
Jochen Garcke · Dirk P� üger
Clayton G. Webster · Guannan Zhang
Editors

Sparse Grids
and Applications –
Miami 2016

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

123

Lecture Notes
in Computational Science
and Engineering

123

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

More information about this series at http://www.springer.com/series/3527

http://www.springer.com/series/3527

Jochen Garcke • Dirk Pflüger •
Clayton G. Webster • Guannan Zhang
Editors

Sparse Grids
and Applications –
Miami 2016

123

Editors
Jochen Garcke
Institute for Numerical Simulation
University of Bonn
Bonn, Germany

Fraunhofer SCAI
Sankt Augustin, Germany

Dirk Pflüger
Institute for Parallel and Distributed
Systems (IPVS)
University of Stuttgart
Stuttgart, Germany

Clayton G. Webster
Department of Mathematics
University of Tennessee
Knoxville, TN, USA

Oak Ridge National Laboratory
Oak Ridge, TN, USA

Guannan Zhang
Oak Ridge National Laboratory
Oak Ridge, TN, USA

Department of Mathematics and Statistics
Auburn University
Auburn, AL, USA

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-319-75425-3 ISBN 978-3-319-75426-0 (eBook)
https://doi.org/10.1007/978-3-319-75426-0

Library of Congress Control Number: 2018945867

Mathematics Subject Classification (2010): 65D99, 65M12, 65N99, 65Y20, 65N12, 62H99

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-75426-0

Preface

Sparse grids are a popular approach for the numerical treatment of high-dimensional
problems. Where classical numerical discretization schemes fail in more than three
or four dimensions, sparse grids, in their different flavors, are frequently the method
of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally
adaptive combination technique.

The Fourth Workshop on Sparse Grids and Applications (SGA 2016), which took
place in Miami, Florida, USA, from October 4 to 7 in 2016, demonstrated once
again the importance of this numerical discretization scheme. Organized by Hans-
Joachim Bungartz, Jochen Garcke, Michael Griebel, Markus Hegland, Dirk Pflüger,
Clayton Webster, and Guannan Zhang, almost 50 participants from six different
countries have presented and discussed the current state of the art of sparse grids
and their applications. Thirty-seven talks covered their numerical analysis as well
as efficient data structures and new forms of adaptivity and a range of applications
from clustering and model order reduction to uncertainty quantification settings
and optimization. As a novelty, the topic high-performance computing covered
several talks, targeting exascale computing and related tasks. Besides data structures
and communication patterns with excellent parallel scalability, fault tolerance was
introduced to the SGA series, the hierarchical approach providing novel approaches
to the treatment of hardware failures without checkpoint restart. This volume of
LNCSE collects selected contributions from attendees of the workshop.

We thank the U.S. Department of Energy Office of Science and the Oak Ridge
National Laboratory for their financial support. Furthermore, we thank Kasi Arnold
and Lora Wolfe for their assistance with the local organization.

Bonn, Germany Jochen Garcke
Stuttgart, Germany Dirk Pflüger
Knoxville, TN, USA Clayton G. Webster
Oak Ridge, TN, USA Guannan Zhang
February 2018

v

Contents

Comparing Nested Sequences of Leja and PseudoGauss Points
to Interpolate in 1D and Solve the Schroedinger Equation in 9D. 1
Gustavo Avila, Jens Oettershagen, and Tucker Carrington Jr.

On the Convergence Rate of Sparse Grid Least Squares Regression 19
Bastian Bohn

Multilevel Adaptive Stochastic Collocation with Dimensionality
Reduction . 43
Ionut,-Gabriel Farcas, , Paul Cristian Sârbu, Hans-Joachim Bungartz,
Tobias Neckel, and Benjamin Uekermann

Limiting Ranges of Function Values of Sparse Grid Surrogates 69
Fabian Franzelin and Dirk Pflüger

Scalable Algorithmic Detection of Silent Data Corruption
for High-Dimensional PDEs . 93
Alfredo Parra Hinojosa, Hans-Joachim Bungartz, and Dirk Pflüger

Sparse Grid Quadrature Rules Based on Conformal Mappings. 117
P. Jantsch and C. G. Webster

Solving Dynamic Portfolio Choice Models in Discrete Time Using
Spatially Adaptive Sparse Grids . 135
Peter Schober

Adaptive Sparse Grid Construction in a Context of Local
Anisotropy and Multiple Hierarchical Parents . 175
Miroslav Stoyanov

vii

viii Contents

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration
of Scientific Computations . 201
Raúl Tempone and Sören Wolfers

Fundamental Splines on Sparse Grids and Their Application
to Gradient-Based Optimization . 229
Julian Valentin and Dirk Pflüger

Contributors

Gustavo Avila Chemistry Department, Queen’s University, Kingston, ON, Canada

Bastian Bohn Institute for Numerical Simulation, University of Bonn, Bonn,
Germany

Hans-Joachim Bungartz Technical University of Munich, Garching, Germany

Tucker Carrington Jr. Chemistry Department, Queen’s University, Kingston, ON,
Canada

Ionut,-Gabriel Farcas, Technical University of Munich, Garching, Germany

Fabian Franzelin Institute for Parallel and Distributed Systems, University of
Stuttgart, Stuttgart, Germany

Alfredo Parra Hinojosa Chair of Scientific Computing, Technische Universität
München, München, Germany

Peter Jantsch University of Tennessee, Knoxville, TN, USA

Tobias Neckel Technical University of Munich, Garching, Germany

Jens Oettershagen Institute for Numerical Simulation, University of Bonn, Bonn,
Germany

Dirk Pflüger Institute for Parallel and Distributed Systems, University of Stuttgart,
Stuttgart, Germany

Paul Cristian Sârbu Technical University of Munich, Garching, Germany

Peter Schober Goethe University Frankfurt, Frankfurt am Main, Germany

Miroslav Stoyanov Oak Ridge National Laboratory, Oak Ridge, TN, USA

Raúl Tempone King Abdullah University of Science and Technology (KAUST),
Thuwal, Kingdom of Saudi Arabia

Benjamin Uekermann Technical University of Munich, Garching, Germany

ix

x Contributors

Julian Valentin Simulation of Large Systems (SGS), Institute for Parallel and
Distributed Systems (IPVS), University of Stuttgart, Stuttgart, Germany

Clayton G. Webster University of Tennessee, Knoxville, TN, USA

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Sören Wolfers King Abdullah University of Science and Technology (KAUST),
Thuwal, Kingdom of Saudi Arabia

Comparing Nested Sequences of Leja
and PseudoGauss Points to Interpolate
in 1D and Solve the Schroedinger
Equation in 9D

Gustavo Avila, Jens Oettershagen, and Tucker Carrington Jr.

Abstract In this article, we use nested sets of weighted Leja points, which have
previously been studied as interpolation points, as collocation points to solve a 9D
vibrational Schroedinger equation. Collocation has the advantage that it obviates
the need to compute integrals with quadrature. A multi-dimension sparse grid is
built from the Leja points and Hermite-type basis functions by restricting sparse
grid levels ic using

∑
c g
c(ic) ≤ H , where gc(ic) is a non-decreasing function and

H is a parameter that controls the accuracy. Results obtained with Leja points are
compared to those obtained with PseudoGauss points. PseudoGauss points are also
nested. They are chosen to improve the accuracy of the Gram matrix. With both Leja
and PseudoGauss points it is possible to add one point per level. We also compare
Lebesgue constants for weighted Leja and PseudoGauss points.

1 Introduction

For several years, PseudoGauss nested sets of points [2] have been used to build
sparse grids which are then employed with collocation [6, 7, 14] to compute
vibrational energy levels of molecules. In this article, we define PseudoGauss nested
point sets and compare results computed with them to those obtained from sets of
new Leja-type points.

A molecule is composed of nuclei and electrons. Most properties of a molecule
can be determined by solving the Schroedinger equation,

(Ke +Kn + Vee + Vnn + Ven)Θt (q, x) = EtΘt (q, x) , (1)

G. Avila · T. Carrington Jr. (�)
Chemistry Department, Queen’s University, Kingston, ON, Canada
e-mail: Tucker.Carrington@queensu.ca

J. Oettershagen
Institute for Numerical Simulation, University of Bonn, Bonn, Germany

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_1&domain=pdf
mailto:Tucker.Carrington@queensu.ca
https://doi.org/10.1007/978-3-319-75426-0_1

2 G. Avila et al.

where Ke and Kn are kinetic energy operators for the electrons and the nuclei
and Vee, Vnn, and Ven are the Coulomb potentials for the interaction between
electrons, between nuclei, and between electrons and nuclei. Because electrons are
much lighter than nuclei it is often an excellent approximation to use the Born-
Oppenheimer approximation [22]. Vibrational energy levels En are eigenvalues of
the vibrational Schroedinger equation,

Ĥψn = Enψn , (2)

for which the Hamiltonian operator, Ĥ , is composed of two terms, Ĥ = K̂+ V̂ , and
V̂ , the potential, is an eigenvalue of the electronic Schroedinger equation. K̂ has the
general form

K̂ =
3N−6∑

k,l

(

Gkl(
1x, · · · ,3N−6x)

∂

∂kx

∂

∂lx

)

+
3N−6∑

k

(

Hk(
1x, · · · ,3N−6x)

∂

∂kx

)

+W(1x, · · · ,3N−6x) , (3)

where Gkl(1x, · · · ,3N−6x), Hk(1x, · · · ,3N−6x), and W(1x, · · · ,3N−6x) are func-
tions of the coordinates cx, c = 1, 2, · · · , 3N − 6 and N is the number of atoms
in the molecule. V̂ is also a function of the coordinates. There are 3N − 6 because
this is the number of vibrational degrees of freedom (there are three translation and
three rotation coordinates). To solve Eq. (2), one writes ψn as a linear combination
of basis functions

ψn(x) =
∑

k

ckn ϕk(x) (4)

and solves for the coefficients [13]. The sum is over all the basis functions. x rep-
resents (1x, · · · ,3N−6x). The coefficients are usually determined with a variational
(Galerkin) method, by substituting Eq. (4) into Eq. (2), multiplying on the left by
ϕk′(x) and integrating. This yields the generalized eigenvalue problem,

HU = SUE . (5)

The (k′k)th element of H is 〈ϕk′ |Ĥ |ϕk〉. The (k′k)th element of S is 〈ϕk′ |ϕk〉.
The (k′k)th element of V is 〈ϕk′ |V̂ |ϕk〉. The size of the matrices is the number
of basis functions. For more detail see [13]. The potential V̂ is smooth, but may
be a complicated function. For many molecules, delocalised basis functions are
a good choice. Usually, orthogonal functions are used. It is often not possible
to calculate the matrix elements of V exactly and they are therefore obtained by
quadrature. When D = 3N − 6 ≥ 12, it is extremely costly to use a direct product

Using Leja Collocation Points to Solve the Schroedinger Equation 3

quadrature grid. One way to deal with the problem is to use Smolyak quadrature
[2, 19, 23, 32, 38]. The Smolyak grid is built from nested 1D quadrature rules. In
some coordinates K̂ is simple enough that its matrix elements can be obtained from
algebraic formulae. When this is not possible, calculating matrix elements of K̂
is expensive. The matrix eigenvalue problem is solved with a Lanczos algorithm
[31]. It requires evaluating matrix-vector products (MVPs). It would be impossible
to build and costly to use the H and S matrices. Instead MVPs are computed by
doing sums sequentially [3–5]. For decades, similar ideas have been used without
quadrature (when exact matrix elements are known) [43] and with direct product
bases and quadratures [12, 24, 27, 28, 36, 44, 46].

Quadrature-based methods work, however, they have several disadvantages. (1)
The quadrature must be good enough that S matrix elements computed with it
are exact; otherwise it is necessary to solve a generalized eigenvalue problem and
iterative (Krylov space) algorithms for generalized eigenvalue problems are much
more costly. (2) Determining a good quadrature scheme requires finding not only
points but also weights. (3) If K̂ is fairly simple, it is possible to choose basis
functions so that it is not necessary to use quadrature to compute its matrix elements,
but this limits one’s ability to use the best possible basis functions. (4) If K̂ is so
complicated that one is forced to use quadrature to compute its matrix elements, the
calculation is very costly.

Due to these disadvantages, we have also developed a collocation-based method
[6, 7, 14]. Eigenvalues are computed with an Arnoldi algorithm [25]. MVPs are
evaluated by doing sums sequentially. To use collocation, one introduces an inter-
polant for the ψn one wishes to compute and solves an eigenvalue problem in which
elements of the eigenvectors are values of the wavefunctions at collocation points.
There are no integrals and therefore no need for quadrature. It is necessary to choose
collocation points, but if the best possible representation of the wavefunctions
in the basis used to make the interpolant is excellent then energy levels are not
sensitive to the choice of the points [11]. If a good basis set is at hand, this makes
it possible to obtain accurate solutions to Eq. (2) without developing an accurate
multi-dimensional quadrature. If many of the Gkl (or Hk) coefficients of K̂ are
complicated, collocation has the advantage that they need only be evaluated at points
(they do not appear in integrands of integrals). In our calculations, it is imperative
that the interpolation and collocation points be the same. Interpolation points are
used to make an interpolant for ψn; collocation points are the points at which we
require that Eq. (2) be satisfied. As interpolation and collocation points, we have
used points on a nested sparse grid built from 1D PseudoGauss (PG) rules. In recent
years, it has become common to use nested Leja points for interpolation. Are Leja
points better 1D interpolation points than PG points? If PG points are as good, then
they are an alternative to Leja points. Are Leja points better collocation points? Is it
obvious that better interpolation points will also be better collocation points?

4 G. Avila et al.

2 Interpolation

It is possible to make a multi-dimensional sparse grid interpolant by combining 1D
interpolation operators, Uic , constructed from 1D Lagrange functions [10]. The 1D
interpolation operators are used to make 1D interpolants

f (x) = Umf (x) =
m∑

k=1

ak(x)f (xk) , (6)

where f (x) is a 1D function to be interpolated at the points x1, . . . , xm. This sparse
grid interpolation method can be generalized [7] by using Lagrange-type functions
(LTF) that span the same space as a basis, ϕn(x), n = 0, 1, · · · ,m− 1,

ak(x) =
m−1∑

n=0

Bk,nϕn(x), k = 1, 2, · · · ,m . (7)

In this paper we start k with one and nwith zero. Bk,n is an element of the inverse of
the matrix whose elements are ϕn(xk), where xk, k = 1, 2, · · · ,m are interpolation
points. Each ak(x) is equal to one at one xk and zero at all the other xk. Note that
we are not using localized or hat basis functions.

The multi-dimensional interpolation operator is [30, 38]

I (D,H) =
∑

g(i1,i2,··· ,iD)≤H
ΔUi1 ⊗ΔUi2 ⊗ · · · ⊗ΔUiD, (8)

where c = 1, 2, · · · ,D and

ΔUic = Uic − Uic−1 . (9)

ic labels the 1D level for coordinate c. g(i1, i2, · · · , iD) is a condition that
determines what combinations of levels contribute. The corresponding set must be
downward closed. In Eq. (8), there is a different Uic for each ic and the accuracy of
the associated 1D interpolant is determined by the number of points mc(ic) used to
make Uic ,

Uicf (cx) =
mc(ic)∑

kc=1

aic,kc (
cx)f (cxkc), (10)

where aic,kc (
cx) are the Lagrange-type functions,

aic,kc (
cx) = 1 , cx = cxkc

aic,kc (
cx) = 0 , cx = cxk′c , k′c �= kc . (11)

Using Leja Collocation Points to Solve the Schroedinger Equation 5

In this article, we shall setmc(ic) = ic, for the sake of simplicity. In papers [6, 7, 14],
we use ϕnc(

cx) that are eigenfunctions of 1D operators extracted from the full Ĥ by
removing all derivative terms in K̂ except those that involve cx and setting c

′
x = 0

for c′ �= c, in V̂ and K̂ .

3 The Importance of Nesting

It is important to use nested sets of points in Eq. (8). In a nested set of points, the
points used to makeUic are also used forUic+1. Non-nested sets of points are easier
to make, but they have significant disadvantages. First, the number of sparse grid
points increases less quickly with the maximum number of 1D basis functions per
coordinate when nested sequences are used. This is especially important when the
maximum number of 1D basis functions per coordinate is large. In our calculations,
the maximum number of 1D basis functions per coordinate is typically about 25,
because to compute many accurate ψn we need many basis functions. Second, the
MVPs we must compute are much less costly if we use a nested grid. For example,
the transformation of a vector labeled by grid indices to a vector labeled by basis
indices is efficient if nested sequences are used [7, 37].

What makes a good nested sequence of points? It is best to have a sequence in
which the number of points increases slowly as ic is increased. One well-known
nested sequence is obtained from Chebyshev (type 1) points,

xk = cos
(2k − 1

2Ni
π
)
, k = 1, 2, · · · , Ni . (12)

The sequence with Ni = 1, 3, 9, 27, 81 · · · points is nested. Another well-known
nested sequence is obtained from the Clenshaw–Curtis points. If Ni > 1 they are

xk = cos
(k − 1

Ni − 1
π
)
, k = 1, 2, · · · , Ni , (13)

and if Ni = 1 the point is x1 = 0. The sequence with Ni = 1, 3, 5, 9, 17, 33, 65,
129, · · · points is nested. Both the Chebyshev and Clenshaw–Curtis sequences have
the crucial disadvantage that the number of points increases exponentially with i.
The problem can be mitigated by using delay [32]. When delay is used the same
number of points is used in several successive levels. However, delay only really
helps if the maximum number of basis functions per coordinate is small. Otherwise,
even with delay the sparse grid is large. The grid also is determined by choosing
g(i1, i2, · · · , iD) and H . They must be chosen so that the grid includes the points
required to represent functions we wish to compute. With Chebyshev or Clenshaw–
Curtis sequences, the grid is excessively large. It is therefore important to find nested
sequences for which the number of points increases more slowly with i. Ideal would

6 G. Avila et al.

be to have nested sequences in which Uic uses one (or maybe two) fewer point than
Uic+1. PseudoGauss points are one option. Leja points are another.

3.1 PseudoGauss Nested Points

PseudoGauss (PG) points and weights are determined, together [2], so that 1D
overlap integrals (elements of the Gram matrix) associated with the ϕm(x) basis,
when computed by quadrature, are as exact as possible. The points and weights are
linked. To do collocation no weights are required, but we nonetheless expect PG
points to be good collocation, and maybe good interpolation, points. A set of PG
points with N points is designed to maximize the accuracy of the overlap integrals

Ln,m =
∫

ϕn(x)ϕm(x)dx (14)

with 0 ≤ n+m ≤ 2N − 1. They are called PseudoGauss because Gauss points and
weights satisfy this requirement. We do not use Gauss points because they are not
nested.

To make PG point sequences, we start with a one-point Gauss quadrature and
denote the point by x1. Let QN denote the set of points and weights for the
quadrature with N points. To make QN from QN−1 we add a point, xN , and use
DGLES in the LAPACK library [1] to compute a least-squares solution for an
overdetermined system of linear equations which gives us N weights. The system
of linear equations is PW = L, where W is a vector of weights, W =(w1, · · ·wN)T
and

Pn,m;i = ϕn(xi)ϕm(xi), (15)

and n,m are all n,m pairs with n ≤ m and n+m ≤ (2N − 1) (e.g. for N = 2 n,m
= 0,0; 0,1; 1,1; 0,2; 1,2; 0,3). PW is a quadrature approximation for the integrals in
L. We then vary xN to minimize

R(xN) =
2N−1∑

m=0

2N−1−m∑

n=m
| δm,n −

N∑

i=1

wiϕn(xi)ϕm(xi) |, (16)

(similar results are obtained by squaring the difference). Because the ϕn(x) are
orthogonal, the exact overlap matrix is an identity matrix. We use the subplex
optimization procedure [35] to minimize Eq. (16). Subplex solves an unconstrained
optimization problems using a simplex method on subspaces. In general, different
initial values of xN may give different minimized R(xN). We use several starting
values and choose the one with the smallest R(xN). Differences between different
approximate solutions are usually very small.

Using Leja Collocation Points to Solve the Schroedinger Equation 7

In this article, we compare the quality of PG and Leja interpolation points using a
basis, ϕm(x) = h−1/2

m e−x2/2Hm(x), where Hm(x) is a Hermite polynomial and hm
is the normalisation constant. Because the basis functions are either even or odd, we
add points to the list of PG points in groups of two. The second new point is obtained
from the first by changing its sign. In this case we determine only Q1,Q3,Q5, · · ·
For example, the PG Q5 quadrature rule is determined by adding two new
points x4 and x5 = −x4 to the set (x1, x2, x3 = −x2). The vector of weights
(w1, w2, w3, w4, w5) is calculated by solving PW = L with values of (n,m) =
(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3),
i.e. all the indices restricted by n + m ≤ 5. As is the case for the points,
w2 = w3, w4 = w5, etc. The value of x4 is optimized to reduce the error between
the exact overlap matrix elements (the identity I in this case) and the approximate
L matrix elements calculated with the approximate quadratureQ5.

3.2 Leja Nested Points

It is becoming popular to use Leja points as interpolation points [16, 21, 26, 29].
The classical Leja points are determined as follows. Choose the first point, x1, to be
any point in the relevant domain [a, b]. The kth point is then chosen so that

xk = arg maxx∈[a,b]
k−1∏

i=1

|x − xi |, k > 1 . (17)

The resulting Leja points x1, x2, . . . have favorable properties when using a poly-
nomial basis 1, x, x2, . . . to interpolate functions on [a, b] with the error measured
in the standard L∞([a, b])-norm, i.e. ‖f ‖L∞([a,b]) = supx∈[a,b] |f (x)|. Moreover,
their distribution follows the distribution of Gauss-Legendre points [29].

Sometimes, one is interested in interpolating functions where the error is mea-
sured in a v-weighted supremum norm, i.e. ‖f ‖L∞([a,b],v) = supx∈[a,b] v(x)|f (x)|.
If v is given by v(x) = √

w(x), where w : [a, b] → R+ is a positive weight
function, then weighted Leja points can be defined as [21, 29]

xk = arg maxx∈[a,b]
{√
w(x)

k−1∏

i=1

|x − xi |
}
, k > 1 . (18)

Their distribution often follows the distribution of the Gaussian quadrature points
associated with the weight function w [29]. The same Leja points can be used
for interpolation with any basis composed of the functions b0 = √

w(x)P0,

b1 = √
w(x)P1, b2 = √

w(x)P2, · · · , where Pj is the orthogonal polynomial of

8 G. Avila et al.

degree j associated with the weight function w(x) and the interval [a, b]. In this
case, Eq. (18) is equivalent to

xk = arg maxx∈[a,b]
{√
w(x)Pk(x) − Uk−1(x1, x2, · · · , xk−1)[

√
w(x)Pk(x)]

}
, (19)

where Uk−1(x1, x2, · · · , xk−1)[√w(x)Pk(x)] is the interpolant of
√
w(x)Pk(x)

made using the first k−1 basis functions and points. This is true because the residual{√
w(x)Pk(x)−Uk−1(x1, x2, · · · , xk−1)[√w(x)Pk(x)]

}
is both, (1) a linear com-

bination of the functions {b0, b1, · · · bk−1} and hence equal to a product of
√
w(x)

and a polynomial of degree k−1; and (2) equal to zero at x1, x2, · · · xk−1. Similarly,
for basis functions, ϕ0, ϕ1, · · · that are linear combinations of

√
w(x)Pk(x) (with a

common weight function), the kth point is chosen so that

xk = arg maxx∈[a,b]
{
ϕk(x)− Uk−1(x1, x2, · · · , xk−1)[ϕk(x)]

}
. (20)

The point used to make Uk that is not also used to make Uk−1, is the point at which
the difference between the basis function, ϕk and its the interpolation with Uk−1 is
maximum.

In this article, we increase the number of points in the Leja set two at a time,
because we are using basis functions each of which is even or odd. The first point
is the quadrature point for the Gauss-Hermite quadrature rule with one point, i.e.
x1 = 0. The second and third points are constrained to satisfy x3 = −x2 and x2 is
determined by maximizing the function ([a, b] = [−∞,+∞])

(ϕ1(x)− C1,0ϕ0(x))
2 + (ϕ2(x)− C2,0ϕ0(x))

2, (21)

whereC1,0ϕ0(x) is the interpolant for ϕ1(x) computed with the single basis function
ϕ0(x) and the single point x1 and C2,0ϕ0(x) is the interpolant for ϕ2(x) computed
with the single basis function ϕ0(x) and the single point x1. The new two points
x5 = −x4 and x4 are determined by maximizing the function

(ϕ3(x)− C3,0ϕ0(x)− C3,1ϕ1(x)− C3,2ϕ2(x))
2 +

(ϕ4(x)− C4,0ϕ0(x)− C4,1ϕ1(x)− C4,2ϕ2(x))
2, (22)

whereC3,0ϕ0(x)+C3,1ϕ1(x)+C3,2ϕ2(x) is the interpolant for ϕ3(x)made with the
basis {ϕ0(x), ϕ1(x), ϕ2(x)} and the points {x1, x2, x3} and C4,0ϕ0(x)+C4,1ϕ1(x)+
C4,2ϕ2(x) is the interpolant for ϕ4(x)made with the basis {ϕ0(x), ϕ1(x), ϕ2(x)} and
the points {x1, x2, x3} The same procedure is applied to find (x6, x7), (x8, x9) · · · ,
where x6 = −x7, x8 = −x9 · · · . We remark that there are many different variants
and modifications of the original idea of Leja points. A comprehensive overview is
given in [39, Sec. 3], where so-called Leja-odd points are defined. Leja-odd point
sets are not symmetric as are the point sets we construct. Rather, they are groupings
of the regular Leja points. Moreover, there are�-Leja points, which are symmetric if

Using Leja Collocation Points to Solve the Schroedinger Equation 9

grouped as N = 2k−1. They are, however, tailored to interpolation on the complex
unit disk and, by projection, also on the interval [−1, 1]. Therefore, they are not
relevant in our setting.

4 Lebesgue Constants

It is common to use the Lebesgue constant to assess the quality of a set of
interpolation points [34, 41]. The Lebesgue constant, ΛN , bounds the interpolation
error,

||f (x)−X(f (x))|| ≤ (ΛN + 1)||f (x)−X∗(f (x))|| . (23)

In this equation, X(f (x)) is the interpolant for f (x) constructed with a set of N
basis functions, ϕk(x), k = 0, 1, · · ·N − 1, and n points in an interval [a, b], and
X∗(f (x)) is the best possible approximation that can be made with the same basis
functions. We use the maximum norm. The best points clearly depend on the basis.
The Lebesgue constant for the case ϕk(x) = xk is discussed in many books [34, 41].
It is well known that when ϕk(x) = xk, the Lebesgue constant of a set equally
spaced points increases exponentially with n, but that the Lebesgue constant of a
set of Chebyshev points increases only logarithmically [17, 20]. For this reason,
it is often stated that Chebyshev points are good interpolation points. For many
functions, there are bases much better than ϕk(x) = xk, k = 0, 1, 2 Owing to the
fact that the functions we compute decrease exponentially, if |x| is large enough, we
want (nested) interpolation points that work well with ϕk(x) = h−1/2

m e−x2/2Hk(x).
What is a good set of interpolation points for a general {ϕk(x)}N−1

k=0 basis? Lebesgue
constants have previously been calculated for bases

√
w(x)Pk(x), with Pk(x) as in

Sect. 3.2 [15, 40, 42].
When interpolating with ϕk(x) = xk, the Lebesgue constant ΛN can be

calculated from Lagrange functions aj (x)

aj (x) =
N∏

i = 1
j �= i

x − xi
xj − xi (24)

by finding the maximum value of

λN(x) =
N∑

j=1

|aj (x)|. (25)

10 G. Avila et al.

0 10 20 30

100

101

102

103

Number of points

L
eb

es
g
u
e
co

n
st
a
n
t

Leja

PG points

scaled Chebyshev

Fig. 1 Semi-logarithmic plot of the Lebesgue constants computed with Leja points, PG points and
scaled Chebyshev points

When interpolating with a general basis, {ϕk(x)}N−1
k=0 , one can define Lagrange-type

functions (LTF) {aj }Nj=1 as in Eq. (10) and compute the Lebesgue constant from

ΛN(T) = maxx∈[a,b]
N∑

j=1

| aj (x) | . (26)

In this article, we use the LTFs made from ϕk(x) = h
−1/2
m e−x2/2Hk(x) to

compute Lebesgue constants with both Leja and PseudoGauss points. They are
compared to Lebesgue constants for scaled Chebyshev points, which are known
to have favorable properties for interpolation with ϕk(x) = xk [20].

To make a nested set of Chebyshev point sequences requires using levels with
m = 1, 3, 9, 27, 81, · · · points. The Smolyak grids build from Chebyshev points are
therefore much larger than their Leja and PseudoGauss counterparts. The interval
for the Chebyshev point set with N points is defined by setting a equal to the
smallest Gauss-Hermite quadrature rule with N points and b equal to the largest
Gauss-Hermite quadrature rule with N points. Therefore, for N = 2, [a, b] =
[−0.707106781186548, 0.707106781186547] and the Chebyshev points are 0.5
and −0.50, and for N = 3, [a, b] = [−1.22474487139159, 1.22474487139159]
and the Chebyshev points are 1.06066017177982, 0 and −1.06066017177982. The
Lebesgue constants are reported in Fig. 1 and Table 1. Note that the Lebesgue
constants of the scaled Chebyshev points increase exponentially, whereas the

Using Leja Collocation Points to Solve the Schroedinger Equation 11

Table 1 Lebesgue constants
for Leja, PseudoGauss, and
Chebyshev points

N ΛLeja ΛPG ΛCH

1 1.00 1.00 1.00

2 2.21 2.21 2.14

3 1.54 1.50 3.24

4 3.12 2.92 3.96

5 2.90 2.63 4.39

6 4.10 5.84 4.72

7 3.92 5.71 5.07

8 8.42 5.43 6.99

9 3.11 2.92 13.05

10 5.61 5.55 23.71

11 4.65 3.58 47.14

12 7.83 7.75 93.33

13 3.57 7.14 193.93

14 6.57 9.51 405.86

15 4.55 4.70 870.12

16 8.11 8.94 1891.65

17 7.45 7.58 4151.81

18 11.09 12.13 9279.35

19 11.05 7.29 20,745.74

20 6.31 24.83 47,354.43

21 8.57 24.80 107,471.08

22 14.91 37.34 249,422.18

23 7.00 29.53 573,197.21

24 13.95 102.87 1,348,297.50

25 5.10 97.73 3,131,662.87

26 7.72 16.77 7,448,633.91

27 7.01 7.72 17,459,802.45

28 12.49 13.94 41,929,091.80

29 9.80 7.20 99,085,230.50

30 15.49 12.07 239,713,640.92

31 15.21 8.71 570,620,030.02

Lebesgue constants of both Leja and PG points increase at most algebraically.
Moreover, we note that the Lebesgue constant for N = 2k is almost always larger
than the Lebesgue constant for 2k− 1, k = 1, 2, · · · . This is because pairs of points
are determined to be used together, but, if N is even only the positive member of
a pair is used to make the interpolant. When N is even, the points do not have the
correct symmetry.

The Leja and PseudoGauss points appear to be of similar quality. Not surpris-
ingly, Chebyshev points are poor.

12 G. Avila et al.

5 Comparison Between Leja Points and PseudoGauss Points
in Collocation Calculations

PseudoGauss points ought to be good collocation points. They might be better
collocation points than interpolation points. The best possible vibrational energies
will be obtained, from a given basis set, by exactly calculating all of the Hamiltonian
and overlap matrix elements. This is often impossible, for two reasons. First, for
some potentials and bases there are no algebraic expressions for the matrix elements.
Second, if the potential does not have a special form (and the corresponding matrix
is therefore not sparse) then to efficiently evaluate MVPs it is imperative that we
impose structure on the matrix representation of the potential by using quadrature.
This structure makes it possible to do sums sequentially [3–5]. When it is not
possible to calculate all of the Hamiltonian and overlap matrix elements exactly
then one must choose between (1) computing all of them with quadrature or (2)
computing only those for which exact matrix elements are not known. For example,
if orthogonal basis functions are used then one might choose to replace S in Eq. (5)
with an identity matrix. Although it might seem obvious that one should use exact
matrix elements when they are available, Boys showed it is best to be consistent and
to use the same quadrature for all matrix elements [11]. For a 1D Hamiltonian with
a unit mass, computing all matrix elements by quadrature means solving

[TWK+ TWVTT]Ũ = [TWTT]ŨẼ , (27)

where Ũ is a matrix of eigenvectors and Ẽ is a diagonal matrix whose diagonal
elements are eigenvalues. T is a matrix whose elements are

Tj,α = ϕj (xα) , (28)

where xα and wα are quadrature points and weights. The range of α and j is the
number of quadrature points (equal to the number of basis functions). K is a matrix
whose elements are

Kα,j = −1

2

d2

dx2
ϕj (x)|x=xα . (29)

V is a matrix whose elements are

Vβα = δβ,αV (xα) . (30)

W is a matrix whose elements are

Wβ,α = δβ,αwα . (31)

Using Leja Collocation Points to Solve the Schroedinger Equation 13

Equation (27) is equivalent to

[K+ VTT]Ũ = TTŨẼ , (32)

which is the collocation equation. Therefore, if we can find points and weights
that accurately evaluate each of the three terms in Eq. (27) then the points will be
good collocation points. It is in general not possible to choose points to optimise
the accuracy of the kinetic and potential matrix elements, however, it is possible
to choose points to optimise the accuracy of S ≈ TWTT. They are PseudoGauss
points.

The 100 lowest levels of the CH2NH (a 9D problem) were calculated with a
sparse grid collocation method [6, 7, 14], using both Leja and PseudoGauss points.
We use normal coordinates [45] and

K̂ = −
3N−6∑

c=1

(
ωc

2

∂2

∂cx2

)

. (33)

The potential is a Taylor series. We use the interpretation of [18] of the potential of
Pouchan and Zaki [33]. The basis functions are, ϕk(cx) = h

−1/2
m e−x2/2Hk(

cx). We
use mc(ic) = ic. The restriction function that defines the basis is [5, 8]

g(i1, i2, · · · id) = g1(H, n1)+ g2(H, n2)+ · · · + gD(H, nD) ≤ H . (34)

Note that these 1D functions depend, in general, on H . It is not possible to use the
same 1D functions for all H without including many unnecessary functions in the
basis asH is increased. In the past, we have used step functions for the 1D functions.
For the three normal mode coordinates with the largest frequencies, c = 1, 2, 3, we
use 1D functions that are independent of H :

gc(0) = 0, gc(1) = 17, gc(2) = 26, gc(3) = 35, gc(4) = 44, gc(5) = 53, g1(6) = 62,

gc(7) = 71, gc(8) = 79, gc(9) = 89, gc(10) = 99, gc(11) = 109, gc(12) = 120,

gc(13) = 130, gc(14) = 140, gc(15) = 150, gc(16) = 160, gc(17) = 169,

gc(18) = 178, gc(19) = 187, gc(20) = 196 · · · (35)

For the remaining coordinates we use

gc(0) = 0, gc(1) = 15, gc(2) = 24, gc(3) = 33, gc(4) = 42, gc(5) = 51,

g1(6) = 60, gc(7) = 69, gc(8) = 79, gc(9) = 89, gc(10) = 99,

gc(11) = 110, gc(12) = 120, gc(13) = 130, gc(14) = 139,

gc(15) = 148, gc(16) = 157, gc(17) = 166, gc(18) = 175,

gc(19) = 187, gc(20) = 196 · · · (36)

14 G. Avila et al.

Table 2 Errors for the 100 lowest levels of CH2NH

Leja PG

Average error Maximum error Average error Maximum error

Basis I 0.0026905 0.02366 0.0242918 0.06925

Basis II 0.0005770 0.00471 0.0032222 0.04544

Basis III 0.0001857 0.00062 0.0004222 0.00210

Basis IV 0.0002091 0.00057 0.0002298 0.00209

All errors are in cm−1

and

gc(h(H), nc) = gc(nc)+ h(H), 0 < nc ≤ 4;
gc(h(H), nc) = gc(nc), 5 ≤ nc ≤ 12;

gc(h(H), nc) = gc(nc)− h(H), nc ≥ 13 . (37)

When H is increased we increase also h to avoid increasing the number of
unnecessary basis functions [9]. h(H) is a step function. Values are specified in
the next paragraph.

We report results for the 100 lowest eigenvalues of CH2NH. The largest
calculation was done for H = 264 and h = 7 with 12,684,284 pruned product
basis functions. With this basis the largest relative error in the eigenvalues is 10−9.
Calculations with smaller basis sets were done to test the convergence: Basis I with
H = 150 and h = 0 and 342,152 functions; Basis II with H = 160 and h = 0
and 586,808 basis functions; Basis III with H = 170 and h = 0 and 932,231 basis
functions; Basis IV withH = 190 and h = 0 and 2,272,064 basis functions. Results
are given in Table 2. Leja and PseudoGauss points are about equally good, but Leja
points seem to be slightly better when the basis is small.

6 Conclusion

In this article, we present a recipe for determining PseudoGauss (PG) points
and assess their usefulness for interpolating a 1D function in a basis ϕk(cx) =
h
−1/2
m e−x2/2Hk(

cx) by computing Lebesgue constants. The PG Lebesgue constants
are compared to Leja Lebesgue constants. PG Lebesgue constants are usually
smaller than Leja Lebesgue constants, when the number of points is less than
about 12. They are larger, when the number of points is larger than 12. In most
cases, the PG and Leja Lebesgue constants are similar. By combining Leja and PG
points with a sparse grid interpolation method, we are able to use them to compute
vibrational energy levels of a 9D Hamiltonian. We have demonstrated that Leja
points are slightly more accurate. It is known that Lebesgue constants increase
subexponentially [21] and they appear to be promising for calculating vibrational
energy levels.

Using Leja Collocation Points to Solve the Schroedinger Equation 15

Acknowledgements Research reported in this article was funded by The Natural Sciences and
Engineering Research Council of Canada and the DFG via project GR 1144/21-1. We are grateful
for important discussions about Leja points with Peter Jantsch.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd edn.
(Society for Industrial and Applied Mathematics, Philadelphia, 1999). ISBN: 0-89871-447-8
(paperback)

2. G. Avila, T. Carrington Jr., Nonproduct quadrature grids for solving the vibrational Schrödinger
equation. J. Chem. Phys. 131, 174103 (2009)

3. G. Avila, T. Carrington Jr., Using a pruned basis, a non-product quadrature grid, and the
exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger
equation for C2H4. J. Chem. Phys. 135, 064101 (2011)

4. G. Avila, T. Carrington Jr., Using nonproduct quadrature grids to solve the vibrational
Schrödinger equation in 12D. J. Chem. Phys. 134, 054126 (2011)

5. G. Avila, T. Carrington Jr., Solving the vibrational Schrödinger equation using bases pruned to
include strongly coupled functions and compatible quadratures. J. Chem. Phys. 137, 174108
(2012)

6. G. Avila, T. Carrington Jr., Solving the Schrödinger equation using Smolyak interpolants. J.
Chem. Phys. 139, 134114 (2013)

7. G. Avila, T. Carrington Jr., A multi-dimensional Smolyak collocation method in curvilinear
coordinates for computing vibrational spectra. J. Chem. Phys. 143, 214108 (2015)

8. G. Avila, T. Carrington, Pruned bases that are compatible with iterative eigensolvers and
general potentials: new results for CH3CN. Chem. Phys. 482, 3–8 (2017)

9. G. Avila, T. Carrington, Computing vibrational energy levels of CH4 with a Smolyak
collocation method. J. Chem. Phys. 147, 144102 (2017)

10. V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse
grids. Adv. Comput. Math. 12, 273–288 (2000)

11. S.F. Boys, Some bilinear convergence characteristics of the solutions of dissymmetric secular
equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 309, 195–208 (1969)

12. M.J. Bramley, T. Carrington Jr., A general discrete variable method to calculate vibrational
energy levels of three and four atom molecules. J. Chem. Phys. 99, 8519–8541 (1993)

13. T. Carrington Jr., Perspective: computing (ro-) vibrational spectra of molecules with more than
four atoms. J. Chem. Phys. 146(12), 120902 (2017)

14. E. Castro, G. Avila, S. Manzhos, J. Agarwal, H.F. Schaefer, T. Carrington Jr., Applying a
Smolyak collocation method to Cl2CO. Mol. Phys. 115(15–16), 1775–1785 (2017). https://
doi.org/10.1080/00268976.2016.1271153

15. S. Damelin, The weighted Lebesgue constant of Lagrange interpolation for exponential
weights on [−1, 1]. Acta Math. Hungar. 81, 223–240 (1998)

16. M. Griebel, J. Oettershagen, On tensor product approximation of analytic functions. J. Approx.
Theory 207, 348–379 (2016)

17. R. Gunttner, Evaluation of Lebesgue constants. SIAM J. Numer. Anal. 17(4), 512–520 (1980)
18. T. Halverson, B. Poirier, Calculation of exact vibrational spectra for P2O and CH2NH using a

phase space wavelet basis. J. Chem. Phys. 140, 204112 (2014)
19. F. Heiss, V. Winschel, Likelihood approximation by numerical integration on sparse grids. J.

Econ. 144, 62–80 (2008)
20. B.A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation. J.

Inequal. Appl. 2016(1), 93 (2016)

https://doi.org/10.1080/00268976.2016.1271153
https://doi.org/10.1080/00268976.2016.1271153

16 G. Avila et al.

21. P. Jantsch, C.G. Webster, G. Zhang, On the Lebesgue constant of weighted Leja points for
Lagrange interpolation on unbounded domains (2016). arXiv preprint arXiv:1606.07093

22. H. Koeppel, W. Domcke, L.S. Cederbaum, Multimode molecular dynamics beyond the Born
Oppenheimer approximation. Adv. Chem. Phys. 57, 59–246 (1984)

23. D. Lauvergnat, A. Nauts, Quantum dynamics with sparse grids: a combination of Smolyak
scheme and cubature. Application to methanol in full dimensionality. Spectrochim. Acta A
Mol. Biomol. Spectrosc. 119, 18–25 (2014)

24. C. Leforestier, L.B. Braly, K. Liu, M.J. Elrod, R.J. Saykally, Fully coupled six-dimensional
calculations of the water dimer vibration-rotation-tunneling states with a split Wigner pseudo
spectral approach. J. Chem. Phys. 106, 8527–8544 (1997)

25. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users Guide: Solution of Large-Scale
Eigenvalue Problems With Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998).
http://www.caam.rice.edu/software/ARPACK

26. F. Leja, Sur certaines suites liées aux ensembles plans et leur application à la représentation
conforme. Ann. Polon. Math. 4, 8–13 (1957)

27. J.C. Light, T. Carrington Jr., Discrete-variable representations and their utilization. Adv. Chem.
Phys. 114, 263–310 (2000)

28. U. Manthe, H. Köppel, New method for calculating wave packet dynamics: strongly coupled
surfaces and the adiabatic basis. J. Chem. Phys. 93, 345–356 (1990)

29. A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation
and high-dimensional approximation. SIAM J. Sci. Comput. 36, A2952–A2983 (2014)

30. E. Novak, K. Ritter, High dimensional integration of smooth functions over cubes. Numer.
Math. 75, 79–97 (1996)

31. C.C. Paige, Computational variants of the Lanczos method for the eigenproblem. IMA J. Appl.
Math. 10, 373–381 (1972)

32. K. Petras, Smolyak cubature of given polynomial degree with few nodes for increasing
dimension. Numer. Math. 93, 729–753 (2003)

33. C. Pouchan, K. Zaki, Ab initio configuration interaction determination of the overtone
vibrations of methyleneimine in the region 2800–3200 cm−1. J. Chem. Phys. 107, 342–345
(1997)

34. T.J. Rivlin, An Introduction to the Approximation of Functions (Courier Corporation, North
Chelmsford, 2003)

35. T. Rowan, The subplex method for unconstrained optimization. Dissertation Ph.D. thesis,
Department of Computer Sciences, University of Texas, 1990

36. P. Sarkar, N. Poulin, T. Carrington Jr., Calculating rovibrational energy levels of a triatomic
molecule with a simple Lanczos method. J. Chem. Phys. 110, 10269–10274 (1999)

37. J. Shen, H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional
elliptic problems. SIAM J. Sci. Comput. 32, 3228–3250 (2010)

38. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Dokl. Akad. Nauk SSSR 4, 123 (1963)

39. M.K. Stoyanov, C.G. Webster, A dynamically adaptive sparse grids method for quasi-optimal
interpolation of multidimensional functions. Comput. Math. Appl. 71, 2449–2465 (2016)

40. J. Szabados, Weighted Lagrange and Hermite-Fejer interpolation on the real line. J. Inequal.
Appl. 1, 99–123 (1997)

41. J. Szabados, P. Vértesi, Interpolation of Functions (World Scientific, Singapore, 1990)
42. P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation. II. J. Aust. Math.

Soc. A 65, 145–162 (1998)
43. X.G. Wang, T. Carrington, The utility of constraining basis function indices when using the

Lanczos algorithm to calculate vibrational energy levels. J. Phys. Chem. A 105, 2575–2581
(2001)

44. X.G. Wang, T. Carrington Jr., Computing rovibrational levels of methane with curvilinear
internal vibrational coordinates and an Eckart frame. J. Chem. Phys. 138, 104106 (2013)

http://www.caam.rice.edu/software/ARPACK

Using Leja Collocation Points to Solve the Schroedinger Equation 17

45. E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and
Raman Vibrational Spectra (Dover, New York, 2000)

46. D. Xu, R. Chen, H. Guo, Probing highly excited vibrational eigenfunctions using a modified
single Lanczos propagation method: application to acetylene (HCCH). J. Chem. Phys. 118,
7273–7282 (2003)

On the Convergence Rate of Sparse Grid
Least Squares Regression

Bastian Bohn

Abstract While sparse grid least squares regression algorithms have been fre-
quently used to tackle Big Data problems with a huge number of input data in the last
15 years, a thorough theoretical analysis of stability properties, error decay behavior
and appropriate couplings between the dataset size and the grid size has not been
provided yet.

In this paper, we will present a framework which will allow us to close this
gap and rigorously derive upper bounds on the expected error for sparse grid least
squares regression. Furthermore, we will verify that our theoretical convergence
results also match the observed rates in numerical experiments.

1 Introduction

One of the most common tasks in Big Data applications is function regression. Here,
we aim to approximate a function g : Ω → R defined on an open domainΩ ⊂ R

m.
However, we only have access to n (possibly noisy) evaluations (ti , g(ti) + εi) ∈
Ω×R, i = 1, . . . , n of g. Note that this is a special instance of a much more general
regression or even density estimation problem, see e.g. [15].

Although many successful regression algorithms such as generalized clustering
methods, radial basis function neural networks or support vector machines have
been proposed over the last decades, see e.g. [1, 14, 20], one of the main problems
in Big Data applications, namely the vast number n of data points, still presents
a severe limitation to these so-called data-centered algorithms. This phenomenon
usually prevents the user from applying the above mentioned methods straightfor-
wardly because of their superlinear runtime dependence on n, i.e. the number of
computational steps grows much faster than n, e.g.O(n3) for applying direct solvers
to the regression problem. In order to cope with this problem, several enhancements

B. Bohn (�)
Institute for Numerical Simulation, University of Bonn, Bonn, Germany
e-mail: bohn@ins.uni-bonn.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_2&domain=pdf
mailto:bohn@ins.uni-bonn.de
https://doi.org/10.1007/978-3-319-75426-0_2

20 B. Bohn

to these algorithms, such as chunking or sparse greedy matrix approximation, have
been introduced, see [20]. Furthermore, since many data-centered methods are
based on kernel representations, we need to have access to a closed form of an
appropriate kernel function. However, in many cases only infinite series expansion
kernels are provided and an evaluation is not straightforward, see [12, 13].

To circumvent these issues and obtain an algorithm which naturally employs
linear runtime complexity with respect to n, grid based discretizations have been
proposed. Here, sparse grids are particularly well-suited since they allow to
efficiently treat also higher-dimensional domains, i.e. m > 3, which is not possible
with full tensor-product grids due to the curse of dimensionality. This means that—
for a full grid space—the number of grid points Nk scales like O

(
2km
)
, where k

denotes the grid level. In the sparse grid case, however, the scaling of Nk is only
O
(
2kkm−1

)
. Many variants of sparse grid regression algorithms can be found in

e.g. [3, 5, 9, 10, 19].
Even though sparse grid regression algorithms have proven to be a good choice

for many practical Big Data problems, there has not yet been a thorough theoretical
justification for their good performance, i.e. the overall error convergence behavior
and suitable couplings between Nk and n have yet to be determined. In this paper,
we aim to close this gap for the case of (unregularized) least-squares function
regression. Here, the corresponding problem is to determine

arg min
h∈Vk

1

n

n∑

i=1

(h(ti)− g(ti)− εi)2,

where Vk is the sparse grid space of level k, i.e. we search for the function
h ∈ Vk which minimizes the average squared distance between point evaluations
of h and the unknown function g in the input data points ti , i = 1, . . . , n. The
evaluation in ti is perturbed by some additive noise term εi . For this setting, we
will derive the optimal coupling between Nk and n and present the corresponding
error convergence rate. As we will see, the rate is governed mainly by the best
approximation error in the sparse grid space and a sample-dependent term in which
the noise variance σ will play an important role. To obtain our results, we will
enhance the analysis of [7] on least-squares regression with orthonormal basis sets,
which has been applied to derive convergence properties for global polynomial
spaces in [6, 17, 18], to arbitrary basis sets and apply it to our sparse grid basis
functions. While the choice of the particular basis is arbitrary in the orthonormal
case, the quotient of the frame constants enters our estimates for non-orthonormal
bases. Therefore, we use the sparse grid prewavelets since they form an L2 Riesz
frame and reveal essentially the same properties in our estimates as an orthonormal
basis does in [7]. Furthermore, the prewavelets lead to sparsely populated system
matrices for least-squares regression because of their compact support. Thus, our
basis choice leads to a fast least-squares algorithm with quasi-optimal convergence
rate in the piecewise linear case.

On the Convergence Rate of Sparse Grid Least Squares Regression 21

The remainder of this paper is structured as follows: In Sect. 2 we recapitulate
the least squares regression problem and introduce the necessary notation. Then, we
briefly present our sparse grid spaces and the according basis functions in Sect. 3.
Our main results on the coupling and the convergence rate can be found in Sect. 4.
Subsequently, we provide numerical experiments to underscore our theoretical
results in Sect. 5. Finally, we conclude in Sect. 6 with a short summary and an
outlook on possible future research directions.

2 Least-Squares Regression

We now define the necessary ingredients to state and analyze the least squares
function regression problem. To this end, let ρ be a probability measure on the
Lebesgue σ -algebra of Ω ⊂ R

m and let g : Ω → R be a point-evaluable, bounded
function, i.e. there exists an r > 0 such that ‖g‖L∞,ρ (Ω) ≤ r . We define a real-valued
random variable ε = ε(t), which models the noise and fulfills

E [ε | t] = 0 for all t ∈ Ω and σ 2 := sup
t∈Ω

E

[
ε2 | t

]
<∞. (1)

Our n input data points for the least-squares regression are then given by

Zn := (ti , g(ti)+ εi)ni=1 ⊂ Ω ×R,

where the ti are drawn i.i.d. according to ρ and the εi = ε(ti) are instances of
the random variable ε. Finally, we denote our scale of finite-dimensional search
spaces, i.e. the spaces in which the solution to the regression problem will lie, by
Vk ⊂ L2,ρ(Ω) for a scale parameter k ∈ N, which will be the level of our grid spaces
later on. In the following we will write Nk := dim(Vk) to denote the dimension of
the search space of level k. Then, as already mentioned in the introduction, we can
write the least-squares regression problem as

Determine fZn,Vk := arg min
h∈Vk

1

n

n∑

i=1

(h(ti)− g(ti)− εi)2 . (2)

Note that a regularized version of this problem, where a penalty term is added to the
above formulation, is also often considered. However, in this paper we solely focus
on the unregularized case (2) and give sufficient conditions such that this problem
is stably solvable also without a penalty term.

To solve (2), let ν1, . . . , νNk be an arbitrary basis of Vk . Then it is straightforward

to show that the coefficients α := (α1, . . . , αNk
)T of fZn,Vk =

∑Nk
i=1 αiνi can be

22 B. Bohn

computed by solving the linear system

nBBT α = Bx, (3)

where B∈RNk×n is given by Bij := 1
n
νi(tj) and x := (g(t1)+ ε1, . . . , g(tn)+ εn)T .

For a more detailed discussion on this system, we refer to [2, 9].

3 Full Grids and Sparse Grids

In order to solve (3) on a full grid space, i.e. Vk = V full
k of level k, or a sparse grid

space, i.e. Vk = V
sparse
k of level k, we have to define appropriate basis functions

ν1, . . . , νNk . To this end, we consider the so-called piecewise linear prewavelet
basis, see also [11], since it forms a Riesz frame, which will be of major importance
for the analysis in the subsequent section. The prewavelets are based on linear
combinations of the hat functions

φl,i(t) := φ(2l · t − i)|[0,1] with φ(t) :=
{

1− |t| if t ∈ [−1, 1],
0 else.

(4)

The univariate prewavelet basis functions γl,i : [0, 1] → R are then defined by

γ0,0 := 1, γ0,1 := φ0,1, γ1,1 := 2 · φ1,1 − 1.

for l ≤ 1 and by

γl,i := 2
l
2 ·
(

1

10
φl,i−2 − 6

10
φl,i−1 + φl,i − 6

10
φl,i+1 + 1

10
φl,i+2

)

for l ≥ 2 and i ∈ Il \ {1, 2l − 1} with Il :=
{
i ∈ N | 1 ≤ i ≤ 2l − 1, i odd

}
. For

the boundary cases i ∈ {1, 2l − 1}, we have

γl,1 := 2
l
2 ·
(

−6

5
φl,0 + 11

10
φl,1 − 3

5
φl,2 + 1

10
φl,3

)

, γl,2l−1(t) := γl,1(1− t).

The m-variate prewavelet functions are defined by a simple product approach

γl,i(t) :=
m∏

j=1

γlj ,ij (tj), (5)

where l = (l1, . . . , lm) denotes the multivariate level index and i = (i1, . . . , im)

denotes the multivariate position index. The graph of two exemplary univariate and

On the Convergence Rate of Sparse Grid Least Squares Regression 23

Fig. 1 Piecewise linear prewavelet examples. (a) γ3,1. (b) γ3,3. (c) γ(3,4),(1,7). (d) γ(3,4),(3,7)

two exemplary bivariate prewavelet basis functions can be found in Fig. 1. In the
multivariate case, the appropriate index sets are given by

Il :=
{

i ∈ N
m

∣
∣
∣
∣
0 ≤ ij ≤ 1, if lj = 0,
1 ≤ ij ≤ 2lj − 1, ij odd if lj > 0

for all 1 ≤ j ≤ m
}

,

which lead to the hierarchical increment spaces

Wl := span
{
γl,i | i ∈ Il

}
.

Now, the full grid space of level k > 0 is defined by

V full
k :=

⊕

l∈Nm|l|�∞≤k

Wl,

24 B. Bohn

Fig. 2 Two-dimensional full grid and sparse grid and their corresponding index sets. (a) Full grid
Gfull

4 . (b) Sparse grid Gsparse
4 . (c) {l ∈ N

2 | |l|�∞ ≤ 4}. (d) {l ∈ N
2 | |ζ2(l) ≤ 4}

whereas the sparse grid space of level k > 0 is given by

V
sparse
k :=

⊕

l∈Nm
ζm(l)≤k

Wl

with ζm(0) := 0 and

ζm(l) := |l|�1 −m+
∣
∣{j | lj = 0}∣∣+ 1

for a non-zero l ∈ N
m. The specific choice of ζm guarantees that the highest

resolution of a subgrid on the boundary is the same as the highest resolution of a
subgrid in the interior of [0, 1]m. The corresponding gridsGfull

k and Gsparse
k , i.e. the

centers of the support of the involved prewavelet basis functions, can be found in
Fig. 2.

As we mentioned above, full grids suffer from the curse of dimensionality, i.e. the
degrees of freedom grow like

dim
(
V full
k

)
= (2k + 1)m = O

(
2km
)
,

which depends exponentially on the dimension m of the domain. For sparse grids,
it can easily be obtained that

dim
(
V

sparse
k

) = O
(

2kkm−1
)

see e.g. [4] for grids in the interior of the domain and [8] for grids which are also
allowed to live on the boundary. As we see, the curse of dimensionality only appears
with respect to the level k instead of 2k . Therefore, sparse grids can be used also for
m > 3.

On the Convergence Rate of Sparse Grid Least Squares Regression 25

4 Error Analysis

After introducing the least-squares problem and our grid discretization in the
previous sections, we can now present our main theorems on the stability and the
error decay of a sparse grid regression algorithm. Our results are built on theorems
1 and 3 of [7] and can be seen as an extension thereof since only orthonormal bases
are treated there, whereas our result also holds for arbitrary non-orthonormal bases.

4.1 Well-Posedness and Error Decay

In the following, we denote the maximum and minimum eigenvalues of a symmetric
matrix X by λmax(X) and λmin(X). We start with a Matrix Chernoff bound, which
is proven in section 5 of [21].

Theorem 1 (Chernoff Inequality for Random Matrices) Let D ∈ N and
δ ∈ [0, 1) be arbitrary and let X1, . . . , Xn ∈ R

D×D be independent, symmetric
and positive semidefinite matrices with random entries. Let R > 0 be such that
λmax(Xi) ≤ R holds for all i = 1, . . . , n. Then, it holds

P

[

λmin

(
n∑

i=1

Xi

)

≤ (1− δ)cmin

]

≤ D
(

e−δ

(1− δ)1−δ
) cmin

R

and

P

[

λmax

(
n∑

i=1

Xi

)

≥ (1+ δ)cmax

]

≤ D
(

eδ

(1+ δ)1+δ
) cmax

R

with cmin := λmin
(
E
[∑n

i=1Xi
])

and cmax := λmax
(
E
[∑n

i=1Xi
])

.

For a basis ν1, . . . , νNk of Vk , we introduce the quantity

S(ν1, . . . , νNk) := sup
t∈Ω

Nk∑

i=1

|νi(t)|2, (6)

which will play a pivotal role throughout the rest of this paper. Note that this quantity
is namedK(Nk) in [7] since it is independent of the basis choice there as the authors
only deal with orthonormal bases. However, in our more general case, the quantity
S(ν1, . . . , νNk) is highly dependent on the concrete choice of the basis of Vk.

In the following, we denote the mass matrix on level k by M =
M(ν1, . . . , νNk) ∈ R

Nk×Nk , i.e. Mij = 〈νi , νj 〉L2,ρ (Ω). With the help of Theorem 1,
we are able to prove the following stability result, which is an extension of theorem
1 of [7].

26 B. Bohn

Theorem 2 (Well-Posedness) Let n ≥ Nk , c =
∣
∣
∣log

(
e0.5

(1.5)1.5

)∣
∣
∣ ≈ 0.1082 and let

S(ν1, . . . , νNk) ≤ c ·
λmin(M)

1+ θ · n

log(n)
(7)

for a θ > 0. Then, the solution fZn,Vk =
∑Nk
j=1 αj νj of (3) exists, is unique and

fulfills

‖fZn,Vk‖L2,ρ (Ω) ≤
√

6 · λmax(M)

λmin(M)
· 1√
n
‖x‖�2

with probability at least 1− 2n−θ , where x := (g(t1)+ ε1, . . . , g(tn)+ εn)T .

Proof The proof follows the lines of [7] with the necessary generalizations for
arbitrary basis functions. Let X ∈ R

Nk×Nk be the random, positive semi-definite
matrix with entries Xij := 1

n
νi(t) · νj (t), where t is drawn according to ρ and let

X1, . . . , Xn be n realizations of X with t = t1, . . . , tn from the samples Zn. Then,
nBBT =∑n

i=1Xi andM = E
[∑n

i=1Xi
]
.

Note that λmax(X) ≤ 1
n
S(ν1, . . . , νNk) almost surely since X = nAAT with

A = 1
n

(
ν1(t), . . . , νNk (t)

)T
and we have

λmax(X) = nλmax(AA
T) = n · max|y|=1

‖Ay‖2
�2
= n ·

⎛

⎝ 1

n2

Nk∑

i=1

|νi(t) · 1|2
⎞

⎠

≤ 1

n
S(ν1, . . . , νNk).

Therefore, we can apply Theorem 1 withD = Nk , R = 1
n
S(ν1, . . . , νNk) and δ = 1

2
to obtain

P := P

[

λmin(nBB
T) ≤ λmin(M)

2
or λmax(nBB

T) ≥ 3λmax(M)

2

]

≤ Nk

(
e−0.5

0.50.5

) nλmin(M)
S(ν1,...,νNk

)

+ Nk
(
e0.5

1.51.5

) nλmax(M)
S(ν1,...,νNk

)

≤ 2Nk

(
e0.5

1.51.5

) nλmin(M)
S(ν1,...,νNk

)

,

where the last inequality follows from λmin(M) ≤ λmax(M) and 0 < e−0.5

0.50.5 <

e0.5

1.51.5 < 1. Using (7) and the definition of c, we obtain

P ≤ 2Nke
− cnλmin(M)
S(ν1,...,νNk

) ≤ 2Nk · n−(1+θ) ≤ 2n−θ

On the Convergence Rate of Sparse Grid Least Squares Regression 27

since we assumed Nk ≤ n. Therefore, (3) is uniquely solvable with probability
at least 1 − 2n−θ . Noting that ‖B‖2

Lin(Rn,RNk)
= 1

n
‖nBBT ‖Lin(RNk ,RNk) =

1
n
λmax(nBB

T) holds for the operator norm of the linear operator B and writing
the L2 norm with the help of the mass matrix, we finally get

‖fZn,Vk‖2
L2,ρ (Ω)

= αTMα
(3)= xT BT (nBBT)−1M(nBBT)−1Bx

≤ ‖x‖2
�2
‖B‖2

Lin(Rn,RNk)
λmax((nBB

T)−1)2λmax(M)

= 1

n
‖x‖2

�2
λmax(nBB

T)
1

λmin(nBBT)2
λmax(M)

≤ 1

n
‖x‖2

�2

3λmax(M)

2

4

λmin(M)2
λmax(M) = 6

λmax(M)
2

λmin(M)2
· 1

n
‖x‖2

�2

with probability at least 1− 2n−θ , which proves our assertion. ��
Theorem 2 tells us that the regression problem with basis ν1, . . . , νNk is stably
solvable for all k ∈ N with high probability if the number of samples n is large
enough such that n ≥ Nk and (7) are fulfilled and if the fraction λmax(M)

λmin(M)
, i.e. the

condition number of the mass matrix, does not grow too fast with k→∞. Note that
it is also possible to prove a more general version of this theorem if a (Tikhonov)
regularization term is added, see [2].

Recall the L∞ bound r on the function g from which the data Zn is sampled.
For our error bound, we need to define the truncation operator τr : L∞,ρ(Ω) →
L∞,ρ(Ω) by τr (f)(·) := Pr(f (·)), where the convex projection Pr : R → R is
defined by

Pr(x) =
{

x if |x| ≤ r,
x
|x| · r else.

Note that τr is a non-expansive operator with respect to the L2,ρ(Ω) norm,
i.e. ‖τr (f1) − τr (f2)‖L2,ρ (Ω) ≤ ‖f1 − f2‖L2,ρ (Ω) for all f1, f2 ∈ L∞,ρ(Ω). Now,
we can provide a theorem on the expected error behavior.

Theorem 3 (Expected Regression Error) Let n ≥ Nk and let fZn,Vk be the
solution to (3)—or fZn,Vk = 0 if no unique solution to (3) exists. Let, furthermore,
S(ν1, . . . , νNk) and n fulfill (7) for a fixed θ > 0 and for all k ∈ N. Then,

E

[
‖τr
(
fZn,Vk

)− g‖2
L2,ρ (Ω)

]
≤
(

1+ 8cλmax(M)

(1+ θ)λmin(M) log(n)

)

inf
f∈Vk

‖f − g‖2
L2,ρ (Ω)

+ 8r2n−θ + 8σ 2
(
λmax(M)

λmin(M)

)2

· Nk
n

(8)

with c from (7). Here, the expectation is taken with respect to the product measure
ρn := ρ × . . .× ρ.

28 B. Bohn

Proof Again, the proof generalizes the one in [7], where only orthonormal bases are
considered. In the following we will just write Lp for Lp,ρ(Ω) with p ∈ [1,∞].
LetΩn = Ω × . . .×Ω and let

Ωn+ :=
{

(t1, . . . , tn) ∈ Ωn | λmax(nBB
T) ≤ 3λmax(M)

2
and λmin(nBB

T) ≥ λmin(M)

2

}

and let Ωn− := Ωn \ Ωn+. We have already shown in the proof of Theorem 2 that

P(Ωn−) ≤ 2n−θ since (7) holds. Let us denoteE := E

[
‖τr
(
fZn,Vk

)− g‖2
L2

]
. Since

|τr(f)(t)− g(t)| ≤ |τr (f)(t)| + |g(t)| ≤ 2r holds for all f ∈ L∞ and almost every
t ∈ Ω , we obtain

E =
∫

Ωn+
‖τr
(
fZn,Vk

)− g‖2
L2

dρn +
∫

Ωn−
‖τr
(
fZn,Vk

)− g‖2
L2

dρn

≤
∫

Ωn+
‖τr
(
fZn,Vk

)− g‖2
L2

dρn +
∫

Ωn−
4r2 dρn

≤
∫

Ωn+
‖τr
(
fZn,Vk

)− g‖2
L2

dρn + 8r2n−θ

≤
∫

Ωn+
‖fZn,Vk − g‖2

L2
dρn + 8r2n−θ , (9)

where the last inequality holds since τr is non-expansive and g = τr(g) holds almost
everywhere.

Next, we define the projection PnVk onto Vk by

PnVk (f) := arg min
h∈Vk

1

n

n∑

i=1

(h(ti)− f (ti))2 ,

which is well-defined for point-evaluable functions f on Ωn+ since the coefficients
of PnVk (f) are given by (3) if we substitute the vector x by (f (t1), . . . , f (tn))T . Note
that the coefficients of fZn,Vk are given by PnVk (g + ε). Furthermore, we need the
(standard) orthogonalL2 projectorPVk ontoVk . Obviously, it holdsPnVk◦PVk = PVk .
Therefore, we have

‖fZn,Vk − g‖2
L2
= ‖PnVk (g + ε)− PnVk ◦ PVk (g)+ PVk (g)− g‖2

L2

= ‖PnVk
(
g − PVk (g)

) + PnVk (ε)‖2
L2
+ ‖g − PVk (g)‖2

L2

≤ 2‖PnVk
(
g − PVk (g)

) ‖2
L2
+ 2‖PnVk (ε)‖2

L2
+ ‖g − PVk (g)‖2

L2

(10)

since Id −PVk is L2-orthogonal on Vk. To bound (9) from above, we will now deal
with each of the three summands in (10) separately.

On the Convergence Rate of Sparse Grid Least Squares Regression 29

First, note that PnVk
(
g − PVk (g)

) = ∑Nk
i=1 βiνi with β = (β1, . . . , βNk)

T given

by β = (nBBT)−1
ξ with ξ = Ba and aj = g(tj) − PVk (g)(tj) for j = 1, . . . , n.

Thus, we have

‖PnVk
(
g − PVk (g)

) ‖2
L2
= βTMβ = ξT

(
nBBT

)−1
M
(
nBBT

)−1
ξ

≤ λmax(M)
1

λmin
(
nBBT

)2 ‖ξ‖2
�2
≤ 4λmax(M)

λmin(M)2
‖ξ‖2

�2

(11)

onΩn+, on which nBBT is invertible. This yields
∫

Ωn+
2‖PnVk

(
g − PVk (g)

) ‖2
L2

dρn ≤ 8λmax(M)

λmin(M)2
E

[
‖ξ‖2

�2

]
. (12)

With the independence of t1, . . . , tn, we deduce

E

[
‖ξ‖2

�2

]
=
∫

Ωn

Nk∑

j=1

(
1

n

n∑

i=1

νj (ti) · (g − PVk (g))(ti)
)2

dρn(t1, . . . , tn)

= 1

n2

Nk∑

j=1

(n2 − n)

⎛

⎜
⎜
⎝

∫

Ω

νj (t) · (g − PVk (g))(t) dρ(t)
︸ ︷︷ ︸

= 0

⎞

⎟
⎟
⎠

2

+ 1

n2

Nk∑

j=1

n

∫

Ω

(
νj (t) · (g − PVk (g))(t)

)2 dρ(t)

(6)≤ 1

n
S(ν1, . . . , νNk)‖g − PVk (g)‖2

L2

(7)≤ cλmin(M)

(1+ θ) log(n)
‖g − PVk (g)‖2

L2
.

Applying this to (12), we finally obtain

∫

Ωn+
2‖PnVk

(
g − PVk (g)

) ‖2
L2

dρn ≤ 8cλmax(M)

(1+ θ)λmin(M) log(n)
‖g − PVk (g)‖2

L2
.

(13)

For the second summand of (10), we proceed similarly. Note that ϑ =
(
nBBT

)−1
η are the coefficients of PnVk (ε) with respect to ν1, . . . , νNk . Here,

η = Bb with bi = ε(ti). Analogously to (11), we get

‖PnVk (ε)‖2
L2
≤ 4λmax(M)

λmin(M)2
‖η‖2

�2

30 B. Bohn

onΩn+. Therefore, it remains to estimate

∫

Ωn+
2‖PnVk (ε)‖2

L2
dρn ≤ 8λmax(M)

λmin(M)2
E

[
‖η‖2

�2

]
. (14)

Because of (1) we have Eρ [ενj] = 0 for all j ∈ 1, . . . , Nk . Thus, we obtain

Eρn

[
‖η‖2

�2

]
=
∫

Ωn

Nk∑

j=1

(
1

n

n∑

i=1

νj (ti) · ε(ti)
)2

dρn(t1, . . . , tn)

= 1

n2

Nk∑

j=1

(n2 − n)
⎛

⎜
⎝Eρ

[
ενj
]

︸ ︷︷ ︸
= 0

⎞

⎟
⎠

2

+ 1

n2

Nk∑

j=1

nEρ

[
ε2ν2

j

]

= 1

n

Nk∑

j=1

∫

Ω

νj (t)2Eρ [ε2 | t]dρ(t) (1)≤ σ 2

n

Nk∑

j=1

∫

Ω

νj (t)2dρ(t)

≤ σ 2

n

Nk∑

j=1

λmax(M) = Nkσ
2

n
λmax(M).

Plugging this into (14), we get

∫

Ωn+
2‖PnVk (ε)‖2

L2
dρn ≤ 8σ 2λmax(M)

2

λmin(M)2
· Nk
n
. (15)

Since the third summand of (10) is independent of the samples, we have

∫

Ωn+
‖g − PVk (g)‖2

L2
≤ ‖g − PVk (g)‖2

L2
= inf
f∈Vk

‖g − f ‖2
L2
.

Finally, we combine this estimate together with (13) and (15) into (9) and (10),
which completes the proof. ��

The first term of the expected rate from Theorem 3 depends mainly on the best
approximation error in Vk and the quotient λmax(M)

λmin(M)
, which can be bounded from

above independently from k for Riesz bases for example. The second summand
scales like n−θ , which resembles the decay of the error with respect to the amount
of data n in the noiseless case, i.e. when σ 2 = 0 and the third summand vanishes.
In the noisy case, the third summand is also present and the best possible decay rate
with respect to n scales like n−1.

On the Convergence Rate of Sparse Grid Least Squares Regression 31

4.2 Application to Sparse Grids

In the following, we assume that the measure ρ is the m-dimensional Lebesgue
measure on Ω = [0, 1]m, i.e. the data ti , i = 1, . . . , n are distributed uniformly in
Ω . We now apply Theorems 2 and 3 to the regression problem on sparse grid spaces
Vk = V

sparse
k and need to bound

S(ν1, . . . , νNk) = sup
t∈Ω

∑

ζm(l)≤k

∑

i∈Il

γl,i(t)2.

from above. To this end, we provide the following lemma.

Lemma 1 For each l ∈ N
m, it holds

max
t∈[0,1]m

∑

i∈Il

γl,i(t)
2 ≤ 2|l|�1 · 2|{j∈{1,...,m}| lj=0}| ·

(
36

25

)|{j∈{1,...,m}| lj>0}|
. (16)

Proof We first consider the univariate case m = 1 and define Sl(t) :=∑
i∈Il γl,i(t)

2. For l = 0, we obtain

S0(t) = γ 2
0,0(t)+ γ 2

0,1(t) = 1+ t2 ≤ 2

and for l = 1 we have

S1(t) = γ 2
1,1(t) = (2φ1,1(t)− 1)2 ≤ 1

with t ∈ [0, 1]. In the general case l ≥ 2, Sl is a sum of the piecewise quadratic
polynomials γ 2

l,i(·) with i ∈ Il . Therefore, the quadratic term of the piecewise
quadratic polynomial Sl(·) has a positive coefficient everywhere and the maximum
of Sl over [0, 1] can only reside on one of the grid points 2−li with i = 0, . . . , 2l .
This is also illustrated in Fig. 3, where S4 is plotted exemplarily.

0.2 0.4 0.6 0.8 1.0

5

10

15

20

Fig. 3 The squared sum S4 of the univariate prewavelet basis functions for k = 4

32 B. Bohn

We now prove that the maximum of Sl is always attained at the boundary point
t = 1. For l = 0 and l = 1, this is immediately clear. The (local) maxima of S2 are
denoted below in a mask-type notation which contains a prefactor 2l and the nodal
values at the grid points. The calculation

S2(t) = γ 2
2,1(t)+ γ 2

2,3(t)

= 4 [36
25

121
100

9
25

1
100 0]

+ 4 [0 1
100

9
25

121
100

36
25]

= 4 [36
25

61
50

18
25

61
50

36
25]

shows that the largest value 4 · 36
25 is attained at the boundary grid points.

Analogously, we have

S3(t) = γ 2
3,1(t)+ γ 2

3,3(t)+ γ 2
3,5(t)+ γ 2

3,7(t)

= 8 [36
25

121
100

9
25

1
100 0 0 0 0 0]

+ 8 [0 1
100

9
25 1 9

25
1

100 0 0 0]
+ 8 [0 0 0 1

100
9
25 1 9

25
1

100 0]
+ 8 [0 0 0 0 0 1

100
9

25
121
100

36
25]

= 8 [36
25

61
50

18
25

51
50

18
25

51
50

18
25

61
50

36
25]

for l = 3. Due to the local support of the basis functions, analogous calculations
show that the value of Sl never exceeds 2l · 36

25 also for higher levels l. Therefore,
the maximum of Sl is always attained for t = 1. If l = 0, the maximum value is
2 and if l ≥ 2, it is 2l · 36

25 . For the special case l = 1, we use the crude estimate
S1(1) = 1 < 2 · 36

25 . Therefore, the assertion (16) is proven form = 1.
The case m > 1 follows directly from the tensor product construction of the

basis. To see this, let t ∈ [0, 1]m and l ∈ N
m be arbitrary. It holds

∑

i∈Il

γl,i(t)2 =
∑

(i1,...,im)∈Il

m∏

j=1

γlj ,ij (tj)
2 =

m∏

j=1

∑

ij∈Ilj
γlj ,ij (tj)

2

due to the structure of Il. Therefore, the maximization of the term on the left can
be split into the maximization of Slj for each direction j ∈ {1, . . . ,m}. Since the

maximum is bounded by 2 for directions j with lj = 0 and by 2lj · 36
25 for directions

j with lj ≥ 1, the inequality (16) follows. ��
We are now able to present an upper bound on S(ν1, . . . , νNk) for sparse grids.

On the Convergence Rate of Sparse Grid Least Squares Regression 33

Theorem 4 For Vk = V
sparse
k , S(ν1, . . . , νNk) can be bounded by

S(ν1, . . . , νNk) ≤
(

72

25

)m
(Nk + 1). (17)

Proof In the following, we write Z(l) := |{j ∈ {1, . . . ,m} | lj = 0}| for the
number of zeros of a multiindex l ∈ N

m. Applying Lemma 1, we obtain

S(ν1, . . . , νNk) ≤
∑

|l|�1+Z(l)≤k+m−1

2|l|�1+Z(l) ·
(

36

25

)m−Z(l)
,

where we used ζm(l) = |l|�1 − m + Z(l) + 1. Substituting i = |l|�1 + Z(l), this
becomes

S(ν1, . . . , νNk) ≤
k+m−1∑

i=0

2i ·
m∑

l=0

|{l ∈ N
m | |l|�1 = i− l and Z(l) = l}|·

(
36

25

)m−l
.

Obviously, it holds |{l ∈ N
m | |l|�1 = i− l and Z(l) = l}| = 0 for all l = 0, . . . ,m

if i < m. Therefore, we can begin the summation over i from m. If i ≥ m holds, a
simple combinatorial argument, see also [4], leads to

|{l ∈ N
m | |l|�1 = i − l and Z(l) = l}| = |{l ∈ (N \ {0})m−l | |l|�1 = i − l}| ·

(
m

l

)

=
(
i − l − 1

m− l − 1

)(
m

l

)

for arbitrary l = 0, . . . ,m− 1 and furthermore

|{l ∈ N
m | |l|�1 = i −m and Z(l) = m}| =

{
1 if i = m
0 else

= δim.

Therefore, we have

S(ν1, . . . , νNk) ≤
k+m−1∑

i=m
2i ·
(

δim +
m−1∑

l=0

(
i − l − 1

m− l − 1

)(
m

l

)(
36

25

)m−l)

= 2m ·
k−1∑

i=0

2i ·
(

δi0 +
m−1∑

l=0

(
i +m− l − 1

m− l − 1

)(
m

l

)(
36

25

)m−l)

= 2m ·
(

1+
m−1∑

l=0

(
36

25

)m−l (
m

l

)(k−1∑

i=0

2i
(
i +m− l − 1

m− l − 1

)))

= 2m + 2m
m−1∑

l=0

(
36

25

)m−l (
m

l

)

|Gm−lk |,

34 B. Bohn

where |Gm−lk | denotes the size of an m− l-dimensional level-k sparse grid without
boundary, see lemma 3.6 of [4] for a proof. To derive a bound with respect to
the number of grid points Nk in a sparse grid with boundary points of level k in
dimensionm, we rewrite the above inequality by

S(ν1, . . . , νNk) ≤ 2m +
m−1∑

l=0

(

2 · 36

25

)m−l
· 2l
(
m

l

)

|Gm−lk |

≤ 2m +
(

72

25

)m
·
m−1∑

l=0

2l
(
m

l

)

|Gm−lk | = 2m +
(

72

25

)m
Nk,

where the last equality is proven in lemma 2.1.2 of [8]. Since 2 < 72
25 = 2.88, this

completes the proof. ��
Combining the statements of Theorems 2 and 4, we see that the sparse grid

regression problem is well-posed with probability larger than 1− 2n−θ if

(
72

25

)m
(Nk + 1) ≤ cλmin(M)

1+ θ · n

log(n)
. (18)

Since the prewavelet basis of Vk is a Riesz frame with respect to the L2,ρ(Ω) norm,
the fraction λmax(M)

λmin(M)
is bounded from above independently of the level k ∈ N.

Therefore, the necessary scaling is essentially

Nk � 2kkm−1 � n

log(n)
,

where the � notation implies an m- and θ -dependent constant. The following
corollary states our main result for sparse grids. There we deal with the (Bessel-
potential) Sobolev spacesHs

ρ,mix(Ω) of dominating mixed smoothness with respect
to the L2,ρ(Ω) measure, see e.g. [2, 16].

Corollary 1 (Regression Error for Sparse Grids) Let g ∈ Hs
ρ,mix(Ω) for some

0 < s ≤ 2 and let Vk = V
sparse
k . Let, furthermore, (18) hold for an arbitrary

θ > 0. Then, the regression problem is well-posed in the sense of Theorem 2 with
probability at least 1− 2n−θ and the expected error fulfills

E

[
‖τr
(
fZn,Vk

)− g‖2
L2,ρ (Ω)

]
≤ Cm,s,θ,σ

(

2−2skkm−1 + 1

nθ
+ 2kkm−1

n

)

(19)

with a constant Cm,s,θ,σ , which depends on m, s, θ, σ and ‖g‖Hsρ,mix(Ω)
.

On the Convergence Rate of Sparse Grid Least Squares Regression 35

Proof To prove the expected error, we combine Theorems 3 and 4 and use that the
squared best approximation error behaves like

inf
f∈V sparse

k

‖f − g‖2
L2,ρ (Ω)

≤ Cm,s2−2skkm−1‖g‖2
Hsρ,mix(Ω)

for g ∈ Hs
ρ,mix(Ω) with an m- and s-dependent constant Cm,s , see e.g. theorem

3.25 of [2]. Furthermore, λmax(M)
λmin(M)

is bounded from above independently of k since
the prewavelet basis is a Riesz frame with respect to the L2,ρ(Ω) norm. Together
with the fact that Nk ≤ Cm2kkm−1 holds for an m-dependent constant Cm, see
e.g. [8], the statement of the corollary follows immediately. ��
Finally, we can ask for the optimal coupling between the number of samples
n and the number of sparse grid basis functions Nk , which achieves the best
possible convergence rate in the sense that the terms in the error estimate (19)
are (approximately) balanced. The resulting coupling is stated in the following
corollary.

Corollary 2 (Optimal Coupling and Convergence Rate for Sparse Grids) Let
g ∈ Hs

ρ,mix(Ω) for some 0 < s ≤ 2 and let Vk = V
sparse
k . Then, the following

holds:

1. Let σ 2 > 0 (noisy case) and let (18) hold for a θ ≥ 2s
2s+1 . Then, the

asymptotically optimal coupling between n and Nk is

Nk ∼ n 1
2s+1 log(n)m−1 (20)

and the resulting convergence rate for n→∞ is

E

[
‖τr
(
fZn,Vk

)− g‖2
L2,ρ (Ω)

]
= O

(
n−

2s
2s+1 log(n)m−1

)
. (21)

2. Let σ 2 = 0 (noiseless case) and let (18) hold for a θ > 2s. Then, the
asymptotically optimal coupling between n and Nk is

Nk ∼ n

log(n)
(22)

and the resulting convergence rate for n→∞ is

E

[
‖τr
(
fZn,Vk

)− g‖2
L2,ρ (Ω)

]
= O

(
n−2s log(n)(2s+1)m−1

)
. (23)

Proof Let E := E

[
‖τr
(
fZn,Vk

)− g‖2
L2,ρ (Ω)

]
. Note that Nk ∼ 2kkm−1 in the sense

that there exist two constants c1, c2 > 0 such that c12kkm−1 ≤ Nk ≤ c22kkm−1

holds independently of k. Note, furthermore, that there exists a constantsC1, C2 > 0

36 B. Bohn

such thatC1 log(n) ≤ k ≤ C2 log(n) for n ≥ 2 for each of the scalings (20) and (22).
This can easily be obtained by taking the logarithm on both sides of (20) and (22).

We begin with the proof for the noisy case σ 2 > 0 and insert the coupling (20)
into the error formula (19). Since we will see that this balances the first and third
summands there, the coupling is also optimal. Indeed, we have

E � 2−2skkm−1 + 1

nθ
+ 2kkm−1

n
� (Nk)−2s k(m−1)(2s+1) + n−θ + Nk

n

�
(
n

1
2s+1 log(n)m−1

)−2s
log(n)(m−1)(2s+1) + n−θ + n

1
2s+1 log(n)m−1

n

θ≥ 2s
2s+1

� n−
2s

2s+1

(
log(n)m−1 + 1+ log(n)m−1

)
= O

(
n−

2s
2s+1 log(n)m−1

)
. (24)

As we see in (24), the first and third summand of the error estimate (19) are
balanced for the coupling (20). Note that the coupling is valid in the sense that it
(asymptotically) fulfills condition (18). This completes the proof for the noisy case.

In the noiseless case σ 2 = 0, the third summand in (19) vanishes, see also
Theorem 3. Therefore, for θ = 2s + δ with some arbitrary δ > 0, the number
of basis functions Nk needs to be chosen as large as possible (with respect to n)
to achieve the fastest possible convergence of the first summand of (19). This is
achieved by choosing n as the smallest integer such that (18) is still fulfilled, i.e. the
corresponding scaling is (22). Therefore, we obtain

E � 2−2skkm−1 + 1

nθ
� (Nk)−2s k(m−1)(2s+1) + n−θ

�
(

n

log(n)

)−2s

log(n)(m−1)(2s+1) + n−θ
θ=2s+δ
� n−2s

(
log(n)(2s+1)m−1 + n−δ

)

= O
(
n−2s log(n)(2s+1)m−1

)
,

which concludes the proof. ��
For all of our proven convergence results, we see that the curse of dimensionality

appears only in terms which scale logarithmically in the number of samples n. This
is the well-known sparse grid effect, which we are used to when considering the
spaces V sparse

k for interpolation or approximation for instance, see [4].
As we see from Corollary 2, the optimal main rate that can be achieved in the

noisy case is n−
2s

2s+1 , which becomes n− 4
5 in the smoothest setting (s = 2) that

the piecewise linear basis functions can exploit.1 This comes at an expense of

1For higher order spline bases, a larger choice of s can be exploited here. However, one needs to
prove an analogous result to Theorem 4 for the corresponding basis functions first.

On the Convergence Rate of Sparse Grid Least Squares Regression 37

oversampling by n ∼ N2s+1
k if we neglect the logarithm. In the noiseless case,

however, the much better main rate n−2s can be achieved and there is only a
logarithmic oversampling, see (22). This oversampling has to be present to fulfill
the necessary condition (18) anyway.

Finally, note that our stability and error analysis for sparse grids heavily relies on
the fact that we are dealing with a Riesz basis. Nevertheless, if we choose a basis
for which λmax(M)

λmin(M)
is unbounded, e.g. the hierarchical hat basis built from φl,i , see

(4), we can still obtain well-posedness of the regression problem if an appropriate
regularization term is added to (2), see also [2]. However, then it is not directly clear
how to derive a variant of Theorem 3 for the regularized case.

5 Numerical Experiments

In this section, we have a look at numerical experiments, which illustrate our
theoretical results from the previous section. To this end, we choose Ω = [0, 1]2,
Vk = V

sparse
k and ρ = λ[0,1]2 as the two-dimensional Lebesgue measure. We use

the example function g : [0, 1]2 → R given by

g(t1, t2) = exp(−t21 − t22)+ t1t2. (25)

Since g is infinitely smooth, we have g ∈ H 2
ρ,mix((0, 1)

2) and we can expect our
results from the previous section to hold with smoothness index s = 2. We now
discern two cases: The noiseless case, in which our samples are given as Zn =
(ti , g(ti))ni=1, and the noisy case, where we deal with Zn = (ti , g(ti)+ εi)ni=1 and
the εi are independent instances of a normally distributed random variable ε ∼
N (0, 0.01).

Since ‖g‖L∞,ρ ([0,1]2) < 2 and P [|ε| > 1] < 10−2000, we can safely assume that
r = 3 is large enough to assure that (with probability almost 1) |g(ti) + εi | <
r holds for each i =, 1 . . . , n. Therefore, τr

(
fZn,Vk

) = fZn,Vk since fZn,Vk is
the optimal piecewise linear regression function in Vk and, thus, cannot be larger
than maxi=1,...,n |g(ti) + εi | anywhere. Therefore, we can apply Theorem 3 and
Corollaries 1 and 2 for fZn,Vk instead of τr (fZn,Vk) in our setting.

Since the prewavelet basis is a Riesz frame, we know that λmax(M)
λmin(M)

is bounded
independently of k. To see that this quotient is not severely large, we exemplarily
calculated it for k = 1, . . . , 8 and observed that it does not exceed 5 in the two-
dimensional case.

38 B. Bohn

5.1 Error Decay

First, we compute the error for different pairs of grid levels k and numbers of data
points n. Since our result on the regression error in Corollary 1 is only given in
expectation, we compute the average AvErr of the error ‖fZn,Vk − g‖2

L2,ρ (Ω)
over

10 independent runs with different input data sets for each parameter pair (k, n).
To compute the error values, we interpolated both fZn,Vk and g on a full tensor-
product grid of level 11, i.e. we interpolated in V full

11 , and computed the norm of the
difference there. The results can be found in Fig. 4.

We directly observe the expected error decay rates, i.e. 2−4k · k for fixed n and
n−1 for fixed k in the noisy setting (if we tacitly assume θ ≥ 1), see also Corollary 1.
For fixed k, we would expect the error to behave like n−θ in the noiseless setting.
However, since θ grows when the quotient n

k
grows, we cannot expect the error

behavior to be of type n−p for some p. For both, the noisy and the noiseless case, we
observe that if the varying parameter (e.g. n) is too large, the error is saturated and
the other parameter (e.g. k) has to be increased to guarantee a further error reduction.
Note that the error for fixed n in the noisy regression setting even increases for large
k. This is an overfitting effect, i.e. the basis sizeNk is too large for the corresponding
number of data n. Since there is no regularization in our approach, the error thus
grows for large k and small n.

2 4 6 8

10−2

10−4

10−6

10−8

k

A
vE

rr
(n

oi
sy

) n= 214

n= 216

n= 218

n= 220

∼ 2−4kk

2 4 6 8

10−4

10−8

10−12

k

A
vE

rr
(n

oi
se

le
ss

) n= 214

n= 216

n= 218

n= 220

∼ 2−4kk

5 10 15 20
log2(n)

k = 2
k = 4
k = 6
k = 8

∼ 1
n

5 10 15 20
log2(n)

k = 2
k = 4
k = 6
k = 8

Fig. 4 The average of ‖fZn,Vk − g‖2
L2,ρ (Ω)

over 10 runs for several parameter pairs (k, n) for
which Nk ≤ n holds. Top: Noisy data, Bottom: Noiseless data. Left: Each line represents a fixed
n, Right: Each line represents a fixed k

On the Convergence Rate of Sparse Grid Least Squares Regression 39

5.2 Balancing the Error

In a next step, we balance the error terms according to Corollary 2 and inspect the
resulting convergence rates. For the noisy setting, we have for θ ≥ 4

5 that the optimal
coupling is given by

Nk ∼ n 1
5 log(n).

We, therefore, (approximately) solve N5
k = n log(n)5 for n and determine the

optimal number of data points for k = 1, . . . , 6. For k = 6, the amount n of data
points already exceeds 225. In the noiseless setting, the picture is quite different.
Here, the optimal coupling is given by

Nk ∼ n

log(n)

if θ > 4. More accurately, we look for the smallest n such that (18) is fulfilled
with θ > 4. Therefore, we equate both sides of (18) and (approximately) solve
for n. Here, we set θ = 4 and λmin(M) = 1 and obtain that sampling by n

log(n) =
384·(Nk+1) suffices to fulfill (18). The average errors (over 10 runs) for the optimal
coupling in the noisy and in the noiseless setting can be found in Fig. 5.

We directly see that the convergence rate in the experimental results asymp-

totically matches the proven rates from Corollary 2, i.e. n−
2s

2s+1 log(n)m−1 =
n− 4

5 log(n) in the noisy case and n−2s log(n)(2s+1)m−1 = n−4 log(n)9 in the
noiseless case. Furthermore, we observe that the initial error decay for noisy data

(a)

5 10 15 20 25

10−4

10−8

10−12

log2(n)

A
vE

rr

Error for n log(n)5 = N5
k

∼ n− 4
5 log(n)

(b)

5 10 15 20 25

10−4

10−8

10−12

log2(n)

Error for n
log(n) = 384 · (Nk+1)

∼ n−4 log(n)9

Fig. 5 The average of ‖fZn,Vk − g‖2
L2,ρ (Ω)

over 10 runs for the optimal coupling between k and

n. Left: Noisy data with coupling n log(n)5 = N5
k , Right: Noiseless data with coupling n

log(n) =
384 · (Nk + 1), which resembles (18) for our example. (a) Noisy data. (b) Noiseless data

40 B. Bohn

is better than the convergence rate suggests. This is due to the fact that the noise
effects the convergence behavior only if the overall error is already smaller than
a certain (noise) level. Note also that the oversampling factor 384 is the reason
why we already have more than 215 data points for the smallest level k = 1 in the
noiseless case. However, since our sampling resembles only a sufficient condition
to ensure well-posedness of the regression problem with high probability, a much
smaller oversampling constant might also do the job for practical applications.

6 Conclusion

In this article we presented error bounds, stability results and optimal parameter
couplings for the least-squares regression problem and applied them to the sparse
grid setting. To this end, we extended the results of [7] to arbitrary bases and
provided an upper bound for the crucial quantity S(ν1, . . . , νNk) from the stability
and convergence estimates. Our results showed that the sparse grid prewavelet basis
behaves (up to constants) like an orthonormal basis in the regression estimates
because of its Riesz property. Therefore, it is a good choice for regression problems
on sparse grid spaces since it employs both beneficial convergence behavior and
small support of the corresponding basis functions, which is directly connected
to the availability of cost-efficient linear equation system solvers, see e.g. [3, 5].
Finally, we presented a numerical example to illustrate that our results are not only
of theoretical interest but resemble the true convergence behavior of actual sparse
grid regression algorithms.

An interesting question which still has to be answered is if the general behavior
of the growth of S(ν1, . . . , νNk), see Theorem 4, carries over also to higher-order
spline bases on sparse grids. This is not directly clear from the proof techniques
used in this paper as they rely on the piecewise linear structure of the regression
function. Furthermore, it remains open how our results generalize to the regularized
case, where a penalty term is added in the minimization problem. A first step into
this direction regarding the stability estimate can be found in [2]. However, the rate
of error decay and the optimal parameter coupling are still unknown in this case.
Finally, a thorough comparison of our derived convergence rates for the sparse grid
method with the error decay behavior of other regression algorithms such as support
vector machines or multilayer neural networks still has to be done.

Acknowledgements The author was supported by the Sonderforschungsbereich 1060 The Math-
ematics of Emergent Effects funded by the Deutsche Forschungsgemeinschaft.

On the Convergence Rate of Sparse Grid Least Squares Regression 41

References

1. A. Banerjee, S. Merugu, I.S. Dhillon, J. Ghosh, Clustering with Bregman divergences. J. Mach.
Learn. Res. 6, 1705–1749 (2005)

2. B. Bohn, Error analysis of regularized and unregularized least-squares regression on discretized
function spaces. PhD thesis, Institute for Numerical Simulation, University of Bonn, 2017

3. B. Bohn, M. Griebel, An adaptive sparse grid approach for time series predictions, in Sparse
Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science
and Engineering, vol. 88 (Springer, Berlin, 2012), pp. 1–30

4. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
5. H.-J. Bungartz, D. Pflüger, S. Zimmer, Adaptive sparse grid techniques for data mining, in

Modelling, Simulation and Optimization of Complex Processes 2006, Proceedings of Inter-
national Conference on HPSC, Hanoi, ed. by H. Bock, E. Kostina, X. Hoang, R. Rannacher
(Springer, Berlin, 2008), pp. 121–130

6. A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone, Discrete least squares polynomial
approximation with random evaluations - application to parametric and stochastic elliptic
PDEs. ESAIM: Math. Modell. Numer. Anal. 49(3), 815–837 (2015)

7. A. Cohen, M. Davenport, D. Leviatan, On the stability and accuracy of least squares
approximations. Found. Comput. Math. 13, 819–834 (2013)

8. C. Feuersänger, Sparse grid methods for higher dimensional approximation. PhD thesis,
Institute for Numerical Simulation, University of Bonn, 2010

9. J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen
Gittern. PhD thesis, Institute for Numerical Simulation, University of Bonn, 2004

10. J. Garcke, M. Griebel, M. Thess, Data mining with sparse grids. Computing 67(3), 225–253
(2001)

11. M. Griebel, P. Oswald, Tensor product type subspace splitting and multilevel iterative methods
for anisotropic problems. Adv. Comput. Math. 4, 171–206 (1995)

12. M. Griebel, C. Rieger, B. Zwicknagl, Multiscale approximation and reproducing kernel Hilbert
space methods. SIAM J. Numer. Anal. 53(2), 852–873 (2015)

13. M. Griebel, C. Rieger, B. Zwicknagl, Regularized kernel based reconstruction in generalized
Besov spaces. Found. Comput. Math. 18(2), 459–508 (2018)

14. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer, Berlin,
2001)

15. M. Hegland, Data mining techniques. Acta Numer. 10, 313–355 (2001)
16. S. Knapek, Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. PhD

thesis, Institute for Numerical Simulation, University of Bonn, 2000
17. G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Analysis of discrete L2 projection on

polynomial spaces with random evaluations. Found. Comput. Math. 14, 419–456 (2014)
18. G. Migliorati, F. Nobile, R. Tempone, Convergence estimates in probability and in expectation

for discrete least squares with noisy evaluations at random points. J. Multivar. Anal. 142, 167–
182 (2015)

19. D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional
data-driven problems. J. Complexity 26(5), 508–522 (2010)

20. B. Schölkopf, A. Smola, Learning with Kernels – Support Vector Machines, Regularization,
Optimization, and Beyond. (The MIT Press, Cambridge, 2002)

21. J. Tropp, User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4),
389–434 (2011)

Multilevel Adaptive Stochastic
Collocation with Dimensionality
Reduction

Ionut,-Gabriel Farcas,, Paul Cristian Sârbu, Hans-Joachim Bungartz,
Tobias Neckel, and Benjamin Uekermann

Abstract We present a multilevel stochastic collocation (MLSC) with a dimension-
ality reduction approach to quantify the uncertainty in computationally intensive
applications. Standard MLSC typically employs grids with predetermined resolu-
tions. Even more, stochastic dimensionality reduction has not been considered in
previous MLSC formulations. In this paper, we design an MLSC approach in terms
of adaptive sparse grids for stochastic discretization and compare two sparse grid
variants, one with spatial and the other with dimension adaptivity. In addition,
while performing the uncertainty propagation, we analyze, based on sensitivity
information, whether the stochastic dimensionality can be reduced. We test our
approach in two problems. The first one is a linear oscillator with five or six
stochastic inputs. The dimensionality is reduced from five to two and from six to
three. Furthermore, the dimension-adaptive interpolants proved superior in terms of
accuracy and required computational cost. The second test case is a fluid-structure
interaction problem with five stochastic inputs, in which we quantify the uncertainty
at two instances in the time domain. The dimensionality is reduced from five to two
and from five to four.

1 Introduction

One of the major goals in computational science is to obtain reliable simulation
results from which useful predictions can be made. However, whether stemming
from measurement errors, incomplete physics, or the variation of physical param-
eters, uncertainty is intrinsic to most applications. Therefore, uncertainty needs
to be taken into account ab initio. The process of assessing the impact of input

I.-G. Farcas, · P. C. Sârbu · H.-J. Bungartz (�) · T. Neckel · B. Uekermann
Technical University of Munich, Garching, Germany
e-mail: farcasi@in.tum.de; sarbu@in.tum.de; bungartz@in.tum.de; neckel@in.tum.de;
uekerman@in.tum.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_3&domain=pdf
mailto:farcasi@in.tum.de
mailto:sarbu@in.tum.de
mailto:bungartz@in.tum.de
mailto:neckel@in.tum.de
mailto:uekerman@in.tum.de
https://doi.org/10.1007/978-3-319-75426-0_3

44 I.-G. Farcas, et al.

uncertainties in a model’s output is called uncertainty propagation or analysis and it
is part of the broader field of uncertainty quantification (UQ).

A prominent approach for uncertainty analysis is generalized polynomial chaos
(gPC) [36]. gPC allows to approximate random functionals of second order, i.e. with
finite variance, in terms of orthogonal polynomials. Furthermore, to achieve optimal
convergence, the polynomials are chosen with respect to the input probability
measure. One popular approach to determine the gPC coefficients is stochastic
collocation (SC) (see e.g. [22]). With this method, the underlying equation needs to
be satisfied at a finite set of prescribed collocation points. Being non-intrusive, SC is
embarrassingly parallel, thus suitable for parallel computations, and allows the reuse
of existing simulation codes. Once the gPC coefficients are available, quantities such
as expectation, variance, or total Sobol’ indices for global sensitivity analysis can be
analytically computed. However, traditionally, the computational cost of SC scales
exponentially with the dimension, introducing the “curse of dimensionality”.

It is well established that exploiting the anisotropic coupling of a model’s
input parameters via sparse grids [37] is a suitable approach to delay the curse
of dimensionality. To this end, sparse grids were extensively used in UQ. A non-
exhaustive list includes [10], where adaptive sparse grid collocation was used
in peridynamics problems. Adaptive sparse grid quadrature with Leja points was
employed in [20]. Therein, the authors showed that, at least in interpolatory metrics,
Leja sequences are often superior to more standard sparse grid constructions.
In [6, 7], sparse grids and gPC were combined in the so-called sparse pseudo-
spectral approximation (SPAM). SPAM aims to overcome the aliasing errors that
may occur when classical sparse grid quadrature is used to evaluate the gPC
coefficients. Inspired from the multigrid approach (see e.g. [32]), multilevel methods
reduce the overall cost of single-level approaches, while maintaining the single-
level accuracy. Multilevel SC (MLSC) was proposed in [31] for problems governed
by elliptic partial differential equations (PDEs) with random input data. Therein,
standard sparse grids were employed for stochastic discretization, the focus being
on convergence and computational cost analysis. Furthermore, in [5] dimension-
adaptive sparse grids were employed in combination with an adaptive and weighted
reduced basis method to reduce the computational cost. Finally, in [26], Bayesian
compressive sensing was used to reduce the stochastic dimensionality in models
approximated via gPC. In recent years, the UQ research focus was generally tailored
to methodologies that keep the dimensionality constant, but exploit other features of
the problem at hand. A complementary approach, which we follow in this work, is
to reduce the stochastic dimensionality.

To this end, we formulate a novel non-intrusive computational methodology
for the uncertainty analysis in complex, high-dimensional stochastic problems. We
employ gPC approximations and, to compute the gPC coefficients, we combine
a non-intrusive multilevel decomposition of both deterministic and stochastic
domains with stochastic dimensionality reduction. We note that even though our
method is designed to be model-agnostic, the target application is fluid-structure
interaction (FSI). Our methodology builds on [9]. Therein, spatially-adaptive sparse
grids were used to compute the gPC coefficients in FSI simulations. However, the

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 45

approach was formulated in a single-level fashion, without stochastic dimensionality
reduction.

The formulation of our methodology is driven by two goals. Because one
collocation point means one evaluation of the underlying solver, our first goal is to
keep the number of collocation points small. Therefore, we employ adaptive sparse
grids for stochastic discretization. In addition, we compare spatially- and dimension-
adaptive sparse grids. For spatially-adaptive grids, we consider Newton-Cotes nodes
and modified polynomial basis functions of second degree. On the other hand, for
dimension-adaptive grids, we use Leja sequences and Lagrangian basis functions.
Even more, for each adaptive strategy, we discuss two refinement criteria. We
compare the two adaptive strategies in terms of number of grid points and accuracy
with respect to reference results computed on a tensor grid. Our second goal is to
reduce the stochastic dimensionality while performing the uncertainty propagation.
Since MLSC relies on a sequence of problems with different resolutions, we
select a subsequence of problems and asses the corresponding gPC coefficients.
Afterwards, we compute total Sobol’ indices for global sensitivity analysis and
compare them to a user defined threshold; if a Sobol’ index is less than the threshold,
that uncertain input is ignored. If no uncertain input is ignored, we simulate
the remaining subsequence of problems using the original stochastic grid. When
stochastic dimensionality reduction is possible, we construct the corresponding
lower dimensional grid. In the next step, we project the previously computed results
and simulate the remaining subsequence of problems on the lower dimensional grid.
Note that dimensionality reduction does not mean that the number of stochastic
parameters changes; the uncertain parameters that are “ignored” are simply replaced
with a corresponding deterministic value, e.g. their expectations. In addition, when
dimensionality reduction is not possible, we still profit from using adaptive sparse
grids and multilevel decompositions.

In Sect. 2, we introduce our notation and describe spatially- and dimension-
adaptive interpolation, needed to formulate our MLSC approach. Furthermore, we
discuss two refinement criteria for each adaptive strategy. Section 3 focuses on
the proposed MLSC with our dimensionality reduction approach. In Sect. 4, we
describe numerical results. In Sect. 4.1, we consider a linear oscillator with five or
six uncertain inputs. Furthermore, we test and compare all four adaptive refinement
criteria. In Sect. 4.2, we employ one spatially- and one dimension-adaptive criteria
in a simple FSI scenario with five uncertain inputs. Moreover, we quantify the
uncertainty at two instances in the time domain. We conclude this work in Sect. 5.

2 Adaptivity with Sparse Grids

Sparse grids were introduced in [37] for the discretization of second-order elliptic
PDEs. Thereafter, sparse grids have been employed in a broad spectrum of
applications, including quadrature [2, 11, 12], clustering and data mining [24, 25], or
UQ [6, 7, 9, 10, 20, 22, 31]. In this section, we summarize two classes of refinement

46 I.-G. Farcas, et al.

strategies for sparse grid interpolation. In Sect. 2.1, we outline sparse grids with
local or spatial refinement. In Sect. 2.2, we focus on subspace- or dimension-
adaptive sparse grids. Furthermore, for each strategy, we consider two different
refinement criteria. For a more comprehensive overview of sparse grids, please refer
to [3].

2.1 Interpolation on Spatially-Adaptive Sparse Grids

Let l, i ∈ N denote the level and spatial position, respectively. The starting point is
a grid of Newton-Cotes nodes ul,i = ihl ∈ [0, 1], hl := 2−l , i ≥ 1, and standard
linear hat basis functions ϕl,i(u) centered at ul,i , with support [ul,i − hl, ul,i + hl].
ϕl,i(u) = ϕ(2lu − i), where ϕ(u) = max(1 − |u|, 0). Note that this construction
leads to no boundary points. Furthermore, if i = 1, the number of grid points is
Nl = 1, whereas if i > 1, Nl = 2i−1 + 1. The Newton-Cotes nodes are nested,
i.e. the points at level l − 1 are a subset of the points at level l. The extension to
d-dimensions is done via a tensor product construction

ϕl,i(u) =
d∏

j=1

ϕlj ,ij (uj),

where l = (l1, . . . , ld) ∈ N
d and i = (i1, . . . , id) ∈ N

d .
Let Wl = span{ϕl,i|i ∈ Il} denote a so-called hierarchical increment space,

where Il = {i ∈ N
d : 1 ≤ ik ≤ 2lk − 1, ik odd , k = 1 . . . d}. Given a level l, the

sparse grid space V 1
l is defined as

V 1
l =

⊗

l∈L
Wl.

For the standard sparse grid construction, the multi-index set L is

L = {l ∈ N
d : |l|1 ≤ l + d − 1}, (1)

where |l|1 :=∑d
i=1 li . We depict 2 and 3D sparse grids of level three in Fig. 1.

The sparse grid interpolant fIl of f reads

fIl(u) =
∑

l∈L ,i∈Il

αl,iϕl,i(u), (2)

where αl,i are the so-called hierarchical surpluses, computed as

αl,i = f (ul,i)− f (ul,i − hl)+ f (ul,i + hl)

2
. (3)

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 47

Fig. 1 Two-dimensional (left) and three-dimensional (right) standard sparse grid for l = 5

If f ∈ Hmix
2 ([0, 1]d) = {f : [0, 1]d → R : Dlf ∈ L2([0, 1]d), |l|∞ ≤ 2},

where Dlf = ∂ |l|1f/∂xl11 . . . ∂x
ld
d and |l|∞ := max

i
li , then ||f (u) − fIl(u)||L2 ∈

O(h2
l l
d−1), where ||f (u)||2

L2 :=
∫
[0,1]d |f (u)|2du. The cost is O(h−1

l |log2hl |d−1)

degrees of freedom (dof) (cf. [3]). When using a full grid interpolant f̃ , ||f (u) −
f̃ (u)||L2 ∈ O(h2

l), at a cost of O(h−dl) dof. Therefore, with standard sparse grids,
the number of dof is significantly reduced while the accuracy is only slightly
deteriorated.

The sparse grid approach can be generalized to more sophisticated basis func-
tions, such as higher order polynomials [1]. Provided that Dp+1f is bounded for
some p ≥ 2, then ||f (u) − fIl(u)||L2 ∈ O(h

p+1
l ld−1). In this paper, we assume

that the underlying model has bounded higher order mixed derivatives and employ
polynomial basis functions of degree two, depicted in Fig. 2, left, for l ≤ 3.

As mentioned in the beginning of this section, the employed sparse grid construc-
tion leads to no points on the boundary of [0, 1]d . However, when the underlying
function does not vanish at the boundary, we need to extend the previously described
construction to incorporate boundary information, too. Our solution is to modify the
standard basis functions so as to linearly extrapolate the boundary information (see
[25]). In Fig. 2, right, we depict 1D modified polynomial basis functions for l ≤ 3.

To address interpolation of computationally expensive functions, we employ
spatially-adaptive or local refinement (see [17, 25]), an intrinsic property of sparse
grids, due to their hierarchical construction. As hierarchical surpluses (cf. Eq. (3))
are an indicator of local interpolaton error, we employ refinement criteria based
on surpluses values. Let L̄ = {(l, i) : ul,i is refinable} be the set containing all
levels and indices corresponding to grid points that can be refined. We consider two
refinement criteria. The first one is the maximum absolute surplus refinement [17]
(MAS)

max
(l,i)∈L̄ |αl,i|. (4)

48 I.-G. Farcas, et al.

Fig. 2 Standard polynomial basis functions of second degree (left) and their modified version
(right) for l = 1, 2, 3

The second one is the expectation value refinement (EVR), similar to [10]. It reads

max
(l,i)∈L̄ |αl,iE[ϕl,i(θ)]|, (5)

where E[ϕl,i(θ)] :=
∫
[0,1]d ϕl,i(θ)dθ . For example, if ϕl,i are the hat functions,

E[ϕl,i(θ)] = 2−|l|1 . Note that if not all hierarchical parents exist in the refined grid,
we ensure that they are added as well (see e.g. [25]).

2.2 Interpolation with Dimension-Adaptive Sparse Grids

Let f (i)l =∑Nl−1
j=0 f (ulj)ϕlj (u) denote a sequence of one-dimensional interpolation

formulae, where i = 1, 2, . . . , d , l ∈ N represents the interpolation level, u ∈ [0, 1],
and (ulj)

Nl−1
j=0 is a sequence of Nl grid points at level l. Furthermore, ϕlj (u) are

Lagrange polynomials, i.e. ϕlj (uli) = δi,j .
We construct the d-variate interpolant using the so-called Smolyak algorithm

[27]. This algorithm decreases the computational effort by weakening the assumed
coupling between input dimensions (cf. [6]). Let Δ(i)l0 := f (i)l0 ,Δ

(i)
li
:= f (i)li − f (i)li−1

,

andΔl := Δ(1)l1 ⊗ . . .⊗Δ(d)ld . The d−variate sparse interpolation formula reads

A (L , d) =
∑

l∈L
Δl =

∑

l∈L
Δ
(1)
l1
⊗ . . .⊗Δ(d)ld , (6)

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 49

whereL is a multi-index set. For a standard, isotropic grid of level l, L is defined as
in Eq. (1). We remark that in this work, A (L , d) is available only algorithmically,
as a black box. Hence, we do not have direct access to (Δ(i)li)

d
i=1.

We construct Eq. (6) in terms of Leja points [16]. The Leja point distribution is a
sequence (un)n∈N in a compact domain D ⊂ C that maximizes Ψn(u) =∏n

i=1(u−
ui). In this work, we compute (un)n∈N as

u0 = 0.5

un+1 = argmax
u∈D

|Ψn(u)|, n = 1, 2, . . . , (7)

where D = [0, 1]. Leja points are nested, i.e. (un)
Nl−1
n=0 ⊂ (un)Nl+1−1

n=0 and they grow
linearly with the level as Nl = gf (l − 1) + 1, where gf ∈ N is the growth factor.
Therefore, Leja points are suitable to address high-dimensional computational
problems. Note that Eq. (7) may not posses a unique solution, making the Leja
sequence generally not unique. In Fig. 3, we depict two- and three-dimensional Leja
grids for l = 5 and gf = 2. For more details about Leja sequences, see e.g. [18, 20].

Because the underlying basis functions are global polynomials, we can no
longer perform local refinement as in Sect. 2.1. We can instead perform subspace-
or dimension-adaptivity (cf. [12]). We first note that Eq. (6) assumes that L is
admissible, i.e. it has no “holes”. This means that ∀l ∈ L : l − ej ∈ L , where
ej is the j th canonical unit vector of Nd (see [13]). Therefore, in the following, we
assume that we have a sparse grid characterized by an initial admissible multi-index
set L .

Let l′, l be two multi-indices in an admissible multi-index set L . l′ is called the
parent of l if |l − l′|1 = 1. Additionally, let L̄ = {k ∈ N

d \ L : |k − l|1 =
1, l ∈ L } denote the set of multi-indices whose parents are in L . Our adaptive
refinement criteria appends to L the multi-index k ∈ L̄ having the highest priority.
The priority of k is given by a function qk(Δl(1) , . . . ,Δl(m)), where l(1) . . . l(m) are
the parents of k. The first refinement criterion uses an averaging priority function

Fig. 3 Two-dimensional (left) and three-dimensional (right) sparse grid of level l = 5 constructed
with Leja points with gf = 2

50 I.-G. Farcas, et al.

(AVG), cf. [15],

qk(Δl(1) , . . . ,Δl(m)) =
∑m
i=1 ||Δl(i) ||L2

Nk
, (8)

where Nk is the cost (number of grid points) needed to add k to L . The second
refinement criterion uses a maximum priority function (MAX)

qk(Δl(1) , . . . ,Δl(m)) = max({qi}mi=1), qi = max
(
r
||Δl(i) ||L2

||Δ1||L2
, (1− r) 1

N
(i)
l

)
,

(9)

where 1 = (1, . . . , 1) is the initial level, N(i)l represents the number of grid points
corresponding to l(i), and r ∈ [0, 1] controls the balance between error and cost. If
r ≈ 0, the refinement depends dominantly on the cost of adding a new subspace.
On the other hand, when r ≈ 1, the error dominates the refinement procedure; the
choice of r is heuristic and dependents on the desired trade-off between reducing
the error and controlling the computational cost. Note that the MAX refinement
criterion (9) is similar to [12]. However, we add just one level at a time, thus,
having a fine control over the grid points. We remark that the two aforementioned
refinement strategies are heuristic. Nevertheless, since our goal is to construct a
computational UQ approach suitable for computationally expensive applications,
they suffice for our purposes.

We end this section summarizing our strategy for adaptive refinement. In general,
adaptive refinement enriches the sparse grid based on a prescribed stopping criteria,
e.g. error tolerance (emphasis on accuracy), maximum number of grid nodes
(emphasis on computational cost), or combination thereof. As we aim to address
computationally expensive UQ problems, we perform the refinement such that we
keep the number of grid points, hence, the computational cost as small as possible
while having a reasonable approximation accuracy. To this end, when employing
spatially-adaptive refinement, we refine a percentage of the current grid points in one
refinement step. On the other hand, in one refinement step in the dimension-adaptive
case, we add a user-defined number of multi-indices to the current sparse grid multi-
index set based on the two above mentioned priority functions. Note that employing
only the error tolerance as stopping criteria might lead to a too early stopping of the
refinement process in some regions before achieving the desired accuracy (for more
details, see e.g. [5] and the references therein). Finally, we remark that our proposed
methodology for stochastic dimensionality reduction is independent of the strategy
used for sparse grid adaptive refinement. Therefore, our approach can be employed
using arbitrary sparse grid refinement techniques.

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 51

3 Multilevel Stochastic Collocation with Dimensionality
Reduction

In Sect. 3.1, we give a brief overview of gPC approximation. In Sect. 3.2, we
describe our multilevel approach for computing the gPC coefficients. Finally, in
Sect. 3.3, we formulate the proposed MLSC with our dimensionality reduction
approach employing total Sobol’ indices for variance-based global sensitivity
analysis.

3.1 Generalized Polynomial Chaos

In what follows, we assume that the underlying numerical solver is given as a
black box M (x, θ), where x denotes the deterministic inputs (e.g. time, boundary
conditions), whereas θ denotes the uncertain inputs. We adopt a probabilistic
framework and model the uncertain inputs as a d-variate random vector θ =
(θ1, . . . , θd) with independent and identically distributed (i.i.d.) components from a
probabilistic space (Ω,F ,P). Ω represents the sample (event) space, F is a σ -
algebra, and P is a probability measure. If ρi : Γi → R is the probability density
function (PDF) of θi , the joint PDF ρ of θ reads ρ = ∏d

i=1 ρi(θi), with support
Γ :=∏d

i=1 Γi .
Let P ∈ N and P = {p = (p1, . . . , pd) ∈ N

d : |p|1 < P } a total-degree index
set. Furthermore, let {Φpi (yi)}di=1 be univariate orthogonal polynomials of degree
pi , i.e.

E[Φpi (y)Φpj (y)] :=
∫

Γk

Φpi (y)Φpj (y)ρk(y)dy = ciδij ,

where Φ0 ≡ 1, ci ∈ R and δij is the Kronecker delta. A d-variate orthogonal
polynomialΦp(y) is constructed via a tensor product of univariate polynomials, i.e.

Φp(y) := Φp1(y1) . . . Φpd (yd).

For a given P ∈ N, the number of d-variate orthogonal polynomials is N :=(
d+P
d

)
. To simplify notation, in what follows, we assume that the polynomials are

orthonormal, i.e. ci ≡ 1. In addition, instead of using the multi-index subscript p,
we employ a scalar index n = 0 . . . N − 1.

The N th order gPC approximation of M (x, θ) reads (see [36])

M (x, θ) ≈MN(x, θ) :=
N−1∑

n=0

mn(x)Φn(θ),

52 I.-G. Farcas, et al.

where the coefficientsmn(x) are obtained via projection

mn(x) =
∫

Γ

M (x, θ)Φn(θ)ρ(θ)dθ = E[M (x, θ)Φn(θ)], n = 0, . . . , N − 1.

(10)

We address the gPC coefficients computation in Sect. 3.2.
Because of the orthogonality of the gPC polynomial basis, quantities such as

expectation, variance, or total Sobol’ indices for global sensitivity analysis [28]
can be computed analytically from the gPC coefficients. The expectation and the
variance are obtained as (see [35] for more details)

E[MN(x, θ)] = m0(x), (11)

Var[MN(x, θ)] =
N−1∑

n=1

m2
n(x). (12)

A total Sobol’ index STi accounts for the total contribution of an uncertain input to
the resulted variance. This comprises the contribution of the input taken individually
and contributions due to its interactions with other uncertain inputs. The connection
between total Sobol’ indices and gPC coefficients was shown in [30]. It reads

STi (x) =
∑
k∈An m

2
k(x)

Var[MN(x, θ)] , (13)

where i = 1, . . . , d . An = {n : ind(p) = n∧p ∈P, pi ∈ p, pi �= 0}, where ind(p)
denotes the index of p in P . For more details about gPC, please refer to [35].

3.2 Multilevel Approaches for Generalized Polynomial Chaos

We model the uncertain inputs {θi}di=1 as uniform random variables in a compact
domain [ai, bi]. Therefore, the associated gPC basis consists in Legendre polyno-
mials (cf. [36]). Before going further, note that sparse grids are defined in [0, 1]d ,
whereas the uncertain inputs belong to Γ = [a1, b1]× . . .×[ad, bd]. To this end, let
T : [0, 1]d → Γ be a linear transformation. Then, M (x,T(ω)) :=M (x, θ) ◦T(ω)
denotes the model whose stochastic space is [0, 1]d . In addition, the proposed
approach can be generalized to arbitrary domains, employing suitable, possibly
non-linear transformations, such as the inverse cumulative distribution function (see
e.g. [29]).

As previously mentioned, we assume that M (x,T(ω)) is available as a black
box. Therefore, we assess the gPC coefficients in Eq. (10) numerically. Note that
as the model is assumed to be resource-intensive, even for small dimensionality,

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 53

standard tensor-product quadrature is computationally too expensive. An alternative
is (adaptive) sparse grid quadrature (see e.g. [2, 11]). However, in [6, 7], it was
shown that significant aliasing errors may occur unless a possibly high-order
scheme is employed. Furthermore, the quadrature weights can become negative (see
e.g. [14]).

To evaluate the gPC coefficients in Eq. (10), we combine adaptive sparse grid
interpolation with quadrature, as follows. We discretize ω on a d-dimensional sparse
grid and construct an interpolant M sg

d (x,T(ω)) of M (x,T(ω) using either Eq. (2)
or (6). Furthermore, we adaptively refine M

sg
d (x,T(ω)) based on Eq. (4), (5), (8),

or (9). Afterwards, we plug the interpolant into Eq. (10) and obtain

mn(x) = E[M (x,T(ω))Φn(ω)] = E[M sg

d (x,T(ω))Φn(ω)]. (14)

Finally, we compute the resulting integral via Gauss-Legendre quadrature. We note
that when using spatially-adaptive sparse grids, we can exploit the tensor structure
of both sparse grid and gPC basis to break the integral in Eq. (14) down into a
weighted sum of products of one-dimensional integrals (see [9] for more details).

MLSC was initially formulated in [31] in terms of a hierarchy of multi-
variate sparse grid interpolants computed on standard sparse grids. In this work,
we formulate an MLSC approach based on adaptive sparse grid interpolation to
compute gPC approximation coefficients. Our aim is to have a computational
method suited for resource-intensive applications. Let h, q ∈ N and let Mh denote
the number of dof employed to discretize the problem domain at level h. Typically,
if M0 corresponds to the coarsest level, Mh = g(h)M0, for some function g(h).
Additionally, let Lq denote the sparse grid resolution level. We note that when using

adaptive sparse grids,Lq refers toL0 after q refinement steps. Finally, letm
Mh,Lq
n (x)

denote the nth gPC coefficient computed using a problem domain resolutionMh and
sparse grid resolution Lq . Given a K ∈ N, we approximatemMK,LKn (x) as

mMK,LKn (x) ≈ mM0,LK
n (x) +

(m
M1,LK−1
n (x)−mM0,LK−1

n (x)) +
. . . +
(mMK,L0
n (x)−mMK−1,L0

n (x))

≈
K∑

k=0

(m
Mk,LK−k
n (x)−mMk−1,LK−k

n (x)),

(15)

where mM−1,LK
n (x) := 0. Therefore, in Eq. (15), we begin with the coarse grid

solution mM0,LK
n (x) and, for k ≥ 1, add fine grid corrections (mMk,LK−kn (x) −

m
Mk−1,LK−k
n (x)). Note that this procedure is similar to the multigrid algorithm (see

e.g. [32]).

54 I.-G. Farcas, et al.

Fig. 4 Three-level decomposition of model and stochastic domains. M0, M1, and M2 denote the
deterministic domain resolution, whereas L0, L1, and L2 denote the stochastic domain resolution.
The three-level decomposition leads to five combinations: M0 with L2 and L1 (left part), M1 with
L1 and L0 (middle part), and M2 with L0 (right part). Note that because we use nested sparse
grids, L0 ⊂ L1 ⊂ L2

Equation (15) requires 2K + 1 gPC coefficients, one corresponding to MK and
two to each MK−k, k = 1, . . . ,K . However, {mMK−k,Lk−1

n (x)} ⊂ {mMK−k,Lkn (x)},
since we employ nested sparse grids. Thus, we need only solve a total of K +
1 problems, reducing the computational cost even further. We depict a three-level
approach with adaptive sparse grids for stochastic discretization in Fig. 4.

3.3 Stochastic Dimensionality Reduction

To our knowledge, stochastic dimensionality reduction has not been considered in
previous MLSC formulations. Let K ={mM0,LK

n (x),mM1,LK−1
n (x), . . . ,mMK,L0

n (x)}
denote the set ofK+1 coefficients in Eq. (15). Additionally, consider an integer J <

K and a subset J = {mMj ,LK−jn (x),m
Mj+1,LK−j−1
n (x), . . . ,m

Mj+J ,LK−j−J
n (x)} ⊂

K , for some j ≥ 0. Therefore, J contains J + 1 coefficients from the total of
K + 1. Note that the coefficients from K and, implicitly from J , too, can be
computed independently from each other. Because j and J determine the subset
J , we recommend to start with a J of low cardinality, e.g. one, and afterwards,
depending on the available computational budged and desired accuracy, to increase
the cardinality of J , if necessary. Finally, let τ ∈ (0, 1] denote a user defined
threshold.

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 55

We formulate our dimensionality reduction approach as follows. Initially, the
stochastic dimension is the original one, i.e. d . In the first step, we compute the
coefficients from J employing a d-dimensional stochastic grid. In the second step,
we obtain a multilevel approximation ofmMJ ,LJn (x) (cf. Eq. (15)),

mMJ ,LJn (x) =
j+J∑

k=j
(m
Mk,LK−k
n (x)−mMk−1,LK−k

n (x)). (16)

Next, using Eq. (13), we compute the total Sobol’ indices corresponding to each
uncertain input and obtain a set S = {STi (x), i = 1, . . . , d}. Note that up to this
point, the stochastic dimensionality is still d . In the fourth step, we analyze whether
we can reduce the stochastic dimensionality. We compare each STi (x) ∈ S to the
user defined threshold τ ; the choice of τ is heuristic and can depend on the number
of uncertain inputs and desired results accuracy. If STi (x) < τ , we consider the ith

input’s contribution as unimportant and we ignore it. By ignoring an uncertain input,
we mean that we no longer consider it uncertain, but deterministic or known. In this
paper, the deterministic value associated to an uncertain input is its expectation.
If STi (x) ≥ τ , the ith uncertain input remains stochastic. On the one hand, if no
uncertain input is ignored, we calculate the coefficients from K \ J using the
original stochastic grid and, afterwards, compute the multilevel gPC coefficients
using Eq. (15). On the other hand, if s < d uncertain inputs are ignored, we compute
the coefficients from K \J using a stochastic grid of dimension d − s. Because
the coefficients from J and K \ J are computed using different stochastic
dimensionality, we need to project the results from the original grid onto the reduced
grid. Finally, we compute the multilevel gPC coefficients (cf. Eq. (15)) using the grid
of dimensionality d − s.

To project the results from the stochastic grid with dimensionality d onto
a grid with dimensionality d − s, we simply evaluate the d-dimensional inter-
polant at the s deterministic inputs. Let mMk,LK−kn (x) ∈ J and T(ω) =
(T1(ω1), T2(ω2), . . . , Td(ωd)). Assuming, without loss of generality, that the inputs
d − s + 1, . . . , d are ignored, the projection on a d − s dimensional grid reads (cf.
Eq. (14))

m
Mk,LK−k
n (x) = E[M sg

d (x, T1(ω1), . . . , Td−s (ωd−s), ūd−s+1, . . . , ūd)Φn(ω1, . . . , ωd−s)],
(17)

where ūd−s+1, . . . , ūd are the deterministic values corresponding to the ignored
stochastic inputs, mapped to [0, 1]. On the one hand, when employing dimension-
adaptive interpolation, we simply substitute Eq. (6) into Eq. (17) and then evaluate
M

sg

d . On the other hand, when using spatially-adaptive grids, we transform the

56 I.-G. Farcas, et al.

d-dimensional interpolant from Eq. (2) into a d − s-dimensional version, as

fIl(x,T(ω)) =
∑

l∈L ,i∈Il

αl,iϕl,i(u)

=
∑

l∈L ,i∈Il

(∑

k

α(l1,...,lk,...,ld),(i1,...,ik,...,id)

d∏

k=d−s+1

ϕlk,ik (ūk)
) d−s∏

j=1

ϕlj ,ij (uj)

=
∑

l∈L ′,i∈I ′
l

α′l,iϕ
′
l,i(u

′),

and afterwards, we plug it into Eq. (17). In the above formula, α′l,i is obtained

from αl,i by “absorbing”
∏d
k=d−s+1 ϕlk,ik (ūk), i.e. the sparse grid basis functions

evaluated at the deterministic inputs. Furthermore, ϕ′l,i are basis functions of the new
d−s dimensional space and u′ represents u without the components d−s+1, . . . , d .
We summarize our proposed MLSC with dimensionality reduction in Algorithm 1.

Before ending this section, we note that although in our formulation we analyze
only once whether the stochastic dimensionality can be reduced, our approach can
be easily generalized. Therefore, instead of considering just one J ⊂ K , we could
consider a sequence J1,J2, . . . ⊂ K , possibly such that Jm ⊆ Jm+1,m =
1, 2, After we compute the gPC coefficients from Jm, we analyze whether the
stochastic dimensionality could be reduced. In our view, the generalized approach
is suitable when the initial number of uncertain parameters is large or when some
total Sobol’ indices are close to the prescribed threshold.

Algorithm 1: The proposed MLSC with stochastic dimensionality reduction
Data: initial stochastic dimensionality d, J , K , τ
Result: number of ignored dimensions s, gPC coefficients
compute the gPC coefficients from J using Eq. (14);
compute the partial multilevel gPC coefficients using Eq. (16);
s ← 0;
for i ← 1 to d do

compute STi (x) based on the gPC coefficients from J using Eq. (13);
if STi (x) < τ then

s ← s + 1;

if s > 0 then
project coefficients from J onto a stochastic grid of dimensionality d − s using
Eq. (17);

compute the gPC coefficients from K \J on a grid of dimensionality d − s using Eq. (14);
compute the final multilevel gPC coefficients on a grid of dimensionality d − s using
Eq. (15) ;

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 57

4 Numerical Results

In Sect. 4.1, we consider a linear oscillator model with two stochastic setups, one
with five and the other with six uncertain inputs. Furthermore, we compare the
four considered adaptive refinement criteria with respect to reference results from a
full tensor grid. In Sect. 4.2, we employ one spatially- and one dimension-adaptive
criterion in an FSI scenario with five uncertain inputs. Moreover, we quantify the
uncertainty at two instances in the time domain. Throughout this work, the entire
sparse grid functionality was provided by the open-source library SG++1 [25].

4.1 Second-Order Linear Oscillator with External Forcing

The first considered test case is a damped linear oscillator subject to external forces,
modeled as a second-order ordinary differential equation

⎧
⎪⎪⎨

⎪⎪⎩

d2y

dt2
(t)+ c dy

dt
(t)+ ky(t) = f cos(ωt)

y(0) = y0
dy
dt
(0) = y1,

where c is the damping coefficient, k the spring constant, f the forcing amplitude,
and ω the frequency. Furthermore, y0 represents the initial position, whereas y1 is
the initial velocity. Throughout our simulations, t ∈ [0, 20].

To gain a broad overview of our approach, we consider two stochastic setups. In
the first one, the deterministic inputs are x1 = (t, ω), ω = 1.05, whereas the vector
of stochastic inputs is θ1 = (c, k, f, y0, y1). In the second setup, x2 = t and θ2 =
(c, k, f, ω, y0, y1). θ1 and θ2 have i.i.d. uniform components. The corresponding
ai and bi are listed in Table 1. These values are taken from [20, Sect. 5.1.] and
yield an underdamped regime. In addition, the deterministic values associated to
the stochastic inputs are ūi = (ai + bi)/2, i.e. their expectations. Note that all
ūi ∈ [0, 1], the standard sparse grid domain; otherwise, we would need to scale
them (cf. Sect. 3.3).

Table 1 Second-order linear oscillator test case: uniform bounds for θ1, θ2 and associated
deterministic values

c [N s/m] k [N/m] f [N] ω [rad/s] y0 [m] y1 [m/s]

ai 8.00e−02 3.00e−02 8.00e−02 8.00e−01 4.50e−01 −5.00e−02

bi 1.20e−01 4.00e−02 1.20e−01 1.20e+00 5.50e−01 5.00e−02

ūi 1.00e−01 3.50e−02 1.00e−01 1.00e+00 5.00e−01 0.00e+00

1http://sgpp.sparsegrids.org/.

http://sgpp.sparsegrids.org/

58 I.-G. Farcas, et al.

Table 2 Three-level MLSC for the linear oscillator test case: 5D stochastic setup, no dimension-
ality reduction

L0 L1 L2 gf rc nrp/l r Error E Error Var

71 351 1471 – – – – 1.40e−05 2.04e−05

71 187 413 – MAS 20% – 1.34e−04 2.64e−05

71 187 407 – EVR 20% – 1.63e−04 3.10e−05

71 251 799 – MAS 40% – 1.42e−05 2.04e−05

71 251 799 – EVR 40% – 1.42e−04 2.04e−05

61 231 681 2 – – – 5.63e−09 3.64e−08

61 125 177 2 AVG 10 – 2.78e−09 8.56e−08

61 97 133 2 MAX 10 0.05 2.36e−08 2.10e−05

61 121 171 2 MAX 10 0.50 5.19e−09 1.88e−07

61 121 181 2 MAX 10 0.95 3.17e−09 9.71e−08

The quantities of interest (QoI) are the expectation and variance of the displace-
ment y(t) measured at t0 = 10, computed using Eqs. (11) and (12). We employ
a gPC expansion with index set P = {p = (p1, . . . , pd) ∈ N

d : |p|1 < 5} (cf.
Sect. 3.1).

For the hierarchical discretization of the problem and the stochastic domains,
we consider three levels. Therefore, K = 2 and K = {mM0,L2

n (t0),m
M1,L1
n (t0),

m
M2,L0
n (t0)} (cf. Sect. 3.2). We discretize the model using Adams predictor-corrector

methods from the scicpy.integrate2 package and consider M0 = 500,
M1 = 2000, and M2 = 8000 time steps in the discretization scheme. Fur-
thermore, for the stochastic domain discretization, we consider both standard and
adaptive sparse grids. To analyze the possibility for dimensionality reduction, we
consider two choices for J ⊂ K . In the first choice, J1 = {mM1,L1

n (t0)};
we choose the “middle” configuration (cf. Fig. 4) because it comprises grids of
intermediate accuracy, thus avoiding potentially inaccurate results. In the second
choice, J2 = {mM0,L2

n (t0),m
M1,L1
n (t0)}. Finally, we compute reference results

using M2 time steps for the time domain discretization and a full tensor grid with
32768 Gauss-Legendre nodes for the stochastic space discretization. We assess the
difference between reference and our MLSC results via their relative error, i.e.
|(QoIref − QoI)/QoIref |. The reference results are Eref [y(t0)] = 1.95e − 02
and Varref [y(t0)] = 1.03e− 02.

The results of the corresponding simulations are listed in Tables 2, 3, 4, 5, 6
and 7. In the first three columns, we have the number of grid points corresponding
to Lq, q = 0, 1, 2. For both spatially- and dimension-adaptive sparse grids, L0 =
3. In the following three columns, gf denotes the growth factor for Leja points,
rc stands for refinement criterion, and nrp/l stands for the number of refinement
points/levels. For spatially-adaptive sparse grids, nrp/l denotes the percentage of
the current grid points to be refined. In the dimension-adaptive case, nrp/l stands
for the number of levels added to the current index set (cf. Sect. 2.2). In the fifth

2https://docs.scipy.org/doc/scipy-0.18.1/reference/integrate.html.

https://docs.scipy.org/doc/scipy-0.18.1/reference/integrate.html

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 59

Table 3 Three-level MLSC for the linear oscillator test case: 5D stochastic setup, dimensionality
reduction for J1 = {mM1,L1

n (t0)|t0 = 10}
L0 L1 L2 gf rc nrp/l r Error E ST1 (t0) S

T
2 (t0) S

T
3 (t0) ST4 (t0) ST5 (t0)

17 351 129 – – – – 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 187 41 – MAS 20% – 1.64e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 187 41 – EVR 20% – 1.64e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 251 81 – MAS 40% – 1.60e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 251 80 – EVR 40% – 1.60e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 231 41 2 – – – 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 125 81 2 AVG 10 – 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 97 73 2 MAX 10 0.05 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 121 73 2 MAX 10 0.50 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 121 73 2 MAX 10 0.95 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

Table 4 Three-level MLSC for the linear oscillator test case: 5D stochastic setup, dimensionality
reduction for J2 = {mM0,L2

n (t0),m
M1,L1
n (t0)|t0 = 10}

L0 L1 L2 gf rc nrp/l r Error E ST1 (t0) S
T
2 (t0) S

T
3 (t0) ST4 (t0) ST5 (t0)

17 351 1471 – – – – 1.72e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 187 413 – MAS 20% – 1.59e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 187 407 – EVR 20% – 1.58e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 251 799 – MAS 40% – 1.63e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

17 251 854 – EVR 40% – 1.59e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 231 681 2 – – – 9.40e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 125 177 2 AVG 10 – 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 97 133 2 MAX 10 0.05 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 121 171 2 MAX 10 0.50 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

13 121 181 2 MAX 10 0.95 1.69e−02 0.021 0.106 7.3e−05 3.9e−04 0.879

Table 5 Three-level MLSC for the linear oscillator test case: 6D stochastic setup, no dimension-
ality reduction

L0 L1 L2 gf rc nrp/l r Error E Error Var

545 2561 10,625 – – – – 2.37e−05 3.81e−05

545 1452 3709 – MAS 20% – 2.19e−05 3.74e−05

545 1452 3691 – EVR 20% – 2.20e−05 3.75e−05

545 1970 7142 – MAS 40% – 2.36e−05 3.81e−05

545 1970 7084 – EVR 40% – 2.36e−05 3.81e−05

377 1289 3653 2 – – – 1.07e−07 4.34e−05

377 489 601 2 AVG 10 – 1.09e−04 1.81e−04

377 415 451 2 MAX 10 0.05 3.11e−06 4.37e−05

377 415 451 2 MAX 10 0.50 3.11e−07 4.37e−05

377 497 609 2 MAX 10 0.95 1.09e−04 1.81e−04

60 I.-G. Farcas, et al.

T
ab

le
6

T
hr

ee
-l

ev
el

M
L

SC
fo

r
th

e
li

ne
ar

os
ci

ll
at

or
te

st
ca

se
:6

D
st

oc
ha

st
ic

se
tu

p,
di

m
en

si
on

al
it

y
re

du
ct

io
n

fo
r
J

1
=
{m
M

1
,L

1
n

(t
0
)|t

0
=

10
}

L
0

L
1

L
2

g
f

r
c

n
rp
/
l

r
E

rr
or

E
S
T 1
(t

0
)

S
T 2
(t

0
)

S
T 3
(t

0
)

S
T 4
(t

0
)

S
T 5
(t

0
)

S
T 6
(t

0
)

11
1

25
61

10
23

–
–

–
–

1.
16

e−
02

0.
01

81
0.

08
24

0.
00

34
0.

23
59

0.
00

03
0.

66
75

11
1

14
52

41
7

–
M

A
S

20
%

–
1.

67
e−

02
0.

01
81

0.
08

24
0.

00
34

0.
23

59
0.

00
03

0.
66

75

11
1

14
52

41
7

–
E

V
R

20
%

–
1.

67
e−

02
0.

01
81

0.
08

24
0.

00
34

0.
23

59
0.

00
03

0.
66

75

11
1

19
70

71
7

–
M

A
S

40
%

–
1.

67
e−

02
0.

01
81

0.
08

24
0.

00
34

0.
23

59
0.

00
03

0.
66

75

11
1

19
70

71
7

–
E

V
R

40
%

–
1.

67
e−

02
0.

01
81

0.
08

24
0.

00
34

0.
23

59
0.

00
03

0.
66

75

63
12

89
23

1
2

–
–

–
1.

33
e−

02
0.

01
81

0.
08

24
0.

00
33

0.
23

58
0.

00
03

0.
66

76

63
48

9
14

9
2

A
V

G
10

–
1.

22
e−

02
0.

01
81

0.
08

24
0.

00
33

0.
23

57
0.

00
03

0.
66

76

63
41

5
13

1
2

M
A

X
10

0.
05

1.
12

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
57

0.
00

03
0.

66
77

63
41

5
13

1
2

M
A

X
10

0.
50

1.
12

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
57

0.
00

03
0.

66
77

63
49

7
13

1
2

M
A

X
10

0.
95

1.
12

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
57

0.
00

03
0.

66
77

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 61

T
ab

le
7

T
hr

ee
-l

ev
el

M
L

SC
fo

r
th

e
li

ne
ar

os
ci

ll
at

or
te

st
ca

se
:6

D
st

oc
ha

st
ic

se
tu

p,
di

m
en

si
on

al
it

y
re

du
ct

io
n

fo
r
J

2
=
{m
M

0
,L

2
n

(t
0
),
m
M

1
,L

1
n

(t
0
)|t

0
=

10
}

L
0

L
1

L
2

g
f

r
c

n
rp
/
l

r
E

rr
or

E
S
T 1
(t

0
)

S
T 2
(t

0
)

S
T 3
(t

0
)

S
T 4
(t

0
)

S
T 5
(t

0
)

S
T 6
(t

0
)

11
1

25
61

10
,6

25
–

–
–

–
1.

21
e−

02
0.

01
82

0.
08

25
0.

00
34

0.
23

58
0.

00
03

0.
66

75

11
1

14
52

37
09

–
M

A
S

20
%

–
1.

72
e−

02
0.

01
81

0.
08

25
0.

00
34

0.
23

59
0.

00
03

0.
66

75

11
1

14
52

39
61

–
E

V
R

20
%

–
1.

72
e−

02
0.

01
81

0.
08

25
0.

00
34

0.
23

59
0.

00
03

0.
66

75

11
1

19
70

71
42

–
M

A
S

40
%

–
1.

72
e−

02
0.

01
81

0.
08

25
0.

00
34

0.
23

58
0.

00
03

0.
66

75

11
1

19
70

70
84

–
E

V
R

40
%

–
1.

72
e−

02
0.

01
81

0.
08

25
0.

00
34

0.
23

58
0.

00
03

0.
66

75

63
12

89
36

53
2

–
–

–
1.

33
e−

02
0.

01
81

0.
08

25
0.

00
33

0.
23

58
0.

00
03

0.
67

75

63
48

9
60

1
2

A
V

G
10

–
1.

22
e−

02
0.

01
81

0.
08

25
0.

00
33

0.
23

57
0.

00
03

0.
66

77

63
41

5
45

1
2

M
A

X
10

0.
05

1.
27

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
58

0.
00

03
0.

66
76

63
41

5
45

1
2

M
A

X
10

0.
50

1.
27

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
58

0.
00

03
0.

66
76

63
49

7
60

9
2

M
A

X
10

0.
95

1.
22

e−
02

0.
01

81
0.

08
25

0.
00

33
0.

23
57

0.
00

03
0.

66
76

62 I.-G. Farcas, et al.

column, r is the weight between cost and error in Eq. (9). Finally, when performing
dimensionality reduction, {STi (t0)}di=1 denotes the total Sobol’ index computed for
the gPC coefficients in J .

In the first test, we perform standard MLSC. The results are outlined in Table 2.
First, we observe that although we begin with a similar number of grid points for L0
(71 for spatially-adaptive, 61 for dimension-adaptive sparse grids), forL1 andL2 the
linear growth of Leja leads to considerably fewer points for the dimension-adaptive
interpolation. Moreover, we observe that interpolation on dimension-adaptive grids
yields smaller expectation errors by at least a factor of O(10−3), whereas, the
variance errors are similar or smaller. Therefore, for this setup, dimension-adaptive
interpolation is superior in terms of accuracy and required computational cost.

Next, we analyze the possibility to reduce the stochastic dimensionality using a
threshold τ = 0.05 and J1 = {mM1,L1

n (t0)} or J2 = {mM0,L2
n (t0),m

M1,L1
n (t0)}.

The results are listed in Tables 3 and 4. We observe that for bothJ1 andJ2 the total
Sobol’ indices corresponding to c, f , and y0 are at least two times smaller than τ .
Therefore, we can reduce the dimensionality from five to two, significantly reducing
the number of grid points for L0, and, when employing J1, for L2, too. Note that in
both Tables 3 and 4, {STi (t0)}5i=1 are identical rounded up to at least three digits of
precision; this is due to very similar corresponding gPC coefficients. Furthermore,
in our tests, the total Sobol’ indices corresponding to the ignored uncertain inputs
are significantly smaller than τ . In situations when some of the Sobol’ indices are
close to τ , to avoid repeating potentially expensive computations, we recommend
enlarging the initial J (e.g. in the current setup, J2 is a viable extension to J1).

In the 6D stochastic scenario, the setup is the same as in the 5D case, except
that L0 = 4 for both spatially- and dimension-adaptive sparse grids. The reference
results Eref [y(t0)] = 2.85e − 02 and Varref [y(t0)] = 1.35e − 02 are computed
using M2 time steps and a full stochastic grid comprising 262144 Gauss-Legendre
nodes.

In Table 5, we outline the results for the standard MLSC. Similar to the 5D case,
the accuracy/cost ratio of dimension-adaptive grids is larger compared to spatially-
adaptive grids. Therefore, for this setup, too, dimension-adaptive interpolation is
superior in terms of accuracy and required computational cost. Tables 6 and 7
contain the results for the two dimensionality reduction strategies. Similar to the 5D
setup, the total Sobol’ indices for c (ST1 (t0)), f (ST3 (t0)), and y0 (ST5 (t0)) are smaller
than τ by more than a factor of two; the difference is that the major contributions
are due to ω and y1. Therefore, we can reduce the dimensionality from six to three,
thus, significantly lowering the number of grid points and the overall computational
cost.

We end this section with an important remark referring to the total Sobol’ indices
in our results. Since the total Sobol’ indices comprise both the first and higher order
contributions (cf. Sect. 3.1), they generally sum up to more than 100%. However,
in both 5D and 6D scenarios, the sum of the total Sobol’ indices is only a little
more than 100%. Thus, the interactions between the uncertain inputs are negligible
and the underlying stochastic model could be well approximated by a multi-linear
functional.

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 63

Fig. 5 Channel flow with an elastic vertical flap. We have a parabolic inflow at the left and an
outflow at the right boundary. Furthermore, at the top and bottom boundaries, we prescribe no-slip
conditions. The inflow excites a periodic bending movement of the vertical structure

4.2 A simple Fluid-Structure Interaction Example

The second test case, a simple FSI example, is depicted in Fig. 5. The fluid flow is
governed by the incompressible Navier-Stokes equations, formulated in the arbitrary
Lagrangian-Eulerian approach [8] to allow for moving geometries. A non-linear
Saint-Venant-Kirchhoff model governs the elastic structure. The fluid and structure
domains are discretized via finite elements (FEM). The FEM meshes match at
the boundary, where we enforce balancing between stresses and displacements. To
couple the fluid flow and structure solvers, we use a Dirichlet-Neumann implicit
partitioned approach and sub-iterate until convergence in every time step. A quasi-
Newton scheme [19] is used to stabilize and accelerate the sub-iterations. In this
way, both solvers can be simultaneously executed. Therefore, taking advantage
of the non-intrusiveness of MLSC, we end up with a total of three layers of
parallelism: both solvers run on distributed data, they run in parallel to each other,
and simulations corresponding to different points in the stochastic domain can be
performed in parallel, too (cf. [9]).

To simulate the fluid flow and structure solvers, we employ the high-performance
multi-physics code Alya [34] as a black box. For coupling, we use the open-source
library preCICE3 [4]. For more details about the Alya-preCICE coupling, see [33].
For each simulation, the initial data in the fluid domain is obtained via precomputing
a full period of the time domain with a rigid structure to ensure a stabilized initial
fluid field and only then start the coupled simulation; the structure is initially at rest.

3http://www.precice.org/.

http://www.precice.org/

64 I.-G. Farcas, et al.

Table 8 FSI test case: uniform bounds for θ and associated deterministic values

ρf [kg/m3] μ [kg/m s] ρs [kg/m3] E [kg/m s2] ν

ai 7.40e−01 7.40e−02 7.40e−01 3.70e+05 2.22e−01

bi 1.26e+00 1.26e−01 1.26e+00 6.30e+05 3.78e−01

ūi 1.00e+00 1.00e−01 1.00e+00 5.00e+05 3.00e−01

In this test case, x = t and θ = (ρf , μ, ρs , E, ν), where ρf is the density and
μ the dynamic viscosity of the fluid, whereas ρs is the density, E the Young’s
modulus, and ν the Poisson ratio corresponding to the elastic structure. We use
a time step δt = 10−3 to discretize the time domain. For both solvers, we use
implicit time integrators (implicit Euler for the flow solver and a Newmark scheme
[21] for the structure solver) such that we can use the same timestep size for all
meshes. We do, hence, not expect stability issues and have also not observed any in
our experiments. We simulate 500 time steps, therefore, t ∈ [0, 0.5]. Moreover, θ

is a multivariate random vector with uniform i.i.d. components, whose ai , bi , and
associated deterministic values (i.e. their expectations), are listed in Table 8.

We employ a multi-variate gPC expansion such that |p|1 < 5. The QoI are the
expectation and variance of the x axis displacement (x disp.) measured at the upper
right corner of the structure. For a broader overview of our approach, we measure the
displacement at two time instances, one close to center of the time domain, i.e. t0 =
0.235, and another one at the right boundary, i.e. t1 = 0.500. We employ a three-
level discretization hierarchy in both the problem and the stochastic domain.M0 =
{f : 1568, s : 40} triangular elements for the fluid (f) and structure (s) domains,
M1 = {f : 6272, s : 160}, andM2 = {f : 25088, s : 640}. On a 16 core Intel Sandy
Bridge processor on the CoolMAC cluster,4 with 12 cores for the fluid flow and four
cores for the structure solver, one run with resolutionM0 takes about 10 min, about
15 min for M1, and about 60 min for M2. To discretize the stochastic domain, we
use spatially-adaptive grids with the MAS criterion and dimension-adaptive grids
with the AVG priority function. For both spatially- and dimension-adaptive grids,
L0 = 3. Moreover,L1 andL2 refer toL0 after 1 and 2 refinement steps, respectively.
Finally, to analyze the possibility for dimensionality reduction, we consider τ =
0.05 and J = {mM1,L1

n (t0)}.
In Table 9, we list the results when t0 = 0.235. We observe that the Sobol’ indices

associated to the fluid’s dynamic viscosity and structure’s density and Poisson
ratio are significantly smaller than τ . Therefore, we can reduce the dimensionality
from five to two, hence, the sparse grids of resolution L0 and L2 are now two-
dimensional. In terms of computational savings, this translates into reducing the
number of grid points from 71 to 17—for spatially-adaptive—and from 61 to 13—
for dimension-adaptive grids for the combination M2 − L0. Therefore, we save
approximately 54 and 48 h of computing time, respectively. In Table 10, we present
our results when t1 = 0.500. In this case, we observe that the Sobol’ index assciated

4http://www.mac.tum.de/wiki/index.php/MAC$_$Cluster.

http://www.mac.tum.de/wiki/index.php/MAC$_$Cluster

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 65

Table 9 Three-level MLSC for the FSI test case: 5D stochastic setup, dimensionality reduction
for J = {mM1,L1

n (t0)|t0 = 0.235}
L0 L1 L2 gf rc nrp/l E[x disp.(t0)] Var[x disp.(t0)] ST1 (t0) ST2 (t0) ST3 (t0) ST4 (t0) ST5 (t0)
17 184 43 – MAS 20% 3.23e−01 8.14e−04 0.423 0.007 0.009 0.598 0.002

13 117 75 2 AVG 10 3.23e−01 8.12e−04 0.423 0.007 0.008 0.596 0.002

Table 10 Three-level MLSC for the FSI test case: 5D stochastic setup, dimensionality reduction
for J = {mM1,L1

n (t1)|t1 = 0.500}
L0 L1 L2 gf rc nrp/l E[x disp.(t1)] Var[x disp.(t1)] ST1 (t1) ST2 (t1) ST3 (t1) ST4 (t1) ST5 (t1)
49 179 214 – MAS 20% 2.88e−01 4.60e−04 0.297 0.354 0.163 0.572 0.007

41 121 161 2 AVG 10 2.88e−01 5.22e−04 0.284 0.370 0.152 0.572 0.006

to the Poisson ratio is less that τ by more than a factor of 10. Thus, we can reduce the
dimensionality from five to four, saving approximately 22—for spatially adaptive—
and 20—for dimension-adaptive grids—hours of computing time at level L0. In
addition, in both dimensionality reduction cases, the computational cost is further
decreased due to the significant reduction of number of grid points on level L2.

Note that in Table 9, on the one hand, the total Sobol’ indices sum up to only a
little more than 100%, indicating that the interactions between the uncertain inputs
are very week (cf. Sect. 4.1). On the other hand, in Table 10, the total Sobol’ indices
add up to approximately 140%. Therefore, the interactions between the uncertain
inputs are stronger than in the previous case. We assume that this difference is due
to both the setup of the underlying scenario and nonlinearity of FSI. However, as
our proposed approach relies on the individual values of the total Sobol’ indices, the
result of their summation does not impose a limitation to our method.

Finally, we remark that the single level variant corresponding—with respect to
accuracy—to our multi-level formulation would be computationally more expen-
sive, since it requires the evaluation of the time discretization with the highest
fidelity (M2) at each point from the sparse grid having the highest resolution (L2).
Even more, no dimensionality reduction based on total Sobol’ indices could be
performed.

5 Conclusions and Outlook

We have presented a novel multilevel stochastic collocation with a dimensionality
reduction approach to compute the coefficients of generalized polynomial chaos
approximations. Our focus was on formulating a computational method suitable
to quantify the uncertainty in resource-intensive problems. To this end, our first
contribution was to employ both spatially- and dimension-adaptive sparse grids
for the stochastic domain discretization. Our second and main contribution was
stochastic dimensionality reduction based on total Sobol’ indices for global sen-
sitivity analysis. Therefore, our method exploits the advantages of adaptive sparse

66 I.-G. Farcas, et al.

grids, multi-level decompositions, and, when feasible, stochastic dimensionality
reduction, to lower the overall computational cost of the uncertainty analysis. We
remark that when dimensionality reduction is not possible, we still profit from using
adaptive sparse grids and multilevel decompositions.

The results in two test cases—a second-order linear oscillator and a fluid-
structure interaction problem—showed that the stochastic dimensionality could be
reduced. Furthermore, the dimension-adaptive interpolants proved superior.

We analyzed once whether the stochastic dimensionality can be reduced. Never-
theless, this approach can be easily generalized. The generalized approach can be
suitable for high-dimensional UQ problems or problems in which some total Sobol’
indices are close to the prescribed threshold. Furthermore, our approach can be also
formulated in terms of other sensitivity measures, such as the Shapley value [23].

Acknowledgements We thank David Holzmueller for developing the dimension-adaptive interpo-
lation module in SG++, employed in this paper. Moreover, we thankfully acknowledge the financial
support of the German Academic Exchange Service (http://daad.de/), of the German Research
Foundation through the TUM International Graduate School of Science and Engineering (IGSSE)
within the project 10.02 BAYES (http://igsse.tum.de/), and the financial support of the priority
program 1648 - Software for Exascale Computing of the German Research Foundation (http://
www.sppexa.de).

References

1. H.-J. Bungartz, Finite elements of higher order on sparse grids. Habilitationsschrift, Fakultät
für Informatik, Technische Universität München, Shaker Verlag, Aachen, 1998

2. H.-J. Bungartz, S. Dirnstorfer, Multivariate quadrature on adaptive sparse grids. Computing
71(1), 89–114 (2003)

3. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
4. H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Ueker-

mann, preCICE – a fully parallel library for multi-physics surface coupling. Comput. Fluids
(2016). https://doi.org/10.1016/j.compfluid.2016.04.003

5. P. Chen, A. Quarteroni, A new algorithm for high-dimensional uncertainty quantification based
on dimension-adaptive sparse grid approximation and reduced basis methods. J. Comput. Phys.
298(Supplement C), 176–193 (2015)

6. P.R. Conrad, Y.M. Marzouk, Adaptive smolyak pseudospectral approximations. SIAM J. Sci.
Comput. 35(6), A2643–A2670 (2013)

7. P.G. Constantine, M.S. Eldred, E.T. Phipps, Sparse pseudospectral approximation method.
Comput. Methods Appl. Mech. Eng. 229–232, 1–12 (2012)

8. J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, Arbitrary lagrangian-eulerian meth-
ods. Encycl. Comput. Mech. 1, 413–437 (2004)

9. I.-G. Farcas, B. Uekermann, T. Neckel, H.-J. Bungartz, Nonintrusive uncertainty analysis of
fluid-structure interaction with spatially adaptive sparse grids and polynomial chaos expansion.
SIAM J. Sci. Comput. 40(2), B457–B482. https://doi.org/10.1137/16M1093975

10. F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for
multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations
VII, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and
Engineering, vol. 100 (Springer International Publishing, Cham, 2015), pp. 115–143

http://daad.de/
http://igsse.tum.de/
http://www.sppexa.de
http://www.sppexa.de
https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/10.1137/16M1093975

Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction 67

11. T. Gerstner, M. Griebel, Numerical integration using sparse grids. Numer. Algorithms 18(3),
209–232 (1998)

12. T. Gerstner, M. Griebel, Dimension–adaptive tensor–product quadrature. Computing 71(1),
65–87 (2003)

13. M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid
problems, in Iterative Methods in Linear Algebra, ed. by P. de Groen, R. Beauwens (IMACS,
Elsevier, North Holland, 1992), pp. 263–281

14. F. Heiss, V. Winschel, Likelihood approximation by numerical integration on sparse grids. J.
Econometrics 144(1), 62–80 (2008)

15. A. Klimke, Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis,
Universität Stuttgart, Shaker Verlag, Aachen, 2006

16. F. Leja, Sur certaines suites liées aux ensemble plan et leur application à la representation
conforme. Ann. Polon. Math. 5, 8–13 (1957)

17. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

18. S.D. Marchi, On leja sequences: some results and applications. Appl. Math. Comput. 152(3),
621–647 (2004)

19. M. Mehl, B. Uekermann, H. Bijl, D. Blom, B. Gatzhammer, A. van Zuijlen, Parallel coupling
numerics for partitioned fluid-structure interaction simulations. Comput. Math. Appl. 71(4),
869–891 (2016)

20. A. Narayan, J.D. Jakeman, Adaptive leja sparse grid constructions for stochastic collocation
and high-dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)

21. N.M. Newmark, A method of computation for structural dynamics. J .Eng. Mech. Div. 85(3),
67–94 (1959)

22. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

23. A.B. Owen, Sobol’ indices and shapley value. SIAM/ASA J. Uncertain. Quantif. 2(1), 245–251
(2014)

24. B. Peherstorfer, Model order reduction of parametrized systems with sparse grid learning
techniques. Dissertation, Department of Informatics, Technische Universität München, 2013

25. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut,
München, 2010)

26. K. Sargsyan, C. Safta, H.N. Najm, B.J. Debusschere, D. Ricciuto, P. Thornton, Dimensionality
reduction for complex models via bayesian compressive sensing. Int. J. Uncertain. Quantif.
4(1), 63–93 (2014)

27. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Sov. Math. Dokl. 4, 240–243 (1963)

28. I. Sobol, Global sensitivity indices for nonlinear mathematical models and their monte carlo
estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

29. D. Stirzaker, Elementary Probability (Cambridge University Press, Cambridge, 2003)
30. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst.

Saf. 93(7), 964–979 (2008)
31. A.L. Teckentrup, P. Jantsch, C.G. Webster, M. Gunzburger, A multilevel stochastic collocation

method for partial differential equations with random input data.SIAM/ASA J. Uncertain.
Quantif. 3(1), 1046–1074 (2015)

32. U. Trottenberg, A. Schuller, Multigrid (Academic, Orlando, 2001)
33. B. Uekermann, J.C. Cajas, B. Gatzhammer, G. Houzeaux, M. Mehl, M. Vazquez, Towards

partitioned fluid-structure interaction on massively parallel systems, in 11th World Congress
on Computational Mechanics (WCCM XI), ed. by E. Oñate, J. Oliver, A. Huerta (2014), pp.
1–12

34. M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Arís, D. Mira,
H. Calmet, F. Cucchietti, H. Owen, A. Taha, E.D. Burness, J.M. Cela, M. Valero, Alya:
multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016)

68 I.-G. Farcas, et al.

35. D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach
(Princeton University Press, Princeton, 2010)

36. D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

37. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, Proceedings
of the Sixth GAMM-Seminar, Kiel, 1990, ed. by W. Hackbusch. Notes on Numerical Fluid
Mechanics, vol. 31 (Vieweg Verlag, Braunschweig, 1991), pp. 241–251

Limiting Ranges of Function Values
of Sparse Grid Surrogates

Fabian Franzelin and Dirk Pflüger

Abstract Sparse grid interpolants of high-dimensional functions do not maintain
the range of function values. This is a core problem when one is dealing with
probability density functions, for example. We present a novel approach to limit
range of function values of sparse grid surrogates. It is based on computing minimal
sets of sparse grid indices that extend the original sparse grid with properly chosen
coefficients such that the function value range of the resulting surrogate function
is limited to a certain interval. We provide the prerequisites for the existence of
minimal extension sets and formally derive the intersection search algorithm that
computes them efficiently. The main advantage of this approach is that the surrogate
remains a linear combination of basis functions and, therefore, any problem
specific post-processing operation such as evaluation, quadrature, differentiation,
regression, density estimation, etc. can remain unchanged. Our sparse grid approach
is applicable to arbitrarily refined sparse grids.

1 Introduction

A core problem of the representation of high-dimensional functions on sparse grids
(interpolation, approximation) is that they do not maintain the range of function
values. For example, the interpolation of a strictly positive function in more than
one variable can lead to negative function values of the interpolant. This can be
a severe limitation to a wide range of problems. Think about physical problems
where values outside of a certain interval do not make sense and a surrogate
leading to such values is useless. In the context of environmental engineering, for
example, one is interested in finding storage sites for carbon dioxide with a small
leakage, which is non-negative. An early example for the problem that the sparse
grid function is not necessarily positive everywhere, even if the function values at

F. Franzelin · D. Pflüger (�)
Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: fabian.franzelin@ipvs.uni-stuttgart.de; dirk.pflueger@ipvs.uni-stuttgart.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_4&domain=pdf
mailto:fabian.franzelin@ipvs.uni-stuttgart.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de
https://doi.org/10.1007/978-3-319-75426-0_4

70 F. Franzelin and D. Pflüger

all interpolation points are positive, stems from the interpolation of multivariate
Gaussian densities [5, 12], which will serve as an extreme scenario in this paper.

This problem translates to approximation problems such as regression or density
estimation. There, the probability density function of some unknown distribution
is recovered based on samples drawn from that distribution. In [8], the authors
published the theoretical fundamentals for a density estimation method based on
spline smoothing. Their idea became very popular in the following years in the
context of sparse grids in various research areas [6, 9–11], the question of how to
conserve fundamental properties of probability density functions such as the non-
negativity, has not yet been investigated so far. Furthermore, the sparse grid function
is computed via the solution of a linear system: The approximation process does not
even ensure that the sparse grid function is positive at the grid points themselves.

The general problem of limiting the range of sparse grid function values to
a certain interval can be transformed into the problem of assuring non-negative
function values. A proper transformation of the original approximation problem is
an elegant way to solve this problem. Such an approach has been introduced in
[5] in the context of likelihood estimation and in [7] for density estimation. It is
based on the idea of approximating the logarithm of the probability density instead
of the density itself. They characterize the density by the maximum a posteriori
method with Gaussian process priors. By definition, this approach solves the non-
negativity problem but makes it difficult to assert the normalization condition since
the computation of a high-dimensional integral of an exponential function with an
exponent that is a sparse grid function is required. Simpler approaches, such as
a truncation of the range of function values, are not an option here either. They
usually raise other problems, for example efficient integration or differentiation of
the resulting function [4], which we want to avoid.

In this paper we introduce a new method that restricts the function value range of
a sparse grid surrogate to the one of the original function while the original structure
of the surrogate as a linear combination of basis functions is preserved. The method
adds a minimal extension set with properly chosen hierarchical coefficients to the
sparse grid surrogate to achieve that goal. We formally derive various methods to
efficiently compute minimal extension sets for arbitrarily refined sparse grids.

This paper is structured as follows: First, we introduce briefly sparse grids
and describe the properties that are required for our new method. In Sect. 3
we derive the method that limits ranges of function values of arbitrarily refined
sparse grid surrogates by adding an extension set with properly chosen coefficients
to the original sparse grid. To evaluate the method, we provide results for the
approximation of multivariate Gaussians with extended sparse grids. In Sect. 5 we
summarize the paper and give an outlook to future work.

Limiting Function Value Ranges of Sparse Grid Surrogates 71

2 Sparse Grids

Let l := {l1, . . . , lD} and i := {i1, . . . , iD} be multi-indices with dimensionality
0 < D ∈ N and level d = 1, . . . ,D : ld > 0. We define a nested level-index set as

I SG
l := {i ∈ N

D : 1 ≤ id < 2ld , id odd, d = 1, . . . ,D} . (1)

The subsets for various levels and D = 2 are shown in Fig. 1 (center), the joint sets
in Fig. 1 (right). With the piecewise linear one-dimensional reference basis function
ϕ(x) := max{1−|x|, 0}we obtain the higher-dimensional piecewiseD-linear basis
function of an arbitrary level-index pair (l, i) via tensor product and by translation
and scaling as

ϕl,i(x) :=
D∏

d=1

ϕ(2ld xd − id) . (2)

The level-index sets I SG
l define a unique set of hierarchical increment spaces

Wl := span{ϕl,i(x) : i ∈ I SG
l } , (3)

which are shown in Fig. 1 (left) for D = 1. The space V� of piecewise D-linear
functions for some level � ∈ N is now formed by all spaces with |l|∞ ≤ � where
each increment space adds the difference of the corresponding nodes with respect
to the nodal space. V� and the corresponding full grid index set I FG

� are defined as

V� :=
⊕

l∈ND : |l|∞≤�
Wl , I FG

� :=
⋃

l∈ND : |l|∞≤�
{(l, i) : i ∈ I SG

l } . (4)

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Fig. 1 One-dimensional piecewise linear basis functions up to level 3 with increment spaces
W1,W2,W3 in one dimension (left), the tableau of hierarchical increments Wl up to level 3 in
two dimensions (center) and the resulting sparse grid I SG

3 (black) and full grid I FG
3 (black and

gray) (right) [12]

72 F. Franzelin and D. Pflüger

With this, we can write a full grid function based on the hierarchical increment
spaces as

uI FG
�
(x) :=

∑

(l,i)∈I FG
�

vl,iϕl,i(x) =
∑

l∈ND : |l|∞<�

∑

i∈I SG
l

vl,iϕl,i(x) . (5)

We take now advantage of the hierarchical definition of the basis and reduce the
number of increment spaces by measuring the contribution of each one to the
approximation divided by the work we need to spend on it, i.e. the number of
grid points. Based on this measure, we solve a continuous knapsack problem [1]
and obtain the sparse grid space V (1)

� , which is optimal in the L2 and L∞-norms,
and the corresponding sparse grid index set as

V (1)
� :=

⊕

|l|1≤�+D−1

Wl , I SG
� :=

⋃

l∈ND : |l|1<�+D−1

{(l, i) : i ∈ I SG
l } , (6)

see the left upper triangle in Fig. 1 (center). We write a sparse grid function uI SG
�
∈

V (1)
� as

uI SG
�
(x) :=

∑

(l,i)∈I SG
�

vl,iϕl,i(x) =
∑

l∈ND : |l|1≤�+D−1

∑

i∈I SG
l

vl,iϕl,i(x) , (7)

where we call vl,i ∈ R hierarchical coefficients. Note that we omit the index � and
the superscript SG when it is obvious that we are referring to a sparse grid index set
and the level is unimportant, e.g. for an adaptively refined sparse grid. Furthermore,
for simplicity of notation we refer to a level-index pair (l, i) ∈ I via a simple index
i ∈ I whenever the actual level and index are not important.

2.1 Hierarchical Ancestors and the Fundamental Property

In the following we introduce the fundamental property of sparse grid basis func-
tions based on the definition of hierarchical ancestors. To this end it is convenient
to interpret a one-dimensional sparse grid as a binary tree. As shown in Fig. 1 (left),
the grid point on level 1 forms the root node; the grid points at level 2 are the left
and right successor of the root node, and so on. With this idea, we define the set of
hierarchical ancestors A for some level-index pair (l, i) ∈ I as

A (l, i) := {(k, j) ∈ I FG
|l|∞ : kd < ld ∧ jd = 2�id/2ld−kd+1� + 1, d = 1, . . . ,D} ,

(8)

Limiting Function Value Ranges of Sparse Grid Surrogates 73

and the set of ancestors that are part of an arbitrary level-index set I as

AI (l, i) := A (l, i) ∩I . (9)

We define two indices (l, i), (k, j) ∈ I to be hierarchically independent if

(k, j) /∈ A (l, i) ∧ (l, i) /∈ A (k, j) . (10)

For all basis functions of a sparse grid basis that fulfill the fundamental property it
holds that

∀(l, i) ∈ I :

⎧
⎪⎪⎨

⎪⎪⎩

ϕk,j(xl,i) = 1 for l = k ∧ i = j

ϕk,j(xl,i) > 0 for (k, j) ∈ A (l, i)

ϕk,j(xl,i) = 0 else .

(11)

This means that a basis function ϕk,j evaluates to zero at some grid point xl,i if (k, j)
is not a hierarchical ancestor of (l, i). This is trivial to see for the one-dimensional
case, due to the limitation of the support of the basis functions, see Fig. 1 (left). This
property is preserved by the tensor product: If an index (k, j) is not a hierarchical
ancestor of (l, i), then there exists at least one term in the tensor product which is
equal to zero making the whole product zero.

2.2 Interpolation on Sparse Grids

Interpolation on sparse grids can be interpreted as a basis transformation from the
nodal basis to the hierarchical basis. Assume that the sparse grid index set I is
suitably sorted. Then the corresponding system of linear equations that solves the
interpolation problem reads as

VSGv = u (12)

where V SG
(l,i),(k,j) = ϕl,i(xk,j) and ul,i = u(xl,i). Due to the fundamental property,

this system of linear equations can be solved by forward substitution and the basis
transformation can be written as

vl,i = ul,i −
∑

(k,j)∈AI (l,i)

vk,jϕk,j(xl,i) . (13)

We see here directly that we have to solve all equations for the ancestors of (l, i)
before we can solve the equation for (l, i). This is possible since the ancestor set just
includes grid points which lie on subspaces with smaller level. Hence, a top-down
approach solves the interpolation: One starts with the smallest available level, solves
all the equations for grid points that lie on a subspace with the same levelsum, and
proceeds with the next one until the maximum level is reached.

74 F. Franzelin and D. Pflüger

3 Limiting Ranges of Sparse Grid Function Values

In the following we derive a method that preserves the range of function values
of some model function by a sparse grid approximation. Our approach is based on
proper extension of the sparse grid level-index set such that the structure of the
sparse grid function as a linear combination of basis functions is preserved. Let
u : [0, 1]D → [y l, yu] ⊂ R be some function with y l < yu and uI SG : [0, 1]D → R

be a sparse grid function on a piecewise D-linear basis that approximates u. In the
following we assume that uI SG interpolates u at the sparse grid points. Note that
the approach of extending the sparse grid index set is not directly applicable to other
sparse grid approximations that stem from density estimation [11] or regression [12]
if the function values at the grid points lie outside of [y l, yu].

The problem of preserving ranges of function values can be reduced to the
problem of enforcing non-negative function value ranges

u(x) ∈ [yl, yu] :⇒ uI SG (x) ∈ [yl, yu] ⇔ uI SG (x) − yl ≥ 0 ∧ yu − uI SG(x) ≥ 0 ,
(14)

which allows us to generalize the problem to

u(x) ≥ 0 :⇒ uI SG(x) =
∑

i∈I SG

viϕi(x) ≥ 0 . (15)

Note that adding constants to a sparse grid function can be done easily in the nodal
space. Our approach to fulfill Eq. (15) is based on the minimum principle that holds
for full grids with a nodal basis.

Theorem 1 (Minimum Principle for Full Grids with Nodal Basis) Let u(x) ≥ 0
and uI FG : [0, 1]D → R , x #→ ∑

i∈I FG uiϕi(x) be a full grid approximation of u
on a piecewise D-linear nodal basis ϕ. If ∀i ∈ I FG : ui ≥ 0 and uI FG is 0 at the
boundary of the input domain then it holds that

min
x∈[0,1]D

uI FG(x) = min
i∈I FG

{0, ui} ≥ 0 . (16)

Proof We can interpret the full grid discretization as a set of hypercubes that have in
each corner a grid point or a boundary point. Within each hypercube the minimum
principle holds since uI FG is locally a harmonic function due to the ϕi being
piecewise D-linear functions and due to the linearity of the Laplace operator

ΔuI FG(x) = Δ
∑

i∈I FG

uiϕi(x) =
∑

i∈I FG

ui Δϕi(x)︸ ︷︷ ︸
=0

= 0 . (17)

Therefore, the minimum of uI FG must lie at a full grid point or a boundary point.
If we extend this argument to the global domain [0, 1]D, we come to the conclusion

Limiting Function Value Ranges of Sparse Grid Surrogates 75

that the global minimum must be either at the boundary of the input domain or at a
full grid point. ��

Both, the nodal and the hierarchical basis with piecewise D-linear basis func-
tions, span the same function space. Therefore, a basis transformation from the
nodal basis to the piecewiseD-linear hierarchical basis preserves the non-negativity
property even though some hierarchical coefficients can be negative. However, once
the full grid is truncated to overcome the curse of dimensionality this property can
not be guaranteed anymore. Nevertheless, there must always exist a set of level-
index pairs I ext ⊆ I FG \ I SG with I SG ⊂ I FG that extends the actual sparse
grid index set I SG such that it holds

∀x ∈ [0, 1]D : uI SG(x)+uI ext(x) =
∑

i∈I SG

viϕi(x)+
∑

i∈I ext

wiϕi(x) ≥ 0 , (18)

for properly chosen coefficients w of uI ext . We call I ext extension set. With
Eq. (18) we reformulate Eq. (15) as follows: Assume that u(x) ≥ 0 and an
approximation uI SG(x) ≈ u(x) for which it holds that ∀i ∈ I SG : uI SG(xi) ≥ 0
are given. For

�max := max
(l,i)∈I SG

|l|∞ , (19)

there always exists an extension set I ext ensuring positivity according to Eq. (18),
being a subset of the full grid points I FG

�max
, which is minimal,

∀Ĩ ext ⊆ I ext, ∃i ∈ I FG
�max

: uI SG(xi)+ uI ext\Ĩ ext(xi) < 0 . (20)

The coefficients w must fulfill according to Eq. (13)

∀i ∈ I ext : wi = ui −
⎛

⎝
∑

j∈AI SG (i)

vjϕj (xi)+
∑

j∈AI ext (i)

wjϕj (xi)

⎞

⎠ . (21)

3.1 Limitation from Above and Below

We can iteratively solve Eq. (14) with Eq. (18) for a known extension set. First
we limit the range of sparse grid function values from below, then we limit it
from above. In both operations we perform the following steps: (1) Transform the
range of function values such that the function evaluates to zero at the upper or the
lower limit, (2) search for an extension set that assures a non-negative surrogate, (3)
transform the range of function values back to the original space including the new
grid points. It is required to repeat this process until the grid is unchanged since the

76 F. Franzelin and D. Pflüger

Algorithm 1: Iterative limitation of the range of function values of a sparse
grid approximation to a certain interval defined by y l, yu ∈ R, y l < yu

Data: index set I SG, coefficients v and interval defined by yl, yu ∈ R

Result: extended index set I SG and corresponding coefficients v
1 N ← 0
2 while N < |I SG| do
3 N ← |I SG|

// -----------------------------------
// Limit the range of function values from below

4 v′ ← interpolate(I SG, {(xi ,∑j∈I SG vj ϕj (xi)− yl)}i∈I SG)

5 I ext,w′ ← makePositive(I SG, v′)
6 U l ← {(xi ,∑j∈I SG v′j ϕj (xi)+

∑
j∈I ext w′j ϕj (xi)+ yl)}i∈I SG∪I ext

7 v′′ ← interpolate(I SG ∪I ext,U l)

8 I SG, v ← I SG ∪I ext, v′′
// -----------------------------------
// Limit the range function values from above

9 v′ ← interpolate(I SG, {(xi , yu −∑j∈I SG vjϕj (xi))}i∈I SG)

10 I ext,w′ ← makePositive(I SG, v′)
11 U u ← {(xi , yu +∑j∈I SG v′j ϕj (xi)+

∑
j∈I ext w′j ϕj (xi))}i∈I SG∪I ext

12 v′′ ← interpolate(I SG ∪I ext,U u)

13 I SG, v ← I SG ∪I ext, v′′

14 return I SG, v

limitation from below can cancel the limitation from above and vice versa. We will
discuss this issue in Sect. 3.3. The complete procedure is shown in Algorithm 1. In
the following we address the questions on how to compute the minimal extension
set and how to compute the corresponding coefficients w in order to guarantee non-
negative surrogates.

3.2 Minimal Extension Set

Due to Theorem 1, we know that the minimum of a sparse grid function is at
a full grid point or a boundary point. Together with the fundamental property
for the piecewise D-linear basis functions we can define a greedy optimization
approach that constructs the minimal extension set I ext as follows: Let �max :=
max(l,i)∈I SG |l|∞ be the maximum level of an arbitrarily refined sparse grid index
set I SG and I cand := I FG

�max
\ I SG be the candidate set that includes all level-

index pairs of the corresponding full grid I FG
�max

which are not yet part of I SG.
We split the candidate set according to the levelsum of the grid points and obtain
I cand
k := {(l, i) ∈ I cand : |l|1 = k}. Assume ∃i ∈ I cand

kmin
: uI SG(xi) < 0

where kmin is the smallest levelsum available in I cand. We know from Eq. (11)

Limiting Function Value Ranges of Sparse Grid Surrogates 77

Algorithm 2: Computation of the minimal extension set

Data: index set I SG, coefficients v, dimensionality D
Result: extending index set I ext and corresponding coefficients w
// compute the maximum grid level to be considered

1 �max ← max(l,i)∈I SG |l|∞
// compute candidate grid points

2 I cand ← computeCandidates(I SG, v)
// run over the candidate set starting with a levelsum of 1

3 I ext ← {}
4 w0 ← ()

5 k← 1
6 while k ≤ D�max do

// extract those grid points with negative function value

7 I ext
k ← {(l, i) ∈ I cand : |l|1 = k ∧ uI SG(xl,i)+ uI ext (xl,i) < 0}

// compute coefficients wk for all indices in I ext ∪I ext
k

8 wk ← computeCoefficients(I SG, v, I ext, wk−1, I ext
k)

// update the extension set and continue
9 I ext ← I ext ∪I ext

k

10 k← k + 1

11 return I ext,wD�max

that ∀j ∈ I cand, j �= i : ϕj (xi) = 0 since I SG contains all the hierarchical
ancestors of i. Consequently, i must be part of the extension set in order to achieve
uI SG∪I ext(xi) > 0. We obtain, therefore, the minimal extension set I ext

kmin
= {i ∈

I cand
kmin

: uI SG(xi) < 0} for the current levelsum kmin. Once we have considered all

indices of I cand
kmin

we compute their coefficients according to some method from the
following section and continue with k := kmin + 1. We repeat the procedure and
collect all minimum extension sets I ext

k up to the maximum levelsum D�max. You
find the complete algorithm in Algorithm 2.

There are two important aspects to mention on this iterative algorithm: First,
the size of the extended sparse grid index set is in the worst case equal to the size
of the corresponding full grid. Second, the size of the extension set depends on
how the coefficients of the new grid points are computed. As a consequence, the
minimal extension set is uniquely defined by the sparse grid surrogate uI SG and
the method used to estimate the function values for the indices in the extension
set. To minimize the work, good methods for computing the candidate set and for
computing the corresponding coefficients are required. In the following sections we
present such methods.

3.3 Computing Coefficients of the Extension Set

Assume that we have found a minimal extension set I ext for a sparse grid I SG and
need to compute the coefficients for I ext

k ⊆ I ext for iteration k. From Eq. (18) it

78 F. Franzelin and D. Pflüger

follows that ∀i ∈ I ext
k : ui ≥ 0. Due to the minimality of the extension set from

Eq. (20) it holds that

uI SG(xi)+ uAI ext (i)(xi) < 0 , (22)

which we insert in Eq. (21) and obtain

wi = ui︸︷︷︸
≥0

− (uI SG(xi)+ uAI ext (i)(xi))
︸ ︷︷ ︸

<0

> 0 , (23)

thus that all new hierarchical coefficients must be larger than zero. This is the reason
why we need an iterative approach to limit the range of function values from above
and below: The limitation from below leads to additional positive coefficients in the
linear combination. To limit the function from above we flip the sign of the function
in order to apply the limitation algorithm from below. The positive coefficients
turn into negative ones after this flip and could potentially cause that function
values become negative which were positive before. This increases the costs of the
algorithm, since we need to find a minimal extension set and the corresponding
coefficients several times. We will show how one can compute a minimal extension
set efficiently in the next section.

Here, we want to list three methods to estimate function values at the new grid
points:

set-to-zero: The simplest approach is to set all the function values to zero, i.e.

∀(l, i) ∈ I ext : ul,i := 0 . (24)

This method leads to the largest possible extension sets and is, therefore, the
baseline for all more sophisticated methods that use the information about the
function at hand.

interpolate-function: This is the optimal case, where one interpolates the true
function values

∀(l, i) ∈ I ext : ul,i := u(xl,i) . (25)

This is, however, unfeasible if evaluating u is computationally expensive.
interpolate-boundaries: This approach incorporates the function values that are

located in the neighborhood of the new level-index pair (l, i) into the estimation
of the function value at the new point xl,i. To estimate ul,i we interpolate linearly
between the function values which lie at the boundary of supp(ϕl,i) in each
direction d and take the minimum of it, i.e.

∀(l, i) ∈ I ext : ul,i := max

{

0, min
d∈{1,...,D}

uI SG(xld,id−1)+ uI SG(xld ,id+1)

2

}

.

(26)

The minimum operation ensures monotonicity for the probability density func-
tion we will consider as an example. Alternatively, operations such as the average
can be considered as well.

Limiting Function Value Ranges of Sparse Grid Surrogates 79

3.4 Intersection Search

In the following we present a method that reduces the size of the candidate set
by searching for intersections of sparse grid indices. As we have seen before,
grid points for which the sparse grid function becomes negative form part of the
extension set. We exploit this knowledge and reduce the number of candidates
by just considering those grid points for which it is theoretically possible that the
function value is negative. According to the definition of a sparse grid function in
Eq. (7) this can just be the case for grid points that have ancestors with negative
coefficients.

We define the intersection (l∗, i∗) of two level-index pairs (l, i), (k, j) as

∀d ∈ {1, . . . ,D} : i∗d =
{
id for ld ≥ kd
jd else

, l∗d =
{
ld for ld ≥ kd
kd else

,

(27)

and show that the extension set is a subset of the set that contains all intersections of
at least two hierarchically independent sparse grid points with negative coefficient
and overlapping support.

Theorem 2 (Intersections of Grid Points with Negative Coefficients) Let �max

be the maximum level in an arbitrarily refined sparse grid index set I SG of
dimensionality 0 < D ∈ N. Let i ∈ I FG

�max
\ I SG with uI SG(xi) < 0. Then

∃i ′ ∈ A (i) ∪ {i} with uI SG(xi′) < 0 and i ′ is the intersection of at most D
hierarchically independent indices with negative coefficients.

Proof Let A −
I SG(i) := {j ∈ AI SG(i) : vj < 0} and let k∗ be the intersection of all

indices in A −
I SG(i). Then k∗ is as well the intersection of at most D hierarchically

independent indices in A −
I SG(i): The level of k∗ has D components, which are

defined according to Eq. (27) as the componentwise maximum of the levels in
A −

I SG(i). One can successively construct k∗ by taking an index of A −
I SG(i) that

defines a maximal number of level components of k∗ until the collected indices
define all level components. Each of the first D indices must define at least one
component and k∗ is defined uniquely after at most D indices. All of them are
hierarchically independent since at least one level component of each index is larger
than the corresponding level component of the other indices.

We define

u∗(x) :=
∑

j∈AI SG (k
∗)∪{k∗}

vjϕj (x) , (28)

to be a local approximation of uI SG around xk∗ . Since k∗ is the intersection of
all indices in A −

I SG(i) it holds that A −
I SG(i) ⊂ AI SG(k∗) ∪ {k∗} and, therefore,

u∗(xi) ≤ uI SG(xi) < 0. Let K ∗ be the set of all up to 3D − 1 ancestors that
lie at the boundary of supp(ϕk∗). Then if follows from ∀j ∈ K ∗ : AI SG(j) ⊂
AI SG(k∗) ⊂ A (i) that u∗(xj) = uI SG(xj). The minimum of u∗ must lie at a grid

80 F. Franzelin and D. Pflüger

point at the boundary of supp(ϕk∗) or at its center due to the minimum principle.
Let k̂ be the index where u∗ is minimal and uI SG(xk̂) = u∗(x

k̂
) < 0 then we can

distinguish two cases:

1. k̂ = k∗: By construction, k∗ satisfies the condition on i ′.
2. k̂ ∈ K ∗: We set i := k̂ and continue. The number of iterations is limited by the

level. Hence, we must find an index where k̂ = k∗ after a finite number of steps.
��

The remaining task is to enumerate these intersections. We call this method
intersection search. Figure 2 shows the intersections of grid points with negative
coefficients (red circles) for a sparse grid function of level 2.

A naive enumeration of all combinations that neglects hierarchical dependencies
and overlapping supports becomes quickly too expensive. LetM ≥ 2 be the number
of negative coefficients of a sparse grid surrogate and D ≥ 2 the dimensionality of
the input space, then an upper bound for the number of intersections to be checked is

#intersections(M,D) =
D∑

d=2

(
M

d

)

(29)

We consider this number as a baseline for more sophisticated algorithms.

Fig. 2 Example for the interpolation of a normal distribution with μ = 1/2, σ = 1/16 with a sparse
grid of level 2 and N = 5, and the evolution of the extended grid using intersection search to find
the extension set and the set-to-zero method to compute their coefficients. The upper plots show
the extended sparse grid interpolant and the lower plots the subspace tableau that contains all the
corresponding full grid points. The grid points with positive coefficients are shown as blue dots,
grid points with negative coefficient as red dots. The basis function’s support of independent grid
points which are used to compute the intersection points as candidates for the extension set are
shown in green. The joint support is shown in orange. This example presents the worst case for the
extended sparse grid: Preserving non-negativity of the normal distribution leads to a full grid with
N = 9

Limiting Function Value Ranges of Sparse Grid Surrogates 81

In the following, we present such an algorithm that considers the results from
Theorem 2. The intersection operation is commutative and associative since it is
based on computing maxima of levels. This allows us to compute intersections of
an arbitrary set of grid points with negative coefficients as successive intersection
operations of two grid points. For example, let i and j be grid points from which the
intersection is i∗. Then, the intersection of i, j and a third grid point k is the same
as the intersection of i∗ and k. Moreover, we can describe each grid point i as an
intersection of at mostD other grid points, which allows us computing intersections
with a bottom-up scheme from 2, 3, . . . ,D.

These deductions lead to Algorithm 3. First, we run over the index set that
contains all level-index pairs with negative coefficient in some arbitrary order
and store all combinations of grid points that fulfill Theorem 2. Due to the
commutative property of the intersection operation, it is enough to store each valid
combination just once. Second, we iterate over the number of dimensions and
compute intersections based on the generated combinations: In the first iteration

Algorithm 3: Intersection search algorithm

Data: index set I SG, coefficients v
Result: candidate set I cand

// load pairwise valid intersections

1 J2 ← {k ∈ I SG : vk < 0}
2 for i ∈J2 do
3 Ii ← {}
4 for j ∈J2 do

// consider each intersection once in the first run
5 if i < j then

// search for valid intersections
6 if supp(ϕi) ∩ supp(ϕj) �= ∅ ∧ i /∈ A (j) ∧ j /∈ A (i) then
7 Ii ← Ii ∪ {j}

// compute intersections dimensionwise

8 I cand ← {}
9 for d ∈ {2, 3, . . . ,D} do

// check every index of the current candidate set
10 for i ∈Jd do

// check all the indices that overlap with i

11 for j ∈ Ii do
12 k∗ ← computeIntersection(i, j)

// add intersection to candidate set

13 if k∗ /∈ I SG ∪I cand then
14 I cand ← I cand ∪ {k∗}

// prepare intersections for the next iteration
15 Ik∗ ← {k ∈ Ij : supp(ϕk) ∩ supp(ϕk∗) �= ∅ ∧ k /∈ A (k∗) ∧ k∗ /∈ A (k)}
16 if |Ik∗ | > 0 then
17 Jd+1 ←Jd+1 ∪ {k∗}

18 return I cand

82 F. Franzelin and D. Pflüger

d = 2 we compute the intersection k of two grid points i, j , add it to the candidate
set and generate the set of overlapping grid points for k out of the set of overlapping
grid points of j . We store the result and compute the intersections of k in the next
iteration d = 3, and so on. Note that all the operations in the innermost loop of
Algorithm 3 have a complexity of O(1) or O(D).

For D = 2 this algorithm is optimal in a sense that we enumerate each
intersection just once. This does not hold for D > 3. Empirical tests show that we
computeO(�2�D) intersections of grid points for regular grids of level �. The size of
the candidate set, i.e. the number of unique intersections, is in general significantly
smaller than a full grid, especially for adaptively refined grids. You find a detailed
analysis of the presented algorithm in Sect. 4.

4 Approximation of Gaussians with Extended Sparse Grids

A very challenging function to be approximated by sparse grids are peaked Gaussian
probability density functions. It was shown that interpolating such functions with a
sparse grid is very costly in terms of the number of grid points [2, 12]. The reason
is the exponentially growing fore-factor that is usually omitted in the asymptotic
error. The large gradient around the mean of the Gaussian leads to large coefficients
with alternating sign in the sparse grid function. This causes large negative function
values where the Gaussian is close to zero, see Fig. 3. The convergent phase of the
function is shifted towards prohibitively large grids. Therefore, the approximation
of a multivariate distribution with independent Gaussian marginals is well suited to
study the extended version of the sparse grid density estimation.

We use a multivariate Gaussian with the same marginals as in [12], i.e.

u(x) :=
D∏

d=1

1
√

2πσ 2
d

exp

(

− (xd − μd)
2

2σ 2
d

)

, (30)

x1

0.0
0.5

1.0
x 2

0.0

0.5

1.0

u(
x 1

,x
2)

0

20

40

x1

0.0
0.5

1.0
x 2

0.0

0.5

1.0

u
SG
(x

1,
x 2
)

0

20

40

� = 2,N = 5

x1

0.0
0.5

1.0
x 2

0.0

0.5

1.0

u
SG

ex
t(
x 1

,x
2)

0

20

40

� = 2,N = 9

Fig. 3 On the left, a multivariate Gaussian distribution with independent marginals μ = 1/2 and
σ = 1/16 is shown. The plot in the center shows the sparse grid interpolant of level 2 with a
piecewise bilinear basis. One can see that the function values are negative almost everywhere,
due to the overlapping support of the grid points with levelsum 3, which have all large negative
coefficients. The plot on the right shows the extended sparse grid function that is non-negative
everywhere

Limiting Function Value Ranges of Sparse Grid Surrogates 83

with μd = 1/2, σd = 1/16. We vary the dimensionality and investigate the properties
of extended regular and adaptively refined sparse grid interpolants of various levels.
The main questions we want to answer with this example are the following:

1. How many intersections do we need to compute to obtain the candidate set I cand

using the intersection search algorithm?
2. How large is the final candidate set I cand and the extension set I ext?
3. How does the extension affect the convergence rate of the sparse grid function?

4.1 Intersection Search and Candidate Sets for Regular Sparse
Grids

As the baseline, we use the approach where the candidate set is simply equal to
a full grid. With respect to the intersection search it is important to distinguish
between the number of intersections we compute during the intersection search
and the number of unique intersections that result from this process. The larger
the difference between these numbers, the less efficient is the intersection search.

Results for the intersection search for regular sparse grids are shown in Fig. 4. We
observe that independent of the dimensionality it holds that the intersection search
computes fewer intersections (purple) than the upper bound provided by Eq. (29)

Fig. 4 Comparison of several quantities that describe the growth of the candidate set I cand of
the intersection search algorithm for a multivariate Gaussian distribution of independent marginals
with μ = 1/2 and σ = 1/16: The dotted green line is an upper bound for the number of intersections
that form the candidate set, see Eq. (29). The blue line is the number of full grid points for the
corresponding level �. The purple line shows the number of intersections, for which we see clearly
that they have full grid complexity for lower levels and grow slightly quicker for D > 2 and
� > 2. The dashed purple line shows an asymptotic growth of O(�2�D), which seems to be a good
indicator for the growth of the number of intersections for regular grids in this extreme setting. Out
of these intersections one obtains the final candidate set that contains just the unique intersections
(orange). The size of the candidate set is never larger than the size of the corresponding full grid

84 F. Franzelin and D. Pflüger

(dotted green). Furthermore, the number of unique intersections (orange) is always
smaller than the number of full grid points (blue). This is a necessary prerequisite
for a valid implementation and in particular if the interpolate-function strategy is to
be used. For D > 2 and � > 2, however, we compute slightly more intersections
than there are full grid points. The number of intersections seem to grow as O(�2D�)
(dashed purple), which is more than there are full grid points O(2D�). The number
of unique intersections (orange) is equal to the size of the candidate set, which seems
to be almost as large as the corresponding full grid. This shows that the candidate set
has full grid complexity but, nevertheless, the log-scale on the y-axis is misleading.
We take the results for the highest levels in each dimension, i.e. � = 9, 6, 4 for
D = 2, 4, 6, split up the grid points of the corresponding candidate set by their
levelsum and plot the sizes of these subsets on a linear scale, see Fig. 5. The upper
plots show that the efficiency of the intersection search increases with increasing
dimensionality since the difference between the number of unique intersections and
the corresponding full grid points grows.

The gain, however, is just linear and not enough to overcome the curse of
dimensionality: While the number of full grid points grows exponentially, the size
of the candidate set does not shrink with the same speed, see the lower plots of

11 12 13 14 15 16 17 18
|l|1

0

2

4

6

×104 D= 2, � = 9

full grid points
unique intersections

10 12 14 16 18 20 22 24
|l|1

0

1

2

3 ×106 D= 4, � = 6

full grid points
unique intersections

10 12 14 16 18 20 22 24
|l|1

0

1

2

3 ×106 D= 6, � = 4

full grid points
unique intersections

Fig. 5 The upper plots show the number of full grid points and unique intersections split up by
levelsum for D = 2, 4, 6. The lower plots show the ratio of the accumulated number of unique
intersections and the number of full grid points ordered again by levelsum. These plots show how
much we save in the iterative approach of finding the minimal extension set using the intersection
search method for finding candidates compared to enumerating the complete full grid. The higher
the dimensionality, the more we save

Limiting Function Value Ranges of Sparse Grid Surrogates 85

Fig. 5. They show the ratio of the accumulated number of unique intersections
and the full grid points with respect to the levelsum. The smaller this ratio, the
higher the efficiency of the intersection search algorithm. One can see that the
efficiency increases with increasing levelsum and increasing dimensionality. The
final candidate set contains for D = 2 approximately 87%, for D = 4 around 75%
and forD = 6 just 40% of the full grid points. Still, the computation of the candidate
set I cand is where the curse of dimensionality hits the extension set algorithm: In
the worst case, the size of I cand is equal to the full grid.

4.2 Extension Sets and Convergence for Regular Grids

The candidate set just serves for the purpose to compute the actual extension set
of the original sparse grid function. The extension set is a subset of the candidate
set and it is computed in a top-down approach, starting with the smallest levelsum
which is not yet part of the grid.

Figure 6 shows the size of the extension set after each extension iteration. These
plots show that most of the grid points in the extension set are grid points with a
small levelsum for D > 2. For D = 4 the grid points with the largest levelsum is
equal to 15, for D = 6, it is 12. Up to these levelsums, we include most of the grid
points available in the candidate set, but none of the higher ones, from which the
candidate set contains much more (compare Fig. 5).

If we were able to predict this behavior and could generalize it to arbitrary sparse
grid functions, we could restrict the intersection search to smaller subspaces and
overcome again the curse of dimensionality to some extent. However, Theorem 2
does not allow such a truncation of the search space. Further investigation is
required, which goes beyond this work.

Fig. 6 The plots show the size of the extension set after iterating the grid points of the candidate
set in ascending order with respect to their levelsum for D = 2, 4, 6 and � = 9, 6, 4. One can
see that the set-to-zero method leads to the largest extension sets. The extension sets stop to grow
after |l|1 = 15 and |l|1 = 12 for D = 4, 6. This means that we achieve non-negative sparse grid
surrogates already by adding points with smaller levelsum

86 F. Franzelin and D. Pflüger

Fig. 7 These plots show the size of extended sparse grids (orange) for different coefficient
estimation methods (set-to-zero, interpolate-boundaries, interpolate-function) in relation to the size
of the corresponding full grids (blue) and the original sparse grids (green). In the left figure, where
we use the set-to-zero method, we observe that the size of the extended sparse grid grows similar
to the full grid size. This is not the case if we interpolate the original function or the interpolate-
boundaries method. For these approaches (center, right), the size of the extended sparse grid grows
as fast or slower as the size of the original sparse grid

However, the observation that the extended set is not growing anymore after
a certain levelsum influences the size of the resulting extended sparse grids
significantly: It scales as the size of the original sparse grid for a wide range of
levels if the coefficients of the grid points of the extended set are chosen properly,
as shown in Fig. 7. These plots show the grid size of a full grid, the original sparse
grid, the extension set, and the sum of the latter two grids forD = 2. They show the
growth of the extension set and the growth of the original sparse grid in relation to
the coefficient estimation method for the new grid points. The size of the extension
set scales as the size of a full grid for the set-to-zero method. This is no longer the
case if we evaluate the original function to compute the coefficients. The size of
the extension set grows slower for higher levels than it does for smaller ones. The
third method, the linear interpolation of the function values at the boundaries of the
domain of each new grid point, leads to similar results than the interpolation of the
original function.

For higher-dimensional settings, we observe similar behavior, see Fig. 8. Here,
we just provide the grid sizes of the extended sparse grids using the interpolation
of boundaries method since the grid sizes are very similar for all the presented
coefficient estimation methods.

From these results we conclude that the extension of the sparse grid is feasible
in terms of the grid size. However, we need to know how the error of the extended
interpolant evolves. To this end, we provide estimated interpolation errors for the
extended sparse grid method in Fig. 9. We used 10,000 randomly chosen samples,
evaluated the original Gaussian at these points and approximated the L2 and the
L∞-error of the interpolants and computed the volume of the sparse grid functions
I (uI), which should converge to 1, of course.

As an upper bound for the accuracy of the method we use a truncated sparse grid
function where we set its function value simply to max{0, uI (x)}.

Limiting Function Value Ranges of Sparse Grid Surrogates 87

Fig. 8 Comparison of the sparse grid (green), the size of the minimal extension set if the
interpolate-boundaries coefficient strategy is used (purple), the corresponding size of the extended
sparse grid (orange) and the size of the corresponding full grid (blue). We observe that the size of
the extension set grows similarly to the size of the sparse grid and, therefore, the extended sparse
grid is still significantly smaller than a full grid and makes the approach applicable to moderate
dimensional problems

Fig. 9 The plots show the L2 and the L∞-error of the original sparse grid interpolant (green),
a truncated version of it (purple), where we limit the range of function values by taking
max{0, uI (x)} and the extended sparse grid interpolant (orange)

The estimatedL2-errors are illustrated in Fig. 9 (left). They show that up to � = 3
at 50 grid points we gain significantly from truncating the function value range of
the sparse grid function. The truncation leads to a sharp transition of the function
around the Gaussian peak. The extension, however, leads to a smooth transition and,
therefore, reduces the gradient of the Gaussian peak itself due to the repeated over
and underestimation of the surrounding function. As a consequence, the error of
the extended sparse grid is not equal to the error of the truncated function. These
over and underestimations cause the peaks in the error of the truncated sparse grid
function and the extended sparse grid method. For the latter method the peaks are
shifted towards the right and have a smaller height.

If we compare the error of the extended sparse grid with the original sparse grid
we see that for � = 2 we gain accuracy by extending the grid. But for � ≥ 3 we loose
accuracy. However, once we reach the convergent phase with the original sparse

88 F. Franzelin and D. Pflüger

grid, at � = 5 with N = 1000, the extended sparse grid converges as well, with
a certain delay due to the extension set. Furthermore, we observe that the speed of
convergence seems to be the same for the extended sparse grid and the original one.
This is coherent with the previous observation that the complexity of the extension
set is the same as the complexity of a sparse grid.

The grid points in the extension set are mainly located in areas where the
Gaussian is close to zero. Therefore, the error is very similar for all the coefficient
estimation methods of the extended sparse grid.

The integral of the approximations, which one can see in Fig. 9 (center), reveals
another interesting aspect of the extension method: The estimated volume of
the truncated sparse grid function (purpler line) is very close to the volume of
the original sparse grid function (green line) for � > 3. The difference between these
two lines indicates how much of the volume of the original function is negative. We
need a large amount of additional grid points to cope with negativity even tough this
difference is small. This means that the area where the original sparse grid function
evaluates to negative values is large but the function values are small. The error in
the maximum norm supports this deduction, see Fig. 9 (right).

4.3 Extension Sets for Adaptively Refined Grids

We extend the discussion now to adaptively refined grids. In [12] the authors
have shown that adaptively refined grids cannot cope with the difficulties that the
Gaussian distribution imposes on a sparse grid approximation. Therefore, we restrict
ourselves to the results on the extension of the sparse grid and omit error plots.

The setting of the experiment is the following: We start with regular sparse grids
of different levels to approximate the same Gaussian distribution as before. Then
we refine each sparse grid function 10 times and add all the 2D successors of the
grid point with the largest absolute coefficient. Afterwards, we make sure that the
resulting sparse grid is consistent and add missing grid points.

Due to the design of the experiment and the Gaussian distribution, the adaptively
refined sparse grids have the following property: By refining a small grid we
obtain a non-regularly shaped grid. On the other hand, if we refine a large grid
we obtain a still regularly shaped grid. We expect the intersection search to be
significantly more effective for non-regular grids because the maximum level grows
with every refinement step in the worst case and the corresponding full grid grows
exponentially. But the number of intersections grows slower since we just add a
constant number of new grid points in each refinement step. If all the associated
coefficients of these grid points were positive, the complexity of the intersection
search would not even increase at all.

The results in Fig. 10 show the expected behavior for the Gaussian distribution.
First, we focus on Fig. 10 (left), which shows that, indeed, the number of
intersections is two orders of magnitude smaller than the number of full grid points
for adaptively refined grids that start with a regular grid with a level smaller than

Limiting Function Value Ranges of Sparse Grid Surrogates 89

Fig. 10 The left plot shows the number of intersections (purple) we need to compute to generate
the candidate set (orange). The number of intersections is several orders of magnitude smaller than
the number of full grid points for � ≤ 4. The plot in the center shows the size of the extension
set for � = 6 that, again, stops growing at |l|1 > 15 for each coefficient estimation method (set-
to-zero, interpolate-boundaries, interpolat-function). As you can see in the right plot, the extended
sparse grid is significantly smaller than the corresponding full grid

5. The intersection search algorithm pays off significantly. For � ≥ 5, where the
refined grids have again a regular shape, the results are similar to the ones from the
last section.

The plot in Fig. 10 (center) shows that the maximum levelsum of the adaptive
sparse grid increases from 24 to 26 for � = 6 compared to the regular grid. Again,
most grid points in the extension set have a small levelsum. There are none available
with |l|1 ≥ 16, independent of the coefficient estimation method. The numbers on
the y-axis show that the size of the extension set is smaller than 2 × 103. This is
significantly less than the size of the full grid, which is larger than 106, as one can
see in Fig. 10 (right). This confirms the previous results and shows again that the
size of the extended sparse grid grows as the original sparse grid.

To conclude this example we summarize the main observations we have made
with respect to the extended sparse grid method: First, the size of the extended set
has sparse grid complexity with properly chosen coefficients for the grid points of
the extension set. The interpolate-boundaries method shows good results. Second,
finding the candidate set is computationally demanding. It requires the enumeration
of a non-negligible fraction of the corresponding full grid points. Nevertheless, the
more the sparse grid is irregularly shaped the more the intersection search pays off.

5 Conclusions

In this paper we presented a new method to limit the range of function values
of arbitrarily refined sparse grid surrogates with a piecewise D-linear basis. It is
based on computing a minimal extension set that is added to the original sparse
grid and guarantees for properly chosen hierarchical coefficients that the range of

90 F. Franzelin and D. Pflüger

function values of the resulting surrogate function is limited to a certain interval.
Furthermore, we provided a variety of methods to, first, compute efficiently the
minimal extension set based on intersections of sparse grid points and, second, to
compute the corresponding hierarchical coefficients the need to evaluate the original
model function.

This approach has two main advantages over common methods: First, the
extension can be interpreted as a second level of adaptive refinement and the
surrogate remains a linear combination of basis functions. Hence, any further
operation on the surrogate, such as evaluation, quadrature, interpolation, regression,
density estimation, etc. can be applied without further restrictions. Second, the
experimental results indicate that the size of the extension set itself grows as the
original sparse grid itself, which makes it applicable to a large variety of problems.
Nevertheless, the bottleneck of the extension approach is the size of the candidate
set. Its size grows exponentially for the peaked Gaussian scenario that we considered
in this paper. In this extreme scenario it can contain a non-negligible fraction of
full grid points. Truncating the candidate set seems to be possible, but no general
approach is known yet. Nevertheless, for real world examples in the context of
density estimation with sparse grids (see [3], for example), we observed competitive
approximation errors at small additional costs for extending the sparse grid.

The presented method is a can not only be applied to interpolation problems but
to approximation problems in general if the presented prerequisites are met. The
solution of the unconstrained optimization problem presented in [11], for example,
describes the estimation of a sparse grid density function. The optimization could
be extended by constraints that guarantee non-negative function values at all grid
points, which would enable sparse grid densities that fulfill the properties of
probability density functions. Probability density functions play an important role
in the context of uncertainty quantification or the solution of the Fokker-Plank
equations. It is, however, unclear how the approach we presented in this paper
translates to these fields.

All the algorithms presented in this paper are publicly available in the sparse grid
toolbox SG++ .

Acknowledgements The authors acknowledge the German Research Foundation (DFG) for its
financial support of the project within the Cluster of Excellence in Simulation Technology at the
University of Stuttgart.

References

1. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
2. C. Feuersänger, Sparse grid methods for higher dimensional approximation. Ph.D. thesis,

Rheinischen Friedrich–Wilhelms–Universität Bonn, 2010
3. F. Franzelin, D. Pflüger, From data to uncertainty: an efficient integrated data-driven sparse

grid approach to propagate uncertainty, in Sparse Grids and Applications - Stuttgart 2014, ed.
by J. Garcke, D. Pflüger (Springer International Publishing, Cham, 2016), pp. 29–49

Limiting Function Value Ranges of Sparse Grid Surrogates 91

4. F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for
multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations
VII, ed. by M. Griebel, M. A. Schweitzer. Lecture Notes in Computational Science and
Engineering, vol. 100 (Springer International Publishing, Berlin, 2015), pp. 115–143

5. M. Frommert, D. Pflüger, T. Riller, M. Reinecke, H.-J. Bungartz, T. Enßlin, Efficient
cosmological parameter sampling using sparse grids. Mon. Not. R. Astron. Soc. 406(2), 1177–
1189 (2010)

6. J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen
Gittern. Ph.D. thesis, University of Bonn, Institute for Numerical Simulation, 2004

7. M. Griebel, M. Hegland, A finite element method for density estimation with Gaussian process
priors. SIAM J. Numer. Anal. 47(6), 4759–4792 (2010)

8. M. Hegland, G. Hooker, S. Roberts, Finite element thin plate splines in density estimation.
ANZIAM J. 42, 712–734 (2000)

9. B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Clustering based on density estimation with sparse
grids, in KI 2012: Advances in Artificial Intelligence, ed. by B. Glimm, A. Krüger. Lecture
Notes in Computer Science, vol. 7526 (Springer, Berlin, 2012), pp. 131–142

10. B. Peherstorfer, F. Franzelin, D. Pflüger, H.-J. Bungartz, Classification with Probability Density
Estimation on Sparse Grids (Springer International Publishing, Cham, 2014), pp. 255–270

11. B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Density estimation with adaptive sparse grids for
large data sets, in Proceedings of the 2014 SIAM International Conference on Data Mining
(2014), pp. 443–451

12. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut,
München, 2010)

Scalable Algorithmic Detection of Silent
Data Corruption for High-Dimensional
PDEs

Alfredo Parra Hinojosa, Hans-Joachim Bungartz, and Dirk Pflüger

Abstract In this paper we show how to benefit from the numerical properties of
a well-established extrapolation method—the combination technique—to make it
tolerant to silent data corruption (SDC). The term SDC refers to errors in data
not detected by the system. We use the hierarchical structure of the combination
technique to detect if parts of the floating point data are corrupted. The method
we present is based on robust regression and other well-known outlier detection
techniques. It is a lossy approach, meaning we sacrifice some accuracy but we
benefit from the small computational overhead. We test our algorithms on a d-
dimensional advection-diffusion equation and inject SDC of different orders of
magnitude. We show that our method has a very good detection rate: large errors are
always detected, and the small errors that go undetected do not noticeably damage
the solution. We also carry out scalability tests for a 5D scenario. We finally discuss
how to deal with false positives and how to extend these ideas to more general
quantities of interest.

1 Introduction

Existing high-performance computing systems exhibit various forms of anomalous
behavior. Most commonly, hardware components are prone to fail while performing
computations, which often leads to undesirable outcomes. This is simply a result of
having a large amount of hardware elements in a system, each of which has a certain
probability of failing after a given (possibly very long) time so that the probability
of any single component failing within a given time increases proportionally.

A. P. Hinojosa · H.-J. Bungartz
Chair of Scientific Computing, Technische Universität München, München, Germany
e-mail: alfredo.parra@tum.de; bungartz@in.tum.de

D. Pflüger (�)
Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
e-mail: dirk.pflueger@ipvs.uni-stuttgart.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_5&domain=pdf
mailto:alfredo.parra@tum.de
mailto:bungartz@in.tum.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de
https://doi.org/10.1007/978-3-319-75426-0_5

94 A. P. Hinojosa et al.

Additionally, there are various ways in which the component can fail and some
types of errors are expected to become more critical as node count increases towards
exascale.

One class of errors that has caught the attention of supercomputer users over the
past few years is what is known as silent data corruption, or SDC. In the most
general sense, SDC can be any undetected system error, usually in the form of
arithmetic computation errors, control errors, or wrong network transfer of data [29].
A well-known type of SDC is an undetected bit flip, which can be caused by cosmic
rays interacting with the silicon die or other hardware defects [1, 7]. SDC is still
poorly understood, but there is a growing consensus among computational scientists
supporting the claim that these errors will affect simulations in future exascale
systems [29]. Despite the uncertainty surrounding the frequency of such errors, one
single occurrence of SDC can have fatal consequences in a simulation [9], as we
observed in our experiments.

The effect of SDC has been studied in a wide variety of scenarios and there exists
several tools and algorithms to simulate, detect and recover from SDC. Notably,
one can find implementations of MPI that include redundancy to detect and recover
from SDC [13]; others have applied techniques of data analysis and time series
to determine whether numerical computations fall within expected bounds [2];
some groups focus on developing robust numerical algorithms that can tolerate
SDC, notably GMRES [10] and other Krylov subspace iterative methods [8]; and
processor designers are rethinking arithmetic circuits in CMOS technologies to
make them more robust to SDC [26]. But given that a one-size-fits-all solution
is unlikely to be developed for the vast amount of application codes out there, it
is crucial that algorithm designers try to exploit the numerical properties of their
schemes to overcome the challenge of silent faults in the foreseeable future. This
is the approach we adopt in this paper, which we aim to demonstrate in the context
of the solution of high-dimensional PDEs, one of the most challenging problems in
HPC.

1.1 High-Dimensional PDEs in High-Performance Computing

Many interesting physical phenomena are modeled via partial differential equations
(PDEs). As a motivating example, consider the problem of microturbulence arising
from the confinement of hot plasma with a strong magnetic field. This is an ellusive
problem in plasma physics, since the appearance of microturbulence in fusion
reactors hinders the production of clean energy. Mathematically, the evolution of the
plasma field in such a scenario can be described by a PDE, namely, the gyrokinetic
Vlasov equation, given in its most general form by [24]

∂u
∂t

= L (u)+N (u) . (1)

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 95

This equation describes the time evolution of a (5+1)-dimensional plasma field u ≡
u(x, y, z, v‖, μ; t), with x, y and z being the spatial coordinates and v‖ and μ the
velocity coordinates. The differential operators L and N describe the linear and
nonlinear spatial evolution of u, respectively. The explicit form of the operators L
andN necessitate numerical methods to solve Eq. (1). The physics code GENE does
this for a wide variety of scenarios [23]. It uses a Runge-Kutta scheme in time and
a combination of high-order finite differences and Fourier discretization in space,
resulting in a 5D cartesian grid Ωi with 2i1 × 2i3 × 2i3 × 2i4 × 2i5 discretization
points. A grid for a typical scenario has 128 × 64 × 512 × 64 × 16 points (232 in
total), and requires roughly 2TB just to be stored [25]. Increasing the number of
points in a given dimension increases the computational costs considerably, which
slows down the research in plasma fusion. This is currently a major challenge in the
plasma physics community.

Sparse grids are an attractive option to reduce the number of discretization points
in high-dimensional problems, while keeping the error small [5]. Discretizing the
computational domain using sparse grids is possible in many cases, but for a legacy
code like GENE, with thousands of lines of code and highly optimized routines, it
might not be realistic. The combination technique helps to overcome this difficulty.
It is an extrapolation method that approximates the sparse grid solution, but with
the advantage of not having to change the discretization scheme in the original
code. In this paper we describe the advantages of using the combination technique
to solve high-dimensional PDEs and the properties it has that can be exploited
to deal with SDC. In previous work we have outlined two such strategies [21],
but our original formulation had several drawbacks and were tested on small 2D
examples in serial. The main contribution of this paper is to show an efficient and
scalable implementation of those algorithms, which requires some modifications to
the original formulation. We show that our algorithms can detect and recover from
SDC at a very small computational cost in 2, 3 and up to 5 dimensions. We also
demonstrate that one of our algorithms scales to up to 32k cores for a 5D simulation.
We are not aware of any results in the literature showing scalability results of this
magnitude for SDC detection and correction.

2 Theory of the Classical Combination Technique

We start by introducing some basic notations used throughout the paper. Consider
the unit interval [0, 1] discretized with a grid Ωl with 2l − 1 inner points and one
point on each boundary (2l + 1 points in total). The mesh size is hl := 2−l and
grid points are xl,j := j · hl for 0 ≤ j ≤ 2l , with l ∈ N = {1, 2, . . .}. In arbitrary
dimensions, bold letters denote multi-indices: l = (l1, . . . , ld) ∈ N

d . The d-unit
cube can be discretized with a Cartesian grid Ωl := Ωl1 × · · · × Ωld with mesh
sizes hl := (hl1, . . . , hld) := 2−l := (2−l1, . . . , 2−ld) ∈ R

d and grid points xl,j :=
(xl1,j1, . . . , xld ,jd) for 0 ≤ j ≤ 2l. We compare multi-indices componentwise: i ≤ j
means ik ≤ jk for all k ∈ {1, . . . , d}. Discrete lp-norms | · |p for multi-indices will

96 A. P. Hinojosa et al.

also be used. For example, |l|1 := l1 + · · · + ld . The wedge operator i ∧ j denotes
the componentwise minimum of i and j: i ∧ j := (min{i1, j1}, . . . ,min{id , jd}).
Also, the grids are defined according to the standard nested doubling rule, which
means that the number of grid points at each level doubles with increasing level i
andΩi ⊂ Ωi+1.

Suppose u(x) ∈ V ⊂ C([0, 1]d) is the exact solution of a PDE in d dimensions.
We will denote a numerical approximation of u by ui(x) ∈ Vi ⊂ V , where Vi =⊗d
k=1 Vik is the space of piecewise d-linear functions defined on a grid Ωi [15].

The combination technique involves solving a PDE on a set of anisotropic grids and
adding them together with certain weights to approximate a full grid solution un:

u(c)n =
d−1∑

q=0

(−1)q
(
d − 1
q

) ∑

i∈Iq
ui ≈ un. (2)

This is the classical formulation of the combination technique, with the index set
Iq = {i : |i|1 = n+ (d − 1)− q}. It is worth mentioning that the grid on which the

combined solution u(c)n lives is a sparse grid. As an example, the index sets resulting
from choosing n = 7 in 2D are

I0 = {(7, 1), (6, 2), (5, 3), (4, 4), (3, 5), (2, 6), (1, 7)},

I1 = {(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)}.

This translates into solving the PDE on 13 different grids and combining them to
approximate the full grid solution u7,7. It is worth mentioning that the grid on which
the combined solution u(c)n lives is a sparse grid.

In order to combine the different grids, it is common to transform each ui into
the hierarchical basis given by

ui(x) =
∑

l≤i

∑

j∈Jl

α
(i)
l,jφl,j(x). (3)

The α(i)l,j ∈ R are called the hierarchical coefficients or hierarchical surpluses, and
can be computed from the function values as follows:

α
(i)
l,j =

(
d∏

k=1

[
− 1

2 1 − 1
2

]

lk,jk

)

ui(xl,j). (4)

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 97

In 1D this stencil notation means

α
(i)
l,j =

[
− 1

2 1 − 1
2

]

l,j
ui(xl,j)

= −1

2
ui(xl,j−1)+ ui(xl,j)− 1

2
ui(xl,j+1)

(5)

The basis functions φl,j are d-dimensional hat functions:

φl,j(x) :=
d∏

k=1

φlk,jk (xk), (6)

with

φl,j (x) := max(1− |2lx − j |, 0). (7)

The hierarchical index set Jl is given by

Jl :=
{

j : 1 ≤ jk ≤ 2lk − 1, jk odd, 1 ≤ k ≤ d
}
. (8)

The classical combination technique is based on the premise that each ui satisfies
the error splitting assumption (ESA):

u− ui =
d∑

k=1

∑

{e1,...,ek}⊂{1,...,d}

Ce1,...,ek (x, hie1 , . . . , hiek)h
p
ie1
· · ·hpiek , (9)

where p ∈ N. It is also assumed that each {e1, . . . , ek} ⊂ {1, . . . , d} is bounded
by |Ce1,...,ek (x, hie1 , . . . , hiek)| ≤ κe1,...,ek (x), and that all κe1,...,ek are bounded by
κe1,...,ek (x) ≤ κ(x). It is important to note that Eq. (9) is a pointwise relation, which
means that it must hold for all points x.

The ESA in one dimension reduces to

u− ui = C1(x1, hi)h
p

i , |C1(x1, hi)| ≤ κ1(x1). (10)

In two dimensions it becomes

u− ui = C1(x1, x2, hi1)h
p
i1
+ C2(x1, x2, hi2)h

p
i2
+ C1,2(x1, x2, hi1 , hi2)h

p
i1
h
p
i2
.

(11)

98 A. P. Hinojosa et al.

It is possible to show that, if all ui satisfy the ESA, then the pointwise error of the
combination technique is [16]

|u− u(c)n | = O(h2
n(log (h−1

n))
2), (12)

which is only slightly worse than the error on a full grid,O(h2
n). The ESA is satisfied

for the Laplace equation solved with finite differences [6] and for the advection
equation solved with both an implicit first order scheme [27] and second order
centered finite differences in space, and the fourth order Runge-Kutta scheme in
time [17, Section 4.5].

Strongly anisotropic combination solutions cause instabilities in the combination
technique, so it is common to increase the minimum level of discretization per
dimension using a truncation parameter τ , which results in the truncated combi-
nation technique

u(c)n,τ =
d−1∑

q=0

(−1)q
(
d − 1
q

) ∑

i∈Iq,τ
ui, (13)

with the index set Iq,τ = {i : |i|1 = n + (d − 1) − q + τ, and ij > τ, ∀j =
1, . . . , d}. By setting τ = 3 in the example presented earlier we would instead
obtain the index sets

I0,3 = {(7, 4), (6, 5), (5, 6), (4, 7)},

I1,3 = {(6, 4), (5, 5), (4, 6)}.

Throughout this paper we will use this formulation of the combination technique.
One of the main advantages of the combination technique is that computing the

various ui can be done in parallel. We now briefly explain an efficient parallelization
strategy and the fault-tolerant variant of the combination technique.

3 The Combination Technique in Parallel

The fact that we solve the same PDE on multiple grids with different resolutions
means there is room for parallelization. The only step requiring communication
is the combination step—adding the different solutions together to obtain the
combined solution u(c)n . This is done either once at the end of the simulation or
at every certain number of time steps, depending on the application.

The authors of [19] have described a very efficient parallelization strategy for the
combination technique. It is a master-worker scheme, whereby the total available
processes P in a parallel system are divided into M process groups. Each process
group is then assigned a subset of all the grids on which the PDE has to be solved,

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 99

using an appropriate load balancing scheme. The groups then solve the PDE on
their set of grids, one after the other, independently of the other groups. A master
process signals the groups when it is time to combine the results. The authors have
shown that the computational overhead of the combination technique is usually very
small compared to the actual computation of the solutions on each grid, especially
as the dimension and problem size increase. The authors tested this scheme on
the supercomputer Hazel Hen with a 5D example and the scalability results with
up to 180k cores were very promising. Their largest experiments consisted of 182
combination grids with a varying number of process groups (from 11 to 88, resulting
in 8192 and 1024 processes per group respectively).

4 Dealing with System Faults

Another advantage of the combination technique is that its hierarchical structure can
be exploited to deal with system faults. The authors in [18] have shown that if some
of the component solutions ui go missing due to system faults, one can combine the
rest of the solutions with alternative weights and still obtain a good approximation
of the full grid. This fault-tolerant combination technique is illustrated in Fig. 1 for
a simple 2D example. Notice that some additional solutions are needed for the
alternative combination to work (in this example, the solution ui with i = (3, 1)
had to be added). These additional solutions are computed along with the original
set of solutions, but this extra effort is small. This approach also has the advantage
of not requiring any checkpointing, but as one might expect, some accuracy is lost.
This loss of accuracy is nevertheless very small and worth the cost. In previous
work we have shown that it is possible to incorporate this fault tolerant algorithm
in the parallelization strategy described above. The idea is that if some processes
in a group fail during the computation phase, the whole process group is removed
from the communicator before the combination step, and all solutions in that group
are given a coefficient of zero. Our experiments showed that the combined solution
remains accurate, and that the algorithm scales well with up to 65k cores [20].

+1
+1

+1
+1

+1

−1
−1

−1
−1

i2

i11 2 3 4 5
1
2
3
4
5 +1

+1
+1

+1

−1
−1

−1
0 0

0

i2

i11 2 3 4 5
1
2
3
4
5

Fig. 1 Simple example of the fault-tolerant combination technique where two solutions go
missing due to system faults (left) and the alternative combination coefficients (right)

100 A. P. Hinojosa et al.

5 Detecting and Recovering from SDC

In this section we address the main topic of this paper: what can be done if SDC
affects one or more combination solutions while being computed? We have argued
in [21] that even small arithmetic errors in the combination solutions ui can ruin
the combined solution u(c)n , and we have described two possible ways to detect
corrupted data before the combination takes place. We now formalize and extend
those ideas, and we discuss how to implement them efficiently and in parallel. The
main idea is to recognize that although we do not know what the solution of the
PDE will look like, if the combination technique converges, we can expect the
different combination solutions look somewhat similar, so any solutions that deviate
too much from the others should be inspected for SDC. Since the ESA is sufficient
for convergence, we can define solutions to be “similar” to each other if they fulfil
the ESA. The two methods that we will describe are based on outlier detection
techniques and robust regression. Before going into the details, we emphasize that
in both cases we implicitly assume that each ui is expressed in the hierarchical
basis (4). This is admissible since the hierarchical coefficients also satisfy the ESA,
which is the starting point of our SDC detection algorithms.

5.1 Method 1: Comparing Combination Solutions Pairwise via
a Maximum Norm

In Sect. 2 we argued that each combination solution ui has to fulfill the ESA (9)
pointwise. So suppose we take two arbitrary combination solutions ut and us from
the set of all the solutions to be combined. If the two solutions satisfy the ESA, then
their difference should satisfy the relation

ut(xl,j)− us(xl,j) = C1(xl,j, ht1)h
p
t1
+ C2(xl,j, ht2)h

p
t2
+ C1,2(xl,j, ht1, ht2)h

p
t1
h
p
t2

− C1(xl,j, hs1)h
p
s1 − C2(xl,j, hs2)h

p
s2 − C1,2(xl,j, hs1, hs2)h

p
s1h

p
s2 .

(14)

(We do the analysis in 2D for simplicity, but the idea applies to arbitrary dimen-
sions.) This equation holds only for the grid points common to both grids Ωs and
Ωt, i.e. for all xl,j with (1, 1) ≤ l ≤ t ∧ s. Taking the largest value of (14) over all
(l, j) can serve as an indicator of how similar or different two solutions ut and us
are. Now assume that SDC has affected one or more function values of either ut or
us, causing (14) to be large for the affected grid points. This means we should be
suspicious of the grid point xl,j where (14) is largest, so we can measure

β(s,t) := max
l≤t∧s

max
j∈Il

∣
∣ut(xl,j)− us(xl,j)

∣
∣ . (15)

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 101

We can compute β(s,t) for many pairs of grids (s, t) and try to determine whether
they fit the error expansion (14). If some measurements don’t fit the model well,
they can be considered to be outliers. By “fitting” we mean finding the functions
C1, C2 and C1,2 in a least square sense. The only problem is that each of these
functions depend on xl,j since (14) holds pointwise. This means that if we want to
fit measurements of β(s,t) to the model (14), every measurement should be made at
the same grid point for all pairs (s, t). We can do this by focusing on the grid point
x∗l,j where β(s,t) is largest over all pairs:

(s, t)∗ = arg max
(s,t)∈V

β(s,t) (16)

x∗l,j = arg max
xl,j

β(s,t)∗ (17)

V denotes the set of all pairs of multi-indices under consideration. We can then
measure

β∗(s,t) := ut(x
∗
l,j)− us(x

∗
l,j) ≈ C1(x

∗
l,j, ht1)h

p
t1
+ C2(x

∗
l,j, ht2)h

p
t2

− C1(x
∗
l,j, hs1)h

p
s1 − C2(x

∗
l,j, hs2)h

p
s2

=: β̃(s,t)
(18)

for all pairs (s, t) ∈ V . In the equation above, β∗(s,t) denotes the actual value we

measure, while β̃(s,t) is the model for the error expansion (14) (without the higher
order terms). For a given index s we suggest to measure β∗(s,t) with respect to the
d-nearest neighbors of s (those for which the distance |s− t|1 is smallest).

As an example, consider a set of 10 combination solutions in two dimensions
with the following index set:

Classical set
︷ ︸︸ ︷
I0,3 ∪I1,3 ∪

Fault tolerance set
︷ ︸︸ ︷
I2,3 ∪I3,3 = {(7, 4), (6, 5), (5, 6), (4, 7), (6, 4), (5, 5), (4, 6),

(5, 4), (4, 5), (4, 4)}
(19)

The resulting set of pairs V would have 11 elements, listed in Table 1. The second
column shows the measured values of β∗(s,t) for a simple example solving an
advection-diffusion equation (more details in Sect. 6.1). The values corresponding
to pairs {(4, 7), (4, 6)} and {(5, 6), (4, 6)} are particularly high, which could indicate
that solution u(4,6) has been affected by SDC. A measurement is “high” if it deviates
too much from the model. This means we should perform robust regression on the
values we measure, that is, trying to fit the measured values β∗(s,t) to the model β̃(s,t),
but with the constraint that some of the values could be outliers. This translates
into finding the values of the functions C1 and C2 at all mesh sizes hi that appear

102 A. P. Hinojosa et al.

Table 1 Measurements of
β∗
(s,t) with one solution

affected by SDC, namely,
u(4,6)

Pair (s, t) β∗(s,t)
(4, 5) (4, 4) 0.0275

(4, 7) (4, 6) 0.2180
(4, 7) (5, 6) −0.0029

(5, 4) (4, 4) 0.0152

(5, 4) (5, 6) −0.0498

(5, 5) (4, 5) 0.0158

(5, 6) (4, 6) 0.2210
(6, 5) (5, 5) 0.0111

(6, 5) (6, 4) 0.0283

(7, 4) (6, 4) 0.0061

(7, 4) (6, 5) −0.0222

in the combination technique, namely, hi = {hτ+1, hτ+2, . . . , hn}. If we denote
by c := (C1(hτ+1), . . . , C1(hn), C2(hτ+1), . . . , C2(hn)) our vector of 2 · (n − τ)
unknowns, the robust least squares problem that results is

cmin ← min
c

∑

(s,t)∈V
ρ
(
β̃(s,t)(c)− β∗(s,t)

)
, (20)

β̃(s,t) = β∗(s,t) + e(s,t). (21)

e(s,t) is the difference between the measurements and the model. Since the
model β̃(s,t) is linear, it can be written as the matrix-vector product β̃(s,t)(c) := X ·c,
where the matrix X ∈ R

|V |×2·(n−τ) contains the corresponding coefficients hpi . The
role of the loss function ρ is to attenuate the effect of outliers, and it should have
the following properties [14]:

ρ(e) ≥ 0

ρ(0) = 0

ρ(−e) = ρ(e)
ρ(e1) ≥ ρ(e2) for |e1| > |e2|

(22)

The choice ρ(e) = e2 leads to the ordinary least squares problem, but the 2-norm is
not robust to outliers. Some choices for the loss function that are robust to outliers

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 103

include

• Huber’s function:

ρ(e) =
{
e, e ≤ 1√
e − 1, e > 1

• Cauchy’s function:

ρ(e) = ln(1+ e)

• arctan function:

ρ(e) = arctan(e).

There are well-established algorithms to solve the minimization problem (20),
such as the Trust Region Reflective algorithm [4] or the Iteratively Reweighted
Least Squares (IRLS) method [22]. In this paper we opt for the latter, which is
implemented in the GSL library [14]. The main idea behind using robust regression
is that outlier measurements will have large residuals r = β∗(s,t) − X · cmin, but in
order to have an absolute criterion for outliers, the residuals have to be normalized
by a scaling factor to make them dimensionless. One way to do this is described
in [28]. The idea is to calculate a preliminary scale estimate σ 0 given by

σ 0 = 1.4826

(

1+ 5

|V | − 2 · (n− τ)
)√

med r2. (23)

Here, |V | is the number of measurements we have (equal to the number of pairs
we are comparing) and 2 · (n − τ) corresponds to the number of unknowns in the
minimization problem (number of Ci functions). One then calculates a weight wi
for each residual as follows:

wi =
{

1, if |ri/s0| ≤ 2.5

0, otherwise

With these weights we then compute a more robust scale estimate σ ∗ given by

σ ∗ =

√
√
√
√
√
√
√
√
√
√
√

|V |∑

i=1

wir
2
i

|V |∑

i=1

wi − 2 · (n− τ)
.

104 A. P. Hinojosa et al.

One can finally use this scale estimate to compute the standardized residuals

r̂ = r
σ ∗
. (24)

A common heuristic is to label the i-th measurement as outlier if |r̂i | > 2.5.

5.2 Method 2: Comparing Combination Solutions via their
Function Values Directly

Instead of measuring the value of β∗(s,t) (the maximum difference between pairs of
combination solutions), one could also look at the function values ui(xl,j) directly.
We proceed as in the previous section by first finding the grid point x∗l,j where
the value of β(s,t) is largest (Eq. (17)). But now we take a look at the function
values ui(x

∗
l,j) for all combination solutions ui containing the grid point x∗l,j. Since

we can expect the different values of ui(x
∗
l,j) to be somewhate similar across the

combination solutions (despite having different discretizations), we try to fit them
to a constant ũ:

umin ← min
ũ

∑

l′≥l

ρ
(
ul′(x

∗
l,j)− ũ

)
. (25)

(A grid point xl,j can be found in all combination solutions ul′ for which l′ ≥ l.)
The residuals ri = ui(x

∗
l,j) − umin can be normalized as in the previous section

(Eq. (24)) to determine if any of them corresponds to an outlier measurement, with
|V | substituted by the number of measurements we have (number of combination
solutions containing the grid point x∗l,j) and 2 · (n − τ) substituted by 1 (number
of unknowns in the minimization problem—in this case, only ũ). One advantage of
this method is that it doesn’t explicitly rely on the ESA, which could make it more
useful in cases where it is not clear whether the ESA holds.

5.3 Cost and Parallelization

The two methods we have described require two main steps: searching for the grid
point x∗l,j where β(s,t) is largest for all pairs of solutions and solving the modified
least squares problems (20) and (25).

Let us begin with the cost of calculating all values of β(s,t), that is, the maximum
difference over all pairs of combination solutions from the set V . The number of
pairs we have depends on the number of combination solutions ui resulting from the
truncated combination technique (13). For a given level n and truncation parameter

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 105

τ , the total number of combination solutions is given by 1

∣
∣
∣
∣
∣
∣

d+1⋃

q=0

Iq,τ

∣
∣
∣
∣
∣
∣
=
d+1∑

q=0

(n+ (d − 2)− q − τ)!
(n− q − τ − 1)!(d − 1)! . (26)

For large n there are O(d · nd−1) such grids. If we compare each combination
solution to its d nearest neighbors, then we have |V | = O(d2 · nd−1) pairs to
compare. Each comparison requires a simple traversal of the two grids (each of
which has O(2n) grid points), which is not expensive, especially compared to the
actual work of solving N time steps of a PDE on each of the |Iq,τ | grids.

The cost of solving any of the minimization problems (20) and (25) is also small.
In the former case, the regression model matrix X is very small (of size |V |×2·(n−
τ)), and the minimization problem usually takes 101 − 102 iterations to converge
(using IRLS). In the latter case, we are only fitting a scalar value, so the cost is
negligible.

We can use the parallel framework described in Sect. 4 to accelerate the
computation of β(s,t) (and β∗(s,t)). Since each solution ui is parallelized using domain
decomposition, each process within a process group can calculate its local value of
β(s,t) for all pairs of solutions. The local values can then be reduced within the group
using MPI_MAX. Both methods are implemented at a group level, so there is no
global communication involved, which also means that each process group should
contain enough combination solutions ui for the statistics to be significant. As we
will see in our tests, this is not a problem since one only needs approximately 5 or
more measurements (so roughly 5 grids per group). These numbers will become
more clear in Sect. 6 where we describe typical simulation scenarios in various
dimensions.

5.4 Detection Rates

It is difficult to estimate the detection rate of our methods a priori since the rate
depends on various different factors, namely:

• The loss function used for the minimization problem
• The specific minimization algorithm used to solve (20) and (25)
• The threshold for the standardized residuals
• The number of combination technique solutions involved

So instead of trying to deduce theoretical detection rates, we will study fault
scenarios extensively and report the detection quality of our algorithms.

1This can be calculated using, for example, the stars and bars method.

106 A. P. Hinojosa et al.

6 Numerical Tests

6.1 Experimental Setup

To test our algorithm we used a d-dimensional advection-diffusion equation

∂tu−Δu+ a · ∇u = f inΩ × [0, T) (27)

u(·, t) = 0 in ∂Ω

as implemented in [20], with Ω = [0, 1]d , t = [0, 0.05], a = 1T and

u(·, 0) = e−100
∑d
i=1(xi−0.5)2 using the framework DUNE-pdelab [3]. This means

we simulate a Gaussian function centered in the middle of the domain at t = 0,
traveling diagonally with a constant velocity in every dimension. The spatial domain
is discretized using the finite volume element method on rectangular grids, and we
use a simple explicit Euler scheme in time.

We carried out experiments in up to 5 dimensions. In all cases we simulated 50
time steps using Δt = 10−3 and we combined the solutions every 10 time steps
according to Eq. (13). The robust linear regression problems (20) and (25) were
solved using the GNU Scientific Library [14] with a Cauchy loss function. The
library implements the IRLS algorithm.

6.2 SDC Injection

In [21] we proposed a way to simulate SDC in the combination technique. It is
based on the suggestions in [11] and [12], where the authors argue against injecting
perturbed values into the floating point data (for example, in the form of random bit
flips) to study how an algorithm reacts. Instead, they propose trying to identify the
worst-case scenarios that a solver could face, and to come up with numerical bounds
or additional algorithmic steps to guarantee stability in these cases. Although it is
often difficult to identify the worst-case scenarios (and simulating these may lead to
olverly pessimistic conclusions), we think it’s the more robust approach. See [21]
for a more detailed discussion.

For our simulations, the fault injection looks as follows. First we choose a
combination solution ui to inject SDC into. For our experiments we choose a
solution with the highest resolution (any ui with |i|1 = n+ d − 1), for a reason that
will later become evident. To simulate the effect of SDC, we choose a grid point xl,j
in ui and alter the function value at that point in one of the following ways:

1. ũi(xl,j) = ui(xl,j)× 10−300 (very small)
2. ũi(xl,j) = ui(xl,j)× 10−0.5 (slightly smaller)
3. ũi(xl,j) = ui(xl,j)× 10+150 (very large)

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 107

We investigate two injection scenarios: one where SDC is injected in the middle
of the domain (xi = 0.5, i = 1, . . . , d in the unit cube) and another where the
injection is done near the middle of the domain, namely at xi = 0.5 − hi, i =
1, . . . , d . In the former case, the chosen grid point exists in all combination solutions
ui, whereas in the latter case, the grid point appears only in the solution affected.
This means that if SDC is injected into a combination solution ui of the finest
resolution (which is what we do), it should be easier to detect when injected in
the middle of the domain (since the grid point is common to all solutions) than in
the latter case (since the grid point appears only in that grid). It is this latter case
that proves most challenging since SDC can potentially go undetected. Since the
solution of our PDE is a Gaussian that travels away from the center, the function
values in the middle of the domain vary from 1 to almost 0, which allows us to
investigate all possible magnitudes of SDC.

Finally, we choose a time iteration where the fault is to be injected and we inject
SDC only once in the entire simulation. Our goal is to detect the wrong solution
before performing the next combination and exclude it from the set of solutions by
assigning it a coefficient of zero and computing alternative combination coefficients,
as discussed in Sect. 4.

6.3 Results: Detection Rates and Errors

We investigated the quality of our two detection methods in 2, 3 and 5 dimensions.
We are primarily interested in the percentage of cases where SDC is detected, as
well as the quality of the combination technique after detecting and removing the
wrong solution.

Figure 2 shows simulation results with n = 7 and a truncation parameter τ = 2
for the 2D truncated combination technique (13), which results in 14 combination
solutions. For each of the three magnitudes of SDC from the previous subsection we
ran 50 independent simulations, such that at the i-th simulation we injected SDC at
the i-th time step. At the end of each simulation we calculated the l2 relative error
of the combination solution compared to a full grid solution of level 7 (i.e., with

(27 + 1) × (27 + 1) grid points), e = ‖u(c)n −uref‖2‖uref‖2
. When SDC was injected in the

middle of the domain (Fig. 2a), Method 1 detected the SDC in 88%, 64% and 100%
of the times for the three magnitudes of SDC, while for Method 2 the rates were
98%, 84% and 100%. When we injected SDC near the middle of the square domain
(Fig. 2b), the detection rates were 22%, 10% and 100% for Method 1 and 0%, 0%
and 100% for Method 2. But these low detection rates are not a bad result, since the
error introduced by the SDC is so small that it is tolerable to not detect it: it affects
the combination solution almost imperceptibly. When SDC was large (10+150), SDC
was always detected.

For the simulations in 3D we used once again n = 7 and a truncation parameter
τ = 2, which results in 10 combination solutions. For each magnitude of SDC we

108 A. P. Hinojosa et al.

0 10 20 30 40 50

4.00e-02

6.00e-02

8.00e-02

1.00e-01

1.20e-01

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10−300

No SDC Detection OFF Method 1 Method 2

0 10 20 30 40 50

4.00e-02

6.00e-02

8.00e-02

1.00e-01

1.20e-01

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10−0.5

0 10 20 30 40 50

4.00e-02

6.00e-02

8.00e-02

1.00e-01

1.20e-01

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10+150

(a)

0 10 20 30 40 50
3.50e-02

4.00e-02

4.50e-02

5.00e-02

5.50e-02

6.00e-02

6.50e-02

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10−300

0 10 20 30 40 50
3.50e-02

4.00e-02

4.50e-02

5.00e-02

5.50e-02

6.00e-02

6.50e-02

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10−0.5

0 10 20 30 40 50

Iteration where SDC is injected
3.50e-02

4.00e-02

4.50e-02

5.00e-02

5.50e-02

6.00e-02

6.50e-02

l 2
re
la
ti
ve

er
ro
r ũi(xl,j) = ui(xl,j) × 10+150

(b)

Fig. 2 l2 relative error of the 2D combination technique with simulated SDC injected in (a) the
middle of the domain and (b) near the middle of the domain

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 109

0 10 20 30 40 50

8.00e-02

1.00e-01

1.20e-01

1.40e-01

1.60e-01

1.80e-01

2.00e-01

2.20e-01

l 2
re
la
tiv

e
er
ro
r ũi(xl,j) = ui(xl,j) × 10−300

No SDC
Detection OFF

Method 1
Method 2

0 10 20 30 40 50

8.00e-02

1.00e-01

1.20e-01

1.40e-01

1.60e-01

1.80e-01

2.00e-01

2.20e-01

l 2
re
la
tiv

e
er
ro
r ũi(xl,j) = ui(xl,j) × 10−0.5

0 10 20 30 40 50

Iteration where SDC is injected

8.00e-02

1.00e-01

1.20e-01

1.40e-01

1.60e-01

1.80e-01

2.00e-01

2.20e-01

l 2
re
la
tiv

e
er
ro
r ũi(xl,j) = ui(xl,j) × 10+150

(a)

0 10 20 30 40 50
6.50e-02

7.00e-02

7.50e-02

8.00e-02

8.50e-02

9.00e-02

9.50e-02

1.00e-01

l 2
re
la
tiv

e
er
ro
r ũi(xl,j) = ui(xl,j) × 10−300

No SDC
Detection OFF

Method 1
Method 2

0 10 20 30 40 50
6.50e-02

7.00e-02

7.50e-02

8.00e-02

8.50e-02

9.00e-02

9.50e-02

1.00e-01

l 2
re
la
tiv

e
er
ro
r ũi(xl,j) = ui(xl,j) × 10−0.5

0 10 20 30 40 50

Iteration where SDC is injected
6.50e-02

7.00e-02

7.50e-02

8.00e-02

8.50e-02

9.00e-02

9.50e-02

1.00e-01

l 2
re
la
tiv

e
er
ro
r

ũi(xl,j) = ui(xl,j) × 10+150

(b)

Fig. 3 l2 relative error of the 3D combination technique with simulated SDC injected in (a) the
middle of the domain and (b) near the middle of the domain

ran 6 independent simulations, injecting SDC at iterations 0, 9, 19, 29, 39 and 49,
respectively. We calculated the error of the solution compared to a full grid solution
of level n = 5 at the end of each simulation. The results are very similar to the
2D case, with the exception that Method 1 performs more poorly when SDC is
of moderate magnitude (10−300 or 10−0.5). Method 2 remained robust, detecting all
instances of SDC that would have otherwise led to large errors. Figure 3 summarizes
our results.

Finally, for our detection tests in 5D we used n = 11 and a truncation parameter
τ = 2, which resulted in 21 combination solutions. Injection was done as in the
3D case and we compared the combination technique with a full grid solution of
level n = 5. Due to the very high cost of running these tests, we only simulated one
scenario, injecting SDC in the middle of the domain and detecting using Method 2
(Fig. 4a). We used 2 process groups, each with 1024 processes. As in the 2D and
3D cases, SDC is not detected when its effect is too small. In all other cases, it is
detected and fixed.

6.4 Results: Scaling

To test the parallel performance of our algorithm, we measured the time needed to
compare all pairs of grids and solve the robust regression problem of Method 2.
We used a five dimensional scenario with n = 15 and τ = 2, which results in 126
combination solutions. For the parallelization we used 8 process groups, doubling
the number of processes per group from 256 until 4096. Our time measurements

110 A. P. Hinojosa et al.

0 10 20 30 40 50

Iteration where SDC is injected

1.00e-01
1.20e-01
1.40e-01
1.60e-01
1.80e-01
2.00e-01
2.20e-01

l 2
re
la
tiv

e
er
ro
r

ũi(xl,j) = ui(xl,j) × 10−300

No SDC Detection OFF Method 2

(a)
2048 4096 8192 16384 32768

processes

10−2

10−1

100

101

102

103

104

ru
nt
im

e
[s
]

Solve
Recover

Search SDC
Perfect scaling

(b)

Fig. 4 (a) l2 relative error of the 5D combination technique with simulated SDC injected in the
middle of the domain; (b) scaling experiments

can be seen in Fig. 4b (Search SDC). Once the SDC is detected, the wrong solution
is removed and the combination technique is adapted. The time to perform these
operations is shown in the plot as Recover. As expected, this time is negligible
compared to the time required for one time step of the solver (Solve, which is 3–
4 orders of magnitude larger), but the time remains fairly constant with increasing
number of processors. For this simulation scenario, we would still need to increase
the number of processors by several orders of magnitude for the Recover step to
start playing a role. The main cost of the recovery step comes from reinitializing the
wrong task, as we reported in [20], and this cost depends on the solver. In the case
of DUNE, initializing a grid does not seem to scale.

6.5 Dealing with False Positives

Increasing the dimension of the problem gave rise to an increasing number of
false positives: combination solutions marked as outliers when they were not. This
happened in scenarios where the function value at a grid point was almost exactly
the same across many combination solutions, but only slightly different in others, as
illustrated in the measurements in Table 2.

If outliers are penalized strongly, such slight variations are assigned very large
standardized residuals and they are marked as outliers.

To solve this problem, we propose the following approach. Consider again the
six measurements from Table 2. We first combine the six values according to their
classical combination coefficients,

uc =
∑

i

ciui(0.5, 0.5).

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 111

Table 2 Example of values
clustering

i ui(0.5, 0.5)

(3, 3, 3, 3, 3) 0.94203

(3, 3, 4, 3, 3) 0.94203

(4, 3, 3, 3, 3) 0.94203

(3, 3, 3, 3, 4) 0.94571
(3, 4, 3, 3, 4) 0.94203

(3, 3, 3, 4, 3) 0.94203

Grid with index (3, 3, 3, 3, 4)
can be erroneously marked as
wrong if outliers are penal-
ized strongly

We then remove the suspect value as if it were an outlier (we assign it a zero
coefficient) and we combine the rest of the values with their alternative combination
coefficients (computed according to the Fault Tolerant Combination Technique),

u′c =
∑

i

c′iui(0.5, 0.5).

If the suspect value is indeed an outlier, the relative difference between uc and u′c
should be large, since uc is affected by the outlier but u′c is not. On the other hand,
if the suspect value is only slightly different (and thus not really an outlier), then uc
and u′c should be very similar. So we can compute

erel = |uc − u′c|
|umin| ,

and if this error is small (say, < 5%), we conclude that the suspect value is
not actually an outlier. umin is the robust value obtained from the regression
problem (25). We used this strategy in all scenarios described earlier.

It is important to keep in mind that the integration scheme we have been using
is explicit, which means that the error introduced by SDC at a given time step
propagates slowly and locally. Implicit schemes, on the contrary, could spread the
error to the whole domain after only one time step. It is not clear how large the error
of the combination solution would be if all values were affected by a small factor. If
no wrong values are detected, the small errors could accumulate, leading to a large l2
error. On the other hand, if all values in one combination solution are wrong, there is
a chance that the largest such error could be large enough to be detected, especially
considering that errors are amplified during hierarchization. Such a scenario should
be included in future experiments.

112 A. P. Hinojosa et al.

7 Extensions to Quantities of Interest

The two methods described in this paper are based on observing the function
values of the different combination solutions. However, we are often not interested
in the function values themselves, but rather in a Quantity of Interest (QoI) Q
corresponding to the numerical solution ui, or Q(ui). We can also apply the
techniques of robust regression presented in this paper if we have a mathematical
model of the discrete QoI (analogous to Eq. (18)). That is, if we have a model for

Q(u)−Q(ui),

we can perform a regression analysis on the measured QoIs.
As an example, consider the QoI given by the integral of the solution field over

the entire domain [31]:

Q(u) =
∫

Ω

u(x)dx. (28)

We can calculate this integral numerically for each of the combination solutions
ui and perform robust regression to find outliers. If we use, say, a trapezoidal ruleQh
to calculate (28) numerically, we know that the error will be of order 2 in h = 1/N ,
with N =∏d

j=1(2
ij + 1),

Q(u)−Qh(ui) = C · h2 +O(h3). (29)

We could then try to fit our measurements ofQh(ui) to, say, a polynomial model of
powers of h,

Qh(ui) ≈ Q̃(c, h) :=
p∑

j=0

cj h
j . (30)

The robust minimization problem would then be

min
c

∑

i

ρ
(
Qh(ui)− Q̃(c, h)

)
. (31)

The advantage now is that since we look at an integrated quantity, it matters little
where the SDC occurs in the solution field.

Initial tests with a linear advection equation in 2D show promising results.
Injecting SDC of magnitude 10−0.5 into one solution affects its QoI, as seen in
Table 3. (Here we used an example for which the exact integral is Q(u) = π .)
Trying to fit the measurements of Qh(ui) to model (30) with order p = 2 reveals
the outlier QoI (corresponding to solution u(6,3)).

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 113

Table 3 Detecting outlier
quantities of interest with a
simple polynomial model:
grid (6,3) is identified

i Qh(ui) r̂i

(7, 3) 3.14175 0.01204

(5, 4) 3.14268 1.32745

(4, 6) 3.14215 0.67156

(6, 4) 3.14215 0.67156

(4, 5) 3.14268 1.32745

(4, 3) 3.14245 0.23318

(4, 4) 3.14344 2.19886

(5, 5) 3.14222 0.79327

(6, 3) 3.13748 7.66325
(3, 6) 3.14189 0.00742

(3, 7) 3.14175 0.01204

(3, 5) 3.14215 0.01368

(3, 4) 3.14245 0.23318

(5, 3) 3.14215 0.01368

8 Conclusion

There has been an increasing interest in studying the effect of SDC in large parallel
systems. This has resulted in different proposals to overcome them. Checksums,
for example, are quite common but they can be very cumbersome to implement
and computationally expensive, sometimes requiring checkpointing, additional
checkpoint processes, and a fault-tolerant MPI implementation ([29], Sect. 5.4.2
includes an extensive list of examples.) Data replication can work for some problems
(see [30]), but the overhead is not negligible. We believe that a one-size-fits-all
solution that is both scalable and robust is not likely to be developed, and that we
can do better by focusing on the particular features of our algorithms.

We proposed two methods to detect SDC using the combination technique. Both
are based on robust regression, but the minimization problems are different. In the
first algorithm we try to fit the difference of the function values for a set of pairs of
combination solutions to an error expansion. This method performs very well in 2D
but becomes less reliable as the dimension increases. The second method involves
fitting the function values directly, and we showed that this method is robust in up
to 5D but false positives have to be taken care of. Our scaling experiments with up
to 32k cores showed that the cost of searching and recovering from SDC is very
small. We believe that focusing instead on the Quantities of Interest could be a more
promising approach since for some QoIs it is irrelevant where SDC occurs in the
data. This will be the topic of future work.

114 A. P. Hinojosa et al.

References

1. L. Bautista-Gomez, F. Cappello, Detecting silent data corruption for extreme-scale MPI
applications, in Proceedings of the 22nd European MPI Users’ Group Meeting (ACM, New
York, 2015), p. 12

2. E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, F. Cappello, Lightweight silent data corruption
detection based on runtime data analysis for HPC applications, in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed Computing, HPDC
’15 (ACM, New York, 2015), pp. 275–278

3. M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gersbacher, C.
Gräser, F. Gruber, C. Grüninger et al., The distributed and unified numerics environment,
version 2.4. Archive Numer. Softw. 4(100), 13–29 (2016)

4. M.A. Branch, T.F. Coleman, Y. Li, A subspace, interior, and conjugate gradient method for
large-scalebound-constrained minimization problems. Tech. Rep., Cornell University, 1995

5. H.J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004).
6. H.J. Bungartz, M. Griebel, D. Röschke, C. Zenger, Pointwise convergence of the combination

technique for Laplace’s equation. Technische Universität München. Institut für Informatik
(1993)

7. F. Cappello et al., Toward exascale resilience: 2014 update. Supercomput. Front. Innov. 1(1),
4–27 (2014)

8. Z. Chen, Online-ABFT: an online algorithm based fault tolerance scheme for soft error
detection in iterative methods, in ACM SIGPLAN Notices, vol. 48 (ACM, New York, 2013),
pp. 167–176

9. C. Constantinescu, I. Parulkar, R. Harper, S. Michalak, Silent data corruption–myth or reality?
in IEEE International Conference on Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008 (IEEE, New York, 2008), pp. 108–109

10. J. Elliott, M. Hoemmen, F. Mueller, Evaluating the impact of SDC on the GMRES iterative
solver, in 2014 IEEE 28th International Parallel and Distributed Processing Symposium
(IEEE, New York, 2014), pp. 1193–1202

11. J. Elliott, M. Hoemmen, F. Mueller, Resilience in numerical methods: a position on fault
models and methodologies (2014). arXiv preprint arXiv:1401.3013

12. J. Elliott, M. Hoemmen, F. Mueller, A numerical soft fault model for iterative linear solvers,
in Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing (ACM, New York, 2015), pp. 271–274

13. D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, R. Brightwell, Detection and cor-
rection of silent data corruption for large-scale High-Performance Computing, in Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis (IEEE Computer Society Press, Washington, 2012), p. 78

14. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, R.
Ulerich, GNU scientific library reference manual (2015). Library available online at http://
www.gnu.org/software/gsl

15. J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications (Springer, Berlin, 2013),
pp. 57–80

16. M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid
problems, in Iterative Methods in Linear Algebra (1992), pp. 263–281

17. B. Harding, Fault tolerant computation of hyperbolic partial differential equations with the
sparse grid combination technique. Ph.D. thesis, 2016

18. B. Harding et al.: Fault tolerant computation with the sparse grid combination technique. SIAM
J. Sci. Comput. 37(3), C331–C353 (2015)

19. M. Heene, D. Pflüger, Scalable algorithms for the solution of higher-dimensional PDEs, in
Software for Exascale Computing-SPPEXA 2013–2015 (Springer, Berlin, 2016), pp. 165–186

20. M. Heene, A.P. Hinojosa, H.J. Bungartz, D. Pflüger, A massively-parallel, fault-tolerant solver
for high-dimensional PDEs, in Euro-Par 2016: Parallel Processing Workshops (2016)

http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl

Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs 115

21. A.P. Hinojosa et al., Handling silent data corruption with the sparse grid combination
technique, in Proceedings of the SPPEXA Workshop. Lecture Notes in Computational Science
and Engineering (Springer, Berlin, 2016)

22. P.W. Holland, R.E. Welsch, Robust regression using iteratively reweighted least-squares.
Commun. Stat. Theory Methods 6(9), 813–827 (1977)

23. F. Jenko et al., Electron temperature gradient driven turbulence. Phys. Plasmas 7(5), 1904–1910
(2000). http://www.genecode.org/

24. C. Kowitz, D. Pflüger, F. Jenko, M. Hegland, The combination technique for the initial
value problem in linear gyrokinetics, in Sparse Grids and Applications. Lecture Notes in
Computational Science and Engineering, vol. 88 (Springer, Heidelberg, 2012), pp. 205–222

25. B. Mohr, W. Frings, Jülich Blue Gene/P extreme scaling workshop 2009. Tech. Rep., Technical
report FZJ-JSC-IB-2010-02 (2010). http://juser.fz-juelich.de/record/8924/files/ib-2010-02.ps.
gz

26. A. Pan, J.W. Tschanz, S. Kundu, A low cost scheme for reducing silent data corruption in large
arithmetic circuits, in IEEE International Symposium on Defect and Fault Tolerance of VLSI
Systems, 2008. DFTVS’08 (IEEE, New York, 2008), pp. 343–351

27. C. Reisinger, Analysis of linear difference schemes in the sparse grid combination technique.
IMA J. Numer. Anal. 33(2), 544–581 (2012)

28. P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection, vol. 589 (Wiley, New
York, 2005)

29. M. Snir, R.W. Wisniewski, J.A. Abraham, S.V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose,
F. Cappello, B. Carlson, et al. Addressing failures in exascale computing. Int. J. High Perform.
Comput. Appl. 28, 129–173 (2014)

30. H.J. van Dam, A. Vishnu, W.A. De Jong, A case for soft error detection and correction in
computational chemistry. J. Chem. Theory Comput. 9(9), 3995–4005 (2013)

31. M. Wakefield, Bounds on quantities of physical interest. Ph.D. thesis, University of Reading,
2003

http://www.genecode.org/
http://juser.fz-juelich.de/record/8924/files/ib-2010-02.ps.gz
http://juser.fz-juelich.de/record/8924/files/ib-2010-02.ps.gz

Sparse Grid Quadrature Rules Based
on Conformal Mappings

P. Jantsch and C. G. Webster

Abstract In this work, we demonstrate the extension of quadrature approximations,
built from conformal mapping of interpolatory rules, to sparse grid quadrature
in the multidimensional setting. In one dimension, computation of an integral
involving an analytic function using these transformed quadrature rules can improve
the convergence rate by a factor approaching π/2 versus classical interpolatory
quadrature (Hale and Trefethen, SIAM J Numer Anal 46:930–948, 2008). For the
computation of high-dimensional integrals with analytic integrands, we implement
the transformed quadrature rules in the sparse grid setting, and we show that in
certain settings, the convergence improvement can be exponential with growing
dimension. Numerical examples demonstrate the benefits and drawbacks of the
approach, as predicted by the theory.

1 Introduction and Background

Standard interpolatory quadrature methods, such as Gauss–Legendre and
Clenshaw–Curtis, tend to have points which cluster near the endpoints of the
domain. As seen in the well-known interpolation example of Runge, this can
mitigate the spurious effects of the growth of the polynomial basis functions at
the boundary. However, this clustering can be problematic and inefficient in some
situations. Gauss–Legendre and Clenshaw–Curtis grids, with n quadrature points
on [−1, 1], distribute asymptotically as 1

π
√

1−x2
[33]. Hence these clustered grids

P. Jantsch
University of Tennessee, Knoxville, TN, USA
e-mail: jantsch@math.utk.edu

C. G. Webster (�)
University of Tennessee, Knoxville, TN, USA

Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: webstercg@ornl.gov

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_6&domain=pdf
mailto:jantsch@math.utk.edu
mailto:webstercg@ornl.gov
https://doi.org/10.1007/978-3-319-75426-0_6

118 P. Jantsch and C. G. Webster

may have a factor of π/2 fewer points near the middle of the domain, compared
with a uniform grid. This may have unintended negative effects, and the issue is
compounded when considering integrals over high-dimensional domains.

For numerical integration of an analytic function in one dimension, the conver-
gence of quadrature approximations based on orthogonal polynomial interpolants
depends crucially on the size of the region of analyticity, which we denote by
Σ . More specifically, they depend on ρ ≥ 1, the parameter yielding the largest
Bernstein ellipse Eρ contained within the region of analyticity Σ . The Bernstein
ellipse is defined as the open region in the complex plane bounded by the curve

{
z ∈ C : z = (u+ u−1)/2, u = ρeiθ , 0 ≤ θ ≤ 2π

}
. (1)

This gives some intuition as to why the most stable quadrature rules place more
nodes toward the boundary of the domain [−1, 1]; since the boundary of Eρ is close
to {±1}, the analyticity requirement is weaker near the endpoints of the domain.
More specifically, to be analytic in Eρ , the radius of the Taylor series of f at {±1}
is only required to be ρ − 1/ρ, while the radius of the Taylor series centered at 0 is
required to be at least ρ + 1/ρ.

On the other hand, the appearance of the Bernstein ellipse in the analysis is not
tied fundamentally to the integrand, but only to the choice of polynomials as basis
functions. Thus, we may consider other types of quadrature rules which still take
advantage of the analyticity of the integrand. Using non-polynomial functions as a
basis for the rule may improve the convergence rate of the approximation. Much
research has gone into investigating ways to find the optimal quadrature rule for a
function analytic inΣ , and to overcome the aforementioned “π/2-effect”, including
end-point correction methods [2, 15, 18], non-polynomial based approximation [4–
6, 25, 34], and the transformation methods [7, 10, 13, 16, 17, 19, 24, 26, 30, 30] which
map a given set of quadrature points to a less clustered set. In this paper, we consider
the transformation approach, based on the concept of conformal mappings in the
complex plane. Many such transformations have been considered in the literature,
especially for improper integrals where the integrand has endpoint singularities,
e.g., [11, 30]. Our interest here is in analytic functions which have singularities
in the complex plane away from the endpoints of the interval. We consider the
transformations from [13], which offer the following benefits: (1) practical and
implementable maps; and (2) simple concepts leading to theorems which may
precisely quantify their benefits in mitigating the effect of the endpoint clustering.

Our contribution to this line of research is to implement and analyze the applica-
tion of the transformed rules to sparse grid quadratures in the high-dimensional
setting. For high-dimensional integration over the cube [−1, 1]d , the endpoint
clustering means that a simple tensor product quadrature rule may use (π/2)d

too many points. On the other hand, we show that for sparse Smolyak quadrature
rules [27] based on tensorization of transformed one-dimensional quadrature, this
effect may be mitigated to some degree. Even in the sparse grid setting, the use of
mapped quadratures is not new. The paper [11] uses a similar method to generate

Sparse Grid Quadrature Rules Based on Conformal Mappings 119

new quadrature rules. In their setting, the goal is to compute integrals where the
integrand has boundary singularities. In contrast, our objective is to analyze the
rules for integrands which are analytic but may have singularities in the complex
plane away from [−1, 1]d .

The remainder of the paper is outlined next. First, we introduce the one-
dimensional transformed quadrature rules in Sect. 2, and in Sect. 2.2 describe how
to use them in the construction of sparse grid quadrature rules for integration
of multidimensional functions. In Sect. 3, we provide a brief analysis of the
corresponding mapped method to show that the improvement in the convergence
rate to a d-dimensional integral is (π/2)1/ξ(d), where ξ(d)−1 ≥ d , and provide
numerical tests for the sparse grid transformed quadrature rules in Sect. 4. We
conclude this effort with some remarks on the benefits and limitations of the method
in Sect. 5.

2 Transformed Quadrature Rules

In this section, we introduce one-dimensional transformed quadrature rules, based
on the conformal mappings described in [13], applied to classical polynomial
interpolation based rules. These rules will be used as a foundation for sparse tensor
product quadrature rules for computing high-dimensional integrals, introduced in
later sections.

To begin, suppose we want to integrate a given function f over the domain
[−1, 1], and assume this function admits an analytic extension in a region [−1, 1] ⊂
Σ ⊂ C. Given a set of points {xj }nj=1, an interpolatory quadrature rule is defined
from the Lagrange interpolant of f , which is the unique degree n − 1 polynomial
matching f at each of the abcissas xj , i.e.,

Ln[f](x) =
n∑

j=1

f (xj)l
n
j (x), where lnj (x) =

n∏

i=1
i �=j

x − xi
xj − xi .

The quadrature approximation of the integral of f , denoted Qn[f], is then defined
by

∫ 1

−1
f (x) dx ≈

∫ 1

−1
Ln[f](x) dx =

n∑

j=1

cjf (xj) =: Qn[f], (2)

with weights given explicitly as

cj =
∫ 1

−1
lnj (x) dx. (3)

120 P. Jantsch and C. G. Webster

Now, according to the Cauchy integral theorem, since f has an analytic
extension, we can evaluate the integral along any (complex) path contained in Σ
with endpoints {±1}. Next, let g be a conformal mapping satisfying the conditions:

g(±1) = ±1, and g ([−1, 1]) ⊂ Σ. (4)

According to the argument above, the integral can be rewritten as the path integral
from −1 to 1, with the path parameterized by the map g, i.e.,

∫ 1

−1
f (x) dx =

∫ 1

−1
f (g(s))g′(s) ds.

Applying our original quadrature rule to the latter integral,

∫ 1

−1
f (g(s))g′(s) ds ≈

n∑

j=1

cjg
′(xj)

︸ ︷︷ ︸
:=c̃j

f (g(xj)
︸ ︷︷ ︸
:=x̃j

) =: Q̃n[f], (5)

we obtain a new quadrature rule with transformed weights {c̃j }nj=1 and points
{x̃j }nj=1.

Equation (5) provides the motivation for the choice of the conformal mapping g.
Specifically, the Taylor series for f , centered at points x ∈ [−1, 1] which are close
to the boundary, may have a radius which extends beyond the largest Bernstein
ellipse in which f is analytic. We may then hope to find a g such that a Bernstein
ellipse is conformally mapped onto the whole region where f is analytic, where
classical convergence theory yields the convergence rate for (f ◦ g) · g′. In addition
to (4), it is especially advantageous to have g map [−1, 1] onto itself, i.e.,

g([−1, 1]) = [−1, 1]. (6)

In this case, the transformed weights and points remain real-valued, and we avoid
evaluations of f with complex inputs.

We now turn our attention to several specific conformal mappings which satisfy
the conditions (4), along with the extra condition (6). For more details on the
derivation and numerical implementation of the maps, see [13]. The first mapping
we consider applies to functions which admit an analytic extension at every point
on real line; in other words, functions which have only complex singularities. In
this case, the natural transformations to consider are ones that conformally map the
interior of a Bernstein ellipse (1) to a strip about the real line. Specifically, we define
a map which takes the Bernstein ellipse with shape parameter ρ to the complex

Sparse Grid Quadrature Rules Based on Conformal Mappings 121

g1−→

Fig. 1 The mapping (7) takes the Bernstein ellipse E1.4 (left) to a strip of half-width 2(1.4 −
1)/π ≈ 0.255

strip with half-width 2
π
(ρ−1), as shown in Fig. 1. We can do this through the use of

Jacobi elliptic functions [1, 8]. First, fixing a value ρ > 1, we define the parameter
0 < m < 1 through

m1/4 = 2
∞∑

j=1

ρ−4(j− 1
2)

2
/
⎛

⎝1+ 2
∞∑

j=1

ρ−4j2

⎞

⎠ ,

and the associated parameterK = K(m),

K =
∫ π/2

0

dθ√
1−m sin θ

,

which is an incomplete Jacobi elliptic integral of the first kind [1]. Finally, we define
the mapping in terms of the elliptic sine function sn(·;m):

g1(z) = tanh−1
(

m1/4sn

(
2K

π sin−1(z)
; m
))
/

tanh
(
m1/4

)
. (7)

We’ll refer to this map as the “strip map” in the following.
According to (5), we also need to know the derivative of g1, given by

g′1(z) =
2Km1/4

π
√

1− z2

cn(ω(z);m)dn(ω(z);m)
(1−m1/2sn(ω(z);m))

/
tanh

(
m1/4

)
, (8)

with ω(z) = 2K sin−1(z)/π . Here we have also made use of the elliptic cosine
function, cn, and elliptic amplitude function, dn [1]. For our applications, we also
require the values of g′1 at the endpoints of the interval, which are given by

g′1(±1) = 4K2m1/4
(

1+m1/2
)/
π2 tanh

(
m1/4

)
.

Again we refer the reader to [13] for additional details.
Another way to change the endpoint clustering, and transform the quadrature

rule under a conformal map, is to use an appropriately normalized truncation of the
power series for sin−1(z). The map 2

π
sin−1(z) perfectly eliminates the clustering

of the Gauss–Legendre and Clenshaw–Curtis points, but since it has singularities at
±1, it is useless for our purposes. On the other hand, by considering a truncation of

122 P. Jantsch and C. G. Webster

g2−→

Fig. 2 The mapping (9), withM = 4, takes the Bernstein ellipse E1.4 (left) to a pill-shaped region
with sides of length ≈ 0.255

the power series

sin−1(z) =
∞∑

k=1

Γ (k + 1/2)

Γ (1/2)

z2k+1

(2k + 1)k! ,

we define a more desirable mapping. To this end, forM ≥ 1, we define

g2(z) = c(M)
M∑

k=1

Γ (k + 1/2)

Γ (1/2)

z2k+1

(2k + 1)k! , (9)

with a constant c(M) ∈ (0, 1) appropriately chosen so that g2(±1) = ±1. This
mapping is much simpler to implement than the previous mapping. We will call this
map the “pill map”, since it maps the Bernstein ellipse to a pill-shaped region about
[−1, 1]with flatter sides. In Fig. 2, we plot the image of the ellipseEρ with ρ = 1.4,
under the mapping (9) with M = 4. The region on the right has almost flat sides,
with width a little bigger than 2

π
(1.4− 1) ≈ 0.255.

2.1 Standard One-Dimensional Quadrature Rules

Here we give a brief summary of some standard interpolatory-type quadrature rules,
to which we will apply the mappings of the previous section. Only the nodes are
discussed here, as the weights for each method will be defined according to (3). For
an overview of the theory of interpolatory quadrature, see [33, Ch. 19].

The first quadrature rule is based on the extrema of the Gauss–Chebychev
polynomials. For a given number of points n, these are given by:

xn,j = cos

(
(j − 1)π

n

)

, 1 ≤ j ≤ n. (10)

If we choose the number of nodes n = n(l) to grow according to n(1) = 1, n(l) =
2l−1 + 1, l > 1, this generates a nested sequence known as the Clenshaw–Curtis
nodes.

Sparse Grid Quadrature Rules Based on Conformal Mappings 123

Another set of points of interest are the well-known Gaussian abscissa, which
are the roots of orthogonal polynomials with respect to a given measure. Here we
consider the sequence of Gauss–Legendre nodes, which consists of the roots of the
sequence of polynomials orthogonal to the uniform measure on [−1, 1], i.e., the n
roots of the polynomials

Pn(x) = dn

dxn

[
(x2 − 1)n

]
, n ≥ 0. (11)

With the introduction of a weight into the integral from (2), other families of
orthogonal polynomials can be used. The main advantage of Gauss points is their
high degree of accuracy, i.e., the one-dimensional quadrature rules built from n

Gauss points integrate exactly polynomials of degree 2n− 1.

Remark 1 Gauss–Legendre points do not form a nested sequence, which may
lead to inefficiency in the high-dimensional quadrature setting. In fact, without
nestedness of the one-dimensional sequence, the sparse grid rule described in the
following section may not even be interpolatory. Even so, we only require the one-
dimensional rule to be interpolatory to apply the conformal mapping theory in the
multidimensional setting. We also remark that nested quadrature sequences based
on the roots of orthogonal polynomials, the so-called Gauss–Patterson points, are
also available, but we do not consider these types of rules herein.

The final set of nodes we consider are known as the Leja points. Leja points
satisfy a recursive definition, that is, given a point x1 ∈ [−1, 1], for n ≥ 2 define

xn = arg max
x∈[−1,1]

n−1∏

j=1

|x − xj |, (12)

where we typically take x1 = 0. Of course, there may be several minimizers
to (12), so for computational purposes, we simply choose the minimizer closest to
the left endpoint. In the interpolation setting, Leja sequences are known to have good
properties for approximation in high-dimensions [20], and there has been much
research related to the stability properties of such nodes when used for Lagrange
interpolation [14, 31]. The lack of symmetry of the sequence may not be ideal for
all applications, and certain symmetric “odd Leja” constructions may be used in
these cases [29]. On the other hand, the points here have the added benefit of being
a nested sequence and grow one point at a time, and furthermore have asymptotic
distribution which is that same as that of Gauss and Clenshaw–Curtis nodes [20].

124 P. Jantsch and C. G. Webster

2.2 Sparse Quadrature for High Dimensional Integrals

For the numerical approximation of high-dimensional integrals over product
domains, it is natural to consider simple tensor products of one-dimensional
quadrature rules. Unfortunately, these rules suffer from the curse of dimensionality,
as the number of points required to accurately compute the integral grows
exponentially with the underlying dimension of the integral; i.e., a rule using n
points in each dimension requires nd points. For certain smooth integrands, we
can mitigate this effect by considering sparse combinations of tensor products of
these one-dimensional rules, i.e., sparse grid quadrature. It is known that sparse
grid rules can asymptotically achieve approximately the same order of accuracy as
full tensor product quadrature, but use only a fraction of the number of quadrature
nodes [9, 22, 23, 27].

Rather than the one-dimensional integral from before, we let d > 1 be the
dimension and define Γ := [−1, 1]d . In addition, by letting x = (x1, . . . , xd) be an
arbitrary element of Γ , we consider the problem of approximating the integral

Id [f] =
∫

Γ

f (x) dx, (13)

using transformed quadrature rules. To define the sparse grid rules, we first denote
by {Ip(l)}l≥1 a sequence of given one-dimensional quadrature operators using p(l)
points. Here Ip(l) may be a standard interpolatory quadrature Qp(l) from (2) or its
conformally transformed version Q̃p(l) from (5). With I0 := 0, define the difference
operator

Δl := Ip(l) − Ip(l−1).

Then given a set of multiindices Λw ⊂ N
d
0 , we define the sparse grid quadrature

operator to be

INw [f] =
∑

l∈Λw

d⊗

i=1

Δp(li)[f] =
∑

l∈Λw

d⊗

i=1

(
Ip(li) − Ip(li−1)

) [f], (14)

where we refer to the natural number w as the level of the sparse grid rule, and Nw
is the total number of points in Γ used by the sparse grid. The choice of multiindex
setΛw may vary based on the problem at hand. We only require that it be downward
closed, i.e., if l ∈ Λw , then νi ≤ li for all i = 1, . . . , d implies ν ∈ Λw . The index
set may be anisotropic, i.e., dimension dependent, or if appropriate error indicators
are defined, it may even be chosen adaptively. Some typical choices are given in
Table 1, but for simplicity, we consider only standard isotropic Sparse Smolyak
grids. For more information on anisotropic rules, see [21].

Sparse Grid Quadrature Rules Based on Conformal Mappings 125

Table 1 The functions p : N+ → N+ and index sets Λw , with the corresponding polynomial
subspaces

Polynomial space p(l) Λw

Tensor product p(l) = l max
1≤i≤d

(li − 1) ≤ w
Total degree p(l) = l ∑d

i=1(li − 1) ≤ w
Hyperbolic cross p(l) = l ∏N

i=1(li − 1) ≤ w
Sparse Smolyak p(l) = 2l−1 + 1, l > 1

∑d
i=1(li − 1) ≤ w

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

Fig. 3 Location of the two-dimensional transformed sparse grid nodes (blue dot) using an
underlying Clenshaw–Curtis rule, compared to standard Clenshaw–Curtis sparse grids (red x)

The effect of the conformal mapping on the placement of the nodes used by
the sparse quadrature rule (14) is similar to the one-dimensional case. In Fig. 3, we
have plotted the nodes of a two-dimensional Clenshaw–Curtis sparse grid with the
transformation map (9), using ρ = 1.4, versus a traditional Clenshaw–Curtis sparse
grid. Note how the clustering of the nodes toward the outer boundary of the cube is
diminished.

3 Comparison of the Transformed Sparse Grid Quadrature
Method

In this section we investigate the potential improvement in convergence for com-
putation of high-dimensional integrals using the sparse grid quadrature method
based on the transformed rules. The different mappings (7) and (9), since they have
different properties, will be considered separately. Furthermore, the focus of this
section will be on the transformation of Gauss–Legendre rules, though we remark
that starting from a one-dimensional convergence result such as the following
theorem, the rest of the analysis is similar for the Clenshaw–Curtis case. We begin
by quoting the following one-dimensional result stated from [13], establishing the
convergence of the transformed Gauss–Legendre rule for an analytic integrand.

126 P. Jantsch and C. G. Webster

Theorem 1 For some ρ > 1, let f be analytic and uniformly bounded by γ > 0 in
the ellipse Eρ . Then for n ≥ 1, the Gauss–Legendre quadrature rule has the error
bound

|I [f] − In[f]| ≤ 64γ

15(1− ρ−2)
ρ−2n. (15)

Now taking a specific region of analyticity and a given conformal map, we
apply Theorem 1 to quantify the benefit of the transformation method. We start
by considering functions analytic in the strip Sε of half width ε about the real line,
and the Gauss–Legendre rule transformed under the map (7).

Theorem 2 ([13, Theorem 3.1]) Let f be analytic in a strip Sε of half width ε
about the real line, and g1 the conformal map (7) mapping E1+ π

2 ε
→ Sε . Then for

n ≥ 1, and any ε̃ < ε, the transformed Gauss–Legendre quadrature rule has the
error bound

∣
∣I [f] − Q̃n[f]

∣
∣ ≤ 64γ1

15(1− (1+ π
2 ε̃)

−2)

(
1+ π

2
ε̃
)−2n

, (16)

where γ1 = sups∈E1+ π2 ε̃
|f (g1(s))g

′
1(s)|.

This theorem follows by an application of Theorem 1 to the integral of (f ◦ g)g′
using (5). We must take ε̃ < ε, since otherwise the value of γ1 will be infinite due to
the behavior of g′. Furthermore, since the closure of g(E1+ π

2 ε̃
) is contained in the

open set Sε , we have γ1 <∞without assuming the boundedness of f . However, we
do not lose much from this assumption, and this theorem shows that we can achieve
savings of almost a factor of π/2 for functions analytic in a strip Sε .

For the mapping (9), the results are somewhat more complicated, due to the
fact that the properties of the map depend crucially on the chosen degree M of
the truncation, and for a given M we may not be able to realize the full factor of
π/2. From a practical standpoint, this is not much worse than the case of the strip
mapping (7), since full information about the analyticity of the integrand may not
be available, and hence it may be difficult to tune the parameter of the mapping to
the integral at hand. Thus, what we have in the case of the map (9) is a more precise
result with all the parameters specified. The following result from [13] will apply
to functions which are analytic in the ε-neighborhood of [−1, 1], denoted Uε . Then
we have the following theorem.

Theorem 3 ([13, Theorem 6.1]) Let ε ≤ 0.8, and let f be analytic in a ε-
neighborhood Uε of [−1, 1]. Let g2 be the conformal map (9), truncated at degree
M = 4. Then for n ≥ 1, the transformed Gauss–Legendre quadrature rule has the
error bound

∣
∣I [f] − Q̃n[f]

∣
∣ ≤ 64γ2

15(1− (1+ 1.3ε)−2)
(1+ 1.3ε)−2n , (17)

where γ2 = sups∈E1+1.3ε
|f (g2(s))g

′
2(s)|.

Sparse Grid Quadrature Rules Based on Conformal Mappings 127

From the one dimensional results of Theorems 2 and 3, for the maps (7) and (9),
resp., we are able to fully quantify the benefits of the TQ rules applied to sparse
grid quadrature in high dimensions. The following theorems give the expected
sub-exponential convergence rate for a sparse grid quadrature approximation of
an analytic integrand based on the Gauss–Legendre points. These results are in
accord with other subexponential rates for sparse multidimensional polynomial
approximation obtained in [3, 12, 22, 32]. Recall that we are considering only
isotropic sparse Smolyak constructions, according to the last row in Table 1.

Theorem 4 Let f be analytic in
∏d
i=1 Sε for some ε > 0, and let g1 be the

conformal mapping (7). Then for any ε̃ < ε, the sparse quadrature (14) built from
transformed Gauss–Legendre quadrature rules satisfies the following error bound
in terms of the number of quadrature nodes:

|Id [f] − INw [f]| ≤ C(ε̃, f, γ1, d) exp

(

− log
(

1+ π

2
ε̃
) 2d

21/d N
ξ(d)
w

)

. (18)

where γ1 is defined as in Theorem 2, and

ξ(d) = log(2)

d(ζ + log(d))
, (19)

with the constant ζ = 1+ log(2)(1+ log2(1.5)) ≈ 2.1.

Theorem 5 For some 0 < ε ≤ 0.8, let f be analytic in
∏d
i=1 Uε, and let g2 be the

conformal mapping (9) truncated at degreeM = 4. Then the sparse quadrature (14)
built from transformed Gauss–Legendre quadrature rules satisfies the following
error bound in terms of the number of quadrature nodes:

|Id [f] − INw [f]| ≤ C(ε, f, γ2, d) exp

(

− log (1+ 1.3ε)
2d

21/d N
ξ(d)
w

)

, (20)

with γ2 as in Theorem 3, and ξ(d) as in (19).

Sketch of Proof From the one dimensional results of Theorems 2 and 3, resp., the
proof of the results above follows from well-known sparse grid analysis techniques
and estimates on the number of quadrature nodes [22]. Specifically, we may follow
along the lines of the proof of [22, Theorem 3.19], with the one-dimensional
convergence estimates [22, p. 2230] replaced by (16) and (17), resp, and noting
that, e.g.,

(
1+ π

2
ε̃
)−2·2i = e−σ2i , σ = 2 log

(
1+ π

2
ε̃
)
.

The rest of the proof is an application of Lemmas 3.4 and 3.5 from the aforemen-
tioned [22], along with the estimate on the number of quadrature points given by
Lemma 3.17. �

128 P. Jantsch and C. G. Webster

We remark again that it is not necessary to use the same ε in each dimension,
but we make that choice for clarity of presentation. As mentioned in Sect. 2.2, in the
case that the integrand f has dimension-dependent smoothness, anisotropic sparse
grid methods are available.

We now make a few remarks on the improvements of Corollaries 4 and 5 over
sparse grids based on traditional interpolatory quadrature methods. First, note that
for functions f ∈ C(Γ) which admit an analytic extension in either

∏d
i=1 Sε or

∏d
i=1 Uε, the largest (isotropic) polyellipse in which f is analytic has the shape

parameter ρ = 1 + ε. Hence, the convergence rate of typical sparse grid Gauss–
Legendre quadrature, using N abscissa, is

|I [f] −IN [f]| = O

(

exp

(

− log (1+ ε) 2d

21/d N
ξ(d)
w

))

. (21)

Thus, the improvement in convergence rate is multiplied exponentially in the sparse
grid case, i.e., in the case of Corollary 4, the number of points required to reach a
certain tolerance is reduced by a factor approaching (π/2)ξ(d)

−1
, with ξ as in (19).

To see this, letNSGTQ andNSG be the necessary number of points for the right-hand
sides of (18) and (21), respectively, to be less than a given tolerance. Then, we may
calculate that

NSG

NSGTQ
=
(

log(1+ π
2 ε)

log(1+ ε)
)ξ(d)−1

ε→0−−→
(π

2

)ξ(d)−1

. (22)

The constants are ignored in the calculation, though the transformed quadrature
may have slightly improved constant versus the standard case. We also note that
ξ(d)−1 ≥ d , so the improvement is exponential in the dimension, and that as
ε → ∞, i.e., for functions which are analytic in a large region containing [−1, 1],
the improvement factor degrades to 1. In the case of the sparse grid quadrature
approximation transformed by (9), we use (20), so the improvement is 1.3ξ(d)

−1
, as

long as ε ≤ 0.8. As mentioned in the work [13], the factor of 1.3 is still less than
π/2 ≈ 1.57, but for smaller ε and large truncation parameter M this can improved
to 3/2; see [13, Theorem 6.2].

4 Numerical Tests of the Sparse Grid Transformed
Quadrature Rules

In this section we test the sparse grid transformed quadrature rules on a number
of multidimensional integrals, and compare the performance versus standard rules.
The transformed rules we consider are based on the conformal mapping of Gauss–
Legendre, Clenshaw–Curtis, and Leja quadrature nodes, which are describe in
Sect. 2.1. We transform these rules using both of the conformal mappings (7)

Sparse Grid Quadrature Rules Based on Conformal Mappings 129

and (9), using the Matlab code provided in [13] to generate the one-dimensional
quadrature sequences. The Tasmanian sparse grid toolkit [28, 29] is used for the
implementation of the full sparse grid quadrature rule. For the Clenshaw–Curtis
rule, we use a standard Smolyak sparse grid with doubling rule; see Table 1. For the
Gauss–Legendre and Leja sequences, we use isotropic total degree index sets with
linear point growth p(l) = l, l ≥ 1. For each of the rules, we will consider error
versus the total number of sparse grid points, Nw.

4.1 Comparison of Maps

For the first test, we compare the sparse grid methods with the transformed
quadratures to traditional quadrature approximations for computing the integral
of three test functions over the cube [−1, 1]3 in three dimensions. In each case,
we compare the different maps (7) and (9) for the generation of the transformed
one-dimensional quadrature from the Clenshaw–Curtis, Gauss–Legendre, and Leja
rules. The chosen mapping parameters are ρ = 1.4 with (7) and truncation
parameterM = 4 for (9).

In Fig. 4, we plot the results for approximating the integral over [−1, 1]3 of the
function

f (x, y, z) = 1

(1+ 5x2)(1+ 5y2)(1+ 5z2)
. (23)

This function has complex singularities at points z ∈ C
3 where at least one

coordinate zj = 1√
5

i, and is hence analytic in the complex hyper-strip
∏3
i=1 S1/

√
5.

As expected, the quadrature generated according to the mapping (7) performs the
best here, though the chosen parameter ρ = 1.4 is somewhat less than the optimal,

Number of Quadrature Points
100 102 104 106

E
rr

or

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:
3D Product Runge Function

CC
TCC
Leja
TLeja
GL
TGL

Number of Quadrature Points
100 102 104 106

E
rr

or

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:
3D Product Runge Function

CC
TCC
Leja
TLeja
GL
TGL

Fig. 4 Comparison of sparse grid quadrature rules for computing the integral of (23) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)

130 P. Jantsch and C. G. Webster

Number of Quadrature Points
100 101 102 103 104 105

E
rr

or

10-10

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:

f(x) = e-10|x|
2

CC
TCC
Leja
TLeja
GL
TGL

Number of Quadrature Points
100 101 102 103 104 105

E
rr

or

10-10

10-8

10-6

10-4

10-2

100

102

Convergence of Transformed Quadrature Rules:

f(x) = e-10|x|
2

CC
TCC
Leja
TLeja
GL
TGL

Fig. 5 Comparison of sparse grid quadrature rules for computing the integral of (24) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)

since the value 2
π
(1.4 − 1) ≈ 0.255 < 1/

√
5. Regardless, the transformed sparse

grid approximations again perform better than their classical counterparts, gaining
up to two orders of magnitude in the error for Clenshaw–Curtis and Gauss rules.
Note that on the right-hand plot, the transformation (9) does not work well with the
Leja rule. The results for the standard quadrature are repeated in each plot for ease
of comparison.

Figure 5 again shows the results for approximating the integral of the function

f (x, y, z) = exp−10(x2+y2+z2), (24)

over the cube [−1, 1]3. This function is entire, but grows rapidly in the complex
hyperplane away from [−1, 1]3. The left-hand plot shows the performance of
the sparse grid transformed quadratures using the transformation (7), while the
right-hand plot uses (9). In each case, the sparse quadrature approximations using
mapped rules outperform traditional sparse grid quadrature, and there is only a slight
difference in the performance of the transformed rules corresponding to the different
mappings.

Finally, in Fig. 6, we plot results for approximating the integral of the function

f (x, y, z) = cos(1+ x2 + y2 + z2), (25)

over the cube, [−1, 1]3. This function is entire and does not grow too quickly away
from the unit cube in the complex hyperplane C

3. On the other hand, by fixing
the parameters in the conformal mapping, the convergence rate of the transformed
sparse grid rules is restricted by the analyticity of the composition (f ◦ g)g′. In
other words, the conformal mapping technique cannot take full advantage of the
analyticity of the function f . Thus, we see that the rules based on holomorphic
mappings are inferior for computing the integral of this function, though the
transformed Leja rule using (7) is somewhat competitive, at least up to the computed
level.

Sparse Grid Quadrature Rules Based on Conformal Mappings 131

Number of Quadrature Points
100 102 104 106

E
rr

or

10-10

10-5

100

Convergence of Transformed Quadrature Rules:
cos(1+x2 + y2 + z2)

CC
TCC
Leja
TLeja
GL
TGL

Number of Quadrature Points
100 102 104 106

E
rr

or

10-10

10-5

100

Convergence of Transformed Quadrature Rules:
cos(1+x2 + y2 + z2)

CC
TCC
Leja
TLeja
GL
TGL

Fig. 6 Comparison of sparse grid quadrature rules for computing the integral of (25) over the cube
[−1, 1]3, using the conformal maps (7) (left), and (9) (right)

4.2 Effect of Dimension

Next we investigate the effect of increasing the dimension d of the integral
problem, and see whether the holomorphic transformation idea indeed decreases the
computational cost with growing dimension. The test integral for this experiment is

∫

[−1,1]d

d∏

i=1

(
1

1+ 5x2
i

)

dx. (26)

In Table 2 we compare the number of points used to estimate the integral (26)
in d = 2, 4, 6 dimensions, up to the given error tolerance. We use both the
Clenshaw–Curtis and the Leja rules, with their corresponding transformed versions.
We do not include the results for the Gauss–Legendre method, since as in Fig. 4,
the GL method performs much worse than the others for this test function. Here
we implement only the map (7) with ρ = 1.7, which maps the interior of the
ellipse (1) to a strip of half-width 1

π
(1.7 − 1) ≈ 1/

√
5. This integral has simple

product structure, so we compare the computed sparse grid approximation to the
“true” integral value computed to high precision. As expected, the sparse grid rules
using transformed quadrature need far fewer points to compute the value of the
integral up to a given tolerance, as compared with standard sparse grid rules. As
the dimension increases, because of the doubling rule p from Table 1, the number
of points grows rapidly from one level to the next. Thus, a certain grid may vastly
undershoot or overshoot the optimal number of points needed to achieve a certain
error. Furthermore, it may be the case that the convergence has not yet reached the
asymptotic regime for such a large tolerance 10−2, and so we claim from Table 2
that the transformed sparse grid rules may work well even before the convergence
is governed by the asymptotic theory.

132 P. Jantsch and C. G. Webster

Table 2 Comparison of the number of points used by a given sparse grid quadrature rule to
approximate the integral (26) to the given tolerance

Dimension Tol CC TCC Ratio Leja TLeja Ratio

2 10−7 1537 705 2.18 666 435 1.53

4 10−5 1,507,329 271,617 5.55 73,815 20,475 3.61

6 10−2 6,436,865 127,105 50.64 593,775 12,376 47.98

5 Conclusions

In this work, we have demonstrated the application of the transformed quadrature
rules of [13] to isotropic sparse grid quadrature in high dimensions, and showed
that in certain situations we are able to speed up convergence of a transformed
sparse approximation by a factor approaching (π/2)ξ(d)

−1
, where ξ(d)−1 ≈ d log d .

We applied the rules to several test integrals, and experimented with different
conformal mappings g, and found that the sparse grid quadratures with conformally
mapped rules outperformed the standard sparse grid rules based on one-dimensional
interpolatory quadrature by a significant amount for several example integrands.
For entire functions, or functions which are analytic and grow slowly in a large
region around [−1, 1], the transformation method fails to beat standard quadrature
rules, since the convergence of the transformed quadrature is dictated by the chosen
mapping parameter. However, the transformed rules perform especially well for
functions which are analytic only in a small neighborhood around [−1, 1], even
if the mapping parameter is not tuned exactly to the region of analyticity.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs,
and Mathematical Tables, vol. 55 (Courier Corporation, North Chelmsford, 1964)

2. B.K. Alpert, Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–
1584 (1999)

3. J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal stochastic galerkin
methods for a class of pdes with random coefficients. Comput. Math. Appl. 67(4), 732–751
(2014)

4. G. Beylkin, K. Sandberg, Wave propagation using bases for bandlimited functions. Wave
Motion 41(3), 263–291 (2005)

5. J.P. Boyd, Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre
polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199(2),
688–716 (2004)

6. Q.-Y. Chen, D. Gottlieb, J.S. Hesthaven, Spectral methods based on prolate spheroidal wave
functions for hyperbolic PDEs. SIAM J. Numer. Anal. 43(5), 1912–1933 (2005)

7. P. Favati, G. Lotti, F. Romani, Bounds on the error of Fejér and Clenshaw–Curtis type
quadrature for analytic functions. Appl. Math. Lett. 6(6), 3–8 (1993)

Sparse Grid Quadrature Rules Based on Conformal Mappings 133

8. H.E. Fettis, Note on the computation of Jacobi’s nome and its inverse. Computing 4(3), 202–
206 (1969)

9. T. Gerstner, M. Griebel, Numerical integration using sparse grids. Numer. Algoritm. 18(3–4),
209–232 (1998)

10. M. Götz, Optimal quadrature for analytic functions. J. Comput. Appl. Math. 137(1), 123–133
(2001)

11. M. Griebel, J. Oettershagen, Dimension-adaptive sparse grid quadrature for integrals with
boundary singularities, in Sparse Grids and Applications-Munich 2012 (Springer, Cham,
2014), pp. 109–136

12. M. Griebel, J. Oettershagen, On tensor product approximation of analytic functions. J. Approx.
Theory 207, 348–379 (2016)

13. N. Hale, L.N. Trefethen, New quadrature formulas from conformal maps. SIAM J. Numer.
Anal. 46(2), 930–948 (2008)

14. P. Jantsch, C.G. Webster, G. Zhang, On the Lebesgue constant of weighted Leja points for
Lagrange interpolation on unbounded domains. IMA J. Numer. Anal. (2018). https://doi.org/
10.1093/imanum/dry002

15. S. Kapur, V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions.
SIAM J. Numer. Anal. 34(4), 1331–1356 (1997)

16. D. Kosloff, H. Tal-Ezer, Modified Chebyshev pseudospectral method with O(N−1) time step
restriction. J. Comput. Phys. 104, 457–469 (1993)

17. M. Kowalski, A.G. Werschulz, H. Woźniakowski, Is Gauss quadrature optimal for analytic
functions? Numer. Math. 47(1), 89–98 (1985)

18. J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary
functions. SIAM J. Numer. Anal. 33(3), 971–996 (1996)

19. M. Mori, An IMT-type double exponential formula for numerical integration. Publ. Res. Inst.
Math. Sci. 14(3), 713–729 (1978)

20. A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation
and high-dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)

21. F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–
2442 (2008)

22. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

23. E. Novak, K. Ritter, High dimensional integration of smooth functions over cubes. Numer.
Math. 75(1), 79–97 (1996)

24. K. Petras, Gaussian versus optimal integration of analytic functions. Constr. Approx. 14(2),
231–245 (1998)

25. D. Slepian, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty–I.
Bell Labs Tech. J. 40(1), 43–63 (1961)

26. R.M. Slevinsky, S. Olver, On the use of conformal maps for the acceleration of convergence
of the trapezoidal rule and sinc numerical methods. SIAM J. Sci. Comput. 37(2), A676–A700
(2015)

27. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Math. Dokl. 4, 240–243 (1963)

28. M. Stoyanov, User manual: Tasmanian sparse grids v4.0. Technical Report ORNL/TM-
2015/596. Oak Ridge National Laboratory (2017). https://tasmanian.ornl.gov/manuals.html

29. M.K. Stoyanov, C.G. Webster, A dynamically adaptive sparse grids method for quasi-optimal
interpolation of multidimensional functions. Comput. Math. Appl. 71(11), 2449–2465 (2016)

30. H. Takahasi, M. Mori, Quadrature formulas obtained by variable transformation. Numer. Math.
21(3), 206–219 (1973)

31. R. Taylor, V. Totik, Lebesgue constants for Leja points. IMA J. Numer. Anal. 30(2), 462–486
(2010)

https://doi.org/10.1093/imanum/dry002
https://doi.org/10.1093/imanum/dry002
https://tasmanian.ornl.gov/manuals.html

134 P. Jantsch and C. G. Webster

32. H. Tran, C.G. Webster, G. Zhang, Analysis of quasi-optimal polynomial approximations for
parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137, 451–
493 (2017)

33. L.N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia,
2013)

34. H. Xiao, V. Rokhlin, N. Yarvin, Prolate spheroidal wavefunctions, quadrature and interpolation.
Inverse Prob. 17(4), 805–838 (2001)

Solving Dynamic Portfolio Choice Models
in Discrete Time Using Spatially
Adaptive Sparse Grids

Peter Schober

Abstract In this paper, I propose a dynamic programming approach with value
function iteration to solve Bellman equations in discrete time using spatially
adaptive sparse grids. In doing so, I focus on Bellman equations used in finance,
specifically to model dynamic portfolio choice over the life cycle. Since the
complexity of the dynamic programming approach—and other approaches—grows
exponentially in the dimension of the (continuous) state space, it suffers from the
so called curse of dimensionality. Approximation on a spatially adaptive sparse grid
can break this curse to some extent. Extending recent approaches proposed in the
economics and computer science literature, I employ local linear basis functions
to a spatially adaptive sparse grid approximation scheme on the value function. As
economists are interested in the optimal choices rather than the value function itself,
I discuss how to obtain these optimal choices given a solution to the optimization
problem on a sparse grid. I study the numerical properties of the proposed scheme by
computing Euler equation errors to an exemplary dynamic portfolio choice model
with varying state space dimensionality.

1 Introduction

The individual’s lifetime planning of consumption and investment decision can
be formulated as an expected utility maximization problem. Economists solve
these dynamic portfolio choice problems according to the Bellman principle of
optimality [1]. It allows to characterize the solution as a value function and reduces
the multi-period optimal choice problem to a sequence of one-period maximization
problems. Since in the last period the consumption decision is known, and hence the
value function, the problem is solved backwards in time using the previous value

P. Schober (�)
Goethe University Frankfurt, Chair of Investment, Portfolio Management and Pension Finance,
Theodor-W.-Adorno-Platz 3, 60323, Frankfurt am Main, Germany
e-mail: schober@finance.uni-frankfurt.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_7&domain=pdf
mailto:schober@finance.uni-frankfurt.de
https://doi.org/10.1007/978-3-319-75426-0_7

136 P. Schober

function evaluated at the current choices. The optimal consumption and investment
choices can then be inferred from the value function. These optimal choices are
subject to studies by economists, e.g., by simulating asset price scenarios, evaluating
the optimal choices for each scenario, and computing moments of the resulting
wealth distribution.

The first generation of dynamic portfolio choice models was solved analytically
in two companion papers by Robert Merton [35] for the continuous time case and
Paul Samuelson [40] for the discrete time case. In current research, dynamic port-
folio choice models are increasingly calibrated realistically and therefore require
numerical solution methods. Recently, new risk sources have been introduced, e.g.,
labor income risk [12], health risk [15], and uncertain family transitions [26, 33].
Other studies focus on the addition of endogenous decisions, e.g., decisions on
housing [11], labor supply or retirement age [10, 30], as well as individual (variable)
life annuities [22–24].

The numerical solution by value function iteration using discrete time dynamic
programming and likewise approaches (such as iterations on the optimal choices
rather than the value function) suffer from the so-called curse of dimensionality.
That is, the compute time of an ε-approximation of the true solution grows
exponentially as it is linear in the number of grid points of the discretized state
space—and the number of grid points grows exponentially, O(Nd), where d is
the number of dimensions and N the maximal number of grid points in one
coordinate direction. In addition, stochastic risk factors imply the necessity to
compute expected utility within the maximization problem. Here, the computation
of the expectation can also suffer from the curse of dimensionality when numerical
quadrature rules are applied. This makes models with a high-dimensional state
spaces and/or many stochastic risk factors practically intractable in the sense that
the time-to-result is unacceptably high.

Besides exploiting the exponential growth of computing power to solve ever
larger dynamic programming problems [9, 25], sparse grids can break the curse
of dimensionality to some extent [19, 41, 45]. Compared to basis constructions
using tensor product approaches on a nodal grid, a classical sparse grid uses a
hierarchical formulation of piecewise linear basis functions in one dimension, which
are then extended to a d-dimensional basis also via tensor products. The use of more
sophisticated basis functions, like higher-order polynomials with local support [5],
wavelets [6], or B-splines [37, 43]—which in addition to their local support are glob-
ally smooth and continuously differentiable—is also possible on a sparse grid. In a
sparse grid the number of grid points grows like O(N(logN)d−1), while the accu-
racy is only slightly deteriorated. The accuracy obtained with piecewise linear basis
functions, for example, isO(N−2(logN)d−1)with respect to theL2- andL∞-norm,
if the solution has bounded second mixed derivatives. This way, the curse of dimen-
sionality is overcome to some extent. The sparse grid approach can be extended to
non-smooth solutions by adaptive refinement methods [20, 38], some of which also
exist for global polynomial basis function defined on certain grid sequences [42].

Spatially adaptive sparse grids with local linear basis functions have been
employed to solve the Hamilton-Jacobi-Bellman equation in discrete time using
a Semi-Lagrangian scheme [2, 17]. More recently, they have been combined

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 137

with a hybrid CPU/GPU parallelization to solve economic problems, namely (1)
an international real business cycle model with smooth and non-smooth choice
functions and (2) a menu-cost problem with value function iteration approximating
the value function on an adaptive sparse grid [4]. Earlier, sparse grids have been used
for high dimensional approximation with global polynomials to compute unknown
equilibrium asset demand functions [32]. Global polynomial-based approximation
on a sparse grid has also been applied to time and fixed point iterations in a
standard representative agent stochastic growth model as well as a multi-country
model [29, 34] and to high-dimensional quadrature [21, 44].1 Economists compare
the various sparse grid approaches to numerical methods based on full Cartesian
grids in terms of run time, convergence (using Euler equation errors) and the
Degrees of Freedom used in the approximation of the choice functions.

In this paper, I focus on the solution of Bellman equations used to model dynamic
portfolio choice over the life cycle in discrete time. Following Bokanowski et
al. [2] and Brumm et al. [4], I propose a spatially adaptive sparse grid dynamic
programming scheme using piecewise linear basis functions and a hierarchical
surplus-based refinement criterion. Whereas the sparse grid serves to break the curse
of dimensionality, spatially adaptive refinement allows to adapt the approximation
of the value function to its functional form in the course of the iterative solution
procedure. Also, manually choosing a discretization of the state space that yields
an appropriate approximation error without spending too many grid points can
be time consuming and spatially adaptive refinement relieves the researcher from
this task. Besides combining and adopting these approaches to dynamic portfolio
choice models, I also discuss how approximations for the optimal choices can be
constructed from the solution to the optimization problem, when the optimization
problem is solved on a sparse grid. I complement this approach by the use of
global polynomial-based numerical quadrature rules on a sparse grid to compute
expectations over the stochastic risk factors.

I analyze the numerical properties of the proposed scheme using a transaction
costs problem [7, 8] whose dimensionality depends on the number of modeled
assets for which transaction costs accrue. To measure the numerical error of the
solution to the dynamic portfolio choice problem, I compute the deviation from the
Euler equations when plugging in the approximations of the optimal choices. I then
compute the pointwise absolute error of the value function approximated on a sparse
grid compared to a reference solution on a full grid to separate out the error in the
value function. I find that the spatially adaptive sparse grid dynamic programming
scheme provides similar Euler errors compared to the full grid reference solution
and the pointwise errors of the value function converge with decreasing refinement
tolerances.

The overall Euler errors remain rather high, which is an indicator that the
applicability of the presented approach is limited by the choice of only piecewise

1Multi-country real business cycle models are popular example problems among economists as
they allow to vary the dimensionality of the problem simply by varying the number of countries in
the model.

138 P. Schober

continuously differentiable basis functions, which pose a problem for gradient-
based optimization methods. Non-convergence or failure of the optimizer can
result in outlier grid points and hence locally non-smooth value functions or
optimal choices, misdirecting the scheme when using absolute values of hierarchical
surpluses as the refinement criterion. The use of globally smooth and continuously
differentiable local basis functions, such as B-splines [43], promises to overcome
this problem while maintaining the advantages of local spatial adaptivity compared
to globally defined, smooth basis functions (such as polynomials).

The paper is structured as followed: In the next section, I introduce the class
of discrete time life cycle models I investigate and describe a current, non-sparse
grid solution method using dynamic programming with value function iteration.
Section 3 introduces sparse grids and explains spatial adaptivity. I present my
spatially adaptive sparse grid dynamic programming scheme in Sect. 4. The details
of the numerical examples and the results are depicted in Sect. 5. I conclude in
Sect. 6.

2 Dynamic Portfolio Choice Models

In discrete time dynamic portfolio choice models the investor seeks to maximize
expected life time utility u from consumption ct

E0

[
T∑

t=0

ρtu
(
ct
(
pt , s t , θt

))
]

, (1)

with consumption depending on the investor’s choice pt ∈ R
k , her continuous state

st ∈ R
d , and discrete state θt ∈ Θ , where Θ is the finite set of all possible states

(such as “alive”, “dead”, “healthy”, “sick”, etc.). Here, ρ < 1 denotes the time
discount factor. I assume the utility function to be of Constant Relative Risk Aversion
type2:

u (ct) = 1

1− γ c
1−γ
t . (2)

This problem can be reformulated as an optimization problem in terms of the
value function jt , t ∈ {0, . . . , T }, with known terminal utility v

jt (s t , θt) = max
pt

{
u(ct)+ ρEt

[
jt+1

(
f t+1

(
pt , s t , θt ,ωt+1

)
, θt+1

)] }
, (3)

jT (sT , θT) = v(sT , θT) , (4)

2With this choice of utility function the approach does not lose generality, as it can be applied to
other established utility functions, such as Epstein-Zin utility, in the same way.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 139

subject to the constraints

gj
(
pt , st , θt

) = 0 , j = 1, . . . ,m , (5)

hj
(
pt , st , θt

) ≤ 0 , j = 1, . . . , l . (6)

I assume the state transition between the discrete states to be Markovian and given
by the transition probabilities πt(θt+1|θt). The randomness in the continuous state
transition between t and t + 1 is independent from the discrete state transition and
captured by ωt+1 ∈ Ω , whereΩ ⊂ R

q denotes the sample space. The random vari-
able f t+1 : Rk ×R

d ×Θ ×Ω #→ R
d then describes the continuous state dynamics

between t and t + 1. The corresponding expected value of jt+1(f t+1, θt+1) is:

Et
[
jt+1(f t+1, θt+1)

] =
∑

θt+1∈Θ
πt(θt+1|θt)

∫

Ω

jt+1
(
f t+1, θt+1

)
dΦt (ωt+1|st , θt) .

Here, Φt(·|st , θt) denotes the conditional distribution of ωt+1. The equality con-
straints (5) and the inequality constraints (6) can be non-linear.

A general way to solve problem (3)–(6) numerically is to use a discrete time
dynamic programming approach stepping backwards in time iterating over the value
function.3 Therefore, the three ingredients are approximation, optimization and
integration.

2.1 Approximation

Amongst others, one common method to approximate the value function defined on
the continuous state space using finitely many points is collocation (see [27] for this
and alternative approaches). For a given discrete state θt ∈ Θ one discretizes the
associated continuous state space G(θt) ⊂ R

d by a rectangular grid of mesh size
h = ((b1 − a1)/n1, . . . , (bd − ad)/nd)) ∈ R

d , where n ∈ N
d is the number of

grid points, a ∈ R
d is a chosen lower, and b ∈ R

d the respective upper boundary
for every dimension of the state space.4 Given a multi-index i ∈ N

d from the index
set In(θt) = {i ∈ N

d | 1 ≤ i ≤ n}, the points of the grid Gn,h,a(θt) = {si ∈ R
d |

i ∈ In(θt)} are given by si = a + i · h, where “≤”, “+”, and “·” and have to be

3For an extensive discussion of dynamic programming in economics, see [28, 39].
4In many models the continuous state space is the same for every discrete state. However, this
doesn’t have to be the case. Especially the discretization, e.g., the choice of upper and lower
boundaries, may vary depending on the discrete state.

140 P. Schober

read element-wise. The approximating (or, equivalently, interpolating) function on
this grid can be defined as

jt (st , θt) ≈ An[jt](st , θt) =
∑

i∈In(θt)
ci,θt φi(s t) ,

where the basis functions φi can be global polynomials or Ansatz functions
with local support and the coefficients ci,θt are chosen in such a way that the
approximation fits the known function values at all grid points, An[jt](si

t , θt) =
jt (s

i
t , θt), ∀si

t ∈ Gn,h,a(θt), ∀θt ∈ Θ .

2.2 Optimization

The terminal period’s value function (4) is given by jT (si
T , θT) = v(si

T , θT), where
v is a known function of the continuous and discrete state space. To determine the
optimal solution of the penultimate period jT−1(s

i
T−1, θT−1) and all earlier periods

t ∈ {0, . . . , T − 2} at all grid points si
t and in all discrete states θt , numerical

optimization routines, which solve (3) over the real-valued vector pt subject to the
constraints (5)–(6) can be used, e.g., sequential quadratic programming (SQP). Let
me define the objective function as

j̃t
(
pt , s t , θt

)
:= u(pt , s t , θt)+ ρEt

[
jt+1

(
f t+1

(
pt , st , θt ,ωt+1

)
, θt+1

)]
. (7)

Then, SQP routines use the linearization of the Lagrangian of (3) with Kuhn-Tucker
multipliers for the equality (λt ∈ R

m+) and inequality (μt ∈ R
l+) constraints

Lt

(
pt ,λt ,μt

) = j̃t
(
pt , s t , θt

)−
m∑

j=1

λ
j
t gj

(
pt , s t , θt

)

−
l∑

j=1

μ
j
t hj

(
pt , s t , θt

)
(8)

to find the optimum (p∗t ,λ∗t ,μ∗t).
SQP optimization routines require information on the gradient and the Hessian

of the objective function and thus any approximation of the objective function to be
twice continuously differentiable. Since this is true for the utility function (2), this
is the case iff An[jt](·, θt) ∈ C2(G(θt)) for each θt ∈ Θ and each t ∈ {1, . . . , T }
(assuming that I can interchange differentiation and integration in the computation
of the expected value). If this is not the case, derivative free optimizers like simulated
annealing, pattern search, and genetic algorithms might present alternative solution
methods.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 141

2.3 Integration

Within the optimization routine, the state dynamics mapping f t+1 and the Marko-
vian transition probabilities are applied to each grid point si

t and discrete state
θt . Then, the expectation operator Et [jt+1(f t+1(pt , s

i
t , θt ,ωt+1), θt+1)] can be

approximated by

∑

θt+1∈Θ
πt(θt+1|θt)

∫

Ω

jt+1

(
f t+1

(
pt , s

i
t , θt ,ωt+1

)
, θt+1

)
dΦt (ωt+1|si

t , θt)

≈
∑

θt+1∈Θ
πt(θt+1|θt)

∑

q

An[jt+1]
(
f t+1

(
pt , s

i
t , θt ,ω

q
t+1

)
, θt+1

)
w
q
t+1 .

(9)

The set of tuples {(ωqt+1, w
q
t+1) | q ∈ Qt(s

i
t , θt)} are the evaluation points

and weights of a quadrature rule. Note that jt+1(f t+1(pt , s
i
t , θt ,ωt+1), θt+1) is

only known at the grid points si
t+1, and since in general f t+1(pt , s

i
t , θt ,ω

q

t+1)

does not correspond with a grid point, one has to evaluate the approximation
An[jt+1](f t+1(pt , s

i
t , θt ,ω

q

t+1), θt+1) within the numerical integral (9).

2.4 Dynamic Programming

Algorithm 1 formalizes the discrete time dynamic programming approach outlined
in Sects. 2.1–2.3. A solution to problem (3)–(6) is characterized by the value
function values jt (si

t , θt) and the optimal choices pt (s
i
t , θt) at all grid points

si
t ∈ Gn,h,a(θt) of the grid Gn,h,a(θt). In principle, the number of grid points n,

the mesh width h, and the lower boundary a can be chosen differently for each
time step t and in each discrete state θt ∈ Θ . Let me denote the time t solution
obtained by means of the dynamic programming approach by the set of tuples
St = {(si

t , jt (s
i
t , θt), pt (s

i
t , θt)) | si

t ∈ Gn,h,a(θt), θt ∈ Θ}.5
The innermost loop iterates over all grid points inGn,h,a(θt). Here, for each grid

point one optimization problem has to be solved to determine the value function
and the optimal choices at this grid point. The computational effort to solve a
single optimization problem within the optimization routine involves computing the
expectation according to Eq. (9). On the one hand, the number of quadrature nodes
used to compute the expectation grows exponentially with the dimensionality of the
sample space Ω . On the other hand, the computational effort of the evaluation of
the approximation An[jt+1] at the states f t+1 implied by the quadrature nodes

5Using the SQP method described in Sect. 2.2, the optimal solution is additionally characterized
by the m+ l Kuhn-Tucker multipliers (λ1

t , . . . , λ
m
t , μ

1
t , . . . , μ

l
t)
) at all grid points and all discrete

states.

142 P. Schober

Algorithm 1: Discrete time dynamic programming
Data:
Final solution ST = {(si

T , jT (s
i
T , θT), pT (s

i
T , θT)) | si

T ∈ Gn,h,a(θT), θT ∈ Θ}
Grids Gn,h,a

Result:
Solutions St = {(si

t , jt (s
i
t , θt), pt (s

i
t , θt)) | si

t ∈ Gn,h,a(θt), θt ∈ Θ}, t ∈ {0, . . . , T − 1}
for t := T − 1 to 0 do

St := ∅;
for θt ∈ Θ do

for si
t ∈ Gn,h,a(θt) do
pt (s

i
t , θt) := arg max

pt

{
j̃t
(
pt , s

i
t , θt

)} subject to (5)–(6);

jt (s
i
t , θt) := j̃t

(
pt (s

i
t , θt), s

i
t , θt

)
;

St := St ⋃ (si
t , jt (s

i
t , θt), pt (s

i
t , θt));

is conditional on the approximation method used. For example, using Lagrange
polynomials as (global) basis functions φi , the evaluation of the approximation off
the grid is costly in terms of arithmetic operations since the Lagrange polynomial
for every i ∈ In(θt) has to be evaluated in order to compute the approximated value
off the grid (whereas the coefficients ci are easily obtained as the value function
values at the grid points si

t ∈ Gn,h,a(θt)).
The number of optimization problems that have to be solved grows exponentially

with the dimensionality d of the state space G as the number of grid points needed
by conventional methods to approximate the value function on the discretized state
space Gn,h,a(θt) grows exponentially in d . Additionally, the computation of the
approximation coefficients ci also depend on the state space dimension for certain
approximation methods. For example, using cubic splines as the basis functions φi ,
a linear system of equations, whose dimensionality depends on the number of grid
points, must be solved to determine the coefficients of the approximation in each
time step of Algorithm 1.

In consequence, this approach suffers from the curse of dimensionality. It is
eminent to break the exponential growth in the number of optimization problems
that have to be solved, i.e., by using approximation on a sparse grid. Additionally,
quadrature on a sparse grid can break the curse of dimensionality inherent in
the computation of the expected value necessary to solve a single optimization
problem [21, 25].

Lastly, choosing the right discretization of the state spaceG(θt), i.e., the number
of grid points n, the mesh width h, and the lower boundaries a, that yields an
appropriate approximation error without unnecessary many grid points, can be a
time consuming task in practice. This is especially true when the functional form of
the value function is different across times and discrete states.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 143

2.5 Optimal Choices

The solution of the discrete time dynamic programming algorithm 1 contains the
optimal choices pt (s

i
t , θt) ∈ R

k at each grid point si
t and for each discrete state

θt . Ultimately, these optimal choices are subject to analysis by economists. For
example, by setting up a Monte-Carlo simulation to simulate n agents in the
portfolio choice model and computing the resulting consumption distribution’s
moments to analyze the expected utility (1) or directly by evaluating the optimal
choices at points of interest.

In any case, the optimal choices are needed for an arbitrary state st . It is
straightforward to again construct an approximating function for any put (st , θt),
u = 1, . . . , k, and evaluate the approximationAn[put](st , θt). Since in many models
the constraints (5)–(6) are linear, a linear approximation of the optimal choices
ensures that the approximated choices also fulfill the constraints—at least for full
grid approximations.

3 Sparse Grid Approximation

The goal is to approximate a function f ∈ C2(G) in one and later multiple
dimensions by linear splines on a grid. For simplification, for an x ∈ G = [0, 1]d
let f (x) ∈ R and f be zero on the boundary. An approximation on an arbitrary
subset [a1, b1] × · · · × [ad, bd] ⊂ R

d can be found via the affine transformation
x(y) = (y−a)/(b−a), where a = (a1, . . . , ad)

), b = (b1, . . . , bd)
) and “/” is to

be read element-wise. A non-zero boundary requires additional basis functions on
the boundary but does not change the general ideas on hierarchical bases and sparse
subspace selection as well as spatially adaptive refinement presented in Sects. 3.1
and 3.2, respectively (see [16]).

3.1 Hierarchical Bases and Sparse Subspace Selection

For a given level l, let hl = 2−l be the mesh width of a grid with grid points
xl,i = i · hl , where i is from the index set I nod

l = {i ∈ N | 1 ≤ i ≤ 2l − 1}. A nodal
basis on this grid is given by the one-dimensional hat functions

φl,i(x) =
⎧
⎨

⎩

1−
∣
∣
∣
x−xl,i
hl

∣
∣
∣ if x ∈ [xl,i − hl, xl,i + hl]

0 else
(10)

that span the space

Vl = span
{
φl,i |i ∈ I nod

l

}
.

144 P. Schober

A continuous, piecewise approximation A nod
l [f](x) ∈ C0(G) of f can be obtained

by the weighted sum of these basis functions

f (x) ≈ A nod
l [f](x) =

∑

i∈I nod
l

cl,iφl,i(x)

with the weights (from now on called coefficients)

cl,i = f
(
xl,i
)
.

Equivalently, the space Vl can be spanned by a hierarchical basis. Therefore, define
the index set I hier

l = {i ∈ N | 1 ≤ i ≤ 2l−1, i odd} for which the hat functions (10)
span the hierarchical subspaces

Wk = span
{
φk,i |i ∈ I hier

k

}
.

These hierarchical subspaces can be combined to span the nodal space by

Vl =
l⊕

k=1

Wk .

Figure 1 compares the nodal and the hierarchical basis for V3.

0.125 0.25 0.375 0.5 0.625 0.75 0.875
0

0.2

0.4

0.6

0.8

1

x
3,1

3,1

x
3,2

3,2

x
3,3

3,3

x
3,4

3,4

x
3,5

3,5

x
3,6

3,6

x
3,7

3,7

0.5
0

0.2

0.4

0.6

0.8

1

x
1,1

1,1

0.25 0.75
0

0.2

0.4

0.6

0.8

1

x
2,1

2,1

x
2,3

2,3

0.125 0.375 0.625 0.875
0

0.2

0.4

0.6

0.8

1

x
3,1

3,1

x
3,3

3,3

x
3,5

3,5

x
3,7

3,7

(a)

(b) (c) (d)

Fig. 1 The (a) nodal basis V3 and the (b)–(d) basis functions of the subspaces Wk , k = 1, 2, 3,
(b)–(d) that span the same space V3

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 145

The approximation A hier
l [f](x) ∈ C0(G) of f is then obtained via

f (x) ≈ A hier
l [f](x) =

l∑

k=1

∑

i∈I hier
k

ck,iφk,i

︸ ︷︷ ︸
:=Δk [f]

(x) ,

where Δk[f] is the hierarchical “increment” of AI hier
l
[f] on level k and the

coefficients are computed such that the approximation matches the function values
at the grid points:

cl,i = −f (xl,i − hl
)+ 2f

(
xl,i
)− f (xl,i + hl

)

2
=
[

−1

2
1 − 1

2

]

l,i

f

︸ ︷︷ ︸
:=Dl,i [f]

. (11)

These coefficients happen to be the second (numerical) derivative of f multiplied by
−h2

l /2 and can be expressed by the operator form of the finite difference stencil Dl,i
[6, 16, 45]. The coefficients (11) are called hierarchical surpluses, as Fig. 2 depicts.

In d dimensions the hierarchical basis on the dimension-wise equidistant grid
with mesh widths hl = 2−l and grid points xl,i = i ·hl with i from the multi-index
set I hier

l = {i ∈ N
d | 1 ≤ i ≤ 2l − 1, ij odd for j = 1, . . . , d} is constructed via a

tensor product approach, where the piecewise d-dimensional basis is defined by

φl,i(x) :=
d∏

j=1

φlj ,ij (xj) . (12)

Accordingly, the hierarchical subspaces given by

Wk = span
{
φk,i |i ∈ I hier

k

}

x
1,1

x
2,1

x
2,3

x
3,1

x
3,3

x
3,5

x
3,7

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

c
1,1

c
2,1

c
2,3

c
3,1

c
3,3

c
3,5

c
3,7

x
3,1

x
3,2

x
3,3

x
3,4

x
3,5

x
3,6

x
3,7

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

c
3,1

c
3,2

c
3,3

c
3,4

c
3,5

c
3,6

c
3,7

(a) (b)

Fig. 2 The dotted lines represent the (a) nodal basis approximation A nod
3 [f] and the (b)

hierarchical basis approximation A hier
3 [f], respectively, of f (x) = −x4 + x2 on [0, 1]

146 P. Schober

Fig. 3 The hierarchical basis in two dimension that spans V(3,3)

span the full grid space

Vl =
⎛

⎝
l1⊕

k1=1

· · ·
ld⊕

kd=1

⎞

⎠Wk =
⊕

k≤l

Wk .

Figure 3 shows the two-dimensional hierarchical basis (12). Finally, f : [0, 1]d →
R can be approximated by

f (x) ≈ A hier
l [f](x) =

(
A hier
l1

⊗ · · · ⊗A hier
ld

)
[f](x)

=
⎛

⎝
l1∑

k1=1

Δk1[f] ⊗ · · · ⊗
ld∑

kd=1

Δkd [f]
⎞

⎠ (x)

:=
l1∑

k1=1

· · ·
ld∑

kd=1

(
Δk1 ⊗ · · · ⊗Δkd

) [f](x)

=
∑

k≤l

(
Δk1 ⊗ · · · ⊗Δkd

) [f]
︸ ︷︷ ︸

:=Δk[f]
(x)

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 147

with the definition

Δk[f](x) :=
∑

i∈I hier
k

ck,iφk,i(x) . (13)

As in the one-dimensional case, the coefficients can be computed by the d-
dimensional finite difference stencil

cl,i :=
⎛

⎝
d∏

j=1

[

−1

2
1 − 1

2

]

l,i

⎞

⎠ f

︸ ︷︷ ︸
:=Dl,i [f]

, (14)

which includes second mixed derivatives.
The idea of sparse grids is to leave out those subspaces that contribute little to

the overall approximation error. The selection of these subspaces can be done a
priori, that means, without knowledge of the approximated function f , with respect
to a given norm ‖·‖ (e.g., L2 or L∞) and as long as f has bounded second mixed
derivatives, ‖∂2d/(∂x2

1 · · · ∂x2
d)f ‖ <∞ (see [6] for details). As a result, the sparse

grid space for a given level l is constructed by

V S
l :=

⊕

|k|1≤l+d−1

Wk (15)

with |x|1 := ∑d
i=1 xi , x ∈ N

d . Figure 4 depicts the full grid space and the sparse
grid space for level l = 3. The corresponding sparse grid approximation is given by

f (x) ≈ A S
l [f](x) =

∑

|k|1≤l+d−1

Δk[f](x) .

Whereas in the isotropic full grid space Vl = V(l,...,l) the number of grid points
grows exponentially as O(2ld), the number of grid points in the sparse grid space
V S
l only grows like O(2l ld−1). The L2 and L∞ error of the approximation is only

slightly deteriorated by a logarithmic factor from O(2−2l) to O(2−2l ld−1) [6].

3.2 Spatially Adaptive Refinement

The selection of subspaces as chosen in (15) is only a priori optimal, that is,
if the approximated function f fulfills the smoothness condition of bounded
second mixed derivatives and no further information on f is available [20, 38].
However, in the hierarchical basis formulation (13), the absolute value |cl,i | of the
hierarchical surpluses contains information on the smoothness of f as obvious by

148 P. Schober

W(1,1) W(2,1) W(3,1)

W(3,2)W(2,2)W(1,2)

V(3,3)

W(1,3) W(2,3) W(3,3) V3
S

Fig. 4 Grids Gk of the subspaces Wk , k ≤ (3, 3), associated in the construction of the full grid
space V(3,3) (all grids) and the sparse grid space V S

3 (only black grids)

their definition (14). It is fairly straightforward to enhance the approximation by
adding extra grid points where the absolute value of the coefficients is larger than a
chosen tolerance, |cl,i | > ε—so called surplus-based refinement [37]. If one relates
the absolute value of the coefficient to the volume of its associated basis function,
one ends up at the surplus volume-based refinement criterion:

|cl,i | > ε

‖φl,i‖2
. (16)

Given this criterion, one could add all 2d children {x
k̃,ĩ

| k̃ = k + 1j , ĩ =
i+ i ·1j ±1, j = 1, . . . , d} of the grid point xk,i (Fig. 5). Here, 1j denotes the unit
vector in dimension j . A grid point is called refinable when at least one child does
not exist. Given the tree-like structure of hierarchical grids it is sensible to include
all up to d parents of the children added, if they are not already included in the grid,
all up to d parents of the parents, if they are not already included, and so on [37].

It should be noted that the absolute values of the hierarchical surpluses merely
provide an indicator on where the approximation error could be large and surplus
(volume)-based refinement does not constitute a reliable error estimator.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 149

W(2,2) W(3,2)

W(3,3)W(2,3)

Fig. 5 Spatially adaptive refinement by adding all 2d children (green) of the refinable grid point
(blue)

4 Spatially Adaptive Sparse Grid Dynamic Programming
Scheme

To break the exponential growth in the number of optimization problems that
have to be solved in the dynamic programming algorithm 1, my idea is to use a
sparse grid for the approximation of the value function. This should reduce the
computational effort needed to obtain a solution to the dynamic portfolio choice
problem considerably, especially in higher dimensions of the continuous state space.
Additionally, my approach employs spatial adaptivity to construct value function
approximations for every time step and every discrete state. This allows to start at a
coarse grid level with few grid points and to only add grid points that presumably
reduce the approximation error considerably. Also, spatial adaptivity can save a
substantial amount of time spent by researchers to find appropriate grid choices that
allow for accurate approximations at every time step and discrete state. Although
my approach differs in certain aspects and focuses on dynamic portfolio choice
models, spatially adaptive sparse grid approximations for value function iterations
have already been picked up in similar manner in the computational science [2]
and economics literature [4]. I present my spatially adaptive sparse grid dynamic
programming algorithm for dynamic portfolio choice problems in Sect. 4.1.

In dynamic portfolio choice models the optimal choices often have kinks due
to binding constraints or must fulfill non-negativity constraints (such as short
selling and/or budget constraints). One way to resolve these kinks and increase
the approximation quality is adaptive Delaunay triangulation [3]. Unfortunately,
non-differentiability poses a problem for a sparse grid, which requires bounded
second mixed derivatives and sparse grid approximations may become negative even
though the approximated function is strictly positive. Hence the question comes

150 P. Schober

up how to treat the optimal choices when using a sparse grid approximation of
the value function. Again, Delaunay triangulation can be used, if one treats the
optimal choices at the sparse grid points as scattered data and the dimension of
the problem is comparably low. In my as of yet unpublished work together with
Yannick Dillschneider and Raimond Maurer we show that this approach delivers
accurate approximations of the optimal choices and a significant reduction of effort
to compute the solution for dynamic portfolio choice models of d ≤ 3 with annuities
when the interest rate is stochastic. However, Delaunay triangulation also suffers
from the curse of dimensionality. Alternatively, spatially adaptive refinement on
the optimal choice approximations on a sparse grid can again be used to construct
approximations that fulfill constraints such as non-negativity and resolve kinks
appropriately, which is the topic of Sect. 4.2.

To approximate the value function and the optimal choices, I use linear basis
functions. In consequence, the hierarchical surplus provides an indicator for refine-
ment as described in Sect. 3. Section 4.3 discusses implications of the choice of
basis functions on the optimization routine and how to treat extrapolation.

4.1 Spatially Adaptive Sparse Grid Dynamic Programming

For a given level l and the associated sparse grid space V S
l let me denote the grid

by Gl = {sk,i | i ∈ I hier
k
, k ∈ N

d, |k|1 ≤ l + d − 1}. Furthermore, as spatially
adaptively refined grids are created in every time step t and for every discrete state
θt ∈ Θ , let me denote the adaptively refined grid that was constructed starting from
level l for a given discrete state θt at a given time t by Gtl (θt).

The spatially adaptive sparse grid dynamic programming algorithm 2 is initial-
ized with the refined grid GTl (θT) for all discrete states θT ∈ Θ at terminal time
T and the corresponding values of the terminal value function and the optimal
choices at these grid points. Altogether, they form the final solution ST . Starting
from T , the algorithm iterates backwards in time to determine all solutions St at
the times t ∈ {T − 1, . . . , 0}. For a given time step t , the grids associated with
the previously computed solution St+1 are refined for each discrete state θt+1 to
construct the approximation of the value function. The grids of the solution St are
then initialized as a copy of the refined grids from the solution in t + 1. For all of
these grid points the time t optimization problems are solved at all discrete states.
Therefore, the refined approximations of the value functions for each discrete state
are used within the objective function j̃t that is maximized to determine the value
function values and optimal choices at the grid points of time step t , see Eqs. (7)
and (9). Note that I assume that the set of discrete states Θ remains the same at all
times and only the transition probabilities πt(θt+1|θt) may vary. Also, the solution
in t could be initialized with a copy of the base level grids instead of taking the
grids from the previous solution. Thus, I assume that the grids of the solution in t
and t + 1 are likely to be similar.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 151

Algorithm 2: Spatially adaptive sparse grid dynamic programming
Data:
Base level l
Final solution ST = {(sk,i

T , jT (s
k,i
T , θT), pT (s

k,i
T , θT)) | sk,i

T ∈ GTl (θT), θT ∈ Θ}
Refinement tolerance ε
Result:
Solutions St = {(sk,i

t , jt (s
k,i
t , θt), pt (s

k,i
t , θt)) | sk,i

t ∈ Gtl (θt), θt ∈ Θ}, t ∈ {0, . . . , T − 1}
for t := T − 1 to 0 do

if t + 1 < T then
St+1 := RefineGridsInSolution(St+1, St+2, ε);

St := ∅;
for θt ∈ Θ do

Gtl (θt) := Gt+1
l (θt);

// Note that Θ is constant over time

for s
k,i
t ∈ Gtl (θt) do
pt (s

k,i
t , θt) := arg max

pt

{
j̃t (pt , s

k,i
t , θt)

}
subject to (5)–(6);

// Here, the approximation on the previously refined
grid is evaluated

jt (s
k,i
t , θt) := j̃t (pt (sk,i

t , θt), s
k,i
t , θt);

St := St ⋃ (s
k,i
t , jt (s

k,i
t , θt), pt (s

k,i
t , θt));

In fact, to refine the grids of St+1 for all discrete states, Algorithm 3 starts at
the base grid Gl . Note that, by definition of the grids Gt+1

l in St+1 as the copy of
the gridsGt+2

l in St+2 and subsequent computation of the value function values and
optimal choices for the grid points of St+1, the grid points of the base gridGl as well
as the value function values and optimal choices at these grid points are known. That
is, {(sk,i

t+1, j (s
k,i
t+1, θt+1), p(s

k,i
t+1, θt+1)) | s

k,i
t+1 ∈ Gl(θt+1), θt+1 ∈ Θ} ⊂ St+1.

The base grid is then refined by adding all 2d children s
k̃,ĩ
t+1 as defined in Sect. 3.

Starting from the base grid ensures that a minimum coverage of the domain by
grid points is maintained. If the value function value and the optimal choices for
an added grid point are already contained in the solution St+1, they are kept in the
solution. This implies that the added grid point was already part of the solution St+1.
If not, i.e., if the added grid point does not yet exist in the grid of St+1 for a given
θt+1 ∈ Θ , the value function and the optimal choices for these grid points have to be
added to the solution St+1 by solving the optimization problem at these grid points.
This, of course, requires the solution St+2, which has been refined already. At the
end, the approximation of the value function is fitted to all grid points and value
function values. This process is repeated until no more grid points are refined given
the refinement tolerance ε. All grid points that were part of the initial solution to

152 P. Schober

Algorithm 3: Refine grids in solution
Data: Solutions St+1, St+2, refinement tolerance ε
Result: Solution Ŝt+1 with refined grids
for θt+1 ∈ Θ do

Ĝt+1
l (θt+1) := Gl ;

Ŝt+1 := {(sk,i
t+1, j (s

k,i
t+1, θt+1), p(s

k,i
t+1, θt+1)) | sk,i

t+1 ∈ Ĝt+1
l (θt+1), θt+1 ∈ Θ} ⊂ St+1;

repeat
Gtmp := Ĝt+1

l (θt+1);

for s
k,i
t+1 ∈ Leafs(Ĝt+1

l (θt+1)) do
if |ck,i | · ‖φk,i‖ > ε then

Ĝt+1
l (θt+1) := Ĝt+1

l (θt+1)
⋃

RefinePoint(sk,i
t+1);

// Add all children and all missing parents

for s
k̃,ĩ
t+1 ∈

{
Ĝt+1
l (θt+1)\Gtmp

}
do

if s
k̃,ĩ
t+1 ∈ Gt+1

l then

X := (sk̃,ĩ
t+1, jt+1(s

k̃,ĩ
t+1, θt+1), pt+1(s

k̃,ĩ
t+1, θt+1)) ∈ St+1;

else

pt+1(s
k̃,ĩ
t+1, θt+1) := arg max

pt+1

{
j̃t+1(pt+1, s

k̃,ĩ
t+1, θt+1)

}
subject

to (5)–(6);

jt+1(s
k̃,ĩ
t+1, θt+1) := j̃t+1(pt+1(s

k̃,ĩ
t+1, θt+1), s

k̃,ĩ
t+1, θt+1);

X := (sk̃,ĩ
t+1, jt+1(s

k̃,ĩ
t+1, θt+1), pt+1(s

k̃,ĩ
t+1, θt+1));

// If the added grid point is not already in
the grids of solution St+1, compute the
value function and the optimal choices at
this grid point using St+2

Ŝt+1 := Ŝt+1
⋃
X;

// Fit approximation to the updated grid points and
value function values

until Ĝt+1
l (θt+1)\Gtmp = ∅;

// . . . there are no grid points to be refined given ε

be refined, but have not been added in the refinement process, are discarded.6 This
ensures that the number of grid points in the solutions is not monotonously growing
as the algorithm is stepping backwards in time.

Overall, Algorithms 2 and 3 guarantee that the value function approximation
for each time step and every discrete state is spatially adaptively refined and the
value function values and optimal choices at all of these grid points are part of the
respective solution. Discarding points that are not needed for a good approximation

6Aside from additionally added parents, this is similar to removing all grid points that are leafs
below level l in the hierarchical grid structure and fulfill the criterion |cl,i | ≤ ε/‖φl,i‖2, so called
coarsening.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 153

of the value function within the refinement procedure minimizes the number of
optimization problems that have to be solved.

4.2 Optimal Choices

Given the solution of the spatially adaptive sparse grid dynamic programming
algorithm 2 optimal choice approximations on a sparse grid can be constructed and
individually adapted, again by spatially adaptive refinement. This is sensible when
the optimal choices have high curvature in parts of the domain where the value
function is comparably flat and, hence, the solution to the optimization problem
contains only few grid points in these parts.

Since pt (s t , θt) ∈ R
k , there are k optimal choices to approximate for a given

time t and discrete state θt ∈ Θ . Consistent with the notion of a solution to the
optimization problem St , I define the uth optimal choice at time t by a set of tuples
Put = {(sk,i

t , p
u
t (s

k,i
t , θt)) | s

k,i
t ∈ Gt,ul (θt), θt ∈ Θ}, t ∈ {0, . . . , T }. For each

t ∈ {0, . . . , T }, Algorithm 4 takes the optimal choices put (s
k,i
t , θt) at all grid points

from the solution St to construct an initial Put , u = 1, . . . , k. Since these grids
are of hierarchical structure, it is possible to construct a sparse grid approximation
of the optimal choices. These initial optimal choices are subsequently refined using
surplus-based refinement for a given choice dependent refinement constant εu. Since
the intersection of the grid points added in all refined optimal choices grids is
frequently large, it is beneficial to compute the optimal choices at all newly added
grid points for the union set of these points.

Note that in the initialization of the optimal choices from the solution and during
the refinement procedure no grid points are discarded. They contain information
useful for the approximation and, contrary to the refinement of the value function in
Algorithm 3, no costly operation (like optimization) has to be performed on the set
of grid points for any optimal choice.7

4.3 Choice of Basis Functions, Extrapolation, and Refinement

Let G ⊂ R
d be a bounded domain within the continuous state space. If the state

space is unbounded, which is often the case, a boundary has to be chosen a priori,
since the sparse grid approximation using local basis functions requires a bounded
domain. Let the boundary of this domain be δG.

7This is true for constructing approximations of the optimal choices using linear basis functions.
Using different approximation methods on a sparse grid can involve significant computational
effort for fitting the approximation to the function values, e.g., using conventional B-spline basis
functions.

154 P. Schober

Algorithm 4: Generate optimal choices
Data:
Solutions St = {(sk,i

t , jt (s
k,i
t , θt), pt (s

k,i
t , θt)) | sk,i

t ∈ Gtl (θt), θt ∈ Θ}, t ∈ {0, . . . , T }
Refinement tolerances εu, u = 1, . . . , k
Result:
Optimal choices P ut = {(sk,i

t , p
u
t (s

k,i
t , θt)) | sk,i

t ∈ Gt,ul (θt), θt ∈ Θ}, t ∈ {0, . . . , T }
for t := 0 to T do

for θt ∈ Θ do
for u := 1 to k do

G
t,u
l (θt) := Gtl (θt);

P ut := ∅;

for s
k,i
t ∈ Gt,ul (θt) do
P ut := P ut

⋃
(s

k,i
t , ·, put (sk,i

t , θt), ·) ∈ St
// Initialize the optimal choice as obtained from the

solution and fit the approximation to the values at
the grid points

repeat
Gtmp := ⋃k

u=1G
t,u
l (θt);

for u := 1 to k do
for s

k,i
t ∈ Leafs(Gt,ul (θt)) do
if |ck,i | · ‖φk,i‖ > εu then

G
t,u
l (θt) := Gt,ul (θt)

⋃
RefinePoint(sk,i

t);
// Add all children and all missing parents

Gunion :=⋃k
u=1G

t,u
l (θt);

for s
k̃,ĩ
t ∈ {Gunion\Gtmp

}
do

// Compute optimal choices for the union of all
added grid points

pt (s
k̃,ĩ
t , θt) := arg max

pt

{
j̃t (pt , s

k̃,ĩ
t , θt)

}
subject to (5)–(6);

for u := 1 to k do

if s
k̃,ĩ
t ∈ Gt,ul (θt) then

P ut := P ut
⋃ {(sk̃,ĩ

t , p
u
t (s

k̃,ĩ
t , θt))};

// Here, take only the grid points that
have been added to the grid for optimal
choice u

// Fit all k approximations against the updated grid
points and optimal choices

until Gunion\Gtmp = ∅;

Firstly, the choice of the domain may introduce an approximation error. If the
boundary is chosen too tight, a relevant part of the state space may lay outside the
domain. If the boundary is chosen too loose, a high discretization level of the sparse
grid approximation is necessary to obtain a reasonable approximation error.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 155

As already mentioned in Sect. 2, the state space mapping f t+1 does not
correspond with a grid point and may map to points outside the domain G. If
the value function is defined outside the bounded domain, the value function has
to be extrapolated, e.g., by nearest neighbor extrapolation or other means.8 To
approximate a function value f (xo) outside the domainG ⊂ R

d at a point xo �∈ G,
I extrapolate linearly. Let xb ∈ δG be the closest point on the boundary of the
domain, i.e., the point that solves minx∈δG ‖xo − x‖2 with the standard euclidean
norm ‖·‖2. Furthermore, let h ∈ R

d be an extrapolation accuracy. Then, the linearly
extrapolated approximation is computed as

A [f](xo) =A [f](xb)

+
d∑

j=1

(
A [f](xb − h · 1j)−A [f](xb)

hj
(xoj − xbj)1{xoj >xbj }

)

+
d∑

j=1

(
A [f](xb + h · 1j)−A [f](xb)

hj
(xbj − xoj)1{xoj <xbj }

)

,

with 1 denoting the indicator function.
As the value function and the optimal choices are non-zero on the boundary, I

employ linear basis functions with grid points on the boundary, see [16]. For the
adaptive refinement, I use hierarchical surplus volume-based refinement with the
linear boundary basis functions, as the theory behind hierarchical surplus volume-
base refinement is well studied [20, 37, 45].9

8The extrapolated value can be crucial. Consider the following simple model: In period t * T

of investment horizon T an investor can choose how much to invest from her wealth wt in a
stock giving a risky return rt+1 from t to t + 1 and how much to consume ct . The investor tries to
maximize CRRA utility from consumption over the time horizon. Her wealth in t+1 is thuswt+1 =
(wt − ct) · rt+1. The wealth depends on the distribution of returns and is unbounded, such that an
upper boundary wu of the bounded state space [0, wu] ⊂ R has to be chosen in order to compute
a numerical solution to the problem. Assume that her decision in t at the boundary point wt = wu
shall be optimized. Also, it should be clear that higher values of wealth wt correspond with higher
value function values. For any return realization rt+1 > wt/(wt−ct) the next period’s wealthwt+1
lies outside the bounded domain. With nearest neighbor extrapolation, the value function value for
wt+1 is the same as for wu. Investing in the risky stock is not rewarded beyond wu. With linear
extrapolation, investing into the risky stock is rewarded (assuming a positive slope of the value
function) and her consumption ct would be considerably lower compared to the nearest neighbor
extrapolation.
9I also tested the modified linear basis functions from [37], which extrapolate linearly towards
the boundary by folding up the outermost basis functions instead of placing grid points on the
boundary. Extrapolation outside the boundary then boils down to extending the outermost basis
functions to the outside of the domain [2]. The multi-dimensional modified basis is again the
product of the one-dimensional modified basis functions and thus extrapolation in the corners of
the d-dimensional cube is d-linear. Conveniently, the modified basis functions make up for the
fact that in higher dimensions the majority of the grid points lies on the boundaries. However,
the extrapolation towards the boundary—especially in the corners—led to the value function not

156 P. Schober

Since the optimization is performed on an approximation of the value function
using linear hat functions, the basis suffers from the global non-differentiability of
piecewise continuously differentiable basis functions. Any gradient-based numer-
ical optimization routine is likely to converge poorly if the optimized function
has discontinuous derivatives. However, it might still find a global optimum more
effectively than a derivative-free optimizer as long as the value function is convex
and monotone. For the numerical examples in this paper, I prefer to use a gradient-
based optimizer and terminate the optimization after a certain number of steps
over an alternative, derivative-free optimizer (such as pattern search or simulated
annealing). To circumnavigate problems with non-differentiability on a sparse grid
with linear hat functions, various approaches exist [14, 31]. Local basis functions
that are globally smooth and continuously differentiable, such as B-splines [43],
pose a promising alternative that still allows for spatially adaptive refinement of the
value function.

5 Numerical Example

As numerical example I use a variant of the transaction costs problem analyzed in
detail in the dissertation of Yongyang Cai [7] with the parametrization described
in the related paper [8]. In the analyzed model, the investor takes transaction
costs for multiple stock investment opportunities into account when optimizing
her portfolio and consumption choice. These stock investments differ in risk and
return characteristics. For each stock in the model, one continuous state variable,
two choice variables (“buy” and “sell” amounts), and one stochastic risk factor
(the normally distributed logarithmic return shock) is required. The result is a high-
dimensional model in terms of the state space, stochastic sample space, and choice
variables. It is easy to vary its dimensionality by increasing the number of stock
investment options available, see Sect. 5.1.

To separate the numerical error resulting from the optimization and the approxi-
mation error in the value function approximation, I employ two error measures. The
first measures how much the numerically obtained choices violate the optimality
conditions. It thus allows to make a general statement on the quality of the numerical
solution to the optimization problem. The second error measure computes the
pointwise error of the value function approximation obtained from Algorithm 2 with
a spatially adaptively refined sparse grid and a spatially adaptively refined full grid
reference solution to the same problem. Since in the Lagrangian optimization setup
only the gradient of the value function is relevant, small errors on the policies do
not necessarily imply small pointwise errors of the value function. Details are given
in Sect. 5.2.

I present and discuss my results in Sect. 5.3.

being monotone for certain cases and subsequently to failure of the optimization routine. Hence,
the modified basis does not constitute a generally reliable choice of basis functions.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 157

5.1 Transaction Costs Model

In my version of the transaction costs problem I consider a retired investor
who maximizes expected utility from consumption (1). Therefore, she tracks the
continuous states wealth wt ∈ R+ and fractions of wealth xt = (x1

t , . . . , x
d
t)
) ∈

[0, 1]d invested in stocks S1, . . . , Sd . The investor can reside in the two discrete
states θt ∈ {alive, dead} and stays alive in the subsequent period with probability
πt . Her choices are how much to buy of stock i for USD amount δi+t ∈ R+ with
transaction costs τδi+t or sell of stock i for USD amount δi−t ∈ R+ and transaction
costs τδi−t , where τ > 0 is a percentage cost factor. Additionally, she can invest
in a transaction cost free money market account bt yielding a risk-free return rf .
With δ±t ∈ R

d+ her choices are given by (δ+t , δ−t , bt)). The total transaction costs
associated with the implementation of the investor’s choices are thus given by:

τ

d∑

i=1

(δi+t + δi−t) .

In line with [7, 8], I assume the logarithms of the returns r t+1 of the d stocks are iid
normally distributed with mean μ and covariance matrixΣ , log (r t+1) ∼ N(μ,Σ).
Finally, the investor’s consumption in period t is the residual of her wealth that is
not invested in stocks or bonds, reduced by the transaction costs for rearranging her
portfolio in this period:

ct = (1−
d∑

i=1

xit)wt − bt − (1+ τ)
d∑

i=1

δi+t − (τ − 1)
d∑

i=1

δi−t . (17)

Additionally, the investor receives a fixed retirement income αR . The state dynamics
from t to t + 1 are thus given by:

wt+1 =
d∑

i=1

(
xit wt + δi+t − δi−t

)
rit+1 + bt rf + αR ,

xit+1 =
(
xit wt + δi+t − δi−t

)
rit+1

wt+1
, i = 1, . . . , d .

With u being the CRRA utility (2) the investor faces the optimization problem

jt (wt , xt) = max
bt ,δ

+
t ,δ

−
t

u(ct)+ ρπtEt [jt+1 (wt+1, x t+1)] , (18)

jT (wT , xT) = u
((

1− τ
d∑

i=1

xiT

)

wT

)

, (19)

158 P. Schober

subject to the constraints for each t ∈ {0, . . . , T }

bt + (1+ τ)
d∑

i=1

δi+t + (τ − 1)
d∑

i=1

δi−t ≤ wt
(

1−
d∑

i=1

xit

)

− cmin , (20)

δi+t ≥ 0 , i = 1, . . . , d , (21)

δi−t ∈
[
0, xit wt

]
, i = 1, . . . , d , (22)

bt ≥ 0 , (23)

d∑

i=1

xit ≤ 1 . (24)

Here, a minimum consumption level cmin must be attained and I assume that the
final stock holdings xiT wT , i = 1, . . . , d , must be sold before they can be consumed.
Also, the investor cannot sell more of stock i than her current holding xit wt .

10 Note
that the discrete state is implicitly included in the problem definition (18)–(24) since
Et [jt+1(·, dead)] = 0 and hence Et [jt+1(·, alive)] = πtEt [jt+1(·)].

The constraint (24) is a constraint on the state space and the resulting eligible
subspace in [0, 1]d is a d-dimensional simplex, not a rectangular domain as needed
for the sparse grid approximation. I solve this problem by assuming that any state
attained that is not eligible is cropped to an eligible state by selling all stock
holdings pro rata until all constraints are satisfied. That is, money is transferred
from stocks to wealth, for which the proportionate transaction costs are deducted.
The approximation of the value function is then evaluated at this eligible state.

The optimization starts at age T = 71, ends at age t0 = 65, and has a fixed period
length ofΔt = 1 year. Thus, I assume a 6 years investment horizon to be comparable
with the run times reported in [8]. The retirement income is αR = 18, 664 USD and
taken from tables one and two of [12]. For the 1-year conditional mortality πt I use
the 2009 US female mortality table. The risk aversion γ , the log-return distribution
parameters μ and Σ , as well as the transaction costs factor τ are taken from page
seven of [8]. I set the time discount factor to ρ = 0.97 and cmin = 0.001 to ensure
minimal consumption is taking place.

I track wealth wt in 10,000 USD, truncate the infinite domain to [0.05, 5], and
transform via m(wt) = w

1/3
t to increase the density of grid points in regions were

the value function has a high curvature, that means for lower wealth levels.

10To save choice variables one could track the net change Δt ∈ R
d in the investor’s stock holding.

However, the transaction costs function τ
∑d
i=1 |Δit | would be non-linear and the constraints

become non-linear, too; see [7].

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 159

5.2 Error Measurement

The optimal choices pt (st , θt) ∈ R
k must satisfy the first order conditions of the

Lagrangian (8)

∇pt u+ ρEt
[∇ptf t+1 · ∇f t+1

jt+1
]− ∇ptg · λt −∇pth · μt = 0

and any of these k equations must hold for the optimal choices.11 In order to
eliminate the derivative of the value function ∇s t+1jt+1 with regard to the state
st+1 ∈ R

d , which is not known and would have to be computed from the value
function approximation, it is possible to construct a constant matrix C ∈ R

d×k ,
which relates ∇s t jt to ∇pt u via

∇s t jt = C · ∇pt u .

Thus, I can replace ∇f t+1
jt+1 by C · ∇pt+1

u. By reformulation I arrive at the d + 1
error measures with respect to the d stock returns r t+1 and one risk-free return rf
with ct from Eq. (17):

erit+1
(wt , x t) = ρπtEt

[
c
−γ
t+1

c
−γ
t

rit+1

]

− 1 , i = 1, . . . , d , (25)

erf (wt , x t) = ρπtEt
[
c
−γ
t+1

c
−γ
t

rf

]

− 1 . (26)

These errors are frequently called Euler errors. Note that these errors are the
deviations from the basic pricing equation of asset pricing [13]. For details see the
appendix.

To measure the numerical error eXt (wt+1, xt+1) for Xt ∈ {r1
t+1, . . . , r

d
t+1, rf } at

time t , the Euler error equations (25) and (26) are evaluated on an equidistant grid
with 23 points in each dimension covering the bounded domain [0.05, 5] × {x ∈
[0, 1]d | ∑d

i=1 x
i
t ≤ 1}.12 In case any of the constraints (20)–(23) is binding at a

11I define ∇xf := (∂fj /∂xi)ij .
12Using more grid points to compute the error would allow for a better estimation of the error.
However, for more than two stocks (three dimensions), the error computation takes unacceptably
long. To be consistent with the error estimation when varying the problem dimensionality, I use
this rather low number of grid points.

160 P. Schober

grid point, the Euler error is set to “NaN”.13 Denoting the index set IErr
Xt

of the grid

points (wi
t , x

i
t), i ∈ IErr

Xt
, with non-NaN errors for Xt and the cardinality of a given

finite set by #I , the aggregated error measures LXt1 , LXt2 , and LXt∞ can be computed
in the usual sense:

L
Xt
1 = 1

#IErr
Xt

∑

i∈IErr
Xt

∣
∣
∣eXt

(
wi
t , x

i
t

)∣
∣
∣ ,

L
Xt
2 =

⎛

⎜
⎝

1

#IErr
Xt

∑

i∈IErr
Xt

eXt

(
wi
t , x

i
t

)2

⎞

⎟
⎠

1
2

,

LXt∞ = max
i∈IErr

Xt

{∣
∣
∣eXt

(
wi
t , x

i
t

)∣
∣
∣
}
.

To compute the overall aggregated Euler errors for the optimal choices, I average
the respective error measure over all times t ∈ {0, . . . , T − 1} (since for the Euler
error in t the period t + 1 is required). The final Euler errors LEuler

1 , LEuler
2 , and

LEuler∞ are then computed as the average of the time-average errors for all Xt . I
consider LEuler∞ errors around 20% and LEuler

1 about 5% as economically acceptable.
They indicate an average maximum mispricing of the assets of roughly 20% and an
average absolute mispricing of around 5%.

The pointwise error for a given state is the absolute difference between the
approximation A [jt] of the value function of the full grid reference solution and
the sparse grid approximation A S[jt]:

ejt (wt , xt) =
∣
∣
∣A S [jt]−A [jt]

∣
∣
∣ . (27)

I proceed in a similar manner as with the Euler errors and compute the pointwise
value function errors (27) at the same grid points as the Euler errors for each point
in time t ∈ {0, . . . , T } and average over all times to determine LValue

1 , LValue
2 , and

LValue∞ . For the pointwise error of the value function there are no binding constraints.

13Additionally, I set the Euler error to “NaN”, ifwtxit+δi+t −δi−t = 0, i = 1, . . . , d. This constraint
results from the derivation of the Euler error equation described in the appendix. I consider a
constraint to be binding when its absolute value is within the constraint tolerance of the numerical
SQP optimizer.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 161

5.3 Results

All solutions have been computed using the certainty equivalent transformation
of the value function ĵt = ((1 − γ)jt)

1/(1−γ), which reduces the curvature of
the value function when the utility is of CRRA type.14 Since this transform is
strictly monotone, any maximizer of ĵt also maximizes jt . The code is written in
MATLAB, where the approximation on sparse and full grids is implemented by
a MEX file interface to the sparse grids C++-toolbox SG++ that was originally
developed in the course of the dissertation of Dirk Pflüger [37]. Note that the
surplus volume in dimensionality d is computed as ‖φl,i‖2 = (2/3)d/2 2−|l|1/2,
but SG++ uses as 2−|l|1 as the denominator in the refinement criterion (16). I
do not correct the refinement constant ε for this factor. Since for the transaction
costs problem the distribution Φt is lognormal and state independent, I compute
the expectation (9) using Gauß-Hermite quadrature on a sparse grid, thus breaking
the curse of dimensionality when including stochastic risk factors. Sparse grid
quadrature is used, but not subject to analysis within this paper. For details on sparse
grid quadrature in dynamic portfolio choice models, see the appendix of Horneff
et al. [25]. The quadrature routine is implemented by a MEX file interface to the
TASMANIAN sparse grids C++-toolbox [42]. The optimization is done using the
SQP solver SNOPT [18] in the implementation of the Numerical Algorithms Group
(www.nag.co.uk). Often convergence of the optimizer cannot be observed due to
the discontinuous gradients of the linear approximation. In these cases I stop the
optimization after 100 iterations.

Firstly, I solve the transaction costs problem (18)–(24) with one stock (two-
dimensional problem) up to three stocks (four-dimensional problem) using Algo-
rithm 2 on a full grid of base level l = 3 with spatially adaptive refinement of the
value function as described in Algorithm 3 with refinement constant ε = 5e−04.
Given the solutions to the optimization problem, I then compute approximations for
the optimal choices according to Algorithm 4 without spatially adaptive refinement
of the optimal choices, which is discussed later in this section. Finally, I compute
the Euler errors (25) and (26) using the approximations of the optimal choices as
described in Sect. 5.2. The full grid solutions and their Euler errors serve as my
reference solutions to compare against the Euler errors of the sparse grid solution
and to compute the pointwise error of the value function.

I then solve the two-, three-, and four-dimensional transaction costs problem
with Algorithm 2 on a sparse grid. Again, I use the optimal solution obtained this
way to compute approximations for the optimal choices according to Algorithm 4
without spatially adaptive refinement. Given these optimal choices, I compute the
Euler errors in the same manner as with the full grid solution. Finally, I compute
the pointwise error of the value function on the sparse grid compared to the full grid
reference solution’s value function as given by Eq. (27).

14Note that the final condition becomes ĵT = ((1− γ)/(1 − γ)c1−γ
T)1/(1−γ) = cT .

www.nag.co.uk

162 P. Schober

I determine the Degrees of Freedom (DoF) as the average of the grid points of
all grids Gtl , t ∈ {0, . . . , T }. So if grid Gtl has #Gtl points, I compute the DoF

as ,1/T ∑T
t=0 #Gtl-. In my implementation, I parallelize over the number of grid

points and use a fixed number of cores per problem dimensionality, but more cores
for higher dimensionality. For parallelization I use MATLAB’s parfor. Since
the parallel efficiency of parfor decreases drastically when too few DoFs are
allocated per core [25], I have to adapt the number of cores to the problem dimension
to avoid undesired scaling effects.

I repeat these computations for each problem dimensionality with varying base
levels l ∈ {2, 3, 4} and refinements constants ε ∈ {5e−01, . . . , 5e−05} to asses
the impact of base level and refinement constant on the solution of the optimization
problem. The following Tables 1, 2, and 3 depict the outcome of these experiments.
I only report the absolute pointwise errors of the value function, since the relative
errors are of the same magnitude as the absolute errors.

For the results of the two-dimensional transaction costs problem in Table 1,
the Euler errors are overall low and the average absolute Euler errors LEuler

1 are
acceptable around the 2.5% level for the full grid and 5% level for the different
sparse grid settings with base level l ≥ 3. For all parametrizations of the sparse
grid the LEuler

2 and LEuler∞ errors are higher than with the full grid. Increasing the
base level of the sparse grid approximation of the value function leads to lower
average absolute Euler errors, but does not improve much on the LEuler

2 and LEuler∞
errors. Decreasing the refinement tolerance has seemingly little effect. For the
pointwise error of the sparse grid value function compared to the reference solution
LValue, convergence is visible for both, increasing base level as well as decreasing
refinement tolerances. However, a better approximation of the value function on a
sparse grid does not necessarily correspond to better Euler errors. With respect to the
magnitude of the pointwise errors, note that I do not compare the sparse grid value
function approximation to an analytically known or specifically chosen benchmark,
but to a possibly error prone numerical reference solution. For refinement tolerance
ε = 5e−05, all error measures diverge.

The results for the three-dimensional transaction costs problem in Table 2 are of
similar nature as for the two-dimensional transaction costs problem. The average
absolute Euler errors, however, are nearly twice as high at the 4.8% level for the full
grid and 9% level for the sparse grid settings with base level l = 3. Again, they are
not very sensitive to base level and refinement tolerance variations. The pointwise
approximation error stays about the same as in the two-dimensional problem and
converges until ε = 5e−05, for which Euler errors and pointwise errors start
diverging. The DoF are clearly lower in the sparse grid cases and so are the run
times compared to the full grid case.

This trend continues for the four-dimensional transaction costs model, see
Table 3. The average absolute Euler errors are now at the 7.6% level for the full
grid and at the 18% level for the sparse grid with base level l = 3. The sparse
grid value function converges to its full grid counterpart with increasing base level
and decreasing refinement tolerance, but the pointwise errors are slightly higher as

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 163

T
ab

le
1

Tw
o-

di
m

en
si

on
al

tr
an

sa
ct

io
n

co
st

s
pr

ob
le

m

l
ε

D
oF

R
un

ti
m

e
L

E
ul

er
1

L
E

ul
er

2
L

E
ul

er
∞

L
V

al
ue

1
L

V
al

ue
2

L
V

al
ue

∞
3

5e
−0

4
10

9
7.

95
2.

57
e−

02
6.

19
e−

02
2.

46
e−

01
–

–
–

2
5e
−0

1
21

3.
16

8.
95

e−
02

1.
49

e−
01

4.
26

e−
01

1.
78

e−
02

2.
01

e−
02

3.
10

e−
02

2
5e
−0

2
23

2.
45

8.
63

e−
02

1.
47

e−
01

4.
25

e−
01

1.
28

e−
02

1.
47

e−
02

2.
49

e−
02

2
5e
−0

3
34

2.
87

7.
06

e−
02

1.
47

e−
01

4.
96

e−
01

2.
82

e−
03

3.
46

e−
03

7.
94

e−
03

2
5e
−0

4
63

4.
36

8.
74

e−
02

2.
00

e−
01

6.
55

e−
01

1.
65

e−
04

2.
33

e−
04

6.
65

e−
04

2
5e
−0

5
12

5
9.

32
1.

03
e−

01
2.

54
e−

01
8.

89
e−

01
7.

73
e−

04
8.

74
e−

04
1.

79
e−

03

3
5e
−0

1
49

3.
56

5.
59

e−
02

1.
24

e−
01

5.
09

e−
01

3.
99

e−
03

4.
57

e−
03

7.
59

e−
03

3
5e
−0

2
49

3.
97

5.
59

e−
02

1.
24

e−
01

5.
09

e−
01

3.
99

e−
03

4.
57

e−
03

7.
59

e−
03

3
5e
−0

3
53

3.
75

5.
55

e−
02

1.
24

e−
01

5.
06

e−
01

2.
60

e−
03

3.
04

e−
03

6.
23

e−
03

3
5e
−0

4
77

5.
18

6.
18

e−
02

1.
41

e−
01

4.
97

e−
01

5.
45

e−
05

9.
32

e−
05

4.
26

e−
04

3
5e
−0

5
13

5
10
.3

2
8.

75
e−

02
2.

12
e−

01
7.

34
e−

01
7.

47
e−

04
8.

44
e−

04
1.

69
e−

03

4
5e
−0

1
11

3
7.

96
4.

85
e−

02
1.

21
e−

01
4.

99
e−

01
4.

43
e−

04
5.

45
e−

04
1.

36
e−

03

4
5e
−0

2
11

3
8.

34
4.

85
e−

02
1.

21
e−

01
4.

99
e−

01
4.

43
e−

04
5.

45
e−

04
1.

36
e−

03

4
5e
−0

3
11

3
8.

29
4.

85
e−

02
1.

21
e−

01
4.

99
e−

01
4.

43
e−

04
5.

45
e−

04
1.

36
e−

03

4
5e
−0

4
12

3
8.

94
4.

87
e−

02
1.

22
e−

01
4.

98
e−

01
6.

19
e−

05
1.

43
e−

04
6.

93
e−

04

4
5e
−0

5
17

2
13
.4

2
5.

37
e−

02
1.

31
e−

01
5.

01
e−

01
7.

07
e−

04
8.

00
e−

04
1.

68
e−

03

C
on

ve
rg

en
ce

fo
r

th
e

sp
at

ia
ll

y
ad

ap
tiv

e
re

fin
em

en
ts

ch
em

e
w

it
h

va
ry

in
g

ba
se

le
ve

ls
l

an
d

re
fin

em
en

tt
ol

er
an

ce
s
ε

fo
r

th
e

va
lu

e
fu

nc
ti

on
.T

he
re

fe
re

nc
e

so
lu

ti
on

on
th

e
fu

ll
gr

id
w

as
re

fin
ed

w
it

h
re

fin
em

en
tt

ol
er

an
ce
ε
=

5e
−0

4
an

d
ba

se
le

ve
ll
=

3
an

d
is

gi
ve

n
in

th
e

fir
st

li
ne

.R
ep

or
te

d
ar

e
th

e
E

ul
er

er
ro

rs
L

E
ul

er
as

w
el

l
as

th
e

po
in

tw
is

e
er

ro
rs

of
th

e
va

lu
e

fu
nc

ti
on
L

V
al

ue
w

it
h

re
sp

ec
tt

o
th

e
re

fe
re

nc
e

so
lu

ti
on

.R
un

ti
m

es
ar

e
re

po
rt

ed
in

se
co

nd
s

w
it

h
re

sp
ec

tt
o

4
co

re
s

164 P. Schober

T
ab

le
2

T
hr

ee
-d

im
en

si
on

al
tr

an
sa

ct
io

n
co

st
s

pr
ob

le
m

l
ε

D
oF

R
un

ti
m

e
L

E
ul

er
1

L
E

ul
er

2
L

E
ul

er
∞

L
V

al
ue

1
L

V
al

ue
2

L
V

al
ue

∞
3

5e
−0

4
78

9
17

2.
76

4.
74

e−
02

7.
36

e−
02

2.
89

e−
01

–
–

–

2
5e
−0

1
81

12
.0

3
1.

37
e−

01
2.

01
e−

01
5.

61
e−

01
1.

76
e−

02
1.

99
e−

02
3.

08
e−

02

2
5e
−0

2
84

11
.5

3
1.

42
e−

01
2.

10
e−

01
5.

92
e−

01
1.

28
e−

02
1.

47
e−

02
2.

51
e−

02

2
5e
−0

3
10

8
13
.6

9
1.

71
e−

01
2.

66
e−

01
7.

65
e−

01
2.

69
e−

03
3.

34
e−

03
7.

89
e−

03

2
5e
−0

4
17

7
21
.3

5
1.

97
e−

01
3.

01
e−

01
8.

18
e−

01
3.

84
e−

04
5.

13
e−

04
1.

49
e−

03

2
5e
−0

5
34

9
41
.2

3
1.

94
e−

01
3.

30
e−

01
9.

28
e−

01
8.

65
e−

04
1.

02
e−

03
2.

56
e−

03

3
5e
−0

1
22

5
21
.3

4
8.

52
e−

02
1.

48
e−

01
5.

52
e−

01
4.

08
e−

03
4.

67
e−

03
7.

70
e−

03

3
5e
−0

2
22

5
27
.8

6
8.

52
e−

02
1.

48
e−

01
5.

52
e−

01
4.

08
e−

03
4.

67
e−

03
7.

70
e−

03

3
5e
−0

3
23

2
21
.6

0
8.

76
e−

02
1.

55
e−

01
5.

63
e−

01
2.

58
e−

03
3.

01
e−

03
6.

15
e−

03

3
5e
−0

4
28

5
27
.3

6
9.

65
e−

02
1.

62
e−

01
5.

67
e−

01
1.

33
e−

04
2.

00
e−

04
7.

91
e−

04

3
5e
−0

5
43

5
61
.3

2
1.

61
e−

01
3.

20
e−

01
9.

71
e−

01
6.

58
e−

04
8.

10
e−

04
2.

12
e−

03

4
5e
−0

1
59

3
10

1.
23

1.
01

e−
01

1.
87

e−
01

6.
81

e−
01

4.
62

e−
04

5.
91

e−
04

1.
86

e−
03

4
5e
−0

2
59

3
10

5.
46

1.
01

e−
01

1.
87

e−
01

6.
81

e−
01

4.
62

e−
04

5.
91

e−
04

1.
86

e−
03

4
5e
−0

3
59

3
10

6.
54

1.
01

e−
01

1.
87

e−
01

6.
81

e−
01

4.
62

e−
04

5.
91

e−
04

1.
86

e−
03

4
5e
−0

4
61

2
10

5.
71

9.
37

e−
02

1.
75

e−
01

6.
53

e−
01

1.
03

e−
04

1.
85

e−
04

9.
58

e−
04

4
5e
−0

5
72

0
15

1.
01

8.
67

e−
02

1.
71

e−
01

6.
02

e−
01

7.
71

e−
04

9.
09

e−
04

2.
27

e−
03

C
on

ve
rg

en
ce

fo
r

th
e

sp
at

ia
ll

y
ad

ap
tiv

e
re

fin
em

en
t

sc
he

m
e

w
it

h
va

ry
in

g
ba

se
le

ve
ls
l

an
d

re
fin

em
en

t
to

le
ra

nc
es

fo
r

th
e

va
lu

e
fu

nc
ti

on
.T

he
re

fe
re

nc
e

so
lu

ti
on

on
th

e
fu

ll
gr

id
w

as
re

fin
ed

w
it

h
re

fin
em

en
tt

ol
er

an
ce
ε
=

5e
−0

4
an

d
ba

se
le

ve
ll
=

3
an

d
is

gi
ve

n
in

th
e

fir
st

li
ne

.R
ep

or
te

d
ar

e
th

e
E

ul
er

er
ro

rs
L

E
ul

er
as

w
el

l
as

th
e

po
in

tw
is

e
er

ro
rs

of
th

e
va

lu
e

fu
nc

ti
on
L

V
al

ue
w

it
h

re
sp

ec
t

to
th

e
re

fe
re

nc
e

so
lu

ti
on

.R
un

ti
m

es
ar

e
re

po
rt

ed
in

se
co

nd
s

w
it

h
re

sp
ec

t
to

16
co

re
s

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 165

T
ab

le
3

Fo
ur

-d
im

en
si

on
al

tr
an

sa
ct

io
n

co
st

s
pr

ob
le

m

l
ε

D
oF

R
un

ti
m

e
L

E
ul

er
1

L
E

ul
er

2
L

E
ul

er
∞

L
V

al
ue

1
L

V
al

ue
2

L
V

al
ue

∞
3

5e
−0

4
66

99
42

47
.7

8
7.

56
e−

02
1.

18
e−

01
5.

02
e−

01
–

–
–

2
5e
−0

1
29

7
25
.5

1
2.

84
e−

01
3.

50
e−

01
7.

70
e−

01
1.

78
e−

02
2.

01
e−

02
3.

25
e−

02

2
5e
−0

2
30

2
26
.8

5
2.

65
e−

01
3.

35
e−

01
7.

46
e−

01
1.

25
e−

02
1.

44
e−

02
2.

55
e−

02

2
5e
−0

3
35

3
39
.0

1
2.

95
e−

01
3.

67
e−

01
8.

02
e−

01
2.

81
e−

03
3.

52
e−

03
9.

47
e−

03

2
5e
−0

4
62

0
93
.2

1
3.

51
e−

01
4.

46
e−

01
9.

80
e−

01
5.

58
e−

04
8.

43
e−

04
5.

33
e−

03

3
5e
−0

1
94

5
14

2.
20

1.
89

e−
01

2.
82

e−
01

1.
38

e+
00

3.
88

e−
03

4.
56

e−
03

1.
01

e−
02

3
5e
−0

2
94

5
14

9.
51

1.
79

e−
01

2.
67

e−
01

1.
32

e+
00

4.
00

e−
03

4.
72

e−
03

1.
04

e−
02

3
5e
−0

3
95

9
14

8.
69

1.
79

e−
01

2.
61

e−
01

1.
26

e+
00

2.
84

e−
03

3.
36

e−
03

8.
48

e−
03

3
5e
−0

4
10

83
17

6.
83

1.
81

e−
01

2.
72

e−
01

1.
42

e+
00

4.
44

e−
04

7.
12

e−
04

5.
52

e−
03

4
5e
−0

1
27

69
91

1.
17

1.
75

e−
01

2.
74

e−
01

8.
50

e−
01

9.
71

e−
04

1.
42

e−
03

7.
64

e−
03

4
5e
−0

2
27

69
97

5.
12

1.
84

e−
01

2.
78

e−
01

8.
25

e−
01

1.
01

e−
03

1.
49

e−
03

7.
80

e−
03

4
5e
−0

3
27

69
98

5.
25

1.
84

e−
01

2.
74

e−
01

8.
07

e−
01

9.
18

e−
04

1.
36

e−
03

7.
67

e−
03

4
5e
−0

4
28

06
96

0.
72

1.
79

e−
01

2.
72

e−
01

8.
40

e−
01

7.
60

e−
04

1.
15

e−
03

6.
85

e−
03

C
on

ve
rg

en
ce

fo
r

th
e

sp
at

ia
ll

y
ad

ap
tiv

e
re

fin
em

en
t

sc
he

m
e

w
it

h
va

ry
in

g
ba

se
le

ve
ls
l

an
d

re
fin

em
en

t
to

le
ra

nc
es

fo
r

th
e

va
lu

e
fu

nc
ti

on
.T

he
re

fe
re

nc
e

so
lu

ti
on

on
th

e
fu

ll
gr

id
w

as
re

fin
ed

w
it

h
re

fin
em

en
tt

ol
er

an
ce
ε
=

5e
−0

4
an

d
ba

se
le

ve
ll
=

3
an

d
is

gi
ve

n
in

th
e

fir
st

li
ne

.R
ep

or
te

d
ar

e
th

e
E

ul
er

er
ro

rs
L

E
ul

er
as

w
el

l
as

th
e

po
in

tw
is

e
er

ro
rs

of
th

e
va

lu
e

fu
nc

ti
on
L

V
al

ue
w

it
h

re
sp

ec
t

to
th

e
re

fe
re

nc
e

so
lu

ti
on

.R
un

ti
m

es
ar

e
re

po
rt

ed
in

se
co

nd
s

w
it

h
re

sp
ec

t
to

11
2

co
re

s

166 P. Schober

for the two- and three-dimensional problem, especially for base level l = 4. For
ε = 5e−05 Algorithm 2 does not terminate as excessively many grid points are
added, indicating a general failure of the optimization that creates an erratic shape
of the value function that is subsequently refined by Algorithm 3. The run time
advantage is significant by a factor of nearly 30 for base level l = 3 compared to the
full grid case and the DoF are reduced by a factor of roughly 7.

Tables 1, 2, and 3 show that on the sparse grid and on the full grid comparable
numerical solutions to the transaction costs problem are obtained. Their quality,
however, decreases with the dimensionality of the problem as the Euler errors—
as a measure of the overall quality of the numerical solution—increase. Since the
number of choice variables increases with the dimensionality of the problem (two
choices per stock), and hence the dimensionality of the numerically approximated,
discontinuous gradient increases, failure of the gradient-based optimization routine
is likely. While the Euler errors are mostly insensitive to the chosen base grid level
and refinement tolerances for every dimensionality, the sparse grid value function
converges to its full grid counterpart with increasing base level and decreasing
refinement tolerance. One possible conclusion is that the approximation quality
of the value function in the underlying linear basis is not the right choice for
the optimization setup. Additionally, divergence of Euler and pointwise errors for
refinement tolerances below a certain threshold indicate that the “cost-benefit ratio”
of added grid points is poor. That is, the gains in approximation accuracy of the value
function by the added basis functions compared to the costs of solving additional
optimization problems that might fail and produce outliers within the refinement
step, are low. This phenomenon resembles overfitting, where, when a function is
fitted too closely to in-sample data, its approximation error for out-of-sample data
starts to increase again. The error thus does not monotonically decrease, but there
exists an optimal size of the fitting data set.

With a sparse grid, significant run time gains can be realized as the DoF involved
are lower in higher dimensions, even when grid points are spent on the boundary of
the domain.

Given the above observations that reliable optimization results cannot always be
obtained in this setup, it is unlikely that additional refinement of the optimal choices
improves on the Euler errors. To support my conjecture, I fix the refinement constant
of the value function to ε = 5e−04 and solve the two-, three-, and four-dimensional
transaction costs model for base levels l ∈ {2, 3, 4} on a sparse grid. I then construct
the optimal choices from these solution using Algorithm 4, where I choose the same
tolerance for all optimal choices, i.e., εu = ε̄ for u = 1, . . . , k. Finally, I compute
the Euler error implied by these optimal choices. I vary four different choices of the
refinement tolerance ε̄ ∈ {5e−01, . . . , 5e−04}. Table 4 depicts the resulting Euler
errors for the experiment with base level l = 3. The results for the other base levels
are similar. In no case the Euler errors are lower when spatially adaptively refined.
For the four-dimensional problem, the Euler errors increase drastically, showing
erratic optimization behaviour. This is in line with the increasingly frequent failure
of the optimization routine with increasing dimension.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 167

T
ab

le
4

Sp
at

ia
ll

y
ad

ap
tiv

e
re

fin
em

en
to

f
th

e
op

ti
m

al
ch

oi
ce

s

Tw
o-

di
m

en
si

on
al

pr
ob

le
m

T
hr

ee
-d

im
en

si
on

al
pr

ob
le

m
Fo

ur
-d

im
en

si
on

al
pr

ob
le

m

ε̄
L

E
ul

er
1

L
E

ul
er

2
L

E
ul

er
∞

L
E

ul
er

1
L

E
ul

er
2

L
E

ul
er

∞
L

E
ul

er
1

L
E

ul
er

2
L

E
ul

er
∞

5e
−0

1
6.

18
e−

02
1.

41
e−

01
4.

97
e−

01
9.

65
e−

02
1.

62
e−

01
5.

67
e−

01
1.

86
e−

01
2.

80
e−

01
1.

50
e+

00

5e
−0

2
6.

18
e−

02
1.

41
e−

01
4.

97
e−

01
1.

12
e−

01
1.

80
e−

01
6.

06
e−

01
3.

72
e−

01
5.

47
e−

01
6.

53
e+

00

5e
−0

3
1.

09
e−

01
2.

40
e−

01
8.

95
e−

01
3.

70
e−

01
5.

09
e−

01
2.

34
e+

00
4.

93
e+

07
6.

19
e+

09
1.

25
e+

12

5e
−0

4
8.

31
e−

02
1.

79
e−

01
7.

01
e−

01
3.

44
e−

01
4.

80
e−

01
2.

19
e+

00
3.

48
e+

08
7.

11
e+

04
1.

07
e+

13

T
he

so
lu

ti
on

to
th

e
op

ti
m

iz
at

io
n

pr
ob

le
m

on
ba

se
le

ve
l
l
=

3
w

it
h

re
fin

em
en

t
to

le
ra

nc
e
ε
=

5e
−0

4
fo

r
th

e
va

lu
e

fu
nc

ti
on

is
st

ar
ti

ng
po

in
t

fo
r

ge
ne

ra
ti

ng
th

e
op

ti
m

al
ch

oi
ce

s.
T

he
se

ar
e

ge
ne

ra
te

d
fo

r
va

ry
in

g
ε̄
.R

ep
or

te
d

ar
e

th
e

E
ul

er
er

ro
rs
L

E
ul

er

168 P. Schober

Nonetheless, spatially adaptive refinement of the optimal choices might prove
useful, when a different set of basis functions is used. Algorithm 4 can be applied
to various basis functions of the value function used within the optimization, as
long as the underlying grid is constructed on a nested sequence of grids with one-
dimensional growth 2l+1 for level l. One example would be the B-splines basis [43].

6 Conclusion

In this paper, I develop a spatially adaptive sparse grid dynamic programming
scheme with the goal to solve high-dimensional dynamic portfolio choice models.

While on the one hand sparse grids can break the curse of dimensionality inherent
in the dynamic programming approach to solving dynamic portfolio choice models,
on the other hand local basis functions allow for spatial adaptivity. The latter
cannot only be employed to adapt the value function approximation for locally
sharp behaviour in the course of the iterative solution procedure, it also relieves
the researcher from choosing a thrifty discretization of the state space. Assuming a
regularly spaced grid structure, one has to choose 3d parameters (the boundaries and
the number of grid points) compared to only 2d + 2 parameters (the boundaries, the
level, and the refinement constant) with spatially adaptive refinement to determine
a grid. At worst, this has to be repeated for different time steps and different
discrete states. In addition, spatially adaptive refinement can be used to improve the
approximation accuracy of the optimal choices, the subject of interest to economists,
that are inferred from the solution of the optimization problem. In this paper, I not
only present algorithms that solve the optimization problem for dynamic portfolio
choice models, but also propose a procedure how to construct optimal choices from
a solution to the optimization problem on a sparse grid.

The results show that on the sparse grid and on the full grid comparable solutions
to the numerical example problem can be obtained. The sparse grid value function
converges in the pointwise sense to its full grid counterpart with an increasing base
level of the sparse grid and a decreasing refinement tolerance. However, when the
refinement tolerance is decreased too much, the Euler and pointwise errors increase
again, similar to overfitting. As the Euler errors, as a measure of the quality of the
optimal choices, remain rather high and increase with the dimensionality of the
problem, it could be beneficial to use different basis functions than the linear basis
functions in order to increase the approximation quality of the value function and its
gradients. Another possibility is considering a different optimization routine. In this
setup, spatially adaptive refinement of the optimal choices does not improve on the
Euler errors, but might prove more useful, when a different set of basis functions
or a different optimization routine is used. With a sparse grid, significant run time
gains can be realized for three and more dimensions.

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 169

A likely remedy without giving up local adaptivity would be to use local basis
functions that are globally smooth and continuously differentiable, such as B-
splines [43]. However, surplus-based adaptive refinement is only sensibly defined
for linear basis functions and fitting the approximation using conventional B-spline
basis functions involves solving a linear system of equations, which can take
considerable amount of time when there are many grid points.

With globally smooth basis functions or a different optimization routine, my
approach breaks the curse of dimensionality for a large class of dynamic portfolio
choice models.

Acknowledgements I thank Julian Valentin for many fruitful discussions on the proposed
numerical schemes as well as his support in implementing the MEX file interface to SG++ and
parts of the proposed algorithms in MATLAB. I thank Yannick Dillschneider for discussing and
helping me to develop the Euler error measure as well for his feedback to draft versions of this
paper. I thank two anonymous referees for their rigorous reviews that helped to improve the
numerical schemes and the analysis of the results considerably. Valuable feedback was provided
by Johannes Brumm, Andreas Hubener, Kenneth Judd, Dirk Pflüger, and Miroslav Stoyanov. I
thank the initiative High Performance Computing in Hessen for granting me computing time at
the LOEWE-CSC and Lichtenberg Cluster. Finally, I thank Raimond Maurer for supporting this
research in every way possible.

Appendix: Euler Equation Errors

To derive the Euler equation errors (25) and (26), I reformulate optimization
problem (18)–(24) in terms of the stock investment sit = wtx

i
t + δi+t − δi−t ,

i = 1, . . . , d:

jt (wt , xt) = max
bt ,s t ,δ

+
t ,δ

−
t

u(ct)+ ρπtEt [jt+1 (wt+1, x t+1)]︸ ︷︷ ︸
j̃t
(
bt ,st ,δ

+
t ,δ

−
t ,wt ,xt

)

.

with consumption ct = wt −∑d
i=1 s

i
t − bt − τ

∑d
i=1(δ

i−
t + δi−t). This is subject to

the constraints sit ≥ 0, δi+t ≥ 0, δi−t ∈ [0, sit
]
, i = 1, . . . , d as well as ct ≥ cmin,

bt ≥ 0, and
∑d
i=1 x

i
t ≤ 1. The state dynamics thus become:

wt+1 =
d∑

i=1

sit r
i
t+1 + bt rf + αR ,

xit+1 =
sit r

i
t+1

wt+1
, i = 1, . . . , d .

Following not yet published notes on gradient-based optimization and Euler equa-
tion errors for discrete time dynamic portfolio choice written together with Yannick

170 P. Schober

Dillschneider, I set up the Lagrangian

Lt = j̃t−μct (ct − cmin)− μbt bt

−
d∑

i=1

(
μsit
sit + μδi+t δ

i+
t + μ

δi−t ≥δ
i−
t + μ

δi−t ≤
(
sit − δi−t

))
,

where μX is the value of the respective Kuhn-Tucker multiplier for choice X
and I translated the box constraints for δi−t , i = 1, . . . , d , into two greater-equal
constraints, each denoted by μ

δi−t ≥ for the lower and μ
δi−t ≤ for the upper bound. At

the optimum, the first order conditions for the Lagrangian with respect to the stocks
sit and the bond bt must hold:

∂Lt

∂sit
: ∂j̃t
∂sit

+ μct − μsit − μδi−t ≤ = 0 , i = 1, . . . , d ,

∂Lt

∂bt
: ∂j̃t
∂bt

+ μct − μbt = 0 .

Neglecting occasional binding constraints (i.e., I consider only optimal choices
where μX = 0 for anyX) and expanding the partial derivatives of j̃t with respect to
stocks sit and the bond bt , the first order conditions become

−c−γt + ρπtEt
⎡

⎣

⎛

⎝
∂jt+1

∂wt+1

∂wt+1

∂sit
+

d∑

j=1

∂jt+1

∂x
j
t+1

∂x
j
t+1

∂sit

⎞

⎠

⎤

⎦ = 0 , i = 1, . . . , d ,

−c−γt + ρπtEt
[(

∂jt+1

∂wt+1

∂wt+1

∂bt
+

d∑

i=1

∂jt+1

∂xit+1

∂xit+1

∂bt

)]

= 0 .

I then apply the envelope theorem [36]

∂jt

∂wt
= ∂j̃t

∂wt

(
b∗t , s∗t , δ+

∗
t , δ

−∗
t , wt , xt

)
,

∂jt

∂xit
= ∂j̃t

∂xit

(
b∗t , s∗t , δ+

∗
t , δ

−∗
t , wt , xt

)
, i = 1, . . . , d .

evaluated at the optimal choices (b∗t , s∗t , δ+
∗

t , δ
−∗
t). Because u does not directly

depend on the states, its partial derivatives with respect to the states are zero. Hence,

∂j̃t

∂wt
= ρπtEt

[(
∂jt+1

∂wt+1

∂wt+1

∂wt
+

d∑

i=1

∂jt+1

∂xit+1

∂xit+1

∂wt

)]

,

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 171

∂j̃t

∂xit
= ρπtEt

⎡

⎣

⎛

⎝ ∂jt+1

∂wt+1

∂wt+1

∂xit
+

d∑

j=1

∂jt+1

∂x
j

t+1

∂x
j

t+1

∂xit

⎞

⎠

⎤

⎦ , i = 1, . . . , d .

Since the derivatives are ∂wt+1/∂s
i
t = rit+1, i = 1, . . . , d , and ∂wt+1/∂bt = rf , it

remains to show that:

∂j̃t

∂wt
+

d∑

i=1

∂j̃t

∂xit

xit

wt
= c−γt . (28)

To show Eq. (28) holds involves lengthy algebraic computations. The results are the
basic pricing equations of asset pricing [13]

ρπtEt

[
c
−γ
t+1

c
−γ
t

rit+1

]

= 1 , i = 1, . . . , d ,

ρπtEt

[
c
−γ
t+1

c
−γ
t

rf

]

= 1 ,

which serve as my error measure.

References

1. R. Bellman, The theory of dynamic programming. Technical report, The RAND Corporation,
1954

2. O. Bokanowski, J. Garcke, M. Griebel, I. Klompmaker, An adaptive sparse grid semi-
lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3),
575–605 (2013)

3. J. Brumm, M. Grill, Computing equilibria in dynamic models with occasionally binding
constraints. J. Econ. Dyn. Control. 38, 142–160 (2014)

4. J. Brumm, S. Scheidegger, Using adaptive sparse grids to solve high-dimensional dynamic
models. Econometrica 85(5), 1575–1612 (2017)

5. H.-J. Bungartz, Finite elements of higher order on sparse grids. PhD thesis, Technische
Universität München, 1998

6. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
7. Y. Cai, Dynamic programming and its application in economics and finance. PhD thesis,

Stanford University, 2009
8. Y. Cai, K.L. Judd, Stable and efficient computational methods for dynamic programming. J.

Eur. Econ. Assoc. 8(2-3), 626–634 (2010)
9. Y. Cai, K.L. Judd, G. Thain, S.J. Wright, Solving dynamic programming problems on a

computational grid. Comput. Econ. 45(2), 261–284 (2015)
10. J. Chai, W. Horneff, R. Maurer, O.S. Mitchell, Optimal portfolio choice over the life cycle

with flexible work, endogenous retirement, and lifetime payouts. Rev. Financ. 15(4), 875–907
(2011)

11. J.F. Cocco, Portfolio choice in the presence of housing. Rev. Financ. Stud. 18(2), 535–567
(2005)

172 P. Schober

12. J.F. Cocco, F.J. Gomes, P.J. Maenhout, Consumption and portfolio choice over the life cycle.
Rev. Financ. Stud. 18(2), 491–533 (2005)

13. J.H. Cochrane, Asset Pricing (Princeton University Press, Princeton, 2009)
14. C. Feuersänger, M. Griebel, Principal manifold learning by sparse grids. Computing 85(4),

267–299 (2009)
15. E. French, The effects of health, wealth, and wages on labour supply and retirement behaviour.

Rev. Econ. Stud. 72(2), 395–427 (2005)
16. J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications, ed. by J. Garcke,

M. Griebel (Springer, Berlin, 2012), pp. 57–80
17. J. Garcke, A. Kröner, Suboptimal feedback control of PDEs by solving HJB equations on

adaptive sparse grids. J. Sci. Comput. 70(1), 1–28 (2017)
18. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained

optimization. SIAM Rev. 47(1), 99–131 (2005)
19. M. Griebel, A parallelizable and vectorizable multi-level algorithm on sparse grids, in Parallel

Algorithms for Partial Differential Equations, ed. by W. Hackbusch (Vieweg, Braunschweig,
1991), pp. 94–199

20. M. Griebel, Adaptive sparse grid multilevel methods for elliptic PDEs based on finite
differences. Computing 61(2), 151–179 (1998)

21. F. Heiss, V. Winschel, Likelihood approximation by numerical integration on sparse grids. J.
Econ. 144(1), 62–80 (2008)

22. W.J. Horneff, R. Maurer, M.Z. Stamos, Life-cycle asset allocation with annuity markets. J.
Econ. Dyn. Control. 32(11), 3590–3612 (2008)

23. W.J. Horneff, R. Maurer, O.S. Mitchell, M.Z. Stamos, Variable payout annuities and dynamic
portfolio choice in retirement. J. Pension Econ. Financ. 9(2), 163–183 (2010)

24. V. Horneff, R. Maurer, O.S. Mitchell, R. Rogalla, Optimal life cycle portfolio choice with
variable annuities offering liquidity and investment downside protection. Insur. Math. Econ.
63, 91–107 (2015)

25. V. Horneff, R. Maurer, P. Schober, Efficient parallel solution methods for dynamic portfolio
choice models in discrete time. Available at SSRN 2665031 (2016)

26. A. Hubener, R. Maurer, O.S. Mitchell, How family status and social security claiming options
shape optimal life cycle portfolios. Rev. Financ. Stud. 29(4), 937–978 (2015)

27. K.L. Judd, Projection methods for solving aggregate growth models. J. Econ. Theory 58(2),
410–452 (1992)

28. K.L. Judd, Numerical Methods in Economics (MIT Press, Cambridge, 1998)
29. K.L. Judd, L. Maliar, S. Maliar, R. Valero, Smolyak method for solving dynamic economic

models: Lagrange interpolation, anisotropic grid and adaptive domain. J. Econ. Dyn. Control.
44, 92–123 (2014)

30. H.H. Kim, R. Maurer, O.S. Mitchell, Time is money: rational life cycle inertia and the
delegation of investment management. J. Financ. Econ. 121(2), 427–447 (2016)

31. A. Klimke, B. Wohlmuth, Algorithm 847: spinterp: piecewise multilinear hierarchical sparse
grid interpolation in MATLAB. ACM Trans. Math. Softw. (TOMS) 31(4), 561–579 (2005)

32. D. Krueger, F. Kubler, Computing equilibrium in OLG models with production. J. Econ. Dyn.
Control. 28(7), 1411–1436 (2004)

33. D.A. Love, The effects of marital status and children on savings and portfolio choice. Rev.
Financ. Stud. 23(1), 385–432 (2010)

34. B.A. Malin, D. Krueger, F. Kubler, Solving the multi-country real business cycle model using
a Smolyak-collocation method. J. Econ. Dyn. Control. 35(2), 229–239 (2011)

35. R.C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case. Rev.
Econ. Stat. 51, 247–257 (1969)

36. M.J. Osborne, Mathematical Methods for Economic Theory: A Tutorial (University of Toronto,
Toronto, 2007)

37. D. Pflüger, Spatially adaptive sparse grids for high-dimensional problems. PhD thesis,
Technische Universität München, 2010

Dynamic Portfolio Choice Models Using Spatially Adaptive Sparse Grids 173

38. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke,
M. Griebel (Springer, Berlin, 2012), pp. 243–262

39. J. Rust, Dynamic programming, in The New Palgrave Dictionary of Economics, ed. by S.N.
Durlauf, L.E. Blume (Palgrave Macmillan, London, 2008)

40. P.A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ.
Stat. 51, 239–246 (1969)

41. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Dokl. Akad. Nauk SSSR 4, 123 (1963)

42. M. Stoyanov, User manual: TASMANIAN sparse grids v3.1. Technical report, Oak Ridge
National Laboratory, 2016

43. J. Valentin, D. Pflüger, Hierarchical gradient-based optimization with B-splines on sparse grids,
in Sparse Grids and Applications - Stuttgart 2014, ed. by J. Garcke, D. Pflüger (Springer,
Berlin, 2016), pp. 315–336

44. V. Winschel, M. Krätzig, Solving, estimating, and selecting nonlinear dynamic models without
the curse of dimensionality. Econometrica 78(2), 803–821 (2010)

45. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, ed. by
W. Hackbusch (Vieweg, Braunschweig, 1991), pp. 241–251

Adaptive Sparse Grid Construction
in a Context of Local Anisotropy
and Multiple Hierarchical Parents

Miroslav Stoyanov

Abstract We consider general strategy for hierarchical multidimensional interpo-
lation based on sparse grids, where the interpolation nodes and locally supported
basis functions are constructed from tensors of a one dimensional hierarchical rule.
We consider four different hierarchies that are tailored towards general functions,
high or low order polynomial approximation, or functions that satisfy homogeneous
boundary conditions. The main advantage of the locally supported basis is the ability
to choose a set of functions based on the observed behavior of the target function.
We present an alternative to the classical surplus refinement techniques, where
we exploit local anisotropy and refine using functions with not strictly decreasing
support. The more flexible refinement strategy improves stability and reduces
the total number of expensive simulations, resulting in significant computational
saving. We demonstrate the advantages of the different hierarchies and refinement
techniques by application to series of simple functions as well as a system of
ordinary differential equations given by the Kermack-McKendrick SIR model.

1 Introduction

Computer simulations of complex physical phenomena are an invaluable tool for
advancing modern science and engineering. A very common approach is to model
the behavior of a system of interest via a set of deterministic differential equations,
where the result depends on a number of input parameters, e.g., heat conductivity,
infection rate, temperature, etc. The equations are then discretized and solved
with standard techniques of numerical analysis, often requiring computationally
heavy software and a powerful supercomputer. However, the questions of interest
to science are seldom answerable by a single deterministic simulation, since, in
practice, the inputs could vary over a wide range due to changing or uncertain

M. Stoyanov (�)
Oak Ridge National Laboratory, Oak Ridge, TN, USA
e-mail: stoyanovmk@ornl.gov

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_8

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_8&domain=pdf
mailto:stoyanovmk@ornl.gov
https://doi.org/10.1007/978-3-319-75426-0_8

176 M. Stoyanov

operation conditions. Applications that rely on statistical analysis and optimal
design require a large number of simulations with different values of the input
parameters, which is often times prohibitively expensive if a simulation needs
hundreds of CPU hours. Computationally cheap surrogate models are needed to
alleviate the computational burden, and the methods for creating such models are
fundamental for advancing modern science.

In this work, we present a general strategy for multidimensional interpolation
based on hierarchical sparse grids using basis functions with local support. Of
specific considerations are strategies for achieving maximum accuracy with fewest
number of interpolation nodes, which is desirable since each node corresponds to an
evaluation of the target function which in turn requires a computationally expensive
simulation. We present several one dimensional hierarchies and multidimensional
adaptive refinement techniques that aim at achieving optimal convergence when
applied to different classes of models.

Interpolation is one of the most widely used techniques for creating surrogates,
due to their non-intrusive nature and high accuracy per number of deterministic
simulations. Intrusive methods, such as Galerkin projection [1, 13] and reduced
basis [4, 40, 42], have limited applicability since they are often restricted to a
specific set of equations and always require the complete rewriting of the simulation
software. The non-intrusive methods rely on series of deterministic simulation
and thus can be easily coupled with existing complex solvers. Statistical sampling
methods, such as Monte Carlo (MC) [16, 18], are attractive when facing a problem
with huge number of inputs; however, the convergence rate of those methods is slow
and in cases where the inputs are few, e.g., ≤10, polynomial based approximation
yields better results. Optimization techniques using �1 and �2 minimization work
well with noisy, large and random data [7, 12, 14, 25]; however, in both cases, the
number of simulations needed to construct the surrogate exceeds the cardinality
of the polynomial space where the final approximation resides. Deterministic
simulations are noise free and hence interpolation methods that use one sample per
basis function are preferable.

Sparse grids is the most common technique for constructing multidimensional
interpolation rules by using tensors of one dimensional nodes and basis functions
[2, 3, 5, 6, 10, 11, 20–22, 26, 30, 31, 33]. The sparse grid construction offer faster
convergence than simple tensor techniques due to the better error balance, which
helps alleviate the curse of dimensionality associated with a large number of
model inputs. In the context of high order polynomial approximation of analytic
function, several strategies have been presented that aim at optimal or quasi-optimal
convergence [3, 6, 29, 32, 41, 43]. However, the globally supported polynomials
are not well suited for approximating functions with local sharp behavior, hence
piece-wise polynomial basis with decreasing support is preferable. The hallmark
work in the field [6] presents an algorithm for adaptive hierarchical construction of
interpolant that has been used in many applications [7, 19, 28, 34–36]. However,
the algorithm is prone to stagnation in some cases and the isotropic nature of the
refinement strategy can yield an excess number of nodes.

Locally Anisotropic Refinement 177

We present several hierarchies of one dimensional rules that construct approxi-
mations with low or high polynomial order or homogeneous boundary conditions.
We introduce a novel construction of piece-wise constant approximation that
does not rely on assumptions about left and right continuity. Following the
standard sparse grids method, we extend the one dimensional hierarchy to a
multidimensional context using tensors. The hierarchical structure translates to the
high dimensions and allows for adaptive refinement of the interpolant based on
hierarchical coefficients. The standard refinement strategy uses either strictly parent-
to-children refinement which can result in stagnation, or includes entire hierarchical
ancestry which leads to excessive model evaluations. We present a more flexible
approach that considers only the intermediate parents, thus improving stability and
minimizing the number of nodes. We also present a method for detecting local
anisotropy, which can yield significant improvements even when dealing with a
globally isotropic model.

The rest of the paper is organized as follows: in Sect. 2 we present the general
sparse grids construction and the four one dimensional hierarchies; in Sect. 3 we
present the different refinement strategies; in Sect. 4 we demonstrate the advantages
of the different techniques with several simple functions as well as Kermack-
McKendrick SIR model.

2 Multidimensional Hierarchical Interpolation Strategy

In this section, our objective is to construct an interpolatory approximation to a
target function that achieves desired tolerance with fewest possible evaluations, i.e.,
number of samples. Let Γ ⊂ R

d indicate a d-dimensional box Γ = ⊗dk=1[ak, bk]
and f : Γ → R indicate a continuous function defined over Γ , i.e., f (x) ∈ C0(Γ).
By linear translation ξ → x, where xk = 0.5(bk−ak)ξk+0.5(bk+ak), every finite
interval can be mapped to [−1, 1], hence, w.l.o.g., we assume ak = −1 and bk = 1
for all k. Let {xj }j∈X ⊂ Γ indicate a pre-defined set of interpolation nodes and an
associated set of basis functions {φj (x)}j∈X, then an interpolation rule is defined as

GX[f](x) =
∑

j∈X
sjφj (x),

where the coefficients sj are chosen so thatGX[f](xj) = f (xj) for all j ∈ X. The
point sets that we use in this paper are always unisolvent for the set of functions, i.e.,
the coefficients sj exist for any function f (x) ∈ C0(Γ). Furthermore, we assume
that the computational cost of finding sj is dominated by the evaluations f (xj),
e.g., f (x) is associated with an expensive simulation [15, 42]. Thus, we seek an
algorithm for constructing a suitable GX[f](x) that approximates f (x) to desired
tolerance and requires as few nodes xj , as possible.

178 M. Stoyanov

We begin by introducing a one dimensional hierarchy of interpolation nodes and
basis functions, then we extend the hierarchy to a multidimensional context using
tensors. We use the resulting hierarchy in an algorithm for adaptive interpolation
similar to [6, 7, 19, 28, 34, 35].

2.1 Multidimensional Hierarchy of Nodes and Functions

In this section, we describe three widely used hierarchical rules with different
polynomial order and boundary conditions [5, 6, 34], in Sect. 2.3 we present an
alternative piece-wise constant hierarchy. Let N denote the set of natural numbers
including zero and define the sequence of one dimensional nodes {xj }j∈N ⊂
[−1, 1] by

x0 = 0, x1,2 = ±1, for j > 2, xj = (2j − 1)× 2−�log2(j−1)� − 3, (1)

where �z� = max{j ∈ N : j ≤ z} is the floor function. The first nine nodes of the
sequence are given in Fig. 1. Note that for any L ∈ N the nodes, {xj }j≤2L+1, are
equidistant in [−1, 1], thus we partition the nodes into levels, where the level of xj
is Lj = min{L ∈ N : j ≤ 2L + 1}. The nodes form a hierarchical three structure,
where each node is associated with a parent and two offspring (children) nodes, i.e.,
the parent is the closest node on the previous level and we define the parent set Pj

Pj = {i ∈ N : xi is parent of xj } =
{

argmin
i≤2Lj−1+1

|xi − xj |
}

,

where we take P0 = ∅. The simple one dimensional hierarchy in Fig. 1 associates
one parent with each point; however, alternative hierarchies allow for multiple
parents, e.g., see Fig. 3, and we adopt the set notation for consistency across all
cases. The children sets are defined by the reciprocal relation to the parents, i.e.,

Oj = {i ∈ N : xi is offspring of xj } = {i ∈ N : j ∈ Pi}.

For the example in Fig. 1, Pj andOj are explicitly defined as

P0 = ∅, P1 = {0}, P2 = {0}, P3 = {1}, for j > 3Pj =
{⌊
j + 1

2

⌋}

,

O0 = {1, 2}, O1 = {3}, O2 = {4}, for j > 2Oj = {2j − 1, 2j } . (2)

Locally Anisotropic Refinement 179

Fig. 1 Linear (left), quadratic (middle), and cubic (right) nodes and basis functions; the dashed
lines correspond to parent-offspring relation. Note that in each case level 0 is a constant and level
1 is linear, only at level 2 the hierarchy provide enough ancestors for a quadratic approximation

The interpolation nodes xj are associated with basis functionsφj (x) : [−1, 1] →
R and each function is piece-wise polynomial with support in [xj−Δxj , xj+Δxj].
Here, Δxj is the distance to the closest parent, i.e., Δxj = min{|xi − xj | : i ∈ Pj },
and Δx0 = 1, i.e., the support of φ0(x) is [−1, 1]. Explicitly, for j > 1, Δxj =
2−�log2(j−1)�.

The polynomial order of each φj (x) depends on the total number of ancestors of
xj , where the ancestor set Aj ⊂ N is defined as the smallest set satisfying

Pj ⊂ Aj , and Pi ⊂ Aj for all i ∈ Aj .

The basis functions of maximal order are defined as

φj (x) =
{∏

i∈Aj
x−xi
xj−xi , x ∈ [xj −Δxj, xj +Δxj],

0, x �∈ [xj −Δxj, xj +Δxj].
(3)

Thus, φ0(x) is a constant, φ1(x) and φ2(x) are linear, φ3(x) and φ4(x) are quadratic,
etc. Alternatively, the order of the polynomials can be restricted to a specific p > 1
by selecting only the nearest p ancestors Fpj and defining

φ
p

j (x) =
{∏

i∈Fpj
x−xi
xj−xi , x ∈ [xj −Δxj , xj +Δxj],

0, x �∈ [xj −Δxj , xj +Δxj].
(4)

180 M. Stoyanov

In particular,

F
p
j = argmin

F⊂Aj ,#F=p

∑

i∈F
|xi − xj |, (5)

where #F indicates the number of elements in F and for notational convenience we
take Fpj = Aj whenever #A ≤ p. As an exception to the above, the linear basis
functions are defined as

φ1
j (x) =

{
1− |x−xj |

Δxj
, x ∈ [xj −Δxj, xj +Δxj],

0, x �∈ [xj −Δxj, xj +Δxj].
(6)

Examples of linear, quadratic and cubic basis functions are given in Fig. 1.
Variations of the above hierarchy have been presented in literature, e.g., [7, 34].

In the numerical experiments in this paper, we consider two examples where we
either assume homogeneous boundary or aim at higher order approximation. In
some applications, we have a priori knowledge that f (x) satisfies f (x) = 0 for
x ∈ ∂Γ , thus, we consider a hierarchical rules that excludes the boundary

xj = (2j+3)×2−�log2(j+1)�−3, Pj =
{⌊
j − 1

2

⌋}

, Qj ={2j+1, 2j+2},

with x0 = 0 and P0 = ∅. The definition of the level also changes to
Lj = �log2(j + 1)�. Figure 2 shows the first seven nodes and functions for linear,
quadratic and cubic basis. The linear basis functions are constructed identical to (6)
with Δxj = 2−�log2(j+1)�, while the higher order basis uses (4) with the end points
−1 and 1 added to the ancestry sets Aj in (3) and (5). Note that compared to the
hierarchy described in Fig. 1, the homogeneous boundary case allows for higher
order basis to be used at a lower level. In Sect. 4 we demonstrate that incorporating
boundary information directly into the basis gives better approximation that using
the standard hierarchy and simply setting f (x1) = f (x2) = 0.

Interpolation using high-order polynomials with global support and an equidis-
tant set of nodes results in a very large penalty, i.e., Lebesgue constant, see (8) in
Sect. 2.2. However, high-order basis can be used only for the first two levels and
still obtain stable interpolant. Using the nodes and levels described in (1) and Fig. 1,
we set φ1(x) = 0.5x(x − 1), and φ2(x) = 0.5x(x + 1), and augment the sets
P3 = P4 = {1, 2} and O1 = O2 = {3, 4}. For every other j , we define φj (x),
Pj and Oj identical to (3), (4), (2). Modifying P3 and P4 changes the ancestry
sets Aj and Fpj , which results in higher order basis functions. Figure 3 shows the
first nine nodes and corresponding basis. In Sect. 4 we demonstrate that increasing
the polynomial order gives better approximation when f (x) is smooth, despite the
higher penalty due to the global support of φ1(x) and φ2(x).

Locally Anisotropic Refinement 181

Fig. 2 Linear (left), quadratic (middle), and cubic (right) nodes and basis functions assuming
zero boundary conditions. The dashed lines correspond to parent-offspring relation. Note that in
this case, at level l = 0, 1, 2, . . ., the homogeneous assumption allows the use of polynomials of
order p = l + 1

Fig. 3 Linear (left), quadratic (middle), and cubic (right) nodes and basis functions assuming
zero boundary conditions. The dashed lines correspond to parent-offspring relation, when using
quadratic or higher basis nodes 3 and 4 have two parents each due to the global support of φ1(x)

and φ2(x). Note that in this case, at level l = 0, 1, 2, . . ., basis of order p = l + 1 is allowed

182 M. Stoyanov

2.2 Multidimensional Interpolation

Using standard sparse grids techniques [6, 19, 33, 34], we extend the one dimen-
sional hierarchy to a d-dimensional context (d > 1) using tensors and multi-index
notation:

j = (j1, j2, . . . , jd) ∈ N
d , xj = (xj1, xj2, . . . , xjd) ∈ Γ, φj (x) =

d∏

k=1

φjk (x
(k)),

where x = (x(1), x(2), . . . , x(d)) ∈ R
d and we use the notation x(k) to indicate

the component of the vector x and differentiate from the index or position in the
hierarchy j . A node xj has parents and children for each direction k, i.e.,

Pj,k = {i ∈ N
d : i−k = j−k, and ik ∈ Pjk }, Oj ,k = {i ∈ N

d : i−k = j−k, and ik ∈ Ojk },

where j−k indicates the multi-index resulting from the removal of the k-th
component of j . The multidimensional ancestry sets Aj are defined in a similar
fashion including all parents in all directions, i.e., for all k = 1, 2, . . . , d ,

Pj ,k ⊂ Aj , and Pi,k ⊂ Aj for all i ∈ Aj .

Finally, the multidimensional level of a node is the sum of the one dimensional
levels.

The multidimensional hierarchy provide convenient way of defining interpola-
tion rules; since the support of every φj (x) is disjointed from every function on the
same level, and since φj (xi) = 0 for all i ∈ Aj , it follows that for any set of basis
functionsX, the corresponding set of nodes is unisolvent. Specifically,

GX[f](x) =
∑

j∈X
sjφj (x), where sj = f (xj)−

∑

i∈Aj

⋂
X

siφi(xj). (7)

The coefficients sj can be computed one level at a time, i.e., the equations have
a (usually) sparse lower triangular matrix form. Fast algorithms for computing sj
have been proposed [8], but those make assumptions that Pi,k ⊂ X for all i ∈
X and all k = 1, 2, . . . , d; if Pi,k �⊂ X expanding the index set would require
additional model simulations, which is usually orders of magnitude more expensive
than solving the sparse triangular system. The general formula (7) allows us to avoid
extraneous evaluations of f (x).

Consider the error in approximation of f (x); from (7) we have that sj are
bounded by some constant times ‖f (x)‖∞, therefor GX : C

0(Γ) → C
0(Γ)

is a bounded linear operator with norm depending on X and φj (x). From the

Locally Anisotropic Refinement 183

disjoint support of the basis GX[φj] = φj for all j ∈ X, and therefore, for any
g ∈ span{φj }

f (x)−GX[f](x) = f (x)−g(x)+g(x)−GX[f](x) = f (x)−g(x)+GX[f−g](x).

Taking the inf over all g(x), we obtain the L∞(Γ) error bound

‖f (x)−GX[f](x)‖∞ ≤ (1+ ‖GX‖∞) inf
g∈span{φj }

‖f (x)− g(x)‖∞, (8)

where ‖GX‖∞ denotes the operator norm and is often called the Lebesgue constant
of the interpolant. The L2(Γ) error can be bounded

‖f (x)−GX[f](x)‖2 ≤ |Γ |1/2‖f (x)−GX[f](x)‖∞,

where |Γ | indicates the d-dimensional volume of Γ . In the context of interpolation
and surrogate modeling, applications most often seek an approximation that is
accurate for every point in the domain, hence, the error is commonly measured
in the L∞(Γ) norm. However, continuous functions are dense in C0(Γ) but not in
L∞(Γ) and a discontinuous f (x) cannot be approximated by any set of continuous
basis functions. A discontinuous basis suffers from similar limitation, unless the
discontinuities in φj (x) can be aligned to the discontinuity in f (x), which is
seldom feasible. Thus, when f (x) is discontinuous, the approximation error should
be measured in the more appropriate way, which usually depends on the specific
application.

For detail error analysis and convergence results for different classes of functions,
see [6]. In our context, we are interested in constructing an interpolant that reaches
desired tolerance ε > 0 with fewest nodes, hence, we need an easily computable
error indicator for every possible node. Observe that for any j �∈ X

|sj | = |f (xj)−GX[f](xj)| ≤ ‖f (x)−GX[f](x)‖∞, (9)

thus, |sj | ≤ ε is a necessary, albeit not a sufficient condition for accuracy.
Nevertheless, sj is a good indicator for the local approximation error. Furthermore,
disjoint basis supports guarantees that sj are the same for all choices of X such that
Aj ⊂ X, in which case sj is also called the hierarchical surplus associated with xj

and φj (x). In Sect. 3 we present several algorithms that rely on sj to construct an
accurate approximation with minimal number of function evaluations, but first we
present an alternative hierarchy of nodes and piece-wise constant basis.

184 M. Stoyanov

2.3 Piece-Wise Constant Hierarchy

Piece-wise constant approximation is desired in some applications, e.g., when
approximating models with very sharp or discontinuous response. Here we present a
new hierarchy of piece-wise constant basis functions, which we derive from a series
of non-hierarchical zero-order interpolants.

Suppose that I [f](x) is an interpolant of f (x) : [−1, 1] → R on a set of nodes
{xi}Ni=0 ⊂ [−1, 1] with piece-wise constant basis φi(x), then, for any x ∈ [−1, 1],
I [f](x) = f (xi) for some i. Consider the relation between the distribution of the
nodes, the support of the basis, and the approximation error. If f (x) is absolutely
continuous, then |f (x)−f (xi)| ≤ C|x−xi|, for some constantC; and for a general
f (x) ∈ L2([−1, 1]), by definition of the Lebesgue integral [37]:

‖f (x)− I [f](x)‖2 → 0, as N →∞ and max
x∈[−1,1] |x − xi | → 0,

where for each x in the max we take the corresponding xi from I [f](x) = f (xi).
Using this estimate, the interpolant that is generally optimal (i.e., not considering
specific structure of f (x)), is the one that minimizes |x − xi |. Specifically, we seek
an interpolant that minimizes the following two conditions:

1. I [f](x) = f (xi), where xi is the node nearest to x;
2. The distribution of the nodes {xi}Ni=0 is such that it minimizes the distance to the

nearest node, i.e.,

{x0, x1, . . . , xN } = argmin
x0,x1,...,xN∈[−1,1]

max
x∈[−1,1] min

0≤i≤N |xi − x|. (10)

Condition 1 implies that xi is in the middle of the support of φi(x) and condition 2
implies that the nodes are uniformly distributed and strictly in the interior of [−1, 1].
Note that condition (10) is specific to zero order approximation, for example,
when using the nodal (non-hierarchical) linear basis functions associated with the
basis in Figs. 1 and 3 (commonly known as “hat functions”), the approximation is
constructed from the nearest two nodes, hence the nodes are equidistant and include
the boundary.

The hallmark sparse grid paper by Bungartz and Griebel [6] presents a piece-
wise constant hierarchy; however, that example violates both of our optimality
conditions. Furthermore, the hierarchical surpluses depend on a choice of left/right
continuity of the basis, which is ambiguous and therefore undesirable.

The two conditions presented here give us unambiguous way to construct piece-
wise constant approximation withN nodes; however, we desire a hierarchy of nodes
and functions, thus we need to choose the number of nodes on each level as well
as the parents-offspring relation sets. The specific construction that we propose is
illustrated in Fig. 4. At level 0 we use one node, i.e., x0 = 0. The next level requires
at least two more nodes, otherwise we cannot satisfy the equidistant property, i.e.,
adding a single node to the left or right of 0 will break the symmetry; thus, we

Locally Anisotropic Refinement 185

Fig. 4 One dimensional hierarchy of nodes and piece-wise constant basis functions. Note that in
this hierarchy interior nodes have multiple parents and up to four children

have x1 = −2/3 and x2 = 2/3. Going to the third level, we have a choice of the
number of nodes to add between x1 and x0. If we add a single node half-way (i.e.,
at 1/3) then satisfying the equidistant property would imply adding a node at −1
which would in turn violate the optimality condition (10). Furthermore, 1/3 is right
on the edge of the support of φ1(x) and the surplus of node 1/3 would depend on
whether φ1(x) is left continuous. Therefore, we elect to add two nodes between
x1 and x0, namely x4 = −4/9 and x5 = −2/9, which leads to x3 = −8/9; x6,
x7 and x8 follow by symmetry. Using the same logic, on the next level, we add
two nodes between any two existing nodes and one node near each boundary (but
not on the boundary). The number of nodes triples on each level and the explicit
formula is

xj =
{−2.0+ (3j + 2)Δxj , when j is even,
−2.0+ (3j + 1)Δxj , when j is odd,

where Δxj = 3−,log3(j+1)- and ,z- = min{i ∈ N : i ≥ z} is the ceiling function.
The nodes on the third level, i.e., x3, . . . , x8, are not equidistant; however, the
optimality condition (10) is satisfied when we combine all previous levels, i.e.,
nodes x0, . . . , x8 are equidistant.

Each φj (x) is supported on the interior of (xj − Δxj , xj + Δxj). The mid-
point xj + Δxj is at an equal distance from both xj and xj+1 and follow-
ing the error estimate, there is no unambiguous way to associate the value
with either f (xj) or f (xj+1); however, left/right continuity does not affect the
hierarchical coefficients and the choice makes little difference in practice. For

186 M. Stoyanov

example, we assume that the boundary functions φj (x) for j ∈ {3N, 3N −
1} are always supported on a closed interval and all other functions are right
continuous.

The complete hierarchy requires a parent-offspring relation, see Fig. 4. Clearly,
P0 = ∅ and P1 = P2 = {0}. Then, following the principle that the parent is
the closest node on the previous level, we have P3 = P4 = P5 = {1} and
P6 = P7 = P8 = {2}. It is important to note that the support of φ5(x) falls outside
of the support of the parent φ1(x), which is required so that the descendants of x5
are dense in the interval (−1, x0), i.e., the closure of {xi : 1 ∈ Ai} contains (−1, 0).
In other approximation schemes, e.g., projection and finite element method, the
(projection) coefficient of a basis function contains information about the behavior
of f (x) over the full support; but, in our interpolation context, the surpluses contain
information localized at the nodes. For example, if s1 is large, that implies f (x)
exhibits sharp behavior (e.g., jump or large gradient) somewhere between x1 and
x0, and it is incorrect to assume that the transition has occurred within the support
of φ1(x). Hence, the descendants of a node must cover the entire interval between
the closest nodes on the current and previous levels. This is always satisfied for
the hierarchies in Figs. 1, 2 and 3 since each φi(x) has ancestors at the edge of the
support; for our piece-wise constant hierarchy, some descendants must lie outside
of the support of the parent.

Analogously, a large surplus for x5 indicates a transition between the nearest
nodes x4 and x0; the transition of f (x) can still occur within the support of φ4(x)

even if the surplus s4 is small. Therefore, the descendants of x5 must include x14,
i.e., 5 ∈ P14. Furthermore, 4 ∈ P14 due to the overlap in support between φ4(x)

and φ14(x). A quirk of this hierarchy is the fact that two of every six nodes must
share two parents. While this presents a challenge in a one dimensional context,
the multidimensional hierarchy always results in multiple parents, hence, this is
not of specific consideration when d > 1. The parents and offspring are given
explicitly by:

Pj =
{ {�j/3�, �j/3� + 1}, when j �∈ {3N, 3N − 1} and j−2

6 ∈ N or j−3
6 ∈ N,

{�j/3�}, otherwise,

Oj =
⎧
⎨

⎩

{3j, 3j + 1, 3j + 2}, when j ∈ {3N, 3N − 1},
{3j, 3j + 1, 3j + 2, 3j + 3}, when j �∈ {3N, 3N − 1} and j is even,
{3j − 1, 3j, 3j + 1, 3j + 2}, when j �∈ {3N, 3N − 1} and j is odd,

where {3N, 3N−1} is the set of boundary indexes, {1, 2, 3, 8, 9, 26, 27, 80, 81, . . .},
and on the first level O0 = {1, 2} and P0 = ∅.

Locally Anisotropic Refinement 187

3 Adaptive Interpolation

The four hierarchical rules described in the previous section give flexibility in the
interpolation scheme so we can choose a family of basis functions suitable for
approximating a specific f (x); however, we also need to select a suitable multi-
index set X. Standard sparse grid construction uses level sets Xl defined recursively

X0 = {0}, Xl = Xl−1

⋃
⎛

⎝
⋃

j∈Xl−1

d⋃

k=1

Oj ,k

⎞

⎠ , (11)

and it has been shown that sparse grids interpolants produce convergent approxi-
mation for large classes of functions [6, 17, 36, 38]. However, such construction
does not take into account the specific f (x) and the nodes are distributed uniformly
and isotropically, i.e., the children for every direction are considered for all nodes.
A more advanced interpolation technique constructsXl in manner that adapts to the
specific target function.

Using the necessary condition (9) and assuming that the coefficients sj decay
monotonically, i.e., |sj | ≤ |si | for j ∈ Oi , we seek the minimal set X such that
|sj | ≥ ε. In general, the larger the index set X, the more accurate the interpolant
becomes; however, we want to avoid nodes with small |sj |, since (9) implies that
those have negligible contribution to the accuracy and each node requires expensive
evaluations of f (x). Thus, we are willing to sacrifice some accuracy for the sake of
avoiding nodes with small surpluses.

Algorithm 1 outlines a general adaptive approach that aims at achieving a desired
error tolerance ε by constructing a set X using sj as a local error estimator.
Specifically, X is the final set in a finite sequence {Xl}, where Xl+1 = Xl

⋃
Rl

for some refinement set Rl . The classical approach for selecting Rl first considers
the set of indexes of coefficients larger than ε, i.e.,

B = {j ∈ Xl : |sj | > ε}, then Rl =
⋃

j∈Bl

(
d⋃

k=1

Oj ,k

)

. (12)

The classical refinement strategy has been successfully applied to many problem in
science and engineering [7, 27, 28, 36, 42, 45], unfortunately, this approximation
scheme is not always stable. Condition (9) is not sufficient and the hierarchical
surpluses do not always decay monotonically, especially for the first few levels of
the hierarchy. The nodes in the multidimensional hierarchy from a directed acyclic
graph with edges corresponding to the parent-offspring relation, and most nodes
are associated with multiple acyclic paths leading back to the root x0. Following
(12), each node j ∈ Xl has at least one path going back to x0, but some paths
may include nodes not present in X. Following Algorithm 1, a path is terminated
when the hierarchical coefficient of one of the nodes falls below ε, thus, if the
coefficients do not decay monotonically, a path may be terminated before it reaches

188 M. Stoyanov

an xj with large coefficient, which leads on an issue with missing parents. This can
be the case if f (x) exhibits sharp localized behavior, the coarse levels of the grid
will not to put nodes close to the sharp region and the nodes on the coarse levels
will have smaller surpluses. The commonly used workaround to this problems is
to select a large initial set X0, e.g., a full grid for some pre-defined level selected
according (11), or recursively add all parents of all nodes, ensuring there are no
missing paths in the graph. Selecting large Xl can improve stability and avoid
stagnation; however, this also implies adding nodes with small surpluses, which
leads to excessive computational burden.

Algorithm 1: Spatially adaptive sparse grids
Data: Given a hierarchy rule, f (x) and desired tolerance ε
Result: An interpolant GX[f](x) that aims to achieve tolerance ε
Let l = 0, X0 = {0} and construct GX0 [f](x) = f (x0)φ0(x);
repeat

Select Rl using one of the methods (12), (14), (16), or (17);
Let Xl+1 = Xl⋃Rl ;
Construct GXl+1 [f](x) by evaluating f (xj) for all j ∈ Rl \Xl ;
Let l = l + 1;

until Rl−1 = ∅;
Finally, return X = Xl

For example, consider the function

f (x) = 1

1+ exp
(

16− 40
√
x(1)x(1) + x(2)x(2)

) , x(1,2) ∈ [−1, 1]. (13)

We apply Algorithm 1 with the standard hierarchy (1), cubic (p = 3) basis
functions described in (4), and classical refinement strategy (12) with ε = 10−4 and
X0 containing 705 interpolation nodes. After 13 iterations, the algorithm stagnates,
i.e., for each l the algorithm introduces 160 new nodes around four symmetric
points defined by x(1) = ±0.265625 and x(2) = ±0.265625. The left plots in
Fig. 5 show the nodes clustering towards (x(1), x(2)) = (0.265625, 0.265625), but
never reaching that node. According to the hierarchy, x104 = 0.265625, but most
ancestors of j = (104,104) are located away from the region where f (x) exhibits
sharp behavior and therefore have small coefficients, while the cluster nodes fall
within the sharp region but cannot resolve the local dynamics without the parent.

We propose an alternative refinement strategy that considers both parents and
children of nodes with large coefficients. In addition toBl , for each node, we identify
the set of “orphan” directions, i.e.,

Tj = {k ∈ {1, 2, . . . , d} : Pj ,k �⊂ Xl}.

Locally Anisotropic Refinement 189

0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285
0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.245 0.25 0.255 0.26 0.265 0.27 0.275 0.28 0.285
0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

Fig. 5 The nodes near (x1, x2) = (0.265625, 0.265625) resulting from Algorithm 1 applied to
(13). Left: using classical adaptivity (12) the method clusters nodes near the critical point, but fails
to converge. Right: the hierarchy adaptive scheme (14) needs but a single node to resolve f (x) in
the region

Then, the refinement strategy favors the parents in the orphan directions, i.e., we
add the children only if all the parents are present. The parental aware refinement
set is

Rl =
⋃

j∈Bl

⎛

⎝

⎛

⎝
⋃

k∈Tj

Pj ,k

⎞

⎠
⋃
⎛

⎝
⋃

k �∈Tj

Oj ,k

⎞

⎠

⎞

⎠ . (14)

Note that we do not recursively include all ancestors of j ∈ Bl as many of those may
lie far away from xj and may indeed have small coefficients. Large sj indicate sharp
local behavior of f (x) and we only consider the intermediate patents, since those
include the closest ancestors and are most likely to also fall in the transition region.
It is possible that the algorithm would include all ancestors over several iterations,
but this will happen only if the majority of the ancestors have large coefficients.

Applying the hierarchy selective strategy (14) to function (13), the algorithm
converges with final approximation using 9833 nodes. In contrast, if we impose the
restriction that all parents have to be included in each step, there is no stagnation but
the algorithm terminates with a grid requiring 59,209 nodes. Using a full level sparse
grid that includes j = (104,104) would require 147,457 nodes. Both classical
solutions are at best impractical and often times infeasible when evaluations of f (x)
are computationally expensive.

Observe that the ancestry aware refinement (14) treats the d-directions differently
for each node, which is in contrast to the isotropic classical refinement (12).
In many applications, variability in the d inputs to f (x) does not have equal
influence on the response and anisotropic approximation strategies have been
considered [3, 7, 25, 26, 30, 41]; however, those were usually applied in a context
of approximation with globally supported Lagrange polynomials, or data mining
problem using large number of random samples. In this work, we propose a direction
adaptive strategy that refines in a subset of the d directions. As a directional error

190 M. Stoyanov

estimator, we propose the coefficient of an interpolant constructed from the nodes
aligned in that direction. Specifically, for each j ∈ X, let Wj ,k correspond to the
nodes aligned with xj in the k-th direction

Wj ,k = {i ∈ X : i−k = j−k}.

Then, we construct the interpolant associated with Wj ,k, i.e.,

GWj ,k
[f](x) =

∑

i∈Wj ,k

ci,kφi(x), (15)

where we put k in the subscript of ci,k to indicate explicitly the direction that we are
considering. For each node, (15) is a one dimensional hierarchical interpolant with
much fewer nodes and the coefficients can be computed with the same negligible
complexity as (7). Furthermore, the nodesWj ,k are aligned in a single direction and
thus cj ,k is a not only local but also directional error indicator. The refinement set
Rl is constructed using only directions where cj ,k is large, i.e., let

Cj =
{
k ∈ {1, 2, . . . , d} : |cj ,k| > ε

}

then, the direction selective refinement set is

Rl =
⋃

j∈Bl

⎛

⎝
⋃

k∈Cj

Oj ,k

⎞

⎠ (16)

Combining (14) and (16) yields the fully adaptive selection set

Rl =
⋃

j∈Bl

⎛

⎝

⎛

⎝
⋃

k∈Cj∩Tj

Pj ,k

⎞

⎠
⋃
⎛

⎝
⋃

k∈Cj\Tj

Oj ,k

⎞

⎠

⎞

⎠ (17)

The function presented in (13) is globally isotropic, i.e., it is invariant under rotation
around the origin; however, f (x) is anisotropic on a local scale. We apply the fully
adaptive strategy (17) to the function and observe that Algorithm 1 terminates after
only 8085 evaluations of f (x). The nearly 18% improvement is significant in many
applications, e.g., [15].

Remark in the above example we consider the number of interpolation nodes; how-
ever, the final accuracy of the interpolant is also important. Reducing the number
of nodes and refining in only select directions, i.e., using strategy (16), increases
the likelihood of encountering missing parents and stagnation. Furthermore, fewer
interpolation nodes, i.e., using either (16) or (17), generally results in larger error.
However, in all our examples, the neglected nodes have small coefficients and the
final approximation is still O(ε), hence a direction reduction strategy is a viable
option in reducing the total number of interpolation nodes.

Locally Anisotropic Refinement 191

4 Examples

In this section, we present numerical results from applying the sparse grids
interpolation techniques to several functions, as well as the output to a system of
differential equations. The sparse grid construction is done using the Oak Ridge
National Laboratory Toolkit for Adaptive Stochastic Modeling and Non-Intrusive
ApproximatioN (TASMANIAN) [39].

The examples presented here focus on two dimensional problems in order to
apply brute-force error estimates. In examples where f (x) ∈ C0(Γ), we measure
the L∞(Γ) error by evaluating f (x) andGX[f](x) on a dense grid with thousands
of points. Forming a dense grid in higher dimensions would be prohibitive even if
f (x) is simple to evaluate. In the example where f (x) is a discontinuous disk, we
consider how well the integral ofGX[f](x) approximates the area of the disk.

4.1 Influence of the Type of Hierarchy

Consider the order of approximation of different hierarchies when applied a smooth
function. Specifically, consider

f (x) = exp
(
x(1)x(1) + x(2)x(2)

)
,

(
x(1), x(2)

)
∈ [−1, 1] ⊗ [−1, 1]. (18)

Figure 6 shows a comparison between different orders of approximation, as
expected increasing p results in much lower error. In addition, using the semi-local
hierarchy described in Fig. 3 allows for even higher accuracy, which can lead to
significant savings when dealing with complex f (x). We estimate the error from
10,000 samples on a dense Cartesian grid.

Fig. 6 Comparison of different hierarchical rules applied to function (18). Left: standard hierar-
chy, in Fig. 1, with functions of increasing order p = 0, 1, 2, 3 and maximum available based on
the set of ancestors. Right: standard hierarchy, given in Fig. 1, and the higher order hierarchy, given
in Fig. 3, both using maximal p

192 M. Stoyanov

Fig. 7 Comparison of different hierarchical rules applied to function (19), the error is estimated
from a dense grid with 10,000 samples. The abscissa counts total function evaluations in the
interior of the domain, nodes along the boundary are not counted

Smoothness of f (x) is only one of the many useful properties that hierarchal
approaches can exploit, in many applications we have prior knowledge of f (x)
around the boundary of Γ . Consider the function with homogeneous boundary

f (x) = cos
(π

2
x(1)
)
(x(2)x(2)−1),

(
x(1), x(2)

)
∈ [−1, 1]⊗[−1, 1]. (19)

We test the standard hierarchy, semi-local hierarchy with globally supported φ1(x)

and φ2(x), and the hierarchy presented in Fig. 2, all using maximal order of polyno-
mial approximation. Figure 7 shows the comparison between the three hierarchies
and we clearly see the advantage of incorporating the boundary conditions directly
into f (x). Note that in error plot, we only consider the required evaluations of f (x)
in the interior of the domain, i.e., nodes placed on the boundary are not counted.

We also consider the advantages of a piece-wise constant approximation of a
discontinuous function, specifically we consider the indicator functions of a disk

f (x) =
{

1,
√
x(1) + x(2) ≤ 1

2 ,

0, otherwise,

(
x(1), x(2)

)
∈ [−1, 1] ⊗ [−1, 1]. (20)

No hierarchy with continuous basis functions could approximate (20) in theL∞(Γ).
Neither, is such approximation feasible to the discontinuous hierarchy presented in
Fig. 4, since the support of the basis does not align with the edges of the disk. We
use an alternative measure of accuracy, specifically, we look at the integral of the

Locally Anisotropic Refinement 193

Fig. 8 Comparison between hierarchies with piece-wise constant and linear basis functions when
approximating the integral of the disk indicator function (20)

sparse grid interpolant and compare to the actual area of the disk, which is π4 . This
problem is similar to the one considered in [44], with the main difference that we
employ a full sparse grid instead of a hyper-spherical coordinate transformation.
Figure 8 shows the result form the comparison; while the linear hierarchy does
produce better approximation in some cases when the grid is course (i.e., error is
>10%), the linear basis has very erratic behavior. In contrast, the piece-wise constant
hierarchy converges monotonically (i.e., has stable behavior) and gives much better
approximation when the level increases.

4.2 Influence of the Refinement Method

In Sect. 3 we gave an example of a refinement strategy that fails due to missing
parents. In this section, we consider the advantages of the anisotropic refinement
schemes (16) and (17). For the first example, we consider the globally isotropic
function presented in (18). Using global adaptive techniques, i.e., [30, 41], there is
no way to distinguish between the x(1) and x(2) direction; however, the function is
still locally anisotropic. We use a sequence of values of ε

{5×10−2, 10−2, 5×10−3, 10−3, 5×10−4, 10−4, 5×10−5, 10−5, 5×10−6, 10−6}

194 M. Stoyanov

Fig. 9 Comparison of applying Algorithm 1 to the globally isotropic function (18) with different
refinement strategies. The locally anisotropic schemes (16) and (17) result in noticeable 4–5%
improvement, albeit hard to see on the plot

and we execute Algorithm 1 with each one starting from the same initial state where
the sum of levels of all nodes is no more than 3. We compare the final error in
the sparse grids approximation, estimated from a dense Cartesian grid of 10,000
samples, and the final number of interpolation nodes. Figure 9 shows the result
of applying the four refinement strategies and, for reference purposes, the sparse
grids constructed without adaptivity. Every adaptive method overtakes the “blind”
unrefined construction, and the best performance is given by the two anisotropic
refinement strategies. The semi-log plot highlights the 4–5% improvement, which
is small but significant for many scientific and engineering applications, thus local
anisotropy can be exploited even for globally isotropic problems. In this particular
example, the parental refinement has no effect on the approximation.

We also consider a function with weak globally anisotropic behavior, specifically

f (x) = exp
(
−x(1)x(1)

)
cos
(π

2
x(2)

)
,

(
x(1), x(2)

)
∈ [−1, 1] ⊗ [−1, 1]. (21)

The anisotropy comes from the different expressions associated with the two
components x(1) and x(2). We repeat the test performed to (18) but using the new
function. Figure 10 shows the result of applying the four refinement strategies and
the unrefined grid for reference purposes. The anisotropy is more strongly present
in this example, resulting in overall 9–10% savings over the classical refinement
strategy.

Locally Anisotropic Refinement 195

Fig. 10 Comparison of applying Algorithm 1 to the anisotropic function (21) with different
refinement strategies. The locally anisotropic schemes (16) and (17) result in noticeable 9–10%
improvement

4.3 Application to Kermack-McKendrick SIR Model

The Kermack-McKendrick SIR model [23, 24] for the spread of an infectious
disease is given by the system of ordinary differential equations

d
dt
FI (t) = βFI (t)S(t) − γFI (t), FI (0) = 0.05,

d
dt
FS(t) = −βFI (t)S(t), FS(0) = 0.95,

d
dt
FR(t) = γFI (t), FR(0) = 0.00,

(22)

where t > 0, and β and γ are parameters that we vary in the range [0.1, 0.3].
In this context, FI (t), FS(t) and FR(t) correspond to the infected susceptible and
removed portion of the population, and β and γ are the infection and recovery rates
respectively. We are interested in the value of the removed variable at T = 30, i.e.,

f (β, γ) = FR(30), (23)

where FR(t) satisfies (22). Using a linear transformation we translate the interval
[0.1, 0.3] to the canonical [−1, 1]. For the purpose of the numerical simulation,
we integrate (22) with Runge-Kutta 4-th order method [9] with time step Δt =
10−3, the high accuracy of the 4-th order method eliminates the consideration of the
numerical error when constructing the interpolant.

196 M. Stoyanov

Fig. 11 Comparison between refinement schemes applied to the system (22). All refinement
schemes provide significant improvement in accuracy as compared to the unrefined grid

Figure 11 shows the result of applying Algorithm 1 and the four refinement
schemes to the SIR model. We vary the refinement tolerance from 5 × 10−2 to
10−6 and compare the accuracy of the constructed grids. As expected, all refinement
strategies outperform the non-adaptive approximation scheme. Comparing the
different selection strategies for Rl , the anisotropic refinement of the direction (16)
and fully adaptive (17) schemes outperforms the isotropic approaches; however,
this trend is not universally true for all values of the refinement tolerance. As for
the parent-to-child refinement, including the parents in to the fully adaptive scheme
results in more monotonic behavior and therefore improved stability. While it is
not possible to guarantee that the interpolant constructed using the fully adaptive
scheme will always outperform the other approaches, it is generally the best first
choice when selecting a refinement strategy.

5 Conclusions

In this work, we presented several schemes for constructing an interpolant to a
multidimensional functions defined over a hypercube domain. The multidimen-
sional construction uses tensors of one dimensional nodes and basis functions that
form a hierarchy, which allows for adaptive interpolation that aims to maximize
accuracy while minimizing the number of interpolation nodes. We present several
hierarchical rules, including a novel piece-wise constant approach; as well as
several strategies for adaptive refinement including locally anisotropic approach
based on one dimensional surplus coefficients. In several numerical examples, we
demonstrate some advantages and drawbacks of the different methods.

Locally Anisotropic Refinement 197

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration; the U.S. Defense Advanced Research Projects Agency, Defense
Sciences Office under contract and award numbers HR0011619523 and 1868-A017-15; and by the
Laboratory Directed Research and Development program at the Oak Ridge National Laboratory,
which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-
AC05-00OR22725.

References

1. I. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic
elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

2. J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Stochastic spectral galerkin and collocation
methods for PDEs with random coefficients: a numerical comparison, in Spectral and High
Order Methods for Partial Differential Equations (Springer, Berlin, 2011), pp. 43–62

3. J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal stochastic
Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67(4),
732–751 (2014)

4. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Convergence rates for
greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

5. H.-J. Bungartz, Finite Elements of Higher Order on Sparse Grids (Shaker, Maastricht, 1998)
6. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
7. H.-J. Bungartz, D. Pflüger, S. Zimmer, Adaptive sparse grid techniques for data mining,

in Modeling, Simulation and Optimization of Complex Processes (Springer, Berlin, 2008),
pp. 121–130

8. G. Buse, D. Pfluger, A. Murarasu, R. Jacob, A non-static data layout enhancing parallelism
and vectorization in sparse grid algorithms, in 11th International Symposium on Parallel and
Distributed Computing (ISPDC), 2012 (IEEE, Washington, 2012), pp. 195–202

9. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Hoboken, 2016)
10. M.A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of

their real projection. J. Approx. Theory 166, 176–200 (2013)
11. A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation

and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)
12. A. Chkifa, N. Dexter, H. Tran, C.G. Webster, Polynomial approximation via compressed

sensing of high-dimensional functions on lower sets (2016). ArXiv e-prints
13. N.C. Dexter, C.G. Webster, G. Zhang, Explicit cost bounds of stochastic Galerkin approx-

imations for parameterized PDEs with random coefficients. Comput. Math. Appl. 71(11),
2231–2256 (2016)

14. A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs.
J. Comput. Phys. 230(8), 3015–3034 (2011)

15. C.E. Finney, M.K. Stoyanov, S. Pannala, C.S. Daw, R.M. Wagner, K.D. Edwards, C.G. Webster,
J.B. Green, Application of high performance computing for simulating the unstable dynamics
of dilute spark-ignited combustion, in International Conference on Theory and Application in
Nonlinear Dynamics (ICAND 2012) (Springer, Cham, 2014), pp. 259–270

16. G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in
Operations Research (Springer, New York, 1996)

17. J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications (Springer, Cham, 2012),
pp. 57–80

198 M. Stoyanov

18. M.B. Giles, Multilevel monte carlo methods. Acta Numer. 24, 259 (2015)
19. J.D. Jakeman, S.G. Roberts, Local and dimension adaptive stochastic collocation for uncer-

tainty quantification, in Sparse Grids and Applications (Springer, Berlin, 2012), pp. 181–203
20. J.D. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional

stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977–3997 (2011)
21. J.D. Jakeman, A. Narayan, D. Xiu, Minimal multi-element stochastic collocation for uncer-

tainty quantification of discontinuous functions. J. Comput. Phys. 242, 790–808 (2013)
22. P. Jantsch, C.G. Webster, G. Zhang, On the Lebesgue constant of weighted Leja points for

Lagrange interpolation on unbounded domains (2016). arXiv preprint arXiv:1606.07093
23. D.S. Jones, M. Plank, B.D. Sleeman, Differential Equations and Mathematical Biology (CRC

Press, Boca Raton, 2009)
24. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics,

in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 115 (The Royal Society, London, 1927), pp. 700–721

25. V. Khakhutskyy, Sparse Grids for Big Data: Exploiting Parsimony for Large-Scale Learning,
Ph.D. thesis, Universität München, 2016

26. V. Khakhutskyy, M. Hegland, Spatially-dimension-adaptive sparse grids for online learning, in
Sparse Grids and Applications-Stuttgart 2014 (Springer, Cham, 2016), pp. 133–162

27. A. Klimke, B. Wohlmuth, Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse
grid interpolation in MATLAB. ACM Trans. Math. Softw. (TOMS) 31(4), 561–579 (2005)

28. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

29. A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation
and high-dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)

30. F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–
2442 (2008)

31. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial
differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

32. F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal sparse-grid approximation
of hilbert-space-valued functions: application to random elliptic PDEs. Numer. Math. 134(2),
343–388 (2016)

33. E. Novak, K. Ritter, Simple cubature formulas with high polynomial exactness. Constr.
Approx. 15(4), 499–522 (1999)

34. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut,
München, 2010)

35. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications (Springer, Berlin,
2012), pp. 243–262

36. D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional
data-driven problems. J. Complex. 26(5), 508–522 (2010)

37. H. Royden, Real Analysis, vol. 1 (Macmillan, New York, 1968), p. 963
38. M. Stoyanov, Hierarchy-direction selective approach for locally adaptive sparse grids. Techni-

cal Report ORNL/TM-2013/384, Oak Ridge National Laboratory, Oak Ridge, 2013
39. M. Stoyanov, User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596,

Oak Ridge National Laboratory, Oak Ridge, 2015
40. M. Stoyanov, C.G. Webster, A gradient-based sampling approach for dimension reduction of

partial differential equations with stochastic coefficients. Int. J. Uncertain. Quantif. 5(1), 49–72
(2015)

41. M.K. Stoyanov, C.G. Webster, A dynamically adaptive sparse grids method for quasi-optimal
interpolation of multidimensional functions. Comput. Math. Appl. 71(11), 2449–2465 (2016)

42. M. Stoyanov, P. Seleson, C. Webster, Predicting fracture patterns in simulations of brittle mate-
rials under variable load and material strength, in 19th AIAA Non-Deterministic Approaches
Conference (2017), p. 1326

Locally Anisotropic Refinement 199

43. G. Zhang, M. Gunzburger, Error analysis of a stochastic collocation method for parabolic
partial differential equations with random input data. SIAM J. Numer. Anal. 50(4), 1922–1940
(2012)

44. G. Zhang, C. Webster, M. Gunzburger, J. Burkardt, A hyperspherical adaptive sparse-grid
method for high-dimensional discontinuity detection. SIAM J. Numer. Anal. 53(3), 1508–1536
(2015)

45. G. Zhang, C.G. Webster, M. Gunzburger, J. Burkardt, Hyperspherical sparse approximation
techniques for high-dimensional discontinuity detection. SIAM Rev. 58(3), 517–551 (2016)

Smolyak’s Algorithm: A Powerful Black
Box for the Acceleration of Scientific
Computations

Raúl Tempone and Sören Wolfers

Abstract We provide a general discussion of Smolyak’s algorithm for the acceler-
ation of scientific computations. The algorithm first appeared in Smolyak’s work on
multidimensional integration and interpolation. Since then, it has been generalized
in multiple directions and has been associated with the keywords: sparse grids,
hyperbolic cross approximation, combination technique, and multilevel methods.
Variants of Smolyak’s algorithm have been employed in the computation of high-
dimensional integrals in finance, chemistry, and physics, in the numerical solution
of partial and stochastic differential equations, and in uncertainty quantification.
Motivated by this broad and ever-increasing range of applications, we describe
a general framework that summarizes fundamental results and assumptions in a
concise application-independent manner.

1 Introduction

We study Smolyak’s algorithm for the convergence acceleration of general numeri-
cal approximation methods

A : Nn := {0, 1, . . . , }n → Y,

which map discretization parameters k = (ı1, . . . , kn) ∈ N
n to outputs A (k) in a

Banach space Y .
For instance, a straightforward way to approximate the integral of a function

f : [0, 1]n → R is to employ tensor-type quadrature formulas, which evaluate f at
the nodes of a regular grid within [0, 1]n. This gives rise to an approximation method
where kj determines the grid resolution in direction of the j th coordinate axis,

R. Tempone · S. Wolfers (�)
King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom
of Saudi Arabia
e-mail: soeren.wolfers@kaust.edu.sa

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_9

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_9&domain=pdf
mailto:soeren.wolfers@kaust.edu.sa
https://doi.org/10.1007/978-3-319-75426-0_9

202 R. Tempone and S. Wolfers

j ∈ {1, . . . , n}. Smolyak himself derived and studied his algorithm in this setting,
where it leads to evaluations in the nodes of sparse grids [24, 26]. Another
example, which emphasizes the distinctness of sparse grids and the general version
of Smolyak’s algorithm considered in this work, is integration of a univariate
function f : R→ R that is not compactly supported but exhibits sufficient decay at
infinity. In this case, k1 could as before determine the resolution of regularly spaced
quadrature nodes and k2 could be used to determine a truncated quadrature domain.
Smolyak’s algorithm then leads to quadrature nodes whose density is high near the
origin and decreases at infinity, as intuition would dictate.

To motivate Smolyak’s algorithm, assume that the approximation method A
converges to a limit A∞ ∈ Y at the rate

‖A (k)−A∞‖Y ≤ K1

n∑

j=1

k
−βj
j ∀k ∈ N

n (1)

and requires the work

Work(A (k)) = K2

n∏

j=1

k
γj
j ∀k ∈ N

n (2)

for some K1 > 0,K2 > 0 and βj > 0, γj > 0, j ∈ {1, . . . , n}. An approximation
of A∞ with accuracy ε > 0 can then be obtained with the choice

kj := −
(ε

nK1

)−1/βj
, j ∈ {1, . . . , n}, (3)

which requires the work

C(n,K1,K2, γ1, . . . , γn, β1, . . . , , βn)ε
−(γ1/β1+···+γn/βn). (4)

Here and in the remainder of this work we denote by C(. . .) generic constants that
depend only on the quantities in parentheses but may change their value from line
to line and from equation to equation.

The appearance of the sum γ1/β1 + · · · + γn/βn in the exponent above is
commonly referred to as the curse of dimensionality. Among other things, we will
show (see Example 1) that if the bound in Eq. (1) holds in a slightly stronger
sense, then Smolyak’s algorithm can replace this dreaded sum by maxnj=1 γj/βj ,
which means that it yields convergence rates that are, up to possible logarithmic
factors, independent of the number of discretization parameters. In the general form
presented here, Smolyak’s algorithm forms linear combinations of the values A (k),
k ∈ N

n, based on

1. an infinite decomposition of A∞ and
2. a knapsack approach to truncate this decomposition.

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 203

Since the decomposition is independent of the particular choice of A and the
truncation relies on easily verifiable assumptions on the decay and work of the
decomposition terms, Smolyak’s algorithm is a powerful black box for the non-
intrusive acceleration of scientific computations. In the roughly 50 years since its
first description, applications in various fields of scientific computation have been
described; see, for example, the extensive survey article [2]. The goal of this work
is to summarize previous results in a common framework and thereby encourage
further research and exploration of novel applications. While some of the material
presented here may be folklore knowledge in the sparse grids community, we are not
aware of any published sources that present this material in a generally applicable
fashion.

The remainder of this work is structured as follows. In Sect. 2, we introduce
the infinite decomposition of A∞ that is at the core of Smolyak’s algorithm. In
Sect. 3, we introduce spaces of approximation methods A : Nn → Y that allow for
efficient solutions of the resulting truncation problem. In Sect. 4, we derive explicit
convergence rates for Smolyak’s algorithm in common examples of such spaces.
Finally, in Sect. 5, we discuss how various previous results can be deduced within
the framework presented here.

2 Decomposition

Smolyak’s algorithm is based on a decomposition of A∞ that is maybe most simply
presented in the continuous setting. Here, Fubini’s theorem and the fundamental
theorem of calculus show that any function f : Rn≥ := [0,∞)n → Y with f ≡ 0 on
∂Rn≥ satisfies

f (x) =
∫

∏n
j=1[0,xj]

∂1 . . . ∂nf (s) ds ∀x ∈ R
n≥, (5)

questions of integrability and differentiability aside. Moreover, if f converges to a
limit f∞ ∈ Y as minnj=1 xj →∞, then

f∞ = lim
minnj=1 xj→∞

∫

∏n
j=1[0,xj]

∂1 . . . ∂nf (s) ds =
∫

R
n≥
∂mixf (s) ds, (6)

where we introduced the shorthand ∂mix for the mixed derivative ∂1 . . . ∂n. The
crucial observation is now that an approximation of f∞ can be achieved not only
by rectangular truncation of the integral in Eq. (6), which according to Eq. (5) is
equivalent to a simple evaluation of f at a single point, but also by truncation
to more complicated domains. These domains should ideally correspond to large
values of ∂mixf in order to minimize the truncation error, but also have to take into
consideration the associated computational work.

204 R. Tempone and S. Wolfers

To transfer the decomposition in Eq. (6) to the discrete setting, we denote by
YN

n := {A : Nn → Y } the space of all functions from N
n into the Banach space Y .

Next, we define the discrete unidirectional difference and sum operators

Δj : YN
n → YN

n

(ΔjA)(k) :=
{
A (k1, . . . , kn)−A (k1, . . . , kj−1, kj − 1, kj+1, . . . , kn) if kj > 0,

A (k1, . . . , kn) else,

 j := Δ−1
j : YN

n → YN
n

(jA)(k) :=
kj∑

s=0

A (k1, . . . , kj−1, s, kj+1, . . . , kn),

Finally, we introduce their compositions, the mixed difference operator

Δmix := Δ1 ◦ · · · ◦Δn : YNn → YNn,

and the rectangular sum operator

 R := 1 ◦ · · · ◦ n : YN
n → YN

n

,

which replace the mixed derivative and integral operators that map f : Rn → Y to
f #→ ∂mixf and x #→ ∫

∏n
j=1[0,xj] f (s) ds, respectively.

The discrete analogue of Eq. (5) is now a matter of simple algebra.

Proposition 1

(i) We have R = Δ−1
mix, that is

A (k) =
k1∑

s1=0

· · ·
kn∑

sn=0

ΔmixA (s1, . . . , sn) ∀k ∈ N
n.

(ii) We haveΔmix =∑e∈{0,1}n(−1)|e|1Se, where Se is the shift operator defined by

(SeA)(k) :=
{
A (k − e), if k − e ∈ N

n

0 else
.

Proof Part (i) follows directly from the commutativity of the operators { j }nj=1.
Part (ii) follows from plugging the representationΔj = Id−Sej , where ej is the j th
standard basis vector in N

n, into the definitionΔmix = Δ1◦· · ·◦Δn, and subsequent
expansion.

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 205

Part (i) of the previous proposition shows that, ignoring questions of convergence,
discrete functions A : Nn → Y with limit A∞ satisfy

A∞ =
∑

k∈Nn
ΔmixA (k) (7)

in analogy to Eq. (6). In the next section, we define spaces of discrete functions for
which this sum converges absolutely and can be efficiently truncated. We conclude
this section by the observation that a necessary condition for the sum in Eq. (7)
to converge absolutely is that the unidirectional limits A (k1, . . . ,∞, . . . , kn) :=
limkj→∞A (k1, . . . , kj , . . . , kn) exist. Indeed, by part (i) of the previous proposi-
tion, these limits correspond to summation of ΔmixA over hyperrectangles that are
growing in direction of the j th coordinate axis and fixed in all other directions. For
instance, in the context of time-dependent partial differential equations this implies
stability requirements for the underlying numerical solver, prohibiting explicit time-
stepping schemes that diverge when the space-discretization is refined while the
time-discretization is fixed.

3 Truncation

For any index set I ⊂ N
n, we may define Smolyak’s algorithm as the approxima-

tion of A∞ that is obtained by truncation of the infinite decomposition in Eq. (7)
to I ,

SI (A) :=
∑

k∈I
ΔmixA (k). (8)

By definition of ΔmixA , the approximation SI (A) is a linear combination of the
values A (k), k ∈ N

n (see Sect. 3.2 for explicit coefficients). This is the reason for
the name combination technique that was given to approximations of this form in the
context of the numerical approximation of partial differential equations [11]. When
one talks about the Smolyak algorithm, or the combination technique, a particular
truncation is usually implied. The general idea here is to include those indices for
which the ratio between contribution (measured in the norm of Y) and required work
of the corresponding decomposition term is large. To formalize this idea, we require
decay of the norms of the decomposition terms and bounds on the work required for
their evaluation. To express the former, we define for strictly decreasing functions
ej : N→ R> := (0,∞), j ∈ {1, . . . , n} the spaces

E(ej)nj=1
(Y) := {A : Nn → Y : ∃K1 > 0 ∀k ∈ N

n ‖ΔmixA (k)‖Y ≤ K1

n∏

j=1

ej (kj)
}
.

206 R. Tempone and S. Wolfers

Proposition 2

(i) If

∑

k∈Nn

n∏

j=1

ej (kj) <∞, (9)

then any A ∈ E(ej)nj=1
(Y) has a limit A∞ := limminnj=1 kj→∞A (k).

Furthermore, the decomposition in Eq. (7) holds and converges absolutely.
(ii) The spaces E(ej)nj=1

(Y) are linear subspaces of YN
n
.

(iii) (Error expansions) Assume that the ratios ej (k)/ej (k + 1) are uniformly
bounded above for k ∈ N and j ∈ {1, . . . , n}. For k ∈ N

n and J ⊂ {1, . . . , n}
let kJ := (kj)j∈J ∈ N

|J |. If the approximation error can be written as

A (k)−A∞ =
∑

∅�=J⊂{1,...,n}
AJ (kJ) ∀k ∈ N

n

with functions AJ : N|J | → Y , J ⊂ {1, . . . , n} that satisfy

‖AJ (kJ)‖Y ≤
∏

j∈J
ej (kj)

then

A ∈ E(ej)nj=1
(Y).

(iv) (Multilinearity [20]) Assume (Yi)
m
i=1 and Y are Banach spaces and

M : ∏m
i=1 Yi → Y is a continuous multilinear map. If

Ai ∈ E
(ej)

n1+···+ni
j=n1+···+ni−1+1

(Yi) ∀ i ∈ {1, . . . ,m},

then

M (A1, . . . ,Am) ∈ E(ej)nj=1
(Y),

where n := n1 + · · · + nm and

M (A1, . . . ,Am)(k) :=M (A1(k1), . . . ,Am(km)) ∀k = (k1, . . . , km) ∈ N
n.

Proof Since Y is a Banach space, the assumption in part (i) shows that for any
A ∈ E(ej)nj=1

(Y) the infinite sum in Eq. (7) converges absolutely to some limit ¯A .
Since rectangular truncations of this sum yield point values A (k), k ∈ N

n by part

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 207

(i) of Proposition 1, the limit A∞ := limminnj=1 kj→∞A (k) exists and equals ¯A .
Part (ii) follows from the triangle inequality.

For part (iii), observe that by part (ii) it suffices to show AJ ∈ E(ej)nj=1
(Y) for

all J ⊂ {1, . . . , n}, where we consider AJ as functions on N
n depending only on

the parameters indexed by J . Since Δmix = ΔJmix ◦ ΔJ
C

mix, where ΔJmix denotes the
mixed difference operator acting on the parameters in J , we then obtain

ΔmixAJ (k) =
{
ΔJmixAJ (kJ) if ∀j ∈ JC : kj = 0

0 else.

Hence, it suffices to consider J = {1, . . . , n}. In this case, the assumption
‖AJ (kJ)‖Y ≤ C

∏
j∈J ej (kj) is equivalent to Δ−1

mixAJ ∈ E(ej)nj=1
(Y). Thus, it

remains to show that Δmix preserves E(ej)nj=1
(Y). This holds by part (ii) of this

proposition together with part (ii) of Proposition 1 and the fact that shift operators
preserve E(ej)nj=1

(Y), which itself follows from the assumption that the functions
ej (·)/ej (· + 1) are uniformly bounded.

Finally, for part (iv) observe that by multilinearity of M we have

ΔmixM (A1, . . . ,Am) =M (Δ
(1)
mixA1, . . . ,Δ

(m)
mixAm),

where the mixed difference operator on the left hand side acts on n = n1+· · ·+nm
coordinates, whereas those on the right hand side only act on the ni coordinates of
Ai . By continuity of M we have

‖M (Δ
(1)
mixA1, . . . ,Δ

(m)
mixAm)(k)‖Y ≤ C

m∏

i=1

‖Δ(i)mixAi (ki)‖Yi ,

for some C > 0, from which the claim follows.

Parts (iii) and (iv) of the previous proposition provide sufficient conditions to verify
A ∈ E(ej)nj=1

(Y) without analyzing mixed differences directly.

Example 1

(i) After an exponential reparametrization, the assumptions in Eqs. (1) and (2)
become

‖A (k)−A∞‖Y ≤ K1

n∑

j=1

exp(−βjkj) ∀k ∈ N
n

208 R. Tempone and S. Wolfers

and

Work(A (k)) = K2

n∏

j=1

exp(γj kj) ∀k ∈ N
n,

respectively. If we slightly strengthen the first and assume that

A (k)−A∞ =
n∑

j=1

Aj (kj) ∀k ∈ N
n

with functions Aj that satisfy

‖Aj (kj)‖Y ≤ C exp(−βjkj), ∀kj ∈ N

for some C > 0 and βj > 0, j ∈ {1, . . . , n}, then

A ∈ E(ej)nj=1
with ej (kj) := exp(−βjkj),

by part (iii) of Proposition 2. Theorem 1 below then shows that Smolyak’s
algorithm applied to A requires only the work ε−maxnj=1{γj /βj }, up to possible
logarithmic factors, to achieve the accuracy ε > 0.

(ii) Assume we want to approximate the integral of a function f : [0, 1] → R but
are only able to evaluate approximations fk2 , k2 ∈ N of f with increasing cost
as k2 → ∞. Given a sequence Sk1 , k1 ∈ N of linear quadrature formulas, the
straightforward approach would be to fix sufficiently large values of k1 and
k2 and then approximate the integral of fk2 with the quadrature formula Sk1 .
Formally, this can be written as

A (k1, k2) := Sk1fk2 .

To show decay of the mixed differences ΔmixA , observe that the application
of quadrature formulas to functions is linear in both arguments, which means
that we may write

A (k1, k2) =M (Sk1 , fk2) =M (A1(k1),A2(k2))

where A1(k1) := Sk1 , A2(k2) := fk2 , and M is the application of linear
functionals to functions on [0, 1]. Assume, for example, that the functions fk2

converge to f in some Banach space B of functions on [0, 1] as k2 → ∞,
and that the quadrature formulas Sk1 converge to the integral operator

∫
in the

continuous dual space B∗ as k1 → ∞. The decay of the mixed differences
ΔmixA (k1, k2) then follows from part (iv) of Proposition 2, since M is a
continuous bilinear map from B∗ × B to R. We will see in Sect. 5.3 below

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 209

that the application of Smolyak’s algorithm in this example yields so called
multilevel quadrature formulas. This connection between Smolyak’s algorithm
and multilevel formulas was observed in [14].

(iii) Assume that we are given approximation methods Aj : N→ Yj , j ∈ {1, . . . n}
that converge at the rates ‖Aj (kj) −A∞,j‖Yj ≤ ej (kj) to limits A∞,j ∈ Yj ,
where ej : N→ R> are strictly decreasing functions. Define the tensor product
algorithm

A : Nn → Y := Y1 ⊗ · · · ⊗ Yn,
A (k) := A1(k1)⊗ · · · ⊗An(kn).

If the algebraic tensor product Y is equipped with a norm that satisfies ‖y1 ⊗
· · · ⊗ yn‖Y ≤ ‖y1‖Y1 . . . ‖yn‖Yn , then A ∈ E(ej)nj=1

(Y). Indeed, Aj ∈ Eej (Yj)

by part (iii) of Proposition 2, thus A ∈ E(ej)nj=1
(Y) by part (iv) of the same

proposition.

Similar to the product type decay assumption on the norms ‖ΔmixA (k)‖Y , which
we expressed in the spaces E(ej)nj=1

, we assume in the remainder that

Work(ΔmixA (k)) ≤ K2

n∏

j=1

wj(kj) ∀k ∈ N
n (10)

for some K2 > 0 and increasing functions wj : N → R>. By part (ii) of
Proposition 1, such a bound follows from the same bound on the evaluations A (k)
themselves.

3.1 Knapsack Problem

The goal of this subsection is to describe quasi-optimal truncations of the decom-
position in Eq. (7) for functions A ∈ E(ej)nj=1

(Y) that satisfy Eq. (10). Given a work
budgetW > 0, a quasi-optimal index set solves the knapsack problem

max
I⊂Nn

|I |e := K1

∑

k∈I

n∏

j=1

ej (kj)

subject to |I |w := K2

∑

k∈I

n∏

j=1

wj(kj) ≤ W.
(11)

210 R. Tempone and S. Wolfers

The term that is maximized here is motivated by

‖SI (A)−A∞‖Y = ‖
∑

k∈I c

ΔmixA (k)‖Y ≈
∑

k∈I c

‖ΔmixA (k)‖Y ≈ |I c|e

Proposition 3 below shows that for any W > 0 the knapsack problem has an
optimal value. However, finding corresponding optimal sets is NP-hard [19, Section
1.3]. As a practical alternative one can use Dantzig’s approximation algorithm [19,
Section 2.2.1], which selects indices for which the ratio between contribution and
work is above some threshold δ(W) > 0,

IW := {k ∈ N
n :

n∏

j=1

ej (kj)/wj (kj) > δ(W)}, (12)

where δ(W) is chosen minimally such that |IW |w ≤ W .

Proposition 3

(i) The knapsack problem in Eq. (11) has a (not necessarily unique) solution, in
the sense that a maximal value of |I |e is attained. We denote this maximal
value by E∗(W).

(ii) Any set I ∗ for which |I |e = E∗(W) is finite and downward closed: If k ∈ I ∗
and k̃ ∈ N

n satisfies k̃ ≤ k componentwise, then k̃ ∈ I ∗. The same holds for
the set IW from Eq. (12).

(iii) The set IW from Eq. (12) satisfies

|IW |e ≥ |IW |w
W

E∗(W).

This means that if IW uses all of the available work budget, |IW |w = W ,
then it is a solution to the knapsack problem. In particular, Dantzig’s solutions
are optimal for the work |IW |w they require, but not necessarily for the work
W they were designed for.

Proof There is an upper bound N on the cardinality of admissible sets in Eq. (11)
since the functions wj are increasing and strictly positive. Furthermore, replacing
an element k of an admissible set by k̃ with k̃ ≤ k decreases | · |w and increases | · |e.
This proves parts (i) and (ii), as there are only finitely many downward closed sets
of cardinality less thanN (for example, all such sets are subsets of {0, . . . , N−1}n).
Part (iii) follows directly from the inequality |IW |e/|IW |w ≥ |I ∗|e/|I ∗|w , where
I ∗ is a set that attains the maximal value E∗(W).

Even in cases where no bounding functions ej and wj are available, parts (ii) and
(iii) of the previous proposition serve as motivation for adaptive algorithms that
progressively build a downward closed set I by adding at each step a multi-index
that maximizes a gain-to-work estimate [6, 15].

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 211

3.2 Combination Rule

Part (ii) of Proposition 1 provides a way to express the approximations SI (A)
in a succinct way as linear combinations of different values of A . This yields the
combination rule, which in its general form says that

SI (A) =
∑

k∈I
ckA (k)

with

ck =
∑

e∈{0,1}n:k+e∈I
(−1)|e|1 (13)

for any downward closed set I . It is noteworthy that ck = 0 for all k with k +
(1, . . . , 1) ∈ I , because for such k the sum in Eq. (13) is simply the expansion of
(1− 1)n.

When I is a standard simplex, I = {k ∈ N
n : |k|1 ≤ L}, the following explicit

formula holds [25]:

ck =
{
(−1)L−|k|1

(
n−1
L−|k|1

)
if L− n+ 1 ≤ |k|1 ≤ L

0 else.

4 Convergence Analysis

4.1 Finite-Dimensional Case

We consider an approximation method A ∈ E(ej)nj=1
(Y) with

ej (kj) = Kj,1 exp(−βjkj)(kj + 1)sj ∀j ∈ {1, . . . , n} (14)

and assume that

Work(A (k)) ≤
n∏

j=1

Kj,2 exp(γjkj)(kj + 1)tj ∀k ∈ N
n (15)

withKj,1 > 0,Kj,2 > 0, βj > 0, γj > 0, sj ≥ 0, tj ≥ 0. The required calculations
with s ≡ t ≡ 0 were previously done in various specific contexts, see for example

212 R. Tempone and S. Wolfers

[13]. According to Proposition 3, quasi-optimal index sets are given by

Iδ : =
{
k ∈ N

n :
n∏

j=1

Kj,1 exp(−βjkj)(kj + 1)sj

Kj,2 exp(γj kj)(kj + 1)tj
> δ
}

= {k ∈ N
n : K1

K2
exp(−(β + γ) · k)

n∏

j=1

(kj + 1)sj−tj > δ
}

for δ > 0, where K1 := ∏n
j=1Kj,1, K2 := ∏n

j=1Kj,2, and β := (β1, . . . , βn),
γ := (γ1, . . . , γn). For the analysis in this section, we use the slightly simplified
sets

IL :=
{
k ∈ N

n : exp((β + γ) · k) ≤ exp(L)
} = {k ∈ N

n : (β + γ) · k ≤ L} ,

with L→∞, where, by abuse notation, we distinguish the two families of sets by
the subscript letter.

The work required by SL(A) := SIL(A) satisfies

Work(SL(A)) ≤
∑

k∈IL

n∏

j=1

Kj,2 exp(γj kj)(kj +1)tj = K2

∑

(β+γ)·k≤L
exp(γ ·k)(k+1)t

with (k + 1)t :=∏n
j=1(kj + 1)tj . Similarly, the approximation error satisfies

‖SL(A)−A∞‖Y ≤
∑

k∈I c
L

n∏

j=1

Kj,1 exp(−βj kj)ksjj = K1

∑

(β+γ)·k>L
exp(−β ·k)(k+1)s .

(16)

The exponential sums appearing in the work and residual bounds above are
estimated in the appendix of this work, with the results

Work(SL(A)) ≤ K2C(γ , t, n) exp(
ρ

1+ ρL)(L+ 1)n
∗−1+t∗ (17)

and

‖SL(A)−A∞‖Y ≤ K1C(β, s, n) exp(− 1

1+ ρL)(L+ 1)n
∗−1+s∗, (18)

where ρ := maxnj=1 γj/βj , J := {j ∈ {1, . . . , n} : γj/βj = ρ}, n∗ := |J |,
s∗ := ∑

j∈J sj , t∗ := ∑
j∈J tj . We may now formulate the main result of this

section by rewriting the bound in Eq. (17) in terms of the right-hand side of Eq. (18).

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 213

Theorem 1 Under the previously stated assumptions on A and for small enough
ε > 0, we may choose L > 0 such that

‖SL(A)−A∞‖Y ≤ ε

and

Work(SL(A)) ≤ Kρ1K2C(β, γ , s, t, n)ε
−ρ | log ε|(n∗−1)(1+ρ)+ρs∗+t∗ . ��

This means that we have eliminated the sum in the exponent of the bound in Eq. (4),
as announced in Sect. 1. The additional logarithmic factors in Theorem 1 vanish if
the worst ratio of work and convergence exponents, ρ, is attained only for a single
index jmax ∈ {1, . . . , n} and if tjmax = sjmax = 0.

Remark 1 If γ ≡ 0 and β ≡ 0, that is when both work and residual depend
algebraically on all parameters, then an exponential reparametrization, exp(k̃) := k,
takes us back to the situation considered above. The preimage of IL = {k̃ :
(s + t) · k̃ ≤ L} under this reparametrization is {k : ∏n

j=1 k
sj+tj
j ≤ exp(L)},

whence the name hyperbolic cross approximation [5].

Remark 2 When the terms ΔmixA (k), k ∈ N
n are orthogonal to each other, we

may substitute the Pythagorean theorem for the triangle inequality in Eq. (16). As a
result, the exponent of the logarithmic factor in Theorem 1 reduces to (n∗ − 1)(1+
ρ/2)+ ρs∗ + t∗.

4.2 Infinite-Dimensional Case

The theory of the previous sections can be extended to the case n = ∞. In this case
the decomposition in Eq. (7) becomes

A∞ =
∑

k∈N∞c
ΔmixA (k), (19)

where N
∞
c are the sequences with finite support, and ΔmixA (k) is defined as Δ1 ◦

· · ·◦ΔnmaxA (k), where nmax is a bound on the support of k. In particular, every term
in Eq. (19) is a linear combination of values of A with only finitely many nonzero
discretization parameters.

We consider the case A ∈ E(ej)nj=1
(Y) for

ej (kj) := Kj,1 exp(−βjkj)(kj + 1)s ∀j ≥ 1

and s ≥ 0, K1 := ∏∞
j=1Kj,1 < ∞ s ≥ 0, and we assume constant computational

work for the evaluation of the mixed differencesΔmixA (k), i.e.wj ≡ C in Eq. (10)

214 R. Tempone and S. Wolfers

for all j ≥ 1. Similarly to the finite-dimensional case, we consider sets

IL :=
{
k ∈ N

∞
c :

∞∑

j=1

βjkj ≤ L
}

and the associated Smolyak algorithm

SL(A) :=
∑

IL

ΔmixA (k).

The following theorem is composed of results from [10] on interpolation and
integration of analytic functions; the calculations there transfer directly to the
general setting.

Theorem 2 Let L > 0 and define N := |IL| = Work(SL(A)).

(i) Assume s = 0.

• [10, Theorem 3.2] If there exists β0 > 1 such thatM :=M(β0, (βj)
∞
j=1) :=∑∞

j=1
1

exp(βj /β0)−1 <∞, then

‖SL(A)−A∞‖Y ≤ K1

β0
exp(β0M)N

−(β0−1),

which implies

Work(SL(A)) ≤ C(K, β0,M)ε
−1/(β0−1)

for ε := K1
β0

exp(β0M)N
−(β0−1).

• [10, Theorem 3.4] If βj ≥ β0j for β0 > 0, j ≥ 1, then

‖SL(A)−A∞‖Y ≤ 2

β0
√

logN
N1+ 1

4β0− 3
8β0(logN)1/2 .

(ii) Assume s > 0.

• [10, Corollary 4.2 (i)] If there exist β0 > 1 and δ > 0 such thatM(β0, ((1−
δ)βj)

∞
j=1) <∞, then

‖SL(A)−A∞‖Y ≤ C(K1, δ, β0,M, (βj)j∈N, s)N−(β0−1),

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 215

which implies

Work(SL(A)) ≤ C(K1, δ, β0,M, (βj)j∈N, s)ε−1/(β0−1)

for ε := C(K1, δ, β0,M, (βj)j∈N, s)N−(β0−1).
• [10, Corollary 4.2 (ii)] If βj ≥ β0j for β0 > 0, then for every β̂0 < β0 we

have

‖SL(A)−A∞‖Y ≤ C(β̂0,M, b)√
logN

N1+ β̂0
4 − 3

8 β̂0(logN)1/2 . ��

Remark 3 For alternative approaches to infinite-dimensional problems, which
allow even for exponential type work bounds, wj(kj) = Kj,2 exp(γj kj), consider
for example [4, 22, 23].

5 Applications

5.1 High-Dimensional Interpolation and Integration

Smolyak introduced the algorithm that now bears his name in [24] to obtain efficient
high-dimensional integration and interpolation formulas from univariate building
blocks. For example, assume we are given univariate interpolation formulas Sk , k ∈
N for functions in a Sobolev space Hβ([0, 1]) that are based on evaluations in 2k

points in [0, 1] and converge at the rate

‖Sk − Id ‖Hβ([0,1])→Hα([0,1]) ≤ C2−k(β−α)

for some 0 ≤ α < β. A straightforward high-dimensional interpolation formula is
then the corresponding tensor product formula

n⊗

j=1

Skj : Hβ([0, 1])⊗n =: Hβ
mix([0, 1]n)→ Hα([0, 1])⊗n =: Hα

mix([0, 1]n)

for (k1, . . . , kn) ∈ N
n, where we consider both tensor product spaces to be

completed with respect to the corresponding Hilbert space tensor norm [12]. This
can be interpreted as a numerical approximation method with values in a space of
linear operators,

A (k) :=
n⊗

j=1

Skj ∈ L (H
β

mix([0, 1]n),Hα
mix([0, 1]n)) =: Y,

216 R. Tempone and S. Wolfers

whose discretization parameters k = (k1, . . . , kn) determine the resolution of
interpolation nodes in each direction j ∈ {1, . . . , n}.

If we associate as work with A (k) the number of required point evaluations,

Work(A (k)) :=
n∏

j=1

2kj ,

then we are in the situation described in Sect. 4.1. Indeed, we have A ∈ E(ej)nj=1
(Y)

with ej (kj) := 2−kj (β−α) by part (iii) of Example 1, since the operator norm of
a tensor product operator between Hilbert space tensor products factorizes into the
product of the operator norms of the constituent operators (see [12, Proposition
4.127] and [3, Section 26.7]).

In particular, the straightforward tensor product formulas A (k, . . . , k) require
the work

ε−n/(β−α)

to approximate the identity operator with accuracy ε > 0 in the operator norm,
whereas Smolyak’s algorithm SL(A) with an appropriate choice of L = L(ε)

achieves the same accuracy with

Work(SL(A)) � ε−1/(β−α)| log ε|(n−1)(1+1/(β−α)),

according to Theorem 1. Here and in the following, we denote by � estimates
that hold up to factors that are independent of ε. As a linear combination of
tensor product operators, Smolyak’s algorithm SL(A) is a linear interpolation
formula based on evaluations in the union of certain tensor grids. These unions are
commonly known as sparse grids [2, 7, 26].

Remark 4 Interpolation of functions in general Banach spaces, with convergence
measured in different general Banach spaces can be treated in the same manner.
However, more care has to be taken with the tensor products. Once the algebraic
tensor products of the function spaces are equipped with reasonable cross norms
[12] and completed, it has to be verified that the operator norm of linear operators
between the tensor product spaces factorizes. Unlike for Hilbert spaces, this is not
always true for general Banach spaces. However, it is true whenever the codomain
is equipped with the injective tensor norm, or when the domain is equipped with the
projective tensor norm [12, Sections 4.2.9 and 4.2.12]. For example, the L∞-norm
(and the similar Ck-norms) is an injective tensor norm on the product of L∞-spaces,
while the L1-norm is a projective norm on the tensor product of L1-spaces.

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 217

5.2 Monte Carlo Path Simulation

Consider a stochastic differential equation (SDE)

{
dS(t) = a(t, S(t))dt + b(t, S(t))dW(t) 0 ≤ t ≤ T
S(0) = S0 ∈ R

d ,
(20)

with a Wiener process W(t) and sufficiently regular coefficients a, b : [0, T] ×
R
d → R. A common goal in the numerical approximation of such SDE is to

compute expectations of the form

E[Q(S(T))],

where Q : Rd → R is a Lipschitz-continuous quantity of interest of the final
state S(T). To approach this problem numerically, we first define random variables
SN(t), 0 ≤ t ≤ T as the forward Euler approximations of Eq. (20) with N ≥ 1
time steps. Next, we approximate the expectations E[Q(SN(T))] by Monte Carlo
sampling usingM ≥ 1 independent samples S1

N(T), . . . , S
M
N (T) that are computed

using independent realizations of the Wiener process. Together, this gives rise to the
numerical approximation

A (M,N) := 1

M

M∑

i=1

Q(SiN (T)).

For fixed values ofM and N this is a random variable that satisfies

E[(A (M,N)− E[Q(S(T))])2] = (E[A (M,N)] − E[Q(S(T))])2
+ Var[A (M,N)]

= (E[Q(SN(T))] − E[Q(S(T))])2

+M−1 Var[Q(SN(T))]
� N−2 +M−1,

where the last inequality holds by the weak rate of convergence of the Euler method
[17, Section 14.1] and by its L2-boundedness as N → ∞. This shows that the
random variables A (M,N) converge to the limit A∞ = E[Q(S(T))], which
itself is just a deterministic real number, in the sense of probabilistic mean square
convergence as M,N → ∞. To achieve a mean square error or order ε2 > 0, this
straightforward approximation requires the simulation ofM ≈ ε−2 sample paths of
Eq. (20), each with N ≈ ε−1 time steps, which incurs the total work

Work(A (M,N)) =MN ≈ ε−3.

218 R. Tempone and S. Wolfers

Smolyak’s algorithm allows us to achieve the same accuracy with the reduced work
ε−2 of usual Monte Carlo integration. To apply the results of Sect. 4.1, we consider
the reparametrized algorithm A (k, l) with

Mk := M0 exp(2k/3),

Nl := N0 exp(2l/3),

for which the convergence and work parameters of Sect. 4.1 attain the values βj =
1/3, γj = 2/3, and sj = tj = 0, j ∈ {1, 2}. (Here and in the following we implicitly
round up non-integer values, which increases the required work only by a constant
factor.) Indeed, we may write

A (k, l) =M (A1(k),A2(l))),

where A1(k), k ∈ N is the operator that maps random variables to an empirical
average over Mk independent samples, A2(l), l ∈ N is the random variable
Q(SNl (T)), and M denotes the application of linear operators to random variables.
Since A1(k) converges in the operator norm to the expectation operator on the space
of square integrable random variables at the usual Monte Carlo convergence rate
M
−1/2
k as k →∞, and A2(l) converges to Q(S(T)) at the strong convergence rate

N
−1/2
l of the Euler method in the L2-norm [17, Section 10.2] as l →∞, and since

M is linear in both arguments, the claimed values of the convergence parameters
βj , j ∈ {1, 2} hold by part (iv) of Proposition 2.

Theorem 1 now shows that choosing L = L(ε) such that

E[(SL(A)− E[Q(S(T))])2] ≤ ε2

incurs the work

Work(SL(A)) � ε−2| log ε|−3. (21)

To link this result to the keyword multilevel approximation, we observe that,
thanks to our particular choice of parametrization, Smolyak’s algorithm from
Sect. 4.1 takes the simple form

SL(A) =
∑

k+l≤L
ΔmixA (k, l).

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 219

Since Δmix = Δ1 ◦Δ2 and Δ1 = −1
1 we may further write

SL(A) =
L∑

l=0

L−l∑

k=0

ΔmixA (k, l)

=
L∑

l=0

Δ2A (L− l, l)

= 1

ML

ML∑

i=1

Q(SiN0
(T))+

L∑

l=1

1

ML−l

ML−l∑

i=1

(
Q(SiNl (T))−Q(SiNl−1

(T))
)
,

(22)

which reveals that Smolyak’s algorithm employs a large number of samples
from the coarse approximation SN0(T), and subsequently improves on the
resulting estimate of E[Q(S(T))] by adding approximations of the expectations
E
[
Q(SNl (T))−Q(SNl−1 (T))

]
, l ∈ {1, . . . , L} that are computed using less

samples.
Equation (22) is a multilevel formula of the form analyzed in [8, 16]. Alterna-

tively, this formula could also be deduced directly from the combination rule for
triangles in Sect. 5.4. Compared to the analysis in [8], our presentation has two
shortcomings: First, our analysis only exploits the strong rate of the discretization
method used to approximate Eq. (20). In the situation considered above, this does
not affect the results, but for more slowly converging schemes a faster weak
convergence rate may be exploited to obtain improved convergence rates. Second,
the bound in Eq. (21) is larger than that in [8] by the factor | log ε|. This factor can
be removed by using independent samples for different values of l in Eq. (22), since
we may then apply Remark 2.

5.3 Multilevel Quadrature

As in Example 1 of Sect. 3, assume that we want to approximate the integral∫
[0,1] f (x) dx ∈ R using evaluations of approximations fl : [0, 1] → R, l ∈ N.

This is similar to the setting of the previous subsection, but with random sampling
replaced by deterministic quadrature.

As before, denote by Sk , k ∈ N a sequence of quadrature formulas based on
evaluations in 2k nodes. If we assume that point evaluations of fl require the work
exp(γ l) for some γ > 0, that

‖fl − f ‖B � 2−κl

220 R. Tempone and S. Wolfers

for some κ > 0 and a Banach space B of functions on [0, 1] and that

‖Sk −
∫

[0,1]
· dx‖B∗ � exp(−βk)

for some β > 0, then A (k, l) := Skfl satisfies

|Skfl −
∫

[0,1]
f (x) dx| � exp(−βk)+ exp(−κl).

Hence, an accuracy of order ε > 0 can be achieved by setting

k := − log(ε)/β, l := − log2(ε)/κ,

which requires the work

2k exp(γ l) = ε−1/β−γ /κ.

We have already shown the decay of the mixed differences,

|ΔmixA (k, l)| � exp(−βk)2−κl,
in Example 1. Thus, Theorem 1 immediately shows that we can choose L = L(ε)

such that Smolyak’s algorithm satisfies

|SL(A)−
∫

[0,1]
f (x) dx| ≤ ε,

with

Work(SL(A)) � ε−max{1/β,γ /κ}| log ε|r

for some r = r(β, γ, κ) ≥ 0.
As in Sect. 5.2, we may rewrite Smolyak’s algorithm SL(A) in a multilevel

form, which reveals that a Smolyak’s algorithm employs a large number of evalua-
tions of f0, and subsequently improves on the resulting integral approximation by
adding estimates of the integrals

∫
[0,1] fl(x)−fl−1(x) dx, l > 0, that are computed

using less quadrature nodes.

5.4 Partial Differential Equations

The original Smolyak algorithm inspired two approaches to the numerical solu-
tion of partial differential equations (PDEs). The intrusive approach is to solve
discretizations of the PDE that are built on sparse grids. The non-intrusive approach,

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 221

which we describe here, instead applies the general Smolyak algorithm to product
type discretizations whose resolution in the j th direction is described by the
parameter kj [9, 26].

We discuss here how the non-intrusive approach can be analyzed using error
expansions of finite difference approximations. For example, the work [11], which
introduced the name combination technique, exploited the fact that for the Poisson
equation with sufficiently smooth data on [0, 1]2, finite difference approximations
uk1,k2 ∈ L∞([0, 1]2)with meshwidths hj = 2−kj in the directions j ∈ {1, 2} satisfy

u− uk1,k2 = w1(h1)+w2(h2)+w1,2(h1, h2), (23)

where u is the exact solution and w1(h1),w2(h2),w1,2(h1, h2) ∈ L∞([0, 1]2) are
error terms that converge to zero in L∞ at the rates O(h2

1), O(h
2
2), and O(h2

1h
2
2),

respectively. Since the work required for the computation of A (k1, k2) := uk1,k2

usually satisfies

Work(A (k1, k2)) ≈ (h1h2)
−γ

for some γ ≥ 1 depending on the employed solver, an error bound of size ε > 0
could be achieved with the straightforward choice k1 := k2 := −(log2 ε)/2, which
would require the work

Work(A (k1, k2)) ≈ ε−γ .

Since Eq. (23) in combination with part (iii) of Proposition 2 shows that A ∈
E(ej)2j=1

with ej (k) := 2−2kj , we may deduce from Theorem 1 that Smolyak’s

algorithm applied to A requires only the work

ε−γ /2| log ε|1+γ /2

to achieve the same accuracy. The advantage of Smolyak’s algorithm becomes
even more significant in higher dimensions. All that is required to generalize the
analysis presented here to high-dimensional problems, as well as to different PDE
and different discretization methods, are error expansions such as Eq. (23).

5.5 Uncertainty Quantification

A common goal in uncertainty quantification [1, 13, 18] is the approximation of
response surfaces

Γ . y #→ f (y) := Q(uy) ∈ R.

222 R. Tempone and S. Wolfers

Here, y ∈ Γ ⊂ R
m represents parameters in a PDE and Q(uy) is a real-

valued quantity of interest of the corresponding solution uy . For example, a
thoroughly studied problem is the parametric linear elliptic second order equation
with coefficients a : U × Γ → R,

{
−∇x · (a(x, y)∇xuy(x)) = g(x) in U ⊂ R

d

uy(x) = 0 on ∂U,

whose solution for any fixed y ∈ Γ is a function uy : U → R.
Approximations of response surfaces may be used for optimization, for worst-

case analysis, or to compute statistical quantities such as mean and variance in
the case where Γ is equipped with a probability distribution. The non-intrusive
approach to compute such approximations, which is known as stochastic collocation
in the case where Γ is equipped with a probability distribution, is to compute the
values of f for finitely many values of y and then interpolate. For example, if we
assume for simplicity that Γ = ∏m

j=1[0, 1], then we may use, as in Sect. 5.1,

a sequence of interpolation operators Sk : Hβ([0, 1]) → Hα([0, 1]) based on
evaluations in (yk,i)2

k

i=1 ⊂ [0, 1]. However, unlike in Sect. 5.1, we cannot compute
values of f exactly but have to rely on a numerical PDE solver. If we assume
that this solver has discretization parameters l = (l1, . . . , ld) ∈ N

d and returns
approximations uy,l such that the functions

fl : Γ → R

y #→ fl(y) := Q(uy,l)

are elements of Hβ

mix([0, 1]m), then we may define the numerical approximation
method

A : Nm ×N
d → Hα

mix([0, 1]m) =: Y

A (k, l) :=
(m⊗

j=1

Skj

)
fl,

with n := m+ d discretization parameters.
At this point the reader should already be convinced that straightforward

approximation is a bad idea. We therefore omit this part of the analysis, and directly
move on to the application of Smolyak’s algorithm. To do so, we need to identify
functions ej : N→ R> such that A ∈ E(ej)nj=1

(Y). For this purpose, we write A as

A (k, l) =M (A1(k),A2(l)),

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 223

where

A1(k) :=
m⊗

j=1

Skj ∈ L
(
H
β

mix([0, 1]m);Hα
mix([0, 1]m)

)
=: Y1 ∀k ∈ N

m

A2(l) := fl ∈ Hβ
mix([0, 1]m) =: Y2 ∀l ∈ N

d

and

M : Y1 × Y2 → Y

is the application of linear operators in Y1 to functions in Y2. Since M is continuous
and multilinear, we may apply part (iv) of Proposition 2 to reduce our task to the
study of A1 and A2. The first part can be done exactly as in Sect. 5.1. The second
part can be done similarly to Sect. 5.4. However, we now have to verify not only that
the approximations uy,l converge to the exact solutions uy for each fixed value of y

as mindj=1 lj →∞, but that this convergence holds in some uniform sense over the
parameter space.

More specifically, let us denote by Δ(l)mix the mixed difference operator with
respect to the parameters l and let us assume that

‖Δ(l)mixfl‖Hβmix([0,1]m) �
d∏

j=1

exp(−κj lj) =:
d∏

j=1

e
(2)
j (lj) ∀l ∈ N

d .

For example, such bounds are proven in [13, 14]. If the interpolation operators
satisfy as before

‖Sk − Id ‖Hβ([0,1])→Hα([0,1]) � 2−k(β−α) =: e(1)(k) ∀ k ∈ N,

then the results of Sect. 5.1 together with part (iv) of Proposition 2 shows that

A ∈ E
(e(1))mj=1∪(e(2)j)dj=1

(Y).

If we further assume that the work required by the PDE solver with discretization
parameters l is bounded by exp(γ (2) · l) for some γ ∈ R

d
>, then we may assign as

total work to the algorithm A (k, l) the value

Work(A (k, l)) := 2|k|1 exp(γ · l),

which is the number of required samples, 2|k|1 , times the bound on the work per
sample, exp(γ · l). Thus, by Theorem 1, Smolyak’s algorithm achieves the accuracy

‖SL(A)− f ‖Y � ε

224 R. Tempone and S. Wolfers

with

Work(SL(A)) � ε−ρ | log ε|r ,

where ρ := max{1/(β − α),max{γj/κj }dj=1} and r ≥ 0 as in Sect. 4.1.

6 Conclusion

We showed how various existing efficient numerical methods for integration, Monte
Carlo simulations, interpolation, the solution of partial differential equations, and
uncertainty quantification can be derived from two common underlying principles:
decomposition and efficient truncation. The analysis of these methods was divided
into proving decay of mixed differences by means of Proposition 2 and then
applying general bounds on exponential sums in form of Theorem 1.

Besides simplifying and streamlining the analysis of existing methods, we hope
that the framework provided in this work encourages novel applications. Finally,
we believe that the general version of Smolyak’s algorithm presented here may
be helpful in designing flexible and reusable software implementations that can be
applied to future problems without modification.

Appendix

Lemma 1 Let γj > 0, βj > 0, and tj > 0 for j ∈ {1, . . . , n}. Then

∑

(β+γ)·k≤L
exp(γ · k)(k + 1)t ≤ C(γ , t, n) exp(μL)(L+ 1)n

∗−1+t∗,

where ρ := maxnj=1 γj/βj , μ := ρ
1+ρ , J := {j ∈ {1, . . . , n} : γj/βj = ρ},

n∗ := |J |, t∗ :=∑j∈J tj , and (k + 1)t :=∏n
j=1(kj + 1)tj .

Proof First, we assume without loss of generality that the dimensions are ordered
according to whether they belong to J or J c := {1, . . . , n} \ J . To avoid cluttered
notation we then separate dimensions by plus or minus signs in the subscripts; for
example, we write t = (tJ , tJ c) =: (t+, t−).

Next, we may replace the sum by an integral over {(β + γ) · x ≤ L}. Indeed, by
monotonicity we may do so if we replace L by L+|β+γ |1, but looking at the final
result we observe that a shift of L only affects the constant C(γ , t, n).

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 225

Finally, using a change of variables yj := (βj + γj)xj and the shorthand μ :=
γ /(β + γ) (with componentwise division) we obtain

∫

(β+γ)·x≤L
exp(γ · x)(x + 1)t dx

≤ C
∫

|y|1≤L
exp(μ · y)(y + 1)t dy

= C
∫

|y+|1≤L
exp(μ+ · y+)(y+ + 1)t+

×
∫

|y−|1≤L−|y+|1
exp(μ− · y−)(y− + 1)t− dy− dy+

≤ C
∫

|y+|1≤L
exp(μ|y+|1)(y+ + 1)t+

×
∫

|y−|1≤L−|y+|1
exp(μ−|y−|1)(y− + 1)t− dy− dy+ = (!),

where the last equality holds by definition of μ = max{μ+} and μ− := max{μ−}.
We use the letter C here and in the following to denote quantities that depend only
on γ , t and n but may change value from line to line. Using (y+ + 1)t+ ≤ (|y+|1 +
1)|t+|1 and (y− + 1)t− ≤ (|y−|1 + 1)|t−|1 and the linear change of variables y #→
(|y|1, y2, . . . , yn) in both integrals, we obtain

(!) ≤ C
∫

|y+|1≤L
exp(μ|y+|1)(|y+|1+1)|t+|1

∫

|y−|1≤L−|y+|1
exp(μ−|y−|1)(|y−|1+1)|t−|1 dy− dy+

≤ C
∫ L

0
exp(μu)(u + 1)|t+|1u|J |−1

∫ L−u

0
exp(μ−v)(v + 1)|t−|1v|J c |−1 dv du

≤ C(L+ 1)|t+|1L|J |−1
∫ L

0
exp(μu)((L − u)+ 1)|t−|1 (L− u)|J c |−1

∫ L−u

0
exp(μ−v) dv du

≤ C(L+ 1)|t+|1+|J |−1
∫ L

0
exp(μu)(L − u+ 1)|t−|1 (L− u)|J c |−1 exp(μ−(L− u)) du

= C(L+ 1)|t+|1+|J |−1 exp(μL)
∫ L

0
exp(−(μ − μ−)w)(w + 1)|t−|1w|J c |−1 dw

≤ C(L+ 1)|t+|1+|J |−1 exp(μL),

where we used supremum bounds for both integrals for the third inequality, the
change of variables w := L − u for the penultimate equality, and the fact that
μ > μ− for the last inequality.

226 R. Tempone and S. Wolfers

Lemma 2 Let γj > 0, βj > 0, and sj > 0 for j ∈ {1, . . . , n}. Then

∑

(β+γ)·k>L
exp(−β · k)(k + 1)s ≤ C(β, s, n) exp(−νL)(L+ 1)n

∗−1+s∗,

where ρ := maxnj=1 γj/βj , ν := 1
1+ρ , J := {j ∈ {1, . . . , n} : γj/βj = ρ},

n∗ := |J |, s∗ :=∑j∈J tj , and (k + 1)s :=∏n
j=1(kj + 1)sj .

Proof First, we assume without loss of generality that the dimensions are ordered
according to whether they belong to J or J c. To avoid cluttered notation we then
separate dimensions by plus or minus signs in the subscripts; for example, we write
s = (sJ , sJ c) =: (s+, s−).

Next, we may replace the sum by an integral over {(β + γ) · x > L}. Indeed, by
monotonicity we may do so if we replace L by L−|β+γ |1, but looking at the final
result we observe that a shift of L only affects the constant C(β, s, n).

Finally, using a change of variables yj := (βj + γj)xj and the shorthand ν :=
β/(β + γ) (with componentwise division) we obtain
∫

(β+γ)·x>L
exp(−β · x)(x + 1)s dx ≤ C

∫

|y|1>L
exp(−ν · y)(y + 1)s dy

= C
∫

|y+|1>L
exp(−ν+ · y+)(y+ + 1)s+

∫

|y−|1>(L−|y+|1)+
exp(−ν− · y−)(y− + 1)s−dy−dy+

≤ C
∫

|y+|1>L
exp(−ν|y+|1)(y+ + 1)s+

∫

|y−|1>(L−|y+|1)+
exp(−ν−|y−|1)(y− + 1)s−dy−dy+

=: (!),

where the last equality holds by definition of ν = max{ν+} and ν− := max{ν−}.
We use the letter C here and in the following to denote quantities that depend only
on β, s and n but may change value from line to line. Using (y+ + 1)s+ ≤ (|y+|1+
1)|s+|1 and (y− + 1)s− ≤ (|y−|1 + 1)|s−|1 and the linear change of variables y #→
(|y|1, y2, . . . , yn) in both integrals, we obtain

(!)≤C
∫

|y+|1>0
exp(−ν|y+|1)(|y+|1+1)|s+|1

∫

|y−|1>(L−|y+|1)+
exp(−ν−|y−|1)(|y−|1+1)|s−|1dy−dy+

≤C
∫ ∞

0
exp(−νu)(u+ 1)|s+|1u|J |−1

∫ ∞

(L−u)+
exp(−ν−v)(v + 1)|s−|1v|Jc |−1 dv du

=C
∫ L

0
exp(−νu)(u+ 1)|s+|1+|J |−1

∫ ∞

L−u
exp(−ν−v)(v + 1)|s−|1+|Jc |−1 dv du

+ C
∫ ∞

L

exp(−νu)(u+ 1)|s+|1+|J |−1
∫ ∞

0
exp(−ν−v)(v + 1)|s−|1+|Jc |−1 dv du

= : (!!)+ (! ! !).

Smolyak’s Algorithm: A Powerful Black Box for the Acceleration of Scientific. . . 227

To bound (!!), we estimate the inner integral using the inequality
∫∞
a exp(−bv)(v+

1)c dv ≤ C exp(−ba)(a + 1)c [21, (8.11.2)], which is valid for all positive a, b, c:

(!!) ≤ C
∫ L

0
exp(−νu)(u+ 1)|s+|1+|J |−1 exp(−ν−(L− u))(L− u+ 1)|s−|1+|J c |−1 du

≤ C(L+ 1)|s+|1+|J |−1
∫ L

0
exp(−ν(L−w)) exp(−ν−w)(w + 1)|s−|1+|J c |−1 dw

= C(L+ 1)|s+|1+|J |−1 exp(−νL)
∫ L

0
exp(−(ν− − ν)w)(w + 1)|s−|1+|J c |−1 dw

≤ C(L+ 1)|s+|1+|J |−1 exp(−νL),

where we used a supremum bound and the change of variables w := L − u for the
second inequality, and the fact that ν− > ν for the last inequality. Finally, to bound
(! ! !), we observe that the inner integral is independent of L, and bound the outer
integral in the same way we previously bounded the inner integral. This shows

(! ! !) ≤ C exp(−νL)(L+ 1)|s+|1+|J |−1.

References

1. I. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic
elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

2. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
3. A. Defant, K. Floret, Tensor Norms and Operator Ideals (Elsevier, Burlington, 1992)
4. D. Dũng, M. Griebel, Hyperbolic cross approximation in infinite dimensions. J. Complexity

33, 55–88 (2016)
5. D. Dũng, V.N. Temlyakov, T. Ullrich, Hyperbolic cross approximation (2015).

arXiv:1601.03978
6. J. Garcke, A dimension adaptive sparse grid combination technique for machine learning.

ANZIAM J. 48(C), C725–C740 (2007)
7. J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications (Springer, Berlin, 2012),

pp. 57–80
8. M.B. Giles, Multilevel monte carlo path simulation. Oper. Res. 56(3), 607–617 (2008)
9. M. Griebel, H. Harbrecht, On the convergence of the combination technique, in Sparse Grids

and Applications (Springer, Cham, 2014), pp. 55–74
10. M. Griebel, J. Oettershagen, On tensor product approximation of analytic functions. J. Approx.

Theory 207, 348–379 (2016)
11. M. Griebel, M. Schneider, C. Zenger, A combination technique for the solution of sparse grid

problems, in Iterative Methods in Linear Algebra, ed. by P. de Groen, R. Beauwens. IMACS,
(Elsevier, Amsterdam, 1992), pp. 263–281

12. W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus (Springer, Berlin, 2012)
13. A.-L. Haji-Ali, F. Nobile, R. Tempone, Multi-index Monte Carlo: when sparsity meets

sampling. Numer. Math. 132(4), 767–806 (2016)
14. H. Harbrecht, M. Peters, M. Siebenmorgen, Multilevel accelerated quadrature for PDEs with

log-normally distributed diffusion coefficient. SIAM/ASA J. Uncertain. Quantif. 4(1), 520–
551 (2016)

228 R. Tempone and S. Wolfers

15. M. Hegland, Adaptive sparse grids. ANZIAM J. 44(C), C335–C353 (2002)
16. S. Heinrich, Monte Carlo complexity of global solution of integral equations. J. Complexity

14(2), 151–175 (1998)
17. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer,

Berlin, 1992)
18. O.P. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification (Springer, Berlin,

2010)
19. S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations (Wiley,

New York, 1990)
20. F. Nobile, R. Tempone, S. Wolfers, Sparse approximation of multilinear problems with

applications to kernel-based methods in UQ. Numer. Math. 139(1), 247–280 (2018)
21. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R.

Miller, B.V. Saunders (eds.), NIST Digital Library of Mathematical Functions. http://dlmf.nist.
gov/. Release 1.0.13 of 2016-09-16

22. A. Papageorgiou, H. Woźniakowski, Tractability through increasing smoothness. J. Complex-
ity 26(5), 409–421 (2010)

23. I.H. Sloan, H. Woźniakowski, Tractability of multivariate integration for weighted Korobov
classes. J. Complexity 17(4), 697–721 (2001)

24. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Math. Dokl. 4, 240–243 (1963)

25. G.W. Wasilkowski, H. Woźniakowski, Explicit cost bounds of algorithms for multivariate
tensor product problems. J. Complexity 11(1), 1–56 (1995)

26. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations. Proceedings
of the Sixth GAMM-Seminar, ed. by W. Hackbusch (Vieweg, Braunschweig, 1991)

http://dlmf.nist.gov/
http://dlmf.nist.gov/

Fundamental Splines on Sparse Grids
and Their Application to Gradient-Based
Optimization

Julian Valentin and Dirk Pflüger

Abstract Most types of hierarchical basis functions for sparse grids are not
continuously differentiable. This can lead to problems, for example, when using
gradient-based optimization methods on sparse grid functions. B-splines represent
an interesting alternative to conventional basis types since they have displayed
promising results for regression and optimization problems. However, their over-
lapping support impedes the task of hierarchization (computing the interpolant), as,
in general, the solution of a linear system is required. To cope with this problem,
we propose three general basis transformations. They leave the spanned function
space on dimensionally adaptive sparse grids or full grids unchanged, but result
in triangular linear systems. One of the transformations, when applied to the B-
spline basis, yields the well-known fundamental splines. We suggest a modification
of the resulting sparse grid basis to enable nearly linear extrapolation towards the
domain’s boundary without the need to spend boundary points. Finally, we apply
the hierarchical modified fundamental spline basis to gradient-based optimization
with sparse grid surrogates.

1 Introduction

When dealing with real-valued functions f : [0, 1]d → R on higher-dimensional
domains (such as interpolation and optimization), one must consider the curse of
dimensionality. The curse states that the number of discretization points needed for
a uniform sampling of [0, 1]d depends exponentially on d . As a result, conventional
approaches are typically ruled out even for moderate dimensionalities, where d ≥ 4.
To tackle the curse, sparse grids have been used successfully for discretization [2, 4,
19].

J. Valentin · D. Pflüger (�)
Simulation of Large Systems (SGS), Institute for Parallel and Distributed Systems (IPVS),
University of Stuttgart, Stuttgart, Germany
e-mail: julian.valentin@ipvs.uni-stuttgart.de; dirk.pflueger@ipvs.uni-stuttgart.de

© Springer International Publishing AG, part of Springer Nature 2018
J. Garcke et al. (eds.), Sparse Grids and Applications – Miami 2016,
Lecture Notes in Computational Science and Engineering 123,
https://doi.org/10.1007/978-3-319-75426-0_10

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75426-0_10&domain=pdf
mailto:julian.valentin@ipvs.uni-stuttgart.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de
https://doi.org/10.1007/978-3-319-75426-0_10

230 J. Valentin and D. Pflüger

Sparse grids can be used with different types of hierarchical bases. Common
types include the piecewise linear [22] and the piecewise polynomial functions of
Bungartz [1]. All these 1D bases are continuous on [0, 1], but not continuously dif-
ferentiable. This leads to problems when using sparse grid surrogates in applications
that depend on derivatives, such as gradient-based optimization. Using hierarchical
B-splines on sparse grids is a promising approach to overcome this problem. Their
smoothness can be adjusted by their degree p, and their compact support and piece-
wise polynomial structure facilitate their handling both analytically and numerically.
Moreover, the piecewise linear functions are a special case of B-splines, obtained by
setting p = 1. B-spline sparse grid interpolants have been employed successfully
for gradient-based optimization and topology optimization [19].

The main drawback of B-splines is their non-local support (even though compact)
in the sense that a B-spline does not necessarily vanish at neighboring grid
points. This greatly complicates the process of hierarchization (i.e., computing the
interpolant): For basis functions with local support (i.e., suppϕl,i = [xl,i−hl, xl,i+
hl] with xl,i := ihl , hl := 2−l), hierarchization can be done efficiently via the
unidirectional principle, which works for spatially adaptive grids in which direct
ancestors exist in every coordinate direction (see [11, 12]). For B-splines, however, a
linear system must be solved to perform hierarchization. The corresponding system
matrix is generally non-symmetric (in contrast to regression tasks [11]) and may be
either sparsely or densely populated. Consequently, considerable time and system
memory are required to solve the linear system.

In this paper, we propose three transformations that convert a general hierarchical
basis into another hierarchical basis that satisfies a specific fundamental property.
The resulting transformed bases lead to easily solvable triangular hierarchization
systems. One transformation leaves the spanned sparse grid space invariant, while
the other two leave the spanned nodal spaces invariant. If we apply the third trans-
formation to the hierarchical B-spline space, we obtain the hierarchical fundamental
spline basis, whose analytical approximation quality on sparse grids has been pre-
viously studied [17]. We propose modifying the fundamental splines, analogously
to the modified B-spline basis [11], to attain meaningful boundary values without
having to “spend” sparse grid points on the boundary itself. We compare the quality
of the hierarchical modified fundamental splines with the modified B-spline basis
in an application-based setting. Here, we choose the gradient-based optimization
of the corresponding sparse grid surrogates since optimization is one area in which
B-splines have shown good results [19].

The paper is structured as follows: First, we introduce our notation of hierarchical
B-splines on sparse grids in Sect. 2 and state the hierarchization problem. In
Sect. 3, we study the behavior of general hierarchical basis functions which fulfill
the fundamental property. We give definitions of the different transformations to
transform an existing sparse grid basis into one that satisfies the fundamental
property in Sect. 4. As already mentioned, one of them leads to the well-known
fundamental splines, which we discuss in Sect. 5. We compare the performance of
the fundamental splines versus the B-spline basis (both modified) in gradient-based
optimization in Sect. 6. Finally, we conclude in Sect. 7.

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 231

2 B-Splines on Sparse Grids

In this section, we first repeat the definition of B-splines on sparse grids [11, 19]
and then state the problems which arise for typical algorithms at the example of
hierarchization.

2.1 Definition and Properties

Let p ∈ N0. The cardinal B-spline bp : R→ R of degree p is defined by

b0(x) := χ[0,1)(x) , bp(x) :=
∫ 1

0
bp−1(x − y) dy .

Equivalently (cf. [5, 6]), bp can be defined by the recursion

bp(x) = x

p
bp−1(x)+ p + 1− x

p
bp−1(x − 1) ,

which can be used to prove simple properties such as boundedness (0 ≤ bp ≤ 1)
and compact support (supp bp = [0, p+1]). bp is indeed a spline of degreep, i.e., a
piecewise polynomial of degree≤ p and (p− 1) times continuously differentiable.
The pieces are the so-called knot intervals [k, k + 1), k = 0, . . . , p, whereas
the points k = 0, . . . , p + 1 are called knots (places where the pth derivative is
discontinuous). The translates {bp(· − k) | k ∈ Z} form a basis of the spline space
of degree p (all functions on R that are, for every k ∈ Z, polynomials of degree≤ p
on [k, k + 1) and at least (p − 1) times continuously differentiable at x = k).

Hierarchical B-splines ϕpl,i : [0, 1] → R of level l ∈ N and index i ∈ Il :=
{1, 3, 5, . . . , 2l − 1} are defined by

ϕ
p
l,i(x) := bp

(
x

hl
+ p + 1

2
− i
)

, hl := 2−l .

We will consider only odd degree p (covers the common cases p ∈ {1, 3}), as
otherwise grid points xl,i := ihl and knots do not coincide. This leads to non-
nested nodal spaces and prevents their necessary decomposition into hierarchical
subspaces.

Multivariate hierarchical B-splines are defined by the usual tensor product
approach, i.e., ϕp

l,i : [0, 1]d → R for p ∈ N
d
0 , l ∈ N

d , i ∈ Il := Il1 × · · · × Ild ,
and

ϕ
p
l,i(x) :=

d∏

t=1

ϕ
pt
lt ,it
(xt) .

232 J. Valentin and D. Pflüger

Nodal and hierarchical subspaces are defined by

V
p
l := span{ϕp

l,i | 1 ≤ i ≤ 2l − 1} , W
p
l := span{ϕp

l,i | i ∈ Il} ,

where “1 ≤ i ≤ 2l − 1” is to be read coordinate-wise. The basis functions that
span these subspaces are shown in Fig. 1. The corresponding grid points are given
by xl,i := (xl1,i1 , . . . , xld ,id). If we restrict the domain of all functions to

D
p
l := Dp1

l1
× · · · ×Dpdld , D

pt
lt
:=
[
pt + 1

2
hlt , 1−

pt + 1

2
hlt

]

,

we can infer

V
p
l

∣
∣
D

p
l
=
⊕

l′≤l

W
p
l′
∣
∣
∣
D

p
l

,

where both sides coincide with the spline space of degree p corresponding to the
full grid of level l, as we have shown in [19]. The sparse grid space V p,s

n of level
n ∈ N can now be constructed as usual by

V p,s
n :=

⊕

‖l‖1≤n+d−1

W
p
l .

Here and in the following, the superscript “s” denotes “sparse grid” (in contrast to
full grids). Note that the well-known piecewise linear sparse grid space is a special
case for p = 1.

The basis functions of the common hierarchical bases (such as piecewise linear
or piecewise polynomial ones) of level l ≥ 1 vanish on the boundary of the domain
[0, 1]d . As a result, interpolants f̃ of a function f will vanish there, too. Even though
not all B-splines vanish on the boundary, interpolants decay unnaturally towards it,
as necessary degrees of freedom are missing near the boundary.

One approach to represent functions with non-zero boundary values is to use
sparse grids with boundary points, i.e., an additional 1D level l = 0 is introduced
together with two basis functions (i ∈ {0, 1}). However, especially in higher
dimensions, disproportionately many points (and, thus, function evaluations) have
to be spent on the boundary. This severely limits the number of dimensions that can
be dealt with.

An alternative approach is instead to modify the basis to extrapolate towards the
boundary [11]: The 1D basis function of level 1 is set to the constant 1, while on
higher levels l, the left-most and right-most basis functions (with index i = 1 or
i = 2l − 1) are modified such that the basis function is linear or almost linear at the
boundary. This mimics linear extrapolation. Starting from the linear case p = 1, in

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 233

which this is achieved by ϕ1,mod
l,1 := ϕ1

l,1+ 2ϕ1
l,0 and ϕ1,mod

l,2l−1
:= ϕ1

l,2l−1
+ 2ϕ1

l,2l
, this

modification can be generalized for B-splines [11]:

ϕ
p,mod
l,i (x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if l = 1, i = 1,

ψ
p
l
(x) if l > 1, i = 1,

ψ
p
l
(1− x) if l > 1, i = 2l − 1,

ϕ
p
l,i
(x) otherwise,

ψ
p
l :=

,(p+1)/2-∑

k=0

(k + 1)ϕp
l,1−k .

One can prove with Marsden’s identity [6] that for 1 ≤ p ≤ 4, ψpl is linear near the
boundary:

ψ
p
l (x) = 2− x

hl
, x ∈

[

0,
5− p

2
hl

]

. (1)

For higher degrees p, the deviation from 2 − x/hl is very small [11]. Multivariate
modified basis functions are formed via the tensor product approach. The one-
dimensional modification is shown in Fig. 1 (right).

0 x1,1 1

1

2

p
1,1 V p

1

x2,1 x2,2 x2,3

1

2

p
2,1

p
2,2

p
2,3 V p

2

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

1

2

p
3,1

p
3,2

p
3,3

p
3,4

p
3,5

p
3,6

p
3,7 V p

3 =
⊕

0 x1,1 1

1

2

p
1,1

p,mod
1,1

Wp
1

x2,1 x2,3

1

2

p
2,1

p
2,3

p,mod
2,1

p,mod
2,3

Wp
2

x3,1 x3,3 x3,5 x3,7

1

2

p
3,1

p
3,3

p
3,5

p
3,7

p,mod
3,1

p,mod
3,7

Wp
3

Fig. 1 Left: Nodal cubic B-splines, spanning V pl . Right: Hierarchical cubic B-splines, spanning

W
p

l . On Dpl (thick), the span of
⊕l
l′=1W

p

l′ equals V pl (here, l = 3). For reasonable boundary
values, use the modified cubic B-splines (dashed)

234 J. Valentin and D. Pflüger

2.2 Hierarchization with B-Splines

Hierarchical B-splines can be used for interpolation on sparse grids. In the follow-
ing, we assume Ωs

� [0, 1]d , N := |Ωs| < ∞, to be a spatially adaptive sparse
grid, i.e., consisting of grid points xl,i which have at least one ancestor point:

∀xl,i∈Ωs∃xl′,i′∈Ωs∃t ′∈{1,...,d} (lt , it) =
{
(l′t + 1, 2i ′t ± 1) if t = t ′,
(l′t , i ′t) otherwise.

(2)

We further assume that for every grid point xk,j ∈ Ωs some data f (xk,j) ∈ R is
given. The task of computing coefficients αl,i ∈ R with

∀xk,j∈Ωs f̃ (xk,j) = f (xk,j) , f̃ :=
∑

xl,i∈Ωs

αl,iϕ
p
l,i ,

is called hierarchization. The coefficients are called hierarchical surpluses, a name
which stems from the piecewise linear and the piecewise polynomial functions.
Hierarchization is equivalent to solving a system of linear equations,

Aααα = f , A := (ϕp
s (xr))r,s , ααα := (αs)s , f := (f (xr))r , (3)

where the row and column indices r, s ∈ {1, . . . , N} are linearized indices (in
arbitrary order) of the level-index pairs (k, j) and (l, i), respectively.

Unfortunately, using hierarchical B-splines as basis functions leads to linear
systems which are hard to solve, since they are in general non-symmetric and
densely populated: The matrix entry in the row corresponding to (k, j) and the
column corresponding to (l, i) vanishes if and only if

xk,j /∈ supp0 ϕ
p
l,i ⇐⇒ ∃t=1,...,d xkt ,jt /∈

(

xlt ,it −
pt + 1

2
hlt , xlt ,it +

pt + 1

2
hlt

)

,

where supp0 denotes the interior of the support. However, for low levels l, the mesh
width hlt is rather large in every dimension t , implying that only few grid points lie
outside supp0 ϕ

p
l,i. For general degree p, every matrix entry ϕp

l,i(xk,j) can be non-
zero due to the overlapping supports of the hierarchical B-splines. In contrast to the
case p = 1 of hat functions, the value of αl,i depends not only on f (xl,i) and the
data at the 3d − 1 neighboring grid points on the boundary of suppϕ1

l,i. This makes
the use of the so-called unidirectional principle, which hierarchizes with O(Nd)
one-dimensional basis evaluations, only possible for dimensionally adaptive sparse
grids.

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 235

3 Fundamental Property

Much of the root of the difficulties of hierarchization lies in the overlapping support
of the B-splines, which the B-splines need for their good approximation quality.
However, it would already suffice if we had 1D basis functions φF

l,i : [0, 1] → R

that satisfy

φF
l,i (xk,j) = 0 , k < l , j ∈ Ik ,
φF
l,i (xl,j) = δi,j , j ∈ Il .

(4)

We call the property fundamental property. The first equation in (4) makes sure
that every basis function vanishes at all grid points of coarser levels. The second
equation says that the basis functions should additionally vanish at all other grid
points of the same level. As a result, the corresponding 1D hierarchization system
matrix A = (φF

s (xr))r,s is in lower triangular form with ones on the diagonal if
the row and column indices r and s are identically sorted by increasing level of the
corresponding grid points and basis functions.

In the multidimensional tensor product case, the arguments are very similar: We
observe that (4) implies

φF
l,i(xk,j) �= 0 0⇒ ∀t=1,...,d

[
(lt < kt) ∨ ((lt , it) = (kt , jt))

]
, xk,j ∈ Ωs .

(5)

In other words, at a fixed grid point xk,j, only those basis functions φF
l,i can be

non-zero which, in each dimension, have coarser levels than the grid point xk,j or
the same level-index pair. For a suitable ordering as in the 1D case (but sorting by
level sum ‖·‖1 instead), A will be in lower triangular form, which is the statement
of the following forward substitution lemma. The following considerations hold
for arbitrary tensor product bases, which we denote with φl,i (as opposed to the
B-splines ϕp

l,i). In each dimension, we could even employ different types of basis
functions, which would enable dimensional p-adaptivity.

Lemma 1 Let Ωs
� [0, 1]d be a spatially adaptive sparse grid with arbitrary

tensor product basis functions φF
l,i consisting of 1D functions φF

lt ,it
which fulfill (4).

Then the hierarchical surplus of a grid point xk,j ∈ Ωs satisfies

αk,j = f (xk,j)−
∑

xl,i∈Ωs,
‖l‖1<‖k‖1

αl,iφ
F
l,i(xk,j) .

Proof The row of the linear system (3) corresponding to the level-index pair (k, j)
is

∑

xl,i∈Ωs

αl,iφ
F
l,i(xk,j) = f (xk,j) . (6)

236 J. Valentin and D. Pflüger

Fig. 2 Directed acyclic
graph (DAG) of the
two-dimensional regular
sparse grid of level 3. The
markers indicate the depth of
the grid points, i.e., their
distance from the “root” x1,1

Algorithm 1: BFS for hierarchization with fundamental basis functions

Input : Sparse grid Ωs
� [0, 1]d , vector f = (f (xk,j))(k,j) of function values

Output: Vector ααα = (αl,i)(l,i) of hierarchical surpluses
ααα← f;
q ← empty FIFO queue;
Push(q, x1,1); // insert root point
Ωs

p ← {x1,1}; // list of processed grid points

while q �= ∅ do
xl,i ← Pop(q);
foreach {xk,j ∈ Ωs \ {xl,i} | ∀t=1,...,d (kt > lt) ∨ ((kt , jt) = (lt , it))} do

αk,j ← αk,j − αl,iφ
F
l,i(xk,j); // update surpluses

foreach {xk,j ∈ Ωs \Ωs
p | xk,j direct child of xl,i} do

Push(q, xk,j);
Ωs

p ← Ωs
p ∪ {xk,j}; // mark as processed

In the case ‖l‖1 > ‖k‖1, we infer by (5) that φF
l,i(xk,j) = 0 as lt > kt for some

t . If ‖l‖1 = ‖k‖1, then either l = k or lt > kt for some t . In the latter case,
φF

l,i(xk,j) vanishes as before, whereas in the former case, φF
l,i(xk,j) =∏t δit ,jt by (5).

Hence, in (6), all summands with ‖l‖1 > ‖k‖1 vanish and for ‖l‖1 = ‖k‖1, only
αk,jφ

F
k,j(xk,j) = αk,j remains:

∑

xl,i∈Ωs,

‖l‖1<‖k‖1

αl,iφ
F
l,i(xk,j)+ αk,j = f (xk,j) ,

which implies the assertion. ��
The lemma allows the hierarchical surpluses to be calculated level by level via

a breadth-first search (BFS) in the directed acyclic graph (DAG) of Ωs (see Fig. 2).
We need here that every node is reachable from the root, which is implied by (2).
Algorithm 1 shows an implementation of the BFS. Its correctness is somewhat
obvious, but can be proved formally with the aid of Lemma 1.

With Algorithm 1, the hierarchical surpluses can be calculated relatively effi-
ciently for basis functions which satisfy (4): The algorithm performs O(N2d)many
1D evaluations with N := |Ωs|, and, more importantly, only needs linear space
O(N). This is a significant gain compared to the usual space complexity O(N2) for
directly solving general (densely populated) linear systems of dimension N .

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 237

4 Sparse Grid Basis Transformations

We now consider the question of how to construct 1D basis functions φF
l,i which

fulfill (4) starting from some existing sparse grid basis φl,i . The basis transforma-
tions are formulated for arbitrary tensor product basis functions φl,i , but we always
keep in mind our primary case of application, the B-splines ϕpl,i . We first restrict
ourselves to the 1D case, as the multivariate case is simply handled by the tensor
product approach.

4.1 Hierarchical Fundamental Transformation

A canonical way to construct fundamental bases is to find coefficients cl,i
l′,i′ ∈ R with

φhft
l,i :=

∑

l′≤l

∑

i′∈Il′
c
l,i
l′,i′φl′,i′ s.t. ∀k≤l∀j∈Ik φhft

l,i (xk,j) = δl,kδi,j , (7)

where φhft
l,i is the interpolant of the data {(xl,j , δi,j) | j = 1, . . . , 2l − 1} using

the hierarchical basis of the regular grid of level l. The coefficients cl,i
l′,i′ depend

on level and index of the basis function φhft
l,i and are (in general) different for each

basis function. This makes precomputation and storage of the 2l − 1 coefficients
(which are the solution of a linear system) cumbersome. In addition, to evaluate
φhft
l,i at a given x, 2l − 1 basis functions φl′,i′ have to be evaluated (when globally

supported). If the φl′,i′ are B-splines ϕp
l′,i′ of degree p, then we have to evaluate

O(p) functions on each level l′ ≤ l due to their local support, leading to a level-
dependent complexity of O(l·p). The resulting functionsϕp,hft

l,i are shown in Fig. 3a.

We call the transformation φl,i #→ φhft
l,i in (7) hierarchical fundamental transfor-

mation. The transition is only a change of basis, as we obtain the same interpolants
f̃ on a regular sparse grid compared to the old basis functions φl,i (i.e., the regular
sparse grid spaces spanned by the bases remain unchanged). Note that using a
similar argument, the claim can be generalized to dimensionally adaptive sparse
grids.

Lemma 2 Let n ∈ N and let Ωs
n := {xl,i | ‖l‖1 ≤ n + d − 1, i ∈ Il} be the set of

the grid points of the regular sparse grid of level n. Then {φl,i} and {φhft
l,i } span the

same regular sparse grid space of level n (grid point set Ωs
n):

span{φl,i | xl,i ∈ Ωs
n} =: V s

n = V hft,s
n := span{φhft

l,i | xl,i ∈ Ωs
n} .

238 J. Valentin and D. Pflüger

x1,1 1
0

1

x2,1 x2,3
0

1

x3,1 x3,3 x3,5 x3,7
0

1

(a)

x1,1 1
0

1

x2,1 x2,3
0

1

x3,1 x3,3 x3,5 x3,7
0

1

(b)

x1,1 1
0

1

x2,1 x2,3
0

1

x3,1 x3,3 x3,5 x3,7
0

1

(c)

Fig. 3 Hierarchical fundamental bases illustrating the general fundamental transformations for the
hierarchical cubic B-spline basis. (a) Hierarchical fund. transformation (ϕp,hft

l,i). (b) Nodal fund.

transformation (ϕp,nft
l,i). (c) Translation-invariant fund. transformation (ϕp,tiftl,i = ϕp,fsl,i)

Proof Clearly, V s
n ⊇ V hft,s

n holds as φhft
l,i ∈ V s

n for all ‖l‖1 ≤ n+ d − 1, i ∈ Il:

φhft
l,i =

d∏

t=1

∑

l′t≤lt

∑

i′t∈Il′t

c
lt ,it
l′t ,i′t
φl′t ,i′t =

∑

l′≤l

∑

i′∈Il′
c

l,i
l′,i′φl′,i′ ∈ V s

n , c
l,i
l′,i′ :=

d∏

t=1

c
lt ,it
l′t ,i′t

.

For V s
n ⊆ V

hft,s
n , it suffices to check that the dimensions of both spaces match.

We show that {φhft
l,i | xl,i ∈ Ωs

n} is linearly independent. For arbitrary coefficients

αl,i ∈ R with
∑

xl,i∈Ωs
n
αl,iφ

hft
l,i = 0, we have

∀xk,j∈Ωs
n

∑

xl,i∈Ωs
n

αl,iφ
hft
l,i (xk,j) = 0 .

This is a lower triangular linear system with ones on the diagonal if we arrange rows
and columns appropriately as before. This implies regularity of the linear system and
thus αl,i = 0 for all xl,i ∈ Ωs

n. Therefore, {φhft
l,i | xl,i ∈ Ωs

n} is linearly independent

and dimV hft,s
n = |Ωs

n| = dimV s
n (the latter equation holds as {φl,i} is assumed to be

a sparse grid basis). Together with V s
n ⊇ V hft,s

n , this implies V s
n = V hft,s

n . ��

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 239

4.2 Nodal Fundamental Transformation

The hierarchical fundamental transformation has the drawback of the level-
dependent complexity for evaluations (O(l · p) in the B-spline case). This is
not the case if we use the nodal basis of level l instead of the hierarchical functions
of level ≤ l to interpolate the same 1D data {(xl,j , δi,j) | j = 1, . . . , 2l − 1} for
constructing the new basis function of level l:

φnft
l,i :=

2l−1∑

i′=1

c
l,i
i′ φl,i′ s.t. ∀j=1,...,2l−1 φnft

l,i (xl,j) = δi,j .

We call this transformation nodal fundamental transformation. The evaluation
complexity then only depends on the nodal basis support; for B-splines, only O(p)
basis functions can be non-zero at a certain point. The resulting fundamental basis
is shown in Fig. 3b. Nevertheless, if we compare again the spaces spanned by the
original and the nodal fundamental basis, a sparse-grid-based comparison as for the
hierarchical fundamental transformation is difficult: The multivariate fundamental
functions φnft

l,i :=
∏d
t=1 φ

nft
lt ,it

are tensor products of nodal 1D basis functions φnft
lt ,it

(some with even index), leading to linear combinations of nodal multivariate basis
functions, which, in general, cannot be represented by the original functions in the
sparse grid space. On full grids, however, the spanned spaces coincide.

Lemma 3 {φl,i} and {φnft
l,i } span the same nodal space:

span
{
φl,i | 1 ≤ i ≤ 2l − 1

}
=: Vl = V nft

l := span
{
φnft

l,i | 1 ≤ i ≤ 2l − 1
}
, l ∈ N

d .

This statement can be proved analogously to Lemma 2.

4.3 Translation-Invariant Fundamental Transformation

Both the hierarchical and the nodal fundamental transformation do not preserve the
translation invariance (φl,i(x) = φ(x/hl − i), i ∈ Il , for some mother function
φ : R → R) of the original basis. From a computational point of view, this is
a major disadvantage, since the coefficients cl,i

l′,i′ or cl,i
i′ of the basis function of

level l and index i depend on l, i and would have to be recalculated for every basis
function. To tackle this problem, we use the nodal fundamental transformation for
the construction, but now allow for general integer indices:

φtift
l,i :=

∑

i′∈Z
c̃i′φl,i′ s.t. ∀j∈Z φtift

l,i (xl,j) = δi,j . (8)

240 J. Valentin and D. Pflüger

This transformation is invariant under translation-invariance, i.e., if the original
basis functions have the form φl,i′(x) = φ(x/hl − i ′), then

φtift
l,i (x) =

∑

i′∈Z
c̃i′φ

(
x

hl
− i ′

)

=
∑

k∈Z
c̃k+iφ

(
x

hl
− i − k

)

= φtift
(
x

hl
− i
)

,

where φtift can be obtained by setting ck := c̃k+i in

φtift :=
∑

k∈Z
ckφ(· − k) s.t. ∀j∈Z φtift(j) = δj,0 . (9)

We therefore call this the translation-invariant fundamental transformation. We
assume that the relevant index set

Jl := {i ′ ∈ Z | φl,i′ |[0,1] �≡ 0}

is finite, which implies that in each point x ∈ [0, 1], almost all functions φl,i′ of
a level l vanish. This condition is satisfied for compactly supported, translation-
invariant (continuous) basis functions such as the B-splines, and this allows us to
replace the series over i ′ ∈ Z in (8) and (9) with sums over i ′ ∈ Jl , if we evaluate
φtift
l,i on [0, 1]. In d dimensions, we write Jl := Jl1 × · · · × Jld . The resulting basis

when using B-splines ϕp
l,i′ as φl,i′ is shown in Fig. 3c; it will be studied in the next

section.
As for the (non-translation-invariant) nodal fundamental transformation, a com-

parison of the spanned subspaces of original and transformed basis functions can,
in general, only be made for the nodal bases. This time, we have to additionally
include exterior basis functions φl,i where it < 1 or it > 2lt − 1 for some t . These
are the basis functions which have supports that extend into [0, 1]d .

Lemma 4 {φl,i} and {φtift
l,i } span the same nodal space, if we include exterior basis

functions:

span
{
φl,i | i ∈ Jl

} =: V ext
l = V tift,ext

l := span
{
φtift

l,i | i ∈ Jl

}
, l ∈ N

d . (10)

The proof is analogous to Lemmas 2 and 3.

5 Hierarchical Fundamental Splines

5.1 Definition and Properties

In the previous section, we formulated the translation-invariant fundamental trans-
formation for general hierarchical bases. In the following, we will apply the

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 241

−4 −2 0 2 4
0

1

(a)

−4 −2 0 2 4
0

1

(b)

−4 −2 0 2 4
0

1

(c)

Fig. 4 The fundamental spline ϕp,fs (thick line) as a linear combination of the B-splines ϕp(·−k),
k ∈ Z (thin lines), for degrees. (a) p = 3. (b) p = 5. (c) p = 7

transformation to the case of B-splines, i.e., in the notation of Sect. 4.3,

ϕp(x) = bp
(

x + p + 1

2

)

, J
p

l =
{

−p − 1

2
,−p − 1

2
+ 1, . . . , 2l + p − 1

2

}

.

Equation (9) then leads to a bi-infinite-dimensional linear system for the coefficients
c
p

k of ϕp,tift:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
. . .

. . .

. . . bp(
p+1

2) bp(
p+1

2 − 1) bp(p+1
2 − 2)

. . . bp(
p+1

2 + 1) bp(
p+1

2) bp(
p+1

2 − 1)
. . .

bp(
p+1

2 + 2) bp(p+1
2 + 1) bp(

p+1
2)

. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

c
p

−1
c
p
0
c
p

1
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

0

1

0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

The system matrix is a symmetric banded Toeplitz matrix, since in each row only p
entries are non-zero. The linear system has indeed a unique solution:

Theorem 1 The linear system (11) has a unique solution (cpk)k∈Z, and the corre-
sponding mother function ϕp,fs :=∑k∈Z c

p
k ϕ

p(· − k) satisfies

∃βp,γp∈R+∀x∈R |ϕp,fs(x)| ≤ βp exp(− ln(γp)|x|) .

A proof of this theorem can be found in [15]. The corresponding mother function
ϕp,fs is well-known as the fundamental spline of degree p [15, 16], see Fig. 4.
Fundamental splines can be used, for example, to define spline wavelets [3].

The resulting hierarchical basis for cubic degree can be seen in Fig. 3c. The
common nodal space V p,fs,ext

l (defined by applying fundamental splines to (10))
of the hierarchical B-spline and the hierarchical fundamental spline basis is, using
the notation of Sect. 4.3 and [6], exactly the tensor product spline space Sp

Ξ with

242 J. Valentin and D. Pflüger

Table 1 Best-approximated values of βp and γp for different fundamental spline degrees p

p 1 3 5 7 9 11 13 15

βp 1 1.241 1.104 1.058 1.037 1.026 1.019 1.015

γp e 3.732 2.322 1.868 1.645 1.512 1.425 1.363

np 1 18 29 40 52 64 77 90

np is the smallest positive integer such that ∀|k|≥np |cpk | < 10−10

knots

Ξ := ξξξ1 × · · · × ξξξd ,
ξξξ t := (ξt,kt)mt+ptkt=0 , ξt,kt := (kt − pt)hlt , mt := 2lt + pt , t = 1, . . . , d .

This is the space of all functions on [0, 1]d which are d-variate polynomials
of coordinate degree ≤ p on every knot hyperrectangle [ξ1,k1, ξ1,k1+1] × · · · ×
[ξd,kd , ξd,kd+1] (p ≤ k ≤ m − 1) and at least (p − 1) times continuously partially
differentiable at every knot (ξ1,k1, . . . , ξd,kd) in the interior of [0, 1]d (p+ 1 ≤ k ≤
m− 1).

Due to the stability of the B-spline basis [6], Theorem 1 implies that the
coefficients cpk of ϕp,fs observe the same exponential decay as the fundamental
spline itself, i.e.,

|cpk | ≤ β̃p exp(− ln(γp)|k|)

with some β̃p > 0 independent of k. Because of this inequality, we may solve (11)
approximately if we choose a large enough np ∈ N, truncate the linear system to
2np − 1 dimensions, and set cpk = 0 for all |k| ≥ np. It is an interesting fact that
the optimal decay rate γp is algebraically determined as the absolute value of the
largest root smaller than −1 of the polynomial

∑p
k=1 b

p(k)xk−1 whose coefficients
are the values of the cardinal B-spline bp at its knots, see [3, 16]. In Table 1, we
give approximations for the value of βp and γp in addition to the truncation index
np that we use. Note that due to the local support of the B-splines, we do not have
to perform 2np+ 1 cardinal B-spline evaluations to evaluate the fundamental spline
once, but only p + 1 many.

5.2 Modified Fundamental Splines

The modifications of the basis functions in Sect. 2.1 were motivated by non-zero
boundary values: Without modification and without boundary grid points, every
linear combination of the hierarchical fundamental spline basis vanishes on the
boundary of [0, 1]d .

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 243

As for the B-splines [11, 19], we define modified fundamental splines by
modifying the first and last basis function of each level,

ϕ
p,fs,mod
l,i (x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if l = 1, i = 1,

ψ
p,fs
l (x) if l > 1, i = 1,

ψ
p,fs
l (1− x) if l > 1, i = 2l − 1,

ϕ
p,fs
l,i (x) otherwise.

Here, ψp,fsl is defined by

ψ
p,fs
l :=

∞∑

i=1−(p+1)/2

c
p,mod
i ϕ

p
l,i s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ
p,fs
l (xl,j) = δj,1, j ∈ N,

(ψ
p,fs
l)′′(xl,1) = 0,

(ψ
p,fs
l)(j)(0) = 0, j = 2, 3, . . . , (p + 1)/2,

(12)
for p > 1, where (ψp,fsl)′′ and (ψp,fsl)(j) denote the second and the j th derivative,

respectively, and ψp,fsl := ψ
p
l for p = 1. Note that the coefficients cp,mod

i do

not depend on the level l, as ψp,fsl (x) = ψ
p,fs
0 (x/hl). The resulting functions

are depicted in Fig. 5. The modification coefficients cp,mod
i experience the same

exponential decay as cpi and can thus be approximated as the solution of a truncated
linear system.

The choice of the conditions (12) is motivated by the cubic case p = 3 (Fig. 5a).
As the modified function ψp,fsl will not be evaluated for x < 0, it suffices to start
the summation at the index 1 − (p + 1)/2 of the first relevant B-spline (−1 in the
cubic case). We want ψp,fsl to satisfy the fundamental property at inner grid points
xl,i , which gives one condition for each B-spline ϕpl,i , i ∈ N, resulting in exactly
two remaining degrees of freedom in the cubic case (namely i = −1 and i = 0).
With these conditions, we want to extrapolate linearly on [0, xl,1] as we did with the
modification (1) of the cubic hierarchical B-splines, which is suitable for financial

x�,1 x�,2 x�,3 x�,4

−1

0

1

2

(a)

x�,1 x�,2 x�,3 x�,4

−1

0

1

2

(b)

x�,1 x�,2 x�,3 x�,4

−1

0

1

2

(c)

Fig. 5 Modified fundamental spline ψp,fsl (solid line) together with its first (dotted) and second
derivative (dashed). For illustrative purposes, the first and second derivatives are scaled to l = 0.
(a) p = 3. (b) p = 5. (c) p = 7

244 J. Valentin and D. Pflüger

applications [11], for instance. Thus, it seems natural to set the second derivative of
ψ
p,fs
l to zero in x = 0 and x = xl,1, since this leads to (ψp,fsl)′′(x) ≡ 0 on [0, xl,1]

in the cubic case as (ψp,fsl)′′ is piecewise linear. For higher degrees p, we use the

additional degrees of freedom to increase the multiplicity of the root of (ψp,fsl)′′ in

x = 0, making sure that (ψp,fsl)′′ is “as linear as possible” near x = 0. Note that we

cannot maintain (ψp,fsl)′′(x) ≡ 0 on [0, xl,1] for higher degrees. This would require
p−1 conditions, but after taking the fundamental conditions into account, there are
only (p + 1)/2 degrees of freedom left.

6 Application to Gradient-Based Optimization

In the following, we compare the modified fundamental spline basis with the
modified B-spline basis in an application-based setting. We do not consider the
hierarchical fundamental transformation and the nodal fundamental transformation,
as the resulting bases are not translation-invariant. As the application, we choose
gradient-based, global optimization: Given an objective function f : [0, 1]d → R,
the problem is to find xopt := arg minx∈[0,1]d f (x) or a good approximation x∗opt ∈
[0, 1]d (i.e., f (x∗opt) ≈ f (xopt)) with as few evaluations of f as possible. We
assume that each evaluation can trigger a lengthy simulation or a time-consuming
experiment (e.g., in inverse problems). Hence, an upper bound Nub ∈ N on the
number of allowed evaluations of f is given.

We solve the optimization problem as in [19] with a surrogate-based approach:
First, we generate a spatially adaptive sparse grid, in which we aim to spend more
grid points close to the global minimum while exploring the whole domain [0, 1]d
to identify the global minimum. Then, we interpolate at the grid points using either
the modified B-spline or the modified fundamental spline basis, resulting in an
interpolant f̃ : [0, 1]d → R. Finally, we apply gradient-based methods to f̃ to find
x∗opt. Note that one evaluation of the surrogate f̃ is, in most applications, orders of
magnitude cheaper than an evaluation of the objective function f . Additionally, we
can exploit the existence of gradients and Hessians of f̃ , even though we only used
function evaluations of f .

6.1 Generation of the Spatially Adaptive Grid

For the spatially adaptive grid generation, we employ the method of Novak–
Ritter [10, 19]. In each iteration, it refines exactly one grid point xl∗,i∗ of the current
sparse grid Ωs. The refinement of a point xl∗,i∗ ∈ Ωs is done by augmenting the
sparse grid with 2d so-called mth order children xl,i which satisfy

∃t ′∈{1,...,d} (lt , it) =
{
(l∗t +m, 2mi∗t ± 1) if t = t ′,
(l∗t , i∗t) otherwise.

(13)

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 245

Since, e.g., a first-order child of xl∗,i∗ might already exist in the grid, m is
individually chosen for each of the 2d points as the lowest number such that the
point to be inserted is not yet in the grid. Thus, in each iteration, exactly 2d points
are inserted. We do not automatically insert the hierarchical ancestors of (2) in all
directions. Their existence is an assumption needed for the unidirectional principle
(UP [11]), but the UP only works for hat functions and piecewise polynomials, not
for B-splines in general. In addition, due to the recursive insertion of the hierarchical
ancestors, this would lead to many grid points at uninteresting places [19]. Note that
we are not interested in a low L2 error in the whole domain, but rather in a good
representation locally around the global minimum.

The point to be refined is selected as the point xlk,ik ∈ Ωs with the smallest
quality

βk := (‖lk‖1 + dk + 1)γ · r1−γ
k .

Here, ‖lk‖1 is the level sum of the grid point, dk is the number of previous
refinements of xlk,ik , rk := |{j = 1, . . . , N | f (xlj ,ij) ≤ f (xlk,ik)}| is the rank
of xlk,ik in Ωs, and γ ∈ [0, 1] the adaptivity of the method. In the case γ = 0,
the method always refines the point of Ωs with the best function value, without
exploring the whole domain. For γ = 1, the function values have no influence on
the grid generation anymore and the method generates more or less regular sparse
grids. For a visual example of the influence of γ , see Fig. 6. The choice of the
adaptivity parameter is of course important, but we choose a priori a fixed adaptivity
γ = 0.85 for the following experiments. In our experience, this value seems to give
a reasonable trade-off between exploration and exploitation.

x1

x2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
(a)

x10 0.25 0.5 0.75 1

(b)

x10 0.25 0.5 0.75 1

(c)

Fig. 6 Spatially adaptive sparse grids with 1000 grid points generated with Novak–Ritter’s method
for the bivariate Branin test function and different values of the adaptivity parameter (dark contour
lines correspond to large function values). The function has three global minima (see Table 2). (a)
γ = 0.6. (b) γ = 0.85. (c) γ = 0.95

246 J. Valentin and D. Pflüger

6.2 Optimization Procedure

After generating the spatially adaptive sparse grid Ωs = {xlk,ik | k = 1, . . . , N},
N := |Ωs| ≤ Nub, we choose the type of hierarchical basis functions (either
modified B-splines or modified fundamental splines of degree p) and perform
the hierarchization of the function values f = (f (xlk,ik))

N
k=1, which are already

known from the grid generation phase. In the B-spline case, hierarchization is done
by solving the linear system (3) using various solver libraries, depending on the
sparsity structure. For fundamental splines, the system is solved more efficiently
using Algorithm 1.

The resulting hierarchical surplusesααα = (αk)Nk=1 determine the spline interpolant

f̃ : [0, 1]d → R, f̃ := ∑N
k=1 αkϕlk,ik , where the ϕlk ,ik are either the modified

B-splines ϕp,mod
lk,ik

(see [11, 19]) or the modified fundamental splines ϕp,fs,mod
lk,ik

of

degree p. The interpolant f̃ is (p − 1) times continuously partially differentiable,
hence, gradient-based optimization methods can be used to minimize f̃ . As in [19],
we used local methods [9] such as simple gradient descent, nonlinear conjugate
gradients [13], Newton’s method, BFGS, and Rprop [14]. Additionally, we use the
gradient-free methods Nelder–Mead (NM [8]) and Differential Evolution (DE [18]).
All methods have additionally been implemented in a globalized version using
m := min(10d, 100) uniformly distributed random starting points in a multi-start
approach.

Like in [19], we optimize not only the spline interpolant f̃ , but, for comparison
reasons, also the piecewise linear interpolant and the objective function directly:

(S) Apply all methods to f̃ with y0 := xlk∗ ,ik∗ , k∗ := arg mink f (xlk,ik), as starting
point. Additionally, we apply the globalized versions of the algorithms to f̃ .
We evaluate f at all resulting points and take the point as final result x∗opt with
the smallest f value, falling back to y0 if we somehow managed to become
worse.

(L) Same as (S), but optimize the piecewise linear interpolant instead. The piece-
wise linear interpolant is constructed by using the same sparse grid Ωs as for
the spline interpolant, but interpolating the function values with the common
hat function basis by setting p = 1. Since the piecewise linear interpolant is not
continuously partially differentiable, only the gradient-free methods NM and
DE are used for optimization.

(O) Apply the globalized NM directly to the objective function, always making sure
that the number of evaluations of f does not exceed Nub.

6.3 Test Functions and Results

We use the set of six test functions which we used in [19] and which are mentioned
in Table 2. The domains of some of the functions were translated to make sure that
the optima do not lie in the centers of the domains, as this would give sparse-grid-

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 247

Table 2 Test functions of two and arbitrary number of variables before scaling to [0, 1]d
Name Domain xopt f (xopt) Reference

Branin [−5, 10] × [0, 15] (−π, 12.275),
(π, 2.275),
(9.42478, 2.475)

0.397887 [7, Branin RCOS]

Eggholder [−512, 512]2 (512, 404.2319) −959.6407 [20, F101]

Rosenbrock [−5, 10]2 (1, 1) 0 [21]

Ackley [−1, 9]d 0 0 [21]

Rastrigin [−2, 8]d 0 0 [21]

Schwefel [−500, 500]d 420.9687 · 1 −418.9829d [21]

Mod. B-splines, p= 3 Mod. fund. splines, p= 3 Linear interpolant
Mod. B-splines, p= 5 Mod. fund. splines, p= 5 Objective function

102 103 104
10−15

10−10

10−5

100

N

f(
x∗ op

t)
−

f(
x o

pt
)

(a)

102 103 104
10−1

100

101

102

103

N

(b)

102 103 104

10−10

10−5

100

N

(c)

Fig. 7 Optimization results for two-dimensional test functions. The log–log plots depict the
difference between the optimization error in terms of the function value versus the maximal number
N of objective function evaluations. Shown are the results of (S) with modified B-splines (solid
lines) and modified fundamental splines (dashed). For comparison, the performance of the hat
function basis ((L), square markers) and of the direct optimization of the objective function ((O),
diamonds) can be seen. (a) Branin, d = 2. (b) Eggholder, d = 2. (c) Rosenbrock, d = 2

based approaches an advantage. After scaling the domains to the unit hypercube
[0, 1]d , we perturbed all functions with a Gaussian displacement (standard deviation
0.01). All results shown are means of five passes with different perturbations. Each
plot displays three types of results. First, the results of (S), optimizing modified B-
splines and modified fundamental B-splines (each for p = 3 and p = 5). Second,
the results of (L), optimizing the piecewise linear interpolant. Third, the results of
(O), directly optimizing the objective function.

The results for the three bivariate functions can be seen in Fig. 7. Clearly, for
relatively “smooth” functions such as Branin and Rosenbrock, both B-splines and
fundamental splines gain a significant advantage compared to the hat function
basis. The B-splines perform slightly better than the fundamental splines for both
functions. With its many oscillations and its optimum lying on the domain’s
boundary, the Eggholder function is much harder to optimize for all approaches
shown (cf. Fig. 7b).

248 J. Valentin and D. Pflüger

Mod. B-splines, p= 3 Mod. fund. splines, p= 3 Linear interpolant
Mod. B-splines, p= 5 Mod. fund. splines, p= 5 Objective function

102 103 104
10−4

10−3

10−2

10−1

100

101

N

f(
x∗ op

t)
−

f(
x o

pt
)

(a)

102 103 104
10−10

10−5

100

N

(b)

102 103 104
10−8

10−6

10−4

10−2

100

102

N

(c)

102 103 104
10−3

10−2

10−1

100

101

N

f(
x∗ op

t)
−

f(
x o

pt
)

(d)

102 103 104
100

101

102

N

(e)

102 103 104
10−1

100

101

102

103

104

N

(f)

102 103 104
100

101

N

f(
x∗ op

t)
−

f(
x o

pt
)

(g)

102 103 104
101

102

103

N

(h)

102 103 104
102

103

104

N

(i)

Fig. 8 Optimization results for higher-dimensional test functions. See Fig. 7 for details. (a)
Ackley, d = 4. (b) Rastrigin, d = 4. (c) Schwefel, d = 4. (d) Ackley, d = 6. (e) Rastrigin,
d = 6. (f) Schwefel, d = 6. (g) Ackley, d = 10. (h) Rastrigin, d = 10. (i) Schwefel, d = 10

Figure 8 shows the convergence behavior for the three d-variate test functions.
It can be said that for a moderate number of dimensions, both B-splines and
fundamental splines perform roughly equally well, while for higher dimensionalities
(d = 10), convergence slows down evidently. Note that all three d-variate test
functions Ackley, Rastrigin, and Schwefel have many local minima, which makes it
computationally hard to find the global minimum. Especially for coarse sparse grids,

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 249

it is possible that the minima of the interpolant and the objective function coincide
by chance. This means that the error curves do not need to be strictly monotonically
decreasing, which can be clearly seen for the Rastrigin function in d = 4 or d = 6.

6.4 Comparison of Runtime and Memory Consumption

Figure 9 visualizes the runtime and memory needed by the hierarchization step for
the sparse grids which were generated for the optimization of the test functions in
Fig. 8 (averaged over all objective functions and dimensionalities), measured on a
laptop with Intel Core i5-4300U. As already mentioned in Sect. 6.2, hierarchization
was done by linear system solvers in the B-spline case and with Algorithm 1 in
the fundamental spline case. Note that the effort for degree p = 3 and p = 5 is
nearly identical such that the corresponding lines almost overlap. The runtime of
our implementation is both asymptotically and in absolute numbers much better
for fundamental splines (factor 20 for N = 20,000), although slightly worse
than the theoretical complexity of O(N2). The memory consumption is of course
considerably lower for fundamental splines, since Algorithm 1 needs only a linear
amount O(N) of memory, while the linear system solvers can allocate up to O(N2)

bytes, depending on the type of solver (dense/sparse). This means for N = 20,000
points already a memory usage of up to 7.2 GB, in contrast to the fundamental
splines, which merely need 25 MB.

Mod. B-splines, p= 3 Mod. fund. splines, p= 3
Mod. B-splines, p= 5 Mod. fund. splines, p= 5

102 103 104 105
10−3

10−2

10−1

100

101

102

103

104
N2.89

N2.29

N

ru
nt

im
e

[s
]

(a)

102 103 104 105
105

106

107

108

109

1010

1011

N1.76

N1.00

N

m
em

or
y

[b
yt

es
]

(b)

Fig. 9 Average runtime (left) and memory consumption (right) of the hierarchization of the
spatially adaptive sparse grids used for Fig. 8 vs. the number of sparse grid points. The respectively
last two data points were extrapolated exponentially (dotted), using the mean of p = 3 and p = 5.
(a) Runtime. (b) Memory consumption

250 J. Valentin and D. Pflüger

7 Conclusion

In this paper, we have treated the problem of hierarchization with hierarchical
bases which have larger supports than the usual hat functions. We have given
a simple breadth-first search (BFS) algorithm for the hierarchization of bases
which fulfill the fundamental property. Furthermore, we have studied three different
basis transformations which transform a general basis to a basis satisfying the
fundamental property. One of the transformations has led to the well-known
definition of fundamental splines, which we compared with the conventional B-
spline basis in the application of gradient-based optimization. We have seen that
in this setting, the modified fundamental spline basis exhibits comparable results
as the modified B-splines with significant improvements in runtime and memory
consumption. Thus, for practical applications, the modified fundamental splines can
be preferred over the modified B-spline basis.

Future work should try to improve the implementation of the BFS algorithm
to reduce the runtime to the theoretical complexity of O(N2). In addition, the
performance of the modified fundamental spline basis should be studied if applied
to the optimization of objective functions stemming from real-world problems, in
contrast to the test functions with explicit formulas, as we did in this work.

Acknowledgements This work was financially supported by the Ministry of Science, Research
and the Arts of the State of Baden-Württemberg. We thank the referees for their valuable
comments.

References

1. H.-J. Bungartz, Finite elements of higher order on sparse grids. Habilitationsschrift, Institut
für Informatik, TU München, 1998

2. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)
3. C.K. Chui, An Introduction to Wavelets (Academic, San Diego, 1992)
4. F. Franzelin, D. Pflüger, From data to uncertainty: an efficient integrated data-driven sparse

grid approach to propagate uncertainty, in Sparse Grids and Applications – Stuttgart 2014, ed.
by J. Garcke, D. Pflüger. Lecture Notes in Computational Science and Engineering, vol. 109
(Springer, Cham, 2016), pp. 29–49

5. K. Höllig, Finite Element Methods with B-Splines (SIAM, Philadelphia, 2003)
6. K. Höllig, J. Hörner, Approximation and Modeling with B-Splines (SIAM, Philadelphia, 2013)
7. M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimisation

problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)
8. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313

(1965)
9. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 1999)

10. E. Novak, K. Ritter, Global optimization using hyperbolic cross points, in State of the Art
in Global Optimization, ed. by C.A. Floudas, P.M. Pardalos. Nonconvex Optimization and Its
Applications, vol. 7 (Springer, Boston, 1996), pp. 19–33

11. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut,
Munich, 2010)

Fundamental Splines on Sparse Grids and Application to Gradient-Based Optimization 251

12. D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke,
M. Griebel. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2012),
pp. 243–262

13. E. Polak, G. Ribière, Note sur la convergence de méthodes de directions conjuguées. Rev. Fr.
Inf. Rech. Oper. 3(1), 35–43 (1969)

14. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the
RPROP algorithm, in Proceedings of IEEE International Conference on Neural Networks,
vol. 1 (1993), pp. 586–591

15. I.J. Schoenberg, Cardinal interpolation and spline functions: II. Interpolation of data of power
growth. J. Approx. Theory 6, 404–420 (1972)

16. I.J. Schoenberg, Cardinal Spline Interpolation (SIAM, Philadelphia, 1973)
17. W. Sickel, T. Ullrich, Spline interpolation on sparse grids. Appl. Anal. 90(3–4), 337–383

(2011)
18. R. Storn, K. Price, Differential Evolution – a simple and efficient heuristic for global

optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
19. J. Valentin, D. Pflüger, Hierarchical gradient-based optimization with B-splines on sparse grids,

in Sparse Grids and Applications – Stuttgart 2014, ed. by J. Garcke, D. Pflüger. Lecture Notes
in Computational Science and Engineering, vol. 109 (Springer, Cham, 2016), pp. 315–336

20. D. Whitley, S. Rana, J. Dzubera, K.E. Mathias, Evaluating evolutionary algorithms. Artif.
Intell. 85(1–2), 245–276 (1996)

21. X.-S. Yang, Engineering Optimization (Wiley, Hoboken, 2010)
22. C. Zenger, Sparse Grids. Notes on Numerical Fluid Mechanics, vol. 31 (Vieweg, Braun-

schweig, 1991), pp. 241–251

Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new developments
– quickly, informally, and in a way that will make them accessible to non-specialists. In the
evaluation of submissions timeliness of the work is an important criterion. Texts should
be well-rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s) should
provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will
usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these
categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters – or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be

accessible to readers unfamiliar with the topic treated;
– a subject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at http://
www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
(Click on LaTeX Template → monographs or contributed books).

For categories ii) and iii) we strongly recommend that all contributions in a volume be
written in the same LaTeX version, preferably LaTeX2e. Electronic material can be included
if appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.

http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636

5. The following terms and conditions hold. Categories i), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but
no royalties.

Authors and volume editors are entitled to a discount of 33.3 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Springer secures the copyright for each volume.

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Comput-
ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and
Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic
Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints - OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering - CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations - ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H. P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models.

112. B. Karazösen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur (eds.), Numerical Mathemat-
ics and Advanced Applications - ENUMATH 2015.

113. H.-J. Bungartz, P. Neumann, W.E. Nagel (eds.), Software for Exascale Computing - SPPEXA 2013-
2015.

114. G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis (eds.), Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations.

115. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VIII.

116. C.-O. Lee, X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund (eds.), Domain
Decomposition Methods in Science and Engineering XXIII.

117. T. Sakurai, S.-L. Zhang, T. Imamura, Y. Yamamoto, Y. Kuramashi, T. Hoshi (eds.), Eigenvalue
Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015, Tsukuba,
Japan, September 2015.

118. T. Richter (ed.), Fluid-structure Interactions. Models, Analysis and Finite Elements.

119. M.L. Bittencourt, N.A. Dumont, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2016. Selected Papers from the ICOSAHOM Conference, June
27-July 1, 2016, Rio de Janeiro, Brazil.

120. Z. Huang, M. Stynes, Z. Zhang (eds.), Boundary and Interior Layers, Computational and Asymp-
totic Methods BAIL 2016.

121. S.P.A. Bordas, E.N. Burman, M.G. Larson, M.A. Olshanskii (eds.), Geometrically Unfitted Finite
Element Methods and Applications. Proceedings of the UCL Workshop 2016.

122. A. Gerisch, R. Penta, J. Lang (eds.), Multiscale Models in Mechano and Tumor Biology. Modeling,
Homogenization, and Applications.

123. J. Garcke, D. Pflüger, C.G. Webster, G. Zhang (eds.), Sparse Grids and Applications - Miami 2016.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with Python.

16. H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs - A Modern Software Approach.

17. B. Gustafsson, Scientific Computing from a Historical Perspective.

18. J. A. Trangenstein, Scientific Computing. Volume I - Linear and Nonlinear Equations.

www.springer.com/series/7417

19. J. A. Trangenstein, Scientific Computing. Volume II - Eigenvalues and Optimization.

20. J. A. Trangenstein, Scientific Computing. Volume III - Approximation and Integration.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

www.springer.com/series/5151

	Preface
	Contents
	Contributors
	Comparing Nested Sequences of Leja and PseudoGauss Points to Interpolate in 1D and Solve the Schroedinger Equation in 9D
	1 Introduction
	2 Interpolation
	3 The Importance of Nesting
	3.1 PseudoGauss Nested Points
	3.2 Leja Nested Points

	4 Lebesgue Constants
	5 Comparison Between Leja Points and PseudoGauss Points in Collocation Calculations
	6 Conclusion
	References

	On the Convergence Rate of Sparse Grid Least Squares Regression
	1 Introduction
	2 Least-Squares Regression
	3 Full Grids and Sparse Grids
	4 Error Analysis
	4.1 Well-Posedness and Error Decay
	4.2 Application to Sparse Grids

	5 Numerical Experiments
	5.1 Error Decay
	5.2 Balancing the Error

	6 Conclusion
	References

	Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction
	1 Introduction
	2 Adaptivity with Sparse Grids
	2.1 Interpolation on Spatially-Adaptive Sparse Grids
	2.2 Interpolation with Dimension-Adaptive Sparse Grids

	3 Multilevel Stochastic Collocation with Dimensionality Reduction
	3.1 Generalized Polynomial Chaos
	3.2 Multilevel Approaches for Generalized Polynomial Chaos
	3.3 Stochastic Dimensionality Reduction

	4 Numerical Results
	4.1 Second-Order Linear Oscillator with External Forcing
	4.2 A simple Fluid-Structure Interaction Example

	5 Conclusions and Outlook
	References

	Limiting Ranges of Function Values of Sparse Grid Surrogates
	1 Introduction
	2 Sparse Grids
	2.1 Hierarchical Ancestors and the Fundamental Property
	2.2 Interpolation on Sparse Grids

	3 Limiting Ranges of Sparse Grid Function Values
	3.1 Limitation from Above and Below
	3.2 Minimal Extension Set
	3.3 Computing Coefficients of the Extension Set
	3.4 Intersection Search

	4 Approximation of Gaussians with Extended Sparse Grids
	4.1 Intersection Search and Candidate Sets for Regular Sparse Grids
	4.2 Extension Sets and Convergence for Regular Grids
	4.3 Extension Sets for Adaptively Refined Grids

	5 Conclusions
	References

	Scalable Algorithmic Detection of Silent Data Corruption for High-Dimensional PDEs
	1 Introduction
	1.1 High-Dimensional PDEs in High-Performance Computing

	2 Theory of the Classical Combination Technique
	3 The Combination Technique in Parallel
	4 Dealing with System Faults
	5 Detecting and Recovering from SDC
	5.1 Method 1: Comparing Combination Solutions Pairwise via a Maximum Norm
	5.2 Method 2: Comparing Combination Solutions via their Function Values Directly
	5.3 Cost and Parallelization
	5.4 Detection Rates

	6 Numerical Tests
	6.1 Experimental Setup
	6.2 SDC Injection
	6.3 Results: Detection Rates and Errors
	6.4 Results: Scaling
	6.5 Dealing with False Positives

	7 Extensions to Quantities of Interest
	8 Conclusion
	References

	Sparse Grid Quadrature Rules Based on Conformal Mappings
	1 Introduction and Background
	2 Transformed Quadrature Rules
	2.1 Standard One-Dimensional Quadrature Rules
	2.2 Sparse Quadrature for High Dimensional Integrals

	3 Comparison of the Transformed Sparse Grid Quadrature Method
	4 Numerical Tests of the Sparse Grid Transformed Quadrature Rules
	4.1 Comparison of Maps
	4.2 Effect of Dimension

	5 Conclusions
	References

	Solving Dynamic Portfolio Choice Models in Discrete Time Using Spatially Adaptive Sparse Grids
	1 Introduction
	2 Dynamic Portfolio Choice Models
	2.1 Approximation
	2.2 Optimization
	2.3 Integration
	2.4 Dynamic Programming
	2.5 Optimal Choices

	3 Sparse Grid Approximation
	3.1 Hierarchical Bases and Sparse Subspace Selection
	3.2 Spatially Adaptive Refinement

	4 Spatially Adaptive Sparse Grid Dynamic Programming Scheme
	4.1 Spatially Adaptive Sparse Grid Dynamic Programming
	4.2 Optimal Choices
	4.3 Choice of Basis Functions, Extrapolation, and Refinement

	5 Numerical Example
	5.1 Transaction Costs Model
	5.2 Error Measurement
	5.3 Results

	6 Conclusion
	Appendix: Euler Equation Errors
	References

	Adaptive Sparse Grid Construction in a Context of Local Anisotropy and Multiple Hierarchical Parents
	1 Introduction
	2 Multidimensional Hierarchical Interpolation Strategy
	2.1 Multidimensional Hierarchy of Nodes and Functions
	2.2 Multidimensional Interpolation
	2.3 Piece-Wise Constant Hierarchy

	3 Adaptive Interpolation
	4 Examples
	4.1 Influence of the Type of Hierarchy
	4.2 Influence of the Refinement Method
	4.3 Application to Kermack-McKendrick SIR Model

	5 Conclusions
	References

	Smolyak's Algorithm: A Powerful Black Box for the Acceleration of Scientific Computations
	1 Introduction
	2 Decomposition
	3 Truncation
	3.1 Knapsack Problem
	3.2 Combination Rule

	4 Convergence Analysis
	4.1 Finite-Dimensional Case
	4.2 Infinite-Dimensional Case

	5 Applications
	5.1 High-Dimensional Interpolation and Integration
	5.2 Monte Carlo Path Simulation
	5.3 Multilevel Quadrature
	5.4 Partial Differential Equations
	5.5 Uncertainty Quantification

	6 Conclusion
	Appendix
	References

	Fundamental Splines on Sparse Grids and Their Application to Gradient-Based Optimization
	1 Introduction
	2 B-Splines on Sparse Grids
	2.1 Definition and Properties
	2.2 Hierarchization with B-Splines

	3 Fundamental Property
	4 Sparse Grid Basis Transformations
	4.1 Hierarchical Fundamental Transformation
	4.2 Nodal Fundamental Transformation
	4.3 Translation-Invariant Fundamental Transformation

	5 Hierarchical Fundamental Splines
	5.1 Definition and Properties
	5.2 Modified Fundamental Splines

	6 Application to Gradient-Based Optimization
	6.1 Generation of the Spatially Adaptive Grid
	6.2 Optimization Procedure
	6.3 Test Functions and Results
	6.4 Comparison of Runtime and Memory Consumption

	7 Conclusion
	References

	Editorial Policy
	Lecture Notesin Computational Scienceand Engineering
	Monographs in Computational Scienceand Engineering
	Texts in Computational Scienceand Engineering

