
Meta-Modeling

Decomposition of Responsibilities

Piotr Zabawa(B)

Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
piotr.zabawa@pk.edu.pl

Abstract. Contemporary known and applied approaches to defining
graph modeling languages are standardized. One their characteristic fea-
ture, which is fixed and static structure defined at compile time, con-
tains generalizations and thus is difficult to change. The paper presents
the results of the process of decomposing responsibilities which may be
identified in meta-models. Such decomposition may be done if a meta-
model is defined from the compile-time independent meta-model node
and meta-model arc classes joint into meta-model graph at run-time. The
Context-Driven Meta-Modeling Framework (CDMM-F) was designed to
support defining such meta-model. The process of the responsibilities
migration from one place they were originally concentrated to the right
place is shown in the paper as well and this migration results in mapping
them to the right elements of the CDMM-F.

Keywords: Modeling languages · Meta-model
Decomposition of responsibilities

1 Introduction

Meta-modeling is a process of creating rules, constraints and syntactical as well
as semantical elements of the method of reality abstraction. Graph-based mod-
eling is one possible approach to meta-modeling. Meta-modeling in the form of
graph models and meta-models is a widely accepted approach in software engi-
neering. Meta-models are used in this domain to define general-purpose modeling
languages, like the Unified Modeling Language (UML) or to define Domain-
Specific modeling Languages (DSLs). Their roles and motivation for leading the
research are characterized below.

The role of the general-purpose modeling languages (GPML) is to support
software development teams with the language focused on the specification of
the software systems under development (horizontal market). The models can be
also used for generating software system artifacts (UML) as well as they can be
executable (BPMN2). This way of software development processes automation
is very important from the economical reasons and is a common technique for
improving competitiveness of the IT enterprises.

c© Springer International Publishing AG, part of Springer Nature 2018
N. T. Nguyen et al. (Eds.): ACIIDS 2018, LNAI 10752, pp. 91–101, 2018.
https://doi.org/10.1007/978-3-319-75420-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75420-8_9&domain=pdf
http://orcid.org/0000-0002-5078-9869

92 P. Zabawa

In contrast, the domain-specific modeling languages (DSML) are extensively
used in many application domains (vertical markets) to define easy to use small
textual or graphical languages. They are useful for solving simple domain-specific
problems and are popular e.g. in enterprise systems [5].

The paper is related to a new approach to defining graph modeling languages.
The approach is named Context-Driven Meta-Modeling (CDMM) [14]. The mod-
eling languages defined in CDMM approach are named CDMM-compliant meta-
models and they can be general-purpose graph modeling languages or domain-
specific ones. Thus, the subject of the paper is related to the OMG concepts
as well as to graph DSLs, both mentioned above. And the paper is focused
on identification of modeling language responsibilities and constructing a query
language for the transformed meta-model.

In contrast to the previous papers dedicated to CDMM-related problems this
paper introduces and names different kinds of meta-modeling responsibilities
not known from the existing approaches. However, none of the previous papers
explained the specific nature of the run-time meta-modeling nor introduced
meta-modeling responsibilities characteristic for this approach to meta-modeling.
The responsibilities superposition characteristic for the run-time meta-modeling
was never published before.

2 State of the Art

There are several well known Object Management Group’s (OMG) standards,
like Meta-Object Facility (MOF), Unified Modeling Language (UML), Business
Process Model and Notation (BPMN2), both built on top of the MOF as well as
other modeling standards. Some of them constitute Model-Driven Architecture
(MDA) standard. The MDA is dedicated to automating software development
processes in the model-driven approach. All MDA standards are general purpose
standards and they are re-defined from time to time to be shared among mod-
eling and software development communities to support model-driven software
development processes.

The modeling languages defined by the OMG are created at compile-time
and thus they are named compile-time meta-models or compile-time modeling
languages further. In contrast, the modeling languages created at run-time are
named run-time meta-models or run-time modeling languages. The paper is
dedicated to run-time meta-models, nevertheless it refers also to compile-time
modeling languages.

The paper contains a discussion of responsibilities that can be identified
in contemporary modeling languages. However, the discussion is applicable for
run-time modeling languages only. It may be, however perceived as a strong
motivation to defining modeling languages this way due to many advantages.

There are known some frameworks for defining meta-models, like for example
[7]. The CDMM approach presented in the article is also supported by the appro-
priate CDMM-F framework [13]. The paper refers both the CDMM-F and the
meta-models to determine which meta-model responsibility should be mapped

Meta-Modeling: Decomposition of Responsibilities 93

to the framework or to the meta-model. As the result of the analysis described in
Sect. 4.1 the paper the Context-Driven Meta-Modeling Framework (CDMM-F)
[11] was designed and implemented. The design was based on the concept of
decomposition of responsibilities and their correct mapping to framework and
meta-model elements. In consequence, the CDMM-F constitutes the feasibility
case-study for the decomposition of responsibilities discussed in the paper. The
CDMM-F is introduced first in the article as it forms the base for identifying
responsibilities, their decomposition and mapping mentioned above. The special
role of application context mentioned further in the paper is presented in [10].

3 Context-Driven Meta-Modeling Fundamentals

The Context-Driven Meta-Modeling (CDMM) approach to defining graph mod-
eling languages (meta-models) is different from the OMG concept. The key
assumption in CDMM is that meta-models are treated as data models [8].
In the consequence the generalization relationships are excluded from CDMM-
compliant modeling languages. It contrasts to other approaches where gener-
alization constitutes an important modeling element, as it was described for
AODB in [4,6]. Moreover, in the CDMM a meta-model designer may introduce
classes not only for meta-model graph nodes but also for graph edges. All these
classes are independent one of the other at compile-time. Such a meta-model
graph can be semantically enriched by introducing entity classes both to meta-
model graph nodes and graph edges. The entity classes may form aggregation
hierarchies. In the consequence of such assumptions, the whole such a graph
structure can be defined at run-time. The formal representation of the CDMM
approach is illustrated in the Fig. 1 in the form of the CDMM meta-meta-model
class diagram [13].

<<metaclass>>
NodeClass

<<metaclass>>
ArcClass

<<metaclass>>
EntityClass

<<metaclass>>
Node

<<metaclass>>
Arc

<<metaclass>>
NodeEntityClass

<<metaclass>>
ArcEntityClass

sourceNode **

sourceArctargetEntity

**

targetNodes *1..*

targetEntity

sourceEntity

*
*

targetEntitysourceNode

** is injectedis injected

navigates to

is injected
is injected

Fig. 1. CDMM meta-meta-model - from [13].

The CDMM approach to defining modeling languages offers significant ease
of change introduction to modeling languages as they are defined at run-time.

94 P. Zabawa

Meta-models specified this way may easily become graph domain languages,
that is - graph DSLs. On the other hand, the CDMM-compliant modeling lan-
guages may be created in the form of OMG modeling or meta-modeling languages
customization.

The CDMM concept presented in the Fig. 1 is implemented in the form of the
CDMM-F, the framework which supports defining CDMM-compliant modeling
languages. The framework is implemented in the combination of Java-related
technologies, namely Java, Spring, AspectJ, Guava and Apache commons.

The universality of CDMM approach manifests in the fact that the modeling
language can be defined in any form not necessarily addressed to class-object
paradigm. In the consequence the application of CDMM approach makes accom-
modating new technologies and new paradigms easier than in the case of MDA
approach.

The next sections present some observations made during several stages of
the evolutionary approach applied to the CDMM-F design and implementation
process and resulting in the CDMM meta-meta-model presented in the Fig. 1.
The special focus of this kind of research was put just on the identification and
decomposition of meta-model and CDMM-F responsibilities. Then, the identified
responsibilities were mapped to the right element of the CDMM-F or the meta-
model.

4 Migration of Responsibilities in the CDMM-F

The analysis presented in this section leads from the identification of existing
but not evident meta-model responsibilities to their mapping to the right place
in the run-time meta-model or the framework. This mapping is required for the
correct CDMM-F design.

The following stages were applied to identify the right place of implementa-
tion for particular responsibilities:

– STAGE ONE - the meta-model responsibilities were identified as it is
described in Sect. 4.1;

– STAGE TWO - the maximal number of responsibilities was associated to the
Arc classes for the meta-model while removing them from meta-model Node
classes;

– STAGE THREE - the graph query language was designed in such a way that
each meta-model element instance (CDMM-compliant model element) may
be obtained from Arc class instances;

– STAGE FOUR - the responsibilities focused in the query language elements
were moved to different elements of CDMM-compliant meta-models or to the
elements of the CDMM-F.

The stages are characterized in the succeeding subsections.

Meta-Modeling: Decomposition of Responsibilities 95

4.1 STAGE ONE: Responsibilities in CDMM-Compliant
Meta-Models

In this section the analysis of the CDMM meta-meta-model presented in the
Fig. 1 is performed in order to identify the meta-modeling responsibilities being
the subject of migration. Thus some responsibilities are inferred from the men-
tioned class diagram. The CDMM meta-meta-model is conceptual. In the conse-
quence, the CDMM-compliant meta-models are not instances of the meta-meta-
model. They should be rather perceived as meta-meta-model concretizations or
realizations. The CDMM meta-meta-model as a conceptual one is not created
in the CDMM-F in any form. The advantage of it is being just a model of roles
the meta-model classes play regarding the CDMM meta-model graph.

The responsibilities inferred in this section are further mapped to the different
elements of the meta-model and CDMM-F. This mapping drives the CDMM-F
design decisions as well as meta-model design decisions.

The characteristic feature of MDA standards is the fixed structure (hierarchy)
of their meta-models. Moreover, the meta-models of the MDA sub-standards are
monolithic - their responsibilities are decomposed to packages and to generaliza-
tions from abstract classes or implementation of marker interfaces, sometimes
abstract classes are used as markers. Also, the relationships between MDA sub-
standard meta-model nodes are represented in the form of references (or inher-
itance or implementation relationships) and not in the form of classes [1–3,9].
In consequence, the set of available relationships is limited. In this section the
results of the analysis of possible responsibilities that can be found in meta-
models (also in the MDA meta-models) are presented from the perspective of
CDMM approach. These results are inferred from the CDMM-F implementation
efforts.

As it results from the CDMM meta-meta-model presented in the Fig. 1, each
CDMM-compliant meta-model class can be a Node class or an Arc class or an
Entity class. According to the CDMM assumptions these classes are not related
at compile-time and the meta-model is created from these classes at run-time.
The Node, Arc and Entity classes are defined by a meta-model designer for
the purpose of a particular modeling language. They are also highly reusable
both in the source code level (Java source code files) and in the byte code level
(compiled class files or jar files). They can be easily exchanged between dif-
ferent meta-model projects and between end user applications and meta-model
projects. The character of Node, Arc and Entity meta-model classes is deter-
mined by their role. For the Node classes it is enough just to exist and be empty.
Entity classes should store data in the form of the attributes. Arc classes must
be defined in the form resulting from the Fig. 1. More specifically, each Arc
class must define its targetNodes element. This element plays role of the con-
tainer for information about type of the targetNodes and for the object being
instances of the targetNodes class. The targetNodes classes are determined
when a CDMM-compliant meta-model is constructed from the meta-model def-
inition (application context) while the targetNodes objects are put into the
targetNodes container while instantiating the meta-model (model creating).
Both Node and Arc classes may also contain data in attributes. In such a case

96 P. Zabawa

they share their role with the role of Entity classes. Each Arc class is associated
to a Node class at run time on the stage of meta-model creation. The concept
of injections is applied here. The same injection mechanism is also applied for
run-time Entity classes associating to Arc or Node classes as well as to Entity
classes. As a special case an Entity class may be shared between several Node
and several Arc classes by injecting the Entity class to each of the mentioned
sourceNode and sourceArc classes. It is shown in the Fig. 1 that the cardinali-
ties of relationships between Node and Arc classes are many-to-many. It means,
that each Node class may have many Arc class injected and each Arc class may
be injected to many Node classes. However, each Arc class must have at least
one targetNodes end (otherwise it does not relate anything). So, the responsi-
bility of Arc classes is to have a targetNodes end. The reflexive (that is self)
association in EntityClass form the Fig. 1 means that the Entity classes may
form association (aggregation) hierarchies.

All responsibilities mentioned in this section are connected to meta-model
elements (user defined classes), to the meta-model itself (its representation in
memory) or to the definition of the meta-model (the file which defines an appli-
cation context for the CDMM-F).

4.2 STAGES TWO and THREE: CDMM-F Query Language

In this section the results of STAGE TWO and THREE are discussed together
as the goal of the analysis presented in the paper is just the STAGE FOUR,
which in turn is illustrated in Sect. 4.3.

The decision about constructing meta-model query language around Arc
classes was driven by the fact that in the available modeling languages the num-
ber of different types of relationships (Arc classes in CDMM) is significantly
smaller than the number of different types of nodes (Node classes in CDMM).
Moreover, the Node classes are unique in a meta-model while the Arc classes
may appear many times in a modeling different (say, between two pairs of Node
classes in the case of bnary relationships) of Node classes and inside a set of Node
classes (say, between two Node classes);

The graph query language was designed in such a form that being in a par-
ticular meta-model Node all Arc classes injected to this Node class the Node class
object is casted to the Arc class and the right Arc class targetNodes attribute
is found by the query.

The construction of a sample query Arc class that fulfils the concept from
the last paragraph is presented below. First the CDMM-F elements referenced
further are presented in the Figs. 2 and 3.

<<Interface>>
IGraphElement

<<Interface>>
INode

<<Interface>>
IArc

Fig. 2. CDMM-F top hierarchies for the roles in the graph.

Meta-Modeling: Decomposition of Responsibilities 97

<<Interface>>
IGraphElement

<<Interface>>
IRootMetamodelCore

RootMetamodelCore

BaseMetamodelCore

Fig. 3. CDMM-F top hierarchies for the roles in the meta-model core elements.

The CDMM-F query language was designed according to the following
assumptions:

– the subject of each query is a Node class; this Node class plays the role of a
sourceNode class of a relationship injection as was depicted in the Fig. 1

– the query contains the sourceNode object, the Arc class, the targetNode
class as its arguments

– the query returns the list of targetNode objects.

The meta-model query language design rules presented above fulfill the
requirement of making it possible to identify all relationship instances and return
the list of all objects on the targetNode end of each relationship instance. It
is sufficient to traverse the whole meta-model graph instance, that is the graph
which is composed of meta-model objects (CDMM-compliant model) interrelated
according to the injections (CDMM-compliant meta-model).

Below, the design of classes implementing this language is analysed.
The most general representation of the type of a class of the most complex

relationship applied so far has the following form in the query language men-
tioned above:

Multimap<List<Pair<IGraphElement,Class<?>>>, BaseMetamodelCore>

This form of type reflects the superposition of the responsibilities identified
in Sect. 4.1. The superposition is expressed in the Expr. 1. The appropriate
elements of the type and responsibilities the elements of this type reflects are
displayed in the same colors.

inter-object-relations ◦ arity ◦ binary-relation-id ◦ targetNode-objects
(1)

where:

– inter-object-relations stands for the inter-object relation instances for a par-
ticular Arc class injected to Node classes

– arity stands for the number of Node classes interrelated by an Arc class (N-
ary nature of a relationship), thus the number of injections of an Arc class to
the Node classes represented by the sourceNode multiplicity in the Fig. 1

98 P. Zabawa

– binary-relation-id stands for the key used to uniquely identify a binary
relationship

– targetNode-objects stands for the number of objects located at the
targetNode association roleName presented in the Fig. 1.

The consequences of a special approach to representing N-ary relationships,
which was applied in CDMM meta-model graph query language is toched on
further in the paper and will be published in separate paper.

It is worth noting that the superposition from the Expr. 1 is similar to the
Decorator design pattern applied to generic types in place of the object types.
Thus, the superposition of responsibilities may be seen as the Decorator design
pattern moved from class-object paradigm to generic paradigm. Objects are
decorated by relations, relations are decorated by N-arity, N-arity is decorated
by the objects cardinality. Moreover some elements of this superposition are
defined at meta-modeling level while some of them are defined at modeling level.

Another observation is that the order of superposed element must remain
unchanged while responsibilities migration or while simplification of the rela-
tionship.

The Expr. 1 constitutes the result of the STAGES 2 and 3 discussed at the
beginning of the current section.

4.3 STAGE FOUR: Responsibilities Mapping

The results of the STAGE 4 are presented in the Tables 1 and 2. The same
coloring convention as the one used in Sect. 4.2 was applied in both tables to show
the result of mapping all colored responsibilities to meta-model and CDMM-F
locations.

All identified meta-model responsibilities were mapped to the right place in
run-time CDMM-compliant meta-model elements according to the Table 1. They
were also implemented according to the Table 2 in the CDMM-F framework both
as the meta-model graph definition specified in the form of the application con-
text and in the form of the CDMM-F software itself. The framework was then
extensively tested both by manually defined meta-models oriented to testing the
correctness of each responsibility mapping and in the form of semi-automatic
simulation-like approach presented in [12]. In the last approach to testing the
manually defined meta-models constituted the test kernels surrounded by auto-
matically generated test context - the supergraphs for test kernels. The tests
confirmed the correctness of the responsibilities decomposition.

As it was shown in the Tables 1 and 2, some responsibilities are mapped to
more than one locations, like for example “being a subject of entities injections”
which is distributed between Node class, Arc class and Entity class. Also, each
location is mapped to many responsibilities. It means, that the mapping is many-
to-many.

It is worthy of notice that the N-ary relationship responsibility is associated to
the application context in the Table 2. In contrast to compile-time meta-models,
arity is not the responsibility of the Node class. There are many consequences

Meta-Modeling: Decomposition of Responsibilities 99

Table 1. Mapping from the CDMM responsibilities to the meta-model elements.

Responsibility Location

Being a meta-model node or arc Element class
Being a meta-model graph node Node class
Being a subject of arcs injections
Being a subject of entities injections
Being a meta-model graph arc Arc class
Being able to be injected to the sourceNodes
Being a container for targetNodes both for Node classes
and Node objects (relationship end)
Being directed from the sourceNode to targetNodes

Being a subject of entities injections
Being possibly bi-directed
Storing and exposing meta-model element attributes Entity class
Belonging to an aggregation hierarchy of entities
Being able to be injected to the nodes, arcs or entities
Being a subject of entities injections

Table 2. Mapping from the CDMM responsibilities to the CDMM-F framework
elements.

Responsibility Location

Defining a scope for Elements Application context
Defining a unique name for Elements
Defining an arc as being a binary or
N-ary relationship (arity)
Defining an arc as a reflexive relationship
Defining the whole meta-model graph composed of node,
arc, entity classes and their injections
Having APIs for meta-model graph traversal CDMM-F
Having API for meta-model graph elements instantiation
(creating model in memory as a graph of objects)
Having a meta-model graph query language
Having scope management factories
Having configuration for a meta-model project
Being able to instantiate the meta-model classes
(creating meta-model in memory as a graph of
meta-model element classes)

100 P. Zabawa

of moving arity responsibility from a Node class to the application context. The
detailed discussion of the N-ary relationships in run-time meta-models is out of
scope of the paper.

5 Conclusions

One consequence of introducing the CDMM concept of defining modeling lan-
guages at run-time is the ability to identify different responsibilities, which
are not clear as long as the compile-time metamodel definitions are taken into
account. It was shown in the paper that many responsibilities can be uncovered,
identified, taken away from meta-model graph hierarchy and, finally placed in the
right places when moving from compile-time meta-models to the run-time ones.
The new responsibilities were also named and mapped to the meta-model ele-
ments according to the Table 1 and meta-modeling framework elements accord-
ing to the Table 2.

The right paradigm for implementing meta-modeling query language accord-
ing to the concept assumed in the paper is a generic paradigm. All meta-model
Elements, that is Node classes, Arc classes and Entity classes may be imple-
mented in class-object paradigm as classes unrelated at compile-time. Meta-
model graphs are created in CDMM-F with the aid of aspect-oriented paradigm.
The combination of mentioned object-oriented paradigms is sufficient and well
suited to make all CDMM concepts including the decomposition of responsibil-
ities feasible.

References

1. Bildhauer, D.: On the relationship between subsetting, redefinition and association
specialization. In: Proceedings of the 9th Baltic Conference on Databases and
Information Systems, Riga (2010)

2. Diaz, I., Llorens, J., Genova, G., Fuentes, J.: Generating domain representations
using a relationship model. Inf. Syst. 30, 1–19 (2005)

3. Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML associations into Java
code. J. Object Technol. 2(5), 135–162 (2003)

4. Krótkiewicz, M.: A Novel inheritance mechanism for modeling knowledge repre-
sentation systems. Computer Science and Information Systems (2017)

5. Krótkiewicz, M., Jod�lowiec, M., Wojtkiewicz, K., Szwedziak, K.: Unified process
management for service and manufacture system—material resources. In: Burduk,
R., Jackowski, K., Kurzyński, M., Woźniak, M., Żo�lnierek, A. (eds.) Proceedings of
the 9th International Conference on Computer Recognition Systems CORES 2015.
AISC, vol. 403, pp. 681–690. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-26227-7 64

6. Krótkiewicz, M.: Association-oriented database model - n-ary associations. Int. J.
Softw. Eng. Knowl. Eng. 27(02), 281–320 (2017)

7. Malhotra, R.: Meta-modeling framework: a new approach to manage meta-model
base and modeling knowledge. Knowl.-Based Syst. 21, 6–37 (2008)

8. Merson, P.: Data model as an architectural view. Technical note CMU/SEI-2009-
TN-024, Software Engineering Institute, Carnegie Mellon University (2009)

https://doi.org/10.1007/978-3-319-26227-7_64
https://doi.org/10.1007/978-3-319-26227-7_64

Meta-Modeling: Decomposition of Responsibilities 101

9. Tan, H.B.K., Yang, Y., Bian, L.: Improving the use of multiplicity in UML associ-
ation. J. Object Technol. 5(6), 127–132 (2006)

10. Zabawa, P.: Context-driven meta-modeling framework (CDMM-F) - context role.
Tech. Trans. 112(1–NP), 105–114 (2015)

11. Zabawa, P.: Context-Driven Meta-Modeling Framework (CDMM-F) - Internal
Structure (2017, accepted for publication)

12. Zabawa, P.: Simulation of the CDMM-P paradigm-driven meta-modeling process.
Tech. Trans. 4, 143–154 (2017)

13. Zabawa, P., Hnatkowska, B.: CDMM-F – domain languages framework. In:
Świ ↪atek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp.
263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8 24

14. Zabawa, P., Stanuszek, M.: Characteristics of the context-driven meta-modeling
paradigm (CDMM-P). Tech. Trans. 111(3), 123–134 (2014)

https://doi.org/10.1007/978-3-319-67229-8_24

	Meta-Modeling
	1 Introduction
	2 State of the Art
	3 Context-Driven Meta-Modeling Fundamentals
	4 Migration of Responsibilities in the CDMM-F
	4.1 STAGE ONE: Responsibilities in CDMM-Compliant Meta-Models
	4.2 STAGES TWO and THREE: CDMM-F Query Language
	4.3 STAGE FOUR: Responsibilities Mapping

	5 Conclusions
	References

