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Abstract. Support vector machines (SVMs) are popular supervised
learning methods. The original SVM was developed for binary classi-
fication. It selects a linear classifier by maximizing the geometric mar-
gin between the boundary hyperplane and sample examples. There are
several extensions of the SVM for multi-class classification problems.
However, they do not maximize geometric margins exactly. Recently,
Tatsumi and Tanino have proposed multi-objective multi-class SVM,
which simultaneously maximizes the margins for all class pairs. In this
paper, we propose another multi-class SVM based on the geometric mar-
gin maximization. The SVM is formulated as minimization of the sum
of inverse-squared margins for all class pairs. Since this is a nonconvex
optimization problem, we propose an approximate solution. By numerical
experiments, we show that the propose SVM has better performance in
generalization capability than one of the conventional multi-class SVMs.

1 Introduction

Support vector machines (SVMs) are popular supervised learning methods in
machine learning. The original SVM [3,9] was proposed for binary classification
problems, i.e., tasks to learn a classifier separating two group of examples. The
SVM determines a linear discriminant function based on the principle of margin
maximization. It means that the linear function is selected such that the mini-
mum distance between sample examples and the hyperplane associated with the
linear function is maximized. It is based on geometric motivation that the neigh-
borhood of a labeled example includes those of the same label as that example.
In another viewpoint, the margin maximization is regarded as regularization in
model selection.

There are various extensions of the binary SVM for multi-class classification
problems, i.e., there are more than two groups which should be separated. A sim-
ple approach of extension is one-against-all (OAA) [7], which reduces a k-class
problem to k binary problems to separate one class from the others, and applies
the binary SVM to these problems. Another major approach is all-together (AT),
which is formulated as minimization of the sum of regularization terms and
errors of a classifier. Since optimization problems of AT-SVM includes more deci-
sion variables and constraints, computational costs are higher than OAA-SVM.
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On the other hand, Doğan et al. [4] showed that AT-SVMs outperform OAA-
SVM in classification accuracy in the case of the linear kernel. (And they are
comparable in the case of the RBF kernel.)

The above mentioned multi-class SVMs do not exactly maximize geometric
margins. Especially, the existing AT-SVMs are derived from regularized model
selection, instead of geometric interpretation. Recently, Tatsumi and Tanino [8]
have pointed out geometric margin maximization in multi-class problems, and
formulated a multi-objective optimization problem which simultaneously maxi-
mizes all of the class pair margins. The model is called multi-objective multi-class
SVM (MMSVM).

To obtain Pareto solutions of multi-objective optimization problems, we need
some scalarization method. Because of nonconvexity of MMSVM, almost all
conventional scalarization methods cannot be computed efficiently. Tatsumi and
Tanino [8] used the ε-constraint method, and showed that obtained classifiers
have better classification accuracy than those of AT- and OAA-SVMs. However,
the method needs high computational effort to find good parameter ε, and cannot
maximize the margins of class pairs uniformly like weighted-sum scalarization.

In this paper, we propose a multi-class SVM which is another scalarizing
formulation of MMSVM. It minimizes the sum of inverse-squared margins for all
class pairs. To overcome nonconvexity of the scalarized MMSVM, we linearize
its nonconvex parts and solve the modified convex optimization problem. Con-
sequently, we obtain an approximation solution for the original problem. More-
over, we show an upper bound of the ratio of the objective function value of the
approximation solution to the optimal value of the original problem. A special
case of the proposed multi-class SVM coincides with the conventional AT-SVM
in [2,9,10]. By numerical experiments, we show that the proposed multi-class
SVM outperforms the AT-SVM in generalization capability.

We demonstrate that large margin classifiers can be obtained by the proposed
SVM. See Fig. 1. The left and right figures show classification boundaries of Wine
Data Set obtained by AT-SVM and the proposed SVM, respectively. The tables
after the figures show the values of margins for three class pairs (1, 2), (1, 3) and
(2, 3). We can see that all of the margins of the classifier by the proposed SVM
are larger than those by AT-SVM.

This paper is organized as follows. In Sect. 2, binary and multi-class SVMs
are introduced. In Sect. 3, we discuss the proposed multi-class SVM. We formu-
late the model minimizing the sum of inverse-squared margins, and propose the
approximate solution. In Sect. 4, numerical experiments are presented to exam-
ine performance of the proposed SVM. Finally, in Sect. 5, concluding remarks
are provided.

2 Multi-class SVMs

2.1 Multi-class Classification

In this paper, we deal with classification problems of supervised learning. Let
n-dimensional real space Rn be an input space and C = {1, 2, . . . , c}, c ≥ 2 be a
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class pair 12 13 23
margin 0.33 0.45 0.28

(a) AT-SVM

class pair 12 13 23
margin 0.36 0.61 0.30

(b) Proposed

Fig. 1. Separating lines obtained by AT-SVM (the left figure) and the proposed SVM
(the right figure) for Wine Data Set. There are three classes—class 1: blue circles, class
2: orange triangles, class 3: yellow squares. The solid lines are the separating line with
the margins of class pair 12. The broken lines are of class pair 13. The dotted lines
are of class pair 23. The data are plotted in the 2-dimensional affine subspace passing
through 3 normal vectors of 3 classes. (Color figure online)

class label set. A classification problem is to find a function D : Rn → C from m
input vectors x1, . . . , xm ∈ Rn and class labels y1, . . . , ym ∈ C. Such a function
D is called a classifier. S = ((x1, y1), . . . , (xm, ym)) is called a training set. We
aim to find a function having high classification accuracy, i.e., it can correctly
assign class labels to (unseen) input vectors. Let M = {1, . . . ,m} be the index
set of the training set. For p ∈ C, we define Mp = {i ∈ M | yi = p}.

When c = 2, the problem is called binary classification. On the other hand,
when c ≥ 3, it is called multi-class classification. The SVM proposed in this
paper can solve multi-class classification problems.

We consider a linear classifier D given in the following form: for x ∈ Rn,

D(x) = argmax
p∈C

{fp(x) = (wp)�x + bp}, (1)

where w1, . . . , wc ∈ Rn and b1, . . . , bc ∈ R. If there is more than one label
p whose value fp(x) is the maximum, we arbitrarily select one label among
them. Each fp(x) is called a linear discriminant function for the class label p.
We propose a method to learn the parameters (w1, b1), . . . , (wp, bp) from the
training set S, to construct the linear classifier D with high accuracy.

2.2 SVMs

SVMs (Support Vector Machines) are methods for binary classification to learn
linear classifiers from examples. First, we mention the SVM for linearly separable
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binary classification problems. In binary classification, a linear classifier D is
reduced to the following form: letting f(x) = w�x + b, D(x) = 1 if f(x) > 0;
D(x) = −1 if f(x) < 0. Here, we suppose the class labels are 1 and −1. w and
b are parameters of the linear classifier D. Input vectors x with f(x) = 0 are
arbitrarily classified.

SVM selects a classifier whose boundary hyperplane having the largest mar-
gin. A margin of a hyperplane f(x) = 0 is the distance between the hyperplane
and the nearest input vector in the training S, namely, mini∈M |w�xi+b|

‖w‖ , where
‖ · ‖ is the Euclidean norm. The largest-margin classifier is obtained by solving
the following optimization problem.

minimize
w,b

1
2

(
mini∈M |w�xi + b|

‖w‖
)−2

subject to yi(w�xi + b) > 0, i ∈ M

(2)

Here, we consider the problem minimizing the inverse-squared margin instead
of maximizing the margin. The constraint ensures that the selected hyperplane
w�x + b = 0 correctly classifies all training points. The objective function is
invariant if (w, b) is multiplied by a positive value. Hence, without loss of gener-
ality, we can fix mini∈M |w�xi + b| = 1, and the above optimization problem is
equivalent to the following.

minimize
w,b

1
2
‖w‖2

subject to yi(w�xi + b) ≥ 1, i ∈ M.

(3)

For i ∈ M , let αi be the optimal dual variable with respect to the constraint
yi(w�xi +b) ≥ 1. A training input vector xi is called a support vector if αi > 01.
The optimal hyperplane w�x+b = 0 depends on the set of support vectors only.

The model (3) has no feasible solution if the positive class (yi = 1) and the
negative class (yi = −1) cannot be separated by any hyperplanes. Additionally,
even if two classes are separable, a better hyperplane may be obtained by taking
account of input vectors near to the hyperplane. To archive these ideas, we
consider errors for training examples, and minimization of the sum of the errors.
In this paper, we use the squared hinge loss function to assess the errors.

minimize
w,b

1
2
‖w‖2 +

μ2

2

∑
i∈M

L(yi, f(xi)), (4)

where L(y, f(x)) = (max{0, 1 − y(w�x + b)})2. SVMs with tolerance of errors
are called soft-margin. (On the other hand, the model (3) is called hard-margin.)
In this formulation, the first term ‖w‖2/2 of the margin minimization can be
regarded as a regularization term to prevent overfitting of classifiers. μ is a

1 Roughly speaking, it is equivalent to yi(w
�xi + b) = 1.
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hyperparameter to adjusting the effect of the sum of losses. It is equivalent to,

minimize
w,b,ξ

1
2
‖w‖2 +

μ2

2

∑
i∈M

ξ2i

subject to yi(w�xi + b) + ξi ≥ 1, i ∈ M,

(5)

where ξ = (ξ1, . . . , ξm) is the vector of additional decision variables.

2.3 Multi-class SVMs

We extend the SVM model (3) for multi-class problems. Let fp(x) = (wp)�x+bp

be a linear discriminant function of class label p ∈ C. Additionally, let C 2̄ =
{pq | p, q ∈ C, p < q} be the set of class label pairs. For each class label pair
pq ∈ C 2̄, the boundary hyperplane separating two sets of p and q is fpq(x) =
(wp − wq)�x + (bp − bq) = 0. Similarly to (2), the optimization problem to
minimize the sum of inverse-squared margins for all pq ∈ C 2̄ is formulated as
follows.

minimize
(wp,bp)

1
2

⎛
⎝ ∑

pq∈C2̄

mini∈Mpq |(wp − wq)�xi + bp − bq|
‖wp − wq‖

⎞
⎠

−2

subject to (wp − wq)�xi + bp − bq > 0, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp > 0, i ∈ Mq, pq ∈ C 2̄.

(6)

By the same reduction as (3), we fix mini∈Mpq |(wp − wq)�xi + bp − bq| = 1.
Then, we obtain the following optimization problem.

minimize
(wp,bp)

1
2

∑
pq∈C2̄

‖wp − wq‖2

subject to (wp − wq)�xi + bp − bq ≥ 1, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp ≥ 1, i ∈ Mq, pq ∈ C 2̄.

(7)

The multi-class SVM to construct a classifier using the linear discriminant func-
tions obtained by problem (7) is called AT-SVM (All-Together SVM). The
obtained classifier correctly separates all training input vectors. However, it may
not be a margin maximization solution [8].

AT-SVM is also extended to soft-margin cases. There are several soft-margin
models considering types of loss functions and functions to aggregate losses of
training examples [4]. In this paper, we consider the following soft-margin model
using the squared hinge loss function.
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minimize
(wp,bp),ξ

1

2

∑

pq∈C2̄

‖wp − wq‖2 +
1

2

∑

pq∈C2̄

(
∑

i∈Mp

ξ2qi +
∑

i∈Mq

ξ2pi

)

subject to (wp − wq)�xi + bp − bq + ξqi ≥ 1, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp + ξpi ≥ 1, i ∈ Mq, pq ∈ C 2̄,

(8)

where ξ = ((ξ1i)i∈M\M1 , . . . , (ξci)i∈M\Mc).

3 Multi-class SVM Maximizing Geometric Margins

3.1 Geometric Margin Maximization

In this paper, we propose a new multi-class SVM based on minimiza-
tion of the sum of inverse-squared margins (6). Let spq = (mini∈Mp∪Mq |
(wp − wq)�xi + bp − bq|

)2 for pq ∈ C 2̄, and s = (s12, . . . , s1c, s23, . . . , s(c−1)c).
The model (6) is reformulated as follows.

minimize
(wp,bp),s

1

2

∑

pq∈C2̄

‖wp − wq‖2

spq

subject to (wp − wq)�xi + bp − bq ≥ √
spq > 0, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp ≥ √
spq > 0, i ∈ Mq, pq ∈ C 2̄.

(9)

Let ((wp, bp)p∈C , s) be a feasible solution of (9) and a > 0. Then,
((awp, abp)p∈C , a2s) is also a feasible solution and the objective function is invari-
ant for the multiplication of a. Hence, without loss of generality, we can add
constraints spq ≥ 1 for pq ∈ C 2̄.

minimize
(wp,bp),s

1

2

∑

pq∈C2̄

‖wp − wq‖2

spq

subject to (wp − wq)�xi + bp − bq ≥ √
spq, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp ≥ √
spq, i ∈ Mq, pq ∈ C 2̄,

spq ≥ 1, pq ∈ C 2̄.

(P1)

Let OPT1 be the optimal value of (P1).

3.2 Approximate Solutions

The optimization problem (P1) is nonconvex, because of √
spq in the right hand

sides of the first and second constraints. Nonconvexity causes for difficulty in
solving optimization problems. Hence, we replace √

spq with an affine function
of spq, and make (P1) convex.
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First, we put additional constraints spq ≤ ρ2 for pq ∈ C 2̄, where ρ is a
hyperparameter.

minimize
(wp,bp),s

1

2

∑

pq∈C2̄

‖wp − wq‖2

spq

subject to (wp − wq)�xi + bp − bq ≥ √
spq, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp ≥ √
spq, i ∈ Mq, pq ∈ C 2̄,

1 ≤ spq ≤ ρ2, pq ∈ C 2̄.

(P2)

Let OPT2(ρ) be the optimal value of (P2) with ρ. We have OPT2(ρ) ≥ OPT1.
Let ((w̄p, b̄p)p∈C , s̄) be an optimal solution of (P1) and s̄min = minpq∈C2̄ s̄pq.
Then, ((w̄p/

√
s̄min, b̄p/

√
s̄min)p∈C , s̄/s̄min) is also an optimal solution of (P1). If

maxpq∈C2̄ s̄pq/s̄min ≤ ρ2 then ((w̄p/
√

s̄min, b̄p/
√

s̄min)p∈C , s̄/s̄min) is feasible for
(P2). Therefore, it is optimal for (P2).

We replace √
spq in (P2) with spq+ρ

1+ρ , and obtain the following optimization
problem.

minimize
(wp,bp),s

1

2

∑

pq∈C2̄

‖wp − wq‖2

spq

subject to (wp − wq)�xi + bp − bq ≥ spq + ρ

1 + ρ
, i ∈ Mp, pq ∈ C 2̄,

(wq − wp)�xi + bq − bp ≥ spq + ρ

1 + ρ
, i ∈ Mq, pq ∈ C 2̄,

1 ≤ spq ≤ ρ2, pq ∈ C 2̄.

(P3)

This is a second-order cone programming, which is a kind of convex optimization
problems and can be easily solved by several software packages. Let OPT3(ρ)
be the optimal value of (P3) with ρ.

Figure 2 shows the relation between
√

s and (s + ρ)/(1 + ρ). In the section
1 ≤ s ≤ ρ2, it holds that

√
s ≥ (s + ρ)/(1 + ρ). Hence, we have OPT3(ρ) ≤

OPT2(ρ). It leads that we obtain a lower bound of the optimal value of (P2) by
solving the convex optimization problem (P3).

Let ((w̄p, b̄p)p∈C , s̄) be an optimal solution of (P3) with respect to ρ. For each
pq ∈ C 2̄, we define s′

pq = mini∈Mp∪Mq

(
(wp − wq)�xi + bp − bq

)2. Remarking
1 ≤ s′

pq ≤ ρ2 for pq ∈ C 2̄, solution ((w̄p, b̄p)p∈C , s′) is feasible for (P2) with
respect to ρ. We evaluate optimality of the solution ((w̄p, b̄p)p∈C , s′). For each
pq ∈ C 2̄, the following inequality holds.

‖w̄p − w̄q‖2
s′

pq

=
‖w̄p − w̄q‖2

mini∈Mpq ((w̄p − w̄q)�xi + b̄p − b̄q)2

=
‖w̄p − w̄q‖2

s̄pq

s̄pq

mini∈Mpq ((w̄p − w̄q)�xi + b̄p − b̄q)2
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s + ρ

1 + ρ

√
s

(1,1)

(ρ2,ρ)

s

Fig. 2. Approximating
√

s by (s + ρ)/(1 + ρ) (when ρ = 10).

≤ s̄pq

(
1 + ρ

s̄pq + ρ

)2 ‖w̄p − w̄q‖2
s̄pq

≤ max
1≤s≤ρ2

s

(
1 + ρ

s + ρ

)2 ‖w̄p − w̄q‖2
s̄pq

=
(1 + ρ)2

4ρ

‖w̄p − w̄q‖2
s̄pq

.

Therefore,

OPT2(ρ) ≤
∑

pq∈C2̄

‖w̄p − w̄q‖2

s′
pq

≤ (1 + ρ)2

4ρ

∑

pq∈C2̄

‖w̄p − w̄q‖2

s̄pq
=

(1 + ρ)2

4ρ
OPT3(ρ).

We define θ(ρ) = (1+ρ)2

4ρ . Consequently, the optimal value of (P2) is at most the
optimal value of (P3) multiplied by θ(ρ).

Summarizing the above discussion, we have the following theorem.

Theorem 1. We have 1 ≤ OPT2(ρ)
OPT3(ρ) ≤ θ(ρ). Moreover, suppose that there exists

an optimal solution ((wp, bp)p∈C , s) of (P1) such that
max

pq∈C2̄ spq

min
pq∈C2̄ spq

≤ ρ2. Then,

we have 1 ≤ OPT1
OPT3(ρ) ≤ θ(ρ).

This theorem implies that we obtain an approximation solution for (P1) and (P2)
with ρ by solving convex problem (P3) with ρ, and the ratio of approximation
is at most θ(ρ).

The upper bound function θ monotonically increases with respect to ρ. The
relationship of ρ and θ is shown in Fig. 3. θ(ρ) is approximated by ρ/4 + 1/2,
i.e., the upper bound of the ratio of approximation deteriorates linearly with
respect to ρ. On the other hand, the range of spq in (P2) and (P3) increases
quadratically.
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2 4 6 8 10

1

2

3

ρ

Fig. 3. Function θ(ρ). ρ ∈ [1, 10].

When ρ = 1, (P2) and (P3) are reduced to (7). In other words, the proposed
SVM is an extension of AT-SVM. Additionally, in the binary case: C 2̄ = {12},
the assumption of Theorem 1 holds for any ρ.

Corollary 1. For binary classification problems, we have OPT1 = OPT2(1) =
OPT3(1).

3.3 Soft Margins

In this section, we consider a soft-margin formulation in the proposed multi-class
SVM. Similarly to (8), we introduce slack variables ξip for p ∈ C and i ∈ M \Mp.
The soft-margin model for (P3) is defined as follows.

minimize
(wp,bp),ξ,s

1
2

∑
pq∈C2̄

‖wp − wq‖2
spq

+
μ2

2

∑
pq∈C2̄

∑
i∈Mp ξ2qi +

∑
i∈Mq ξ2pi

spq

subject to (wp − wq)�xi + bp − bq + ξqi ≥ spq + ρ

1 + ρ
, pq ∈ C 2̄, i ∈ Mp,

(wq − wp)�xi + bq − bp + ξpi ≥ spq + ρ

1 + ρ
, pq ∈ C 2̄, i ∈ Mq,

1 ≤ spq ≤ ρ2, pq ∈ C 2̄.

(SP3)

In the same manner, we can define the soft-margin models for (P1) and (P2).
Theorem 1 also holds in the soft-margin case without any modification.



110 Y. Kusunoki and K. Tatsumi

The dual optimization problem of (SP3) is given as follows.

minimize
α,(βpq),γ,δ

−
∑
i∈M

∑
p∈C\{yi}

αpi +
∑

pq∈C2̄

(
(ρ2 − 1)γpq + δpq

)

subject to −
∑

i∈Mp

∑
q 	=p

αqix
i +

∑
i∈M\Mp

αpix
i −

∑
q>p

βpq +
∑
q<p

βqp = 0, p ∈ C,

−
∑

i∈Mp

∑
q 	=p

αqi +
∑

i∈M\Mp

αpi = 0, p ∈ C,

1
1 + ρ

( ∑
i∈Mp

αqi +
∑

i∈Mq

αpi

)
+ γpq − δpq ≥ 0, pq ∈ C 2̄,

2δpq ≥ ‖βpq‖2 +
1
μ2

∑
i∈Mp

α2
qi +

1
μ2

∑
i∈Mq

α2
pi, pq ∈ C 2̄,

αpi ≥ 0, p ∈ C \ {yi}, i ∈ M ; γpq ≥ 0, pq ∈ C 2̄,

(SD3)

where α = ((α1i)i∈M\M1 , . . . , (αci)i∈M\Mc), βpq ∈ Rn for pq ∈ C 2̄, γ =
(γ12, . . . , γ1c, γ23, . . . , γ(c−1)c) and δ = (δ12, . . . , δ1c, δ23, . . . , δ(c−1)c). In some
software packages, the dual problem (SD3) can be solved more efficiently than
the primal problem (SP3), since the dual problem has the smaller size of con-
straints2, which significantly affects the speed of interior point methods. The dual
problem is not a standard second-order cone programming, since α is included in
the intersection of quadratic cones and cones of nonnegative regions. However,
it is effectively handled in interior point methods.

3.4 The Proposed Method

We describe a training procedure using our SVM. It includes two phase. In the
first phase, given the hyperparameters ρ ≥ 1 and μ > 0, we solve the optimization
problem (SP3), and obtain (w̄p, b̄p)p∈C and ξ̄. Calculate ŝpq for pq ∈ C 2̄:

ŝpq = min{ min
i∈Mp

(
(w̄p − w̄q)�xi + b̄p − b̄q + ξ̄iq

)2
,

min
i∈Mq

(
(w̄q − w̄p)�xi + b̄q − b̄p + ξ̄ip

)2}.

In the second phase, we solve the soft-margin version of (P1) with spq = ŝpq for
pq ∈ C 2̄, and obtain (ŵp, b̂p)p∈C and ξ̂.

2 To convert (SP3) to the primal form of second-order cone programming in [1], we
need additional constraints wpq = wp − wq for pq ∈ C 2̄.
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As mentioned in Introduction, Fig. 1 demonstrates that the proposed method
archives larger margins than AT-SVM (ρ = 1).

In the proposed SVM, regularization terms ‖wp − wq‖2 are divided by
spq. spq is the minimum value of squared differences of discriminant functions(
fp(xi) − fq(xi)

)2 for i ∈ Mp ∪ Mq. If spq is large, we can say that the distance
between two classes of p and q is large. In that case, the value 1/spq is small.
Hence, the regularization by ‖wp − wq‖2 gives little effect when the distance
of two classes of p and q is large. Since the regularization term ‖wp − wq‖2 is
scaled by spq, we call the proposed SVM AT-SVM-SR (AT-SVM using Scaled
Regularization terms).

4 Numerical Experiments

To examine generalization capability of the proposed SVM, we performed numer-
ical experiments using 13 benchmark data sets in UCI Machine Learning Repos-
itory [5]. We compared classifiers obtained by AT-SVM-SR with ρ = 100 and
AT-SVM (i.e. AT-SVM-SR with ρ = 1). To solve optimization problem (SD3),
we used software package MOSEK [6]. Accuracy of classifiers was measured by
10-fold cross-validation with balancing class distribution.

We adapted the SVMs to nonlinear classification by kernel methods. The
RBF kernel k(x, y) = exp

(
−‖x−y‖2

2σ2

)
was used in the experiments, where x, y ∈

Rn are input vectors and σ is a parameter to control distances of feature vectors
of examples. Furthermore, the feature vectors were projected to 200-dimensional
real space by the kernel principal component analysis.

The parameter σ of the RBF kernel was varied in {1, 2, 5, 10, 20, 50, . . . , 1 ×
104, 2 × 104, 5 × 104}. The hyperparameter μ of the SVMs was varied in
{1, 10, . . . , 1 × 104}.

For each benchmark data set, we performed two experiments. In one experi-
ments, we did scaling the set of values of each variable so that the mean is 0 and
the standard deviation is 1. In the other experiments, we did not that scaling.

Table 1 shows classification errors of classifiers measured in the numerical
experiments. The first column shows the names of data sets with the numbers
of sample examples and class labels. The next two columns show the results
without scaling data sets. The last two columns show those with scaling. For
each of non-scaling and scaling sections, we show the results of AT-SVM and
AT-SVM-SR with ρ = 100. Each entry of the table shows the best (smallest)
error in all of combinations of hyperparameters σ and μ. The selected values
of σ and μ following the best error. The numbers in bold type mean the best
results (the smallest errors) for each dataset. In 7 data sets, whose names are
shown in bold, AT-SVM-SR archived better classifiers than AT-SVM. On the
other hand, in 2 data sets, whose names are shown in italic, AT-SVM archived
better classifiers. We can say that the generalization capability of AT-SVM-SR
is better than AT-SVM in general.
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Table 1. The classification errors of AT-SVM and AT-SVM-SR with ρ = 100. m and c
in the first column indicate the numbers of objects and classes, respectively. The entry
corresponding to each data set (non-scaling or scaling) and each method shows the
classification error obtained by the cross validation. The selected parameters σ and μ
for each result are shown after the error.

Data set Non-scaling Scaling

(m, c) AT-SVM AT-SVM-SR AT-SVM AT-SVM-SR

Balance-scale 0.0 0.0 0.0 0.0

(625, 3) (1 × 101, 1 × 104) (1 × 101, 1 × 104) (1 × 102, 1 × 104) (5 × 101, 1 × 104)

Car 0.6 0.3 0.8 0.8

(1728, 4) (5 × 100, 1 × 104) (1 × 100, 1 × 104) (2 × 100, 1 × 104) (2 × 100, 1 × 104)

CNAE-9 5.5 5.6 4.9 4.8

(1080, 9) (5 × 103, 1 × 104) (5 × 103, 1 × 104) (5 × 104, 1 × 104) (5 × 104, 1 × 104)

Dermatology 2.2 2.2 2.2 2.5

(366, 6) (5 × 104, 1 × 104) (5 × 104, 1 × 104) (5 × 104, 1 × 104) (5 × 104, 1 × 104)

DNA 4.3 4.2 4.3 4.3

(3186, 3) (5 × 101, 1 × 101) (5 × 104, 1 × 104) (2 × 104, 1 × 103) (2 × 104, 1 × 103)

Iris 2.0 2.7 2.7 2.7

(150, 3) (5 × 103, 1 × 104) (2 × 104, 1 × 104) (2 × 103, 1 × 104) (2 × 103, 1 × 104)

Movement 9.4 10.6 10.3 10.8

(360, 15) (1 × 100, 1 × 101) (1 × 100, 1 × 101) (5 × 100, 1 × 101) (5 × 100, 1 × 101)

Optdigits 1.0 1.0 1.4 1.5

(5620, 10) (2 × 101, 1 × 101) (5 × 101, 1 × 101) (1 × 101, 1 × 101) (1 × 101, 1 × 101)

Page-blocks 3.7 3.5 3.0 2.9

(5473, 5) (2 × 104, 1 × 104) (2 × 104, 1 × 104) (2 × 101, 1 × 103) (2 × 101, 1 × 103)

Segment 3.1 2.8 3.2 3.2

(2310, 7) (2 × 103, 1 × 104) (5 × 101, 1 × 101) (1 × 101, 1 × 102) (2 × 102, 1 × 104)

Semeion 4.7 4.2 4.5 4.6

(1593, 10) (5 × 100, 1 × 101) (5 × 100, 1 × 101) (1 × 101, 1 × 101) (1 × 101, 1 × 101)

Vowel 0.6 0.7 0.9 0.4

(990, 11) (1 × 100, 1 × 101) (1 × 100, 1 × 101) (2 × 100, 1 × 104) (2 × 100, 1 × 101)

Wine 2.8 2.8 1.1 1.1

(178, 3) (2 × 104, 1 × 104) (5 × 103, 1 × 104) (5 × 104, 1 × 104) (2 × 100, 1 × 104)

5 Concluding Remarks

In this paper, we have proposed AT-SVM-SR, which is a new multi-class SVM
derived from geometric margin maximization. In AT-SVM-SR, linear classifiers
are provided by approximate solutions for the optimization problem of mini-
mization of the sum of inverse-squared margins. Using Wine Data Set, we have
demonstrated that the proposed AT-SVM-SR can obtain a classifier with larger
margins comparing AT-SVM. The numerical experiments have shown that gen-
eralization capability of AT-SVM-SR outperforms that of AT-SVM in several
data sets. One of the future work is detailed investigation on characteristics of
AT-SVM-SR, e.g. the relationship between ρ and classification accuracy.
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