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Abstract. Many aspects of human behavior seem to be well-described
by formulas of quantum physics. In this paper, we explain this phe-
nomenon by showing that the corresponding quantum-looking formulas
can be derived from the general ideas of scale invariance and fuzziness.
We also use these ideas to derive a general family of formulas that include
non-quantum and quantum probabilities as particular cases – formulas
that may be more adequate for describing human behavior than purely
non-quantum or purely quantum ones.

1 Formulation of the Problem

Somewhat surprisingly, quantum models describe several aspects of
human behavior. The main issue with which we deal in this paper is that
many aspects of human behavior seem to be well-described by formulas from
quantum physics; see, e.g., [1,3,12].

This is understandable on the qualitative level. The success of quantum
models in describing several aspects of human behavior is understandable on the
qualitative level (see, e.g., [8]): similar to quantum physics, every time we gain
new knowledge we inevitably change the system. For example, once we learn a
new dependence between the economic variables, we can make better predictions
of economic phenomena and thus, change the behavior of decision makers.

But how can we explain this success on the quantitative level? The
above qualitative arguments do not explain why not only ideas but also formulas
from quantum physics are helpful in describing human behavior (see, e.g., [1]).
In other words, while the qualitative success of quantum models is reasonable,
their quantitative success remains a mystery.
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What we do in this paper. In this paper, we show that the analysis of
different types of uncertainty leads to the desired quantitative explanation of the
success of quantum models in describing human behavior. To be more precise,
we show that this analysis leads to a general formula that includes non-quantum
and quantum probabilities as particular cases. We hope that some intermediate
cases of this general formula will be even more accurate in describing human
behavior than the currently used formulas based on non-quantum and quantum
probabilities.

The structure of the paper is as follows. In Sect. 2, we briefly recall the main
ideas behind quantum physics, and recall how the corresponding models help
in describing human behavior. In Sect. 3, we show how to explain the quantum
formulas, and how to derive a general formula that contains non-quantum and
quantum formulas as particular cases. In Sects. 4 and 5, we describe how this
formula is related to entropy and fuzzy.

2 Quantum Models and How They Describe Human
Behavior: A Brief Reminder

The main difference between non-quantum and quantum probabilities.
According to [4], the main difference between non-quantum and quantum proba-
bilities can be explained on the example of the following two-slot experiment.

This experiment is about particle propagation. We have a particle generator –
e.g., a light source or a radio source that generates photons, or a radioactive
element that generates electrons or alpha-particles. There is an array of sensors
at some distance from this generator. By detecting the particles, these sensors
helps us estimate the probability that the original particle goes to the location
x of the sensor. To be more precise, what we estimate is the probability density
ρ(x) corresponding to the sensor’s location x.

There is a barrier between the source of the signals and the sensors. In this
barrier, there are two slots that can be open or close. If both slots are closed,
no particles come through, so the sensors do not detect anything. If one or both
slots are open, detectors detect the particles.

We assume that the particles do not interact with each other; this is a rea-
sonable assumption for electromagnetic waves (photos), and even for electrons –
as long as their density is not too high.

Let us assume that first we open the first slot and leave the second slot closed.
Let ρ1(x) denote the resulting probability density. Now, we can close the first
slot, open the second slot, and measure the new probability density. We will
denote this new probability density by ρ2(x). What will happen if we open both
slots? What will then be the resulting probability density ρ(x)?

In non-quantum physics, the answer is simple. Indeed, in the new experiment,
a particle reaches the sensor if it either went through the first slot or it went
through the second slot. We set up the experiment in such a way that the particle
cannot go through both slots. Thus, the probability that a particle passes via one
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of the two slots is equal to the sum of the probability of passing through the first
slot and the probability of passing through the second slot: ρ(x) = ρ1(x)+ρ2(x).

However, this is not what we observe in quantum physics. In quantum physics,
to properly describe uncertainty, it is not sufficient to describe the corresponding
probabilities, we also need to describe a complex-valued function ψ(x) – called
wave function – for which the probability density is equal to ρ(x) = |ψ(x)|2.

In this case, if we know the wave function ψ1(x) corresponding to the first-
slot-open case and the wave function ψ2(x) corresponding to the second-slot-open
case, then the wave function ψ(x) corresponding to the case when both slots are
open is equal to ψ(x) = ψ1(x) + ψ2(x). In this case, in general,

ρ(x) = |ψ(x)|2 = |ψ1(x) + ψ2(x)|2 �= |ψ1(x)|2 + |ψ2(x)|2 = ρ1(x) + ρ2(x).

For example, in situations in which the values of all wave functions are positive
real numbers, we get ψ1(x) =

√
ρ1(x), ψ2(x) =

√
ρ2(x), and thus, ρ(x) = ψ2(x)

has the form

ρ(x) = (
√

ρ1(x) +
√

ρ2(x))2 = ρ1(x) + ρ2(x) + 2
√

ρ1(x) · ρ2(x) �= ρ1(x) + ρ2(x).

Comment. In general, the values of ψi(x) may be complex. In this case, by
using triangle inequality, the only thing that we can conclude about |ψ(x)| =
|ψ1(x) + ψ2(x)| is that

||ψ1(x)| − |ψ2(x)|| ≤ |ψ(x)| ≤ |ψ1(x)| + |ψ2(x)|.

By squaring all three parts of this double inequality, we can conclude that the
probability density function ρ(x) = |ψ(x)|2 satisfies the inequality

(
√

ρ1(x) −
√

ρ2(x))2 ≤ ρ(x) ≤ (
√

ρ1(x) +
√

ρ2(x))2,

i.e., that

ρ1(x) + ρ2(x) − 2
√

ρ1(x) · ρ2(x) ≤ ρ(x) ≤ ρ1(x) + ρ2(x) + 2
√

ρ1(x) · ρ2(x).

How is this related to human behavior. In the early 1980s, a group of
researchers from the Republic of Georgia observed the behavior of kids in a
two-door room; see, e.g., [13,14]. In some cases, both doors were open, in other
cases, only one door was open. On the other side, boxes with treats were placed,
and the researchers measured how frequently kids pick up treats from the box
located at spatial location x.

It turns out that the older kids, after walking through the door, mostly went
to the box which was the closest to this door. For these kids, the frequency f(x)
of selecting the box x when both doors were open was (approximately) equal to
the sum f1(x) + f2(x) of the frequencies fi(x) corresponding to the cases when
the i-th door was open and the other door was closed. In other words, older kids
exhibited non-quantum behavior.
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Somewhat surprising, for younger kids (3–4 years old), the frequency f(x)
was different from the sum f1(x) + f2(x): not only that, it was close to the
quantum formula f(x) = (

√
f1(x) +

√
f2(x))2.

For the adults – just like for the older kids – a large part of their decision
making behavior is described by the traditional (non-quantum) probabilities.
However, surprisingly, some aspects of their behavior are better described by
the quantum formulas; see, e.g., [1,3].

Remaining questions. How can we explain the usability of quantum formulas?
And how can we come up with formulas that take into account some similarity
to quantum phenomena without requiring that all formulas are quantum ones?

In this paper, we use several uncertainty-related approaches to come up with
such a more general formula.

3 How to Explain the Quantum Formulas and to Get
a General Expression Containing Non-quantum
and Quantum Formulas as Particular Cases

Formulation of the problem: reminder. For each sensor location x, we know
the values of the probability densities ρ1(x) and ρ2(x) corresponding to situations
when one of the slots is open. Based on these values, we need to estimate the
value ρ(x).

Let f(a, b) denote the algorithm that transforms the known values a = ρ1(x)
and b = ρ2(x) into the estimate for ρ(x). In terms of this algorithm, the desired
estimate has the form ρ(x) = f(ρ1(x), ρ2(x)).

The problem is: which function f(a, b) is the most appropriate?

Comment. The two-slot experiment is just an example. The algorithm f(a, b)
can be used not only for the two-slot experiment, but for all possible situations
when we need to combine the known probabilities a = P (A) and b = P (B) of
two events A and B into an estimate f(a, b) for the probability P (A ∨ B) of the
disjunction A ∨ B.

First natural requirement: commutativity. The estimate for ρ(x) should
not depend on which door we call the first one and which one we call the second
one. Thus, we must have f(ρ1(x), ρ2(x)) = f(ρ2(x), ρ1(x)) for all possible values
ρ1(x) and ρ2(x).

In other words, we must have f(a, b) = f(b, a) for all possible values a and
b, i.e., the function f(a, b) must be commutative.

Second natural requirement: continuity. In practice, all probability val-
ues are estimated only approximately, as frequencies ρ̃i(x) ≈ ρi(x). The more
observations we have, the more accurate these approximations, i.e., the closer
the estimates to the actual probabilities. It is therefore reasonable to require
that as the approximate values ρ̃1(x) and ρ̃2(x) tend to the actual values ρ1(x)
and ρ2(x), the resulting estimate f(ρ̃1(x), ρ̃2(x)) should tend to the estimate
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f(ρ1(x), ρ2(x)) based on the actual values. In other words, it is reasonable to
require that the function f(a, b) be continuous.

Third natural requirement: monotonicity. It is also reasonable to require
that if one of the probabilities ρi(x) increases, the resulting overall probability
ρ(x) should increase as well. In other words, it is reasonable to require that the
function f(a, b) is a (non-strictly) increasing function of each of its variables.

Fourth natural requirement: associativity. If we have three doors instead
of two, then we can estimate the probability ρ(x) corresponding to the case when
all 3 doors are open in two different ways:

– We can first use the algorithm f(a, b) to estimate the probability density
function ρ12(x) = f(ρ1(x), ρ2(x)) corresponding to the case when the first two
doors are open, and then again apply the same algorithm f(a, b) to combine
the probability density function ρ12(x) with the probability density function
ρ3(x), resulting in the value f(f(ρ1(x), ρ2(x)), ρ3(x)).

– Alternatively, we can first combine the probability density functions corre-
sponding to doors 2 and 3, resulting in ρ23(x) = f(ρ2(x), ρ3(x)), and then
combine the resulting probability density function with ρ1(x), resulting in

f(ρ1(x), ρ23(x)) = f(ρ1(x), f(ρ2(x), ρ3(x))).

It is reasonable to require that these two estimates are equal for all possible
values ρi(x), i.e., that f(f(a, b), c) = f(a, f(b, c)) for all a, b, and c – in other
words, that the operation f(a, b) is associative.

Fifth natural requirement: scale-invariance. By definition, the probability
density is probability divided by the length or area (or volume). In principle,
we can use different units for measuring length, and thus, different units for
measuring area or volume. If we replace the original measuring unit with the
one which is λ times smaller, the numerical values of the probability density
gets multiplied by λ.

It is reasonable to require that the estimating function f(a, b) should not
change if we thus re-scale all the values of the probability density, that ρ(x) =
f(ρ1(x), ρ2(x)) should imply λ · ρ(x) = f(λ · ρ1(x), λ · ρ2(x)). Thus, we require
that f(λ · a, λ · b) = λ · f(a, b) for all possible values a, b, and λ.

Now, we are ready for formulate our main result.

Definition 1. We say that a function f(a, b) : IR+
0 × IR+

0 → IR+
0 from non-

negative real numbers to non-negative real numbers is a scale-invariant estima-
tion function if it is commutative, associative, continuous, (non-strictly) increas-
ing, and f(λ · a, λ · b) = λ · f(a, b) for all a, b, and λ.

Proposition 1. The only scale-invariant estimation functions are f(a, b) = 0,
f(a, b) = min(a, b), f(a, b) = max(a, b), and f(a, b) = (aα + bα)1/α for some α.
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4 Proof

Comment. In principle, we could shorten our proof if we take into account the
known general structure of 1-D semigroups [6,10], but, for pedagogical purposes,
we decided to have a longer “from scratch” proof, since in this proof, all steps
are clear and it is, thus more convincing to non-mathematical readers.

1◦. Depending on whether the value f(1, 1) is equal to 1 or not, we have two
possible cases: f(1, 1) = 1 and when f(1, 1) �= 1. Let us consider these two cases
one by one.

2◦. Let us first consider the case when f(1, 1) = 1. In this case, the value f(0, 1)
can be either equal to 0 or different from 0. Let us consider both subcases.

2.1◦. Let us first consider the first subcase, when f(0, 1) = 0.
In this case, for every b > 0, scale invariance with λ = b implies that

f(b · 0, b · 1) = b · 0,

i.e., that f(0, b) = 0. By taking b → 0 and using continuity, we also get f(0, 0) =
0. Thus, f(0, b) = 0 for all b.

By commutativity, we have f(a, 0) = 0 for all a. So, to fully describe the
operation f(a, b), it is sufficient to consider the cases when a > 0 and b > 0.

2.1.1◦. Let us prove, by contradiction, that in this subcase, we have f(1, a) ≤ 1
for all a.

Indeed, let us assume that for some a, we have b
def= f(1, a) > 1. Then, due

to associativity and f(1, 1) = 1, we have f(1, b) = f(1, f(1, a)) = f(f(1, 1), a) =
f(1, a) = b.

Due to scale-invariance with λ = b, the equality f(1, b) = b implies that
f(b, b2) = b2. Thus, f(1, b2) = f(1, f(b, b2)) = f(f(1, b), b2) = f(b, b2) = b2.

Similarly, from f(1, b2) = b2, we conclude that for b4 = (b2)2, we have
f(1, b4) = b4, and, in general, that f(1, b2

n

) = b2
n

for every n.
Scale invariance with λ = b−2n implies that f(b−2n , 1) = 1. In the limit

n → ∞, we get f(0, 1) = 1, which contradicts to our assumption that f(0, 1) = 0.
This contradiction shows that indeed, f(1, a) ≤ 1.

2.1.2◦. For a ≥ 1, monotonicity implies 1 = f(1, 1) ≤ f(1, a), so f(1, a) ≤ 1
implies that f(1, a) = 1.

Now, for any a′ and b′ for which 0 < a′ ≤ b′, if we denote r
def=

b′

a′ ≥ 1, then

scale-invariance with λ = a′ implies that a′ · f(1, r) = f(a′ · 1, a′ · r) = f(a′, b′).
Here, f(1, r) = 1, thus f(a′, b′) = a′ · 1 = a′, i.e., f(a′, b′) = min(a′, b′). Due
to commutativity, the same formula also holds when a′ ≥ b′. So, in this case,
f(a, b) = min(a, b) for all a and b.

2.2◦. Let us now consider the second subcase of the first case, when f(0, 1) > 0.

2.2.1◦. Let us first show that in this subcase, we have f(0, 0) = 0.
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Indeed, scale-invariance with λ = 2 implies that from f(0, 0) = a, we can
conclude that f(2 · 0, 2 · 0) = f(0, 0) = 2 · a. Thus a = 2 · a, hence a = 0. The
statement is proven.

2.2.2◦. Let us now prove that in this subcase, f(0, 1) = 1.
Indeed, in this case, for a

def= f(0, 1), we have, due to f(0, 0) = 0 and asso-
ciativity, that f(0, a) = f(0, f(0, 1)) = f(f(0, 0), 1) = f(0, 1) = a. Here, a > 0,
so by applying scale invariance with λ = a−1, we conclude that f(0, 1) = 1.

2.2.3◦. Let us now prove that for every a ≤ b, we have f(a, b) = b. So, due to
commutativity, we have f(a, b) = max(a, b) for all a and b.

Indeed, from f(1, 1) = 1 and f(0, 1) = 1, due to scale invariance with λ = b,
we conclude that f(0, b) = b and f(b, b) = b. Due to monotonicity, 0 ≤ a ≤ b
implies that b = f(0, b) ≤ f(a, b) ≤ f(b, b) = b, thus f(a, b) = b. The statement
is proven.

3◦. Let us now consider the remaining case when f(1, 1) �= 1.

3.1◦. Let us denote v(k) def= f(1, f(. . . , 1) . . .) (k times). Then, due to associativ-
ity, for every m and n, the value v(m · n) = f(1, f(. . . , 1) . . .) (m · n times) can
be represented as

f(f(1, f(. . . , 1) . . .), . . . , f(1, f(. . . , 1) . . .)),

where we divide the 1s into m groups with n 1s in each. For each group, we have
f(1, f(. . . , 1) . . .) = v(n). Thus, v(m · n) = f(v(n), f(. . . , v(n)) . . .) (m times).

We know that f(1, f(. . . , 1) . . .) (m times) = v(m). Thus, by using scale-
invariance with λ = v(n), we conclude that v(m ·n) = v(m) · v(n), i.e., that that
function v(n) is multiplicative. In particular, this means that for every number
p and for every positive integer n, we have v(pn) = (v(p))n.

3.2◦. If v(2) = f(1, 1) > 1, then by monotonicity, we get v(3) = f(1, v(2)) ≥
f(1, 1) = v(2), and, in general, v(n + 1) ≥ v(n). Thus, in this case, the sequence
v(n) is (non-strictly) increasing.

Similarly, if v(2) = f(1, 1) < 1, then we get v(3) ≤ v(2) and, in general,
v(n + 1) ≤ v(n), i.e., in this case, the sequence v(n) is strictly decreasing.

Let us consider these two cases one by one.

3.2.1◦. Let us first consider the case when the sequence v(n) is increasing. In
this case, for every three integers m, n, and p, if 2m ≤ pn, then v(2m) ≤ v(pn),
i.e., (v(2))m ≤ (v(p))n.

For all m, n, and p, the inequality 2m ≤ pn is equivalent to m·ln(2) ≤ n·ln(p),

i.e., to
m

n
≤ ln(p)

ln(2)
. Similarly, the inequality (v(2))m ≥ (v(p))n is equivalent to

m

n
≤ ln(v(p))

ln(v(2))
. Thus, the above conclusion “if 2m ≤ pn then (v(2))m ≤ (v(p))n”

takes the following form:

for every rational number
m

n
, if

m

n
≤ ln(p)

ln(2)
then

m

n
≤ ln(v(p))

ln(v(2))
.
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Similarly, for all m′, n′, and p, if pn′ ≤ 2m′
, then v(pn′

) ≤ v(2m′
), i.e., (v(p))n′ ≤

(v(2))m′
. The inequality pn′ ≤ 2m′

is equivalent to n′ · ln(p) ≤ m′ · ln(2), i.e., to
ln(p)
ln(2)

≤ m′

n′ . Also, the inequality (v(p))n′ ≤ (v(2))m′
is equivalent to

ln(v(p))
ln(v(2))

≤
m′

n′ . Thus, the conclusion “if pn′ ≤ 2m′
then (v(p))n′ ≤ (v(2))m′

” takes the
following form:

for every rational number
m′

n′ , if
ln(p)
ln(2)

≤ m′

n′ then
ln(v(p))
ln(v(2))

≤ m′

n′ .

Let us denote γ
def=

ln(p)
ln(2)

and β
def=

ln(v(p))
ln(v(2))

. For every ε > 0, there exist

rational numbers
m

n
and

m′

n′ for which γ − ε ≤ m

n
≤ γ ≤ m′

n′ ≤ γ + ε. For these

numbers, the above two properties imply that
m

n
≤ β and β ≤ m′

n′ and thus,

that γ − ε ≤ β ≤ γ + ε, i.e., that |γ − β| ≤ ε. This is true for all ε > 0, so we

conclude that β = γ, i.e., that
ln(v(p))
ln(v(2))

= γ. Hence, ln(v(p)) = γ · ln(p) and thus,

v(p) = pγ for all integers p.

3.2.2◦. We can reach a similar conclusion v(p) = pγ when the sequence v(n) is
decreasing and v(2) < 1, and a conclusion that v(p) = 0 if v(2) = 0.

3.3◦. By definition of v(n), we have f(v(m), v(m′)) = v(m + m′). Thus, we
have f(mγ , (m′)γ) = (m + m′)γ . By using scale-invariance with λ = n−γ , we

get f

(
mγ

nγ
,
(m′)γ

nγ

)
=

(m + m′)γ

nγ
. Thus, for a =

mγ

nγ
and b =

(m′)γ

nγ
, we get

f(a, b) = (aα + bα)1/α, where α
def= 1/γ.

Rational numbers r =
m

n
are everywhere dense on the real line, hence the

values rγ are also everywhere dense, i.e., every real number can be approxi-
mated, with any given accuracy, by such numbers. Thus, continuity implies that
f(a, b) = (aα + bα)1/α for every two real numbers a and b.

The proposition is proven.

Discussion. For α = 1, we get the usual formula for the probability for the
event A ∨ B when A and B are disjoint. For α = 0.5, we get the quantum
formula. Thus, we get the desired justified general formula or which traditional
probabilistic formula and the quantum formula are particular cases.

5 Relation to Entropy

What we do in this section. Let us start our analysis of the resulting general
formula. In this section, we show that this formula has an interesting relation to
Shannon’s entropy.
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Informal analysis of the problem. As we have mentioned, most aspects
of human behavior and human decision making can be described by the usual
probabilistic formulas. This means that while some deviations from the usual
formulas are needed – to take into account some aspects of human behavior
which are better described by quantum formulas – the corresponding value α
should be close to the value α = 1 corresponding to the usual probabilistic case.

Since quantum formulas seem to capture some aspects of human behavior,
and quantum formulas correspond to α < 1, this means that the actual value α
is close to 1 and smaller than 1. Thus, we can conclude that α = 1 − ε for some
small ε > 0.

The fact that ε is small means that we can safely ignore terms which are
quadratic (or of higher order) in terms of ε, and keep only terms which are
linear in ε. Let us see how the above formula can be this simplified.

Formal analysis of the problem. For every value a, we have aα = a1−ε =
a · a−ε. Here, since a = exp(ln(a)), we get

a−ε = (exp(ln(a))−ε = exp(−ε · ln(a)) ≈ 1 − ε · ln(a).

Thus, aα ≈ a · (1 − ε · ln(a)) = a − ε · a · ln(a), and

(ρ1(x))α + (ρ2(x))α ≈ ρ1(x) + ρ2(x) − ε · (ρ1(x) · ln(ρ1(x)) + ρ2(x) · ln(ρ2(x))).

Similarly, since
1
α

=
1

1 − ε
≈ 1 + ε, we get a1/α = a + ε · a · ln(a). Thus,

ρ(x) = ((ρ1(x))α + (ρ2(x))α)1/α

≈ (ρ1(x) + ρ2(x) − ε · (ρ1(x) · ln(ρ1(x))
+ ρ2(x) · ln(ρ2(x))) + ε · (ρ1(x) + ρ2(x)) · ln(ρ1(x) + ln(ρ2(x))).

Resulting formula and its relation to Shannon’s entropy. Thus, we arrive
at the following formula: ρ(x) ≈ ρ1(x) + ρ2(x) + ε · Δρ(x), where we denoted

Δρ(x) def= −ρ1(x) · ln(ρ1(x)) − ρ2(x) · ln(ρ2(x))
−(−(ρ1(x) + ρ2(x)) · ln(ρ1(x) + ρ2(x))).

The sum of expressions of the type −ρ(x) · ln(ρ(x)) is exactly what we see in the
formula for Shannon’s entropy, so we get a (unexpected but clear) connection of
quantum-type effects with Shannon’s entropy.

6 Fuzzy and Probabilistic Interpretations of Our
General Formula

It is not easy to interpret our formula in probabilistic terms. In general,
in the traditional probability theory, the probability P (A∨B) of the disjunction
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A∨B cannot exceed the sum of the two corresponding probabilities: P (A∨B) ≤
P (A) + P (B). Similarly, for the probability density functions ρ1(x) and ρ2(x),
we should have ρ(x) ≤ ρ1(x) + ρ2(x).

However, in the quantum case,

ρ(x) = ρ1(x) + ρ2(x) + 2
√

ρ1(x) · ρ2(x) > ρ1(x) + ρ2(x).

This is one of the results showing that quantum formulas cannot be interpreted
in terms of the traditional probabilities.

A similar inequality holds for all possible values α < 1. So what shall we do?

Comment. The fact that some aspects of human behavior cannot be adequately
described in probabilistic terms is well known; see, e.g., [5]. For example, in cer-
tain situations, people estimate the probability that a person X is a professional
and a feminist as higher than the probability that this person is a feminist –
an inequality which is impossible for probabilities, since the probability of a
sub-event cannot exceed the probability of the original super-event.

First option: fuzzy interpretation. A natural first option is to take into
account that, since here, P (A ∨ B) > P (A) + P (B), the values P (A), P (B),
and P (A ∨ B) are not real probabilities, they are non-probabilistic degrees of
certainty. Thus, to describe these degrees, it is reasonable to consider the most
well-known non-probabilistic uncertainty formalism: the formalism of fuzzy logic;
see, e.g., [2,7,9,11,15].

Second option: probabilistic interpretation. Another option is to explicitly
take into account that, e.g., ρ1(x) is the probability that the particle passed
through the first slot and did not pass through the second slot.

This is a known possible interpretation of the above feminist paradox – that
when people are asked to compare the probability that X is a feminist and the
probability that X is a professional and a feminist, they interpret the first option
as saying that X is a feminist but not a professional.

If we denote by A1 the event that the particle passed through the first slot,
this means that ρ1(x) is not the probability of this event A1, but rather the
probability of a composite event A′

1
def= A1 & (¬A2), i.e., the value P (A1) −

P (A&A2) Similarly, ρ2(x) is the probability of A′
2

def= A2 & (¬A1), i.e., P (A2)−
P (A1 &A2).

Here, ρ(x) is the probability of A1 ∨ A2, i.e., the probability P (A1 ∨ A2) =
P (A1) + P (A2) − P (A1 &A2). Thus, our formula (ρ(x))α = (ρ1(x))α + (ρ2(x))α

can be interpreted as the following indirect formula for determining a function
that described the probability C(u, v) def= P (A1 &A2) in terms of the probabili-
ties u

def= P (A1) and v
def= P (A2):

(u + v − C(u, v))α = (u − C(u, v))α + (v − C(u, v))α.

Comment. This interpretation is related to a fuzzy one. Indeed, in the proba-
bilistic interpretation, we started with the assumption that the particle cannot
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go through both slots, i.e., that going through the second slot is equivalent to
the negation of going through the first slot. We ended up by realizing that, to
make sense of the corresponding formulas for the probabilities, we need to allow
a non-zero probability that the particle goes through both slots.

This is exactly what fuzzy does: instead of assuming that a person is either
young or not young, it takes into account that the same person can be to some
extent young and to some extent not young.

In the quantum case, we have an explicit expression for the corre-
sponding function C(u, v). In general, from the above formula, we cannot
extract an explicit expression for C

def= C(u, v), but it is possible in the quantum
case, when α = 1/2. In this case, by squaring both sides of the above equation,
we conclude that

u + v − C = u − C + v − C + 2
√

(u − C) · (v − C).

By cancelling equal terms on both sides and moving C to the left-hand side, we
conclude that C = 2

√
(u − C) · (v − C). Squaring both sides of this equality, we

get C2 = 4u · v − 4(u + v) · C + 4C2, i.e., the quadratic equation

3C2 − 4(u + v) · C + 4u · v = 0,

with an explicit solution

C(u, v) =
2(u + v) ± √

4(u + v)2 − 48u · v

6
=

u + v ± √
(u + v)2 − 12u · v

3
.

Comment. It is worth mentioning that, as one can check, the resulting operation
C(u, v) is not associative.
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