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Abstract In this work, we demonstrate the extension of quadrature approximations,
built from conformal mapping of interpolatory rules, to sparse grid quadrature
in the multidimensional setting. In one dimension, computation of an integral
involving an analytic function using these transformed quadrature rules can improve
the convergence rate by a factor approaching π/2 versus classical interpolatory
quadrature (Hale and Trefethen, SIAM J Numer Anal 46:930–948, 2008). For the
computation of high-dimensional integrals with analytic integrands, we implement
the transformed quadrature rules in the sparse grid setting, and we show that in
certain settings, the convergence improvement can be exponential with growing
dimension. Numerical examples demonstrate the benefits and drawbacks of the
approach, as predicted by the theory.

1 Introduction and Background

Standard interpolatory quadrature methods, such as Gauss–Legendre and
Clenshaw–Curtis, tend to have points which cluster near the endpoints of the
domain. As seen in the well-known interpolation example of Runge, this can
mitigate the spurious effects of the growth of the polynomial basis functions at
the boundary. However, this clustering can be problematic and inefficient in some
situations. Gauss–Legendre and Clenshaw–Curtis grids, with n quadrature points
on [−1, 1], distribute asymptotically as 1

π
√

1−x2
[33]. Hence these clustered grids
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may have a factor of π/2 fewer points near the middle of the domain, compared
with a uniform grid. This may have unintended negative effects, and the issue is
compounded when considering integrals over high-dimensional domains.

For numerical integration of an analytic function in one dimension, the conver-
gence of quadrature approximations based on orthogonal polynomial interpolants
depends crucially on the size of the region of analyticity, which we denote by
Σ . More specifically, they depend on ρ ≥ 1, the parameter yielding the largest
Bernstein ellipse Eρ contained within the region of analyticity Σ . The Bernstein
ellipse is defined as the open region in the complex plane bounded by the curve

{
z ∈ C : z = (u + u−1)/2, u = ρeiθ , 0 ≤ θ ≤ 2π

}
. (1)

This gives some intuition as to why the most stable quadrature rules place more
nodes toward the boundary of the domain [−1, 1]; since the boundary of Eρ is close
to {±1}, the analyticity requirement is weaker near the endpoints of the domain.
More specifically, to be analytic in Eρ , the radius of the Taylor series of f at {±1}
is only required to be ρ − 1/ρ, while the radius of the Taylor series centered at 0 is
required to be at least ρ + 1/ρ.

On the other hand, the appearance of the Bernstein ellipse in the analysis is not
tied fundamentally to the integrand, but only to the choice of polynomials as basis
functions. Thus, we may consider other types of quadrature rules which still take
advantage of the analyticity of the integrand. Using non-polynomial functions as a
basis for the rule may improve the convergence rate of the approximation. Much
research has gone into investigating ways to find the optimal quadrature rule for a
function analytic in Σ , and to overcome the aforementioned “π/2-effect”, including
end-point correction methods [2, 15, 18], non-polynomial based approximation [4–
6, 25, 34], and the transformation methods [7, 10, 13, 16, 17, 19, 24, 26, 30, 30] which
map a given set of quadrature points to a less clustered set. In this paper, we consider
the transformation approach, based on the concept of conformal mappings in the
complex plane. Many such transformations have been considered in the literature,
especially for improper integrals where the integrand has endpoint singularities,
e.g., [11, 30]. Our interest here is in analytic functions which have singularities
in the complex plane away from the endpoints of the interval. We consider the
transformations from [13], which offer the following benefits: (1) practical and
implementable maps; and (2) simple concepts leading to theorems which may
precisely quantify their benefits in mitigating the effect of the endpoint clustering.

Our contribution to this line of research is to implement and analyze the applica-
tion of the transformed rules to sparse grid quadratures in the high-dimensional
setting. For high-dimensional integration over the cube [−1, 1]d , the endpoint
clustering means that a simple tensor product quadrature rule may use (π/2)d

too many points. On the other hand, we show that for sparse Smolyak quadrature
rules [27] based on tensorization of transformed one-dimensional quadrature, this
effect may be mitigated to some degree. Even in the sparse grid setting, the use of
mapped quadratures is not new. The paper [11] uses a similar method to generate
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new quadrature rules. In their setting, the goal is to compute integrals where the
integrand has boundary singularities. In contrast, our objective is to analyze the
rules for integrands which are analytic but may have singularities in the complex
plane away from [−1, 1]d .

The remainder of the paper is outlined next. First, we introduce the one-
dimensional transformed quadrature rules in Sect. 2, and in Sect. 2.2 describe how
to use them in the construction of sparse grid quadrature rules for integration
of multidimensional functions. In Sect. 3, we provide a brief analysis of the
corresponding mapped method to show that the improvement in the convergence
rate to a d-dimensional integral is (π/2)1/ξ(d), where ξ(d)−1 ≥ d , and provide
numerical tests for the sparse grid transformed quadrature rules in Sect. 4. We
conclude this effort with some remarks on the benefits and limitations of the method
in Sect. 5.

2 Transformed Quadrature Rules

In this section, we introduce one-dimensional transformed quadrature rules, based
on the conformal mappings described in [13], applied to classical polynomial
interpolation based rules. These rules will be used as a foundation for sparse tensor
product quadrature rules for computing high-dimensional integrals, introduced in
later sections.

To begin, suppose we want to integrate a given function f over the domain
[−1, 1], and assume this function admits an analytic extension in a region [−1, 1] ⊂
Σ ⊂ C. Given a set of points {xj }nj=1, an interpolatory quadrature rule is defined
from the Lagrange interpolant of f , which is the unique degree n − 1 polynomial
matching f at each of the abcissas xj , i.e.,

Ln[f ](x) =
n∑

j=1

f (xj )l
n
j (x), where lnj (x) =

n∏
i=1
i �=j

x − xi

xj − xi

.

The quadrature approximation of the integral of f , denoted Qn[f ], is then defined
by

∫ 1

−1
f (x) dx ≈

∫ 1

−1
Ln[f ](x) dx =

n∑
j=1

cjf (xj ) =: Qn[f ], (2)

with weights given explicitly as

cj =
∫ 1

−1
lnj (x) dx. (3)
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Now, according to the Cauchy integral theorem, since f has an analytic
extension, we can evaluate the integral along any (complex) path contained in Σ

with endpoints {±1}. Next, let g be a conformal mapping satisfying the conditions:

g(±1) = ±1, and g ([−1, 1]) ⊂ Σ. (4)

According to the argument above, the integral can be rewritten as the path integral
from −1 to 1, with the path parameterized by the map g, i.e.,

∫ 1

−1
f (x) dx =

∫ 1

−1
f (g(s))g′(s) ds.

Applying our original quadrature rule to the latter integral,

∫ 1

−1
f (g(s))g′(s) ds ≈

n∑
j=1

cjg
′(xj )︸ ︷︷ ︸

:=c̃j

f (g(xj )︸ ︷︷ ︸
:=x̃j

) =: Q̃n[f ], (5)

we obtain a new quadrature rule with transformed weights {c̃j }nj=1 and points
{x̃j }nj=1.

Equation (5) provides the motivation for the choice of the conformal mapping g.
Specifically, the Taylor series for f , centered at points x ∈ [−1, 1] which are close
to the boundary, may have a radius which extends beyond the largest Bernstein
ellipse in which f is analytic. We may then hope to find a g such that a Bernstein
ellipse is conformally mapped onto the whole region where f is analytic, where
classical convergence theory yields the convergence rate for (f ◦ g) · g′. In addition
to (4), it is especially advantageous to have g map [−1, 1] onto itself, i.e.,

g([−1, 1]) = [−1, 1]. (6)

In this case, the transformed weights and points remain real-valued, and we avoid
evaluations of f with complex inputs.

We now turn our attention to several specific conformal mappings which satisfy
the conditions (4), along with the extra condition (6). For more details on the
derivation and numerical implementation of the maps, see [13]. The first mapping
we consider applies to functions which admit an analytic extension at every point
on real line; in other words, functions which have only complex singularities. In
this case, the natural transformations to consider are ones that conformally map the
interior of a Bernstein ellipse (1) to a strip about the real line. Specifically, we define
a map which takes the Bernstein ellipse with shape parameter ρ to the complex
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g1−→

Fig. 1 The mapping (7) takes the Bernstein ellipse E1.4 (left) to a strip of half-width 2(1.4 −
1)/π ≈ 0.255

strip with half-width 2
π
(ρ −1), as shown in Fig. 1. We can do this through the use of

Jacobi elliptic functions [1, 8]. First, fixing a value ρ > 1, we define the parameter
0 < m < 1 through

m1/4 = 2
∞∑

j=1

ρ−4(j− 1
2 )2

/
⎛
⎝1 + 2

∞∑
j=1

ρ−4j2

⎞
⎠ ,

and the associated parameter K = K(m),

K =
∫ π/2

0

dθ√
1 − m sin θ

,

which is an incomplete Jacobi elliptic integral of the first kind [1]. Finally, we define
the mapping in terms of the elliptic sine function sn(·; m):

g1(z) = tanh−1
(

m1/4sn

(
2K

π sin−1(z)
; m

)) /
tanh

(
m1/4

)
. (7)

We’ll refer to this map as the “strip map” in the following.
According to (5), we also need to know the derivative of g1, given by

g′
1(z) = 2Km1/4

π
√

1 − z2

cn(ω(z); m)dn(ω(z); m)

(1 − m1/2sn(ω(z); m))

/
tanh

(
m1/4

)
, (8)

with ω(z) = 2K sin−1(z)/π . Here we have also made use of the elliptic cosine
function, cn, and elliptic amplitude function, dn [1]. For our applications, we also
require the values of g′

1 at the endpoints of the interval, which are given by

g′
1(±1) = 4K2m1/4

(
1 + m1/2

)/
π2 tanh

(
m1/4

)
.

Again we refer the reader to [13] for additional details.
Another way to change the endpoint clustering, and transform the quadrature

rule under a conformal map, is to use an appropriately normalized truncation of the
power series for sin−1(z). The map 2

π
sin−1(z) perfectly eliminates the clustering

of the Gauss–Legendre and Clenshaw–Curtis points, but since it has singularities at
±1, it is useless for our purposes. On the other hand, by considering a truncation of
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g2−→

Fig. 2 The mapping (9), with M = 4, takes the Bernstein ellipse E1.4 (left) to a pill-shaped region
with sides of length ≈ 0.255

the power series

sin−1(z) =
∞∑

k=1

Γ (k + 1/2)

Γ (1/2)

z2k+1

(2k + 1)k! ,

we define a more desirable mapping. To this end, for M ≥ 1, we define

g2(z) = c(M)

M∑
k=1

Γ (k + 1/2)

Γ (1/2)

z2k+1

(2k + 1)k! , (9)

with a constant c(M) ∈ (0, 1) appropriately chosen so that g2(±1) = ±1. This
mapping is much simpler to implement than the previous mapping. We will call this
map the “pill map”, since it maps the Bernstein ellipse to a pill-shaped region about
[−1, 1] with flatter sides. In Fig. 2, we plot the image of the ellipse Eρ with ρ = 1.4,
under the mapping (9) with M = 4. The region on the right has almost flat sides,
with width a little bigger than 2

π
(1.4 − 1) ≈ 0.255.

2.1 Standard One-Dimensional Quadrature Rules

Here we give a brief summary of some standard interpolatory-type quadrature rules,
to which we will apply the mappings of the previous section. Only the nodes are
discussed here, as the weights for each method will be defined according to (3). For
an overview of the theory of interpolatory quadrature, see [33, Ch. 19].

The first quadrature rule is based on the extrema of the Gauss–Chebychev
polynomials. For a given number of points n, these are given by:

xn,j = cos

(
(j − 1)π

n

)
, 1 ≤ j ≤ n. (10)

If we choose the number of nodes n = n(l) to grow according to n(1) = 1, n(l) =
2l−1 + 1, l > 1, this generates a nested sequence known as the Clenshaw–Curtis
nodes.
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Another set of points of interest are the well-known Gaussian abscissa, which
are the roots of orthogonal polynomials with respect to a given measure. Here we
consider the sequence of Gauss–Legendre nodes, which consists of the roots of the
sequence of polynomials orthogonal to the uniform measure on [−1, 1], i.e., the n

roots of the polynomials

Pn(x) = dn

dxn

[
(x2 − 1)n

]
, n ≥ 0. (11)

With the introduction of a weight into the integral from (2), other families of
orthogonal polynomials can be used. The main advantage of Gauss points is their
high degree of accuracy, i.e., the one-dimensional quadrature rules built from n

Gauss points integrate exactly polynomials of degree 2n − 1.

Remark 1 Gauss–Legendre points do not form a nested sequence, which may
lead to inefficiency in the high-dimensional quadrature setting. In fact, without
nestedness of the one-dimensional sequence, the sparse grid rule described in the
following section may not even be interpolatory. Even so, we only require the one-
dimensional rule to be interpolatory to apply the conformal mapping theory in the
multidimensional setting. We also remark that nested quadrature sequences based
on the roots of orthogonal polynomials, the so-called Gauss–Patterson points, are
also available, but we do not consider these types of rules herein.

The final set of nodes we consider are known as the Leja points. Leja points
satisfy a recursive definition, that is, given a point x1 ∈ [−1, 1], for n ≥ 2 define

xn = arg max
x∈[−1,1]

n−1∏
j=1

|x − xj |, (12)

where we typically take x1 = 0. Of course, there may be several minimizers
to (12), so for computational purposes, we simply choose the minimizer closest to
the left endpoint. In the interpolation setting, Leja sequences are known to have good
properties for approximation in high-dimensions [20], and there has been much
research related to the stability properties of such nodes when used for Lagrange
interpolation [14, 31]. The lack of symmetry of the sequence may not be ideal for
all applications, and certain symmetric “odd Leja” constructions may be used in
these cases [29]. On the other hand, the points here have the added benefit of being
a nested sequence and grow one point at a time, and furthermore have asymptotic
distribution which is that same as that of Gauss and Clenshaw–Curtis nodes [20].
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2.2 Sparse Quadrature for High Dimensional Integrals

For the numerical approximation of high-dimensional integrals over product
domains, it is natural to consider simple tensor products of one-dimensional
quadrature rules. Unfortunately, these rules suffer from the curse of dimensionality,
as the number of points required to accurately compute the integral grows
exponentially with the underlying dimension of the integral; i.e., a rule using n

points in each dimension requires nd points. For certain smooth integrands, we
can mitigate this effect by considering sparse combinations of tensor products of
these one-dimensional rules, i.e., sparse grid quadrature. It is known that sparse
grid rules can asymptotically achieve approximately the same order of accuracy as
full tensor product quadrature, but use only a fraction of the number of quadrature
nodes [9, 22, 23, 27].

Rather than the one-dimensional integral from before, we let d > 1 be the
dimension and define Γ := [−1, 1]d . In addition, by letting x = (x1, . . . , xd) be an
arbitrary element of Γ , we consider the problem of approximating the integral

Id [f ] =
∫

Γ

f (x) dx, (13)

using transformed quadrature rules. To define the sparse grid rules, we first denote
by {Ip(l)}l≥1 a sequence of given one-dimensional quadrature operators using p(l)

points. Here Ip(l) may be a standard interpolatory quadrature Qp(l) from (2) or its
conformally transformed version Q̃p(l) from (5). With I0 := 0, define the difference
operator

Δl := Ip(l) − Ip(l−1).

Then given a set of multiindices Λw ⊂ N
d
0 , we define the sparse grid quadrature

operator to be

INw [f ] =
∑
l∈Λw

d⊗
i=1

Δp(li)[f ] =
∑
l∈Λw

d⊗
i=1

(
Ip(li) − Ip(li−1)

) [f ], (14)

where we refer to the natural number w as the level of the sparse grid rule, and Nw

is the total number of points in Γ used by the sparse grid. The choice of multiindex
set Λw may vary based on the problem at hand. We only require that it be downward
closed, i.e., if l ∈ Λw , then νi ≤ li for all i = 1, . . . , d implies ν ∈ Λw . The index
set may be anisotropic, i.e., dimension dependent, or if appropriate error indicators
are defined, it may even be chosen adaptively. Some typical choices are given in
Table 1, but for simplicity, we consider only standard isotropic Sparse Smolyak
grids. For more information on anisotropic rules, see [21].
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Table 1 The functions p : N+ → N+ and index sets Λw , with the corresponding polynomial
subspaces

Polynomial space p(l) Λw

Tensor product p(l) = l max
1≤i≤d

(li − 1) ≤ w

Total degree p(l) = l
∑d

i=1(li − 1) ≤ w

Hyperbolic cross p(l) = l
∏N

i=1(li − 1) ≤ w

Sparse Smolyak p(l) = 2l−1 + 1, l > 1
∑d

i=1(li − 1) ≤ w

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

Fig. 3 Location of the two-dimensional transformed sparse grid nodes (blue dot) using an
underlying Clenshaw–Curtis rule, compared to standard Clenshaw–Curtis sparse grids (red x)

The effect of the conformal mapping on the placement of the nodes used by
the sparse quadrature rule (14) is similar to the one-dimensional case. In Fig. 3, we
have plotted the nodes of a two-dimensional Clenshaw–Curtis sparse grid with the
transformation map (9), using ρ = 1.4, versus a traditional Clenshaw–Curtis sparse
grid. Note how the clustering of the nodes toward the outer boundary of the cube is
diminished.

3 Comparison of the Transformed Sparse Grid Quadrature
Method

In this section we investigate the potential improvement in convergence for com-
putation of high-dimensional integrals using the sparse grid quadrature method
based on the transformed rules. The different mappings (7) and (9), since they have
different properties, will be considered separately. Furthermore, the focus of this
section will be on the transformation of Gauss–Legendre rules, though we remark
that starting from a one-dimensional convergence result such as the following
theorem, the rest of the analysis is similar for the Clenshaw–Curtis case. We begin
by quoting the following one-dimensional result stated from [13], establishing the
convergence of the transformed Gauss–Legendre rule for an analytic integrand.
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Theorem 1 For some ρ > 1, let f be analytic and uniformly bounded by γ > 0 in
the ellipse Eρ . Then for n ≥ 1, the Gauss–Legendre quadrature rule has the error
bound

|I [f ] − In[f ]| ≤ 64γ

15(1 − ρ−2)
ρ−2n. (15)

Now taking a specific region of analyticity and a given conformal map, we
apply Theorem 1 to quantify the benefit of the transformation method. We start
by considering functions analytic in the strip Sε of half width ε about the real line,
and the Gauss–Legendre rule transformed under the map (7).

Theorem 2 ([13, Theorem 3.1]) Let f be analytic in a strip Sε of half width ε

about the real line, and g1 the conformal map (7) mapping E1+ π
2 ε → Sε . Then for

n ≥ 1, and any ε̃ < ε, the transformed Gauss–Legendre quadrature rule has the
error bound

∣∣I [f ] − Q̃n[f ]∣∣ ≤ 64γ1

15(1 − (1 + π
2 ε̃)−2)

(
1 + π

2
ε̃
)−2n

, (16)

where γ1 = sups∈E1+ π
2 ε̃

|f (g1(s))g
′
1(s)|.

This theorem follows by an application of Theorem 1 to the integral of (f ◦ g)g′
using (5). We must take ε̃ < ε, since otherwise the value of γ1 will be infinite due to
the behavior of g′. Furthermore, since the closure of g(E1+ π

2 ε̃) is contained in the
open set Sε , we have γ1 < ∞ without assuming the boundedness of f . However, we
do not lose much from this assumption, and this theorem shows that we can achieve
savings of almost a factor of π/2 for functions analytic in a strip Sε .

For the mapping (9), the results are somewhat more complicated, due to the
fact that the properties of the map depend crucially on the chosen degree M of
the truncation, and for a given M we may not be able to realize the full factor of
π/2. From a practical standpoint, this is not much worse than the case of the strip
mapping (7), since full information about the analyticity of the integrand may not
be available, and hence it may be difficult to tune the parameter of the mapping to
the integral at hand. Thus, what we have in the case of the map (9) is a more precise
result with all the parameters specified. The following result from [13] will apply
to functions which are analytic in the ε-neighborhood of [−1, 1], denoted Uε . Then
we have the following theorem.

Theorem 3 ([13, Theorem 6.1]) Let ε ≤ 0.8, and let f be analytic in a ε-
neighborhood Uε of [−1, 1]. Let g2 be the conformal map (9), truncated at degree
M = 4. Then for n ≥ 1, the transformed Gauss–Legendre quadrature rule has the
error bound

∣∣I [f ] − Q̃n[f ]∣∣ ≤ 64γ2

15(1 − (1 + 1.3ε)−2)
(1 + 1.3ε)−2n , (17)

where γ2 = sups∈E1+1.3ε
|f (g2(s))g

′
2(s)|.
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From the one dimensional results of Theorems 2 and 3, for the maps (7) and (9),
resp., we are able to fully quantify the benefits of the TQ rules applied to sparse
grid quadrature in high dimensions. The following theorems give the expected
sub-exponential convergence rate for a sparse grid quadrature approximation of
an analytic integrand based on the Gauss–Legendre points. These results are in
accord with other subexponential rates for sparse multidimensional polynomial
approximation obtained in [3, 12, 22, 32]. Recall that we are considering only
isotropic sparse Smolyak constructions, according to the last row in Table 1.

Theorem 4 Let f be analytic in
∏d

i=1 Sε for some ε > 0, and let g1 be the
conformal mapping (7). Then for any ε̃ < ε, the sparse quadrature (14) built from
transformed Gauss–Legendre quadrature rules satisfies the following error bound
in terms of the number of quadrature nodes:

|Id [f ] − INw [f ]| ≤ C(ε̃, f, γ1, d) exp

(
− log

(
1 + π

2
ε̃
) 2d

21/d
Nξ(d)

w

)
. (18)

where γ1 is defined as in Theorem 2, and

ξ(d) = log(2)

d(ζ + log(d))
, (19)

with the constant ζ = 1 + log(2)(1 + log2(1.5)) ≈ 2.1.

Theorem 5 For some 0 < ε ≤ 0.8, let f be analytic in
∏d

i=1 Uε, and let g2 be the
conformal mapping (9) truncated at degree M = 4. Then the sparse quadrature (14)
built from transformed Gauss–Legendre quadrature rules satisfies the following
error bound in terms of the number of quadrature nodes:

|Id [f ] − INw [f ]| ≤ C(ε, f, γ2, d) exp

(
− log (1 + 1.3ε)

2d

21/d
Nξ(d)

w

)
, (20)

with γ2 as in Theorem 3, and ξ(d) as in (19).

Sketch of Proof From the one dimensional results of Theorems 2 and 3, resp., the
proof of the results above follows from well-known sparse grid analysis techniques
and estimates on the number of quadrature nodes [22]. Specifically, we may follow
along the lines of the proof of [22, Theorem 3.19], with the one-dimensional
convergence estimates [22, p. 2230] replaced by (16) and (17), resp, and noting
that, e.g.,

(
1 + π

2
ε̃
)−2·2i

= e−σ2i

, σ = 2 log
(

1 + π

2
ε̃
)

.

The rest of the proof is an application of Lemmas 3.4 and 3.5 from the aforemen-
tioned [22], along with the estimate on the number of quadrature points given by
Lemma 3.17. �
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We remark again that it is not necessary to use the same ε in each dimension,
but we make that choice for clarity of presentation. As mentioned in Sect. 2.2, in the
case that the integrand f has dimension-dependent smoothness, anisotropic sparse
grid methods are available.

We now make a few remarks on the improvements of Corollaries 4 and 5 over
sparse grids based on traditional interpolatory quadrature methods. First, note that
for functions f ∈ C(Γ ) which admit an analytic extension in either

∏d
i=1 Sε or∏d

i=1 Uε, the largest (isotropic) polyellipse in which f is analytic has the shape
parameter ρ = 1 + ε. Hence, the convergence rate of typical sparse grid Gauss–
Legendre quadrature, using N abscissa, is

|I [f ] − IN [f ]| = O

(
exp

(
− log (1 + ε)

2d

21/d
Nξ(d)

w

))
. (21)

Thus, the improvement in convergence rate is multiplied exponentially in the sparse
grid case, i.e., in the case of Corollary 4, the number of points required to reach a
certain tolerance is reduced by a factor approaching (π/2)ξ(d)−1

, with ξ as in (19).
To see this, let NSGTQ and NSG be the necessary number of points for the right-hand
sides of (18) and (21), respectively, to be less than a given tolerance. Then, we may
calculate that

NSG

NSGT Q

=
(

log(1 + π
2 ε)

log(1 + ε)

)ξ(d)−1

ε→0−−→
(π

2

)ξ(d)−1

. (22)

The constants are ignored in the calculation, though the transformed quadrature
may have slightly improved constant versus the standard case. We also note that
ξ(d)−1 ≥ d , so the improvement is exponential in the dimension, and that as
ε → ∞, i.e., for functions which are analytic in a large region containing [−1, 1],
the improvement factor degrades to 1. In the case of the sparse grid quadrature
approximation transformed by (9), we use (20), so the improvement is 1.3ξ(d)−1

, as
long as ε ≤ 0.8. As mentioned in the work [13], the factor of 1.3 is still less than
π/2 ≈ 1.57, but for smaller ε and large truncation parameter M this can improved
to 3/2; see [13, Theorem 6.2].

4 Numerical Tests of the Sparse Grid Transformed
Quadrature Rules

In this section we test the sparse grid transformed quadrature rules on a number
of multidimensional integrals, and compare the performance versus standard rules.
The transformed rules we consider are based on the conformal mapping of Gauss–
Legendre, Clenshaw–Curtis, and Leja quadrature nodes, which are describe in
Sect. 2.1. We transform these rules using both of the conformal mappings (7)
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and (9), using the Matlab code provided in [13] to generate the one-dimensional
quadrature sequences. The Tasmanian sparse grid toolkit [28, 29] is used for the
implementation of the full sparse grid quadrature rule. For the Clenshaw–Curtis
rule, we use a standard Smolyak sparse grid with doubling rule; see Table 1. For the
Gauss–Legendre and Leja sequences, we use isotropic total degree index sets with
linear point growth p(l) = l, l ≥ 1. For each of the rules, we will consider error
versus the total number of sparse grid points, Nw.

4.1 Comparison of Maps

For the first test, we compare the sparse grid methods with the transformed
quadratures to traditional quadrature approximations for computing the integral
of three test functions over the cube [−1, 1]3 in three dimensions. In each case,
we compare the different maps (7) and (9) for the generation of the transformed
one-dimensional quadrature from the Clenshaw–Curtis, Gauss–Legendre, and Leja
rules. The chosen mapping parameters are ρ = 1.4 with (7) and truncation
parameter M = 4 for (9).

In Fig. 4, we plot the results for approximating the integral over [−1, 1]3 of the
function

f (x, y, z) = 1

(1 + 5x2)(1 + 5y2)(1 + 5z2)
. (23)

This function has complex singularities at points z ∈ C3 where at least one
coordinate zj = 1√

5
i, and is hence analytic in the complex hyper-strip

∏3
i=1 S1/

√
5.

As expected, the quadrature generated according to the mapping (7) performs the
best here, though the chosen parameter ρ = 1.4 is somewhat less than the optimal,
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Fig. 4 Comparison of sparse grid quadrature rules for computing the integral of (23) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)
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Fig. 5 Comparison of sparse grid quadrature rules for computing the integral of (24) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)

since the value 2
π
(1.4 − 1) ≈ 0.255 < 1/

√
5. Regardless, the transformed sparse

grid approximations again perform better than their classical counterparts, gaining
up to two orders of magnitude in the error for Clenshaw–Curtis and Gauss rules.
Note that on the right-hand plot, the transformation (9) does not work well with the
Leja rule. The results for the standard quadrature are repeated in each plot for ease
of comparison.

Figure 5 again shows the results for approximating the integral of the function

f (x, y, z) = exp−10(x2+y2+z2), (24)

over the cube [−1, 1]3. This function is entire, but grows rapidly in the complex
hyperplane away from [−1, 1]3. The left-hand plot shows the performance of
the sparse grid transformed quadratures using the transformation (7), while the
right-hand plot uses (9). In each case, the sparse quadrature approximations using
mapped rules outperform traditional sparse grid quadrature, and there is only a slight
difference in the performance of the transformed rules corresponding to the different
mappings.

Finally, in Fig. 6, we plot results for approximating the integral of the function

f (x, y, z) = cos(1 + x2 + y2 + z2), (25)

over the cube, [−1, 1]3. This function is entire and does not grow too quickly away
from the unit cube in the complex hyperplane C3. On the other hand, by fixing
the parameters in the conformal mapping, the convergence rate of the transformed
sparse grid rules is restricted by the analyticity of the composition (f ◦ g)g′. In
other words, the conformal mapping technique cannot take full advantage of the
analyticity of the function f . Thus, we see that the rules based on holomorphic
mappings are inferior for computing the integral of this function, though the
transformed Leja rule using (7) is somewhat competitive, at least up to the computed
level.
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Fig. 6 Comparison of sparse grid quadrature rules for computing the integral of (25) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)

4.2 Effect of Dimension

Next we investigate the effect of increasing the dimension d of the integral
problem, and see whether the holomorphic transformation idea indeed decreases the
computational cost with growing dimension. The test integral for this experiment is

∫

[−1,1]d

d∏
i=1

(
1

1 + 5x2
i

)
dx. (26)

In Table 2 we compare the number of points used to estimate the integral (26)
in d = 2, 4, 6 dimensions, up to the given error tolerance. We use both the
Clenshaw–Curtis and the Leja rules, with their corresponding transformed versions.
We do not include the results for the Gauss–Legendre method, since as in Fig. 4,
the GL method performs much worse than the others for this test function. Here
we implement only the map (7) with ρ = 1.7, which maps the interior of the
ellipse (1) to a strip of half-width 1

π
(1.7 − 1) ≈ 1/

√
5. This integral has simple

product structure, so we compare the computed sparse grid approximation to the
“true” integral value computed to high precision. As expected, the sparse grid rules
using transformed quadrature need far fewer points to compute the value of the
integral up to a given tolerance, as compared with standard sparse grid rules. As
the dimension increases, because of the doubling rule p from Table 1, the number
of points grows rapidly from one level to the next. Thus, a certain grid may vastly
undershoot or overshoot the optimal number of points needed to achieve a certain
error. Furthermore, it may be the case that the convergence has not yet reached the
asymptotic regime for such a large tolerance 10−2, and so we claim from Table 2
that the transformed sparse grid rules may work well even before the convergence
is governed by the asymptotic theory.
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Table 2 Comparison of the number of points used by a given sparse grid quadrature rule to
approximate the integral (26) to the given tolerance

Dimension Tol CC TCC Ratio Leja TLeja Ratio

2 10−7 1537 705 2.18 666 435 1.53

4 10−5 1,507,329 271,617 5.55 73,815 20,475 3.61

6 10−2 6,436,865 127,105 50.64 593,775 12,376 47.98

5 Conclusions

In this work, we have demonstrated the application of the transformed quadrature
rules of [13] to isotropic sparse grid quadrature in high dimensions, and showed
that in certain situations we are able to speed up convergence of a transformed
sparse approximation by a factor approaching (π/2)ξ(d)−1

, where ξ(d)−1 ≈ d log d .
We applied the rules to several test integrals, and experimented with different
conformal mappings g, and found that the sparse grid quadratures with conformally
mapped rules outperformed the standard sparse grid rules based on one-dimensional
interpolatory quadrature by a significant amount for several example integrands.
For entire functions, or functions which are analytic and grow slowly in a large
region around [−1, 1], the transformation method fails to beat standard quadrature
rules, since the convergence of the transformed quadrature is dictated by the chosen
mapping parameter. However, the transformed rules perform especially well for
functions which are analytic only in a small neighborhood around [−1, 1], even
if the mapping parameter is not tuned exactly to the region of analyticity.
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