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Abstract. This paper investigates dynamic interaction among international vola‐
tility indexes, consisting of VIX, VSTOXX, VDAX, VFTSE, VNVIXN, VHSI
and VKOSPI. This paper also extends the multivariate normal distribution and
multivariate student-t distribution based dynamic conditional correlation (DCC)
model to a multivariate skew distribution. We then apply this extended model to
estimate the dynamic volatility and correlation in international volatility indexes.
The empirical results of model comparison reveal the multivariate skewed
student-t distribution based CGARCH-DCC model to perform the best in our real
data analysis. This indicates that the time-varying conditional correlation coeffi‐
cients as well as volatility are skewed and fat tailed or leptokurtic in characteristic.

Keywords: Implied volatility indexes · Dynamic correlation and volatility
Multivariate skew distribution

1 Introduction

Volatility indexes are the economic indicators of risk assessment in the financial
markets and they are designed to measure the market’s expectation of future vola‐
tility implied by options prices. Moreover, volatility indexes are able to estimate the
expectation of the future volatility over the next 30 days. The implied volatility
indexes were introduced and have been calculated and published by Chicago Board
Options Exchange (CBOE) since 1993. CBOE proposed the volatility index or VIX
methodology to minimize risk on the portfolio of investment. In addition, Badshah [3]
stated that the volatility indexes and the stock market returns have negative relation‐
ship; therefore, VIX is advantageous for investors to manage their risks. There are
several related studies and writings emphasizing the volatility indexes of various
worldwide financial markets (see e.g., Kaeck and Alexander [11]; Bugge et al. [4];
Psaradellis and Sermpinis [15]; Huskaj and Larsson [10]).

Nowadays, there are many famous volatility indexes, for instances, VIX, VNX, VXD
VSTOXX, VFTSE, VCAC 40, VSTOXX and VKOSPI. These indexes are computed
and provided on a 60–s basis as an average of implied volatilities in at–the–money
options with a residual time–to–maturity equal to 30 days. We can observe that all vola‐
tility indexes have similar fluctuation pattern and they changed over time from early
2008 until the early 2009, corresponding to the credit crunch and liquidity crises.
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Badshah [3] found that the high volatility indexes can put high pressure on stock market
and thereby reducing return of stock.

Many Researchers believe that the different volatility indexes are likely to have
correlation. Therefore, it is very important to know the volatility indexes spillover from
one market to another or others. In addition, studying volatility indexes spillover
phenomenon across all markets will contribute a great benefit for risk management,
international portfolios and options traders. Several studies have investigated volatility
spillover using historical volatility indexes (e.g., Hamao et al. [9]; Badshah [3]; Gamba-
Santamaria et al. [7]). Äijö [1] studied the relationship among various European vola‐
tility indexes (VDAX, VSTOXX, and VSMI) and found that these volatility indexes not
only are highly correlated but also vary over time. In addition, Badshah [3] found that
the volatility indexes (VIX, VXN, VDAX and VSTOXX) are positively correlated.

Furthermore, some studies suggested that other assets and securities in capital market
can be the factor affecting the volatility indexes. Khositkulporn [12] revealed that the
oil price hike has shocked the global economy. For example, when the oil price increased
to above USD 114 per barrel, the global economy faced recession and the equity markets
became volatile during global financial crisis in 2008. Moreover, Kumar [13] examined
the return and volatility spillover between gold price and Indian stock sector by assuming
that the error term followed the student-t distribution. Although this study could not
found any significant spillover from gold to stock but it found a negative dynamic
correlation between these two variables, especially during the crisis. We expect that we
should consider the other factors that may affect volatility indexes. Finally, we add oil
and gold price to further investigate the factors affecting volatility indexes.

In this paper, we employ a multivariate generalized autoregressive conditional heter‐
oskedasticity (GARCH) with exogenous variables based dynamic conditional correla‐
tion to investigate the correlation among volatility indexes and also find the effect of oil
and gold on conditional mean and variance of the volatility indexes. However, this study
has a concern that the symmetric assumption of the multivariate normal and student-t
distributions might not be adequate in reality. To tackle such unrealistic assumption, we
extend symmetric based dynamic conditional correlation (DCC) model to a multivariate
skew distribution. The aim here is to allow for possible departure from symmetry to
produce more flexible and more realistic families of distributions. In this study, a multi‐
variate skew-normal and skew-student-t distributions, presented in Azzalini [2], are
considered to construct a likelihood function of DCC model. Consequently, our model
will give more flexibility to embrace the skewed and fat tailed or leptokurtic character‐
istics of volatility index.

The next section briefly outlines the methodology. Section 3 is the empirical part
presenting data description, model selection and the results. The last section provides
the conclusion of this work.
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2 Econometric Methodology

2.1 Brief Review of Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) Families

2.1.1 GARCH with Exogenous Variables
The generalized autoregressive conditional heteroskedasticity (GARCH) process is an
econometric model developed in 1982 by Engle to describe an approach to estimating
conditional volatility in financial markets. In this study, we aim to investigate the effect
of exogenous variables on the volatility index return therefore we employ a general
GARCH with exogenous variables which contain exogenous variables in both mean and
variance equations. Our model reads

yt = c +

K∑

k=1

𝜙kxkt + 𝜎t𝜀t, (1)

𝜎2 = 𝜛 +

K∑

k=1

𝜑kxkt +

p∑

i=1

𝛼i𝜀t−i+

q∑

j=1

𝛽j𝜎
2
t−j

. (2)

where yt is the return, xkt represents K × T  matrix of exogenous variables and 𝜎2 is time
varying volatility obtained from the GARCH process in Eq. (2). It is quite obvious the
structure of GARCH(p, q) consists of two parts. It has a polynomial 𝛽(L) of order p-
the autoregressive term, and a polynomial 𝛼(L) of order q - the moving average term.
The parameter 𝛼i and 𝛽j are assumed to be less than 1 and their summation must be
less than 1. In addition, parameter 𝜙k and 𝜑k are the coefficients of the exogenous
variable k in mean and variance equation, respectively. Note that the mean equation
is applied to every GARCH type model with exogenous variables.

2.1.2 The GJR-GARCH
The model was proposed by Glosten, Jagannathan and Runkle [8] to model an asym‐
metry in the ARCH process. The GJR-GARCH with exogenous variables model is
represented by the expression

𝜉2
t
= 𝜛 +

K∑

k=1

𝜑kxkt +

p∑

i=1

𝛼i𝜀t−i+

q∑

j=1

𝛽j𝜎
2
t−j

+

p∑

i=1

𝛾iIt−i𝜀t−i, (3)

where It−i =

{
1 if 𝜀t−i < 0
0 if 𝜀t−i ≥ 0.

2.1.3 Exponential GARCH
The exponential GARCH (EGARCH) may generally be specified as
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𝜎2 = 𝜛 +

K∑

k=1

𝜑kxkt +

p∑

i=1

𝛼i𝜀t−i+

q∑

j=1

𝛽j ln 𝜎2
t−j

. (4)

This model differs from the variance equation in GARCH structure because of the
log of the variance. The following specification also has been used in the financial liter‐
ature Dhamija and Bhalla [5].

2.1.4 Integrated GARCH
IGARCH model applies both autoregressive and moving average structures to the
variance, 𝜎2. The IGARCH is specified as

𝜎2 = 𝜛 +

K∑

k=1

𝜑kxkt +

p∑

i=1

𝛼i𝜀t−i+

q∑

j=1

𝛽j𝜎
2
t−j

. (5)

where the sum of coefficients (𝛼, 𝛽) must be less than 1.

2.1.5 Component GARCH
The Component GARCH model (CGARCH) can be written as:

𝜎2
t
= qt +

K∑

k=1

𝜑kxkt +

p∑

i=1

𝛼i(𝜀
2
t−i

− qt−i) +

p∑

j=1

𝛽j(𝜎
2
t−j

− qt−j),

qt = 𝜔 + 𝜌qt−1 + 𝜙
(
𝜀2

t−1 − 𝜎2
t−1

)
(6)

where effectively the intercept of the GARCH model is now time-varying following
first order autoregressive type dynamics. The sum of coefficients (𝛼, 𝛽) must be less than
1 and 𝜌 < 1 (effectively the persistence of the transitory and permanent component).

2.2 Dynamic Conditional Correlation (DCC)

The DCC–GARCH model can be best understood by recalling the best fit GARCH type
model in Subsects. 2.1.1, 2.1.2, 2.1.3, 2.1.4 and 2.1.5. The difference is that the DCC-
GARCH model is for multivariate volatility modeling. The advantage of the DCC model
is that we can examine the time-varying correlation between many dimensions of a time
series instead of a constant correlation. We again consider a k-dimensional innovation
𝜀it to the asset return series yit, i = 1,… , N. Let 𝛈t =

(
𝜂1t,… , 𝜂it

)
 be the marginally

standardized innovation vector (𝛈it = 𝜀it∕
√
σii,t). The DCC model can be formulated as

the following statistical specification:

𝐐t =
(
1 − 𝜃1 − 𝜃2

)
+ 𝜃1𝐐t−1 + 𝜃2𝛈t−1𝛈

′
t−1, (7)

𝐑t = diag{𝐐}−1
t
𝐐𝐭diag{𝐐}−1

t
and 𝐇𝐭 = 𝐉t𝐑t𝐉t. (8)
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Here, 𝐑t is the correlation matrix, 𝐇𝐭 is the conditional covariance matrix of returns,
and this correlation matrix is allowed to vary over time. Moreover, 𝐐t ≡

{
𝜎it

}
 is the

conditional covariance matrix of 𝛈t, 𝜃i are non-negative real numbers satisfying

0 ≤ 𝜃1 + 𝜃2 < 1, and 𝐉t = diag{
√
𝜎1t

,… ,
√
𝜎

it
}.

2.3 Estimation

In this study, we are concerned that the large number of parameters in the model could
bring a difficult optimization. Thus, the two-stage estimation method is used, following
(Engle [6]). This method allows the model to be estimated more easily even when the
covariance matrix is very large. The model is estimated in two steps: firstly, various
GARCH type models are estimated and then dynamic conditional correlation parameters
are estimated in the second step. In other words, the parameters to be estimated in the
correlation and GARCH processes are independent Engle [6]. Under reasonable regu‐
larity conditions, consistency of the first step will ensure consistency of the second step
(see, Newey and McFadden [14]). In the two-step method, we can maximize the DCC
likelihood function conditional on the estimated parameters from GARCH-type models
in the first step.

⌢

𝜃 = arg max(LD(𝜃|y,
⌢

Θ)), where
⌢

Θ = arg max(LG(Θ|y)) (9)

is the maximization of likelihood function of GARCH type models. In this study, we
extend the multivariate normal and student-t distributions based dynamic conditional
correlation (DCC) model to skew-normal and skew-student-t distributions. The study
herein tries to propose a skew likelihood function in the DCC-GARCH type models with
exogenous variables and their performances are compared based on Akaike and Baye‐
sian information criteria. In addition, we are concerned about the consistency of the two-
step estimator, hence the likelihood distribution of the GARCH-type model in the first
step and DCC model in the second step are assumed to have the same distribution. In
this estimation, we consider multivariate normal, skew-normal, student-t, and skew-
student-t distributions function, which are justified in Azzalini [2], are employed to
construct the likelihood function in DCC part.

In this paragraph, several likelihood functions are presented, giving simple consistent
but inefficient estimates of the parameters of the model. Here, the likelihood functions
of volatility part (GARCH types), 

⌢

LV(Θ), and correlation part (DCC), 
⌢

LC(𝜃|
⌢

Θ), are
written as in the followings:

(1) Normal likelihood function

⌢

LVn,i(Θ) =

T∏

t=1

⎛
⎜
⎜
⎜⎝

1√
2𝜋(𝜎2

it
)

exp

(
−
𝜎it𝜀it

2(𝜎2
it
)

)⎞
⎟
⎟
⎟⎠

, (10)

for return i, i = 1,… , N and
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⌢

LCn(𝜃|
⌢

Θ) =

T∏

t=1

exp(−1
2
(𝛆t)

T𝐇−1(𝛆𝐭))

√
|2𝜋𝐇|

, (11)

where 𝛆𝐭 is N × T  matrix of error term.

(2) Skewed normal likelihood

⌢

LVsn,i(Θ) =

T∏

t=1

(
2

𝜉i + (𝜉i)
−1 ⋅ fn(zi∕Υi)

)
, (12)

zi =
𝜀

it

(𝜎2
it
)

√
((1 − m2

1)(𝜉
2
i
+ 1∕𝜉2

i
) + 2m2

1 − 1) + mui,

m1 = 2∕
√

2𝜋, Υi = 𝜉
sign(zi)

i
, mui = m1(𝜉i − 1∕𝜉i),

where 𝜉i is skew parameter of return i, fn(⋅) is the probability density function of the
normal distribution for return i and sign(⋅) is a function that returns a vector with the
signs of the corresponding elements of zi (for example, the sign of a real number is 1, 0,
or −1 if the number is positive, zero, or negative, respectively). Then, the correlation
part is

⌢

LCsn(𝜃|
⌢

Θ) =

T∏

t=1

(
2

𝛏 + (𝛏)−1 ⋅ fn(𝐳∕Υ)

)
, (13)

𝐳 =
𝛆𝐭

(𝐇)

√
((1 − m2

1)(𝛏
𝟐 + 1∕𝛏𝟐) + 2m2

1 − 1) + mu,

m1 = 2∕
√

2𝜋, Υ = 𝛏sign(𝐳), mu = m1(𝛏 − 1∕𝛏),

where 𝛏 is skew parameter of DCC likelihood.

(3) Student’s t likelihood

⌢

LVt,i(Θ) =

T∏

t=1

⎛
⎜
⎜
⎜
⎜⎝

Γ

(
vi + 1

2

)

√
(vi − 2)𝜋Γ

(vi

2

)

(
1 +

𝜀2
it

(vi − 2)(𝜎2
it
)

)−vi + 1
2

⋅

(
1
𝜎2

it

)⎞
⎟
⎟
⎟
⎟⎠

, (14)

where vi is degree of freedom of return i and Γ is gamma distribution. Then, the corre‐
lation part is

366 P. Fanpaeng et al.



⌢

LCt(𝜃|
⌢

Θ) =

T∏

t=1

⎛
⎜
⎜
⎜
⎜⎝

Γ
(
𝐯 + 1

2

)

√
(𝐯 − 2)𝜋Γ

(
𝐯

2

) (1 +
𝛆2

t

(𝐯 − 2)(𝐇𝐭)
)

−𝐯 + 1
2 ⋅

(
1
𝐇𝐭

)⎞
⎟
⎟
⎟
⎟⎠

, (15)

where 𝐯 is degree of freedom of DCC likelihood.

(4) Skewed student’s t likelihood

LVsstd,i(Θ) =

T∏

t=1

[
2

(𝜉i + 1)∕𝜉i

fstd(zi∕𝜉
sign(z)

i
, vi)Fi

]
, (16)

zi =
𝜀it

𝜎2
it

Fi +

[
2
√

vi − 2
(vi − 1)

(
beta

(
0.5,

vi

2

))−1
](

𝜉i − 1
𝜉i

)
,

Fi =

√√√√1 −

[
2
√

vi − 2
(vi − 1)

(
beta

(
0.5,

vi

2

))−1
]2(

𝜉2
i
+ 1
𝜉2

i

)
+ 2

[
2
√

vi − 2
(vi − 1)

(
beta

(
0.5, v

2

))−1
]2

− 1,

where fstd(⋅) is a density of student-t distribution. beta(⋅) is beta distribution. Then, the
correlation part is

LCsstd(𝜃|Θ) =

T∏

i=1

[
2

(𝛏 + 1)∕𝛏
fstd(𝐳∕𝛏

sign(z), 𝐯)𝐅
]

(17)

𝐳 =
𝛆𝐭

𝐇
𝐅 +

[
2
√
𝐯 − 2

(𝐯 − 1)

(
beta

(
0.5, 𝐯

2

))−1
](

𝛏 − 1
𝛏

)

𝐅 =

√√√√1 −

[
2
√
𝐯 − 2

(𝐯 − 1)

(
beta

(
0.5, 𝐯

2

))−1
]2(

𝛏2 + 1

𝛏2

)
+ 2

[
2
√
𝐯 − 2

(𝐯 − 1)

(
beta

(
0.5, 𝐯

2

))−1
]2

− 1

3 Empirical Study

3.1 Data

This paper focuses on seven implied volatility indexes: the volatility index for S&P 500
stock index in the United States (VIX), the volatility index for Dow Jones EURO
STOXX 50 stock index in Europe (VSTOXX), the volatility index for DAX 30 stock
index in Germany (VDAX), the volatility index for FTSE stock index in United
Kingdom (VFTSE), India’s volatility index (INVIXN), the volatility index for HSI stock
index in Hong Kong (VHSI), and the volatility index for KOSPI stock index in South
Korea (VKOSPI). All of the 7 volatility indexes are calculated as the expectations of
the future stock volatility index in the options. This study collected the data from
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Bloomberg. We obtained the daily time series closing price data for VIX, VSTOXX,
VDAX, VFTSE, VNVIXN, VKOSPI, and VHSI. In addition, the daily gold price and
oil price are also collected from Thomson Financial DataStream. These data sets are
collected from 1 November 2007 to 11 August 2017 covering 22,149 daily observations.
The detailed description of variables and descriptive statistics for daily time series data
are presented in Table 1.

Table 1. Data description

VIX VSTOXX VDAX VFTSE VNVIXN VHSI VKOSPI Gold Oil
Mean −0.0001 −0.0001 0.0000 −0.0002 −0.0005 −0.0006 −0.0004 8.7000 −0.0001
Median −0.0025 −0.0009 −0.0004 −0.0008 0.0000 −0.0015 0.0000 0.0002 4.1900
Max 0.1761 0.1423 0.1327 0.1868 0.2158 0.1997 0.2116 0.0445 0.0712
Min −0.1523 −0.1888 −0.1607 −0.1957 −0.2042 −0.0911 −0.1315 −0.0413 −0.0567
Std. dev. 0.0320 0.0278 0.0256 0.0314 0.0250 0.0237 0.0232 0.0052 0.0109
Skew 0.6916 0.4628 0.4801 0.2023 0.4593 1.5349 1.4267 −0.2543 0.1670
Kurtosis 6.6421 6.3000 5.9407 5.9820 13.8863 11.7211 13.3697 9.2134 7.5162
JB-test 1556.42 1204.55 981.335 928.629 12238.9 8765.40 11861.1 3985.34 2102.90
Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF −54.2*** −38.1*** −36.8*** −38.0*** −39.8*** −28.4*** −28.4*** −48.9*** −52.5***
Sum −0.1751 −0.2358 −0.0919 −0.4653 −1.3130 −1.4756 −1.0116 0.2142 −0.2822

Note: Table reports the descriptive statistics of the volatility indexes, gold and oil prices. The Jarpue-Bera (JB) test and the Augmented Dickey
Fuller (ADF) test values are reported. ***, **, * denote rejection of null hypothesis at 1%, 5% and 10% significance respectively.

In this study, all raw data are transformed into log-returns. The table shows that the
skewness and kutosis of volatility index returns and oil returns are positively skewed
while gold returns show a negative skew. In addition, normality of all returns are rejected
by the Jarque–Bera test, prob. = 0.0000. We also investigate the stationarity of our data.
We find that all returns data are rejected at 1% significance level hence all nine returns
are stationary.

3.2 Model Selection

3.2.1 GARCH Types and Distribution Selection
In this section we investigate and compare the performance of each model specification
in the real data analysis. Tables 2 and 3 present the values of AIC and BIC, respectively.
We observe that CGARCH with the skewed normal distribution is the best fit model in
this study because the lowest values of AIC and BIC are obtained.

Table 2. Akaike Information Criterion (AIC)

SGARCH GJR-GARCH EGARCH IGARCH CGARCH
norm −89798.02 −90174.11 −91010.33 −88457.73 −89548.78
STD −103990.1 −104290.3 −104776.1 −101971.5 −103965.7
SSTD −100992.7 −101244 −101672.4 −99037.72 −101006.9
snorm −378529.6 −360434.5 −337667.4 −346934.6 −380235.7

Source: Calculation
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Table 3. Bayesian Information Criterion (BIC)

SGARCH GJR-GARCH EGARCH IGARCH CGARCH
norm −89420.48 −89755.92 −90592.13 −88080.19 −89089.92
STD −103571.9 −103831.4 −104317.2 −101553.3 −103466.2
SSTD −100533.7 −100744.5 −101172.9 −98578.86 −100466.7
snorm −378111.4 −359975.7 −337208.6 −346516.4 −379736.2

Source: Calculation

3.3 Estimation Results

The estimated optimal parameters from the best model, DCC-CGARCH model with
skewed normal student-t distribution, are presented in Table 4. We investigate the rela‐
tionships between volatility indices. The most important parameters are sum of 𝛼1 and
𝛽1 in the model. They are close to 1 indicating a high degree of volatility persistence of
transitory and permanent components. All volatility indexes exhibit high persistency,

Table 4. Estimation DCC-CGARCH with skewed normal distribution results

VIX VSTOXX VDAX VFTSE VNVIXN VHSI VKOSPI
C 0.00039

(0.0005)
-0.00003

(0.0005)
-0.00008

(0.0005)
-0.00003

(0.0006)
0.00009

(0.0004)
0.00004

(0.0004)
-0.00006

(0.0004)
ar1 -0.1011a

(0.0219)
-0.01413

(0.0220)
0.01158

(0.0214)
-0.0376a

(0.0218)
-0.1028a

(0.0330)
-0.0868a

(0.0201)
-0.0798a

(0.0227)

∅1 0.05857
(0.1143)

0.02216
(0.1080)

-0.15981a

(0.0969)
0.22820a

(0.1163)
-0.06203

(0.0871)
0.06329

(0.0829)
0.04794

(0.0794)

∅2 -0.68356a

(0.0574)
0.08256

(0.0527)
0.12489a

(0.0476)
-0.71572a

(0.0587)
-0.29274a

(0.0471)
-0.20490a

(0.0386)
-0.20135a

(0.0413)

𝜔 0.000001a

(0.00)
0.000001a

(0.00)
0.000002a

(0.00)
0.000004a

(0.00)
0.000006a

(0.00)
0.000002a

(0.00)
0.000003a

(0.00)

𝛼1 0.15330a

(0.0185)
0.07384a

(0.0147)
0.06335a

(0.0118)
0.06252

(0.0162)
0.10971

(0.0096)
0.08262a

(0.0162)
0.13461a

(0.0055)

𝛽1 0.70185a

(0.0408)
0.79304a

(0.0521)
0.85382a

(0.0222)
0.62168a

(0.1234)
0.59677

(0.0738)
0.87675a

(0.0238)
0.76803a

(0.0259)

𝜌 0.99914a

(0.0002)
0.99928a

(0.0060)
0.99748a

(0.00)
0.99523a

(0.00)
0.98899a

(0.00)
0.99647a

(0.00)
0.99464a

(0.00)

∅ 0.00201a

(0.0006)
0.00017

(0.0001)
0.00037a

(0.00)
0.01138a

(0.0030)
0.02070a

(0.0026)
0.00025

(0.0006)
0.00755a

(0.0034)

𝜑1 0.00000
(0.0010)

0.00000
(0.0002)

0.00000
(0.0003)

0.00000
(0.0012)

0.00000
(0.0008)

0.00000
(0.0006)

0.00000
(0.0007)

𝜑2 0.00000
(0.0003)

0.00000
(0.0002)

0.00000
(0.0002)

0.00000
(0.0005)

0.00000
(0.00)

0.00000
(0.0003)

0.00000
(0.0003)

v 1.27469a

(0.0304)
1.15575a

(0.0260)
1.15627a

(0.0262)
1.05636a

(0.0235)
1.17309a

(0.0233)
1.42484a

(0.0343)
1.27925a

(0.0291)
DC
C

𝜃0 = 0.0035a, 𝜃1 = 0.9943a, 𝛏 = 9.9986a

Source: Calculation.
adenotes rejection of null hypothesis at 1%, 5% and 10% significance.
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indicating a strong volatility of VHSI, VDAX, VKOSPI, VSTOXX, VIX and VNVIXN.
In addition, the degree of asymmetry in volatility is highest in VSTOXX (ρ = 0.99928)
and lowest in VKOSPI (ρ = 0.99464). Moreover, we also found that oil and gold have
effects on return of volatility indexes. For example, the value of coefficient of gold price
on VIX is 0.05857, meaning that the change in oil return by 1% will change the return
of VIX about 5.857% in the same direction. To estimate DCC, the value of 𝜃0, 𝜃1 and 𝛏
are parameters used to find integrated and mean reverting models. It presents dynamic
correlation for volatility indexes. In this case it is fitted as the skewed normal distribution.

3.4 Dynamic Correlation from the Best GARCH Fit

3.4.1 Correlation Analysis
Due to the space limit, we only present the dynamic correlation results of some inter‐
esting pairs. We compute time series daily correlation between the changes in volatility
indexes for instances, VIX, VSTOXX, VDAX, VFTSE, VNVIXN, VHSI and VKOSPI
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Fig. 1. Daily correlation between volatility indices from 1 November 2007 to 11 August 2017.
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from 1 November 2007 to 11 August 2017 and only the pairs between VIX and other
indexes are presented in Fig. 1.

There are a number of significant results and find that most volatility indexes have
positive correlation. The correlation for VIX and VSTOXX is strongest in 2009 around
0.20, and then the value becomes close to zero after 2012, indicating a weak positive
correlation. Similarly, the VIX and VDAX correlation reached the highest level in 2009
at 0.06 and it turned to be negative correlation around −0.04 in 2010, 2013, and 2016,
and this indicates that there are both positive and negative correlations between them
over time. Additionally, the correlation between VIX and VFTSE reached the highest
level in 2012 around 0.55 indicating a high positive correlation. Meanwhile, the corre‐
lation for VIX and VNVIXN, VIX and VHSI, VIX and VKOSPI reached high level
after 2014 around 0.25.

4 Conclusion

Based on the results, we suggest the best fit model for estimating the optimal parameters
to be DCC-CGARCH based on the skewed student-t distribution. We observe that, U.S.
volatility index (VIX) has the positive dynamic correlation with other volatility indexes
(VSTOXX, VFTSE, VHSI, VKOSPI, VDAX, VNVIXN) meaning that if VIX increases,
it will lead VSTOXX to increase. Additionally, this paper includes exogenous effects
on volatility indexes consisting of oil and gold. We found that there is a significant effect
of oil and gold on volatility indexes.
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