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Abstract. Generalized autoregressive conditional heteroscedasticity
(GARCH) provides useful techniques for modeling the dynamic volatil-
ity model. Several estimation techniques have been developed over the
years, for examples Maximum likelihood, Bayesian, and Entropy. Among
these, entropy can be considered an efficient tool for estimating GARCH
model since it does not require any distribution assumptions which must
be given in Maximum likelihood and Bayesian estimators. Moreover, we
address the problem of estimating GARCH model characterized by ill-
posed features. We introduce a GARCH framework based on the Gener-
alized Maximum Entropy (GME) estimation method. Finally, in order to
better highlight some characteristics of the proposed method, we perform
a Monte Carlo experiment and we analyze a real case study. The results
show that entropy estimator is successful in estimating the parameters
in GARCH model and the estimated parameters are close to the true
values.

Keywords: Volatility · GARCH(1, 1) model
Generalized Maximum Entropy

1 Introduction

Estimation of volatility is very important in financial economics, because volatil-
ity is a measure of uncertainty on observed time series of financial data such as
stock price or stock index. Many studies realized that the volatility of financial
data should not be constant overtime but invariably varying through time. The
popular model to estimate the time-varying volatility is Autoregressive condi-
tional heteroskedasticity model (ARCH) proposed by Engel [1] in 1982 and was
extended by Bollerslev [2]. This paper introduces a new volatility model called
Generalized autoregressive conditional heteroskedasticity model (GARCH(p,q))
in the following form

εt = σtνt, , νt ∼ N(0, 1), t = 1, 2 · · · , T,
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where

σ2
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t−j , ω0, ω1i, ωj > 0 ∀i = 1, · · · , p, j = 1, · · · , q.

In this study, we consider GARCH(1,1) model because this is an extension of
ARCH model and relies only on past observation and on past volatility. In gen-
eral, GARCH parameters have been estimated by using Maximum Likelihood
(MLE) approach which assumes normality. However, the assumption of condi-
tional normality is not always appropriate. Maximum Entropy (ML) modeling
which has a flexible functional form to use with many distributions has been
applied in financial field. Park and Bera [3] applied two separate maximum
entropy densites in ARCH model (MEARCH model) where moment functions
are selected based on the sample to estimate NYSE stock returns. They show
the MEARCH model was useful to capture the behavior of the sample.

From assumption on long-term stability, GARCH model will give a wrong
answer if data is not stability trend. Financial time series data generally are
characterized with a large sample size and structural change. To be consis-
tent with this stability assumption, we suggest small sample size for estimating
GARCH(1,1) model. Hwang and Valls Pereira [4] investigated ML estimation
with small sample in GARCH model with non-negative Bollerslev’s condition
that guarantees positive conditional volatility and they showed GARCH models
with small sample problems from their results that the estimated parameters
are negatively biased. They also suggested the minimum size of sample needed
for GARCH(1,1) model to be 500 observations.

When the data has a heavy-tailed distribution, the analysis of GARCH time
series data by using quasi maximum likelihood estimation (QMLE) can lead
to inconsistency in parameter noted by Lee et al. [5]. Who applied maximum
entropy to estimate GARCH(1,1) model for 503 observations of S&P 500 index.

Generalized Maximum Entropy (GME) method for ARCH model can be
found in the book by Golan et al. [6]. In this paper, we use GME to estimate
GARCH(1,1) parameters because this method does not require the large obser-
vation and assumption about distribution function for innovation. This method
has only independent assumption for all random variables and support space
for each random variable. We show the result by using simulation and applying
the model to estimate volatility on stock price returns with small number of
observations.

2 Methodology

Let εt, t = 1, · · · , T is sequence random variable from time series data with
mean zero. The GARCH(1,1) model is defined by

εt = σt · νt, t = 1, 2, · · · , T, (1)

σ2
t = ω0 + ω1σ

2
t−1 + ω2ε

2
t−1, t = 1, 2, · · · , T, (2)
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where ω0 > 0, ω1, ω2 ∈ (0, 1) and stationary condition is ω1 + ω2 < 1 and
νt ∼ F (·) is sequence of independent random variable or innovation. In this
study, the parameters ω0, ω1, ω2 are estimated using generalized maximum
entropy (GME). The basic idea of this estimator is that the entropy, which
refers to an amount of the uncertainty, is maximized subject to model and data
constraints. Here, we consider the Shannon’s entropy measure proposed by Shan-
non [7]. This Shannon’s entropy is represented by the amount of the uncertainty
of a discrete probability distribution and the sum of all outcomes probability
equals to one. The constraint primal problem for ARCH model can be written
as follows:

max H(P0, P1, P2, W1, W2, · · · , WT ) = H(P0) + H(P1) + H(P2) +
T∑

t=1

H(Wt), (3)

subject to
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where H(Pj) = −
k∑

i=1

pji log(pji), j = 0, 1, 2 and H(Wj) = −
k∑

i=1

wti log(wti), t =

1, · · · , T, z0i, z1i, z2i, si are the discrete support space, and var(εt) is the sample
variance. After optimizing this function, we can estimate ω̂0, ω̂1, ω̂2, ν̂t by

ω̂0 =
k∑

i=1

z0ip0i, ω̂1 =
k∑

i=1

z1ip1i, ω̂2 =
k∑

i=1

z2ip2i, ν̂t =
k∑

i=1

siwti, t = 1, 2, · · · , T.

The standard deviation of parameters ω̂0, ω̂1 and ω̂2 is to be estimated by

std. of ω̂j =

√√√√
k∑

i=1

(zji − ω̂j)2pji, j = 0, 1, 2.

3 Simulation Study

In this section, a simulation study was conducted to evaluate performance and
accuracy of GME estimation in GARCH(1,1) model with small observation T =
{50, 100}. For every support space, we define 5 points support for ω0, ω1, ω2

with z0 = z1 = z2 = [0, 0.25, 0.50, 0.75, 1] and support space for innovation
νt is [−10,−5, 0, 5, 10] for all t = 1, 2, · · · , T. We simulated the data from the
GARCH(1,1) model with 1,000 paths, where the innovation is assumed to have
standard normal distribution N(0, 1). We consider ω0, ω1, ω2 for 5 cases.

The simulation results are provided in Tables 1, 2, 3, 4 and 5 and the similar
results are obtained. According to Table 1, by the simulation we observe that
the estimation mean of ω0 is underestimated but those for ω1, ω2 are overes-
timated for both T = 50 and 100. From Table 2, we see that the estimation
mean of ω0 and ω1 are underestimated while ω2 value is overestimated for both
T = 50 and 100. From Table 3, the different results are obtained, the means
of ω0 and ω1 are overestimated but that for ω2 is underestimated for both
T = 50 and 100. From Table 4, we see that the means of ω0, ω1 and ω2 are

Table 1. Case 1: ω0 = ω1 = ω2 = 0.2

True T=50 T=100

Mean Std Quantile Quantile Mean Std Quantile Quantile

5% 95% 5% 95%

ω0 0.2 0.0393 0.0215 0.0168 0.0769 0.0428 0.0202 0.0241 0.0712

ω0 0.2 0.3533 0.0181 0.3202 0.3804 0.3468 0.0159 0.3180 0.3715

ω0 0.2 0.3298 0.0133 0.3077 0.3505 0.3067 0.0107 0.2893 0.3228

Entropy 83.3738 0.1663 83.1607 83.6627 163.3534 0.1802 163.1272 163.6612
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Fig. 1. Histogram of parameter estimates from simulation T = 50(left), T = 100(right)

Table 2. Case 2: ω0 = .7, ω1 = .5, ω2 = 0.1

True T=50 T=100

Mean Std Quantile Quantile Mean Std Quantile Quantile

5% 95% 5% 95%

ω0 0.7 0.5099 0.0287 0.4624 0.5569 0.5318 0.0228 0.4985 0.5708

ω1 0.5 0.4363 0.0255 0.3907 0.4760 0.4605 0.0215 0.4251 0.4962

ω2 0.1 0.3862 0.0236 0.3446 0.4235 0.3617 0.0190 0.3292 0.3930

Entropy 84.5511 0.0928 84.3883 84.6699 164.4394 0.0982 164.2645 164.5694

Table 3. Case 3: ω0 = .2, ω1 = .2, ω2 = 0.7

True T=50 T=100

Mean Std Quantile Quantile Mean Std Quantile Quantile

5% 95% 5% 95%

ω0 0.2 0.4048 0.1826 0.0975 0.6389 0.4405 0.1771 0.1000 0.6342

ω1 0.2 0.3741 0.0669 0.2938 0.4846 0.3912 0.0804 0.2920 0.4946

ω2 0.7 0.3777 0.0737 0.2920 0.5061 0.3909 0.0768 0.2898 0.5190

Entropy 84.3664 0.5714 83.5372 84.8916 164.4499 0.9400 162.1926 165.1179

overestimated for both T = 50 and 100; however, they are close to the true
values. Finally, from Table 5, the estimation mean of ω0 is underestimated and
overestimated for T = 50 and T = 100 respectively; the estimation mean of
ω1 is underestimated for both T = 50 and T = 100; and the mean of ω2 is
overestimated for both T = 50 and T = 100.
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Fig. 2. Histogram of parameter estimates from simulation T = 50(left), T = 100(right)

Fig. 3. Histogram of parameter estimates from T = 50(left), T = 100(right)
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Table 4. Case 4: ω0 = .5, ω1 = .4, ω2 = 0.4

True T=50 T=100

Mean Std Quantile Quantile Mean Std Quantile Quantile

5% 95% 5% 95%

ω0 0.5 0.5365 0.0809 0.4402 0.6538 0.5389 0.1380 0.4393 0.6611

ω1 0.4 0.4495 0.0393 0.3691 0.4975 0.4800 0.0518 0.4124 0.5203

ω2 0.4 0.4290 0.0435 0.3457 0.4904 0.4275 0.0408 0.3620 0.4882

Entropy 84.5230 0.4421 84.0229 84.7723 164.3091 1.0100 161.6720 164.7983

Source calculation.

Fig. 4. Histogram of parameter estimates from T = 50(left), T = 100(right)

Table 5. Case 5: ω0 = .6, ω1 = .7, ω2 = 0.2

True T=50 T=100

Mean Std Quantile Quantile Mean Std Quantile Quantile

5% 95% 5% 95%

ω0 0.6 0.6476 0.1462 0.5285 0.9912 0.4819 0.3302 0.0006 0.9904

ω1 0.7 0.5170 0.0202 0.4921 0.5442 0.5833 0.0849 0.5118 0.7500

ω2 0.2 0.4565 0.0231 0.4227 0.4862 0.4569 0.0809 0.3933 0.5686

Entropy 83.77 0.9866 81.3374 84.5333 162.4112 1.9288 159.2213 163.3010

The overall results of the simulation are likely to perform well for all case
studies as the estimated mean parameters are not far away from the true values.
Moreover, we also plot the histogram of estimated parameters from 1,000 paths.
We present all case studies and plot in Figs. 1, 2, 3, 4 and 5. We can observe that
most estimated parameters are close to the true values and that the standard
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Fig. 5. Histogram of parameter estimates from T = 50(left), T = 100(right)

deviations are rather small. We may thus conclude that the proposed method
estimates the GARCH(1,1) parameters quite well.

4 Real Data Application

In this section, we compare the performance of the entropy GARCH(1,1) using
the stock index data. We consider closing stock price and daily return from
Advanced Micro Devices, Inc. (AMD) from March 1, 2017 to July 28, 2017. The
data is obtained from Thomson Reuters DataStream. We plot the daily closing
price and return of AMD in Fig. 6. The summary statistics is shown in Table 6.

In this application study, we consider the simple GARCH(1,1) to esti-
mate the volatility of the AMD return. The support spaces of the GARCH
parameters are specified just like in the simulation study section. The esti-
mated results are shown in Table 7. We can see that our estimated standard
errors of ω0, ω1, ω2 in Table 7 are large and all parameters are insignificant.
We suspect that our support spaces are perhaps too large and thereby lead-
ing a high standard error. Therefore, we try to estimate again but using a nar-
rower range of support spaces for ω0, ω1, ω2. We define a new support space
as z0 = z1 = z2 = [0, 0.125, 0.25, 0.375, 0.5] and si as [−10,−5, 0, 5, 10]. The
results are shown in Table 8, and when compared to Table 7, values of parameter
estimates change and standard errors decrease; however, we can still obtain the
significant results. We also plot the conditional variance and innovation error
from our GARCH(1,1) (Fig. 7).
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Fig. 6. Closing stock price (up) and return of AMD (down)

Table 6. Summary statistics of AMD

Mean Median Std Min Max Skewness Kurtosis Obs.

−0.0007 0.0008 0.0443 −0.2775 0.1102 −2.2995 16.958 104

Table 7. Estimation of GARCH(1,1) parameter by GME

Parameter Value Std

ω0 7.3761 × 10−4 0.0137

ω1 0.3689 0.3375

ω2 0.2496 0.2927

Entropy 168.8636

The support space for every param-
eter is the same as in the simulation
part.

Table 8. Parameters estimated from GME with the support space

Parameter Value Std

ω0 0.0011 0.0118

ω1 0.2333 0.1763

ω2 0.2079 0.1735

Entropy 169.3612
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Fig. 7. Estimation of conditional variance (upper) and innovation (lower)

5 Conclusions and Future Research

It is not easy to get the big data with certain economic situation or stable
environment. Thus many estimations face the ill-posed problem. In this study,
GME estimator is proposed to estimate the unknown parameters in GARCH
model. The simulation results show that the GME is workable well on some
values of parameters since either underestimated or overestimated results are
obtained in some parameters. However, the results are still acceptable in this
study. From the real data analysis, we cannot find the significant result of the
GARCH parameters. The problem of GME estimation in GARCH(1,1) is that
the value of parameter estimates depends on the support space. We find that
the narrow support space will lead a smaller standard error of the parameters.

Therefore in future research, we should find the new method to estimate a
GARCH model or other volatility models that can handle the small observa-
tion problem. GME method should also be extended to GARCH(p,q) and other
stochastic volatility (IGRACH, GJR-GRACH, NGARCH etc.) models.
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