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Abstract. Methods of clustering for categorical and mixed data are con-
sidered. Dissimilarities for this purpose are reviewed and different classes
of algorithms according to different classes of similarities are discussed.
Details of several algorithms are then given, which include agglomerative
hierarchical clustering, K-means and related methods such as K-medoids
and K-modes, and methods of network clustering. The way how the com-
binations of existing ideas leads to new algorithms is discussed.
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1 Introduction

Data clustering has now become a standard technique of data mining, and yet
it has a number of unique characteristics different from other methods of super-
vised and unsupervised classification. One of those characteristics is that differ-
ent types of data are assumed to be given for analysis: not only the Euclidean
space but also other spaces and moreover general types of dissimilarities can be
used as measures of relatedness between a pair of objects. On the other hand,
a standard class of clustering algorithms of agglomerative hierarchical clustering
has an unique and useful form of output that is called a dendrogram. The den-
drogram is popular in various fields of applications and its usefulness could not
be ignored.

In this paper we give a brief overview of methods of clustering for non-
Euclidean models in the sense that given data types of an object for clustering is
categorical or mixed; a mixed data type consists of categorical data and numeri-
cal data at the same time. First dissimilarities for categorical and mixed data are
discussed. Then three classes of methods of clustering are introduced, which are
agglomerative hierarchical clustering, non-hierarchical methods for Euclidean
data, and non-hierarchical methods for non-Euclidean data. The best known
method of K-means clustering is in the second class, related methods of the
third class is considered which includes K-median, K-modes, and K-medoids.
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Consideration of these methods stimulates the development of new linkage meth-
ods in the first class. These considerations then lead us to related algorithms such
as a generative model and a method of fuzzy clustering. Moreover network clus-
tering is briefly mentioned. The way how these methods lead to the developemnt
of new methods for categorical and mixed data is discussed.

2 Categorical Data and Dissimilarities

Let X = {x1, x2, . . . , xN} be a finite set of objects for clustering. Assume that
A = {A1, . . . , AM} be another set of attributes. For each Aj , an associated set
Zj which contains all values that Aj takes. Thus, every z ∈ Zj is a value of
attribute Aj . For each xi and Aj , the value of object xi concerning attribute Aj

is given by xj
i ∈ Zj . We write Aj(xi) = xj

i , as Aj is a mapping (Aj : X → Zj).
Alternatively, we express x = (x1, . . . , xM ) as a kind of vectors, although its
components are not necessarily numbers. Concretely, Zj can be numerical when
its elements are numerical values: Zj ⊆ R. Or Zj can be symbolical when its
elements are symbols and not numerical. Note also that a symbol represents a
category, and hence the words ‘categorical’ and ‘symbolical’ are used for the
same meaning herein. Let us write a typical case as Zj = {t1, . . . , tq} where the
elements tl are symbols.

Assume that clusters denoted by G1, . . . , GK are disjoint subsets of X such
that the union of clusters covers the whole set:

K⋃

i=1

Gi = X , Gi ∩ Gj = ∅ (i �= j). (1)

Moreover the collection of clusters is denoted by G = {G1, . . . , GK}.
Similarity or dissimilarity is a key concept in data clustering. We assume a

similarity measure s(x, x′) or a dissimilarity measure d(x, x′) is defined between
a pair of objects x, x′ ∈ X . The difference between similarity and dissimilarity
is that two objects are similar or near when similarity between them has a high
value while they are similar when dissimilarity value is lower. Accordingly,

s(x, x) = max
x′∈X

s(x, x′), d(x, x) = min
x′∈X

d(x, x′).

Symmetric property is also assumed for the both measures:

s(x, x′) = s(x′, x), d(x, x′) = d(x′, x). (2)

Note that the triangular inequality is not assumed: the triangular inequality in
general is not especially useful in clustering.

2.1 Measures of Dissimilarity

We mostly use dissimilarity and refer to similarity only when necessary. How to
define an appropriate dissimilarity is a first problem to be considered in clus-
tering. Sometimes d(x, x′) is directly given without referring to their attributes,



Methods for Clustering Categorical and Mixed Data 77

as in the case of network clustering [5,20,21]. We, however, assume that dis-
similarities are defined by the observation of attribute values xj

i . Since we have
different types of sets Zj in general, different kinds of dissimilarities should be
considered. We therefore assume that dj(x, y) for x, y ∈ Zj , and consider how
dj should be defined.

Let us consider the most frequent case of an Euclidean space RM . In this
case x, y ∈ R for all attributes and we set

dj(x, y) = (x − y)2, for all 1 ≤ j ≤ M,

and the dissimilarity is given by

d(x, x′) =
M∑

j=1

dj(xj , yj) =
M∑

j=1

(xj − yj)2, (3)

for x = (x1, . . . , xM ) and x′ = (y1, . . . , yM ). We also write d(x, x′) = ‖x − x′‖2
using the Euclidean norm symbol. Note that the squared Euclidean norm is used
instead of the norm itself.

Let us suppose that data are of a mixed type, i.e., some Zj is numerical while
another Zl is symbolical. A simple definition of a dissimilarity is that

dj(x, y) =
1
2
|x − y|, (4)

i.e., dj(x, y) is the difference between the two numerical values, while

dl(th, tk) =

{
1 (th �= tk),
0 (th = tk).

(5)

and define

d(x, x′) =
M∑

j=1

dj(xj , yj). (6)

Let us assume that there is no Zl of the set of symbols, then all attribute values
are numerical but we do not have a squared Euclidean dissimilarity, but instead
we have the L1-norm:

d(x, x′) =
1
2

M∑

j=1

|xj − yj | =
1
2
‖x − y‖L1 .

On the other hand, if all attribute values are symbolic, Eq. (6) consists of (5)
alone. There is an interesting relationship between the latter two. Let us convert
x into 0/1 numerical values. Actually, only one of t1, . . . , tM , say t1, represents
the object and hence we can write x = {t1} or x = (1, 0, . . . , 0) using 0 and 1.
Suppose x′ = {t2} or x′ = (0, 1, 0, . . . , 0). Then it is easy to see that

dl(t1, t2) =
1
2
|x − x′|

If all attributes are symbolical, we have d(x, x′) =
1
2
‖x−x′‖L1 . Thus, the weight

1
2 in (4) is justified.
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2.2 Minimization Problems

For later use, we consider optimization problems: min
x∈RM

∑

y∈X
d(x, y), in case when

all values are numerical, and we assume the both cases of an Euclidean space
(3) and L1-space (6).

In the Euclidean space, it is easy to see that the solution is the average:

x =
1

|X |
∑

y∈X
y. where |X | is the number of elements in X .

On the other hand, if L1-space is used, the solution is the median. Each com-
ponent of the median is defined independently. Let the first component (corre-
sponding to A1) is x1

1, x
1
2, . . . , x

1
M . Sort this set of real numbers into ascending

order and the result is y1,≤ y2 ≤ · · · ≤ yM . Then the median for the first
component is y[M/2]+1. Other components are calculated in the same manner.

There is still other minimization problems. Suppose all data are symbolic,
we consider

min
x∈Z

∑

x′∈X
d(x, x′), (7)

where Z = Z1 × · · · × ZM . Note that d(x, x′) is defined by (6) and (5). To solve
this problem, let the frequency of occurrences of yk ∈ Zj be fk on Z. Thus
we have a histogram (f1/y1, . . . , fL/yL) for Xj . Assume that the maximum of
f1, . . . , fL is fh, then the mode is written as

mode(X , Zj) = (arg max{f1, . . . , fL},max{f1, . . . , fL}) = (h, fh), (8)
arg mode(X , Zj) = h, (9)

value mode(X , Zj) = fh. (10)

Then it is easy to see that the solution of (7) is given by

(mode(X , Z1), . . . ,mode(X , ZM )).

These minimization problems with their solutions are useful in considering
K-modes and related clustering problems.

3 Algorithms of Clustering

Two major methods are agglomerative hierarchical clustering and the K-means.

3.1 Agglomerative Hierarchical Clustering

The agglomerative hierarchical algorithm [1,10,18] is one of best known methods
of clustering. It uses a measure d(Gi, Gj) of an inter-cluster dissimilarity. The
following is a general description of the agglomerative hierarchical algorithm [18].
Note that initial clusters G(0) = {G(0)1, . . . , G(0)C0} are assumed to be given.
Typically, G(0)i = {xi}, but we assume other cases later.
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AHC (Agglomerative Hierarchical Clustering)
AHC1: Each object forms an initial cluster: Gi = G(0)i, (i = 1, · · · , N). C =

N , (C is the number of clusters). For all Gi, Gj ∈ G, let d(Gi, Gj) = d(xi, xj).
AHC2: Find the pair of clusters of minimum dissimilarity:

(Gq, Gr) = arg min
Gi,Gj∈G

d(Gi, Gj) (11)

mC = d(Gq, Gr) (12)

Add G′ = Gq ∪ Gr to G and delete Gq, Gr from G. Let C = C − 1. If C = 1,
output clusters as a dendrogram and stop.

AHC3: Update dissimilarity d(G,G′) between the merged cluster G′ and all
other clusters G ∈ G. Go to AHC2.

End of AHC.

Here, mN , . . . , m2 are called the levels of merging clusters.
We have several linkage methods to update dissimilarity d(G,G′) in AHC3,

from which the single linkage, the average linkage, and the Ward method are
mentioned here.

Single linkage: d(Gi, Gj) = min
x∈Gi,y∈Gj

d(x, y).

Average linkage: d(Gi, Gj) =
1

|Gi||Gj |
∑

x∈Gi,y∈Gj

d(x, y).

Ward method: Assume

E(G) =
∑

xk∈G

‖xk − M(G)‖2.

Let
d(Gi, Gj) = E(Gi ∪ Gj) − E(Gi) − E(Gj).

where M(G) is the centroid of G: M(G) =
∑

xk∈G

xk

|G| , and ‖·‖ is the Euclidean

norm: this method assumes that the objects are points in an Euclidean space.

They moreover use the following formulas of updating in AHC3 in which
d(G,G′) is expressed using d(G,Gq), d(G,Gr), and so on.

Updating formula of the single linkage:

d(G,G′) = min{d(G,Gq), d(G,Gr)}.

Updating formula of the Ward method:

d(G,G′) =
(|Gq| + |G|)d(Gq, G) + (|Gr| + |G|)d(Gr, G) − |G|d(Gq, Gr)

|Gq| + |Gr| + |G| .

The updating formula of the average linkage is omitted here. See, e.g., [18] for
more detail.

The single linkage and the Ward method are two popular algorithms in
agglomerative hierarchical clustering. The former is known to have best theoreti-
cal properties [18], while the Ward method has been considered to be practically
useful by researchers in applications.
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3.2 The K-means and Related Methods

We assume that objects x1, . . . , xN are in a space S whose distance is defined by
the dissimilarity d(x, y). Consider the next problem of alternate minimization.

K-means prototype algorithm.
Step 0. Give an initial partition G1, . . . , GK of {x1, . . . , xN} ⊆ S.
Step 1. Let

vi = arg min
v∈S

∑

xk∈Gi

d(xk, v), i = 1, 2, . . . ,K. (13)

Step 2. Allocate each xk (k = 1, . . . , N) to the cluster of the nearest center vi:

xk → Gi ⇐⇒ vi = arg min
1≤j≤K

d(xk, vj). (14)

Step 3. If (v1, . . . , vK) is convergent, stop. Else go to step 1.
End K-means prototype.

The above algorithm describes a family of different methods.
The method of K-means [15] is the most popular clustering algorithm. It

assumes that the objects x1, . . . , xN are points in an Euclidean space. Hence we
assume S = Rp with d(x, y) = ‖x− y‖2. Accordingly the center of a cluster (13)
is the centroid:

vi = M(Gi) =
1

|Gi|
∑

xk∈Gi

xk.

Thus the K-means prototype algorithm is reduced to the K-means algorithm.
K-median and K-mode algorithms are derived likewise. If L1-space is used,

then vi is given by the median described above; if the data are categorical and
the dissimilarity is given by (6), then the center vi is given by the mode for
cluster Gi:

vj
i =

{
1 (j = arg mode(Gi, Zj)),
0 (otherwise).

(15)

and we have the K-mode algorithm.
Moreover if we have mixed data in which numerical data has L1-norm, then

the resulting algorithm has the mixture of the median and the mode correspond-
ing to the data types.

There is still another method of the K-means family, in which S is the set of
objects itself: S = X with the general dissimilarity d(x, x′). In such a case the
space is a weighted network and accordingly the element vi corresponds to an
object which satisfies

vi = arg min
v∈X

∑

xk∈Gi

d(xk, v). (16)

The above defined object for Gi is called the medoid [14] for cluster Gi. Thus
the algorithm gives the method of K-medoids. It is obvious to see vi ∈ Gi.
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3.3 Network Clustering

The last method of K-medoids is an algorithm of network clustering in the
sense that no other space than just the weighted network is given. There are
other methods that should be mentioned in addition.

DBSCAN [9] is known to be an efficient algorithm that searches clusters of
core-points on a weighted graph. This method has been proved to be a variation
of the single linkage that connects core-points and node-points [16].

Newman’s method [20,21] of hierarchical clustering and its non-hierarchical
version [5] use the modularity index in a network; they automatically determine
the number of clusters by optimizing the index. It seems that the modularity
index works effectively in the both algorithms, but the non-hierarchical algo-
rithm is faster and appropriate for handling large-scale data sets. On the other
hand, the hierarchical version can output a dendrogram, but the shape of the
dendrogram by this method is very different from those by the traditional link-
age method, as we will see later in an example, and Newman’s method may not
be useful in understanding subcluster structures in a dendrogram.

3.4 Fuzzy Clustering

The method of fuzzy c-means [3,4,8,12,19] has been popular among researchers
in at least two senses. First, the method gives fuzzy clusters instead of crisp
clusters with much more information on the belongingness of an object to a clus-
ter. Second, the algorithm is known to have high robustness over the K-means
algorithm as to the variation of initial values and also noises and outliers. The
robustness concerning outliers may still be improved by using fuzzy clustering
and noise clustering [6,7].

Moreover the method of fuzzy c-means using an entropy term generalizes the
Gaussian mixture model (see, e.g., [19]) and thus shows the expressive power
of the fuzzy clustering model. Recently, Honda et al. [12] showed the multino-
mial mixture model for categorical data can be generalized by using a fuzzy
co-clustering model.

4 Development of New Algorithms

We consider new algorithms on the basis of the above methods.

4.1 Fuzzy Clustering

Fuzzy clustering for categorical and mixed data can be studied by a similar way
as the fuzzy c-means. The objective function is as follows:

J(U, V ) =
c∑

i=1

N∑

k=1

(uki)md(xk, vi), (m > 1). (17)
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where d(xk, vi) is given by (6). U has the constraint: {uki ≥ 0 for all
k, i,

∑c
j=1 ukj = 1 for all j}, while V = (v1, . . . , vc) does not have a con-

straint. The alternate minimization minU J(U, V ) and minV J(U, V ) while other
variable is fixed to the last optimal solution is iteratively applied to J(U, V ) until
convergence. There is no guarantee that the converged solution is the optimal
solution for J(U, V ), but the solutions are empirically satisfactory.

For the present case of (17), the optimal solution U is:

uki =
d(xk, vi)− 1

m−1

c∑

j=1

d(xk, vj)− 1
m−1

, (18)

which is essentially the same as that for the standard Euclidean space, while the
optimal solution V is different from the Euclidean case, and hence we should
consider the case of L1-space, that of categorical data, and that of medoids
(S = X ).

For S = Rp with L1 norm, we can use a weighted median algorithm [17]. For
the case of medoids, the algorithm is essentially the same as the crisp case, i.e.,
we search the minimum of

∑

k

(uki)md(xk, v) with respect to v.

Since both a medoid and center are good representatives of a cluster, we can
consider a new algorithm of the two representatives: Let vi = (v′

i, v
′′
i ) and assume

that v′
i is a non-medoid center and v′′

i is a medoid, we define a new dissimilarity

d′(xk, vi) = αd(xk, v
′
i) + (1 − α)d(xk, v

′′
i ), (19)

with 0 < α < 1. If d(xk, vi) is the L1-distance, then v′
i is a weighted median and

v′′
i is a medoid for Gi.

Such an algorithm using two representatives for a cluster have been developed
for non-symmetric measure of dissimilarity [11,13]. Since we do not consider a
non-symmetric measure here, we omit the detail.

4.2 Two-Stage Algorithms

A multi-stage algorithm can be a useful procedure when large-scale data should
be handled. Consider a case when a large number of objects are gathered into a
medium number of clusters using K-means, and then the centers are made into
clusters using the same algorithm. In such a case K-medoids are also appropriate,
since an object is made as a representative of a cluster.

Tamura et al. [22] proposed a two-stage procedure in which the first stage uses
a p-pass K-means (i.e., a K-means procedure where the number of iterations is
p; p = 1 or 2 is usually used.) in the first stage with the initial selection of centers
using K-means++ [2], and the Ward method is used for the second stage. There
is no loss of information because K-means and Ward method are based on the
same criterion of the squared sum of errors from the center.
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Two-stage algorithms of a median-Ward method and a medoid-Ward method
can moreover be developed: the median-Ward method uses the one-pass
K-median and an agglomerative procedure like the Ward method which uses
L1-norm throughout the procedure. The medoid-Ward method uses K-medoids
in the first stage and an agglomerative procedure like the Ward method which
uses an arbitrary dissimilarity.

In the latter method we use an objective function

J(G) =
C∑

k=1

∑

xl∈Gk

d(xl, vk),

where vk is the medoid for Gk. Moreover we assume

G[i, j] = G ∪ {Gi ∪ Gj} − {Gi} − {Gj}, d(Gi, Gj) = J(G[i, j]) − J(G).

The dissimilarity d(Gi, Gj) is used in AHC algorithm of the medoid-Ward
method. It is immediate to observe d(Gi, Gj) ≥ 0. Note that if we set d(xl, vk) =
‖xl − vk‖L1 , we have the median-Ward method.

The last two of the median-Ward and the medoid-Ward algorithms have the
drawback of much calculation in the second stage, but the number of objects
are not many in the second stage and hence we can manage the processing
time practically, but large-scale problems of millions of objects still have the
fundamental problem of the inefficiency of calculations.

An Example: We show an example of network clustering on Twitter data [11].
Figure 1 shows the dendrogram output using Newman’s method. The Twitter
data of the graph with the number of nodes is 1744 and 108312 edges. The data
consists of 5 political parties in Japan. The details are given in [11] and omitted
here. The adjacency matrix A is made into the similarity matrix S = A + A2/2.
Apart from the large number of nodes, it is hard to observe subcluster structures
in this dendrogram.

Figure 2 shows the dendrogram using the average linkage to the same data.
The result shows subcluster structures but due to the large number of nodes, to
observe the details is difficult.

Figure 3 shows the result using the two-stage procedure of medoid-Ward
method. Subclusters are more clearly shown in this figure. The initial objects
are summarized into 100 small clusters in the first stage.

Note that five clusters are observed in the latter two figures, while they are
not clear in the first figure.

4.3 Use of Core Points

The concept of core points was introduced in DBSCAN [9], which is an important
idea for effectively reducing the number of points for clustering.

In order to define a core point, a neighborhood N(x; ε) is defined: N(x; ε) =
{y ∈ X : d(x, y) ≤ ε}. Let L be a positive integer. If |N(x; ε)| ≥ L (the number
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Fig. 1. Dendrogram from party data using newman method

Fig. 2. Dendrogram from party data using an AHC algorithm. Average linkage was
used.

Fig. 3. Dendrogram from party data using a two-stage method
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of points in the neighborhood is greater than or equal to L), then x is called a
core point. This means that a core point has a enough number of points in its
neighborhood. On the other hand, an isolated point is inclined to be a non-core
point. The algorithm of DBSCAN starts from a core point and searches another
core point in the neighborhood and connects it into the same cluster until no
point is connected. The final point connected may not be a core-point. The final
point is called a node point.

Let us consider the single linkage clustering in which only core points are
clustered. Moreover merging in AHC is stopped when the level of merging mC

becomes lower than ε, and then the obtained clusters are output. We now have
the following proposition.

Proposition 1. Let the clusters obtained by DBSCAN be G1, . . . , GK , and let
the clusters obtained by the single linkage (with the stopping parameter ε) be
F1, . . . , FK . Take an arbitrary Gi. Then there is Fj such that Fj ⊆ Gi. Moreover
if Fj �= Gi, any x ∈ Gi − Fj is a node point.

This proposition implies that the result of DBSCAN is similar to clusters
obtained from the single linkage for core points. In such a case a non-core point
are allocated to a cluster of core points using a simple allocation rule such as
the k-nearest neighbor rule.

5 Conclusion

An overview toward new algorithms for clustering categorical and mixed data
has been given. Basic methods are reviewed and new methods are shown, which
includes a two-stage agglomerative hierarchical algorithm with an example on
Twitter and a theoretical results on the relation between DBSCAN and the
single linkage.

An important problem of validation of clusters was not discussed, since this
problem should be considered in a specific context of a practical application.

To handle a large-scale problem is still difficult in the sense that more efficient
algorithms should be developed and also the interpretation problem of clusters
should be solved. The latter problem needs knowledge of application domains.

Possible applications of methods herein include not only the categorical and
mixed data, but also network clustering such as SNS (Social Networking Services)
analysis.
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