highly selective for 
SKI-1/S1P; other serine proteases like trypsin, plasmin, kallikrein, or furin are not 
inhibited by this compound. However, PF-429242 suffers from rapid clearance and 
poor oral bioavailability in rats. Inhibition of SKI-1/S1P by PF-429242 blocks the 
cleavage of the glycoprotein of the old-world arenaviruses LASV and LCMV, 
resulting in reduced virus replication in infected cell cultures (Urata et al. 2011). 
Interestingly, no escape variants could be detected during or after the treatment with 
this SKI-1/S1P inhibitor. These studies were extended to several new-world arena-
viruses like Junin or Guanarito virus, where PF-429242 also efficiently blocked 
glycoprotein processing and virus production (Pasquato et al. 2012).

A set of nonpeptidic isocoumarinyl sulfone derivatives was tested against SKI-1/
S1P. However, only one compound (57, Fig. 11.21) showed a weak inhibition of 
SKI-1/S1P (Ki = 255 μM) (Basak et al. 2015).

Several known serine protease inhibitors, among them AEBSF (4-(2-aminoethyl)-
benzene sulfonylfluoride) and p-aminobenzamidine (Fig. 11.4) as well as inhibitors 
of furin or furin-related PCs like Dec-RVKR-CMK, were tested against SKI-1/
S1P.  A significant inhibition was only found for DCI (3,4-dichloroisocoumarin, 
compound 58, Fig. 11.21), which exhibited a slow irreversible binding mode with 
an apparent inhibition constant of 6.8 μM (Bodvard et al. 2007).
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11.3	 �Miscellaneous Host Proteases as Antiviral Targets

Numerous viral surface proteins are cleaved by endosomal cysteine proteases. The 
papain-like cathepsin L activates the Ebola virus (EboV) glycoprotein (GP) 
(Chandran et al. 2005) or Nipah virus F protein (Diederich et al. 2008), and despite 
contradictory reports, cathepsins might be also involved in the GP activation of 
some coronaviruses (Zhou et al. 2015). In contrast to the majority of serine protease 
inhibitors, most cysteine protease inhibitors achieve potency by a covalent modifi-
cation of their target enzymes, which can be reversible or irreversible (Siklos et al. 
2015). Only a few basic examples of typical cysteine protease inhibitors will be 
provided in this paragraph. Classical warheads leading to a relatively specific irre-
versible inhibition of cysteine proteases are the epoxysuccinates, vinylsulfones, and 
allylsulfones, whereas chloromethyl and diazomethyl ketones react with both the 
cysteine and serine proteases. The archetypal epoxysuccinate E-64 (59) (Fig. 11.22) 
was isolated from Aspergillus japonicus and forms a thioether bond with the active-
site cysteine (Hanada et al. 1978). It is a nonselective inhibitor of nearly all cysteine 
cathepsins, with the exception of cathepsin C (Turk et al. 2012). Many analogues of 
E-64 have been prepared by replacement of its leucyl-agmatine segment. The more 
hydrophobic ethyl ester prodrug E-64d (60) reached clinical phase III trials 
(Satoyoshi 1992). Peptidic vinylsulfones represent an additional class of widely 
used cysteine protease inhibitors, including numerous cathepsins. The active-site 
cysteine attacks the Michael acceptor like vinylsulfone and becomes irreversibly 
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alkylated. For instance, cathepsins L and B are very rapidly inactivated by inhibitor 
61 with second-order rate constants (kinact/Ki) of 9.2 × 106 M−1s−1 and 4.2 × 105 M−1s−1, 
respectively (Palmer et al. 1995). A considerable inhibition of EboV GP and SARS-
CoV S-protein cleavage was observed for close analogues in cell culture, like com-
pound 62. However, this compound was completely inactive in a lethal SARS-CoV 
mouse model (Zhou et al. 2015). A considerably slower inactivation of cathepsin B 
(kobs/[I] = 9.2 × 106 M−1s−1) and other cysteine proteases was found by the allylsul-
fone 63 and numerous analogues, indicating a reduced electrophilicity of the allyl-
sulfone segment (Fennell et al. 2013). Peptidic chloromethyl or diazomethyl ketones 
(Powers et  al. 2002) are also very effective in  vitro cysteine protease inhibitors. 
However, they suffer from instability in vivo and often from low selectivity.

Similar as done in the field of serine protease inhibitors, α-keto-derived cyste-
ine protease inhibitors have been prepared, including α-ketoacids (64), α-ketoesters 
(65), and α-ketoamides (66) (Fig. 11.23). The ketone moiety of these analogues is 
attacked by the active-site cysteine leading to a covalent but reversible thiohemik-
etal complex. Additional examples are summarized in a recently published review 
(Siklos et al. 2015). Probably the most promising warhead for the development of 
covalent reversible cysteine protease inhibitors is the nitrile group. Nitriles react 
with the active-site cysteine forming a thioimidate adduct. A myriad of peptidic 
nitrile inhibitors have been prepared (Frizler et al. 2010), for instance, compound 
67 inhibits cathepsins L and B with IC50 values of 20 nM and 1.8 nM (Greenspan 
et al. 2001). A potency considerably enhanced by four to five orders of magnitude 
could be achieved by the replacement of the Cα carbon in P1 position with nitro-
gen. For instance, the resulting azanitrile 68 binds to cathepsin L with a Ki value 
of 74 pM and possesses a similar picomolar potency against cathepsins S and L 
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(Löser et  al. 2008). The cathepsin K inhibitor odanacatib 69 reached clinical 
phase III development, but its development was recently cancelled due to side 
effects. Moreover, completely nonpeptidic nitrile derivatives have been devel-
oped, such as compound 70 that inhibits cathepsin L with a Ki value of 2  nM 
(Fig. 11.23).

Numerous cathepsin inhibitors have been prepared in the past. However, despite 
a few proof of concept studies, their deeper characterization and optimization as 
antivirals are limited, so far. They have been mainly tested in nonviral applications, 
e.g., for cancer therapy, osteoporosis, and rheumatoid arthritis or in neurodegenera-
tive diseases (Siklos et al. 2015; Turk et al. 2012).

Zinc-dependent host metalloproteases from the MMP (matrix metalloproteases) 
or the ADAM (a disintegrin and metalloprotease) families might also be involved in 
the entry and fusion of certain viruses, as recently described for a neurovirulent 
murine CoV strain (Phillips et al. 2017). Moreover, a considerable amount of the 
EboV GP is shed by the metalloprotease TACE (ADAM17) (Dolnik et al. 2004). 
The soluble GP activates dendritic cells and macrophages and causes the release of 
pro- and anti-inflammatory cytokines and affects vascular permeability. The dys-
regulated inflammatory host response seems to contribute to the high virus pathoge-
nicity (Escudero-Perez et  al. 2014). These results suggest that inhibitors of 
metalloproteases may have antiviral activity. Although more than 50 clinical trials 
with metalloprotease inhibitors for the treatment of various cancers failed, their 
broad anti-inflammatory potential has aroused new interest (Vandenbroucke and 
Libert 2014).
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11.4	 �Host Proteases as Receptors for Virus Entry

A few respiratory viruses use membrane-bound host proteases independent from 
their proteolytic activity as entry receptors. A surface region far away from the 
active site of the ubiquitously expressed serine protease dipeptidyl peptidase 4 
(DPP4, also called CD26) serves as human cellular receptor of MERS-CoV (Raj 
et al. 2013). Consequently, no antiviral effect could be observed after treatment of 
MERS-CoV-infected cells with active-site-directed DPP4 inhibitors. Moreover, the 
SARS-CoV and HCoV-NL63 use angiotensin-converting enzyme 2 (ACE2) (Li 
et al. 2003; Wu et al. 2009) and aminopeptidase N (Yeager et al. 1992) as human 
receptors. Both proteases do not show any sequence or structural similarity with 
DPP4 (Wang et al. 2013). The crystal structure of the receptor-binding domain of 
the MERS- and SARS-CoV S-protein in complex with DPP4 (Lu et al. 2013; Wang 
et al. 2013) and ACE2 (Li et al. 2005) has been determined, respectively. The com-
plexes reveal typical protein-protein interactions (PPI). The receptor region on 
DPP4 and ACE2 are relatively flat missing deep binding pockets normally found in 
the active site of proteases. Although no examples are known so far, it should be 
possible to inhibit the entry of these virions by blocking the described PPIs with 
suitable ligands.

�Conclusion
So far, only inhibitors addressing viral proteases have been approved for the 
treatment of certain virus infections. A huge arsenal of excellent inhibitors 
against host proteases has been developed in the past for treatment of chronic 
diseases, such as hypertension, diabetes, risk of thrombosis, inflammatory ail-
ments, and cancer, but only few of them reached the clinic. Despite loss of patent 
protection, many of these failed inhibitors or their analogues could still be suit-
able for short-term treatment of acute life-threatening infectious diseases, with-
out being hampered by side effects that might develop after long-term application. 
One of the most important prerequisites for successful drug development is the 
identification of a valid target. For some virus infections, the relevant host prote-
ases have been identified, in other cases there are still uncertainties, and further 
basic research on target identification is needed. Since proteases usually belong 
to families of similar enzymes which substitute each other, a broad-spectrum 
inhibitor could be tolerable or even advantageous for the special treatment of 
infectious disease, although selective drugs are usually preferred for most appli-
cations to minimize side effects. Ideally, host protease inhibitors should be used 
in combination with additional drugs. This strategy should improve the antiviral 
efficacy and allow the use of reduced concentrations, thereby minimizing side 
effects. The development of effective and tolerable host protease inhibitors will 
hopefully expand the arsenal of antiviral drugs in the future.
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